ChangeLog:
[binutils-gdb.git] / gdb / spu-tdep.c
1 /* SPU target-dependent code for GDB, the GNU debugger.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 Contributed by Ulrich Weigand <uweigand@de.ibm.com>.
5 Based on a port by Sid Manning <sid@us.ibm.com>.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "gdbtypes.h"
25 #include "gdbcmd.h"
26 #include "gdbcore.h"
27 #include "gdb_string.h"
28 #include "gdb_assert.h"
29 #include "frame.h"
30 #include "frame-unwind.h"
31 #include "frame-base.h"
32 #include "trad-frame.h"
33 #include "symtab.h"
34 #include "symfile.h"
35 #include "value.h"
36 #include "inferior.h"
37 #include "dis-asm.h"
38 #include "objfiles.h"
39 #include "language.h"
40 #include "regcache.h"
41 #include "reggroups.h"
42 #include "floatformat.h"
43 #include "block.h"
44 #include "observer.h"
45
46 #include "spu-tdep.h"
47
48
49 /* The list of available "set spu " and "show spu " commands. */
50 static struct cmd_list_element *setspucmdlist = NULL;
51 static struct cmd_list_element *showspucmdlist = NULL;
52
53 /* Whether to stop for new SPE contexts. */
54 static int spu_stop_on_load_p = 0;
55
56
57 /* The tdep structure. */
58 struct gdbarch_tdep
59 {
60 /* The spufs ID identifying our address space. */
61 int id;
62
63 /* SPU-specific vector type. */
64 struct type *spu_builtin_type_vec128;
65 };
66
67
68 /* SPU-specific vector type. */
69 static struct type *
70 spu_builtin_type_vec128 (struct gdbarch *gdbarch)
71 {
72 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
73
74 if (!tdep->spu_builtin_type_vec128)
75 {
76 const struct builtin_type *bt = builtin_type (gdbarch);
77 struct type *t;
78
79 t = arch_composite_type (gdbarch,
80 "__spu_builtin_type_vec128", TYPE_CODE_UNION);
81 append_composite_type_field (t, "uint128", bt->builtin_int128);
82 append_composite_type_field (t, "v2_int64",
83 init_vector_type (bt->builtin_int64, 2));
84 append_composite_type_field (t, "v4_int32",
85 init_vector_type (bt->builtin_int32, 4));
86 append_composite_type_field (t, "v8_int16",
87 init_vector_type (bt->builtin_int16, 8));
88 append_composite_type_field (t, "v16_int8",
89 init_vector_type (bt->builtin_int8, 16));
90 append_composite_type_field (t, "v2_double",
91 init_vector_type (bt->builtin_double, 2));
92 append_composite_type_field (t, "v4_float",
93 init_vector_type (bt->builtin_float, 4));
94
95 TYPE_VECTOR (t) = 1;
96 TYPE_NAME (t) = "spu_builtin_type_vec128";
97
98 tdep->spu_builtin_type_vec128 = t;
99 }
100
101 return tdep->spu_builtin_type_vec128;
102 }
103
104
105 /* The list of available "info spu " commands. */
106 static struct cmd_list_element *infospucmdlist = NULL;
107
108 /* Registers. */
109
110 static const char *
111 spu_register_name (struct gdbarch *gdbarch, int reg_nr)
112 {
113 static char *register_names[] =
114 {
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
118 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
119 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
120 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
121 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
122 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
123 "r64", "r65", "r66", "r67", "r68", "r69", "r70", "r71",
124 "r72", "r73", "r74", "r75", "r76", "r77", "r78", "r79",
125 "r80", "r81", "r82", "r83", "r84", "r85", "r86", "r87",
126 "r88", "r89", "r90", "r91", "r92", "r93", "r94", "r95",
127 "r96", "r97", "r98", "r99", "r100", "r101", "r102", "r103",
128 "r104", "r105", "r106", "r107", "r108", "r109", "r110", "r111",
129 "r112", "r113", "r114", "r115", "r116", "r117", "r118", "r119",
130 "r120", "r121", "r122", "r123", "r124", "r125", "r126", "r127",
131 "id", "pc", "sp", "fpscr", "srr0", "lslr", "decr", "decr_status"
132 };
133
134 if (reg_nr < 0)
135 return NULL;
136 if (reg_nr >= sizeof register_names / sizeof *register_names)
137 return NULL;
138
139 return register_names[reg_nr];
140 }
141
142 static struct type *
143 spu_register_type (struct gdbarch *gdbarch, int reg_nr)
144 {
145 if (reg_nr < SPU_NUM_GPRS)
146 return spu_builtin_type_vec128 (gdbarch);
147
148 switch (reg_nr)
149 {
150 case SPU_ID_REGNUM:
151 return builtin_type (gdbarch)->builtin_uint32;
152
153 case SPU_PC_REGNUM:
154 return builtin_type (gdbarch)->builtin_func_ptr;
155
156 case SPU_SP_REGNUM:
157 return builtin_type (gdbarch)->builtin_data_ptr;
158
159 case SPU_FPSCR_REGNUM:
160 return builtin_type (gdbarch)->builtin_uint128;
161
162 case SPU_SRR0_REGNUM:
163 return builtin_type (gdbarch)->builtin_uint32;
164
165 case SPU_LSLR_REGNUM:
166 return builtin_type (gdbarch)->builtin_uint32;
167
168 case SPU_DECR_REGNUM:
169 return builtin_type (gdbarch)->builtin_uint32;
170
171 case SPU_DECR_STATUS_REGNUM:
172 return builtin_type (gdbarch)->builtin_uint32;
173
174 default:
175 internal_error (__FILE__, __LINE__, "invalid regnum");
176 }
177 }
178
179 /* Pseudo registers for preferred slots - stack pointer. */
180
181 static void
182 spu_pseudo_register_read_spu (struct regcache *regcache, const char *regname,
183 gdb_byte *buf)
184 {
185 struct gdbarch *gdbarch = get_regcache_arch (regcache);
186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
187 gdb_byte reg[32];
188 char annex[32];
189 ULONGEST id;
190
191 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
192 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
193 memset (reg, 0, sizeof reg);
194 target_read (&current_target, TARGET_OBJECT_SPU, annex,
195 reg, 0, sizeof reg);
196
197 store_unsigned_integer (buf, 4, byte_order, strtoulst (reg, NULL, 16));
198 }
199
200 static void
201 spu_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
202 int regnum, gdb_byte *buf)
203 {
204 gdb_byte reg[16];
205 char annex[32];
206 ULONGEST id;
207
208 switch (regnum)
209 {
210 case SPU_SP_REGNUM:
211 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
212 memcpy (buf, reg, 4);
213 break;
214
215 case SPU_FPSCR_REGNUM:
216 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
217 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
218 target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
219 break;
220
221 case SPU_SRR0_REGNUM:
222 spu_pseudo_register_read_spu (regcache, "srr0", buf);
223 break;
224
225 case SPU_LSLR_REGNUM:
226 spu_pseudo_register_read_spu (regcache, "lslr", buf);
227 break;
228
229 case SPU_DECR_REGNUM:
230 spu_pseudo_register_read_spu (regcache, "decr", buf);
231 break;
232
233 case SPU_DECR_STATUS_REGNUM:
234 spu_pseudo_register_read_spu (regcache, "decr_status", buf);
235 break;
236
237 default:
238 internal_error (__FILE__, __LINE__, _("invalid regnum"));
239 }
240 }
241
242 static void
243 spu_pseudo_register_write_spu (struct regcache *regcache, const char *regname,
244 const gdb_byte *buf)
245 {
246 struct gdbarch *gdbarch = get_regcache_arch (regcache);
247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
248 gdb_byte reg[32];
249 char annex[32];
250 ULONGEST id;
251
252 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
253 xsnprintf (annex, sizeof annex, "%d/%s", (int) id, regname);
254 xsnprintf (reg, sizeof reg, "0x%s",
255 phex_nz (extract_unsigned_integer (buf, 4, byte_order), 4));
256 target_write (&current_target, TARGET_OBJECT_SPU, annex,
257 reg, 0, strlen (reg));
258 }
259
260 static void
261 spu_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
262 int regnum, const gdb_byte *buf)
263 {
264 gdb_byte reg[16];
265 char annex[32];
266 ULONGEST id;
267
268 switch (regnum)
269 {
270 case SPU_SP_REGNUM:
271 regcache_raw_read (regcache, SPU_RAW_SP_REGNUM, reg);
272 memcpy (reg, buf, 4);
273 regcache_raw_write (regcache, SPU_RAW_SP_REGNUM, reg);
274 break;
275
276 case SPU_FPSCR_REGNUM:
277 regcache_raw_read_unsigned (regcache, SPU_ID_REGNUM, &id);
278 xsnprintf (annex, sizeof annex, "%d/fpcr", (int) id);
279 target_write (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 16);
280 break;
281
282 case SPU_SRR0_REGNUM:
283 spu_pseudo_register_write_spu (regcache, "srr0", buf);
284 break;
285
286 case SPU_LSLR_REGNUM:
287 spu_pseudo_register_write_spu (regcache, "lslr", buf);
288 break;
289
290 case SPU_DECR_REGNUM:
291 spu_pseudo_register_write_spu (regcache, "decr", buf);
292 break;
293
294 case SPU_DECR_STATUS_REGNUM:
295 spu_pseudo_register_write_spu (regcache, "decr_status", buf);
296 break;
297
298 default:
299 internal_error (__FILE__, __LINE__, _("invalid regnum"));
300 }
301 }
302
303 /* Value conversion -- access scalar values at the preferred slot. */
304
305 static struct value *
306 spu_value_from_register (struct type *type, int regnum,
307 struct frame_info *frame)
308 {
309 struct value *value = default_value_from_register (type, regnum, frame);
310 int len = TYPE_LENGTH (type);
311
312 if (regnum < SPU_NUM_GPRS && len < 16)
313 {
314 int preferred_slot = len < 4 ? 4 - len : 0;
315 set_value_offset (value, preferred_slot);
316 }
317
318 return value;
319 }
320
321 /* Register groups. */
322
323 static int
324 spu_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
325 struct reggroup *group)
326 {
327 /* Registers displayed via 'info regs'. */
328 if (group == general_reggroup)
329 return 1;
330
331 /* Registers displayed via 'info float'. */
332 if (group == float_reggroup)
333 return 0;
334
335 /* Registers that need to be saved/restored in order to
336 push or pop frames. */
337 if (group == save_reggroup || group == restore_reggroup)
338 return 1;
339
340 return default_register_reggroup_p (gdbarch, regnum, group);
341 }
342
343 /* Address conversion. */
344
345 static int
346 spu_gdbarch_id (struct gdbarch *gdbarch)
347 {
348 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
349 int id = tdep->id;
350
351 /* The objfile architecture of a standalone SPU executable does not
352 provide an SPU ID. Retrieve it from the the objfile's relocated
353 address range in this special case. */
354 if (id == -1
355 && symfile_objfile && symfile_objfile->obfd
356 && bfd_get_arch (symfile_objfile->obfd) == bfd_arch_spu
357 && symfile_objfile->sections != symfile_objfile->sections_end)
358 id = SPUADDR_SPU (obj_section_addr (symfile_objfile->sections));
359
360 return id;
361 }
362
363 static ULONGEST
364 spu_lslr (int id)
365 {
366 gdb_byte buf[32];
367 char annex[32];
368
369 if (id == -1)
370 return SPU_LS_SIZE - 1;
371
372 xsnprintf (annex, sizeof annex, "%d/lslr", id);
373 memset (buf, 0, sizeof buf);
374 target_read (&current_target, TARGET_OBJECT_SPU, annex,
375 buf, 0, sizeof buf);
376
377 return strtoulst (buf, NULL, 16);
378 }
