d929fe47c59973fd09189969e7bc6f88e5791ad3
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
358
359 static void
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
362 {
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
372
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
378 while (pp[1] == ':')
379 {
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
382 }
383 sym = find_symbol_in_list (symbols, name, pp - name);
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
393
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
403 pp += 2;
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433 }
434 \f
435
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444 static int
445 read_type_number (char **pp, int *typenums)
446 {
447 int nbits;
448
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532 }
533
534 /* Return defined sym for the reference REFNUM. */
535 struct symbol *
536 ref_search (int refnum)
537 {
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541 }
542
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
546 static int
547 process_reference (char **string)
548 {
549 char *p;
550 int refnum = 0;
551
552 if (**string != '#')
553 return 0;
554
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566 }
567
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571 int
572 symbol_reference_defined (char **string)
573 {
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
579 /* Defining symbols end in '='. */
580 if (*p == '=')
581 {
582 /* Symbol is being defined here. */
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593 }
594
595 static int
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597 {
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
610 }
611
612 return regno;
613 }
614
615 static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617 };
618
619 /* The "aclass" indices for computed symbols. */
620
621 static int stab_register_index;
622 static int stab_regparm_index;
623
624 struct symbol *
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
627 {
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
629 struct symbol *sym;
630 char *p = (char *) find_name_end (string);
631 int deftype;
632 int synonym = 0;
633 int i;
634 char *new_name = NULL;
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
647 /* Ignore old-style symbols from cc -go. */
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
653 p += 2;
654 p = strchr (p, ':');
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
667 current_symbol = sym = allocate_symbol (objfile);
668
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
674 }
675 else
676 {
677 SYMBOL_LINE (sym) = 0; /* unknown */
678 }
679
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = (char *) alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
879 }
880 break;
881
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
948
949 /* fall into process_prototype_types. */
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
991 }
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1018 {
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1057
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1068 break;
1069
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1071 {
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1077 {
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1082 }
1083 break;
1084 }
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
1095 /*FALLTHROUGH */
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1114 {
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
1129
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1138 {
1139 struct symbol *prev_sym;
1140
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1146 {
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
1156 add_symbol_to_list (sym, &local_symbols);
1157 }
1158 else
1159 add_symbol_to_list (sym, &file_symbols);
1160 break;
1161
1162 case 'S':
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1171 {
1172 struct bound_minimal_symbol msym;
1173
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
1176 if (msym.minsym != NULL)
1177 {
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1180
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
1206 /* Typedef */
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1211 if (nameless)
1212 return NULL;
1213
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
1227
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1267
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
1272 char *name1;
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1282 {
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285 }
1286 else
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = allocate_symbol (objfile);
1296
1297 *struct_sym = *sym;
1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1313 by 't' which means we are typedef'ing it as well. */
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1320
1321 /* For a nameless type, we don't want a create a symbol, thus we
1322 did not use `sym'. Return without further processing. */
1323 if (nameless)
1324 return NULL;
1325
1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1327 SYMBOL_VALUE (sym) = valu;
1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
1338 /* Clone the sym and then modify it. */
1339 struct symbol *typedef_sym = allocate_symbol (objfile);
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct bound_minimal_symbol msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym.minsym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1416 SYMBOL_VALUE (sym) = 0;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
1425
1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1427 && SYMBOL_IS_ARGUMENT (sym))
1428 {
1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1430 variables passed in a register). */
1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1437 }
1438
1439 return sym;
1440 }
1441
1442 /* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
1449 return error_type (pp, objfile);
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
1457 return error_type (pp, objfile);
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
1463 foo = error_type (pp, objfile);
1464 else
1465 ++*pp;
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471 static struct type *
1472 error_type (char **pp, struct objfile *objfile)
1473 {
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
1494 return objfile_type (objfile)->builtin_error;
1495 }
1496 \f
1497
1498 /* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
1504 static struct type *
1505 read_type (char **pp, struct objfile *objfile)
1506 {
1507 struct type *type = 0;
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
1516 /* Used to distinguish string and bitstring from char-array and set. */
1517 int is_string = 0;
1518
1519 /* Used to distinguish vector from array. */
1520 int is_vector = 0;
1521
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
1531
1532 if (**pp != '=')
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1543 add_undefined_type (type, typenums);
1544
1545 return type;
1546 }
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
1556 the definition, but don't put it in the type vector. */
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
1561 again:
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
1572
1573 /* Name including "struct", etc. */
1574 char *type_name;
1575
1576 {
1577 char *from, *to, *p, *q1, *q2;
1578
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
1595 complaint (&symfile_complaints,
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
1602
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
1610
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
1628
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *newobj = XALLOCA (struct type_list);
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2032 break;
2033
2034 default:
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051 }
2052 \f
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2055
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2063
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2072 }
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091 #endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_integer_type (objfile, 32, 0, "int");
2102 break;
2103 case 2:
2104 rettype = init_integer_type (objfile, 8, 0, "char");
2105 break;
2106 case 3:
2107 rettype = init_integer_type (objfile, 16, 0, "short");
2108 break;
2109 case 4:
2110 rettype = init_integer_type (objfile, 32, 0, "long");
2111 break;
2112 case 5:
2113 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2114 break;
2115 case 6:
2116 rettype = init_integer_type (objfile, 8, 0, "signed char");
2117 break;
2118 case 7:
2119 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2120 break;
2121 case 8:
2122 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2123 break;
2124 case 9:
2125 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2126 break;
2127 case 10:
2128 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2129 break;
2130 case 11:
2131 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2132 break;
2133 case 12:
2134 /* IEEE single precision (32 bit). */
2135 rettype = init_float_type (objfile, 32, "float", NULL);
2136 break;
2137 case 13:
2138 /* IEEE double precision (64 bit). */
2139 rettype = init_float_type (objfile, 64, "double", NULL);
2140 break;
2141 case 14:
2142 /* This is an IEEE double on the RS/6000, and different machines with
2143 different sizes for "long double" should use different negative
2144 type numbers. See stabs.texinfo. */
2145 rettype = init_float_type (objfile, 64, "long double", NULL);
2146 break;
2147 case 15:
2148 rettype = init_integer_type (objfile, 32, 0, "integer");
2149 break;
2150 case 16:
2151 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2152 break;
2153 case 17:
2154 rettype = init_float_type (objfile, 32, "short real", NULL);
2155 break;
2156 case 18:
2157 rettype = init_float_type (objfile, 64, "real", NULL);
2158 break;
2159 case 19:
2160 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2161 break;
2162 case 20:
2163 rettype = init_character_type (objfile, 8, 1, "character");
2164 break;
2165 case 21:
2166 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2167 break;
2168 case 22:
2169 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2170 break;
2171 case 23:
2172 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2173 break;
2174 case 24:
2175 rettype = init_boolean_type (objfile, 32, 1, "logical");
2176 break;
2177 case 25:
2178 /* Complex type consisting of two IEEE single precision values. */
2179 rettype = init_complex_type (objfile, "complex",
2180 rs6000_builtin_type (12, objfile));
2181 break;
2182 case 26:
2183 /* Complex type consisting of two IEEE double precision values. */
2184 rettype = init_complex_type (objfile, "double complex",
2185 rs6000_builtin_type (13, objfile));
2186 break;
2187 case 27:
2188 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2189 break;
2190 case 28:
2191 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2192 break;
2193 case 29:
2194 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2195 break;
2196 case 30:
2197 rettype = init_character_type (objfile, 16, 0, "wchar");
2198 break;
2199 case 31:
2200 rettype = init_integer_type (objfile, 64, 0, "long long");
2201 break;
2202 case 32:
2203 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2204 break;
2205 case 33:
2206 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2207 break;
2208 case 34:
2209 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2210 break;
2211 }
2212 negative_types[-typenum] = rettype;
2213 return rettype;
2214 }
2215 \f
2216 /* This page contains subroutines of read_type. */
2217
2218 /* Wrapper around method_name_from_physname to flag a complaint
2219 if there is an error. */
2220
2221 static char *
2222 stabs_method_name_from_physname (const char *physname)
2223 {
2224 char *method_name;
2225
2226 method_name = method_name_from_physname (physname);
2227
2228 if (method_name == NULL)
2229 {
2230 complaint (&symfile_complaints,
2231 _("Method has bad physname %s\n"), physname);
2232 return NULL;
2233 }
2234
2235 return method_name;
2236 }
2237
2238 /* Read member function stabs info for C++ classes. The form of each member
2239 function data is:
2240
2241 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2242
2243 An example with two member functions is:
2244
2245 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2246
2247 For the case of overloaded operators, the format is op$::*.funcs, where
2248 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2249 name (such as `+=') and `.' marks the end of the operator name.
2250
2251 Returns 1 for success, 0 for failure. */
2252
2253 static int
2254 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2255 struct objfile *objfile)
2256 {
2257 int nfn_fields = 0;
2258 int length = 0;
2259 int i;
2260 struct next_fnfield
2261 {
2262 struct next_fnfield *next;
2263 struct fn_field fn_field;
2264 }
2265 *sublist;
2266 struct type *look_ahead_type;
2267 struct next_fnfieldlist *new_fnlist;
2268 struct next_fnfield *new_sublist;
2269 char *main_fn_name;
2270 char *p;
2271
2272 /* Process each list until we find something that is not a member function
2273 or find the end of the functions. */
2274
2275 while (**pp != ';')
2276 {
2277 /* We should be positioned at the start of the function name.
2278 Scan forward to find the first ':' and if it is not the
2279 first of a "::" delimiter, then this is not a member function. */
2280 p = *pp;
2281 while (*p != ':')
2282 {
2283 p++;
2284 }
2285 if (p[1] != ':')
2286 {
2287 break;
2288 }
2289
2290 sublist = NULL;
2291 look_ahead_type = NULL;
2292 length = 0;
2293
2294 new_fnlist = XCNEW (struct next_fnfieldlist);
2295 make_cleanup (xfree, new_fnlist);
2296
2297 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2298 {
2299 /* This is a completely wierd case. In order to stuff in the
2300 names that might contain colons (the usual name delimiter),
2301 Mike Tiemann defined a different name format which is
2302 signalled if the identifier is "op$". In that case, the
2303 format is "op$::XXXX." where XXXX is the name. This is
2304 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2305 /* This lets the user type "break operator+".
2306 We could just put in "+" as the name, but that wouldn't
2307 work for "*". */
2308 static char opname[32] = "op$";
2309 char *o = opname + 3;
2310
2311 /* Skip past '::'. */
2312 *pp = p + 2;
2313
2314 STABS_CONTINUE (pp, objfile);
2315 p = *pp;
2316 while (*p != '.')
