gdb: rename start_symtab/end_symtab to start_compunit_symtab/end_compunit_symtab
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = objfile->arch ();
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = new (&objfile->objfile_obstack) symbol;
427 sym->set_domain (VAR_DOMAIN);
428 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 sym->set_type
438 (lookup_function_type (read_type (&pp, objfile)));
439 }
440 else
441 {
442 sym->set_type (read_type (&pp, objfile));
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 sym->set_type
452 (lookup_function_type (read_type (&pp, objfile)));
453 }
454 else
455 {
456 sym->set_type (read_type (&pp, objfile));
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 sym->print_name ());
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = objfile->arch ();
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 sym->set_line (desc);
697 }
698 else
699 {
700 sym->set_line (0); /* unknown */
701 }
702
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 sym->set_linkage_name ("this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 sym->set_linkage_name ("eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 default:
727 complaint (_("Unknown C++ symbol name `%s'"),
728 string);
729 goto normal; /* Do *something* with it. */
730 }
731 }
732 else
733 {
734 normal:
735 gdb::unique_xmalloc_ptr<char> new_name;
736
737 if (sym->language () == language_cplus)
738 {
739 char *name = (char *) alloca (p - string + 1);
740
741 memcpy (name, string, p - string);
742 name[p - string] = '\0';
743 new_name = cp_canonicalize_string (name);
744 }
745 if (new_name != nullptr)
746 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
747 else
748 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
749 objfile->per_bfd);
750
751 if (sym->language () == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
753 objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 sym->set_aclass_index (LOC_CONST);
787 sym->set_type (error_type (&p, objfile));
788 sym->set_domain (VAR_DOMAIN);
789 add_symbol_to_list (sym, get_file_symbols ());
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 gdb_byte *dbl_valu;
798 struct type *dbl_type;
799
800 dbl_type = objfile_type (objfile)->builtin_double;
801 dbl_valu
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 TYPE_LENGTH (dbl_type));
804
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
806
807 sym->set_type (dbl_type);
808 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
809 sym->set_aclass_index (LOC_CONST_BYTES);
810 }
811 break;
812 case 'i':
813 {
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
820
821 sym->set_type (objfile_type (objfile)->builtin_long);
822 SYMBOL_VALUE (sym) = atoi (p);
823 sym->set_aclass_index (LOC_CONST);
824 }
825 break;
826
827 case 'c':
828 {
829 sym->set_type (objfile_type (objfile)->builtin_char);
830 SYMBOL_VALUE (sym) = atoi (p);
831 sym->set_aclass_index (LOC_CONST);
832 }
833 break;
834
835 case 's':
836 {
837 struct type *range_type;
838 int ind = 0;
839 char quote = *p++;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
842
843 if (quote != '\'' && quote != '"')
844 {
845 sym->set_aclass_index (LOC_CONST);
846 sym->set_type (error_type (&p, objfile));
847 sym->set_domain (VAR_DOMAIN);
848 add_symbol_to_list (sym, get_file_symbols ());
849 return sym;
850 }
851
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
854 {
855 if (*p == '\\' && p[1] == quote)
856 {
857 string_local[ind] = (gdb_byte) quote;
858 ind++;
859 p += 2;
860 }
861 else if (*p)
862 {
863 string_local[ind] = (gdb_byte) (*p);
864 ind++;
865 p++;
866 }
867 }
868 if (*p != quote)
869 {
870 sym->set_aclass_index (LOC_CONST);
871 sym->set_type (error_type (&p, objfile));
872 sym->set_domain (VAR_DOMAIN);
873 add_symbol_to_list (sym, get_file_symbols ());
874 return sym;
875 }
876
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
879 range_type
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
882 0, ind);
883 sym->set_type
884 (create_array_type (NULL, objfile_type (objfile)->builtin_char,
885 range_type));
886 string_value
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
889 p++;
890
891 SYMBOL_VALUE_BYTES (sym) = string_value;
892 sym->set_aclass_index (LOC_CONST_BYTES);
893 }
894 break;
895
896 case 'e':
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
901 {
902 sym->set_aclass_index (LOC_CONST);
903 sym->set_type (read_type (&p, objfile));
904
905 if (*p != ',')
906 {
907 sym->set_type (error_type (&p, objfile));
908 break;
909 }
910 ++p;
911
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
917 however. */
918 SYMBOL_VALUE (sym) = atoi (p);
919 }
920 break;
921 default:
922 {
923 sym->set_aclass_index (LOC_CONST);
924 sym->set_type (error_type (&p, objfile));
925 }
926 }
927 sym->set_domain (VAR_DOMAIN);
928 add_symbol_to_list (sym, get_file_symbols ());
929 return sym;
930
931 case 'C':
932 /* The name of a caught exception. */
933 sym->set_type (read_type (&p, objfile));
934 sym->set_aclass_index (LOC_LABEL);
935 sym->set_domain (VAR_DOMAIN);
936 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
937 add_symbol_to_list (sym, get_local_symbols ());
938 break;
939
940 case 'f':
941 /* A static function definition. */
942 sym->set_type (read_type (&p, objfile));
943 sym->set_aclass_index (LOC_BLOCK);
944 sym->set_domain (VAR_DOMAIN);
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
947
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (sym->type ()->code () != TYPE_CODE_FUNC)
953 sym->set_type (lookup_function_type (sym->type ()));
954
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 sym->type ()->set_is_prototyped (true);
962
963 /* fall into process_prototype_types. */
964
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
967 if (*p == ';')
968 {
969 struct type *ftype = sym->type ();
970 int nsemi = 0;
971 int nparams = 0;
972 const char *p1 = p;
973
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
976 while (*p1)
977 {
978 if (*p1++ == ';')
979 nsemi++;
980 }
981
982 /* Allocate parameter information fields and fill them in. */
983 ftype->set_fields
984 ((struct field *)
985 TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
986 while (*p++ == ';')
987 {
988 struct type *ptype;
989
990 /* A type number of zero indicates the start of varargs.
991 FIXME: GDB currently ignores vararg functions. */
992 if (p[0] == '0' && p[1] == '\0')
993 break;
994 ptype = read_type (&p, objfile);
995
996 /* The Sun compilers mark integer arguments, which should
997 be promoted to the width of the calling conventions, with
998 a type which references itself. This type is turned into
999 a TYPE_CODE_VOID type by read_type, and we have to turn
1000 it back into builtin_int here.
1001 FIXME: Do we need a new builtin_promoted_int_arg ? */
1002 if (ptype->code () == TYPE_CODE_VOID)
1003 ptype = objfile_type (objfile)->builtin_int;
1004 ftype->field (nparams).set_type (ptype);
1005 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1006 }
1007 ftype->set_num_fields (nparams);
1008 ftype->set_is_prototyped (true);
1009 }
1010 break;
1011
1012 case 'F':
1013 /* A global function definition. */
1014 sym->set_type (read_type (&p, objfile));
1015 sym->set_aclass_index (LOC_BLOCK);
1016 sym->set_domain (VAR_DOMAIN);
1017 add_symbol_to_list (sym, get_global_symbols ());
1018 goto process_function_types;
1019
1020 case 'G':
1021 /* For a class G (global) symbol, it appears that the
1022 value is not correct. It is necessary to search for the
1023 corresponding linker definition to find the value.
1024 These definitions appear at the end of the namelist. */
1025 sym->set_type (read_type (&p, objfile));
1026 sym->set_aclass_index (LOC_STATIC);
1027 sym->set_domain (VAR_DOMAIN);
1028 /* Don't add symbol references to global_sym_chain.
1029 Symbol references don't have valid names and wont't match up with
1030 minimal symbols when the global_sym_chain is relocated.
1031 We'll fixup symbol references when we fixup the defining symbol. */
1032 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1033 {
1034 i = hashname (sym->linkage_name ());
1035 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1036 global_sym_chain[i] = sym;
1037 }
1038 add_symbol_to_list (sym, get_global_symbols ());
1039 break;
1040
1041 /* This case is faked by a conditional above,
1042 when there is no code letter in the dbx data.
1043 Dbx data never actually contains 'l'. */
1044 case 's':
1045 case 'l':
1046 sym->set_type (read_type (&p, objfile));
1047 sym->set_aclass_index (LOC_LOCAL);
1048 SYMBOL_VALUE (sym) = valu;
1049 sym->set_domain (VAR_DOMAIN);
1050 add_symbol_to_list (sym, get_local_symbols ());
1051 break;
1052
1053 case 'p':
1054 if (*p == 'F')
1055 /* pF is a two-letter code that means a function parameter in Fortran.
1056 The type-number specifies the type of the return value.
1057 Translate it into a pointer-to-function type. */
1058 {
1059 p++;
1060 sym->set_type
1061 (lookup_pointer_type
1062 (lookup_function_type (read_type (&p, objfile))));
1063 }
1064 else
1065 sym->set_type (read_type (&p, objfile));
1066
1067 sym->set_aclass_index (LOC_ARG);
1068 SYMBOL_VALUE (sym) = valu;
1069 sym->set_domain (VAR_DOMAIN);
1070 sym->set_is_argument (1);
1071 add_symbol_to_list (sym, get_local_symbols ());
1072
1073 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1074 {
1075 /* On little-endian machines, this crud is never necessary,
1076 and, if the extra bytes contain garbage, is harmful. */
1077 break;
1078 }
1079
1080 /* If it's gcc-compiled, if it says `short', believe it. */
1081 if (processing_gcc_compilation
1082 || gdbarch_believe_pcc_promotion (gdbarch))
1083 break;
1084
1085 if (!gdbarch_believe_pcc_promotion (gdbarch))
1086 {
1087 /* If PCC says a parameter is a short or a char, it is
1088 really an int. */
1089 if (TYPE_LENGTH (sym->type ())
1090 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1091 && sym->type ()->code () == TYPE_CODE_INT)
1092 {
1093 sym->set_type
1094 (sym->type ()->is_unsigned ()
1095 ? objfile_type (objfile)->builtin_unsigned_int
1096 : objfile_type (objfile)->builtin_int);
1097 }
1098 break;
1099 }
1100 /* Fall through. */
1101
1102 case 'P':
1103 /* acc seems to use P to declare the prototypes of functions that
1104 are referenced by this file. gdb is not prepared to deal
1105 with this extra information. FIXME, it ought to. */
1106 if (type == N_FUN)
1107 {
1108 sym->set_type (read_type (&p, objfile));
1109 goto process_prototype_types;
1110 }
1111 /*FALLTHROUGH */
1112
1113 case 'R':
1114 /* Parameter which is in a register. */
1115 sym->set_type (read_type (&p, objfile));
1116 sym->set_aclass_index (stab_register_index);
1117 sym->set_is_argument (1);
1118 SYMBOL_VALUE (sym) = valu;
1119 sym->set_domain (VAR_DOMAIN);
1120 add_symbol_to_list (sym, get_local_symbols ());
1121 break;
1122
1123 case 'r':
1124 /* Register variable (either global or local). */
1125 sym->set_type (read_type (&p, objfile));
1126 sym->set_aclass_index (stab_register_index);
1127 SYMBOL_VALUE (sym) = valu;
1128 sym->set_domain (VAR_DOMAIN);
1129 if (within_function)
1130 {
1131 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1132 the same name to represent an argument passed in a
1133 register. GCC uses 'P' for the same case. So if we find
1134 such a symbol pair we combine it into one 'P' symbol.
1135 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1137 the stack.
1138
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1143 etc.).
1144
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1149
1150 struct pending *local_symbols = *get_local_symbols ();
1151 if (local_symbols
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, sym->type ()))
1154 {
1155 struct symbol *prev_sym;
1156
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((prev_sym->aclass () == LOC_REF_ARG
1159 || prev_sym->aclass () == LOC_ARG)
1160 && strcmp (prev_sym->linkage_name (),
1161 sym->linkage_name ()) == 0)
1162 {
1163 prev_sym->set_aclass_index (stab_register_index);
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 prev_sym->set_type (sym->type ());
1167 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1168 sym = prev_sym;
1169 break;
1170 }
1171 }
1172 add_symbol_to_list (sym, get_local_symbols ());
1173 }
1174 else
1175 add_symbol_to_list (sym, get_file_symbols ());
1176 break;
1177
1178 case 'S':
1179 /* Static symbol at top level of file. */
1180 sym->set_type (read_type (&p, objfile));
1181 sym->set_aclass_index (LOC_STATIC);
1182 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1183 sym->set_domain (VAR_DOMAIN);
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (sym->language () == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 sym->set_type (read_type (&p, objfile));
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 sym->set_aclass_index (LOC_TYPEDEF);
1213 SYMBOL_VALUE (sym) = valu;
1214 sym->set_domain (VAR_DOMAIN);
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (sym->type ()->name () != NULL)
1220 if ((sym->type ()->code () == TYPE_CODE_STRUCT
1221 || sym->type ()->code () == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (sym->type ()))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (sym->type ()) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (sym->type (), j) == 0)
1228 sym->type ()->field (j).set_name
1229 (TYPE_BASECLASS (sym->type (), j)->name ());
1230 }
1231
1232 if (sym->type ()->name () == NULL)
1233 {
1234 if ((sym->type ()->code () == TYPE_CODE_PTR
1235 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1236 || sym->type ()->code () == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (get_current_subfile ()->language == language_pascal)
1275 sym->type ()->set_name (sym->linkage_name ());
1276 }
1277 else
1278 sym->type ()->set_name (sym->linkage_name ());
1279 }
1280
1281 add_symbol_to_list (sym, get_file_symbols ());
1282
1283 if (synonym)
1284 {
1285 /* Create the STRUCT_DOMAIN clone. */
1286 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1287
1288 *struct_sym = *sym;
1289 struct_sym->set_aclass_index (LOC_TYPEDEF);
1290 SYMBOL_VALUE (struct_sym) = valu;
1291 struct_sym->set_domain (STRUCT_DOMAIN);
1292 if (sym->type ()->name () == 0)
1293 sym->type ()->set_name
1294 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1295 (char *) NULL));
1296 add_symbol_to_list (struct_sym, get_file_symbols ());
1297 }
1298
1299 break;
1300
1301 case 'T':
1302 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1303 by 't' which means we are typedef'ing it as well. */
1304 synonym = *p == 't';
1305
1306 if (synonym)
1307 p++;
1308
1309 sym->set_type (read_type (&p, objfile));
1310
1311 /* For a nameless type, we don't want a create a symbol, thus we
1312 did not use `sym'. Return without further processing. */
1313 if (nameless)
1314 return NULL;
1315
1316 sym->set_aclass_index (LOC_TYPEDEF);
1317 SYMBOL_VALUE (sym) = valu;
1318 sym->set_domain (STRUCT_DOMAIN);
1319 if (sym->type ()->name () == 0)
1320 sym->type ()->set_name
1321 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1322 (char *) NULL));
1323 add_symbol_to_list (sym, get_file_symbols ());
1324
1325 if (synonym)
1326 {
1327 /* Clone the sym and then modify it. */
1328 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1329
1330 *typedef_sym = *sym;
1331 typedef_sym->set_aclass_index (LOC_TYPEDEF);
1332 SYMBOL_VALUE (typedef_sym) = valu;
1333 typedef_sym->set_domain (VAR_DOMAIN);
1334 if (sym->type ()->name () == 0)
1335 sym->type ()->set_name
1336 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1337 (char *) NULL));
1338 add_symbol_to_list (typedef_sym, get_file_symbols ());
1339 }
1340 break;
1341
1342 case 'V':
1343 /* Static symbol of local scope. */
1344 sym->set_type (read_type (&p, objfile));
1345 sym->set_aclass_index (LOC_STATIC);
1346 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1347 sym->set_domain (VAR_DOMAIN);
1348 add_symbol_to_list (sym, get_local_symbols ());
1349 break;
1350
1351 case 'v':
1352 /* Reference parameter */
1353 sym->set_type (read_type (&p, objfile));
1354 sym->set_aclass_index (LOC_REF_ARG);
1355 sym->set_is_argument (1);
1356 SYMBOL_VALUE (sym) = valu;
1357 sym->set_domain (VAR_DOMAIN);
1358 add_symbol_to_list (sym, get_local_symbols ());
1359 break;
1360
1361 case 'a':
1362 /* Reference parameter which is in a register. */
1363 sym->set_type (read_type (&p, objfile));
1364 sym->set_aclass_index (stab_regparm_index);
1365 sym->set_is_argument (1);
1366 SYMBOL_VALUE (sym) = valu;
1367 sym->set_domain (VAR_DOMAIN);
1368 add_symbol_to_list (sym, get_local_symbols ());
1369 break;
1370
1371 case 'X':
1372 /* This is used by Sun FORTRAN for "function result value".