379
380 static void
381 spu_address_to_pointer (struct gdbarch *gdbarch,
382 struct type *type, gdb_byte *buf, CORE_ADDR addr)
383 {
384 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
385 store_unsigned_integer (buf, TYPE_LENGTH (type), byte_order,
386 SPUADDR_ADDR (addr));
387 }
388
389 static CORE_ADDR
390 spu_pointer_to_address (struct gdbarch *gdbarch,
391 struct type *type, const gdb_byte *buf)
392 {
393 int id = spu_gdbarch_id (gdbarch);
394 ULONGEST lslr = spu_lslr (id);
395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
396 ULONGEST addr
397 = extract_unsigned_integer (buf, TYPE_LENGTH (type), byte_order);
398
399 return addr? SPUADDR (id, addr & lslr) : 0;
400 }
401
402 static CORE_ADDR
403 spu_integer_to_address (struct gdbarch *gdbarch,
404 struct type *type, const gdb_byte *buf)
405 {
406 int id = spu_gdbarch_id (gdbarch);
407 ULONGEST lslr = spu_lslr (id);
408 ULONGEST addr = unpack_long (type, buf);
409
410 return SPUADDR (id, addr & lslr);
411 }
412
413
414 /* Decoding SPU instructions. */
415
416 enum
417 {
418 op_lqd = 0x34,
419 op_lqx = 0x3c4,
420 op_lqa = 0x61,
421 op_lqr = 0x67,
422 op_stqd = 0x24,
423 op_stqx = 0x144,
424 op_stqa = 0x41,
425 op_stqr = 0x47,
426
427 op_il = 0x081,
428 op_ila = 0x21,
429 op_a = 0x0c0,
430 op_ai = 0x1c,
431
432 op_selb = 0x4,
433
434 op_br = 0x64,
435 op_bra = 0x60,
436 op_brsl = 0x66,
437 op_brasl = 0x62,
438 op_brnz = 0x42,
439 op_brz = 0x40,
440 op_brhnz = 0x46,
441 op_brhz = 0x44,
442 op_bi = 0x1a8,
443 op_bisl = 0x1a9,
444 op_biz = 0x128,
445 op_binz = 0x129,
446 op_bihz = 0x12a,
447 op_bihnz = 0x12b,
448 };
449
450 static int
451 is_rr (unsigned int insn, int op, int *rt, int *ra, int *rb)
452 {
453 if ((insn >> 21) == op)
454 {
455 *rt = insn & 127;
456 *ra = (insn >> 7) & 127;
457 *rb = (insn >> 14) & 127;
458 return 1;
459 }
460
461 return 0;
462 }
463
464 static int
465 is_rrr (unsigned int insn, int op, int *rt, int *ra, int *rb, int *rc)
466 {
467 if ((insn >> 28) == op)
468 {
469 *rt = (insn >> 21) & 127;
470 *ra = (insn >> 7) & 127;
471 *rb = (insn >> 14) & 127;
472 *rc = insn & 127;
473 return 1;
474 }
475
476 return 0;
477 }
478
479 static int
480 is_ri7 (unsigned int insn, int op, int *rt, int *ra, int *i7)
481 {
482 if ((insn >> 21) == op)
483 {
484 *rt = insn & 127;
485 *ra = (insn >> 7) & 127;
486 *i7 = (((insn >> 14) & 127) ^ 0x40) - 0x40;
487 return 1;
488 }
489
490 return 0;
491 }
492
493 static int
494 is_ri10 (unsigned int insn, int op, int *rt, int *ra, int *i10)
495 {
496 if ((insn >> 24) == op)
497 {
498 *rt = insn & 127;
499 *ra = (insn >> 7) & 127;
500 *i10 = (((insn >> 14) & 0x3ff) ^ 0x200) - 0x200;
501 return 1;
502 }
503
504 return 0;
505 }
506
507 static int
508 is_ri16 (unsigned int insn, int op, int *rt, int *i16)
509 {
510 if ((insn >> 23) == op)
511 {
512 *rt = insn & 127;
513 *i16 = (((insn >> 7) & 0xffff) ^ 0x8000) - 0x8000;
514 return 1;
515 }
516
517 return 0;
518 }
519
520 static int
521 is_ri18 (unsigned int insn, int op, int *rt, int *i18)
522 {
523 if ((insn >> 25) == op)
524 {
525 *rt = insn & 127;
526 *i18 = (((insn >> 7) & 0x3ffff) ^ 0x20000) - 0x20000;
527 return 1;
528 }
529
530 return 0;
531 }
532
533 static int
534 is_branch (unsigned int insn, int *offset, int *reg)
535 {
536 int rt, i7, i16;
537
538 if (is_ri16 (insn, op_br, &rt, &i16)
539 || is_ri16 (insn, op_brsl, &rt, &i16)
540 || is_ri16 (insn, op_brnz, &rt, &i16)
541 || is_ri16 (insn, op_brz, &rt, &i16)
542 || is_ri16 (insn, op_brhnz, &rt, &i16)
543 || is_ri16 (insn, op_brhz, &rt, &i16))
544 {
545 *reg = SPU_PC_REGNUM;
546 *offset = i16 << 2;
547 return 1;
548 }
549
550 if (is_ri16 (insn, op_bra, &rt, &i16)
551 || is_ri16 (insn, op_brasl, &rt, &i16))
552 {
553 *reg = -1;
554 *offset = i16 << 2;
555 return 1;
556 }
557
558 if (is_ri7 (insn, op_bi, &rt, reg, &i7)
559 || is_ri7 (insn, op_bisl, &rt, reg, &i7)
560 || is_ri7 (insn, op_biz, &rt, reg, &i7)
561 || is_ri7 (insn, op_binz, &rt, reg, &i7)
562 || is_ri7 (insn, op_bihz, &rt, reg, &i7)
563 || is_ri7 (insn, op_bihnz, &rt, reg, &i7))
564 {
565 *offset = 0;
566 return 1;
567 }
568
569 return 0;
570 }
571
572
573 /* Prolog parsing. */
574
575 struct spu_prologue_data
576 {
577 /* Stack frame size. -1 if analysis was unsuccessful. */
578 int size;
579
580 /* How to find the CFA. The CFA is equal to SP at function entry. */
581 int cfa_reg;
582 int cfa_offset;
583
584 /* Offset relative to CFA where a register is saved. -1 if invalid. */
585 int reg_offset[SPU_NUM_GPRS];
586 };
587
588 static CORE_ADDR
589 spu_analyze_prologue (struct gdbarch *gdbarch,
590 CORE_ADDR start_pc, CORE_ADDR end_pc,
591 struct spu_prologue_data *data)
592 {
593 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
594 int found_sp = 0;
595 int found_fp = 0;
596 int found_lr = 0;
597 int reg_immed[SPU_NUM_GPRS];
598 gdb_byte buf[16];
599 CORE_ADDR prolog_pc = start_pc;
600 CORE_ADDR pc;
601 int i;
602
603
604 /* Initialize DATA to default values. */
605 data->size = -1;
606
607 data->cfa_reg = SPU_RAW_SP_REGNUM;
608 data->cfa_offset = 0;
609
610 for (i = 0; i < SPU_NUM_GPRS; i++)
611 data->reg_offset[i] = -1;
612
613 /* Set up REG_IMMED array. This is non-zero for a register if we know its
614 preferred slot currently holds this immediate value. */
615 for (i = 0; i < SPU_NUM_GPRS; i++)
616 reg_immed[i] = 0;
617
618 /* Scan instructions until the first branch.
619
620 The following instructions are important prolog components:
621
622 - The first instruction to set up the stack pointer.
623 - The first instruction to set up the frame pointer.
624 - The first instruction to save the link register.
625
626 We return the instruction after the latest of these three,
627 or the incoming PC if none is found. The first instruction
628 to set up the stack pointer also defines the frame size.
629
630 Note that instructions saving incoming arguments to their stack
631 slots are not counted as important, because they are hard to
632 identify with certainty. This should not matter much, because
633 arguments are relevant only in code compiled with debug data,
634 and in such code the GDB core will advance until the first source
635 line anyway, using SAL data.
636
637 For purposes of stack unwinding, we analyze the following types
638 of instructions in addition:
639
640 - Any instruction adding to the current frame pointer.
641 - Any instruction loading an immediate constant into a register.
642 - Any instruction storing a register onto the stack.
643
644 These are used to compute the CFA and REG_OFFSET output. */
645
646 for (pc = start_pc; pc < end_pc; pc += 4)
647 {
648 unsigned int insn;
649 int rt, ra, rb, rc, immed;
650
651 if (target_read_memory (pc, buf, 4))
652 break;
653 insn = extract_unsigned_integer (buf, 4, byte_order);
654
655 /* AI is the typical instruction to set up a stack frame.
656 It is also used to initialize the frame pointer. */
657 if (is_ri10 (insn, op_ai, &rt, &ra, &immed))
658 {
659 if (rt == data->cfa_reg && ra == data->cfa_reg)
660 data->cfa_offset -= immed;
661
662 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
663 && !found_sp)
664 {
665 found_sp = 1;
666 prolog_pc = pc + 4;
667
668 data->size = -immed;
669 }
670 else if (rt == SPU_FP_REGNUM && ra == SPU_RAW_SP_REGNUM
671 && !found_fp)
672 {
673 found_fp = 1;
674 prolog_pc = pc + 4;
675
676 data->cfa_reg = SPU_FP_REGNUM;
677 data->cfa_offset -= immed;
678 }
679 }
680
681 /* A is used to set up stack frames of size >= 512 bytes.
682 If we have tracked the contents of the addend register,
683 we can handle this as well. */
684 else if (is_rr (insn, op_a, &rt, &ra, &rb))
685 {
686 if (rt == data->cfa_reg && ra == data->cfa_reg)
687 {
688 if (reg_immed[rb] != 0)
689 data->cfa_offset -= reg_immed[rb];
690 else
691 data->cfa_reg = -1; /* We don't know the CFA any more. */
692 }
693
694 if (rt == SPU_RAW_SP_REGNUM && ra == SPU_RAW_SP_REGNUM
695 && !found_sp)
696 {
697 found_sp = 1;
698 prolog_pc = pc + 4;
699
700 if (reg_immed[rb] != 0)
701 data->size = -reg_immed[rb];
702 }
703 }
704
705 /* We need to track IL and ILA used to load immediate constants
706 in case they are later used as input to an A instruction. */
707 else if (is_ri16 (insn, op_il, &rt, &immed))
708 {
709 reg_immed[rt] = immed;
710
711 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
712 found_sp = 1;
713 }
714
715 else if (is_ri18 (insn, op_ila, &rt, &immed))
716 {
717 reg_immed[rt] = immed & 0x3ffff;
718
719 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
720 found_sp = 1;
721 }
722
723 /* STQD is used to save registers to the stack. */
724 else if (is_ri10 (insn, op_stqd, &rt, &ra, &immed))
725 {
726 if (ra == data->cfa_reg)
727 data->reg_offset[rt] = data->cfa_offset - (immed << 4);
728
729 if (ra == data->cfa_reg && rt == SPU_LR_REGNUM
730 && !found_lr)
731 {
732 found_lr = 1;
733 prolog_pc = pc + 4;
734 }
735 }
736
737 /* _start uses SELB to set up the stack pointer. */
738 else if (is_rrr (insn, op_selb, &rt, &ra, &rb, &rc))
739 {
740 if (rt == SPU_RAW_SP_REGNUM && !found_sp)
741 found_sp = 1;
742 }
743
744 /* We terminate if we find a branch. */
745 else if (is_branch (insn, &immed, &ra))
746 break;
747 }
748
749
750 /* If we successfully parsed until here, and didn't find any instruction
751 modifying SP, we assume we have a frameless function. */
752 if (!found_sp)
753 data->size = 0;
754
755 /* Return cooked instead of raw SP. */
756 if (data->cfa_reg == SPU_RAW_SP_REGNUM)
757 data->cfa_reg = SPU_SP_REGNUM;
758
759 return prolog_pc;
760 }
761
762 /* Return the first instruction after the prologue starting at PC. */
763 static CORE_ADDR
764 spu_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
765 {
766 struct spu_prologue_data data;
767 return spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
768 }
769
770 /* Return the frame pointer in use at address PC. */
771 static void
772 spu_virtual_frame_pointer (struct gdbarch *gdbarch, CORE_ADDR pc,
773 int *reg, LONGEST *offset)
774 {
775 struct spu_prologue_data data;
776 spu_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
777
778 if (data.size != -1 && data.cfa_reg != -1)
779 {
780 /* The 'frame pointer' address is CFA minus frame size. */
781 *reg = data.cfa_reg;
782 *offset = data.cfa_offset - data.size;
783 }
784 else
785 {
786 /* ??? We don't really know ... */
787 *reg = SPU_SP_REGNUM;
788 *offset = 0;
789 }
790 }
791
792 /* Return true if we are in the function's epilogue, i.e. after the
793 instruction that destroyed the function's stack frame.