2317 {
2318 *o++ = *p++;
2319 }
2320 main_fn_name = savestring (opname, o - opname);
2321 /* Skip past '.' */
2322 *pp = p + 1;
2323 }
2324 else
2325 {
2326 main_fn_name = savestring (*pp, p - *pp);
2327 /* Skip past '::'. */
2328 *pp = p + 2;
2329 }
2330 new_fnlist->fn_fieldlist.name = main_fn_name;
2331
2332 do
2333 {
2334 new_sublist = XCNEW (struct next_fnfield);
2335 make_cleanup (xfree, new_sublist);
2336
2337 /* Check for and handle cretinous dbx symbol name continuation! */
2338 if (look_ahead_type == NULL)
2339 {
2340 /* Normal case. */
2341 STABS_CONTINUE (pp, objfile);
2342
2343 new_sublist->fn_field.type = read_type (pp, objfile);
2344 if (**pp != ':')
2345 {
2346 /* Invalid symtab info for member function. */
2347 return 0;
2348 }
2349 }
2350 else
2351 {
2352 /* g++ version 1 kludge */
2353 new_sublist->fn_field.type = look_ahead_type;
2354 look_ahead_type = NULL;
2355 }
2356
2357 (*pp)++;
2358 p = *pp;
2359 while (*p != ';')
2360 {
2361 p++;
2362 }
2363
2364 /* These are methods, not functions. */
2365 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2366 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2367 else
2368 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2369 == TYPE_CODE_METHOD);
2370
2371 /* If this is just a stub, then we don't have the real name here. */
2372 if (TYPE_STUB (new_sublist->fn_field.type))
2373 {
2374 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2375 set_type_self_type (new_sublist->fn_field.type, type);
2376 new_sublist->fn_field.is_stub = 1;
2377 }
2378
2379 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2380 *pp = p + 1;
2381
2382 /* Set this member function's visibility fields. */
2383 switch (*(*pp)++)
2384 {
2385 case VISIBILITY_PRIVATE:
2386 new_sublist->fn_field.is_private = 1;
2387 break;
2388 case VISIBILITY_PROTECTED:
2389 new_sublist->fn_field.is_protected = 1;
2390 break;
2391 }
2392
2393 STABS_CONTINUE (pp, objfile);
2394 switch (**pp)
2395 {
2396 case 'A': /* Normal functions. */
2397 new_sublist->fn_field.is_const = 0;
2398 new_sublist->fn_field.is_volatile = 0;
2399 (*pp)++;
2400 break;
2401 case 'B': /* `const' member functions. */
2402 new_sublist->fn_field.is_const = 1;
2403 new_sublist->fn_field.is_volatile = 0;
2404 (*pp)++;
2405 break;
2406 case 'C': /* `volatile' member function. */
2407 new_sublist->fn_field.is_const = 0;
2408 new_sublist->fn_field.is_volatile = 1;
2409 (*pp)++;
2410 break;
2411 case 'D': /* `const volatile' member function. */
2412 new_sublist->fn_field.is_const = 1;
2413 new_sublist->fn_field.is_volatile = 1;
2414 (*pp)++;
2415 break;
2416 case '*': /* File compiled with g++ version 1 --
2417 no info. */
2418 case '?':
2419 case '.':
2420 break;
2421 default:
2422 complaint (&symfile_complaints,
2423 _("const/volatile indicator missing, got '%c'"),
2424 **pp);
2425 break;
2426 }
2427
2428 switch (*(*pp)++)
2429 {
2430 case '*':
2431 {
2432 int nbits;
2433 /* virtual member function, followed by index.
2434 The sign bit is set to distinguish pointers-to-methods
2435 from virtual function indicies. Since the array is
2436 in words, the quantity must be shifted left by 1
2437 on 16 bit machine, and by 2 on 32 bit machine, forcing
2438 the sign bit out, and usable as a valid index into
2439 the array. Remove the sign bit here. */
2440 new_sublist->fn_field.voffset =
2441 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2442 if (nbits != 0)
2443 return 0;
2444
2445 STABS_CONTINUE (pp, objfile);
2446 if (**pp == ';' || **pp == '\0')
2447 {
2448 /* Must be g++ version 1. */
2449 new_sublist->fn_field.fcontext = 0;
2450 }
2451 else
2452 {
2453 /* Figure out from whence this virtual function came.
2454 It may belong to virtual function table of
2455 one of its baseclasses. */
2456 look_ahead_type = read_type (pp, objfile);
2457 if (**pp == ':')
2458 {
2459 /* g++ version 1 overloaded methods. */
2460 }
2461 else
2462 {
2463 new_sublist->fn_field.fcontext = look_ahead_type;
2464 if (**pp != ';')
2465 {
2466 return 0;
2467 }
2468 else
2469 {
2470 ++*pp;
2471 }
2472 look_ahead_type = NULL;
2473 }
2474 }
2475 break;
2476 }
2477 case '?':
2478 /* static member function. */
2479 {
2480 int slen = strlen (main_fn_name);
2481
2482 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2483
2484 /* For static member functions, we can't tell if they
2485 are stubbed, as they are put out as functions, and not as
2486 methods.
2487 GCC v2 emits the fully mangled name if
2488 dbxout.c:flag_minimal_debug is not set, so we have to
2489 detect a fully mangled physname here and set is_stub
2490 accordingly. Fully mangled physnames in v2 start with
2491 the member function name, followed by two underscores.
2492 GCC v3 currently always emits stubbed member functions,
2493 but with fully mangled physnames, which start with _Z. */
2494 if (!(strncmp (new_sublist->fn_field.physname,
2495 main_fn_name, slen) == 0
2496 && new_sublist->fn_field.physname[slen] == '_'
2497 && new_sublist->fn_field.physname[slen + 1] == '_'))
2498 {
2499 new_sublist->fn_field.is_stub = 1;
2500 }
2501 break;
2502 }
2503
2504 default:
2505 /* error */
2506 complaint (&symfile_complaints,
2507 _("member function type missing, got '%c'"),
2508 (*pp)[-1]);
2509 /* Fall through into normal member function. */
2510
2511 case '.':
2512 /* normal member function. */
2513 new_sublist->fn_field.voffset = 0;
2514 new_sublist->fn_field.fcontext = 0;
2515 break;
2516 }
2517
2518 new_sublist->next = sublist;
2519 sublist = new_sublist;
2520 length++;
2521 STABS_CONTINUE (pp, objfile);
2522 }
2523 while (**pp != ';' && **pp != '\0');
2524
2525 (*pp)++;
2526 STABS_CONTINUE (pp, objfile);
2527
2528 /* Skip GCC 3.X member functions which are duplicates of the callable
2529 constructor/destructor. */
2530 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2531 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2532 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2533 {
2534 xfree (main_fn_name);
2535 }
2536 else
2537 {
2538 int has_stub = 0;
2539 int has_destructor = 0, has_other = 0;
2540 int is_v3 = 0;
2541 struct next_fnfield *tmp_sublist;
2542
2543 /* Various versions of GCC emit various mostly-useless
2544 strings in the name field for special member functions.
2545
2546 For stub methods, we need to defer correcting the name
2547 until we are ready to unstub the method, because the current
2548 name string is used by gdb_mangle_name. The only stub methods
2549 of concern here are GNU v2 operators; other methods have their
2550 names correct (see caveat below).
2551
2552 For non-stub methods, in GNU v3, we have a complete physname.
2553 Therefore we can safely correct the name now. This primarily
2554 affects constructors and destructors, whose name will be
2555 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2556 operators will also have incorrect names; for instance,
2557 "operator int" will be named "operator i" (i.e. the type is
2558 mangled).
2559
2560 For non-stub methods in GNU v2, we have no easy way to
2561 know if we have a complete physname or not. For most
2562 methods the result depends on the platform (if CPLUS_MARKER
2563 can be `$' or `.', it will use minimal debug information, or
2564 otherwise the full physname will be included).
2565
2566 Rather than dealing with this, we take a different approach.
2567 For v3 mangled names, we can use the full physname; for v2,
2568 we use cplus_demangle_opname (which is actually v2 specific),
2569 because the only interesting names are all operators - once again
2570 barring the caveat below. Skip this process if any method in the
2571 group is a stub, to prevent our fouling up the workings of
2572 gdb_mangle_name.
2573
2574 The caveat: GCC 2.95.x (and earlier?) put constructors and
2575 destructors in the same method group. We need to split this
2576 into two groups, because they should have different names.
2577 So for each method group we check whether it contains both
2578 routines whose physname appears to be a destructor (the physnames
2579 for and destructors are always provided, due to quirks in v2
2580 mangling) and routines whose physname does not appear to be a
2581 destructor. If so then we break up the list into two halves.
2582 Even if the constructors and destructors aren't in the same group
2583 the destructor will still lack the leading tilde, so that also
2584 needs to be fixed.