1373 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1374 that Pascal uses it too, but when I tried it Pascal used
1375 "x:3" (local symbol) instead. */
1376 sym->set_type (read_type (&p, objfile));
1377 sym->set_aclass_index (LOC_LOCAL);
1378 SYMBOL_VALUE (sym) = valu;
1379 sym->set_domain (VAR_DOMAIN);
1380 add_symbol_to_list (sym, get_local_symbols ());
1381 break;
1382
1383 default:
1384 sym->set_type (error_type (&p, objfile));
1385 sym->set_aclass_index (LOC_CONST);
1386 SYMBOL_VALUE (sym) = 0;
1387 sym->set_domain (VAR_DOMAIN);
1388 add_symbol_to_list (sym, get_file_symbols ());
1389 break;
1390 }
1391
1392 /* Some systems pass variables of certain types by reference instead
1393 of by value, i.e. they will pass the address of a structure (in a
1394 register or on the stack) instead of the structure itself. */
1395
1396 if (gdbarch_stabs_argument_has_addr (gdbarch, sym->type ())
1397 && sym->is_argument ())
1398 {
1399 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1400 variables passed in a register). */
1401 if (sym->aclass () == LOC_REGISTER)
1402 sym->set_aclass_index (LOC_REGPARM_ADDR);
1403 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1404 and subsequent arguments on SPARC, for example). */
1405 else if (sym->aclass () == LOC_ARG)
1406 sym->set_aclass_index (LOC_REF_ARG);
1407 }
1408
1409 return sym;
1410 }
1411
1412 /* Skip rest of this symbol and return an error type.
1413
1414 General notes on error recovery: error_type always skips to the
1415 end of the symbol (modulo cretinous dbx symbol name continuation).
1416 Thus code like this:
1417
1418 if (*(*pp)++ != ';')
1419 return error_type (pp, objfile);
1420
1421 is wrong because if *pp starts out pointing at '\0' (typically as the
1422 result of an earlier error), it will be incremented to point to the
1423 start of the next symbol, which might produce strange results, at least
1424 if you run off the end of the string table. Instead use
1425
1426 if (**pp != ';')
1427 return error_type (pp, objfile);
1428 ++*pp;
1429
1430 or
1431
1432 if (**pp != ';')
1433 foo = error_type (pp, objfile);
1434 else
1435 ++*pp;
1436
1437 And in case it isn't obvious, the point of all this hair is so the compiler
1438 can define new types and new syntaxes, and old versions of the
1439 debugger will be able to read the new symbol tables. */
1440
1441 static struct type *
1442 error_type (const char **pp, struct objfile *objfile)
1443 {
1444 complaint (_("couldn't parse type; debugger out of date?"));
1445 while (1)
1446 {
1447 /* Skip to end of symbol. */
1448 while (**pp != '\0')
1449 {
1450 (*pp)++;
1451 }
1452
1453 /* Check for and handle cretinous dbx symbol name continuation! */
1454 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1455 {
1456 *pp = next_symbol_text (objfile);
1457 }
1458 else
1459 {
1460 break;
1461 }
1462 }
1463 return objfile_type (objfile)->builtin_error;
1464 }
1465 \f
1466
1467 /* Read type information or a type definition; return the type. Even
1468 though this routine accepts either type information or a type
1469 definition, the distinction is relevant--some parts of stabsread.c
1470 assume that type information starts with a digit, '-', or '(' in
1471 deciding whether to call read_type. */
1472
1473 static struct type *
1474 read_type (const char **pp, struct objfile *objfile)
1475 {
1476 struct type *type = 0;
1477 struct type *type1;
1478 int typenums[2];
1479 char type_descriptor;
1480
1481 /* Size in bits of type if specified by a type attribute, or -1 if
1482 there is no size attribute. */
1483 int type_size = -1;
1484
1485 /* Used to distinguish string and bitstring from char-array and set. */
1486 int is_string = 0;
1487
1488 /* Used to distinguish vector from array. */
1489 int is_vector = 0;
1490
1491 /* Read type number if present. The type number may be omitted.
1492 for instance in a two-dimensional array declared with type
1493 "ar1;1;10;ar1;1;10;4". */
1494 if ((**pp >= '0' && **pp <= '9')
1495 || **pp == '('
1496 || **pp == '-')
1497 {
1498 if (read_type_number (pp, typenums) != 0)
1499 return error_type (pp, objfile);
1500
1501 if (**pp != '=')
1502 {
1503 /* Type is not being defined here. Either it already
1504 exists, or this is a forward reference to it.
1505 dbx_alloc_type handles both cases. */
1506 type = dbx_alloc_type (typenums, objfile);
1507
1508 /* If this is a forward reference, arrange to complain if it
1509 doesn't get patched up by the time we're done
1510 reading. */
1511 if (type->code () == TYPE_CODE_UNDEF)
1512 add_undefined_type (type, typenums);
1513
1514 return type;
1515 }
1516
1517 /* Type is being defined here. */
1518 /* Skip the '='.
1519 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1520 (*pp) += 2;
1521 }
1522 else
1523 {
1524 /* 'typenums=' not present, type is anonymous. Read and return
1525 the definition, but don't put it in the type vector. */
1526 typenums[0] = typenums[1] = -1;
1527 (*pp)++;
1528 }
1529
1530 again:
1531 type_descriptor = (*pp)[-1];
1532 switch (type_descriptor)
1533 {
1534 case 'x':
1535 {
1536 enum type_code code;
1537
1538 /* Used to index through file_symbols. */
1539 struct pending *ppt;
1540 int i;
1541
1542 /* Name including "struct", etc. */
1543 char *type_name;
1544
1545 {
1546 const char *from, *p, *q1, *q2;
1547
1548 /* Set the type code according to the following letter. */
1549 switch ((*pp)[0])
1550 {
1551 case 's':
1552 code = TYPE_CODE_STRUCT;
1553 break;
1554 case 'u':
1555 code = TYPE_CODE_UNION;
1556 break;
1557 case 'e':
1558 code = TYPE_CODE_ENUM;
1559 break;
1560 default:
1561 {
1562 /* Complain and keep going, so compilers can invent new
1563 cross-reference types. */
1564 complaint (_("Unrecognized cross-reference type `%c'"),
1565 (*pp)[0]);
1566 code = TYPE_CODE_STRUCT;
1567 break;
1568 }
1569 }
1570
1571 q1 = strchr (*pp, '<');
1572 p = strchr (*pp, ':');
1573 if (p == NULL)
1574 return error_type (pp, objfile);
1575 if (q1 && p > q1 && p[1] == ':')
1576 {
1577 int nesting_level = 0;
1578
1579 for (q2 = q1; *q2; q2++)
1580 {
1581 if (*q2 == '<')
1582 nesting_level++;
1583 else if (*q2 == '>')
1584 nesting_level--;
1585 else if (*q2 == ':' && nesting_level == 0)
1586 break;
1587 }
1588 p = q2;
1589 if (*p != ':')
1590 return error_type (pp, objfile);
1591 }
1592 type_name = NULL;
1593 if (get_current_subfile ()->language == language_cplus)
1594 {
1595 char *name = (char *) alloca (p - *pp + 1);
1596
1597 memcpy (name, *pp, p - *pp);
1598 name[p - *pp] = '\0';
1599
1600 gdb::unique_xmalloc_ptr<char> new_name = cp_canonicalize_string (name);
1601 if (new_name != nullptr)
1602 type_name = obstack_strdup (&objfile->objfile_obstack,
1603 new_name.get ());
1604 }
1605 if (type_name == NULL)
1606 {
1607 char *to = type_name = (char *)
1608 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1609
1610 /* Copy the name. */
1611 from = *pp + 1;
1612 while (from < p)
1613 *to++ = *from++;
1614 *to = '\0';
1615 }
1616
1617 /* Set the pointer ahead of the name which we just read, and
1618 the colon. */
1619 *pp = p + 1;
1620 }
1621
1622 /* If this type has already been declared, then reuse the same
1623 type, rather than allocating a new one. This saves some
1624 memory. */
1625
1626 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1627 for (i = 0; i < ppt->nsyms; i++)
1628 {
1629 struct symbol *sym = ppt->symbol[i];
1630
1631 if (sym->aclass () == LOC_TYPEDEF
1632 && sym->domain () == STRUCT_DOMAIN
1633 && (sym->type ()->code () == code)
1634 && strcmp (sym->linkage_name (), type_name) == 0)
1635 {
1636 obstack_free (&objfile->objfile_obstack, type_name);
1637 type = sym->type ();
1638 if (typenums[0] != -1)
1639 *dbx_lookup_type (typenums, objfile) = type;
1640 return type;
1641 }
1642 }
1643
1644 /* Didn't find the type to which this refers, so we must
1645 be dealing with a forward reference. Allocate a type
1646 structure for it, and keep track of it so we can
1647 fill in the rest of the fields when we get the full
1648 type. */
1649 type = dbx_alloc_type (typenums, objfile);
1650 type->set_code (code);
1651 type->set_name (type_name);
1652 INIT_CPLUS_SPECIFIC (type);
1653 type->set_is_stub (true);
1654
1655 add_undefined_type (type, typenums);
1656 return type;
1657 }
1658
1659 case '-': /* RS/6000 built-in type */
1660 case '0':
1661 case '1':
1662 case '2':
1663 case '3':
1664 case '4':
1665 case '5':
1666 case '6':
1667 case '7':
1668 case '8':
1669 case '9':
1670 case '(':
1671 (*pp)--;
1672
1673 /* We deal with something like t(1,2)=(3,4)=... which
1674 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1675
1676 /* Allocate and enter the typedef type first.
1677 This handles recursive types. */
1678 type = dbx_alloc_type (typenums, objfile);
1679 type->set_code (TYPE_CODE_TYPEDEF);
1680 {
1681 struct type *xtype = read_type (pp, objfile);
1682
1683 if (type == xtype)
1684 {
1685 /* It's being defined as itself. That means it is "void". */
1686 type->set_code (TYPE_CODE_VOID);
1687 TYPE_LENGTH (type) = 1;
1688 }
1689 else if (type_size >= 0 || is_string)
1690 {
1691 /* This is the absolute wrong way to construct types. Every
1692 other debug format has found a way around this problem and
1693 the related problems with unnecessarily stubbed types;
1694 someone motivated should attempt to clean up the issue
1695 here as well. Once a type pointed to has been created it
1696 should not be modified.
1697
1698 Well, it's not *absolutely* wrong. Constructing recursive
1699 types (trees, linked lists) necessarily entails modifying
1700 types after creating them. Constructing any loop structure
1701 entails side effects. The Dwarf 2 reader does handle this
1702 more gracefully (it never constructs more than once
1703 instance of a type object, so it doesn't have to copy type
1704 objects wholesale), but it still mutates type objects after
1705 other folks have references to them.
1706
1707 Keep in mind that this circularity/mutation issue shows up
1708 at the source language level, too: C's "incomplete types",
1709 for example. So the proper cleanup, I think, would be to
1710 limit GDB's type smashing to match exactly those required
1711 by the source language. So GDB could have a
1712 "complete_this_type" function, but never create unnecessary
1713 copies of a type otherwise. */
1714 replace_type (type, xtype);
1715 type->set_name (NULL);
1716 }
1717 else
1718 {
1719 type->set_target_is_stub (true);
1720 TYPE_TARGET_TYPE (type) = xtype;
1721 }
1722 }
1723 break;
1724
1725 /* In the following types, we must be sure to overwrite any existing
1726 type that the typenums refer to, rather than allocating a new one
1727 and making the typenums point to the new one. This is because there
1728 may already be pointers to the existing type (if it had been
1729 forward-referenced), and we must change it to a pointer, function,
1730 reference, or whatever, *in-place*. */
1731
1732 case '*': /* Pointer to another type */
1733 type1 = read_type (pp, objfile);
1734 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1735 break;
1736
1737 case '&': /* Reference to another type */
1738 type1 = read_type (pp, objfile);
1739 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1740 TYPE_CODE_REF);
1741 break;
1742
1743 case 'f': /* Function returning another type */
1744 type1 = read_type (pp, objfile);
1745 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1746 break;
1747
1748 case 'g': /* Prototyped function. (Sun) */
1749 {
1750 /* Unresolved questions:
1751
1752 - According to Sun's ``STABS Interface Manual'', for 'f'
1753 and 'F' symbol descriptors, a `0' in the argument type list
1754 indicates a varargs function. But it doesn't say how 'g'
1755 type descriptors represent that info. Someone with access
1756 to Sun's toolchain should try it out.