794
795 1) scan forward from the point of execution:
796 a) If you find an instruction that modifies the stack pointer
797 or transfers control (except a return), execution is not in
798 an epilogue, return.
799 b) Stop scanning if you find a return instruction or reach the
800 end of the function or reach the hard limit for the size of
801 an epilogue.
802 2) scan backward from the point of execution:
803 a) If you find an instruction that modifies the stack pointer,
804 execution *is* in an epilogue, return.
805 b) Stop scanning if you reach an instruction that transfers
806 control or the beginning of the function or reach the hard
807 limit for the size of an epilogue. */
808
809 static int
810 spu_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
811 {
812 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
813 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
814 bfd_byte buf[4];
815 unsigned int insn;
816 int rt, ra, rb, rc, immed;
817
818 /* Find the search limits based on function boundaries and hard limit.
819 We assume the epilogue can be up to 64 instructions long. */
820
821 const int spu_max_epilogue_size = 64 * 4;
822
823 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
824 return 0;
825
826 if (pc - func_start < spu_max_epilogue_size)
827 epilogue_start = func_start;
828 else
829 epilogue_start = pc - spu_max_epilogue_size;
830
831 if (func_end - pc < spu_max_epilogue_size)
832 epilogue_end = func_end;
833 else
834 epilogue_end = pc + spu_max_epilogue_size;
835
836 /* Scan forward until next 'bi $0'. */
837
838 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += 4)
839 {
840 if (target_read_memory (scan_pc, buf, 4))
841 return 0;
842 insn = extract_unsigned_integer (buf, 4, byte_order);
843
844 if (is_branch (insn, &immed, &ra))
845 {
846 if (immed == 0 && ra == SPU_LR_REGNUM)
847 break;
848
849 return 0;
850 }
851
852 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
853 || is_rr (insn, op_a, &rt, &ra, &rb)
854 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
855 {
856 if (rt == SPU_RAW_SP_REGNUM)
857 return 0;
858 }
859 }
860
861 if (scan_pc >= epilogue_end)
862 return 0;
863
864 /* Scan backward until adjustment to stack pointer (R1). */
865
866 for (scan_pc = pc - 4; scan_pc >= epilogue_start; scan_pc -= 4)
867 {
868 if (target_read_memory (scan_pc, buf, 4))
869 return 0;
870 insn = extract_unsigned_integer (buf, 4, byte_order);
871
872 if (is_branch (insn, &immed, &ra))
873 return 0;
874
875 if (is_ri10 (insn, op_ai, &rt, &ra, &immed)
876 || is_rr (insn, op_a, &rt, &ra, &rb)
877 || is_ri10 (insn, op_lqd, &rt, &ra, &immed))
878 {
879 if (rt == SPU_RAW_SP_REGNUM)
880 return 1;
881 }
882 }
883
884 return 0;
885 }
886
887
888 /* Normal stack frames. */
889
890 struct spu_unwind_cache
891 {
892 CORE_ADDR func;
893 CORE_ADDR frame_base;
894 CORE_ADDR local_base;
895
896 struct trad_frame_saved_reg *saved_regs;
897 };
898
899 static struct spu_unwind_cache *
900 spu_frame_unwind_cache (struct frame_info *this_frame,
901 void **this_prologue_cache)
902 {
903 struct gdbarch *gdbarch = get_frame_arch (this_frame);
904 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
905 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
906 struct spu_unwind_cache *info;
907 struct spu_prologue_data data;
908 CORE_ADDR id = tdep->id;
909 gdb_byte buf[16];
910
911 if (*this_prologue_cache)
912 return *this_prologue_cache;
913
914 info = FRAME_OBSTACK_ZALLOC (struct spu_unwind_cache);
915 *this_prologue_cache = info;
916 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
917 info->frame_base = 0;
918 info->local_base = 0;
919
920 /* Find the start of the current function, and analyze its prologue. */
921 info->func = get_frame_func (this_frame);
922 if (info->func == 0)
923 {
924 /* Fall back to using the current PC as frame ID. */
925 info->func = get_frame_pc (this_frame);
926 data.size = -1;
927 }
928 else
929 spu_analyze_prologue (gdbarch, info->func, get_frame_pc (this_frame),
930 &data);
931
932 /* If successful, use prologue analysis data. */
933 if (data.size != -1 && data.cfa_reg != -1)
934 {
935 CORE_ADDR cfa;
936 int i;
937
938 /* Determine CFA via unwound CFA_REG plus CFA_OFFSET. */
939 get_frame_register (this_frame, data.cfa_reg, buf);
940 cfa = extract_unsigned_integer (buf, 4, byte_order) + data.cfa_offset;
941 cfa = SPUADDR (id, cfa);
942
943 /* Call-saved register slots. */
944 for (i = 0; i < SPU_NUM_GPRS; i++)
945 if (i == SPU_LR_REGNUM
946 || (i >= SPU_SAVED1_REGNUM && i <= SPU_SAVEDN_REGNUM))
947 if (data.reg_offset[i] != -1)
948 info->saved_regs[i].addr = cfa - data.reg_offset[i];
949
950 /* Frame bases. */
951 info->frame_base = cfa;
952 info->local_base = cfa - data.size;
953 }
954
955 /* Otherwise, fall back to reading the backchain link. */
956 else
957 {
958 CORE_ADDR reg;
959 LONGEST backchain;
960 int status;
961
962 /* Get the backchain. */
963 reg = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
964 status = safe_read_memory_integer (SPUADDR (id, reg), 4, byte_order,
965 &backchain);
966
967 /* A zero backchain terminates the frame chain. Also, sanity
968 check against the local store size limit. */
969 if (status && backchain > 0 && backchain < SPU_LS_SIZE)
970 {
971 /* Assume the link register is saved into its slot. */
972 if (backchain + 16 < SPU_LS_SIZE)
973 info->saved_regs[SPU_LR_REGNUM].addr = SPUADDR (id, backchain + 16);
974
975 /* Frame bases. */
976 info->frame_base = SPUADDR (id, backchain);
977 info->local_base = SPUADDR (id, reg);
978 }
979 }
980
981 /* If we didn't find a frame, we cannot determine SP / return address. */
982 if (info->frame_base == 0)
983 return info;
984
985 /* The previous SP is equal to the CFA. */
986 trad_frame_set_value (info->saved_regs, SPU_SP_REGNUM,
987 SPUADDR_ADDR (info->frame_base));
988
989 /* Read full contents of the unwound link register in order to
990 be able to determine the return address. */
991 if (trad_frame_addr_p (info->saved_regs, SPU_LR_REGNUM))
992 target_read_memory (info->saved_regs[SPU_LR_REGNUM].addr, buf, 16);
993 else
994 get_frame_register (this_frame, SPU_LR_REGNUM, buf);
995
996 /* Normally, the return address is contained in the slot 0 of the
997 link register, and slots 1-3 are zero. For an overlay return,
998 slot 0 contains the address of the overlay manager return stub,
999 slot 1 contains the partition number of the overlay section to
1000 be returned to, and slot 2 contains the return address within
1001 that section. Return the latter address in that case. */
1002 if (extract_unsigned_integer (buf + 8, 4, byte_order) != 0)
1003 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1004 extract_unsigned_integer (buf + 8, 4, byte_order));
1005 else
1006 trad_frame_set_value (info->saved_regs, SPU_PC_REGNUM,
1007 extract_unsigned_integer (buf, 4, byte_order));
1008
1009 return info;
1010 }
1011
1012 static void
1013 spu_frame_this_id (struct frame_info *this_frame,
1014 void **this_prologue_cache, struct frame_id *this_id)
1015 {
1016 struct spu_unwind_cache *info =
1017 spu_frame_unwind_cache (this_frame, this_prologue_cache);
1018
1019 if (info->frame_base == 0)
1020 return;
1021
1022 *this_id = frame_id_build (info->frame_base, info->func);
1023 }
1024
1025 static struct value *
1026 spu_frame_prev_register (struct frame_info *this_frame,
1027 void **this_prologue_cache, int regnum)
1028 {
1029 struct spu_unwind_cache *info
1030 = spu_frame_unwind_cache (this_frame, this_prologue_cache);
1031
1032 /* Special-case the stack pointer. */
1033 if (regnum == SPU_RAW_SP_REGNUM)
1034 regnum = SPU_SP_REGNUM;
1035
1036 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1037 }
1038
1039 static const struct frame_unwind spu_frame_unwind = {
1040 NORMAL_FRAME,
1041 spu_frame_this_id,
1042 spu_frame_prev_register,
1043 NULL,
1044 default_frame_sniffer
1045 };
1046
1047 static CORE_ADDR
1048 spu_frame_base_address (struct frame_info *this_frame, void **this_cache)
1049 {
1050 struct spu_unwind_cache *info
1051 = spu_frame_unwind_cache (this_frame, this_cache);
1052 return info->local_base;
1053 }
1054
1055 static const struct frame_base spu_frame_base = {
1056 &spu_frame_unwind,
1057 spu_frame_base_address,
1058 spu_frame_base_address,
1059 spu_frame_base_address
1060 };
1061
1062 static CORE_ADDR
1063 spu_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1064 {
1065 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1066 CORE_ADDR pc = frame_unwind_register_unsigned (next_frame, SPU_PC_REGNUM);
1067 /* Mask off interrupt enable bit. */
1068 return SPUADDR (tdep->id, pc & -4);
1069 }
1070
1071 static CORE_ADDR
1072 spu_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1073 {
1074 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1075 CORE_ADDR sp = frame_unwind_register_unsigned (next_frame, SPU_SP_REGNUM);
1076 return SPUADDR (tdep->id, sp);
1077 }
1078
1079 static CORE_ADDR
1080 spu_read_pc (struct regcache *regcache)
1081 {
1082 struct gdbarch_tdep *tdep = gdbarch_tdep (get_regcache_arch (regcache));
1083 ULONGEST pc;
1084 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &pc);
1085 /* Mask off interrupt enable bit. */
1086 return SPUADDR (tdep->id, pc & -4);
1087 }
1088
1089 static void
1090 spu_write_pc (struct regcache *regcache, CORE_ADDR pc)
1091 {
1092 /* Keep interrupt enabled state unchanged. */
1093 ULONGEST old_pc;
1094 regcache_cooked_read_unsigned (regcache, SPU_PC_REGNUM, &old_pc);
1095 regcache_cooked_write_unsigned (regcache, SPU_PC_REGNUM,
1096 (SPUADDR_ADDR (pc) & -4) | (old_pc & 3));
1097 }
1098
1099
1100 /* Cell/B.E. cross-architecture unwinder support. */
1101
1102 struct spu2ppu_cache
1103 {
1104 struct frame_id frame_id;
1105 struct regcache *regcache;
1106 };
1107
1108 static struct gdbarch *
1109 spu2ppu_prev_arch (struct frame_info *this_frame, void **this_cache)
1110 {
1111 struct spu2ppu_cache *cache = *this_cache;
1112 return get_regcache_arch (cache->regcache);
1113 }
1114
1115 static void
1116 spu2ppu_this_id (struct frame_info *this_frame,
1117 void **this_cache, struct frame_id *this_id)
1118 {
1119 struct spu2ppu_cache *cache = *this_cache;
1120 *this_id = cache->frame_id;