2585
2586 So, to summarize what we expect and handle here:
2587
2588 Given Given Real Real Action
2589 method name physname physname method name
2590
2591 __opi [none] __opi__3Foo operator int opname
2592 [now or later]
2593 Foo _._3Foo _._3Foo ~Foo separate and
2594 rename
2595 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2596 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2597 */
2598
2599 tmp_sublist = sublist;
2600 while (tmp_sublist != NULL)
2601 {
2602 if (tmp_sublist->fn_field.is_stub)
2603 has_stub = 1;
2604 if (tmp_sublist->fn_field.physname[0] == '_'
2605 && tmp_sublist->fn_field.physname[1] == 'Z')
2606 is_v3 = 1;
2607
2608 if (is_destructor_name (tmp_sublist->fn_field.physname))
2609 has_destructor++;
2610 else
2611 has_other++;
2612
2613 tmp_sublist = tmp_sublist->next;
2614 }
2615
2616 if (has_destructor && has_other)
2617 {
2618 struct next_fnfieldlist *destr_fnlist;
2619 struct next_fnfield *last_sublist;
2620
2621 /* Create a new fn_fieldlist for the destructors. */
2622
2623 destr_fnlist = XCNEW (struct next_fnfieldlist);
2624 make_cleanup (xfree, destr_fnlist);
2625
2626 destr_fnlist->fn_fieldlist.name
2627 = obconcat (&objfile->objfile_obstack, "~",
2628 new_fnlist->fn_fieldlist.name, (char *) NULL);
2629
2630 destr_fnlist->fn_fieldlist.fn_fields =
2631 XOBNEWVEC (&objfile->objfile_obstack,
2632 struct fn_field, has_destructor);
2633 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2634 sizeof (struct fn_field) * has_destructor);
2635 tmp_sublist = sublist;
2636 last_sublist = NULL;
2637 i = 0;
2638 while (tmp_sublist != NULL)
2639 {
2640 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2641 {
2642 tmp_sublist = tmp_sublist->next;
2643 continue;
2644 }
2645
2646 destr_fnlist->fn_fieldlist.fn_fields[i++]
2647 = tmp_sublist->fn_field;
2648 if (last_sublist)
2649 last_sublist->next = tmp_sublist->next;
2650 else
2651 sublist = tmp_sublist->next;
2652 last_sublist = tmp_sublist;
2653 tmp_sublist = tmp_sublist->next;
2654 }
2655
2656 destr_fnlist->fn_fieldlist.length = has_destructor;
2657 destr_fnlist->next = fip->fnlist;
2658 fip->fnlist = destr_fnlist;
2659 nfn_fields++;
2660 length -= has_destructor;
2661 }
2662 else if (is_v3)
2663 {
2664 /* v3 mangling prevents the use of abbreviated physnames,
2665 so we can do this here. There are stubbed methods in v3
2666 only:
2667 - in -gstabs instead of -gstabs+
2668 - or for static methods, which are output as a function type
2669 instead of a method type. */
2670 char *new_method_name =
2671 stabs_method_name_from_physname (sublist->fn_field.physname);
2672
2673 if (new_method_name != NULL
2674 && strcmp (new_method_name,
2675 new_fnlist->fn_fieldlist.name) != 0)
2676 {
2677 new_fnlist->fn_fieldlist.name = new_method_name;
2678 xfree (main_fn_name);
2679 }
2680 else
2681 xfree (new_method_name);
2682 }
2683 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2684 {
2685 new_fnlist->fn_fieldlist.name =
2686 obconcat (&objfile->objfile_obstack,
2687 "~", main_fn_name, (char *)NULL);
2688 xfree (main_fn_name);
2689 }
2690 else if (!has_stub)
2691 {
2692 char dem_opname[256];
2693 int ret;
2694
2695 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2696 dem_opname, DMGL_ANSI);
2697 if (!ret)
2698 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2699 dem_opname, 0);
2700 if (ret)
2701 new_fnlist->fn_fieldlist.name
2702 = ((const char *)
2703 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2704 strlen (dem_opname)));
2705 xfree (main_fn_name);
2706 }
2707
2708 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2709 obstack_alloc (&objfile->objfile_obstack,
2710 sizeof (struct fn_field) * length);
2711 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2712 sizeof (struct fn_field) * length);
2713 for (i = length; (i--, sublist); sublist = sublist->next)
2714 {
2715 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2716 }
2717
2718 new_fnlist->fn_fieldlist.length = length;
2719 new_fnlist->next = fip->fnlist;
2720 fip->fnlist = new_fnlist;
2721 nfn_fields++;
2722 }
2723 }
2724
2725 if (nfn_fields)
2726 {
2727 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2728 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2729 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2730 memset (TYPE_FN_FIELDLISTS (type), 0,
2731 sizeof (struct fn_fieldlist) * nfn_fields);
2732 TYPE_NFN_FIELDS (type) = nfn_fields;
2733 }
2734
2735 return 1;
2736 }
2737
2738 /* Special GNU C++ name.
2739
2740 Returns 1 for success, 0 for failure. "failure" means that we can't
2741 keep parsing and it's time for error_type(). */
2742
2743 static int
2744 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2745 struct objfile *objfile)
2746 {
2747 char *p;
2748 const char *name;
2749 char cpp_abbrev;
2750 struct type *context;
2751
2752 p = *pp;
2753 if (*++p == 'v')
2754 {
2755 name = NULL;
2756 cpp_abbrev = *++p;
2757
2758 *pp = p + 1;
2759
2760 /* At this point, *pp points to something like "22:23=*22...",
2761 where the type number before the ':' is the "context" and
2762 everything after is a regular type definition. Lookup the
2763 type, find it's name, and construct the field name. */
2764
2765 context = read_type (pp, objfile);
2766
2767 switch (cpp_abbrev)
2768 {
2769 case 'f': /* $vf -- a virtual function table pointer */
2770 name = type_name_no_tag (context);
2771 if (name == NULL)
2772 {
2773 name = "";
2774 }
2775 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2776 vptr_name, name, (char *) NULL);
2777 break;
2778
2779 case 'b': /* $vb -- a virtual bsomethingorother */
2780 name = type_name_no_tag (context);
2781 if (name == NULL)
2782 {
2783 complaint (&symfile_complaints,
2784 _("C++ abbreviated type name "
2785 "unknown at symtab pos %d"),
2786 symnum);
2787 name = "FOO";
2788 }
2789 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2790 name, (char *) NULL);
2791 break;
2792
2793 default:
2794 invalid_cpp_abbrev_complaint (*pp);
2795 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2796 "INVALID_CPLUSPLUS_ABBREV",
2797 (char *) NULL);
2798 break;
2799 }
2800
2801 /* At this point, *pp points to the ':'. Skip it and read the
2802 field type. */
2803
2804 p = ++(*pp);
2805 if (p[-1] != ':')
2806 {
2807 invalid_cpp_abbrev_complaint (*pp);
2808 return 0;
2809 }
2810 fip->list->field.type = read_type (pp, objfile);
2811 if (**pp == ',')
2812 (*pp)++; /* Skip the comma. */
2813 else
2814 return 0;
2815
2816 {
2817 int nbits;
2818
2819 SET_FIELD_BITPOS (fip->list->field,
2820 read_huge_number (pp, ';', &nbits, 0));
2821 if (nbits != 0)
2822 return 0;
2823 }
2824 /* This field is unpacked. */
2825 FIELD_BITSIZE (fip->list->field) = 0;
2826 fip->list->visibility = VISIBILITY_PRIVATE;
2827 }
2828 else
2829 {
2830 invalid_cpp_abbrev_complaint (*pp);
2831 /* We have no idea what syntax an unrecognized abbrev would have, so
2832 better return 0. If we returned 1, we would need to at least advance
2833 *pp to avoid an infinite loop. */
2834 return 0;
2835 }
2836 return 1;
2837 }
2838
2839 static void
2840 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2841 struct type *type, struct objfile *objfile)
2842 {
2843 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2844
2845 fip->list->field.name
2846 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2847 *pp = p + 1;
2848
2849 /* This means we have a visibility for a field coming. */
2850 if (**pp == '/')
2851 {
2852 (*pp)++;
2853 fip->list->visibility = *(*pp)++;
2854 }
2855 else
2856 {
2857 /* normal dbx-style format, no explicit visibility */
2858 fip->list->visibility = VISIBILITY_PUBLIC;
2859 }
2860
2861 fip->list->field.type = read_type (pp, objfile);
2862 if (**pp == ':')
2863 {
2864 p = ++(*pp);
2865 #if 0
2866 /* Possible future hook for nested types. */
2867 if (**pp == '!')
2868 {
2869 fip->list->field.bitpos = (long) -2; /* nested type */
2870 p = ++(*pp);
2871 }
2872 else
2873 ...;
2874 #endif
2875 while (*p != ';')
2876 {
2877 p++;
2878 }
2879 /* Static class member. */
2880 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2881 *pp = p + 1;
2882 return;
2883 }
2884 else if (**pp != ',')
2885 {
2886 /* Bad structure-type format. */
2887 stabs_general_complaint ("bad structure-type format");
2888 return;
2889 }
2890
2891 (*pp)++; /* Skip the comma. */
2892
2893 {
2894 int nbits;
2895
2896 SET_FIELD_BITPOS (fip->list->field,
2897 read_huge_number (pp, ',', &nbits, 0));
2898 if (nbits != 0)
2899 {
2900 stabs_general_complaint ("bad structure-type format");
2901 return;
2902 }
2903 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2904 if (nbits != 0)
2905 {
2906 stabs_general_complaint ("bad structure-type format");
2907 return;
2908 }
2909 }
2910
2911 if (FIELD_BITPOS (fip->list->field) == 0
2912 && FIELD_BITSIZE (fip->list->field) == 0)
2913 {
2914 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2915 it is a field which has been optimized out. The correct stab for
2916 this case is to use VISIBILITY_IGNORE, but that is a recent
2917 invention. (2) It is a 0-size array. For example
2918 union { int num; char str[0]; } foo. Printing _("<no value>" for
2919 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2920 will continue to work, and a 0-size array as a whole doesn't
2921 have any contents to print.
2922
2923 I suspect this probably could also happen with gcc -gstabs (not
2924 -gstabs+) for static fields, and perhaps other C++ extensions.
2925 Hopefully few people use -gstabs with gdb, since it is intended
2926 for dbx compatibility. */
2927
2928 /* Ignore this field. */
2929 fip->list->visibility = VISIBILITY_IGNORE;
2930 }
2931 else
2932 {
2933 /* Detect an unpacked field and mark it as such.
2934 dbx gives a bit size for all fields.
2935 Note that forward refs cannot be packed,
2936 and treat enums as if they had the width of ints. */
2937
2938 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2939
2940 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2941 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2942 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2943 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2944 {
2945 FIELD_BITSIZE (fip->list->field) = 0;
2946 }
2947 if ((FIELD_BITSIZE (fip->list->field)
2948 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2949 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2950 && FIELD_BITSIZE (fip->list->field)
2951 == gdbarch_int_bit (gdbarch))
2952 )
2953 &&
2954 FIELD_BITPOS (fip->list->field) % 8 == 0)
2955 {
2956 FIELD_BITSIZE (fip->list->field) = 0;
2957 }
2958 }
2959 }
2960
2961
2962 /* Read struct or class data fields. They have the form:
2963
2964 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2965
2966 At the end, we see a semicolon instead of a field.
2967
2968 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2969 a static field.
2970
2971 The optional VISIBILITY is one of:
2972
2973 '/0' (VISIBILITY_PRIVATE)
2974 '/1' (VISIBILITY_PROTECTED)
2975 '/2' (VISIBILITY_PUBLIC)
2976 '/9' (VISIBILITY_IGNORE)
2977
2978 or nothing, for C style fields with public visibility.