1757
1758 - According to the comment in define_symbol (search for
1759 `process_prototype_types:'), Sun emits integer arguments as
1760 types which ref themselves --- like `void' types. Do we
1761 have to deal with that here, too? Again, someone with
1762 access to Sun's toolchain should try it out and let us
1763 know. */
1764
1765 const char *type_start = (*pp) - 1;
1766 struct type *return_type = read_type (pp, objfile);
1767 struct type *func_type
1768 = make_function_type (return_type,
1769 dbx_lookup_type (typenums, objfile));
1770 struct type_list {
1771 struct type *type;
1772 struct type_list *next;
1773 } *arg_types = 0;
1774 int num_args = 0;
1775
1776 while (**pp && **pp != '#')
1777 {
1778 struct type *arg_type = read_type (pp, objfile);
1779 struct type_list *newobj = XALLOCA (struct type_list);
1780 newobj->type = arg_type;
1781 newobj->next = arg_types;
1782 arg_types = newobj;
1783 num_args++;
1784 }
1785 if (**pp == '#')
1786 ++*pp;
1787 else
1788 {
1789 complaint (_("Prototyped function type didn't "
1790 "end arguments with `#':\n%s"),
1791 type_start);
1792 }
1793
1794 /* If there is just one argument whose type is `void', then
1795 that's just an empty argument list. */
1796 if (arg_types
1797 && ! arg_types->next
1798 && arg_types->type->code () == TYPE_CODE_VOID)
1799 num_args = 0;
1800
1801 func_type->set_fields
1802 ((struct field *) TYPE_ALLOC (func_type,
1803 num_args * sizeof (struct field)));
1804 memset (func_type->fields (), 0, num_args * sizeof (struct field));
1805 {
1806 int i;
1807 struct type_list *t;
1808
1809 /* We stuck each argument type onto the front of the list
1810 when we read it, so the list is reversed. Build the
1811 fields array right-to-left. */
1812 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1813 func_type->field (i).set_type (t->type);
1814 }
1815 func_type->set_num_fields (num_args);
1816 func_type->set_is_prototyped (true);
1817
1818 type = func_type;
1819 break;
1820 }
1821
1822 case 'k': /* Const qualifier on some type (Sun) */
1823 type = read_type (pp, objfile);
1824 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1825 dbx_lookup_type (typenums, objfile));
1826 break;
1827
1828 case 'B': /* Volatile qual on some type (Sun) */
1829 type = read_type (pp, objfile);
1830 type = make_cv_type (TYPE_CONST (type), 1, type,
1831 dbx_lookup_type (typenums, objfile));
1832 break;
1833
1834 case '@':
1835 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1836 { /* Member (class & variable) type */
1837 /* FIXME -- we should be doing smash_to_XXX types here. */
1838
1839 struct type *domain = read_type (pp, objfile);
1840 struct type *memtype;
1841
1842 if (**pp != ',')
1843 /* Invalid member type data format. */
1844 return error_type (pp, objfile);
1845 ++*pp;
1846
1847 memtype = read_type (pp, objfile);
1848 type = dbx_alloc_type (typenums, objfile);
1849 smash_to_memberptr_type (type, domain, memtype);
1850 }
1851 else
1852 /* type attribute */
1853 {
1854 const char *attr = *pp;
1855
1856 /* Skip to the semicolon. */
1857 while (**pp != ';' && **pp != '\0')
1858 ++(*pp);
1859 if (**pp == '\0')
1860 return error_type (pp, objfile);
1861 else
1862 ++ * pp; /* Skip the semicolon. */
1863
1864 switch (*attr)
1865 {
1866 case 's': /* Size attribute */
1867 type_size = atoi (attr + 1);
1868 if (type_size <= 0)
1869 type_size = -1;
1870 break;
1871
1872 case 'S': /* String attribute */
1873 /* FIXME: check to see if following type is array? */
1874 is_string = 1;
1875 break;
1876
1877 case 'V': /* Vector attribute */
1878 /* FIXME: check to see if following type is array? */
1879 is_vector = 1;
1880 break;
1881
1882 default:
1883 /* Ignore unrecognized type attributes, so future compilers
1884 can invent new ones. */
1885 break;
1886 }
1887 ++*pp;
1888 goto again;
1889 }
1890 break;
1891
1892 case '#': /* Method (class & fn) type */
1893 if ((*pp)[0] == '#')
1894 {
1895 /* We'll get the parameter types from the name. */
1896 struct type *return_type;
1897
1898 (*pp)++;
1899 return_type = read_type (pp, objfile);
1900 if (*(*pp)++ != ';')
1901 complaint (_("invalid (minimal) member type "
1902 "data format at symtab pos %d."),
1903 symnum);
1904 type = allocate_stub_method (return_type);
1905 if (typenums[0] != -1)
1906 *dbx_lookup_type (typenums, objfile) = type;
1907 }
1908 else
1909 {
1910 struct type *domain = read_type (pp, objfile);
1911 struct type *return_type;
1912 struct field *args;
1913 int nargs, varargs;
1914
1915 if (**pp != ',')
1916 /* Invalid member type data format. */
1917 return error_type (pp, objfile);
1918 else
1919 ++(*pp);
1920
1921 return_type = read_type (pp, objfile);
1922 args = read_args (pp, ';', objfile, &nargs, &varargs);
1923 if (args == NULL)
1924 return error_type (pp, objfile);
1925 type = dbx_alloc_type (typenums, objfile);
1926 smash_to_method_type (type, domain, return_type, args,
1927 nargs, varargs);
1928 }
1929 break;
1930
1931 case 'r': /* Range type */
1932 type = read_range_type (pp, typenums, type_size, objfile);
1933 if (typenums[0] != -1)
1934 *dbx_lookup_type (typenums, objfile) = type;
1935 break;
1936
1937 case 'b':
1938 {
1939 /* Sun ACC builtin int type */
1940 type = read_sun_builtin_type (pp, typenums, objfile);
1941 if (typenums[0] != -1)
1942 *dbx_lookup_type (typenums, objfile) = type;
1943 }
1944 break;
1945
1946 case 'R': /* Sun ACC builtin float type */
1947 type = read_sun_floating_type (pp, typenums, objfile);
1948 if (typenums[0] != -1)
1949 *dbx_lookup_type (typenums, objfile) = type;
1950 break;
1951
1952 case 'e': /* Enumeration type */
1953 type = dbx_alloc_type (typenums, objfile);
1954 type = read_enum_type (pp, type, objfile);
1955 if (typenums[0] != -1)
1956 *dbx_lookup_type (typenums, objfile) = type;
1957 break;
1958
1959 case 's': /* Struct type */
1960 case 'u': /* Union type */
1961 {
1962 enum type_code type_code = TYPE_CODE_UNDEF;
1963 type = dbx_alloc_type (typenums, objfile);
1964 switch (type_descriptor)
1965 {
1966 case 's':
1967 type_code = TYPE_CODE_STRUCT;
1968 break;
1969 case 'u':
1970 type_code = TYPE_CODE_UNION;
1971 break;
1972 }
1973 type = read_struct_type (pp, type, type_code, objfile);
1974 break;
1975 }
1976
1977 case 'a': /* Array type */
1978 if (**pp != 'r')
1979 return error_type (pp, objfile);
1980 ++*pp;
1981
1982 type = dbx_alloc_type (typenums, objfile);
1983 type = read_array_type (pp, type, objfile);
1984 if (is_string)
1985 type->set_code (TYPE_CODE_STRING);
1986 if (is_vector)
1987 make_vector_type (type);
1988 break;
1989
1990 case 'S': /* Set type */
1991 type1 = read_type (pp, objfile);
1992 type = create_set_type (NULL, type1);
1993 if (typenums[0] != -1)
1994 *dbx_lookup_type (typenums, objfile) = type;
1995 break;
1996
1997 default:
1998 --*pp; /* Go back to the symbol in error. */
1999 /* Particularly important if it was \0! */
2000 return error_type (pp, objfile);
2001 }
2002
2003 if (type == 0)
2004 {
2005 warning (_("GDB internal error, type is NULL in stabsread.c."));
2006 return error_type (pp, objfile);
2007 }
2008
2009 /* Size specified in a type attribute overrides any other size. */
2010 if (type_size != -1)
2011 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2012
2013 return type;
2014 }
2015 \f
2016 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2017 Return the proper type node for a given builtin type number. */
2018
2019 static const struct objfile_key<struct type *,
2020 gdb::noop_deleter<struct type *>>
2021 rs6000_builtin_type_data;
2022
2023 static struct type *
2024 rs6000_builtin_type (int typenum, struct objfile *objfile)
2025 {
2026 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2027
2028 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2029 #define NUMBER_RECOGNIZED 34
2030 struct type *rettype = NULL;
2031
2032 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2033 {
2034 complaint (_("Unknown builtin type %d"), typenum);
2035 return objfile_type (objfile)->builtin_error;
2036 }
2037
2038 if (!negative_types)
2039 {
2040 /* This includes an empty slot for type number -0. */
2041 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2042 NUMBER_RECOGNIZED + 1, struct type *);
2043 rs6000_builtin_type_data.set (objfile, negative_types);
2044 }
2045
2046 if (negative_types[-typenum] != NULL)
2047 return negative_types[-typenum];
2048
2049 #if TARGET_CHAR_BIT != 8
2050 #error This code wrong for TARGET_CHAR_BIT not 8
2051 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2052 that if that ever becomes not true, the correct fix will be to
2053 make the size in the struct type to be in bits, not in units of
2054 TARGET_CHAR_BIT. */
2055 #endif
2056
2057 switch (-typenum)
2058 {
2059 case 1:
2060 /* The size of this and all the other types are fixed, defined
2061 by the debugging format. If there is a type called "int" which
2062 is other than 32 bits, then it should use a new negative type
2063 number (or avoid negative type numbers for that case).
2064 See stabs.texinfo. */
2065 rettype = init_integer_type (objfile, 32, 0, "int");
2066 break;
2067 case 2:
2068 rettype = init_integer_type (objfile, 8, 0, "char");
2069 rettype->set_has_no_signedness (true);
2070 break;
2071 case 3:
2072 rettype = init_integer_type (objfile, 16, 0, "short");
2073 break;
2074 case 4:
2075 rettype = init_integer_type (objfile, 32, 0, "long");
2076 break;
2077 case 5:
2078 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2079 break;
2080 case 6:
2081 rettype = init_integer_type (objfile, 8, 0, "signed char");
2082 break;
2083 case 7:
2084 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2085 break;
2086 case 8:
2087 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2088 break;
2089 case 9:
2090 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2091 break;
2092 case 10:
2093 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2094 break;
2095 case 11:
2096 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2097 break;
2098 case 12:
2099 /* IEEE single precision (32 bit). */
2100 rettype = init_float_type (objfile, 32, "float",
2101 floatformats_ieee_single);
2102 break;
2103 case 13:
2104 /* IEEE double precision (64 bit). */
2105 rettype = init_float_type (objfile, 64, "double",
2106 floatformats_ieee_double);
2107 break;
2108 case 14:
2109 /* This is an IEEE double on the RS/6000, and different machines with
2110 different sizes for "long double" should use different negative
2111 type numbers. See stabs.texinfo. */
2112 rettype = init_float_type (objfile, 64, "long double",
2113 floatformats_ieee_double);
2114 break;
2115 case 15:
2116 rettype = init_integer_type (objfile, 32, 0, "integer");
2117 break;
2118 case 16:
2119 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2120 break;
2121 case 17:
2122 rettype = init_float_type (objfile, 32, "short real",
2123 floatformats_ieee_single);
2124 break;
2125 case 18:
2126 rettype = init_float_type (objfile, 64, "real",
2127 floatformats_ieee_double);
2128 break;
2129 case 19:
2130 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2131 break;
2132 case 20:
2133 rettype = init_character_type (objfile, 8, 1, "character");
2134 break;
2135 case 21:
2136 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2137 break;
2138 case 22:
2139 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2140 break;
2141 case 23:
2142 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2143 break;
2144 case 24:
2145 rettype = init_boolean_type (objfile, 32, 1, "logical");
2146 break;
2147 case 25:
2148 /* Complex type consisting of two IEEE single precision values. */
2149 rettype = init_complex_type ("complex",
2150 rs6000_builtin_type (12, objfile));
2151 break;
2152 case 26:
2153 /* Complex type consisting of two IEEE double precision values. */
2154 rettype = init_complex_type ("double complex",
2155 rs6000_builtin_type (13, objfile));
2156 break;
2157 case 27:
2158 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2159 break;
2160 case 28:
2161 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2162 break;
2163 case 29:
2164 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2165 break;
2166 case 30:
2167 rettype = init_character_type (objfile, 16, 0, "wchar");
2168 break;
2169 case 31:
2170 rettype = init_integer_type (objfile, 64, 0, "long long");
2171 break;
2172 case 32:
2173 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2174 break;
2175 case 33:
2176 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2177 break;
2178 case 34:
2179 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2180 break;
2181 }
2182 negative_types[-typenum] = rettype;
2183 return rettype;
2184 }
2185 \f
2186 /* This page contains subroutines of read_type. */
2187
2188 /* Wrapper around method_name_from_physname to flag a complaint
2189 if there is an error. */
2190
2191 static char *
2192 stabs_method_name_from_physname (const char *physname)
2193 {
2194 char *method_name;
2195
2196 method_name = method_name_from_physname (physname);
2197
2198 if (method_name == NULL)
2199 {
2200 complaint (_("Method has bad physname %s\n"), physname);
2201 return NULL;
2202 }
2203
2204 return method_name;
2205 }
2206
2207 /* Read member function stabs info for C++ classes. The form of each member
2208 function data is:
2209
2210 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2211
2212 An example with two member functions is:
2213
2214 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2215
2216 For the case of overloaded operators, the format is op$::*.funcs, where
2217 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2218 name (such as `+=') and `.' marks the end of the operator name.
2219
2220 Returns 1 for success, 0 for failure. */
2221
2222 static int
2223 read_member_functions (struct stab_field_info *fip, const char **pp,
2224 struct type *type, struct objfile *objfile)
2225 {
2226 int nfn_fields = 0;
2227 int length = 0;
2228 int i;
2229 struct next_fnfield
2230 {
2231 struct next_fnfield *next;
2232 struct fn_field fn_field;
2233 }
2234 *sublist;
2235 struct type *look_ahead_type;
2236 struct next_fnfieldlist *new_fnlist;
2237 struct next_fnfield *new_sublist;
2238 char *main_fn_name;
2239 const char *p;
2240
2241 /* Process each list until we find something that is not a member function
2242 or find the end of the functions. */
2243
2244 while (**pp != ';')
2245 {
2246 /* We should be positioned at the start of the function name.
2247 Scan forward to find the first ':' and if it is not the
2248 first of a "::" delimiter, then this is not a member function. */
2249 p = *pp;
2250 while (*p != ':')
2251 {
2252 p++;
2253 }
2254 if (p[1] != ':')
2255 {
2256 break;
2257 }
2258
2259 sublist = NULL;
2260 look_ahead_type = NULL;
2261 length = 0;
2262
2263 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2264
2265 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2266 {
2267 /* This is a completely wierd case. In order to stuff in the
2268 names that might contain colons (the usual name delimiter),
2269 Mike Tiemann defined a different name format which is
2270 signalled if the identifier is "op$". In that case, the
2271 format is "op$::XXXX." where XXXX is the name. This is
2272 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2273 /* This lets the user type "break operator+".