1121 }
1122
1123 static struct value *
1124 spu2ppu_prev_register (struct frame_info *this_frame,
1125 void **this_cache, int regnum)
1126 {
1127 struct spu2ppu_cache *cache = *this_cache;
1128 struct gdbarch *gdbarch = get_regcache_arch (cache->regcache);
1129 gdb_byte *buf;
1130
1131 buf = alloca (register_size (gdbarch, regnum));
1132 regcache_cooked_read (cache->regcache, regnum, buf);
1133 return frame_unwind_got_bytes (this_frame, regnum, buf);
1134 }
1135
1136 static int
1137 spu2ppu_sniffer (const struct frame_unwind *self,
1138 struct frame_info *this_frame, void **this_prologue_cache)
1139 {
1140 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1141 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1142 CORE_ADDR base, func, backchain;
1143 gdb_byte buf[4];
1144
1145 if (gdbarch_bfd_arch_info (target_gdbarch)->arch == bfd_arch_spu)
1146 return 0;
1147
1148 base = get_frame_sp (this_frame);
1149 func = get_frame_pc (this_frame);
1150 if (target_read_memory (base, buf, 4))
1151 return 0;
1152 backchain = extract_unsigned_integer (buf, 4, byte_order);
1153
1154 if (!backchain)
1155 {
1156 struct frame_info *fi;
1157
1158 struct spu2ppu_cache *cache
1159 = FRAME_OBSTACK_CALLOC (1, struct spu2ppu_cache);
1160
1161 cache->frame_id = frame_id_build (base + 16, func);
1162
1163 for (fi = get_next_frame (this_frame); fi; fi = get_next_frame (fi))
1164 if (gdbarch_bfd_arch_info (get_frame_arch (fi))->arch != bfd_arch_spu)
1165 break;
1166
1167 if (fi)
1168 {
1169 cache->regcache = frame_save_as_regcache (fi);
1170 *this_prologue_cache = cache;
1171 return 1;
1172 }
1173 else
1174 {
1175 struct regcache *regcache;
1176 regcache = get_thread_arch_regcache (inferior_ptid, target_gdbarch);
1177 cache->regcache = regcache_dup (regcache);
1178 *this_prologue_cache = cache;
1179 return 1;
1180 }
1181 }
1182
1183 return 0;
1184 }
1185
1186 static void
1187 spu2ppu_dealloc_cache (struct frame_info *self, void *this_cache)
1188 {
1189 struct spu2ppu_cache *cache = this_cache;
1190 regcache_xfree (cache->regcache);
1191 }
1192
1193 static const struct frame_unwind spu2ppu_unwind = {
1194 ARCH_FRAME,
1195 spu2ppu_this_id,
1196 spu2ppu_prev_register,
1197 NULL,
1198 spu2ppu_sniffer,
1199 spu2ppu_dealloc_cache,
1200 spu2ppu_prev_arch,
1201 };
1202
1203
1204 /* Function calling convention. */
1205
1206 static CORE_ADDR
1207 spu_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1208 {
1209 return sp & ~15;
1210 }
1211
1212 static CORE_ADDR
1213 spu_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp, CORE_ADDR funaddr,
1214 struct value **args, int nargs, struct type *value_type,
1215 CORE_ADDR *real_pc, CORE_ADDR *bp_addr,
1216 struct regcache *regcache)
1217 {
1218 /* Allocate space sufficient for a breakpoint, keeping the stack aligned. */
1219 sp = (sp - 4) & ~15;
1220 /* Store the address of that breakpoint */
1221 *bp_addr = sp;
1222 /* The call starts at the callee's entry point. */
1223 *real_pc = funaddr;
1224
1225 return sp;
1226 }
1227
1228 static int
1229 spu_scalar_value_p (struct type *type)
1230 {
1231 switch (TYPE_CODE (type))
1232 {
1233 case TYPE_CODE_INT:
1234 case TYPE_CODE_ENUM:
1235 case TYPE_CODE_RANGE:
1236 case TYPE_CODE_CHAR:
1237 case TYPE_CODE_BOOL:
1238 case TYPE_CODE_PTR:
1239 case TYPE_CODE_REF:
1240 return TYPE_LENGTH (type) <= 16;
1241
1242 default:
1243 return 0;
1244 }
1245 }
1246
1247 static void
1248 spu_value_to_regcache (struct regcache *regcache, int regnum,
1249 struct type *type, const gdb_byte *in)
1250 {
1251 int len = TYPE_LENGTH (type);
1252
1253 if (spu_scalar_value_p (type))
1254 {
1255 int preferred_slot = len < 4 ? 4 - len : 0;
1256 regcache_cooked_write_part (regcache, regnum, preferred_slot, len, in);
1257 }
1258 else
1259 {
1260 while (len >= 16)
1261 {
1262 regcache_cooked_write (regcache, regnum++, in);
1263 in += 16;
1264 len -= 16;
1265 }
1266
1267 if (len > 0)
1268 regcache_cooked_write_part (regcache, regnum, 0, len, in);
1269 }
1270 }
1271
1272 static void
1273 spu_regcache_to_value (struct regcache *regcache, int regnum,
1274 struct type *type, gdb_byte *out)
1275 {
1276 int len = TYPE_LENGTH (type);
1277
1278 if (spu_scalar_value_p (type))
1279 {
1280 int preferred_slot = len < 4 ? 4 - len : 0;
1281 regcache_cooked_read_part (regcache, regnum, preferred_slot, len, out);
1282 }
1283 else
1284 {
1285 while (len >= 16)
1286 {
1287 regcache_cooked_read (regcache, regnum++, out);
1288 out += 16;
1289 len -= 16;
1290 }
1291
1292 if (len > 0)
1293 regcache_cooked_read_part (regcache, regnum, 0, len, out);
1294 }
1295 }
1296
1297 static CORE_ADDR
1298 spu_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1299 struct regcache *regcache, CORE_ADDR bp_addr,
1300 int nargs, struct value **args, CORE_ADDR sp,
1301 int struct_return, CORE_ADDR struct_addr)
1302 {
1303 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1304 CORE_ADDR sp_delta;
1305 int i;
1306 int regnum = SPU_ARG1_REGNUM;
1307 int stack_arg = -1;
1308 gdb_byte buf[16];
1309
1310 /* Set the return address. */
1311 memset (buf, 0, sizeof buf);
1312 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (bp_addr));
1313 regcache_cooked_write (regcache, SPU_LR_REGNUM, buf);
1314
1315 /* If STRUCT_RETURN is true, then the struct return address (in
1316 STRUCT_ADDR) will consume the first argument-passing register.
1317 Both adjust the register count and store that value. */
1318 if (struct_return)
1319 {
1320 memset (buf, 0, sizeof buf);
1321 store_unsigned_integer (buf, 4, byte_order, SPUADDR_ADDR (struct_addr));
1322 regcache_cooked_write (regcache, regnum++, buf);
1323 }
1324
1325 /* Fill in argument registers. */
1326 for (i = 0; i < nargs; i++)
1327 {
1328 struct value *arg = args[i];
1329 struct type *type = check_typedef (value_type (arg));
1330 const gdb_byte *contents = value_contents (arg);
1331 int len = TYPE_LENGTH (type);
1332 int n_regs = align_up (len, 16) / 16;
1333
1334 /* If the argument doesn't wholly fit into registers, it and
1335 all subsequent arguments go to the stack. */
1336 if (regnum + n_regs - 1 > SPU_ARGN_REGNUM)
1337 {
1338 stack_arg = i;
1339 break;
1340 }
1341
1342 spu_value_to_regcache (regcache, regnum, type, contents);
1343 regnum += n_regs;
1344 }
1345
1346 /* Overflow arguments go to the stack. */
1347 if (stack_arg != -1)
1348 {
1349 CORE_ADDR ap;
1350
1351 /* Allocate all required stack size. */
1352 for (i = stack_arg; i < nargs; i++)
1353 {
1354 struct type *type = check_typedef (value_type (args[i]));
1355 sp -= align_up (TYPE_LENGTH (type), 16);
1356 }
1357
1358 /* Fill in stack arguments. */
1359 ap = sp;
1360 for (i = stack_arg; i < nargs; i++)
1361 {
1362 struct value *arg = args[i];
1363 struct type *type = check_typedef (value_type (arg));
1364 int len = TYPE_LENGTH (type);
1365 int preferred_slot;
1366
1367 if (spu_scalar_value_p (type))
1368 preferred_slot = len < 4 ? 4 - len : 0;
1369 else
1370 preferred_slot = 0;
1371
1372 target_write_memory (ap + preferred_slot, value_contents (arg), len);
1373 ap += align_up (TYPE_LENGTH (type), 16);
1374 }
1375 }
1376
1377 /* Allocate stack frame header. */
1378 sp -= 32;
1379
1380 /* Store stack back chain. */
1381 regcache_cooked_read (regcache, SPU_RAW_SP_REGNUM, buf);
1382 target_write_memory (sp, buf, 16);
1383
1384 /* Finally, update all slots of the SP register. */
1385 sp_delta = sp - extract_unsigned_integer (buf, 4, byte_order);
1386 for (i = 0; i < 4; i++)
1387 {
1388 CORE_ADDR sp_slot = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1389 store_unsigned_integer (buf + 4*i, 4, byte_order, sp_slot + sp_delta);
1390 }
1391 regcache_cooked_write (regcache, SPU_RAW_SP_REGNUM, buf);
1392
1393 return sp;
1394 }
1395
1396 static struct frame_id
1397 spu_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1398 {
1399 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1400 CORE_ADDR pc = get_frame_register_unsigned (this_frame, SPU_PC_REGNUM);
1401 CORE_ADDR sp = get_frame_register_unsigned (this_frame, SPU_SP_REGNUM);
1402 return frame_id_build (SPUADDR (tdep->id, sp), SPUADDR (tdep->id, pc & -4));
1403 }
1404
1405 /* Function return value access. */
1406
1407 static enum return_value_convention
1408 spu_return_value (struct gdbarch *gdbarch, struct type *func_type,
1409 struct type *type, struct regcache *regcache,
1410 gdb_byte *out, const gdb_byte *in)
1411 {
1412 enum return_value_convention rvc;
1413
1414 if (TYPE_LENGTH (type) <= (SPU_ARGN_REGNUM - SPU_ARG1_REGNUM + 1) * 16)
1415 rvc = RETURN_VALUE_REGISTER_CONVENTION;
1416 else
1417 rvc = RETURN_VALUE_STRUCT_CONVENTION;
1418
1419 if (in)
1420 {
1421 switch (rvc)
1422 {
1423 case RETURN_VALUE_REGISTER_CONVENTION:
1424 spu_value_to_regcache (regcache, SPU_ARG1_REGNUM, type, in);
1425 break;
1426
1427 case RETURN_VALUE_STRUCT_CONVENTION:
1428 error ("Cannot set function return value.");
1429 break;
1430 }
1431 }
1432 else if (out)
1433 {
1434 switch (rvc)
1435 {
1436 case RETURN_VALUE_REGISTER_CONVENTION:
1437 spu_regcache_to_value (regcache, SPU_ARG1_REGNUM, type, out);
1438 break;
1439
1440 case RETURN_VALUE_STRUCT_CONVENTION:
1441 error ("Function return value unknown.");
1442 break;
1443 }
1444 }
1445
1446 return rvc;
1447 }
1448
1449
1450 /* Breakpoints. */
1451
1452 static const gdb_byte *
1453 spu_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR * pcptr, int *lenptr)
1454 {
1455 static const gdb_byte breakpoint[] = { 0x00, 0x00, 0x3f, 0xff };
1456
1457 *lenptr = sizeof breakpoint;
1458 return breakpoint;
1459 }
1460
1461
1462 /* Software single-stepping support. */
1463
1464 static int
1465 spu_software_single_step (struct frame_info *frame)
1466 {
1467 struct gdbarch *gdbarch = get_frame_arch (frame);
1468 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1469 CORE_ADDR pc, next_pc;
1470 unsigned int insn;
1471 int offset, reg;
1472 gdb_byte buf[4];
1473
1474 pc = get_frame_pc (frame);
1475
1476 if (target_read_memory (pc, buf, 4))
1477 return 1;
1478 insn = extract_unsigned_integer (buf, 4, byte_order);
1479
1480 /* Next sequential instruction is at PC + 4, except if the current
1481 instruction is a PPE-assisted call, in which case it is at PC + 8.