2979
2980 Returns 1 for success, 0 for failure. */
2981
2982 static int
2983 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2984 struct objfile *objfile)
2985 {
2986 char *p;
2987 struct nextfield *newobj;
2988
2989 /* We better set p right now, in case there are no fields at all... */
2990
2991 p = *pp;
2992
2993 /* Read each data member type until we find the terminating ';' at the end of
2994 the data member list, or break for some other reason such as finding the
2995 start of the member function list. */
2996 /* Stab string for structure/union does not end with two ';' in
2997 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2998
2999 while (**pp != ';' && **pp != '\0')
3000 {
3001 STABS_CONTINUE (pp, objfile);
3002 /* Get space to record the next field's data. */
3003 newobj = XCNEW (struct nextfield);
3004 make_cleanup (xfree, newobj);
3005
3006 newobj->next = fip->list;
3007 fip->list = newobj;
3008
3009 /* Get the field name. */
3010 p = *pp;
3011
3012 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3013 unless the CPLUS_MARKER is followed by an underscore, in
3014 which case it is just the name of an anonymous type, which we
3015 should handle like any other type name. */
3016
3017 if (is_cplus_marker (p[0]) && p[1] != '_')
3018 {
3019 if (!read_cpp_abbrev (fip, pp, type, objfile))
3020 return 0;
3021 continue;
3022 }
3023
3024 /* Look for the ':' that separates the field name from the field
3025 values. Data members are delimited by a single ':', while member
3026 functions are delimited by a pair of ':'s. When we hit the member
3027 functions (if any), terminate scan loop and return. */
3028
3029 while (*p != ':' && *p != '\0')
3030 {
3031 p++;
3032 }
3033 if (*p == '\0')
3034 return 0;
3035
3036 /* Check to see if we have hit the member functions yet. */
3037 if (p[1] == ':')
3038 {
3039 break;
3040 }
3041 read_one_struct_field (fip, pp, p, type, objfile);
3042 }
3043 if (p[0] == ':' && p[1] == ':')
3044 {
3045 /* (the deleted) chill the list of fields: the last entry (at
3046 the head) is a partially constructed entry which we now
3047 scrub. */
3048 fip->list = fip->list->next;
3049 }
3050 return 1;
3051 }
3052 /* *INDENT-OFF* */
3053 /* The stabs for C++ derived classes contain baseclass information which
3054 is marked by a '!' character after the total size. This function is
3055 called when we encounter the baseclass marker, and slurps up all the
3056 baseclass information.
3057
3058 Immediately following the '!' marker is the number of base classes that
3059 the class is derived from, followed by information for each base class.
3060 For each base class, there are two visibility specifiers, a bit offset
3061 to the base class information within the derived class, a reference to
3062 the type for the base class, and a terminating semicolon.
3063
3064 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3065 ^^ ^ ^ ^ ^ ^ ^
3066 Baseclass information marker __________________|| | | | | | |
3067 Number of baseclasses __________________________| | | | | | |
3068 Visibility specifiers (2) ________________________| | | | | |
3069 Offset in bits from start of class _________________| | | | |
3070 Type number for base class ___________________________| | | |
3071 Visibility specifiers (2) _______________________________| | |
3072 Offset in bits from start of class ________________________| |
3073 Type number of base class ____________________________________|
3074
3075 Return 1 for success, 0 for (error-type-inducing) failure. */
3076 /* *INDENT-ON* */
3077
3078
3079
3080 static int
3081 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3082 struct objfile *objfile)
3083 {
3084 int i;
3085 struct nextfield *newobj;
3086
3087 if (**pp != '!')
3088 {
3089 return 1;
3090 }
3091 else
3092 {
3093 /* Skip the '!' baseclass information marker. */
3094 (*pp)++;
3095 }
3096
3097 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3098 {
3099 int nbits;
3100
3101 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3102 if (nbits != 0)
3103 return 0;
3104 }
3105
3106 #if 0
3107 /* Some stupid compilers have trouble with the following, so break
3108 it up into simpler expressions. */
3109 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3110 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3111 #else
3112 {
3113 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3114 char *pointer;
3115
3116 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3117 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3118 }
3119 #endif /* 0 */
3120
3121 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3122
3123 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3124 {
3125 newobj = XCNEW (struct nextfield);
3126 make_cleanup (xfree, newobj);
3127
3128 newobj->next = fip->list;
3129 fip->list = newobj;
3130 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3131 field! */
3132
3133 STABS_CONTINUE (pp, objfile);
3134 switch (**pp)
3135 {
3136 case '0':
3137 /* Nothing to do. */
3138 break;
3139 case '1':
3140 SET_TYPE_FIELD_VIRTUAL (type, i);
3141 break;
3142 default:
3143 /* Unknown character. Complain and treat it as non-virtual. */
3144 {
3145 complaint (&symfile_complaints,
3146 _("Unknown virtual character `%c' for baseclass"),
3147 **pp);
3148 }
3149 }
3150 ++(*pp);
3151
3152 newobj->visibility = *(*pp)++;
3153 switch (newobj->visibility)
3154 {
3155 case VISIBILITY_PRIVATE:
3156 case VISIBILITY_PROTECTED:
3157 case VISIBILITY_PUBLIC:
3158 break;
3159 default:
3160 /* Bad visibility format. Complain and treat it as
3161 public. */
3162 {
3163 complaint (&symfile_complaints,
3164 _("Unknown visibility `%c' for baseclass"),
3165 newobj->visibility);
3166 newobj->visibility = VISIBILITY_PUBLIC;
3167 }
3168 }
3169
3170 {
3171 int nbits;
3172
3173 /* The remaining value is the bit offset of the portion of the object
3174 corresponding to this baseclass. Always zero in the absence of
3175 multiple inheritance. */
3176
3177 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3178 if (nbits != 0)
3179 return 0;
3180 }
3181
3182 /* The last piece of baseclass information is the type of the
3183 base class. Read it, and remember it's type name as this
3184 field's name. */
3185
3186 newobj->field.type = read_type (pp, objfile);
3187 newobj->field.name = type_name_no_tag (newobj->field.type);
3188
3189 /* Skip trailing ';' and bump count of number of fields seen. */
3190 if (**pp == ';')
3191 (*pp)++;
3192 else
3193 return 0;
3194 }
3195 return 1;
3196 }
3197
3198 /* The tail end of stabs for C++ classes that contain a virtual function
3199 pointer contains a tilde, a %, and a type number.
3200 The type number refers to the base class (possibly this class itself) which
3201 contains the vtable pointer for the current class.
3202
3203 This function is called when we have parsed all the method declarations,
3204 so we can look for the vptr base class info. */
3205
3206 static int
3207 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3208 struct objfile *objfile)
3209 {
3210 char *p;
3211
3212 STABS_CONTINUE (pp, objfile);
3213
3214 /* If we are positioned at a ';', then skip it. */
3215 if (**pp == ';')
3216 {
3217 (*pp)++;
3218 }
3219
3220 if (**pp == '~')
3221 {
3222 (*pp)++;
3223
3224 if (**pp == '=' || **pp == '+' || **pp == '-')
3225 {
3226 /* Obsolete flags that used to indicate the presence
3227 of constructors and/or destructors. */
3228 (*pp)++;
3229 }
3230
3231 /* Read either a '%' or the final ';'. */
3232 if (*(*pp)++ == '%')
3233 {
3234 /* The next number is the type number of the base class
3235 (possibly our own class) which supplies the vtable for
3236 this class. Parse it out, and search that class to find
3237 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3238 and TYPE_VPTR_FIELDNO. */
3239
3240 struct type *t;
3241 int i;
3242
3243 t = read_type (pp, objfile);
3244 p = (*pp)++;
3245 while (*p != '\0' && *p != ';')
3246 {
3247 p++;
3248 }
3249 if (*p == '\0')
3250 {
3251 /* Premature end of symbol. */
3252 return 0;
3253 }
3254
3255 set_type_vptr_basetype (type, t);
3256 if (type == t) /* Our own class provides vtbl ptr. */
3257 {
3258 for (i = TYPE_NFIELDS (t) - 1;
3259 i >= TYPE_N_BASECLASSES (t);
3260 --i)
3261 {
3262 const char *name = TYPE_FIELD_NAME (t, i);
3263
3264 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3265 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3266 {
3267 set_type_vptr_fieldno (type, i);
3268 goto gotit;
3269 }
3270 }
3271 /* Virtual function table field not found. */
3272 complaint (&symfile_complaints,
3273 _("virtual function table pointer "
3274 "not found when defining class `%s'"),
3275 TYPE_NAME (type));
3276 return 0;
3277 }
3278 else
3279 {
3280 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3281 }
3282
3283 gotit:
3284 *pp = p + 1;
3285 }
3286 }
3287 return 1;
3288 }
3289
3290 static int
3291 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3292 {
3293 int n;
3294
3295 for (n = TYPE_NFN_FIELDS (type);
3296 fip->fnlist != NULL;
3297 fip->fnlist = fip->fnlist->next)
3298 {
3299 --n; /* Circumvent Sun3 compiler bug. */
3300 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3301 }
3302 return 1;
3303 }
3304
3305 /* Create the vector of fields, and record how big it is.
3306 We need this info to record proper virtual function table information
3307 for this class's virtual functions. */
3308
3309 static int
3310 attach_fields_to_type (struct field_info *fip, struct type *type,
3311 struct objfile *objfile)
3312 {
3313 int nfields = 0;
3314 int non_public_fields = 0;
3315 struct nextfield *scan;
3316
3317 /* Count up the number of fields that we have, as well as taking note of
3318 whether or not there are any non-public fields, which requires us to
3319 allocate and build the private_field_bits and protected_field_bits
3320 bitfields. */
3321
3322 for (scan = fip->list; scan != NULL; scan = scan->next)
3323 {
3324 nfields++;
3325 if (scan->visibility != VISIBILITY_PUBLIC)
3326 {
3327 non_public_fields++;
3328 }
3329 }
3330
3331 /* Now we know how many fields there are, and whether or not there are any
3332 non-public fields. Record the field count, allocate space for the
3333 array of fields, and create blank visibility bitfields if necessary. */
3334
3335 TYPE_NFIELDS (type) = nfields;
3336 TYPE_FIELDS (type) = (struct field *)
3337 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3338 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3339
3340 if (non_public_fields)
3341 {
3342 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3343
3344 TYPE_FIELD_PRIVATE_BITS (type) =
3345 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3346 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3347
3348 TYPE_FIELD_PROTECTED_BITS (type) =
3349 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3350 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3351
3352 TYPE_FIELD_IGNORE_BITS (type) =
3353 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3354 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3355 }
3356
3357 /* Copy the saved-up fields into the field vector. Start from the
3358 head of the list, adding to the tail of the field array, so that
3359 they end up in the same order in the array in which they were
3360 added to the list. */
3361
3362 while (nfields-- > 0)
3363 {
3364 TYPE_FIELD (type, nfields) = fip->list->field;
3365 switch (fip->list->visibility)
3366 {
3367 case VISIBILITY_PRIVATE:
3368 SET_TYPE_FIELD_PRIVATE (type, nfields);
3369 break;
3370
3371 case VISIBILITY_PROTECTED:
3372 SET_TYPE_FIELD_PROTECTED (type, nfields);
3373 break;
3374
3375 case VISIBILITY_IGNORE:
3376 SET_TYPE_FIELD_IGNORE (type, nfields);
3377 break;
3378
3379 case VISIBILITY_PUBLIC:
3380 break;
3381
3382 default:
3383 /* Unknown visibility. Complain and treat it as public. */
3384 {
3385 complaint (&symfile_complaints,
3386 _("Unknown visibility `%c' for field"),
3387 fip->list->visibility);
3388 }
3389 break;
3390 }
3391 fip->list = fip->list->next;
3392 }
3393 return 1;
3394 }
3395
3396
3397 /* Complain that the compiler has emitted more than one definition for the
3398 structure type TYPE. */
3399 static void
3400 complain_about_struct_wipeout (struct type *type)
3401 {
3402 const char *name = "";
3403 const char *kind = "";
3404
3405 if (TYPE_TAG_NAME (type))
3406 {
3407 name = TYPE_TAG_NAME (type);
3408 switch (TYPE_CODE (type))
3409 {
3410 case TYPE_CODE_STRUCT: kind = "struct "; break;
3411 case TYPE_CODE_UNION: kind = "union "; break;
3412 case TYPE_CODE_ENUM: kind = "enum "; break;
3413 default: kind = "";
3414 }
3415 }
3416 else if (TYPE_NAME (type))
3417 {
3418 name = TYPE_NAME (type);
3419 kind = "";
3420 }
3421 else
3422 {
3423 name = "<unknown>";
3424 kind = "";
3425 }
3426
3427 complaint (&symfile_complaints,
3428 _("struct/union type gets multiply defined: %s%s"), kind, name);
3429 }
3430
3431 /* Set the length for all variants of a same main_type, which are
3432 connected in the closed chain.