2274 We could just put in "+" as the name, but that wouldn't
2275 work for "*". */
2276 static char opname[32] = "op$";
2277 char *o = opname + 3;
2278
2279 /* Skip past '::'. */
2280 *pp = p + 2;
2281
2282 STABS_CONTINUE (pp, objfile);
2283 p = *pp;
2284 while (*p != '.')
2285 {
2286 *o++ = *p++;
2287 }
2288 main_fn_name = savestring (opname, o - opname);
2289 /* Skip past '.' */
2290 *pp = p + 1;
2291 }
2292 else
2293 {
2294 main_fn_name = savestring (*pp, p - *pp);
2295 /* Skip past '::'. */
2296 *pp = p + 2;
2297 }
2298 new_fnlist->fn_fieldlist.name = main_fn_name;
2299
2300 do
2301 {
2302 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2303
2304 /* Check for and handle cretinous dbx symbol name continuation! */
2305 if (look_ahead_type == NULL)
2306 {
2307 /* Normal case. */
2308 STABS_CONTINUE (pp, objfile);
2309
2310 new_sublist->fn_field.type = read_type (pp, objfile);
2311 if (**pp != ':')
2312 {
2313 /* Invalid symtab info for member function. */
2314 return 0;
2315 }
2316 }
2317 else
2318 {
2319 /* g++ version 1 kludge */
2320 new_sublist->fn_field.type = look_ahead_type;
2321 look_ahead_type = NULL;
2322 }
2323
2324 (*pp)++;
2325 p = *pp;
2326 while (*p != ';')
2327 {
2328 p++;
2329 }
2330
2331 /* These are methods, not functions. */
2332 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2333 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2334
2335 /* If this is just a stub, then we don't have the real name here. */
2336 if (new_sublist->fn_field.type->is_stub ())
2337 {
2338 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2339 set_type_self_type (new_sublist->fn_field.type, type);
2340 new_sublist->fn_field.is_stub = 1;
2341 }
2342
2343 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2344 *pp = p + 1;
2345
2346 /* Set this member function's visibility fields. */
2347 switch (*(*pp)++)
2348 {
2349 case VISIBILITY_PRIVATE:
2350 new_sublist->fn_field.is_private = 1;
2351 break;
2352 case VISIBILITY_PROTECTED:
2353 new_sublist->fn_field.is_protected = 1;
2354 break;
2355 }
2356
2357 STABS_CONTINUE (pp, objfile);
2358 switch (**pp)
2359 {
2360 case 'A': /* Normal functions. */
2361 new_sublist->fn_field.is_const = 0;
2362 new_sublist->fn_field.is_volatile = 0;
2363 (*pp)++;
2364 break;
2365 case 'B': /* `const' member functions. */
2366 new_sublist->fn_field.is_const = 1;
2367 new_sublist->fn_field.is_volatile = 0;
2368 (*pp)++;
2369 break;
2370 case 'C': /* `volatile' member function. */
2371 new_sublist->fn_field.is_const = 0;
2372 new_sublist->fn_field.is_volatile = 1;
2373 (*pp)++;
2374 break;
2375 case 'D': /* `const volatile' member function. */
2376 new_sublist->fn_field.is_const = 1;
2377 new_sublist->fn_field.is_volatile = 1;
2378 (*pp)++;
2379 break;
2380 case '*': /* File compiled with g++ version 1 --
2381 no info. */
2382 case '?':
2383 case '.':
2384 break;
2385 default:
2386 complaint (_("const/volatile indicator missing, got '%c'"),
2387 **pp);
2388 break;
2389 }
2390
2391 switch (*(*pp)++)
2392 {
2393 case '*':
2394 {
2395 int nbits;
2396 /* virtual member function, followed by index.
2397 The sign bit is set to distinguish pointers-to-methods
2398 from virtual function indicies. Since the array is
2399 in words, the quantity must be shifted left by 1
2400 on 16 bit machine, and by 2 on 32 bit machine, forcing
2401 the sign bit out, and usable as a valid index into
2402 the array. Remove the sign bit here. */
2403 new_sublist->fn_field.voffset =
2404 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2405 if (nbits != 0)
2406 return 0;
2407
2408 STABS_CONTINUE (pp, objfile);
2409 if (**pp == ';' || **pp == '\0')
2410 {
2411 /* Must be g++ version 1. */
2412 new_sublist->fn_field.fcontext = 0;
2413 }
2414 else
2415 {
2416 /* Figure out from whence this virtual function came.
2417 It may belong to virtual function table of
2418 one of its baseclasses. */
2419 look_ahead_type = read_type (pp, objfile);
2420 if (**pp == ':')
2421 {
2422 /* g++ version 1 overloaded methods. */
2423 }
2424 else
2425 {
2426 new_sublist->fn_field.fcontext = look_ahead_type;
2427 if (**pp != ';')
2428 {
2429 return 0;
2430 }
2431 else
2432 {
2433 ++*pp;
2434 }
2435 look_ahead_type = NULL;
2436 }
2437 }
2438 break;
2439 }
2440 case '?':
2441 /* static member function. */
2442 {
2443 int slen = strlen (main_fn_name);
2444
2445 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2446
2447 /* For static member functions, we can't tell if they
2448 are stubbed, as they are put out as functions, and not as
2449 methods.
2450 GCC v2 emits the fully mangled name if
2451 dbxout.c:flag_minimal_debug is not set, so we have to
2452 detect a fully mangled physname here and set is_stub
2453 accordingly. Fully mangled physnames in v2 start with
2454 the member function name, followed by two underscores.
2455 GCC v3 currently always emits stubbed member functions,
2456 but with fully mangled physnames, which start with _Z. */
2457 if (!(strncmp (new_sublist->fn_field.physname,
2458 main_fn_name, slen) == 0
2459 && new_sublist->fn_field.physname[slen] == '_'
2460 && new_sublist->fn_field.physname[slen + 1] == '_'))
2461 {
2462 new_sublist->fn_field.is_stub = 1;
2463 }
2464 break;
2465 }
2466
2467 default:
2468 /* error */
2469 complaint (_("member function type missing, got '%c'"),
2470 (*pp)[-1]);
2471 /* Normal member function. */
2472 /* Fall through. */
2473
2474 case '.':
2475 /* normal member function. */
2476 new_sublist->fn_field.voffset = 0;
2477 new_sublist->fn_field.fcontext = 0;
2478 break;
2479 }
2480
2481 new_sublist->next = sublist;
2482 sublist = new_sublist;
2483 length++;
2484 STABS_CONTINUE (pp, objfile);
2485 }
2486 while (**pp != ';' && **pp != '\0');
2487
2488 (*pp)++;
2489 STABS_CONTINUE (pp, objfile);
2490
2491 /* Skip GCC 3.X member functions which are duplicates of the callable
2492 constructor/destructor. */
2493 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2494 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2495 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2496 {
2497 xfree (main_fn_name);
2498 }
2499 else
2500 {
2501 int has_destructor = 0, has_other = 0;
2502 int is_v3 = 0;
2503 struct next_fnfield *tmp_sublist;
2504
2505 /* Various versions of GCC emit various mostly-useless
2506 strings in the name field for special member functions.
2507
2508 For stub methods, we need to defer correcting the name
2509 until we are ready to unstub the method, because the current
2510 name string is used by gdb_mangle_name. The only stub methods
2511 of concern here are GNU v2 operators; other methods have their
2512 names correct (see caveat below).
2513
2514 For non-stub methods, in GNU v3, we have a complete physname.
2515 Therefore we can safely correct the name now. This primarily
2516 affects constructors and destructors, whose name will be
2517 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2518 operators will also have incorrect names; for instance,
2519 "operator int" will be named "operator i" (i.e. the type is
2520 mangled).
2521
2522 For non-stub methods in GNU v2, we have no easy way to
2523 know if we have a complete physname or not. For most
2524 methods the result depends on the platform (if CPLUS_MARKER
2525 can be `$' or `.', it will use minimal debug information, or
2526 otherwise the full physname will be included).
2527
2528 Rather than dealing with this, we take a different approach.
2529 For v3 mangled names, we can use the full physname; for v2,
2530 we use cplus_demangle_opname (which is actually v2 specific),
2531 because the only interesting names are all operators - once again
2532 barring the caveat below. Skip this process if any method in the
2533 group is a stub, to prevent our fouling up the workings of
2534 gdb_mangle_name.
2535
2536 The caveat: GCC 2.95.x (and earlier?) put constructors and
2537 destructors in the same method group. We need to split this
2538 into two groups, because they should have different names.
2539 So for each method group we check whether it contains both
2540 routines whose physname appears to be a destructor (the physnames
2541 for and destructors are always provided, due to quirks in v2
2542 mangling) and routines whose physname does not appear to be a
2543 destructor. If so then we break up the list into two halves.
2544 Even if the constructors and destructors aren't in the same group
2545 the destructor will still lack the leading tilde, so that also
2546 needs to be fixed.
2547
2548 So, to summarize what we expect and handle here:
2549
2550 Given Given Real Real Action
2551 method name physname physname method name
2552
2553 __opi [none] __opi__3Foo operator int opname
2554 [now or later]
2555 Foo _._3Foo _._3Foo ~Foo separate and
2556 rename
2557 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2558 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2559 */
2560
2561 tmp_sublist = sublist;
2562 while (tmp_sublist != NULL)
2563 {
2564 if (tmp_sublist->fn_field.physname[0] == '_'
2565 && tmp_sublist->fn_field.physname[1] == 'Z')
2566 is_v3 = 1;
2567
2568 if (is_destructor_name (tmp_sublist->fn_field.physname))
2569 has_destructor++;
2570 else
2571 has_other++;
2572
2573 tmp_sublist = tmp_sublist->next;
2574 }
2575
2576 if (has_destructor && has_other)
2577 {
2578 struct next_fnfieldlist *destr_fnlist;
2579 struct next_fnfield *last_sublist;
2580
2581 /* Create a new fn_fieldlist for the destructors. */
2582
2583 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2584 struct next_fnfieldlist);
2585
2586 destr_fnlist->fn_fieldlist.name
2587 = obconcat (&objfile->objfile_obstack, "~",
2588 new_fnlist->fn_fieldlist.name, (char *) NULL);
2589
2590 destr_fnlist->fn_fieldlist.fn_fields =
2591 XOBNEWVEC (&objfile->objfile_obstack,
2592 struct fn_field, has_destructor);
2593 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2594 sizeof (struct fn_field) * has_destructor);
2595 tmp_sublist = sublist;
2596 last_sublist = NULL;
2597 i = 0;
2598 while (tmp_sublist != NULL)
2599 {
2600 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2601 {
2602 tmp_sublist = tmp_sublist->next;
2603 continue;
2604 }
2605
2606 destr_fnlist->fn_fieldlist.fn_fields[i++]
2607 = tmp_sublist->fn_field;
2608 if (last_sublist)
2609 last_sublist->next = tmp_sublist->next;
2610 else
2611 sublist = tmp_sublist->next;
2612 last_sublist = tmp_sublist;
2613 tmp_sublist = tmp_sublist->next;
2614 }
2615
2616 destr_fnlist->fn_fieldlist.length = has_destructor;
2617 destr_fnlist->next = fip->fnlist;
2618 fip->fnlist = destr_fnlist;
2619 nfn_fields++;
2620 length -= has_destructor;
2621 }
2622 else if (is_v3)
2623 {
2624 /* v3 mangling prevents the use of abbreviated physnames,
2625 so we can do this here. There are stubbed methods in v3
2626 only:
2627 - in -gstabs instead of -gstabs+
2628 - or for static methods, which are output as a function type
2629 instead of a method type. */
2630 char *new_method_name =
2631 stabs_method_name_from_physname (sublist->fn_field.physname);
2632
2633 if (new_method_name != NULL
2634 && strcmp (new_method_name,
2635 new_fnlist->fn_fieldlist.name) != 0)
2636 {
2637 new_fnlist->fn_fieldlist.name = new_method_name;
2638 xfree (main_fn_name);
2639 }
2640 else
2641 xfree (new_method_name);
2642 }
2643 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2644 {
2645 new_fnlist->fn_fieldlist.name =
2646 obconcat (&objfile->objfile_obstack,
2647 "~", main_fn_name, (char *)NULL);
2648 xfree (main_fn_name);
2649 }
2650
2651 new_fnlist->fn_fieldlist.fn_fields
2652 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2653 for (i = length; (i--, sublist); sublist = sublist->next)
2654 {
2655 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2656 }
2657
2658 new_fnlist->fn_fieldlist.length = length;
2659 new_fnlist->next = fip->fnlist;
2660 fip->fnlist = new_fnlist;
2661 nfn_fields++;
2662 }
2663 }
2664
2665 if (nfn_fields)
2666 {
2667 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2668 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2669 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2670 memset (TYPE_FN_FIELDLISTS (type), 0,
2671 sizeof (struct fn_fieldlist) * nfn_fields);
2672 TYPE_NFN_FIELDS (type) = nfn_fields;
2673 }
2674
2675 return 1;
2676 }
2677
2678 /* Special GNU C++ name.