1482 Wrap around LS limit to be on the safe side. */
1483 if ((insn & 0xffffff00) == 0x00002100)
1484 next_pc = (SPUADDR_ADDR (pc) + 8) & (SPU_LS_SIZE - 1);
1485 else
1486 next_pc = (SPUADDR_ADDR (pc) + 4) & (SPU_LS_SIZE - 1);
1487
1488 insert_single_step_breakpoint (gdbarch, SPUADDR (SPUADDR_SPU (pc), next_pc));
1489
1490 if (is_branch (insn, &offset, &reg))
1491 {
1492 CORE_ADDR target = offset;
1493
1494 if (reg == SPU_PC_REGNUM)
1495 target += SPUADDR_ADDR (pc);
1496 else if (reg != -1)
1497 {
1498 get_frame_register_bytes (frame, reg, 0, 4, buf);
1499 target += extract_unsigned_integer (buf, 4, byte_order) & -4;
1500 }
1501
1502 target = target & (SPU_LS_SIZE - 1);
1503 if (target != next_pc)
1504 insert_single_step_breakpoint (gdbarch,
1505 SPUADDR (SPUADDR_SPU (pc), target));
1506 }
1507
1508 return 1;
1509 }
1510
1511
1512 /* Longjmp support. */
1513
1514 static int
1515 spu_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1516 {
1517 struct gdbarch *gdbarch = get_frame_arch (frame);
1518 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1519 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1520 gdb_byte buf[4];
1521 CORE_ADDR jb_addr;
1522
1523 /* Jump buffer is pointed to by the argument register $r3. */
1524 get_frame_register_bytes (frame, SPU_ARG1_REGNUM, 0, 4, buf);
1525 jb_addr = extract_unsigned_integer (buf, 4, byte_order);
1526 if (target_read_memory (SPUADDR (tdep->id, jb_addr), buf, 4))
1527 return 0;
1528
1529 *pc = extract_unsigned_integer (buf, 4, byte_order);
1530 *pc = SPUADDR (tdep->id, *pc);
1531 return 1;
1532 }
1533
1534
1535 /* Disassembler. */
1536
1537 struct spu_dis_asm_data
1538 {
1539 struct gdbarch *gdbarch;
1540 int id;
1541 };
1542
1543 static void
1544 spu_dis_asm_print_address (bfd_vma addr, struct disassemble_info *info)
1545 {
1546 struct spu_dis_asm_data *data = info->application_data;
1547 print_address (data->gdbarch, SPUADDR (data->id, addr), info->stream);
1548 }
1549
1550 static int
1551 gdb_print_insn_spu (bfd_vma memaddr, struct disassemble_info *info)
1552 {
1553 /* The opcodes disassembler does 18-bit address arithmetic. Make sure the
1554 SPU ID encoded in the high bits is added back when we call print_address. */
1555 struct disassemble_info spu_info = *info;
1556 struct spu_dis_asm_data data;
1557 data.gdbarch = info->application_data;
1558 data.id = SPUADDR_SPU (memaddr);
1559
1560 spu_info.application_data = &data;
1561 spu_info.print_address_func = spu_dis_asm_print_address;
1562 return print_insn_spu (memaddr, &spu_info);
1563 }
1564
1565
1566 /* Target overlays for the SPU overlay manager.
1567
1568 See the documentation of simple_overlay_update for how the
1569 interface is supposed to work.
1570
1571 Data structures used by the overlay manager:
1572
1573 struct ovly_table
1574 {
1575 u32 vma;
1576 u32 size;
1577 u32 pos;
1578 u32 buf;
1579 } _ovly_table[]; -- one entry per overlay section
1580
1581 struct ovly_buf_table
1582 {
1583 u32 mapped;
1584 } _ovly_buf_table[]; -- one entry per overlay buffer
1585
1586 _ovly_table should never change.
1587
1588 Both tables are aligned to a 16-byte boundary, the symbols _ovly_table
1589 and _ovly_buf_table are of type STT_OBJECT and their size set to the size
1590 of the respective array. buf in _ovly_table is an index into _ovly_buf_table.
1591
1592 mapped is an index into _ovly_table. Both the mapped and buf indices start
1593 from one to reference the first entry in their respective tables. */
1594
1595 /* Using the per-objfile private data mechanism, we store for each
1596 objfile an array of "struct spu_overlay_table" structures, one
1597 for each obj_section of the objfile. This structure holds two
1598 fields, MAPPED_PTR and MAPPED_VAL. If MAPPED_PTR is zero, this
1599 is *not* an overlay section. If it is non-zero, it represents
1600 a target address. The overlay section is mapped iff the target
1601 integer at this location equals MAPPED_VAL. */
1602
1603 static const struct objfile_data *spu_overlay_data;
1604
1605 struct spu_overlay_table
1606 {
1607 CORE_ADDR mapped_ptr;
1608 CORE_ADDR mapped_val;
1609 };
1610
1611 /* Retrieve the overlay table for OBJFILE. If not already cached, read
1612 the _ovly_table data structure from the target and initialize the
1613 spu_overlay_table data structure from it. */
1614 static struct spu_overlay_table *
1615 spu_get_overlay_table (struct objfile *objfile)
1616 {
1617 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd)?
1618 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1619 struct minimal_symbol *ovly_table_msym, *ovly_buf_table_msym;
1620 CORE_ADDR ovly_table_base, ovly_buf_table_base;
1621 unsigned ovly_table_size, ovly_buf_table_size;
1622 struct spu_overlay_table *tbl;
1623 struct obj_section *osect;
1624 char *ovly_table;
1625 int i;
1626
1627 tbl = objfile_data (objfile, spu_overlay_data);
1628 if (tbl)
1629 return tbl;
1630
1631 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, objfile);
1632 if (!ovly_table_msym)
1633 return NULL;
1634
1635 ovly_buf_table_msym = lookup_minimal_symbol ("_ovly_buf_table", NULL, objfile);
1636 if (!ovly_buf_table_msym)
1637 return NULL;
1638
1639 ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
1640 ovly_table_size = MSYMBOL_SIZE (ovly_table_msym);
1641
1642 ovly_buf_table_base = SYMBOL_VALUE_ADDRESS (ovly_buf_table_msym);
1643 ovly_buf_table_size = MSYMBOL_SIZE (ovly_buf_table_msym);
1644
1645 ovly_table = xmalloc (ovly_table_size);
1646 read_memory (ovly_table_base, ovly_table, ovly_table_size);
1647
1648 tbl = OBSTACK_CALLOC (&objfile->objfile_obstack,
1649 objfile->sections_end - objfile->sections,
1650 struct spu_overlay_table);
1651
1652 for (i = 0; i < ovly_table_size / 16; i++)
1653 {
1654 CORE_ADDR vma = extract_unsigned_integer (ovly_table + 16*i + 0,
1655 4, byte_order);
1656 CORE_ADDR size = extract_unsigned_integer (ovly_table + 16*i + 4,
1657 4, byte_order);
1658 CORE_ADDR pos = extract_unsigned_integer (ovly_table + 16*i + 8,
1659 4, byte_order);
1660 CORE_ADDR buf = extract_unsigned_integer (ovly_table + 16*i + 12,
1661 4, byte_order);
1662
1663 if (buf == 0 || (buf - 1) * 4 >= ovly_buf_table_size)
1664 continue;
1665
1666 ALL_OBJFILE_OSECTIONS (objfile, osect)
1667 if (vma == bfd_section_vma (objfile->obfd, osect->the_bfd_section)
1668 && pos == osect->the_bfd_section->filepos)
1669 {
1670 int ndx = osect - objfile->sections;
1671 tbl[ndx].mapped_ptr = ovly_buf_table_base + (buf - 1) * 4;
1672 tbl[ndx].mapped_val = i + 1;
1673 break;
1674 }
1675 }
1676
1677 xfree (ovly_table);
1678 set_objfile_data (objfile, spu_overlay_data, tbl);
1679 return tbl;
1680 }
1681
1682 /* Read _ovly_buf_table entry from the target to dermine whether
1683 OSECT is currently mapped, and update the mapped state. */
1684 static void
1685 spu_overlay_update_osect (struct obj_section *osect)
1686 {
1687 enum bfd_endian byte_order = bfd_big_endian (osect->objfile->obfd)?
1688 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
1689 struct spu_overlay_table *ovly_table;
1690 CORE_ADDR id, val;
1691
1692 ovly_table = spu_get_overlay_table (osect->objfile);
1693 if (!ovly_table)
1694 return;
1695
1696 ovly_table += osect - osect->objfile->sections;
1697 if (ovly_table->mapped_ptr == 0)
1698 return;
1699
1700 id = SPUADDR_SPU (obj_section_addr (osect));
1701 val = read_memory_unsigned_integer (SPUADDR (id, ovly_table->mapped_ptr),
1702 4, byte_order);
1703 osect->ovly_mapped = (val == ovly_table->mapped_val);
1704 }
1705
1706 /* If OSECT is NULL, then update all sections' mapped state.
1707 If OSECT is non-NULL, then update only OSECT's mapped state. */
1708 static void
1709 spu_overlay_update (struct obj_section *osect)
1710 {
1711 /* Just one section. */
1712 if (osect)
1713 spu_overlay_update_osect (osect);
1714
1715 /* All sections. */
1716 else
1717 {
1718 struct objfile *objfile;
1719
1720 ALL_OBJSECTIONS (objfile, osect)
1721 if (section_is_overlay (osect))
1722 spu_overlay_update_osect (osect);
1723 }
1724 }
1725
1726 /* Whenever a new objfile is loaded, read the target's _ovly_table.