3433
3434 This is something that needs to be done when a type is defined *after*
3435 some cross references to this type have already been read. Consider
3436 for instance the following scenario where we have the following two
3437 stabs entries:
3438
3439 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3440 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3441
3442 A stubbed version of type dummy is created while processing the first
3443 stabs entry. The length of that type is initially set to zero, since
3444 it is unknown at this point. Also, a "constant" variation of type
3445 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3446 the stabs line).
3447
3448 The second stabs entry allows us to replace the stubbed definition
3449 with the real definition. However, we still need to adjust the length
3450 of the "constant" variation of that type, as its length was left
3451 untouched during the main type replacement... */
3452
3453 static void
3454 set_length_in_type_chain (struct type *type)
3455 {
3456 struct type *ntype = TYPE_CHAIN (type);
3457
3458 while (ntype != type)
3459 {
3460 if (TYPE_LENGTH(ntype) == 0)
3461 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3462 else
3463 complain_about_struct_wipeout (ntype);
3464 ntype = TYPE_CHAIN (ntype);
3465 }
3466 }
3467
3468 /* Read the description of a structure (or union type) and return an object
3469 describing the type.
3470
3471 PP points to a character pointer that points to the next unconsumed token
3472 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3473 *PP will point to "4a:1,0,32;;".
3474
3475 TYPE points to an incomplete type that needs to be filled in.
3476
3477 OBJFILE points to the current objfile from which the stabs information is
3478 being read. (Note that it is redundant in that TYPE also contains a pointer
3479 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3480 */
3481
3482 static struct type *
3483 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3484 struct objfile *objfile)
3485 {
3486 struct cleanup *back_to;
3487 struct field_info fi;
3488
3489 fi.list = NULL;
3490 fi.fnlist = NULL;
3491
3492 /* When describing struct/union/class types in stabs, G++ always drops
3493 all qualifications from the name. So if you've got:
3494 struct A { ... struct B { ... }; ... };
3495 then G++ will emit stabs for `struct A::B' that call it simply
3496 `struct B'. Obviously, if you've got a real top-level definition for
3497 `struct B', or other nested definitions, this is going to cause
3498 problems.
3499
3500 Obviously, GDB can't fix this by itself, but it can at least avoid
3501 scribbling on existing structure type objects when new definitions
3502 appear. */
3503 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3504 || TYPE_STUB (type)))
3505 {
3506 complain_about_struct_wipeout (type);
3507
3508 /* It's probably best to return the type unchanged. */
3509 return type;
3510 }
3511
3512 back_to = make_cleanup (null_cleanup, 0);
3513
3514 INIT_CPLUS_SPECIFIC (type);
3515 TYPE_CODE (type) = type_code;
3516 TYPE_STUB (type) = 0;
3517
3518 /* First comes the total size in bytes. */
3519
3520 {
3521 int nbits;
3522
3523 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3524 if (nbits != 0)
3525 {
3526 do_cleanups (back_to);
3527 return error_type (pp, objfile);
3528 }
3529 set_length_in_type_chain (type);
3530 }
3531
3532 /* Now read the baseclasses, if any, read the regular C struct or C++
3533 class member fields, attach the fields to the type, read the C++
3534 member functions, attach them to the type, and then read any tilde
3535 field (baseclass specifier for the class holding the main vtable). */
3536
3537 if (!read_baseclasses (&fi, pp, type, objfile)
3538 || !read_struct_fields (&fi, pp, type, objfile)
3539 || !attach_fields_to_type (&fi, type, objfile)
3540 || !read_member_functions (&fi, pp, type, objfile)
3541 || !attach_fn_fields_to_type (&fi, type)
3542 || !read_tilde_fields (&fi, pp, type, objfile))
3543 {
3544 type = error_type (pp, objfile);
3545 }
3546
3547 do_cleanups (back_to);
3548 return (type);
3549 }
3550
3551 /* Read a definition of an array type,
3552 and create and return a suitable type object.
3553 Also creates a range type which represents the bounds of that
3554 array. */
3555
3556 static struct type *
3557 read_array_type (char **pp, struct type *type,
3558 struct objfile *objfile)
3559 {
3560 struct type *index_type, *element_type, *range_type;
3561 int lower, upper;
3562 int adjustable = 0;
3563 int nbits;
3564
3565 /* Format of an array type:
3566 "ar<index type>;lower;upper;<array_contents_type>".
3567 OS9000: "arlower,upper;<array_contents_type>".
3568
3569 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3570 for these, produce a type like float[][]. */
3571
3572 {
3573 index_type = read_type (pp, objfile);
3574 if (**pp != ';')
3575 /* Improper format of array type decl. */
3576 return error_type (pp, objfile);
3577 ++*pp;
3578 }
3579
3580 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3581 {
3582 (*pp)++;
3583 adjustable = 1;
3584 }
3585 lower = read_huge_number (pp, ';', &nbits, 0);
3586
3587 if (nbits != 0)
3588 return error_type (pp, objfile);
3589
3590 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3591 {
3592 (*pp)++;
3593 adjustable = 1;
3594 }
3595 upper = read_huge_number (pp, ';', &nbits, 0);
3596 if (nbits != 0)
3597 return error_type (pp, objfile);
3598
3599 element_type = read_type (pp, objfile);
3600
3601 if (adjustable)
3602 {
3603 lower = 0;
3604 upper = -1;
3605 }
3606
3607 range_type =
3608 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3609 type = create_array_type (type, element_type, range_type);
3610
3611 return type;
3612 }
3613
3614
3615 /* Read a definition of an enumeration type,
3616 and create and return a suitable type object.
3617 Also defines the symbols that represent the values of the type. */
3618
3619 static struct type *
3620 read_enum_type (char **pp, struct type *type,
3621 struct objfile *objfile)
3622 {
3623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3624 char *p;
3625 char *name;
3626 long n;
3627 struct symbol *sym;
3628 int nsyms = 0;
3629 struct pending **symlist;
3630 struct pending *osyms, *syms;
3631 int o_nsyms;
3632 int nbits;
3633 int unsigned_enum = 1;
3634
3635 #if 0
3636 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3637 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3638 to do? For now, force all enum values to file scope. */
3639 if (within_function)
3640 symlist = &local_symbols;
3641 else
3642 #endif
3643 symlist = &file_symbols;
3644 osyms = *symlist;
3645 o_nsyms = osyms ? osyms->nsyms : 0;
3646
3647 /* The aix4 compiler emits an extra field before the enum members;
3648 my guess is it's a type of some sort. Just ignore it. */
3649 if (**pp == '-')
3650 {
3651 /* Skip over the type. */
3652 while (**pp != ':')
3653 (*pp)++;
3654
3655 /* Skip over the colon. */
3656 (*pp)++;
3657 }
3658
3659 /* Read the value-names and their values.
3660 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3661 A semicolon or comma instead of a NAME means the end. */
3662 while (**pp && **pp != ';' && **pp != ',')
3663 {
3664 STABS_CONTINUE (pp, objfile);
3665 p = *pp;
3666 while (*p != ':')
3667 p++;
3668 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3669 *pp = p + 1;
3670 n = read_huge_number (pp, ',', &nbits, 0);
3671 if (nbits != 0)
3672 return error_type (pp, objfile);
3673
3674 sym = allocate_symbol (objfile);
3675 SYMBOL_SET_LINKAGE_NAME (sym, name);
3676 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3677 &objfile->objfile_obstack);
3678 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3679 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3680 SYMBOL_VALUE (sym) = n;
3681 if (n < 0)
3682 unsigned_enum = 0;
3683 add_symbol_to_list (sym, symlist);
3684 nsyms++;
3685 }
3686
3687 if (**pp == ';')
3688 (*pp)++; /* Skip the semicolon. */
3689
3690 /* Now fill in the fields of the type-structure. */
3691
3692 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3693 set_length_in_type_chain (type);
3694 TYPE_CODE (type) = TYPE_CODE_ENUM;
3695 TYPE_STUB (type) = 0;
3696 if (unsigned_enum)
3697 TYPE_UNSIGNED (type) = 1;
3698 TYPE_NFIELDS (type) = nsyms;
3699 TYPE_FIELDS (type) = (struct field *)
3700 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3701 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3702
3703 /* Find the symbols for the values and put them into the type.
3704 The symbols can be found in the symlist that we put them on
3705 to cause them to be defined. osyms contains the old value
3706 of that symlist; everything up to there was defined by us. */
3707 /* Note that we preserve the order of the enum constants, so
3708 that in something like "enum {FOO, LAST_THING=FOO}" we print
3709 FOO, not LAST_THING. */
3710
3711 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3712 {
3713 int last = syms == osyms ? o_nsyms : 0;
3714 int j = syms->nsyms;
3715
3716 for (; --j >= last; --n)
3717 {
3718 struct symbol *xsym = syms->symbol[j];
3719
3720 SYMBOL_TYPE (xsym) = type;
3721 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3722 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3723 TYPE_FIELD_BITSIZE (type, n) = 0;
3724 }
3725 if (syms == osyms)
3726 break;
3727 }
3728
3729 return type;
3730 }
3731
3732 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3733 typedefs in every file (for int, long, etc):
3734
3735 type = b <signed> <width> <format type>; <offset>; <nbits>
3736 signed = u or s.