2679
2680 Returns 1 for success, 0 for failure. "failure" means that we can't
2681 keep parsing and it's time for error_type(). */
2682
2683 static int
2684 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2685 struct type *type, struct objfile *objfile)
2686 {
2687 const char *p;
2688 const char *name;
2689 char cpp_abbrev;
2690 struct type *context;
2691
2692 p = *pp;
2693 if (*++p == 'v')
2694 {
2695 name = NULL;
2696 cpp_abbrev = *++p;
2697
2698 *pp = p + 1;
2699
2700 /* At this point, *pp points to something like "22:23=*22...",
2701 where the type number before the ':' is the "context" and
2702 everything after is a regular type definition. Lookup the
2703 type, find it's name, and construct the field name. */
2704
2705 context = read_type (pp, objfile);
2706
2707 switch (cpp_abbrev)
2708 {
2709 case 'f': /* $vf -- a virtual function table pointer */
2710 name = context->name ();
2711 if (name == NULL)
2712 {
2713 name = "";
2714 }
2715 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2716 vptr_name, name, (char *) NULL));
2717 break;
2718
2719 case 'b': /* $vb -- a virtual bsomethingorother */
2720 name = context->name ();
2721 if (name == NULL)
2722 {
2723 complaint (_("C++ abbreviated type name "
2724 "unknown at symtab pos %d"),
2725 symnum);
2726 name = "FOO";
2727 }
2728 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2729 vb_name, name, (char *) NULL));
2730 break;
2731
2732 default:
2733 invalid_cpp_abbrev_complaint (*pp);
2734 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2735 "INVALID_CPLUSPLUS_ABBREV",
2736 (char *) NULL));
2737 break;
2738 }
2739
2740 /* At this point, *pp points to the ':'. Skip it and read the
2741 field type. */
2742
2743 p = ++(*pp);
2744 if (p[-1] != ':')
2745 {
2746 invalid_cpp_abbrev_complaint (*pp);
2747 return 0;
2748 }
2749 fip->list->field.set_type (read_type (pp, objfile));
2750 if (**pp == ',')
2751 (*pp)++; /* Skip the comma. */
2752 else
2753 return 0;
2754
2755 {
2756 int nbits;
2757
2758 fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
2759 if (nbits != 0)
2760 return 0;
2761 }
2762 /* This field is unpacked. */
2763 FIELD_BITSIZE (fip->list->field) = 0;
2764 fip->list->visibility = VISIBILITY_PRIVATE;
2765 }
2766 else
2767 {
2768 invalid_cpp_abbrev_complaint (*pp);
2769 /* We have no idea what syntax an unrecognized abbrev would have, so
2770 better return 0. If we returned 1, we would need to at least advance
2771 *pp to avoid an infinite loop. */
2772 return 0;
2773 }
2774 return 1;
2775 }
2776
2777 static void
2778 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2779 const char *p, struct type *type,
2780 struct objfile *objfile)
2781 {
2782 struct gdbarch *gdbarch = objfile->arch ();
2783
2784 fip->list->field.set_name
2785 (obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
2786 *pp = p + 1;
2787
2788 /* This means we have a visibility for a field coming. */
2789 if (**pp == '/')
2790 {
2791 (*pp)++;
2792 fip->list->visibility = *(*pp)++;
2793 }
2794 else
2795 {
2796 /* normal dbx-style format, no explicit visibility */
2797 fip->list->visibility = VISIBILITY_PUBLIC;
2798 }
2799
2800 fip->list->field.set_type (read_type (pp, objfile));
2801 if (**pp == ':')
2802 {
2803 p = ++(*pp);
2804 #if 0
2805 /* Possible future hook for nested types. */
2806 if (**pp == '!')
2807 {
2808 fip->list->field.bitpos = (long) -2; /* nested type */
2809 p = ++(*pp);
2810 }
2811 else
2812 ...;
2813 #endif
2814 while (*p != ';')
2815 {
2816 p++;
2817 }
2818 /* Static class member. */
2819 fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
2820 *pp = p + 1;
2821 return;
2822 }
2823 else if (**pp != ',')
2824 {
2825 /* Bad structure-type format. */
2826 stabs_general_complaint ("bad structure-type format");
2827 return;
2828 }
2829
2830 (*pp)++; /* Skip the comma. */
2831
2832 {
2833 int nbits;
2834
2835 fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
2836 if (nbits != 0)
2837 {
2838 stabs_general_complaint ("bad structure-type format");
2839 return;
2840 }
2841 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2842 if (nbits != 0)
2843 {
2844 stabs_general_complaint ("bad structure-type format");
2845 return;
2846 }
2847 }
2848
2849 if (fip->list->field.loc_bitpos () == 0
2850 && FIELD_BITSIZE (fip->list->field) == 0)
2851 {
2852 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2853 it is a field which has been optimized out. The correct stab for
2854 this case is to use VISIBILITY_IGNORE, but that is a recent
2855 invention. (2) It is a 0-size array. For example
2856 union { int num; char str[0]; } foo. Printing _("<no value>" for
2857 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2858 will continue to work, and a 0-size array as a whole doesn't
2859 have any contents to print.
2860
2861 I suspect this probably could also happen with gcc -gstabs (not
2862 -gstabs+) for static fields, and perhaps other C++ extensions.
2863 Hopefully few people use -gstabs with gdb, since it is intended
2864 for dbx compatibility. */
2865
2866 /* Ignore this field. */
2867 fip->list->visibility = VISIBILITY_IGNORE;
2868 }
2869 else
2870 {
2871 /* Detect an unpacked field and mark it as such.
2872 dbx gives a bit size for all fields.
2873 Note that forward refs cannot be packed,
2874 and treat enums as if they had the width of ints. */
2875
2876 struct type *field_type = check_typedef (fip->list->field.type ());
2877
2878 if (field_type->code () != TYPE_CODE_INT
2879 && field_type->code () != TYPE_CODE_RANGE
2880 && field_type->code () != TYPE_CODE_BOOL
2881 && field_type->code () != TYPE_CODE_ENUM)
2882 {
2883 FIELD_BITSIZE (fip->list->field) = 0;
2884 }
2885 if ((FIELD_BITSIZE (fip->list->field)
2886 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2887 || (field_type->code () == TYPE_CODE_ENUM
2888 && FIELD_BITSIZE (fip->list->field)
2889 == gdbarch_int_bit (gdbarch))
2890 )
2891 &&
2892 fip->list->field.loc_bitpos () % 8 == 0)
2893 {
2894 FIELD_BITSIZE (fip->list->field) = 0;
2895 }
2896 }
2897 }
2898
2899
2900 /* Read struct or class data fields. They have the form:
2901
2902 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2903
2904 At the end, we see a semicolon instead of a field.
2905
2906 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2907 a static field.
2908
2909 The optional VISIBILITY is one of:
2910
2911 '/0' (VISIBILITY_PRIVATE)
2912 '/1' (VISIBILITY_PROTECTED)
2913 '/2' (VISIBILITY_PUBLIC)
2914 '/9' (VISIBILITY_IGNORE)
2915
2916 or nothing, for C style fields with public visibility.
2917
2918 Returns 1 for success, 0 for failure. */
2919
2920 static int
2921 read_struct_fields (struct stab_field_info *fip, const char **pp,
2922 struct type *type, struct objfile *objfile)
2923 {
2924 const char *p;
2925 struct nextfield *newobj;
2926
2927 /* We better set p right now, in case there are no fields at all... */
2928
2929 p = *pp;
2930
2931 /* Read each data member type until we find the terminating ';' at the end of
2932 the data member list, or break for some other reason such as finding the
2933 start of the member function list. */
2934 /* Stab string for structure/union does not end with two ';' in
2935 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2936
2937 while (**pp != ';' && **pp != '\0')
2938 {
2939 STABS_CONTINUE (pp, objfile);
2940 /* Get space to record the next field's data. */
2941 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2942
2943 newobj->next = fip->list;
2944 fip->list = newobj;
2945
2946 /* Get the field name. */
2947 p = *pp;
2948
2949 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2950 unless the CPLUS_MARKER is followed by an underscore, in
2951 which case it is just the name of an anonymous type, which we
2952 should handle like any other type name. */
2953
2954 if (is_cplus_marker (p[0]) && p[1] != '_')
2955 {
2956 if (!read_cpp_abbrev (fip, pp, type, objfile))
2957 return 0;
2958 continue;
2959 }
2960
2961 /* Look for the ':' that separates the field name from the field
2962 values. Data members are delimited by a single ':', while member
2963 functions are delimited by a pair of ':'s. When we hit the member
2964 functions (if any), terminate scan loop and return. */
2965
2966 while (*p != ':' && *p != '\0')
2967 {
2968 p++;
2969 }
2970 if (*p == '\0')
2971 return 0;
2972
2973 /* Check to see if we have hit the member functions yet. */
2974 if (p[1] == ':')
2975 {
2976 break;
2977 }
2978 read_one_struct_field (fip, pp, p, type, objfile);
2979 }
2980 if (p[0] == ':' && p[1] == ':')
2981 {
2982 /* (the deleted) chill the list of fields: the last entry (at
2983 the head) is a partially constructed entry which we now
2984 scrub. */
2985 fip->list = fip->list->next;
2986 }
2987 return 1;
2988 }
2989 /* *INDENT-OFF* */
2990 /* The stabs for C++ derived classes contain baseclass information which
2991 is marked by a '!' character after the total size. This function is
2992 called when we encounter the baseclass marker, and slurps up all the
2993 baseclass information.
2994
2995 Immediately following the '!' marker is the number of base classes that
2996 the class is derived from, followed by information for each base class.
2997 For each base class, there are two visibility specifiers, a bit offset
2998 to the base class information within the derived class, a reference to
2999 the type for the base class, and a terminating semicolon.
3000
3001 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3002 ^^ ^ ^ ^ ^ ^ ^
3003 Baseclass information marker __________________|| | | | | | |
3004 Number of baseclasses __________________________| | | | | | |
3005 Visibility specifiers (2) ________________________| | | | | |
3006 Offset in bits from start of class _________________| | | | |
3007 Type number for base class ___________________________| | | |
3008 Visibility specifiers (2) _______________________________| | |
3009 Offset in bits from start of class ________________________| |
3010 Type number of base class ____________________________________|
3011
3012 Return 1 for success, 0 for (error-type-inducing) failure. */
3013 /* *INDENT-ON* */
3014
3015
3016
3017 static int
3018 read_baseclasses (struct stab_field_info *fip, const char **pp,
3019 struct type *type, struct objfile *objfile)
3020 {
3021 int i;
3022 struct nextfield *newobj;
3023
3024 if (**pp != '!')
3025 {
3026 return 1;
3027 }
3028 else
3029 {
3030 /* Skip the '!' baseclass information marker. */
3031 (*pp)++;
3032 }
3033
3034 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3035 {
3036 int nbits;
3037
3038 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3039 if (nbits != 0)
3040 return 0;
3041 }
3042
3043 #if 0
3044 /* Some stupid compilers have trouble with the following, so break
3045 it up into simpler expressions. */
3046 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3047 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3048 #else
3049 {
3050 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3051 char *pointer;
3052
3053 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3054 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3055 }
3056 #endif /* 0 */
3057
3058 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3059
3060 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3061 {
3062 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3063
3064 newobj->next = fip->list;
3065 fip->list = newobj;
3066 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3067 field! */
3068
3069 STABS_CONTINUE (pp, objfile);
3070 switch (**pp)
3071 {
3072 case '0':
3073 /* Nothing to do. */
3074 break;
3075 case '1':
3076 SET_TYPE_FIELD_VIRTUAL (type, i);
3077 break;
3078 default:
3079 /* Unknown character. Complain and treat it as non-virtual. */
3080 {
3081 complaint (_("Unknown virtual character `%c' for baseclass"),
3082 **pp);
3083 }
3084 }
3085 ++(*pp);
3086
3087 newobj->visibility = *(*pp)++;
3088 switch (newobj->visibility)
3089 {
3090 case VISIBILITY_PRIVATE:
3091 case VISIBILITY_PROTECTED:
3092 case VISIBILITY_PUBLIC:
3093 break;
3094 default:
3095 /* Bad visibility format. Complain and treat it as
3096 public. */
3097 {
3098 complaint (_("Unknown visibility `%c' for baseclass"),
3099 newobj->visibility);
3100 newobj->visibility = VISIBILITY_PUBLIC;
3101 }
3102 }
3103
3104 {
3105 int nbits;
3106
3107 /* The remaining value is the bit offset of the portion of the object
3108 corresponding to this baseclass. Always zero in the absence of
3109 multiple inheritance. */
3110
3111 newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
3112 if (nbits != 0)
3113 return 0;
3114 }
3115
3116 /* The last piece of baseclass information is the type of the
3117 base class. Read it, and remember it's type name as this
3118 field's name. */
3119
3120 newobj->field.set_type (read_type (pp, objfile));
3121 newobj->field.set_name (newobj->field.type ()->name ());
3122
3123 /* Skip trailing ';' and bump count of number of fields seen. */
3124 if (**pp == ';')
3125 (*pp)++;
3126 else
3127 return 0;
3128 }
3129 return 1;
3130 }
3131
3132 /* The tail end of stabs for C++ classes that contain a virtual function
3133 pointer contains a tilde, a %, and a type number.
3134 The type number refers to the base class (possibly this class itself) which
3135 contains the vtable pointer for the current class.
3136
3137 This function is called when we have parsed all the method declarations,
3138 so we can look for the vptr base class info. */
3139
3140 static int
3141 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3142 struct type *type, struct objfile *objfile)
3143 {
3144 const char *p;
3145
3146 STABS_CONTINUE (pp, objfile);
3147
3148 /* If we are positioned at a ';', then skip it. */
3149 if (**pp == ';')
3150 {
3151 (*pp)++;
3152 }
3153
3154 if (**pp == '~')
3155 {
3156 (*pp)++;
3157
3158 if (**pp == '=' || **pp == '+' || **pp == '-')
3159 {
3160 /* Obsolete flags that used to indicate the presence
3161 of constructors and/or destructors. */
3162 (*pp)++;
3163 }
3164
3165 /* Read either a '%' or the final ';'. */
3166 if (*(*pp)++ == '%')
3167 {
3168 /* The next number is the type number of the base class
3169 (possibly our own class) which supplies the vtable for
3170 this class. Parse it out, and search that class to find
3171 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3172 and TYPE_VPTR_FIELDNO. */
3173
3174 struct type *t;
3175 int i;
3176
3177 t = read_type (pp, objfile);
3178 p = (*pp)++;
3179 while (*p != '\0' && *p != ';')
3180 {
3181 p++;
3182 }
3183 if (*p == '\0')
3184 {
3185 /* Premature end of symbol. */
3186 return 0;
3187 }
3188
3189 set_type_vptr_basetype (type, t);
3190 if (type == t) /* Our own class provides vtbl ptr. */
3191 {
3192 for (i = t->num_fields () - 1;
3193 i >= TYPE_N_BASECLASSES (t);
3194 --i)
3195 {
3196 const char *name = t->field (i).name ();
3197
3198 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3199 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3200 {
3201 set_type_vptr_fieldno (type, i);
3202 goto gotit;
3203 }
3204 }
3205 /* Virtual function table field not found. */
3206 complaint (_("virtual function table pointer "
3207 "not found when defining class `%s'"),
3208 type->name ());
3209 return 0;
3210 }
3211 else
3212 {
3213 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3214 }
3215
3216 gotit:
3217 *pp = p + 1;
3218 }
3219 }
3220 return 1;
3221 }
3222
3223 static int
3224 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3225 {
3226 int n;
3227
3228 for (n = TYPE_NFN_FIELDS (type);
3229 fip->fnlist != NULL;
3230 fip->fnlist = fip->fnlist->next)
3231 {
3232 --n; /* Circumvent Sun3 compiler bug. */
3233 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3234 }
3235 return 1;
3236 }
3237
3238 /* Create the vector of fields, and record how big it is.