1727 If there is one, go through all sections and make sure for non-
1728 overlay sections LMA equals VMA, while for overlay sections LMA
1729 is larger than local store size. */
1730 static void
1731 spu_overlay_new_objfile (struct objfile *objfile)
1732 {
1733 struct spu_overlay_table *ovly_table;
1734 struct obj_section *osect;
1735
1736 /* If we've already touched this file, do nothing. */
1737 if (!objfile || objfile_data (objfile, spu_overlay_data) != NULL)
1738 return;
1739
1740 /* Consider only SPU objfiles. */
1741 if (bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1742 return;
1743
1744 /* Check if this objfile has overlays. */
1745 ovly_table = spu_get_overlay_table (objfile);
1746 if (!ovly_table)
1747 return;
1748
1749 /* Now go and fiddle with all the LMAs. */
1750 ALL_OBJFILE_OSECTIONS (objfile, osect)
1751 {
1752 bfd *obfd = objfile->obfd;
1753 asection *bsect = osect->the_bfd_section;
1754 int ndx = osect - objfile->sections;
1755
1756 if (ovly_table[ndx].mapped_ptr == 0)
1757 bfd_section_lma (obfd, bsect) = bfd_section_vma (obfd, bsect);
1758 else
1759 bfd_section_lma (obfd, bsect) = bsect->filepos + SPU_LS_SIZE;
1760 }
1761 }
1762
1763
1764 /* Insert temporary breakpoint on "main" function of newly loaded
1765 SPE context OBJFILE. */
1766 static void
1767 spu_catch_start (struct objfile *objfile)
1768 {
1769 struct minimal_symbol *minsym;
1770 struct symtab *symtab;
1771 CORE_ADDR pc;
1772 char buf[32];
1773
1774 /* Do this only if requested by "set spu stop-on-load on". */
1775 if (!spu_stop_on_load_p)
1776 return;
1777
1778 /* Consider only SPU objfiles. */
1779 if (!objfile || bfd_get_arch (objfile->obfd) != bfd_arch_spu)
1780 return;
1781
1782 /* The main objfile is handled differently. */
1783 if (objfile == symfile_objfile)
1784 return;
1785
1786 /* There can be multiple symbols named "main". Search for the
1787 "main" in *this* objfile. */
1788 minsym = lookup_minimal_symbol ("main", NULL, objfile);
1789 if (!minsym)
1790 return;
1791
1792 /* If we have debugging information, try to use it -- this
1793 will allow us to properly skip the prologue. */
1794 pc = SYMBOL_VALUE_ADDRESS (minsym);
1795 symtab = find_pc_sect_symtab (pc, SYMBOL_OBJ_SECTION (minsym));
1796 if (symtab != NULL)
1797 {
1798 struct blockvector *bv = BLOCKVECTOR (symtab);
1799 struct block *block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1800 struct symbol *sym;
1801 struct symtab_and_line sal;
1802
1803 sym = lookup_block_symbol (block, "main", NULL, VAR_DOMAIN);
1804 if (sym)
1805 {
1806 fixup_symbol_section (sym, objfile);
1807 sal = find_function_start_sal (sym, 1);
1808 pc = sal.pc;
1809 }
1810 }
1811
1812 /* Use a numerical address for the set_breakpoint command to avoid having
1813 the breakpoint re-set incorrectly. */
1814 xsnprintf (buf, sizeof buf, "*%s", core_addr_to_string (pc));
1815 set_breakpoint (get_objfile_arch (objfile),
1816 buf, NULL /* condition */,
1817 0 /* hardwareflag */, 1 /* tempflag */,
1818 -1 /* thread */, 0 /* ignore_count */,
1819 0 /* pending */, 1 /* enabled */);
1820 }
1821
1822
1823 /* "info spu" commands. */
1824
1825 static void
1826 info_spu_event_command (char *args, int from_tty)
1827 {
1828 struct frame_info *frame = get_selected_frame (NULL);
1829 ULONGEST event_status = 0;
1830 ULONGEST event_mask = 0;
1831 struct cleanup *chain;
1832 gdb_byte buf[100];
1833 char annex[32];
1834 LONGEST len;
1835 int rc, id;
1836
1837 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
1838 error (_("\"info spu\" is only supported on the SPU architecture."));
1839
1840 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1841
1842 xsnprintf (annex, sizeof annex, "%d/event_status", id);
1843 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1844 buf, 0, (sizeof (buf) - 1));
1845 if (len <= 0)
1846 error (_("Could not read event_status."));
1847 buf[len] = '\0';
1848 event_status = strtoulst (buf, NULL, 16);
1849
1850 xsnprintf (annex, sizeof annex, "%d/event_mask", id);
1851 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1852 buf, 0, (sizeof (buf) - 1));
1853 if (len <= 0)
1854 error (_("Could not read event_mask."));
1855 buf[len] = '\0';
1856 event_mask = strtoulst (buf, NULL, 16);
1857
1858 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoEvent");
1859
1860 if (ui_out_is_mi_like_p (uiout))
1861 {
1862 ui_out_field_fmt (uiout, "event_status",
1863 "0x%s", phex_nz (event_status, 4));
1864 ui_out_field_fmt (uiout, "event_mask",
1865 "0x%s", phex_nz (event_mask, 4));
1866 }
1867 else
1868 {
1869 printf_filtered (_("Event Status 0x%s\n"), phex (event_status, 4));
1870 printf_filtered (_("Event Mask 0x%s\n"), phex (event_mask, 4));
1871 }
1872
1873 do_cleanups (chain);
1874 }
1875
1876 static void
1877 info_spu_signal_command (char *args, int from_tty)
1878 {
1879 struct frame_info *frame = get_selected_frame (NULL);
1880 struct gdbarch *gdbarch = get_frame_arch (frame);
1881 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1882 ULONGEST signal1 = 0;
1883 ULONGEST signal1_type = 0;
1884 int signal1_pending = 0;
1885 ULONGEST signal2 = 0;
1886 ULONGEST signal2_type = 0;
1887 int signal2_pending = 0;
1888 struct cleanup *chain;
1889 char annex[32];
1890 gdb_byte buf[100];
1891 LONGEST len;
1892 int rc, id;
1893
1894 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
1895 error (_("\"info spu\" is only supported on the SPU architecture."));
1896
1897 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
1898
1899 xsnprintf (annex, sizeof annex, "%d/signal1", id);
1900 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1901 if (len < 0)
1902 error (_("Could not read signal1."));
1903 else if (len == 4)
1904 {
1905 signal1 = extract_unsigned_integer (buf, 4, byte_order);
1906 signal1_pending = 1;
1907 }
1908
1909 xsnprintf (annex, sizeof annex, "%d/signal1_type", id);
1910 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1911 buf, 0, (sizeof (buf) - 1));
1912 if (len <= 0)
1913 error (_("Could not read signal1_type."));
1914 buf[len] = '\0';
1915 signal1_type = strtoulst (buf, NULL, 16);
1916
1917 xsnprintf (annex, sizeof annex, "%d/signal2", id);
1918 len = target_read (&current_target, TARGET_OBJECT_SPU, annex, buf, 0, 4);
1919 if (len < 0)
1920 error (_("Could not read signal2."));
1921 else if (len == 4)
1922 {
1923 signal2 = extract_unsigned_integer (buf, 4, byte_order);
1924 signal2_pending = 1;
1925 }
1926
1927 xsnprintf (annex, sizeof annex, "%d/signal2_type", id);
1928 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
1929 buf, 0, (sizeof (buf) - 1));
1930 if (len <= 0)
1931 error (_("Could not read signal2_type."));
1932 buf[len] = '\0';
1933 signal2_type = strtoulst (buf, NULL, 16);
1934
1935 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoSignal");
1936
1937 if (ui_out_is_mi_like_p (uiout))
1938 {
1939 ui_out_field_int (uiout, "signal1_pending", signal1_pending);
1940 ui_out_field_fmt (uiout, "signal1", "0x%s", phex_nz (signal1, 4));
1941 ui_out_field_int (uiout, "signal1_type", signal1_type);
1942 ui_out_field_int (uiout, "signal2_pending", signal2_pending);
1943 ui_out_field_fmt (uiout, "signal2", "0x%s", phex_nz (signal2, 4));
1944 ui_out_field_int (uiout, "signal2_type", signal2_type);
1945 }
1946 else
1947 {
1948 if (signal1_pending)
1949 printf_filtered (_("Signal 1 control word 0x%s "), phex (signal1, 4));
1950 else
1951 printf_filtered (_("Signal 1 not pending "));
1952
1953 if (signal1_type)
1954 printf_filtered (_("(Type Or)\n"));
1955 else
1956 printf_filtered (_("(Type Overwrite)\n"));
1957
1958 if (signal2_pending)
1959 printf_filtered (_("Signal 2 control word 0x%s "), phex (signal2, 4));
1960 else
1961 printf_filtered (_("Signal 2 not pending "));
1962
1963 if (signal2_type)
1964 printf_filtered (_("(Type Or)\n"));
1965 else
1966 printf_filtered (_("(Type Overwrite)\n"));
1967 }
1968
1969 do_cleanups (chain);
1970 }
1971
1972 static void
1973 info_spu_mailbox_list (gdb_byte *buf, int nr, enum bfd_endian byte_order,
1974 const char *field, const char *msg)
1975 {
1976 struct cleanup *chain;
1977 int i;
1978
1979 if (nr <= 0)
1980 return;
1981
1982 chain = make_cleanup_ui_out_table_begin_end (uiout, 1, nr, "mbox");
1983
1984 ui_out_table_header (uiout, 32, ui_left, field, msg);
1985 ui_out_table_body (uiout);
1986
1987 for (i = 0; i < nr; i++)
1988 {
1989 struct cleanup *val_chain;
1990 ULONGEST val;
1991 val_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "mbox");
1992 val = extract_unsigned_integer (buf + 4*i, 4, byte_order);
1993 ui_out_field_fmt (uiout, field, "0x%s", phex (val, 4));
1994 do_cleanups (val_chain);
1995
1996 if (!ui_out_is_mi_like_p (uiout))
1997 printf_filtered ("\n");
1998 }
1999
2000 do_cleanups (chain);
2001 }
2002
2003 static void
2004 info_spu_mailbox_command (char *args, int from_tty)
2005 {
2006 struct frame_info *frame = get_selected_frame (NULL);
2007 struct gdbarch *gdbarch = get_frame_arch (frame);
2008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2009 struct cleanup *chain;
2010 char annex[32];
2011 gdb_byte buf[1024];
2012 LONGEST len;
2013 int i, id;
2014
2015 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2016 error (_("\"info spu\" is only supported on the SPU architecture."));
2017
2018 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2019
2020 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoMailbox");
2021
2022 xsnprintf (annex, sizeof annex, "%d/mbox_info", id);
2023 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2024 buf, 0, sizeof buf);
2025 if (len < 0)
2026 error (_("Could not read mbox_info."));
2027
2028 info_spu_mailbox_list (buf, len / 4, byte_order,
2029 "mbox", "SPU Outbound Mailbox");
2030
2031 xsnprintf (annex, sizeof annex, "%d/ibox_info", id);
2032 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2033 buf, 0, sizeof buf);
2034 if (len < 0)
2035 error (_("Could not read ibox_info."));
2036
2037 info_spu_mailbox_list (buf, len / 4, byte_order,
2038 "ibox", "SPU Outbound Interrupt Mailbox");
2039
2040 xsnprintf (annex, sizeof annex, "%d/wbox_info", id);
2041 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2042 buf, 0, sizeof buf);