3737 optional format type = c or b for char or boolean.
3738 offset = offset from high order bit to start bit of type.
3739 width is # bytes in object of this type, nbits is # bits in type.
3740
3741 The width/offset stuff appears to be for small objects stored in
3742 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3743 FIXME. */
3744
3745 static struct type *
3746 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3747 {
3748 int type_bits;
3749 int nbits;
3750 int unsigned_type;
3751 int boolean_type = 0;
3752
3753 switch (**pp)
3754 {
3755 case 's':
3756 unsigned_type = 0;
3757 break;
3758 case 'u':
3759 unsigned_type = 1;
3760 break;
3761 default:
3762 return error_type (pp, objfile);
3763 }
3764 (*pp)++;
3765
3766 /* For some odd reason, all forms of char put a c here. This is strange
3767 because no other type has this honor. We can safely ignore this because
3768 we actually determine 'char'acterness by the number of bits specified in
3769 the descriptor.
3770 Boolean forms, e.g Fortran logical*X, put a b here. */
3771
3772 if (**pp == 'c')
3773 (*pp)++;
3774 else if (**pp == 'b')
3775 {
3776 boolean_type = 1;
3777 (*pp)++;
3778 }
3779
3780 /* The first number appears to be the number of bytes occupied
3781 by this type, except that unsigned short is 4 instead of 2.
3782 Since this information is redundant with the third number,
3783 we will ignore it. */
3784 read_huge_number (pp, ';', &nbits, 0);
3785 if (nbits != 0)
3786 return error_type (pp, objfile);
3787
3788 /* The second number is always 0, so ignore it too. */
3789 read_huge_number (pp, ';', &nbits, 0);
3790 if (nbits != 0)
3791 return error_type (pp, objfile);
3792
3793 /* The third number is the number of bits for this type. */
3794 type_bits = read_huge_number (pp, 0, &nbits, 0);
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797 /* The type *should* end with a semicolon. If it are embedded
3798 in a larger type the semicolon may be the only way to know where
3799 the type ends. If this type is at the end of the stabstring we
3800 can deal with the omitted semicolon (but we don't have to like
3801 it). Don't bother to complain(), Sun's compiler omits the semicolon
3802 for "void". */
3803 if (**pp == ';')
3804 ++(*pp);
3805
3806 if (type_bits == 0)
3807 {
3808 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3809 if (unsigned_type)
3810 TYPE_UNSIGNED (type) = 1;
3811 return type;
3812 }
3813
3814 if (boolean_type)
3815 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3816 else
3817 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3818 }
3819
3820 static struct type *
3821 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3822 {
3823 int nbits;
3824 int details;
3825 int nbytes;
3826 struct type *rettype;
3827
3828 /* The first number has more details about the type, for example
3829 FN_COMPLEX. */
3830 details = read_huge_number (pp, ';', &nbits, 0);
3831 if (nbits != 0)
3832 return error_type (pp, objfile);
3833
3834 /* The second number is the number of bytes occupied by this type. */
3835 nbytes = read_huge_number (pp, ';', &nbits, 0);
3836 if (nbits != 0)
3837 return error_type (pp, objfile);
3838
3839 nbits = nbytes * TARGET_CHAR_BIT;
3840
3841 if (details == NF_COMPLEX || details == NF_COMPLEX16
3842 || details == NF_COMPLEX32)
3843 {
3844 rettype = init_float_type (objfile, nbits / 2, NULL, NULL);
3845 return init_complex_type (objfile, NULL, rettype);
3846 }
3847
3848 return init_float_type (objfile, nbits, NULL, NULL);
3849 }
3850
3851 /* Read a number from the string pointed to by *PP.
3852 The value of *PP is advanced over the number.
3853 If END is nonzero, the character that ends the
3854 number must match END, or an error happens;
3855 and that character is skipped if it does match.
3856 If END is zero, *PP is left pointing to that character.
3857
3858 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3859 the number is represented in an octal representation, assume that
3860 it is represented in a 2's complement representation with a size of
3861 TWOS_COMPLEMENT_BITS.
3862
3863 If the number fits in a long, set *BITS to 0 and return the value.
3864 If not, set *BITS to be the number of bits in the number and return 0.
3865
3866 If encounter garbage, set *BITS to -1 and return 0. */
3867
3868 static long
3869 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3870 {
3871 char *p = *pp;
3872 int sign = 1;
3873 int sign_bit = 0;
3874 long n = 0;
3875 int radix = 10;
3876 char overflow = 0;
3877 int nbits = 0;
3878 int c;
3879 long upper_limit;
3880 int twos_complement_representation = 0;
3881
3882 if (*p == '-')
3883 {
3884 sign = -1;
3885 p++;
3886 }
3887
3888 /* Leading zero means octal. GCC uses this to output values larger
3889 than an int (because that would be hard in decimal). */
3890 if (*p == '0')
3891 {
3892 radix = 8;
3893 p++;
3894 }
3895
3896 /* Skip extra zeros. */
3897 while (*p == '0')
3898 p++;
3899
3900 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3901 {
3902 /* Octal, possibly signed. Check if we have enough chars for a
3903 negative number. */
3904
3905 size_t len;
3906 char *p1 = p;
3907
3908 while ((c = *p1) >= '0' && c < '8')
3909 p1++;
3910
3911 len = p1 - p;
3912 if (len > twos_complement_bits / 3
3913 || (twos_complement_bits % 3 == 0
3914 && len == twos_complement_bits / 3))
3915 {
3916 /* Ok, we have enough characters for a signed value, check
3917 for signness by testing if the sign bit is set. */
3918 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3919 c = *p - '0';
3920 if (c & (1 << sign_bit))
3921 {
3922 /* Definitely signed. */
3923 twos_complement_representation = 1;
3924 sign = -1;
3925 }
3926 }
3927 }
3928
3929 upper_limit = LONG_MAX / radix;
3930
3931 while ((c = *p++) >= '0' && c < ('0' + radix))
3932 {
3933 if (n <= upper_limit)
3934 {
3935 if (twos_complement_representation)
3936 {
3937 /* Octal, signed, twos complement representation. In
3938 this case, n is the corresponding absolute value. */
3939 if (n == 0)
3940 {
3941 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3942
3943 n = -sn;
3944 }
3945 else
3946 {
3947 n *= radix;
3948 n -= c - '0';
3949 }
3950 }
3951 else
3952 {
3953 /* unsigned representation */
3954 n *= radix;
3955 n += c - '0'; /* FIXME this overflows anyway. */
3956 }
3957 }
3958 else
3959 overflow = 1;
3960
3961 /* This depends on large values being output in octal, which is
3962 what GCC does. */
3963 if (radix == 8)
3964 {
3965 if (nbits == 0)
3966 {
3967 if (c == '0')
3968 /* Ignore leading zeroes. */
3969 ;
3970 else if (c == '1')
3971 nbits = 1;
3972 else if (c == '2' || c == '3')
3973 nbits = 2;
3974 else
3975 nbits = 3;
3976 }
3977 else
3978 nbits += 3;
3979 }
3980 }
3981 if (end)
3982 {
3983 if (c && c != end)
3984 {
3985 if (bits != NULL)
3986 *bits = -1;
3987 return 0;
3988 }
3989 }
3990 else
3991 --p;
3992
3993 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3994 {
3995 /* We were supposed to parse a number with maximum
3996 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001
4002 *pp = p;
4003 if (overflow)
4004 {
4005 if (nbits == 0)
4006 {
4007 /* Large decimal constants are an error (because it is hard to
4008 count how many bits are in them). */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013
4014 /* -0x7f is the same as 0x80. So deal with it by adding one to
4015 the number of bits. Two's complement represention octals
4016 can't have a '-' in front. */
4017 if (sign == -1 && !twos_complement_representation)
4018 ++nbits;
4019 if (bits)
4020 *bits = nbits;
4021 }
4022 else
4023 {
4024 if (bits)
4025 *bits = 0;
4026 return n * sign;
4027 }
4028 /* It's *BITS which has the interesting information. */
4029 return 0;
4030 }
4031
4032 static struct type *
4033 read_range_type (char **pp, int typenums[2], int type_size,
4034 struct objfile *objfile)
4035 {
4036 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4037 char *orig_pp = *pp;
4038 int rangenums[2];
4039 long n2, n3;
4040 int n2bits, n3bits;
4041 int self_subrange;
4042 struct type *result_type;
4043 struct type *index_type = NULL;
4044
4045 /* First comes a type we are a subrange of.
4046 In C it is usually 0, 1 or the type being defined. */
4047 if (read_type_number (pp, rangenums) != 0)
4048 return error_type (pp, objfile);
4049 self_subrange = (rangenums[0] == typenums[0] &&
4050 rangenums[1] == typenums[1]);
4051
4052 if (**pp == '=')
4053 {
4054 *pp = orig_pp;
4055 index_type = read_type (pp, objfile);
4056 }
4057
4058 /* A semicolon should now follow; skip it. */
4059 if (**pp == ';')
4060 (*pp)++;
4061
4062 /* The remaining two operands are usually lower and upper bounds
4063 of the range. But in some special cases they mean something else. */
4064 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4065 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4066
4067 if (n2bits == -1 || n3bits == -1)
4068 return error_type (pp, objfile);
4069
4070 if (index_type)
4071 goto handle_true_range;
4072
4073 /* If limits are huge, must be large integral type. */
4074 if (n2bits != 0 || n3bits != 0)
4075 {
4076 char got_signed = 0;
4077 char got_unsigned = 0;
4078 /* Number of bits in the type. */
4079 int nbits = 0;
4080
4081 /* If a type size attribute has been specified, the bounds of
4082 the range should fit in this size. If the lower bounds needs
4083 more bits than the upper bound, then the type is signed. */
4084 if (n2bits <= type_size && n3bits <= type_size)
4085 {
4086 if (n2bits == type_size && n2bits > n3bits)
4087 got_signed = 1;
4088 else
4089 got_unsigned = 1;
4090 nbits = type_size;
4091 }
4092 /* Range from 0 to <large number> is an unsigned large integral type. */
4093 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4094 {
4095 got_unsigned = 1;
4096 nbits = n3bits;
4097 }
4098 /* Range from <large number> to <large number>-1 is a large signed
4099 integral type. Take care of the case where <large number> doesn't
4100 fit in a long but <large number>-1 does. */
4101 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4102 || (n2bits != 0 && n3bits == 0
4103 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4104 && n3 == LONG_MAX))
4105 {
4106 got_signed = 1;
4107 nbits = n2bits;
4108 }
4109
4110 if (got_signed || got_unsigned)
4111 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4112 else
4113 return error_type (pp, objfile);
4114 }
4115
4116 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4117 if (self_subrange && n2 == 0 && n3 == 0)
4118 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4119
4120 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4121 is the width in bytes.