3239 We need this info to record proper virtual function table information
3240 for this class's virtual functions. */
3241
3242 static int
3243 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3244 struct objfile *objfile)
3245 {
3246 int nfields = 0;
3247 int non_public_fields = 0;
3248 struct nextfield *scan;
3249
3250 /* Count up the number of fields that we have, as well as taking note of
3251 whether or not there are any non-public fields, which requires us to
3252 allocate and build the private_field_bits and protected_field_bits
3253 bitfields. */
3254
3255 for (scan = fip->list; scan != NULL; scan = scan->next)
3256 {
3257 nfields++;
3258 if (scan->visibility != VISIBILITY_PUBLIC)
3259 {
3260 non_public_fields++;
3261 }
3262 }
3263
3264 /* Now we know how many fields there are, and whether or not there are any
3265 non-public fields. Record the field count, allocate space for the
3266 array of fields, and create blank visibility bitfields if necessary. */
3267
3268 type->set_num_fields (nfields);
3269 type->set_fields
3270 ((struct field *)
3271 TYPE_ALLOC (type, sizeof (struct field) * nfields));
3272 memset (type->fields (), 0, sizeof (struct field) * nfields);
3273
3274 if (non_public_fields)
3275 {
3276 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3277
3278 TYPE_FIELD_PRIVATE_BITS (type) =
3279 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3280 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3281
3282 TYPE_FIELD_PROTECTED_BITS (type) =
3283 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3284 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3285
3286 TYPE_FIELD_IGNORE_BITS (type) =
3287 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3288 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3289 }
3290
3291 /* Copy the saved-up fields into the field vector. Start from the
3292 head of the list, adding to the tail of the field array, so that
3293 they end up in the same order in the array in which they were
3294 added to the list. */
3295
3296 while (nfields-- > 0)
3297 {
3298 type->field (nfields) = fip->list->field;
3299 switch (fip->list->visibility)
3300 {
3301 case VISIBILITY_PRIVATE:
3302 SET_TYPE_FIELD_PRIVATE (type, nfields);
3303 break;
3304
3305 case VISIBILITY_PROTECTED:
3306 SET_TYPE_FIELD_PROTECTED (type, nfields);
3307 break;
3308
3309 case VISIBILITY_IGNORE:
3310 SET_TYPE_FIELD_IGNORE (type, nfields);
3311 break;
3312
3313 case VISIBILITY_PUBLIC:
3314 break;
3315
3316 default:
3317 /* Unknown visibility. Complain and treat it as public. */
3318 {
3319 complaint (_("Unknown visibility `%c' for field"),
3320 fip->list->visibility);
3321 }
3322 break;
3323 }
3324 fip->list = fip->list->next;
3325 }
3326 return 1;
3327 }
3328
3329
3330 /* Complain that the compiler has emitted more than one definition for the
3331 structure type TYPE. */
3332 static void
3333 complain_about_struct_wipeout (struct type *type)
3334 {
3335 const char *name = "";
3336 const char *kind = "";
3337
3338 if (type->name ())
3339 {
3340 name = type->name ();
3341 switch (type->code ())
3342 {
3343 case TYPE_CODE_STRUCT: kind = "struct "; break;
3344 case TYPE_CODE_UNION: kind = "union "; break;
3345 case TYPE_CODE_ENUM: kind = "enum "; break;
3346 default: kind = "";
3347 }
3348 }
3349 else
3350 {
3351 name = "<unknown>";
3352 kind = "";
3353 }
3354
3355 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3356 }
3357
3358 /* Set the length for all variants of a same main_type, which are
3359 connected in the closed chain.
3360
3361 This is something that needs to be done when a type is defined *after*
3362 some cross references to this type have already been read. Consider
3363 for instance the following scenario where we have the following two
3364 stabs entries:
3365
3366 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3367 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3368
3369 A stubbed version of type dummy is created while processing the first
3370 stabs entry. The length of that type is initially set to zero, since
3371 it is unknown at this point. Also, a "constant" variation of type
3372 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3373 the stabs line).
3374
3375 The second stabs entry allows us to replace the stubbed definition
3376 with the real definition. However, we still need to adjust the length
3377 of the "constant" variation of that type, as its length was left
3378 untouched during the main type replacement... */
3379
3380 static void
3381 set_length_in_type_chain (struct type *type)
3382 {
3383 struct type *ntype = TYPE_CHAIN (type);
3384
3385 while (ntype != type)
3386 {
3387 if (TYPE_LENGTH(ntype) == 0)
3388 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3389 else
3390 complain_about_struct_wipeout (ntype);
3391 ntype = TYPE_CHAIN (ntype);
3392 }
3393 }
3394
3395 /* Read the description of a structure (or union type) and return an object
3396 describing the type.
3397
3398 PP points to a character pointer that points to the next unconsumed token
3399 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3400 *PP will point to "4a:1,0,32;;".
3401
3402 TYPE points to an incomplete type that needs to be filled in.
3403
3404 OBJFILE points to the current objfile from which the stabs information is
3405 being read. (Note that it is redundant in that TYPE also contains a pointer
3406 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3407 */
3408
3409 static struct type *
3410 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3411 struct objfile *objfile)
3412 {
3413 struct stab_field_info fi;
3414
3415 /* When describing struct/union/class types in stabs, G++ always drops
3416 all qualifications from the name. So if you've got:
3417 struct A { ... struct B { ... }; ... };
3418 then G++ will emit stabs for `struct A::B' that call it simply
3419 `struct B'. Obviously, if you've got a real top-level definition for
3420 `struct B', or other nested definitions, this is going to cause
3421 problems.
3422
3423 Obviously, GDB can't fix this by itself, but it can at least avoid
3424 scribbling on existing structure type objects when new definitions
3425 appear. */
3426 if (! (type->code () == TYPE_CODE_UNDEF
3427 || type->is_stub ()))
3428 {
3429 complain_about_struct_wipeout (type);
3430
3431 /* It's probably best to return the type unchanged. */
3432 return type;
3433 }
3434
3435 INIT_CPLUS_SPECIFIC (type);
3436 type->set_code (type_code);
3437 type->set_is_stub (false);
3438
3439 /* First comes the total size in bytes. */
3440
3441 {
3442 int nbits;
3443
3444 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3445 if (nbits != 0)
3446 return error_type (pp, objfile);
3447 set_length_in_type_chain (type);
3448 }
3449
3450 /* Now read the baseclasses, if any, read the regular C struct or C++
3451 class member fields, attach the fields to the type, read the C++
3452 member functions, attach them to the type, and then read any tilde
3453 field (baseclass specifier for the class holding the main vtable). */
3454
3455 if (!read_baseclasses (&fi, pp, type, objfile)
3456 || !read_struct_fields (&fi, pp, type, objfile)
3457 || !attach_fields_to_type (&fi, type, objfile)
3458 || !read_member_functions (&fi, pp, type, objfile)
3459 || !attach_fn_fields_to_type (&fi, type)
3460 || !read_tilde_fields (&fi, pp, type, objfile))
3461 {
3462 type = error_type (pp, objfile);
3463 }
3464
3465 return (type);
3466 }
3467
3468 /* Read a definition of an array type,
3469 and create and return a suitable type object.
3470 Also creates a range type which represents the bounds of that
3471 array. */
3472
3473 static struct type *
3474 read_array_type (const char **pp, struct type *type,
3475 struct objfile *objfile)
3476 {
3477 struct type *index_type, *element_type, *range_type;
3478 int lower, upper;
3479 int adjustable = 0;
3480 int nbits;
3481
3482 /* Format of an array type:
3483 "ar<index type>;lower;upper;<array_contents_type>".
3484 OS9000: "arlower,upper;<array_contents_type>".
3485
3486 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3487 for these, produce a type like float[][]. */
3488
3489 {
3490 index_type = read_type (pp, objfile);
3491 if (**pp != ';')
3492 /* Improper format of array type decl. */
3493 return error_type (pp, objfile);
3494 ++*pp;
3495 }
3496
3497 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3498 {
3499 (*pp)++;
3500 adjustable = 1;
3501 }
3502 lower = read_huge_number (pp, ';', &nbits, 0);
3503
3504 if (nbits != 0)
3505 return error_type (pp, objfile);
3506
3507 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3508 {
3509 (*pp)++;
3510 adjustable = 1;
3511 }
3512 upper = read_huge_number (pp, ';', &nbits, 0);
3513 if (nbits != 0)
3514 return error_type (pp, objfile);
3515
3516 element_type = read_type (pp, objfile);
3517
3518 if (adjustable)
3519 {
3520 lower = 0;
3521 upper = -1;
3522 }
3523
3524 range_type =
3525 create_static_range_type (NULL, index_type, lower, upper);
3526 type = create_array_type (type, element_type, range_type);
3527
3528 return type;
3529 }
3530
3531
3532 /* Read a definition of an enumeration type,
3533 and create and return a suitable type object.
3534 Also defines the symbols that represent the values of the type. */
3535
3536 static struct type *
3537 read_enum_type (const char **pp, struct type *type,
3538 struct objfile *objfile)
3539 {
3540 struct gdbarch *gdbarch = objfile->arch ();
3541 const char *p;
3542 char *name;
3543 long n;
3544 struct symbol *sym;
3545 int nsyms = 0;
3546 struct pending **symlist;
3547 struct pending *osyms, *syms;
3548 int o_nsyms;
3549 int nbits;
3550 int unsigned_enum = 1;
3551
3552 #if 0
3553 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3554 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3555 to do? For now, force all enum values to file scope. */
3556 if (within_function)
3557 symlist = get_local_symbols ();
3558 else
3559 #endif
3560 symlist = get_file_symbols ();
3561 osyms = *symlist;
3562 o_nsyms = osyms ? osyms->nsyms : 0;
3563
3564 /* The aix4 compiler emits an extra field before the enum members;
3565 my guess is it's a type of some sort. Just ignore it. */
3566 if (**pp == '-')
3567 {
3568 /* Skip over the type. */
3569 while (**pp != ':')
3570 (*pp)++;
3571
3572 /* Skip over the colon. */
3573 (*pp)++;
3574 }
3575
3576 /* Read the value-names and their values.
3577 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3578 A semicolon or comma instead of a NAME means the end. */
3579 while (**pp && **pp != ';' && **pp != ',')
3580 {
3581 STABS_CONTINUE (pp, objfile);
3582 p = *pp;
3583 while (*p != ':')
3584 p++;
3585 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3586 *pp = p + 1;
3587 n = read_huge_number (pp, ',', &nbits, 0);
3588 if (nbits != 0)
3589 return error_type (pp, objfile);
3590
3591 sym = new (&objfile->objfile_obstack) symbol;
3592 sym->set_linkage_name (name);
3593 sym->set_language (get_current_subfile ()->language,
3594 &objfile->objfile_obstack);
3595 sym->set_aclass_index (LOC_CONST);
3596 sym->set_domain (VAR_DOMAIN);
3597 SYMBOL_VALUE (sym) = n;
3598 if (n < 0)
3599 unsigned_enum = 0;
3600 add_symbol_to_list (sym, symlist);
3601 nsyms++;
3602 }
3603
3604 if (**pp == ';')
3605 (*pp)++; /* Skip the semicolon. */
3606
3607 /* Now fill in the fields of the type-structure. */
3608
3609 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3610 set_length_in_type_chain (type);
3611 type->set_code (TYPE_CODE_ENUM);
3612 type->set_is_stub (false);
3613 if (unsigned_enum)
3614 type->set_is_unsigned (true);
3615 type->set_num_fields (nsyms);
3616 type->set_fields
3617 ((struct field *)
3618 TYPE_ALLOC (type, sizeof (struct field) * nsyms));
3619 memset (type->fields (), 0, sizeof (struct field) * nsyms);
3620
3621 /* Find the symbols for the values and put them into the type.
3622 The symbols can be found in the symlist that we put them on
3623 to cause them to be defined. osyms contains the old value
3624 of that symlist; everything up to there was defined by us. */
3625 /* Note that we preserve the order of the enum constants, so
3626 that in something like "enum {FOO, LAST_THING=FOO}" we print
3627 FOO, not LAST_THING. */
3628
3629 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3630 {
3631 int last = syms == osyms ? o_nsyms : 0;
3632 int j = syms->nsyms;
3633
3634 for (; --j >= last; --n)
3635 {
3636 struct symbol *xsym = syms->symbol[j];
3637
3638 xsym->set_type (type);
3639 type->field (n).set_name (xsym->linkage_name ());
3640 type->field (n).set_loc_enumval (SYMBOL_VALUE (xsym));
3641 TYPE_FIELD_BITSIZE (type, n) = 0;
3642 }
3643 if (syms == osyms)
3644 break;
3645 }
3646
3647 return type;
3648 }
3649
3650 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3651 typedefs in every file (for int, long, etc):
3652
3653 type = b <signed> <width> <format type>; <offset>; <nbits>
3654 signed = u or s.
3655 optional format type = c or b for char or boolean.
3656 offset = offset from high order bit to start bit of type.
3657 width is # bytes in object of this type, nbits is # bits in type.
3658
3659 The width/offset stuff appears to be for small objects stored in
3660 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3661 FIXME. */
3662
3663 static struct type *
3664 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3665 {
3666 int type_bits;
3667 int nbits;
3668 int unsigned_type;
3669 int boolean_type = 0;
3670
3671 switch (**pp)
3672 {
3673 case 's':
3674 unsigned_type = 0;
3675 break;
3676 case 'u':
3677 unsigned_type = 1;
3678 break;
3679 default:
3680 return error_type (pp, objfile);
3681 }
3682 (*pp)++;
3683
3684 /* For some odd reason, all forms of char put a c here. This is strange
3685 because no other type has this honor. We can safely ignore this because
3686 we actually determine 'char'acterness by the number of bits specified in
3687 the descriptor.
3688 Boolean forms, e.g Fortran logical*X, put a b here. */
3689
3690 if (**pp == 'c')
3691 (*pp)++;
3692 else if (**pp == 'b')
3693 {
3694 boolean_type = 1;
3695 (*pp)++;
3696 }
3697
3698 /* The first number appears to be the number of bytes occupied
3699 by this type, except that unsigned short is 4 instead of 2.