2043 if (len < 0)
2044 error (_("Could not read wbox_info."));
2045
2046 info_spu_mailbox_list (buf, len / 4, byte_order,
2047 "wbox", "SPU Inbound Mailbox");
2048
2049 do_cleanups (chain);
2050 }
2051
2052 static ULONGEST
2053 spu_mfc_get_bitfield (ULONGEST word, int first, int last)
2054 {
2055 ULONGEST mask = ~(~(ULONGEST)0 << (last - first + 1));
2056 return (word >> (63 - last)) & mask;
2057 }
2058
2059 static void
2060 info_spu_dma_cmdlist (gdb_byte *buf, int nr, enum bfd_endian byte_order)
2061 {
2062 static char *spu_mfc_opcode[256] =
2063 {
2064 /* 00 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2065 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2066 /* 10 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2067 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2068 /* 20 */ "put", "putb", "putf", NULL, "putl", "putlb", "putlf", NULL,
2069 "puts", "putbs", "putfs", NULL, NULL, NULL, NULL, NULL,
2070 /* 30 */ "putr", "putrb", "putrf", NULL, "putrl", "putrlb", "putrlf", NULL,
2071 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2072 /* 40 */ "get", "getb", "getf", NULL, "getl", "getlb", "getlf", NULL,
2073 "gets", "getbs", "getfs", NULL, NULL, NULL, NULL, NULL,
2074 /* 50 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2075 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2076 /* 60 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2077 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2078 /* 70 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2079 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2080 /* 80 */ "sdcrt", "sdcrtst", NULL, NULL, NULL, NULL, NULL, NULL,
2081 NULL, "sdcrz", NULL, NULL, NULL, "sdcrst", NULL, "sdcrf",
2082 /* 90 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2083 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2084 /* a0 */ "sndsig", "sndsigb", "sndsigf", NULL, NULL, NULL, NULL, NULL,
2085 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2086 /* b0 */ "putlluc", NULL, NULL, NULL, "putllc", NULL, NULL, NULL,
2087 "putqlluc", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2088 /* c0 */ "barrier", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2089 "mfceieio", NULL, NULL, NULL, "mfcsync", NULL, NULL, NULL,
2090 /* d0 */ "getllar", NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2091 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2092 /* e0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2093 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2094 /* f0 */ NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2095 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2096 };
2097
2098 int *seq = alloca (nr * sizeof (int));
2099 int done = 0;
2100 struct cleanup *chain;
2101 int i, j;
2102
2103
2104 /* Determine sequence in which to display (valid) entries. */
2105 for (i = 0; i < nr; i++)
2106 {
2107 /* Search for the first valid entry all of whose
2108 dependencies are met. */
2109 for (j = 0; j < nr; j++)
2110 {
2111 ULONGEST mfc_cq_dw3;
2112 ULONGEST dependencies;
2113
2114 if (done & (1 << (nr - 1 - j)))
2115 continue;
2116
2117 mfc_cq_dw3
2118 = extract_unsigned_integer (buf + 32*j + 24,8, byte_order);
2119 if (!spu_mfc_get_bitfield (mfc_cq_dw3, 16, 16))
2120 continue;
2121
2122 dependencies = spu_mfc_get_bitfield (mfc_cq_dw3, 0, nr - 1);
2123 if ((dependencies & done) != dependencies)
2124 continue;
2125
2126 seq[i] = j;
2127 done |= 1 << (nr - 1 - j);
2128 break;
2129 }
2130
2131 if (j == nr)
2132 break;
2133 }
2134
2135 nr = i;
2136
2137
2138 chain = make_cleanup_ui_out_table_begin_end (uiout, 10, nr, "dma_cmd");
2139
2140 ui_out_table_header (uiout, 7, ui_left, "opcode", "Opcode");
2141 ui_out_table_header (uiout, 3, ui_left, "tag", "Tag");
2142 ui_out_table_header (uiout, 3, ui_left, "tid", "TId");
2143 ui_out_table_header (uiout, 3, ui_left, "rid", "RId");
2144 ui_out_table_header (uiout, 18, ui_left, "ea", "EA");
2145 ui_out_table_header (uiout, 7, ui_left, "lsa", "LSA");
2146 ui_out_table_header (uiout, 7, ui_left, "size", "Size");
2147 ui_out_table_header (uiout, 7, ui_left, "lstaddr", "LstAddr");
2148 ui_out_table_header (uiout, 7, ui_left, "lstsize", "LstSize");
2149 ui_out_table_header (uiout, 1, ui_left, "error_p", "E");
2150
2151 ui_out_table_body (uiout);
2152
2153 for (i = 0; i < nr; i++)
2154 {
2155 struct cleanup *cmd_chain;
2156 ULONGEST mfc_cq_dw0;
2157 ULONGEST mfc_cq_dw1;
2158 ULONGEST mfc_cq_dw2;
2159 int mfc_cmd_opcode, mfc_cmd_tag, rclass_id, tclass_id;
2160 int lsa, size, list_lsa, list_size, mfc_lsa, mfc_size;
2161 ULONGEST mfc_ea;
2162 int list_valid_p, noop_valid_p, qw_valid_p, ea_valid_p, cmd_error_p;
2163
2164 /* Decode contents of MFC Command Queue Context Save/Restore Registers.
2165 See "Cell Broadband Engine Registers V1.3", section 3.3.2.1. */
2166
2167 mfc_cq_dw0
2168 = extract_unsigned_integer (buf + 32*seq[i], 8, byte_order);
2169 mfc_cq_dw1
2170 = extract_unsigned_integer (buf + 32*seq[i] + 8, 8, byte_order);
2171 mfc_cq_dw2
2172 = extract_unsigned_integer (buf + 32*seq[i] + 16, 8, byte_order);
2173
2174 list_lsa = spu_mfc_get_bitfield (mfc_cq_dw0, 0, 14);
2175 list_size = spu_mfc_get_bitfield (mfc_cq_dw0, 15, 26);
2176 mfc_cmd_opcode = spu_mfc_get_bitfield (mfc_cq_dw0, 27, 34);
2177 mfc_cmd_tag = spu_mfc_get_bitfield (mfc_cq_dw0, 35, 39);
2178 list_valid_p = spu_mfc_get_bitfield (mfc_cq_dw0, 40, 40);
2179 rclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 41, 43);
2180 tclass_id = spu_mfc_get_bitfield (mfc_cq_dw0, 44, 46);
2181
2182 mfc_ea = spu_mfc_get_bitfield (mfc_cq_dw1, 0, 51) << 12
2183 | spu_mfc_get_bitfield (mfc_cq_dw2, 25, 36);
2184
2185 mfc_lsa = spu_mfc_get_bitfield (mfc_cq_dw2, 0, 13);
2186 mfc_size = spu_mfc_get_bitfield (mfc_cq_dw2, 14, 24);
2187 noop_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 37, 37);
2188 qw_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 38, 38);
2189 ea_valid_p = spu_mfc_get_bitfield (mfc_cq_dw2, 39, 39);
2190 cmd_error_p = spu_mfc_get_bitfield (mfc_cq_dw2, 40, 40);
2191
2192 cmd_chain = make_cleanup_ui_out_tuple_begin_end (uiout, "cmd");
2193
2194 if (spu_mfc_opcode[mfc_cmd_opcode])
2195 ui_out_field_string (uiout, "opcode", spu_mfc_opcode[mfc_cmd_opcode]);
2196 else
2197 ui_out_field_int (uiout, "opcode", mfc_cmd_opcode);
2198
2199 ui_out_field_int (uiout, "tag", mfc_cmd_tag);
2200 ui_out_field_int (uiout, "tid", tclass_id);
2201 ui_out_field_int (uiout, "rid", rclass_id);
2202
2203 if (ea_valid_p)
2204 ui_out_field_fmt (uiout, "ea", "0x%s", phex (mfc_ea, 8));
2205 else
2206 ui_out_field_skip (uiout, "ea");
2207
2208 ui_out_field_fmt (uiout, "lsa", "0x%05x", mfc_lsa << 4);
2209 if (qw_valid_p)
2210 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size << 4);
2211 else
2212 ui_out_field_fmt (uiout, "size", "0x%05x", mfc_size);
2213
2214 if (list_valid_p)
2215 {
2216 ui_out_field_fmt (uiout, "lstaddr", "0x%05x", list_lsa << 3);
2217 ui_out_field_fmt (uiout, "lstsize", "0x%05x", list_size << 3);
2218 }
2219 else
2220 {
2221 ui_out_field_skip (uiout, "lstaddr");
2222 ui_out_field_skip (uiout, "lstsize");
2223 }
2224
2225 if (cmd_error_p)
2226 ui_out_field_string (uiout, "error_p", "*");
2227 else
2228 ui_out_field_skip (uiout, "error_p");
2229
2230 do_cleanups (cmd_chain);
2231
2232 if (!ui_out_is_mi_like_p (uiout))
2233 printf_filtered ("\n");
2234 }
2235
2236 do_cleanups (chain);
2237 }
2238
2239 static void
2240 info_spu_dma_command (char *args, int from_tty)
2241 {
2242 struct frame_info *frame = get_selected_frame (NULL);
2243 struct gdbarch *gdbarch = get_frame_arch (frame);
2244 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2245 ULONGEST dma_info_type;
2246 ULONGEST dma_info_mask;
2247 ULONGEST dma_info_status;
2248 ULONGEST dma_info_stall_and_notify;
2249 ULONGEST dma_info_atomic_command_status;
2250 struct cleanup *chain;
2251 char annex[32];
2252 gdb_byte buf[1024];
2253 LONGEST len;
2254 int i, id;
2255
2256 if (gdbarch_bfd_arch_info (get_frame_arch (frame))->arch != bfd_arch_spu)
2257 error (_("\"info spu\" is only supported on the SPU architecture."));
2258
2259 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2260
2261 xsnprintf (annex, sizeof annex, "%d/dma_info", id);
2262 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2263 buf, 0, 40 + 16 * 32);
2264 if (len <= 0)
2265 error (_("Could not read dma_info."));
2266
2267 dma_info_type
2268 = extract_unsigned_integer (buf, 8, byte_order);
2269 dma_info_mask
2270 = extract_unsigned_integer (buf + 8, 8, byte_order);
2271 dma_info_status
2272 = extract_unsigned_integer (buf + 16, 8, byte_order);
2273 dma_info_stall_and_notify
2274 = extract_unsigned_integer (buf + 24, 8, byte_order);
2275 dma_info_atomic_command_status
2276 = extract_unsigned_integer (buf + 32, 8, byte_order);
2277
2278 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoDMA");
2279
2280 if (ui_out_is_mi_like_p (uiout))
2281 {
2282 ui_out_field_fmt (uiout, "dma_info_type", "0x%s",
2283 phex_nz (dma_info_type, 4));
2284 ui_out_field_fmt (uiout, "dma_info_mask", "0x%s",
2285 phex_nz (dma_info_mask, 4));
2286 ui_out_field_fmt (uiout, "dma_info_status", "0x%s",
2287 phex_nz (dma_info_status, 4));
2288 ui_out_field_fmt (uiout, "dma_info_stall_and_notify", "0x%s",
2289 phex_nz (dma_info_stall_and_notify, 4));
2290 ui_out_field_fmt (uiout, "dma_info_atomic_command_status", "0x%s",
2291 phex_nz (dma_info_atomic_command_status, 4));
2292 }
2293 else
2294 {
2295 const char *query_msg = _("no query pending");
2296
2297 if (dma_info_type & 4)
2298 switch (dma_info_type & 3)
2299 {
2300 case 1: query_msg = _("'any' query pending"); break;
2301 case 2: query_msg = _("'all' query pending"); break;
2302 default: query_msg = _("undefined query type"); break;
2303 }
2304
2305 printf_filtered (_("Tag-Group Status 0x%s\n"),
2306 phex (dma_info_status, 4));
2307 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2308 phex (dma_info_mask, 4), query_msg);
2309 printf_filtered (_("Stall-and-Notify 0x%s\n"),
2310 phex (dma_info_stall_and_notify, 4));
2311 printf_filtered (_("Atomic Cmd Status 0x%s\n"),