4122
4123 Fortran programs appear to use this for complex types also. To
4124 distinguish between floats and complex, g77 (and others?) seem
4125 to use self-subranges for the complexes, and subranges of int for
4126 the floats.
4127
4128 Also note that for complexes, g77 sets n2 to the size of one of
4129 the member floats, not the whole complex beast. My guess is that
4130 this was to work well with pre-COMPLEX versions of gdb. */
4131
4132 if (n3 == 0 && n2 > 0)
4133 {
4134 struct type *float_type
4135 = init_float_type (objfile, n2 * TARGET_CHAR_BIT, NULL, NULL);
4136
4137 if (self_subrange)
4138 return init_complex_type (objfile, NULL, float_type);
4139 else
4140 return float_type;
4141 }
4142
4143 /* If the upper bound is -1, it must really be an unsigned integral. */
4144
4145 else if (n2 == 0 && n3 == -1)
4146 {
4147 int bits = type_size;
4148
4149 if (bits <= 0)
4150 {
4151 /* We don't know its size. It is unsigned int or unsigned
4152 long. GCC 2.3.3 uses this for long long too, but that is
4153 just a GDB 3.5 compatibility hack. */
4154 bits = gdbarch_int_bit (gdbarch);
4155 }
4156
4157 return init_integer_type (objfile, bits, 1, NULL);
4158 }
4159
4160 /* Special case: char is defined (Who knows why) as a subrange of
4161 itself with range 0-127. */
4162 else if (self_subrange && n2 == 0 && n3 == 127)
4163 {
4164 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4165 TYPE_NOSIGN (type) = 1;
4166 return type;
4167 }
4168 /* We used to do this only for subrange of self or subrange of int. */
4169 else if (n2 == 0)
4170 {
4171 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4172 "unsigned long", and we already checked for that,
4173 so don't need to test for it here. */
4174
4175 if (n3 < 0)
4176 /* n3 actually gives the size. */
4177 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4178
4179 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4180 unsigned n-byte integer. But do require n to be a power of
4181 two; we don't want 3- and 5-byte integers flying around. */
4182 {
4183 int bytes;
4184 unsigned long bits;
4185
4186 bits = n3;
4187 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4188 bits >>= 8;
4189 if (bits == 0
4190 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4191 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4192 }
4193 }
4194 /* I think this is for Convex "long long". Since I don't know whether
4195 Convex sets self_subrange, I also accept that particular size regardless
4196 of self_subrange. */
4197 else if (n3 == 0 && n2 < 0
4198 && (self_subrange
4199 || n2 == -gdbarch_long_long_bit
4200 (gdbarch) / TARGET_CHAR_BIT))
4201 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4202 else if (n2 == -n3 - 1)
4203 {
4204 if (n3 == 0x7f)
4205 return init_integer_type (objfile, 8, 0, NULL);
4206 if (n3 == 0x7fff)
4207 return init_integer_type (objfile, 16, 0, NULL);
4208 if (n3 == 0x7fffffff)
4209 return init_integer_type (objfile, 32, 0, NULL);
4210 }
4211
4212 /* We have a real range type on our hands. Allocate space and
4213 return a real pointer. */
4214 handle_true_range:
4215
4216 if (self_subrange)
4217 index_type = objfile_type (objfile)->builtin_int;
4218 else
4219 index_type = *dbx_lookup_type (rangenums, objfile);
4220 if (index_type == NULL)
4221 {
4222 /* Does this actually ever happen? Is that why we are worrying
4223 about dealing with it rather than just calling error_type? */
4224
4225 complaint (&symfile_complaints,
4226 _("base type %d of range type is not defined"), rangenums[1]);
4227
4228 index_type = objfile_type (objfile)->builtin_int;
4229 }
4230
4231 result_type
4232 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4233 return (result_type);
4234 }
4235
4236 /* Read in an argument list. This is a list of types, separated by commas
4237 and terminated with END. Return the list of types read in, or NULL
4238 if there is an error. */
4239
4240 static struct field *
4241 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4242 int *varargsp)
4243 {
4244 /* FIXME! Remove this arbitrary limit! */
4245 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4246 int n = 0, i;
4247 struct field *rval;
4248
4249 while (**pp != end)
4250 {
4251 if (**pp != ',')
4252 /* Invalid argument list: no ','. */
4253 return NULL;
4254 (*pp)++;
4255 STABS_CONTINUE (pp, objfile);
4256 types[n++] = read_type (pp, objfile);
4257 }
4258 (*pp)++; /* get past `end' (the ':' character). */
4259
4260 if (n == 0)
4261 {
4262 /* We should read at least the THIS parameter here. Some broken stabs
4263 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4264 have been present ";-16,(0,43)" reference instead. This way the
4265 excessive ";" marker prematurely stops the parameters parsing. */
4266
4267 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4268 *varargsp = 0;
4269 }
4270 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4271 *varargsp = 1;
4272 else
4273 {
4274 n--;
4275 *varargsp = 0;
4276 }
4277
4278 rval = XCNEWVEC (struct field, n);
4279 for (i = 0; i < n; i++)
4280 rval[i].type = types[i];
4281 *nargsp = n;
4282 return rval;
4283 }
4284 \f
4285 /* Common block handling. */
4286
4287 /* List of symbols declared since the last BCOMM. This list is a tail
4288 of local_symbols. When ECOMM is seen, the symbols on the list
4289 are noted so their proper addresses can be filled in later,
4290 using the common block base address gotten from the assembler
4291 stabs. */
4292
4293 static struct pending *common_block;
4294 static int common_block_i;
4295
4296 /* Name of the current common block. We get it from the BCOMM instead of the
4297 ECOMM to match IBM documentation (even though IBM puts the name both places
4298 like everyone else). */
4299 static char *common_block_name;
4300
4301 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4302 to remain after this function returns. */
4303
4304 void
4305 common_block_start (char *name, struct objfile *objfile)
4306 {
4307 if (common_block_name != NULL)
4308 {
4309 complaint (&symfile_complaints,
4310 _("Invalid symbol data: common block within common block"));
4311 }
4312 common_block = local_symbols;
4313 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4314 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4315 strlen (name));
4316 }
4317
4318 /* Process a N_ECOMM symbol. */
4319
4320 void
4321 common_block_end (struct objfile *objfile)
4322 {
4323 /* Symbols declared since the BCOMM are to have the common block
4324 start address added in when we know it. common_block and
4325 common_block_i point to the first symbol after the BCOMM in
4326 the local_symbols list; copy the list and hang it off the
4327 symbol for the common block name for later fixup. */
4328 int i;
4329 struct symbol *sym;
4330 struct pending *newobj = 0;
4331 struct pending *next;
4332 int j;
4333
4334 if (common_block_name == NULL)
4335 {
4336 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4337 return;
4338 }
4339
4340 sym = allocate_symbol (objfile);
4341 /* Note: common_block_name already saved on objfile_obstack. */
4342 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4343 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4344
4345 /* Now we copy all the symbols which have been defined since the BCOMM. */
4346
4347 /* Copy all the struct pendings before common_block. */
4348 for (next = local_symbols;
4349 next != NULL && next != common_block;
4350 next = next->next)
4351 {
4352 for (j = 0; j < next->nsyms; j++)
4353 add_symbol_to_list (next->symbol[j], &newobj);
4354 }
4355
4356 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4357 NULL, it means copy all the local symbols (which we already did
4358 above). */
4359
4360 if (common_block != NULL)
4361 for (j = common_block_i; j < common_block->nsyms; j++)
4362 add_symbol_to_list (common_block->symbol[j], &newobj);
4363
4364 SYMBOL_TYPE (sym) = (struct type *) newobj;
4365
4366 /* Should we be putting local_symbols back to what it was?
4367 Does it matter? */
4368
4369 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4370 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4371 global_sym_chain[i] = sym;
4372 common_block_name = NULL;
4373 }
4374
4375 /* Add a common block's start address to the offset of each symbol
4376 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4377 the common block name). */
4378
4379 static void
4380 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4381 {
4382 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4383
4384 for (; next; next = next->next)
4385 {
4386 int j;
4387
4388 for (j = next->nsyms - 1; j >= 0; j--)
4389 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4390 }
4391 }
4392 \f
4393
4394
4395 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4396 See add_undefined_type for more details. */
4397
4398 static void
4399 add_undefined_type_noname (struct type *type, int typenums[2])
4400 {
4401 struct nat nat;
4402
4403 nat.typenums[0] = typenums [0];
4404 nat.typenums[1] = typenums [1];
4405 nat.type = type;
4406
4407 if (noname_undefs_length == noname_undefs_allocated)
4408 {
4409 noname_undefs_allocated *= 2;
4410 noname_undefs = (struct nat *)
4411 xrealloc ((char *) noname_undefs,
4412 noname_undefs_allocated * sizeof (struct nat));
4413 }
4414 noname_undefs[noname_undefs_length++] = nat;
4415 }
4416
4417 /* Add TYPE to the UNDEF_TYPES vector.
4418 See add_undefined_type for more details. */
4419
4420 static void
4421 add_undefined_type_1 (struct type *type)
4422 {
4423 if (undef_types_length == undef_types_allocated)
4424 {
4425 undef_types_allocated *= 2;
4426 undef_types = (struct type **)
4427 xrealloc ((char *) undef_types,
4428 undef_types_allocated * sizeof (struct type *));
4429 }
4430 undef_types[undef_types_length++] = type;
4431 }
4432
4433 /* What about types defined as forward references inside of a small lexical
4434 scope? */
4435 /* Add a type to the list of undefined types to be checked through
4436 once this file has been read in.
4437
4438 In practice, we actually maintain two such lists: The first list
4439 (UNDEF_TYPES) is used for types whose name has been provided, and
4440 concerns forward references (eg 'xs' or 'xu' forward references);
4441 the second list (NONAME_UNDEFS) is used for types whose name is
4442 unknown at creation time, because they were referenced through
4443 their type number before the actual type was declared.