3700 Since this information is redundant with the third number,
3701 we will ignore it. */
3702 read_huge_number (pp, ';', &nbits, 0);
3703 if (nbits != 0)
3704 return error_type (pp, objfile);
3705
3706 /* The second number is always 0, so ignore it too. */
3707 read_huge_number (pp, ';', &nbits, 0);
3708 if (nbits != 0)
3709 return error_type (pp, objfile);
3710
3711 /* The third number is the number of bits for this type. */
3712 type_bits = read_huge_number (pp, 0, &nbits, 0);
3713 if (nbits != 0)
3714 return error_type (pp, objfile);
3715 /* The type *should* end with a semicolon. If it are embedded
3716 in a larger type the semicolon may be the only way to know where
3717 the type ends. If this type is at the end of the stabstring we
3718 can deal with the omitted semicolon (but we don't have to like
3719 it). Don't bother to complain(), Sun's compiler omits the semicolon
3720 for "void". */
3721 if (**pp == ';')
3722 ++(*pp);
3723
3724 if (type_bits == 0)
3725 {
3726 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3727 TARGET_CHAR_BIT, NULL);
3728 if (unsigned_type)
3729 type->set_is_unsigned (true);
3730
3731 return type;
3732 }
3733
3734 if (boolean_type)
3735 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3736 else
3737 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3738 }
3739
3740 static struct type *
3741 read_sun_floating_type (const char **pp, int typenums[2],
3742 struct objfile *objfile)
3743 {
3744 int nbits;
3745 int details;
3746 int nbytes;
3747 struct type *rettype;
3748
3749 /* The first number has more details about the type, for example
3750 FN_COMPLEX. */
3751 details = read_huge_number (pp, ';', &nbits, 0);
3752 if (nbits != 0)
3753 return error_type (pp, objfile);
3754
3755 /* The second number is the number of bytes occupied by this type. */
3756 nbytes = read_huge_number (pp, ';', &nbits, 0);
3757 if (nbits != 0)
3758 return error_type (pp, objfile);
3759
3760 nbits = nbytes * TARGET_CHAR_BIT;
3761
3762 if (details == NF_COMPLEX || details == NF_COMPLEX16
3763 || details == NF_COMPLEX32)
3764 {
3765 rettype = dbx_init_float_type (objfile, nbits / 2);
3766 return init_complex_type (NULL, rettype);
3767 }
3768
3769 return dbx_init_float_type (objfile, nbits);
3770 }
3771
3772 /* Read a number from the string pointed to by *PP.
3773 The value of *PP is advanced over the number.
3774 If END is nonzero, the character that ends the
3775 number must match END, or an error happens;
3776 and that character is skipped if it does match.
3777 If END is zero, *PP is left pointing to that character.
3778
3779 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3780 the number is represented in an octal representation, assume that
3781 it is represented in a 2's complement representation with a size of
3782 TWOS_COMPLEMENT_BITS.
3783
3784 If the number fits in a long, set *BITS to 0 and return the value.
3785 If not, set *BITS to be the number of bits in the number and return 0.
3786
3787 If encounter garbage, set *BITS to -1 and return 0. */
3788
3789 static long
3790 read_huge_number (const char **pp, int end, int *bits,
3791 int twos_complement_bits)
3792 {
3793 const char *p = *pp;
3794 int sign = 1;
3795 int sign_bit = 0;
3796 long n = 0;
3797 int radix = 10;
3798 char overflow = 0;
3799 int nbits = 0;
3800 int c;
3801 long upper_limit;
3802 int twos_complement_representation = 0;
3803
3804 if (*p == '-')
3805 {
3806 sign = -1;
3807 p++;
3808 }
3809
3810 /* Leading zero means octal. GCC uses this to output values larger
3811 than an int (because that would be hard in decimal). */
3812 if (*p == '0')
3813 {
3814 radix = 8;
3815 p++;
3816 }
3817
3818 /* Skip extra zeros. */
3819 while (*p == '0')
3820 p++;
3821
3822 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3823 {
3824 /* Octal, possibly signed. Check if we have enough chars for a
3825 negative number. */
3826
3827 size_t len;
3828 const char *p1 = p;
3829
3830 while ((c = *p1) >= '0' && c < '8')
3831 p1++;
3832
3833 len = p1 - p;
3834 if (len > twos_complement_bits / 3
3835 || (twos_complement_bits % 3 == 0
3836 && len == twos_complement_bits / 3))
3837 {
3838 /* Ok, we have enough characters for a signed value, check
3839 for signedness by testing if the sign bit is set. */
3840 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3841 c = *p - '0';
3842 if (c & (1 << sign_bit))
3843 {
3844 /* Definitely signed. */
3845 twos_complement_representation = 1;
3846 sign = -1;
3847 }
3848 }
3849 }
3850
3851 upper_limit = LONG_MAX / radix;
3852
3853 while ((c = *p++) >= '0' && c < ('0' + radix))
3854 {
3855 if (n <= upper_limit)
3856 {
3857 if (twos_complement_representation)
3858 {
3859 /* Octal, signed, twos complement representation. In
3860 this case, n is the corresponding absolute value. */
3861 if (n == 0)
3862 {
3863 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3864
3865 n = -sn;
3866 }
3867 else
3868 {
3869 n *= radix;
3870 n -= c - '0';
3871 }
3872 }
3873 else
3874 {
3875 /* unsigned representation */
3876 n *= radix;
3877 n += c - '0'; /* FIXME this overflows anyway. */
3878 }
3879 }
3880 else
3881 overflow = 1;
3882
3883 /* This depends on large values being output in octal, which is
3884 what GCC does. */
3885 if (radix == 8)
3886 {
3887 if (nbits == 0)
3888 {
3889 if (c == '0')
3890 /* Ignore leading zeroes. */
3891 ;
3892 else if (c == '1')
3893 nbits = 1;
3894 else if (c == '2' || c == '3')
3895 nbits = 2;
3896 else
3897 nbits = 3;
3898 }
3899 else
3900 nbits += 3;
3901 }
3902 }
3903 if (end)
3904 {
3905 if (c && c != end)
3906 {
3907 if (bits != NULL)
3908 *bits = -1;
3909 return 0;
3910 }
3911 }
3912 else
3913 --p;
3914
3915 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3916 {
3917 /* We were supposed to parse a number with maximum
3918 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3919 if (bits != NULL)
3920 *bits = -1;
3921 return 0;
3922 }
3923
3924 *pp = p;
3925 if (overflow)
3926 {
3927 if (nbits == 0)
3928 {
3929 /* Large decimal constants are an error (because it is hard to
3930 count how many bits are in them). */
3931 if (bits != NULL)
3932 *bits = -1;
3933 return 0;
3934 }
3935
3936 /* -0x7f is the same as 0x80. So deal with it by adding one to
3937 the number of bits. Two's complement represention octals
3938 can't have a '-' in front. */
3939 if (sign == -1 && !twos_complement_representation)
3940 ++nbits;
3941 if (bits)
3942 *bits = nbits;
3943 }
3944 else
3945 {
3946 if (bits)
3947 *bits = 0;
3948 return n * sign;
3949 }
3950 /* It's *BITS which has the interesting information. */
3951 return 0;
3952 }
3953
3954 static struct type *
3955 read_range_type (const char **pp, int typenums[2], int type_size,
3956 struct objfile *objfile)
3957 {
3958 struct gdbarch *gdbarch = objfile->arch ();
3959 const char *orig_pp = *pp;
3960 int rangenums[2];
3961 long n2, n3;
3962 int n2bits, n3bits;
3963 int self_subrange;
3964 struct type *result_type;
3965 struct type *index_type = NULL;
3966
3967 /* First comes a type we are a subrange of.
3968 In C it is usually 0, 1 or the type being defined. */
3969 if (read_type_number (pp, rangenums) != 0)
3970 return error_type (pp, objfile);
3971 self_subrange = (rangenums[0] == typenums[0] &&
3972 rangenums[1] == typenums[1]);
3973
3974 if (**pp == '=')
3975 {
3976 *pp = orig_pp;
3977 index_type = read_type (pp, objfile);
3978 }
3979
3980 /* A semicolon should now follow; skip it. */
3981 if (**pp == ';')
3982 (*pp)++;
3983
3984 /* The remaining two operands are usually lower and upper bounds
3985 of the range. But in some special cases they mean something else. */
3986 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3987 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3988
3989 if (n2bits == -1 || n3bits == -1)
3990 return error_type (pp, objfile);
3991
3992 if (index_type)
3993 goto handle_true_range;
3994
3995 /* If limits are huge, must be large integral type. */
3996 if (n2bits != 0 || n3bits != 0)
3997 {
3998 char got_signed = 0;
3999 char got_unsigned = 0;
4000 /* Number of bits in the type. */
4001 int nbits = 0;
4002
4003 /* If a type size attribute has been specified, the bounds of
4004 the range should fit in this size. If the lower bounds needs
4005 more bits than the upper bound, then the type is signed. */
4006 if (n2bits <= type_size && n3bits <= type_size)
4007 {
4008 if (n2bits == type_size && n2bits > n3bits)
4009 got_signed = 1;
4010 else
4011 got_unsigned = 1;
4012 nbits = type_size;
4013 }
4014 /* Range from 0 to <large number> is an unsigned large integral type. */
4015 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4016 {
4017 got_unsigned = 1;
4018 nbits = n3bits;
4019 }
4020 /* Range from <large number> to <large number>-1 is a large signed
4021 integral type. Take care of the case where <large number> doesn't
4022 fit in a long but <large number>-1 does. */
4023 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4024 || (n2bits != 0 && n3bits == 0
4025 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4026 && n3 == LONG_MAX))
4027 {
4028 got_signed = 1;
4029 nbits = n2bits;
4030 }
4031
4032 if (got_signed || got_unsigned)
4033 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4034 else
4035 return error_type (pp, objfile);
4036 }
4037
4038 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4039 if (self_subrange && n2 == 0 && n3 == 0)
4040 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4041
4042 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4043 is the width in bytes.
4044
4045 Fortran programs appear to use this for complex types also. To
4046 distinguish between floats and complex, g77 (and others?) seem
4047 to use self-subranges for the complexes, and subranges of int for
4048 the floats.
4049
4050 Also note that for complexes, g77 sets n2 to the size of one of
4051 the member floats, not the whole complex beast. My guess is that
4052 this was to work well with pre-COMPLEX versions of gdb. */
4053
4054 if (n3 == 0 && n2 > 0)
4055 {
4056 struct type *float_type
4057 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4058
4059 if (self_subrange)
4060 return init_complex_type (NULL, float_type);
4061 else
4062 return float_type;
4063 }
4064
4065 /* If the upper bound is -1, it must really be an unsigned integral. */
4066
4067 else if (n2 == 0 && n3 == -1)
4068 {
4069 int bits = type_size;
4070
4071 if (bits <= 0)
4072 {
4073 /* We don't know its size. It is unsigned int or unsigned
4074 long. GCC 2.3.3 uses this for long long too, but that is
4075 just a GDB 3.5 compatibility hack. */
4076 bits = gdbarch_int_bit (gdbarch);
4077 }
4078
4079 return init_integer_type (objfile, bits, 1, NULL);
4080 }
4081
4082 /* Special case: char is defined (Who knows why) as a subrange of
4083 itself with range 0-127. */
4084 else if (self_subrange && n2 == 0 && n3 == 127)
4085 {
4086 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4087 0, NULL);
4088 type->set_has_no_signedness (true);
4089 return type;
4090 }
4091 /* We used to do this only for subrange of self or subrange of int. */
4092 else if (n2 == 0)
4093 {
4094 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4095 "unsigned long", and we already checked for that,
4096 so don't need to test for it here. */
4097
4098 if (n3 < 0)
4099 /* n3 actually gives the size. */
4100 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4101
4102 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4103 unsigned n-byte integer. But do require n to be a power of
4104 two; we don't want 3- and 5-byte integers flying around. */
4105 {
4106 int bytes;
4107 unsigned long bits;
4108
4109 bits = n3;
4110 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4111 bits >>= 8;
4112 if (bits == 0
4113 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4114 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4115 }
4116 }
4117 /* I think this is for Convex "long long". Since I don't know whether
4118 Convex sets self_subrange, I also accept that particular size regardless
4119 of self_subrange. */
4120 else if (n3 == 0 && n2 < 0
4121 && (self_subrange
4122 || n2 == -gdbarch_long_long_bit
4123 (gdbarch) / TARGET_CHAR_BIT))
4124 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4125 else if (n2 == -n3 - 1)
4126 {
4127 if (n3 == 0x7f)
4128 return init_integer_type (objfile, 8, 0, NULL);
4129 if (n3 == 0x7fff)
4130 return init_integer_type (objfile, 16, 0, NULL);
4131 if (n3 == 0x7fffffff)
4132 return init_integer_type (objfile, 32, 0, NULL);
4133 }
4134
4135 /* We have a real range type on our hands. Allocate space and
4136 return a real pointer. */
4137 handle_true_range:
4138
4139 if (self_subrange)
4140 index_type = objfile_type (objfile)->builtin_int;
4141 else
4142 index_type = *dbx_lookup_type (rangenums, objfile);
4143 if (index_type == NULL)
4144 {
4145 /* Does this actually ever happen? Is that why we are worrying
4146 about dealing with it rather than just calling error_type? */
4147
4148 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4149
4150 index_type = objfile_type (objfile)->builtin_int;
4151 }
4152
4153 result_type
4154 = create_static_range_type (NULL, index_type, n2, n3);
4155 return (result_type);
4156 }
4157
4158 /* Read in an argument list. This is a list of types, separated by commas
4159 and terminated with END. Return the list of types read in, or NULL
4160 if there is an error. */
4161
4162 static struct field *
4163 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4164 int *varargsp)
4165 {
4166 /* FIXME! Remove this arbitrary limit! */
4167 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4168 int n = 0, i;
4169 struct field *rval;
4170
4171 while (**pp != end)
4172 {
4173 if (**pp != ',')
4174 /* Invalid argument list: no ','. */
4175 return NULL;
4176 (*pp)++;
4177 STABS_CONTINUE (pp, objfile);
4178 types[n++] = read_type (pp, objfile);
4179 }
4180 (*pp)++; /* get past `end' (the ':' character). */
4181
4182 if (n == 0)
4183 {
4184 /* We should read at least the THIS parameter here. Some broken stabs
4185 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4186 have been present ";-16,(0,43)" reference instead. This way the
4187 excessive ";" marker prematurely stops the parameters parsing. */
4188
4189 complaint (_("Invalid (empty) method arguments"));
4190 *varargsp = 0;
4191 }
4192 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4193 *varargsp = 1;
4194 else
4195 {
4196 n--;
4197 *varargsp = 0;
4198 }
4199
4200 rval = XCNEWVEC (struct field, n);
4201 for (i = 0; i < n; i++)
4202 rval[i].set_type (types[i]);
4203 *nargsp = n;
4204 return rval;
4205 }
4206 \f
4207 /* Common block handling. */
4208
4209 /* List of symbols declared since the last BCOMM. This list is a tail
4210 of local_symbols. When ECOMM is seen, the symbols on the list
4211 are noted so their proper addresses can be filled in later,
4212 using the common block base address gotten from the assembler
4213 stabs. */
4214
4215 static struct pending *common_block;
4216 static int common_block_i;
4217
4218 /* Name of the current common block. We get it from the BCOMM instead of the
4219 ECOMM to match IBM documentation (even though IBM puts the name both places
4220 like everyone else). */
4221 static char *common_block_name;
4222
4223 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4224 to remain after this function returns. */
4225
4226 void
4227 common_block_start (const char *name, struct objfile *objfile)
4228 {
4229 if (common_block_name != NULL)
4230 {
4231 complaint (_("Invalid symbol data: common block within common block"));
4232 }
4233 common_block = *get_local_symbols ();
4234 common_block_i = common_block ? common_block->nsyms : 0;
4235 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4236 }
4237
4238 /* Process a N_ECOMM symbol. */
4239
4240 void
4241 common_block_end (struct objfile *objfile)
4242 {
4243 /* Symbols declared since the BCOMM are to have the common block
4244 start address added in when we know it. common_block and
4245 common_block_i point to the first symbol after the BCOMM in
4246 the local_symbols list; copy the list and hang it off the
4247 symbol for the common block name for later fixup. */
4248 int i;
4249 struct symbol *sym;
4250 struct pending *newobj = 0;
4251 struct pending *next;
4252 int j;
4253
4254 if (common_block_name == NULL)
4255 {
4256 complaint (_("ECOMM symbol unmatched by BCOMM"));
4257 return;
4258 }
4259
4260 sym = new (&objfile->objfile_obstack) symbol;
4261 /* Note: common_block_name already saved on objfile_obstack. */
4262 sym->set_linkage_name (common_block_name);
4263 sym->set_aclass_index (LOC_BLOCK);
4264
4265 /* Now we copy all the symbols which have been defined since the BCOMM. */
4266
4267 /* Copy all the struct pendings before common_block. */
4268 for (next = *get_local_symbols ();
4269 next != NULL && next != common_block;
4270 next = next->next)
4271 {
4272 for (j = 0; j < next->nsyms; j++)
4273 add_symbol_to_list (next->symbol[j], &newobj);
4274 }
4275
4276 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4277 NULL, it means copy all the local symbols (which we already did
4278 above). */
4279
4280 if (common_block != NULL)
4281 for (j = common_block_i; j < common_block->nsyms; j++)
4282 add_symbol_to_list (common_block->symbol[j], &newobj);
4283
4284 sym->set_type ((struct type *) newobj);
4285
4286 /* Should we be putting local_symbols back to what it was?