2312 phex (dma_info_atomic_command_status, 4));
2313 printf_filtered ("\n");
2314 }
2315
2316 info_spu_dma_cmdlist (buf + 40, 16, byte_order);
2317 do_cleanups (chain);
2318 }
2319
2320 static void
2321 info_spu_proxydma_command (char *args, int from_tty)
2322 {
2323 struct frame_info *frame = get_selected_frame (NULL);
2324 struct gdbarch *gdbarch = get_frame_arch (frame);
2325 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2326 ULONGEST dma_info_type;
2327 ULONGEST dma_info_mask;
2328 ULONGEST dma_info_status;
2329 struct cleanup *chain;
2330 char annex[32];
2331 gdb_byte buf[1024];
2332 LONGEST len;
2333 int i, id;
2334
2335 if (gdbarch_bfd_arch_info (gdbarch)->arch != bfd_arch_spu)
2336 error (_("\"info spu\" is only supported on the SPU architecture."));
2337
2338 id = get_frame_register_unsigned (frame, SPU_ID_REGNUM);
2339
2340 xsnprintf (annex, sizeof annex, "%d/proxydma_info", id);
2341 len = target_read (&current_target, TARGET_OBJECT_SPU, annex,
2342 buf, 0, 24 + 8 * 32);
2343 if (len <= 0)
2344 error (_("Could not read proxydma_info."));
2345
2346 dma_info_type = extract_unsigned_integer (buf, 8, byte_order);
2347 dma_info_mask = extract_unsigned_integer (buf + 8, 8, byte_order);
2348 dma_info_status = extract_unsigned_integer (buf + 16, 8, byte_order);
2349
2350 chain = make_cleanup_ui_out_tuple_begin_end (uiout, "SPUInfoProxyDMA");
2351
2352 if (ui_out_is_mi_like_p (uiout))
2353 {
2354 ui_out_field_fmt (uiout, "proxydma_info_type", "0x%s",
2355 phex_nz (dma_info_type, 4));
2356 ui_out_field_fmt (uiout, "proxydma_info_mask", "0x%s",
2357 phex_nz (dma_info_mask, 4));
2358 ui_out_field_fmt (uiout, "proxydma_info_status", "0x%s",
2359 phex_nz (dma_info_status, 4));
2360 }
2361 else
2362 {
2363 const char *query_msg;
2364
2365 switch (dma_info_type & 3)
2366 {
2367 case 0: query_msg = _("no query pending"); break;
2368 case 1: query_msg = _("'any' query pending"); break;
2369 case 2: query_msg = _("'all' query pending"); break;
2370 default: query_msg = _("undefined query type"); break;
2371 }
2372
2373 printf_filtered (_("Tag-Group Status 0x%s\n"),
2374 phex (dma_info_status, 4));
2375 printf_filtered (_("Tag-Group Mask 0x%s (%s)\n"),
2376 phex (dma_info_mask, 4), query_msg);
2377 printf_filtered ("\n");
2378 }
2379
2380 info_spu_dma_cmdlist (buf + 24, 8, byte_order);
2381 do_cleanups (chain);
2382 }
2383
2384 static void
2385 info_spu_command (char *args, int from_tty)
2386 {
2387 printf_unfiltered (_("\"info spu\" must be followed by the name of an SPU facility.\n"));
2388 help_list (infospucmdlist, "info spu ", -1, gdb_stdout);
2389 }
2390
2391
2392 /* Root of all "set spu "/"show spu " commands. */
2393
2394 static void
2395 show_spu_command (char *args, int from_tty)
2396 {
2397 help_list (showspucmdlist, "show spu ", all_commands, gdb_stdout);
2398 }
2399
2400 static void
2401 set_spu_command (char *args, int from_tty)
2402 {
2403 help_list (setspucmdlist, "set spu ", all_commands, gdb_stdout);
2404 }
2405
2406 static void
2407 show_spu_stop_on_load (struct ui_file *file, int from_tty,
2408 struct cmd_list_element *c, const char *value)
2409 {
2410 fprintf_filtered (file, _("Stopping for new SPE threads is %s.\n"),
2411 value);
2412 }
2413
2414
2415 /* Set up gdbarch struct. */
2416
2417 static struct gdbarch *
2418 spu_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2419 {
2420 struct gdbarch *gdbarch;
2421 struct gdbarch_tdep *tdep;
2422 int id = -1;
2423
2424 /* Which spufs ID was requested as address space? */
2425 if (info.tdep_info)
2426 id = *(int *)info.tdep_info;
2427 /* For objfile architectures of SPU solibs, decode the ID from the name.
2428 This assumes the filename convention employed by solib-spu.c. */
2429 else if (info.abfd)
2430 {
2431 char *name = strrchr (info.abfd->filename, '@');
2432 if (name)
2433 sscanf (name, "@0x%*x <%d>", &id);
2434 }
2435
2436 /* Find a candidate among extant architectures. */
2437 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2438 arches != NULL;
2439 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2440 {
2441 tdep = gdbarch_tdep (arches->gdbarch);
2442 if (tdep && tdep->id == id)
2443 return arches->gdbarch;
2444 }
2445
2446 /* None found, so create a new architecture. */
2447 tdep = XCALLOC (1, struct gdbarch_tdep);
2448 tdep->id = id;
2449 gdbarch = gdbarch_alloc (&info, tdep);
2450
2451 /* Disassembler. */
2452 set_gdbarch_print_insn (gdbarch, gdb_print_insn_spu);
2453
2454 /* Registers. */
2455 set_gdbarch_num_regs (gdbarch, SPU_NUM_REGS);
2456 set_gdbarch_num_pseudo_regs (gdbarch, SPU_NUM_PSEUDO_REGS);
2457 set_gdbarch_sp_regnum (gdbarch, SPU_SP_REGNUM);
2458 set_gdbarch_pc_regnum (gdbarch, SPU_PC_REGNUM);
2459 set_gdbarch_read_pc (gdbarch, spu_read_pc);
2460 set_gdbarch_write_pc (gdbarch, spu_write_pc);
2461 set_gdbarch_register_name (gdbarch, spu_register_name);
2462 set_gdbarch_register_type (gdbarch, spu_register_type);
2463 set_gdbarch_pseudo_register_read (gdbarch, spu_pseudo_register_read);
2464 set_gdbarch_pseudo_register_write (gdbarch, spu_pseudo_register_write);
2465 set_gdbarch_value_from_register (gdbarch, spu_value_from_register);
2466 set_gdbarch_register_reggroup_p (gdbarch, spu_register_reggroup_p);
2467
2468 /* Data types. */
2469 set_gdbarch_char_signed (gdbarch, 0);
2470 set_gdbarch_ptr_bit (gdbarch, 32);
2471 set_gdbarch_addr_bit (gdbarch, 32);
2472 set_gdbarch_short_bit (gdbarch, 16);
2473 set_gdbarch_int_bit (gdbarch, 32);
2474 set_gdbarch_long_bit (gdbarch, 32);
2475 set_gdbarch_long_long_bit (gdbarch, 64);
2476 set_gdbarch_float_bit (gdbarch, 32);
2477 set_gdbarch_double_bit (gdbarch, 64);
2478 set_gdbarch_long_double_bit (gdbarch, 64);
2479 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2480 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2481 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
2482
2483 /* Address conversion. */
2484 set_gdbarch_address_to_pointer (gdbarch, spu_address_to_pointer);
2485 set_gdbarch_pointer_to_address (gdbarch, spu_pointer_to_address);
2486 set_gdbarch_integer_to_address (gdbarch, spu_integer_to_address);
2487
2488 /* Inferior function calls. */
2489 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
2490 set_gdbarch_frame_align (gdbarch, spu_frame_align);
2491 set_gdbarch_frame_red_zone_size (gdbarch, 2000);
2492 set_gdbarch_push_dummy_code (gdbarch, spu_push_dummy_code);
2493 set_gdbarch_push_dummy_call (gdbarch, spu_push_dummy_call);
2494 set_gdbarch_dummy_id (gdbarch, spu_dummy_id);
2495 set_gdbarch_return_value (gdbarch, spu_return_value);
2496
2497 /* Frame handling. */
2498 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2499 frame_unwind_append_unwinder (gdbarch, &spu_frame_unwind);
2500 frame_base_set_default (gdbarch, &spu_frame_base);
2501 set_gdbarch_unwind_pc (gdbarch, spu_unwind_pc);
2502 set_gdbarch_unwind_sp (gdbarch, spu_unwind_sp);
2503 set_gdbarch_virtual_frame_pointer (gdbarch, spu_virtual_frame_pointer);
2504 set_gdbarch_frame_args_skip (gdbarch, 0);
2505 set_gdbarch_skip_prologue (gdbarch, spu_skip_prologue);
2506 set_gdbarch_in_function_epilogue_p (gdbarch, spu_in_function_epilogue_p);
2507
2508 /* Cell/B.E. cross-architecture unwinder support. */
2509 frame_unwind_prepend_unwinder (gdbarch, &spu2ppu_unwind);
2510
2511 /* Breakpoints. */
2512 set_gdbarch_decr_pc_after_break (gdbarch, 4);
2513 set_gdbarch_breakpoint_from_pc (gdbarch, spu_breakpoint_from_pc);
2514 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
2515 set_gdbarch_software_single_step (gdbarch, spu_software_single_step);
2516 set_gdbarch_get_longjmp_target (gdbarch, spu_get_longjmp_target);
2517
2518 /* Overlays. */
2519 set_gdbarch_overlay_update (gdbarch, spu_overlay_update);
2520
2521 return gdbarch;
2522 }
2523
2524 /* Provide a prototype to silence -Wmissing-prototypes. */
2525 extern initialize_file_ftype _initialize_spu_tdep;
2526
2527 void
2528 _initialize_spu_tdep (void)
2529 {
2530 register_gdbarch_init (bfd_arch_spu, spu_gdbarch_init);
2531
2532 /* Add ourselves to objfile event chain. */
2533 observer_attach_new_objfile (spu_overlay_new_objfile);
2534 spu_overlay_data = register_objfile_data ();
2535
2536 /* Install spu stop-on-load handler. */
2537 observer_attach_new_objfile (spu_catch_start);
2538
2539 /* Add root prefix command for all "set spu"/"show spu" commands. */
2540 add_prefix_cmd ("spu", no_class, set_spu_command,
2541 _("Various SPU specific commands."),
2542 &setspucmdlist, "set spu ", 0, &setlist);
2543 add_prefix_cmd ("spu", no_class, show_spu_command,
2544 _("Various SPU specific commands."),
2545 &showspucmdlist, "show spu ", 0, &showlist);
2546
2547 /* Toggle whether or not to add a temporary breakpoint at the "main"
2548 function of new SPE contexts. */
2549 add_setshow_boolean_cmd ("stop-on-load", class_support,
2550 &spu_stop_on_load_p, _("\
2551 Set whether to stop for new SPE threads."),
2552 _("\
2553 Show whether to stop for new SPE threads."),
2554 _("\
2555 Use \"on\" to give control to the user when a new SPE thread\n\
2556 enters its \"main\" function.\n\
2557 Use \"off\" to disable stopping for new SPE threads."),
2558 NULL,
2559 show_spu_stop_on_load,
2560 &setspucmdlist, &showspucmdlist);
2561
2562 /* Add root prefix command for all "info spu" commands. */
2563 add_prefix_cmd ("spu", class_info, info_spu_command,
2564 _("Various SPU specific commands."),
2565 &infospucmdlist, "info spu ", 0, &infolist);
2566
2567 /* Add various "info spu" commands. */
2568 add_cmd ("event", class_info, info_spu_event_command,
2569 _("Display SPU event facility status.\n"),
2570 &infospucmdlist);
2571 add_cmd ("signal", class_info, info_spu_signal_command,
2572 _("Display SPU signal notification facility status.\n"),
2573 &infospucmdlist);
2574 add_cmd ("mailbox", class_info, info_spu_mailbox_command,
2575 _("Display SPU mailbox facility status.\n"),
2576 &infospucmdlist);
2577 add_cmd ("dma", class_info, info_spu_dma_command,
2578 _("Display MFC DMA status.\n"),
2579 &infospucmdlist);
2580 add_cmd ("proxydma", class_info, info_spu_proxydma_command,
2581 _("Display MFC Proxy-DMA status.\n"),
2582 &infospucmdlist);
2583 }