4444 This function actually adds the given type to the proper list. */
4445
4446 static void
4447 add_undefined_type (struct type *type, int typenums[2])
4448 {
4449 if (TYPE_TAG_NAME (type) == NULL)
4450 add_undefined_type_noname (type, typenums);
4451 else
4452 add_undefined_type_1 (type);
4453 }
4454
4455 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4456
4457 static void
4458 cleanup_undefined_types_noname (struct objfile *objfile)
4459 {
4460 int i;
4461
4462 for (i = 0; i < noname_undefs_length; i++)
4463 {
4464 struct nat nat = noname_undefs[i];
4465 struct type **type;
4466
4467 type = dbx_lookup_type (nat.typenums, objfile);
4468 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4469 {
4470 /* The instance flags of the undefined type are still unset,
4471 and needs to be copied over from the reference type.
4472 Since replace_type expects them to be identical, we need
4473 to set these flags manually before hand. */
4474 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4475 replace_type (nat.type, *type);
4476 }
4477 }
4478
4479 noname_undefs_length = 0;
4480 }
4481
4482 /* Go through each undefined type, see if it's still undefined, and fix it
4483 up if possible. We have two kinds of undefined types:
4484
4485 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4486 Fix: update array length using the element bounds
4487 and the target type's length.
4488 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4489 yet defined at the time a pointer to it was made.
4490 Fix: Do a full lookup on the struct/union tag. */
4491
4492 static void
4493 cleanup_undefined_types_1 (void)
4494 {
4495 struct type **type;
4496
4497 /* Iterate over every undefined type, and look for a symbol whose type
4498 matches our undefined type. The symbol matches if:
4499 1. It is a typedef in the STRUCT domain;
4500 2. It has the same name, and same type code;
4501 3. The instance flags are identical.
4502
4503 It is important to check the instance flags, because we have seen
4504 examples where the debug info contained definitions such as:
4505
4506 "foo_t:t30=B31=xefoo_t:"
4507
4508 In this case, we have created an undefined type named "foo_t" whose
4509 instance flags is null (when processing "xefoo_t"), and then created
4510 another type with the same name, but with different instance flags
4511 ('B' means volatile). I think that the definition above is wrong,
4512 since the same type cannot be volatile and non-volatile at the same
4513 time, but we need to be able to cope with it when it happens. The
4514 approach taken here is to treat these two types as different. */
4515
4516 for (type = undef_types; type < undef_types + undef_types_length; type++)
4517 {
4518 switch (TYPE_CODE (*type))
4519 {
4520
4521 case TYPE_CODE_STRUCT:
4522 case TYPE_CODE_UNION:
4523 case TYPE_CODE_ENUM:
4524 {
4525 /* Check if it has been defined since. Need to do this here
4526 as well as in check_typedef to deal with the (legitimate in
4527 C though not C++) case of several types with the same name
4528 in different source files. */
4529 if (TYPE_STUB (*type))
4530 {
4531 struct pending *ppt;
4532 int i;
4533 /* Name of the type, without "struct" or "union". */
4534 const char *type_name = TYPE_TAG_NAME (*type);
4535
4536 if (type_name == NULL)
4537 {
4538 complaint (&symfile_complaints, _("need a type name"));
4539 break;
4540 }
4541 for (ppt = file_symbols; ppt; ppt = ppt->next)
4542 {
4543 for (i = 0; i < ppt->nsyms; i++)
4544 {
4545 struct symbol *sym = ppt->symbol[i];
4546
4547 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4548 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4549 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4550 TYPE_CODE (*type))
4551 && (TYPE_INSTANCE_FLAGS (*type) ==
4552 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4553 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4554 type_name) == 0)
4555 replace_type (*type, SYMBOL_TYPE (sym));
4556 }
4557 }
4558 }
4559 }
4560 break;
4561
4562 default:
4563 {
4564 complaint (&symfile_complaints,
4565 _("forward-referenced types left unresolved, "
4566 "type code %d."),
4567 TYPE_CODE (*type));
4568 }
4569 break;
4570 }
4571 }
4572
4573 undef_types_length = 0;
4574 }
4575
4576 /* Try to fix all the undefined types we ecountered while processing
4577 this unit. */
4578
4579 void
4580 cleanup_undefined_stabs_types (struct objfile *objfile)
4581 {
4582 cleanup_undefined_types_1 ();
4583 cleanup_undefined_types_noname (objfile);
4584 }
4585
4586 /* Scan through all of the global symbols defined in the object file,
4587 assigning values to the debugging symbols that need to be assigned
4588 to. Get these symbols from the minimal symbol table. */
4589
4590 void
4591 scan_file_globals (struct objfile *objfile)
4592 {
4593 int hash;
4594 struct minimal_symbol *msymbol;
4595 struct symbol *sym, *prev;
4596 struct objfile *resolve_objfile;
4597
4598 /* SVR4 based linkers copy referenced global symbols from shared
4599 libraries to the main executable.
4600 If we are scanning the symbols for a shared library, try to resolve
4601 them from the minimal symbols of the main executable first. */
4602
4603 if (symfile_objfile && objfile != symfile_objfile)
4604 resolve_objfile = symfile_objfile;
4605 else
4606 resolve_objfile = objfile;
4607
4608 while (1)
4609 {
4610 /* Avoid expensive loop through all minimal symbols if there are
4611 no unresolved symbols. */
4612 for (hash = 0; hash < HASHSIZE; hash++)
4613 {
4614 if (global_sym_chain[hash])
4615 break;
4616 }
4617 if (hash >= HASHSIZE)
4618 return;
4619
4620 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4621 {
4622 QUIT;
4623
4624 /* Skip static symbols. */
4625 switch (MSYMBOL_TYPE (msymbol))
4626 {
4627 case mst_file_text:
4628 case mst_file_data:
4629 case mst_file_bss:
4630 continue;
4631 default:
4632 break;
4633 }
4634
4635 prev = NULL;
4636
4637 /* Get the hash index and check all the symbols
4638 under that hash index. */
4639
4640 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4641
4642 for (sym = global_sym_chain[hash]; sym;)
4643 {
4644 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4645 SYMBOL_LINKAGE_NAME (sym)) == 0)
4646 {
4647 /* Splice this symbol out of the hash chain and
4648 assign the value we have to it. */
4649 if (prev)
4650 {
4651 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4652 }
4653 else
4654 {
4655 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4656 }
4657
4658 /* Check to see whether we need to fix up a common block. */
4659 /* Note: this code might be executed several times for
4660 the same symbol if there are multiple references. */
4661 if (sym)
4662 {
4663 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4664 {
4665 fix_common_block (sym,
4666 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4667 msymbol));
4668 }
4669 else
4670 {
4671 SYMBOL_VALUE_ADDRESS (sym)
4672 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4673 }
4674 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4675 }
4676
4677 if (prev)
4678 {
4679 sym = SYMBOL_VALUE_CHAIN (prev);
4680 }
4681 else
4682 {
4683 sym = global_sym_chain[hash];
4684 }
4685 }
4686 else
4687 {
4688 prev = sym;
4689 sym = SYMBOL_VALUE_CHAIN (sym);
4690 }
4691 }
4692 }
4693 if (resolve_objfile == objfile)
4694 break;
4695 resolve_objfile = objfile;
4696 }
4697
4698 /* Change the storage class of any remaining unresolved globals to
4699 LOC_UNRESOLVED and remove them from the chain. */
4700 for (hash = 0; hash < HASHSIZE; hash++)
4701 {
4702 sym = global_sym_chain[hash];
4703 while (sym)
4704 {
4705 prev = sym;
4706 sym = SYMBOL_VALUE_CHAIN (sym);
4707
4708 /* Change the symbol address from the misleading chain value
4709 to address zero. */
4710 SYMBOL_VALUE_ADDRESS (prev) = 0;
4711
4712 /* Complain about unresolved common block symbols. */
4713 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4714 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4715 else
4716 complaint (&symfile_complaints,
4717 _("%s: common block `%s' from "
4718 "global_sym_chain unresolved"),
4719 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4720 }
4721 }
4722 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4723 }
4724
4725 /* Initialize anything that needs initializing when starting to read
4726 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4727 to a psymtab. */
4728
4729 void
4730 stabsread_init (void)
4731 {
4732 }
4733
4734 /* Initialize anything that needs initializing when a completely new
4735 symbol file is specified (not just adding some symbols from another
4736 file, e.g. a shared library). */
4737
4738 void
4739 stabsread_new_init (void)
4740 {
4741 /* Empty the hash table of global syms looking for values. */
4742 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4743 }
4744
4745 /* Initialize anything that needs initializing at the same time as
4746 start_symtab() is called. */
4747
4748 void
4749 start_stabs (void)
4750 {
4751 global_stabs = NULL; /* AIX COFF */
4752 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4753 n_this_object_header_files = 1;
4754 type_vector_length = 0;
4755 type_vector = (struct type **) 0;
4756
4757 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4758 common_block_name = NULL;
4759 }
4760
4761 /* Call after end_symtab(). */
4762
4763 void
4764 end_stabs (void)
4765 {
4766 if (type_vector)
4767 {
4768 xfree (type_vector);
4769 }
4770 type_vector = 0;
4771 type_vector_length = 0;
4772 previous_stab_code = 0;
4773 }
4774
4775 void
4776 finish_global_stabs (struct objfile *objfile)
4777 {
4778 if (global_stabs)
4779 {
4780 patch_block_stabs (global_symbols, global_stabs, objfile);
4781 xfree (global_stabs);
4782 global_stabs = NULL;
4783 }
4784 }
4785
4786 /* Find the end of the name, delimited by a ':', but don't match
4787 ObjC symbols which look like -[Foo bar::]:bla. */
4788 static char *
4789 find_name_end (char *name)
4790 {
4791 char *s = name;
4792
4793 if (s[0] == '-' || *s == '+')
4794 {
4795 /* Must be an ObjC method symbol. */
4796 if (s[1] != '[')
4797 {
4798 error (_("invalid symbol name \"%s\""), name);
4799 }
4800 s = strchr (s, ']');
4801 if (s == NULL)
4802 {
4803 error (_("invalid symbol name \"%s\""), name);
4804 }
4805 return strchr (s, ':');
4806 }
4807 else
4808 {
4809 return strchr (s, ':');
4810 }
4811 }
4812
4813 /* Initializer for this module. */
4814
4815 void
4816 _initialize_stabsread (void)
4817 {
4818 rs6000_builtin_type_data = register_objfile_data ();
4819
4820 undef_types_allocated = 20;
4821 undef_types_length = 0;
4822 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4823
4824 noname_undefs_allocated = 20;
4825 noname_undefs_length = 0;
4826 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4827
4828 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4829 &stab_register_funcs);
4830 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4831 &stab_register_funcs);
4832 }