4287 Does it matter? */
4288
4289 i = hashname (sym->linkage_name ());
4290 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4291 global_sym_chain[i] = sym;
4292 common_block_name = NULL;
4293 }
4294
4295 /* Add a common block's start address to the offset of each symbol
4296 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4297 the common block name). */
4298
4299 static void
4300 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4301 {
4302 struct pending *next = (struct pending *) sym->type ();
4303
4304 for (; next; next = next->next)
4305 {
4306 int j;
4307
4308 for (j = next->nsyms - 1; j >= 0; j--)
4309 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4310 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4311 + valu);
4312 }
4313 }
4314 \f
4315
4316
4317 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4318 See add_undefined_type for more details. */
4319
4320 static void
4321 add_undefined_type_noname (struct type *type, int typenums[2])
4322 {
4323 struct nat nat;
4324
4325 nat.typenums[0] = typenums [0];
4326 nat.typenums[1] = typenums [1];
4327 nat.type = type;
4328
4329 if (noname_undefs_length == noname_undefs_allocated)
4330 {
4331 noname_undefs_allocated *= 2;
4332 noname_undefs = (struct nat *)
4333 xrealloc ((char *) noname_undefs,
4334 noname_undefs_allocated * sizeof (struct nat));
4335 }
4336 noname_undefs[noname_undefs_length++] = nat;
4337 }
4338
4339 /* Add TYPE to the UNDEF_TYPES vector.
4340 See add_undefined_type for more details. */
4341
4342 static void
4343 add_undefined_type_1 (struct type *type)
4344 {
4345 if (undef_types_length == undef_types_allocated)
4346 {
4347 undef_types_allocated *= 2;
4348 undef_types = (struct type **)
4349 xrealloc ((char *) undef_types,
4350 undef_types_allocated * sizeof (struct type *));
4351 }
4352 undef_types[undef_types_length++] = type;
4353 }
4354
4355 /* What about types defined as forward references inside of a small lexical
4356 scope? */
4357 /* Add a type to the list of undefined types to be checked through
4358 once this file has been read in.
4359
4360 In practice, we actually maintain two such lists: The first list
4361 (UNDEF_TYPES) is used for types whose name has been provided, and
4362 concerns forward references (eg 'xs' or 'xu' forward references);
4363 the second list (NONAME_UNDEFS) is used for types whose name is
4364 unknown at creation time, because they were referenced through
4365 their type number before the actual type was declared.
4366 This function actually adds the given type to the proper list. */
4367
4368 static void
4369 add_undefined_type (struct type *type, int typenums[2])
4370 {
4371 if (type->name () == NULL)
4372 add_undefined_type_noname (type, typenums);
4373 else
4374 add_undefined_type_1 (type);
4375 }
4376
4377 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4378
4379 static void
4380 cleanup_undefined_types_noname (struct objfile *objfile)
4381 {
4382 int i;
4383
4384 for (i = 0; i < noname_undefs_length; i++)
4385 {
4386 struct nat nat = noname_undefs[i];
4387 struct type **type;
4388
4389 type = dbx_lookup_type (nat.typenums, objfile);
4390 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4391 {
4392 /* The instance flags of the undefined type are still unset,
4393 and needs to be copied over from the reference type.
4394 Since replace_type expects them to be identical, we need
4395 to set these flags manually before hand. */
4396 nat.type->set_instance_flags ((*type)->instance_flags ());
4397 replace_type (nat.type, *type);
4398 }
4399 }
4400
4401 noname_undefs_length = 0;
4402 }
4403
4404 /* Go through each undefined type, see if it's still undefined, and fix it
4405 up if possible. We have two kinds of undefined types:
4406
4407 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4408 Fix: update array length using the element bounds
4409 and the target type's length.
4410 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4411 yet defined at the time a pointer to it was made.
4412 Fix: Do a full lookup on the struct/union tag. */
4413
4414 static void
4415 cleanup_undefined_types_1 (void)
4416 {
4417 struct type **type;
4418
4419 /* Iterate over every undefined type, and look for a symbol whose type
4420 matches our undefined type. The symbol matches if:
4421 1. It is a typedef in the STRUCT domain;
4422 2. It has the same name, and same type code;
4423 3. The instance flags are identical.
4424
4425 It is important to check the instance flags, because we have seen
4426 examples where the debug info contained definitions such as:
4427
4428 "foo_t:t30=B31=xefoo_t:"
4429
4430 In this case, we have created an undefined type named "foo_t" whose
4431 instance flags is null (when processing "xefoo_t"), and then created
4432 another type with the same name, but with different instance flags
4433 ('B' means volatile). I think that the definition above is wrong,
4434 since the same type cannot be volatile and non-volatile at the same
4435 time, but we need to be able to cope with it when it happens. The
4436 approach taken here is to treat these two types as different. */
4437
4438 for (type = undef_types; type < undef_types + undef_types_length; type++)
4439 {
4440 switch ((*type)->code ())
4441 {
4442
4443 case TYPE_CODE_STRUCT:
4444 case TYPE_CODE_UNION:
4445 case TYPE_CODE_ENUM:
4446 {
4447 /* Check if it has been defined since. Need to do this here
4448 as well as in check_typedef to deal with the (legitimate in
4449 C though not C++) case of several types with the same name
4450 in different source files. */
4451 if ((*type)->is_stub ())
4452 {
4453 struct pending *ppt;
4454 int i;
4455 /* Name of the type, without "struct" or "union". */
4456 const char *type_name = (*type)->name ();
4457
4458 if (type_name == NULL)
4459 {
4460 complaint (_("need a type name"));
4461 break;
4462 }
4463 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4464 {
4465 for (i = 0; i < ppt->nsyms; i++)
4466 {
4467 struct symbol *sym = ppt->symbol[i];
4468
4469 if (sym->aclass () == LOC_TYPEDEF
4470 && sym->domain () == STRUCT_DOMAIN
4471 && (sym->type ()->code () == (*type)->code ())
4472 && ((*type)->instance_flags ()
4473 == sym->type ()->instance_flags ())
4474 && strcmp (sym->linkage_name (), type_name) == 0)
4475 replace_type (*type, sym->type ());
4476 }
4477 }
4478 }
4479 }
4480 break;
4481
4482 default:
4483 {
4484 complaint (_("forward-referenced types left unresolved, "
4485 "type code %d."),
4486 (*type)->code ());
4487 }
4488 break;
4489 }
4490 }
4491
4492 undef_types_length = 0;
4493 }
4494
4495 /* Try to fix all the undefined types we encountered while processing
4496 this unit. */
4497
4498 void
4499 cleanup_undefined_stabs_types (struct objfile *objfile)
4500 {
4501 cleanup_undefined_types_1 ();
4502 cleanup_undefined_types_noname (objfile);
4503 }
4504
4505 /* See stabsread.h. */
4506
4507 void
4508 scan_file_globals (struct objfile *objfile)
4509 {
4510 int hash;
4511 struct symbol *sym, *prev;
4512 struct objfile *resolve_objfile;
4513
4514 /* SVR4 based linkers copy referenced global symbols from shared
4515 libraries to the main executable.
4516 If we are scanning the symbols for a shared library, try to resolve
4517 them from the minimal symbols of the main executable first. */
4518
4519 if (current_program_space->symfile_object_file
4520 && objfile != current_program_space->symfile_object_file)
4521 resolve_objfile = current_program_space->symfile_object_file;
4522 else
4523 resolve_objfile = objfile;
4524
4525 while (1)
4526 {
4527 /* Avoid expensive loop through all minimal symbols if there are
4528 no unresolved symbols. */
4529 for (hash = 0; hash < HASHSIZE; hash++)
4530 {
4531 if (global_sym_chain[hash])
4532 break;
4533 }
4534 if (hash >= HASHSIZE)
4535 return;
4536
4537 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4538 {
4539 QUIT;
4540
4541 /* Skip static symbols. */
4542 switch (MSYMBOL_TYPE (msymbol))
4543 {
4544 case mst_file_text:
4545 case mst_file_data:
4546 case mst_file_bss:
4547 continue;
4548 default:
4549 break;
4550 }
4551
4552 prev = NULL;
4553
4554 /* Get the hash index and check all the symbols
4555 under that hash index. */
4556
4557 hash = hashname (msymbol->linkage_name ());
4558
4559 for (sym = global_sym_chain[hash]; sym;)
4560 {
4561 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4562 {
4563 /* Splice this symbol out of the hash chain and
4564 assign the value we have to it. */
4565 if (prev)
4566 {
4567 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4568 }
4569 else
4570 {
4571 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4572 }
4573
4574 /* Check to see whether we need to fix up a common block. */
4575 /* Note: this code might be executed several times for
4576 the same symbol if there are multiple references. */
4577 if (sym)
4578 {
4579 if (sym->aclass () == LOC_BLOCK)
4580 {
4581 fix_common_block (sym,
4582 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4583 msymbol));
4584 }
4585 else
4586 {
4587 SET_SYMBOL_VALUE_ADDRESS
4588 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4589 msymbol));
4590 }
4591 sym->set_section_index (msymbol->section_index ());
4592 }
4593
4594 if (prev)
4595 {
4596 sym = SYMBOL_VALUE_CHAIN (prev);
4597 }
4598 else
4599 {
4600 sym = global_sym_chain[hash];
4601 }
4602 }
4603 else
4604 {
4605 prev = sym;
4606 sym = SYMBOL_VALUE_CHAIN (sym);
4607 }
4608 }
4609 }
4610 if (resolve_objfile == objfile)
4611 break;
4612 resolve_objfile = objfile;
4613 }
4614
4615 /* Change the storage class of any remaining unresolved globals to
4616 LOC_UNRESOLVED and remove them from the chain. */
4617 for (hash = 0; hash < HASHSIZE; hash++)
4618 {
4619 sym = global_sym_chain[hash];
4620 while (sym)
4621 {
4622 prev = sym;
4623 sym = SYMBOL_VALUE_CHAIN (sym);
4624
4625 /* Change the symbol address from the misleading chain value
4626 to address zero. */
4627 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4628
4629 /* Complain about unresolved common block symbols. */
4630 if (prev->aclass () == LOC_STATIC)
4631 prev->set_aclass_index (LOC_UNRESOLVED);
4632 else
4633 complaint (_("%s: common block `%s' from "
4634 "global_sym_chain unresolved"),
4635 objfile_name (objfile), prev->print_name ());
4636 }
4637 }
4638 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4639 }
4640
4641 /* Initialize anything that needs initializing when starting to read
4642 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4643 to a psymtab. */
4644
4645 void
4646 stabsread_init (void)
4647 {
4648 }
4649
4650 /* Initialize anything that needs initializing when a completely new
4651 symbol file is specified (not just adding some symbols from another
4652 file, e.g. a shared library). */
4653
4654 void
4655 stabsread_new_init (void)
4656 {
4657 /* Empty the hash table of global syms looking for values. */
4658 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4659 }
4660
4661 /* Initialize anything that needs initializing at the same time as
4662 start_compunit_symtab() is called. */
4663
4664 void
4665 start_stabs (void)
4666 {
4667 global_stabs = NULL; /* AIX COFF */
4668 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4669 n_this_object_header_files = 1;
4670 type_vector_length = 0;
4671 type_vector = (struct type **) 0;
4672 within_function = 0;
4673
4674 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4675 common_block_name = NULL;
4676 }
4677
4678 /* Call after end_compunit_symtab(). */
4679
4680 void
4681 end_stabs (void)
4682 {
4683 if (type_vector)
4684 {
4685 xfree (type_vector);
4686 }
4687 type_vector = 0;
4688 type_vector_length = 0;
4689 previous_stab_code = 0;
4690 }
4691
4692 void
4693 finish_global_stabs (struct objfile *objfile)
4694 {
4695 if (global_stabs)
4696 {
4697 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4698 xfree (global_stabs);
4699 global_stabs = NULL;
4700 }
4701 }
4702
4703 /* Find the end of the name, delimited by a ':', but don't match
4704 ObjC symbols which look like -[Foo bar::]:bla. */
4705 static const char *
4706 find_name_end (const char *name)
4707 {
4708 const char *s = name;
4709
4710 if (s[0] == '-' || *s == '+')
4711 {
4712 /* Must be an ObjC method symbol. */
4713 if (s[1] != '[')
4714 {
4715 error (_("invalid symbol name \"%s\""), name);
4716 }
4717 s = strchr (s, ']');
4718 if (s == NULL)
4719 {
4720 error (_("invalid symbol name \"%s\""), name);
4721 }
4722 return strchr (s, ':');
4723 }
4724 else
4725 {
4726 return strchr (s, ':');
4727 }
4728 }
4729
4730 /* See stabsread.h. */
4731
4732 int
4733 hashname (const char *name)
4734 {
4735 return fast_hash (name, strlen (name)) % HASHSIZE;
4736 }
4737
4738 /* Initializer for this module. */
4739
4740 void _initialize_stabsread ();
4741 void
4742 _initialize_stabsread ()
4743 {
4744 undef_types_allocated = 20;
4745 undef_types_length = 0;
4746 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4747
4748 noname_undefs_allocated = 20;
4749 noname_undefs_length = 0;
4750 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4751
4752 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4753 &stab_register_funcs);
4754 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4755 &stab_register_funcs);
4756 }