Modified Files:
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57 int visibility;
58 struct field field;
59 } *list;
60 struct next_fnfieldlist
61 {
62 struct next_fnfieldlist *next;
63 struct fn_fieldlist fn_fieldlist;
64 } *fnlist;
65 };
66
67 static struct type *
68 dbx_alloc_type PARAMS ((int [2], struct objfile *));
69
70 static long read_huge_number PARAMS ((char **, int, int *));
71
72 static struct type *error_type PARAMS ((char **));
73
74 static void
75 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
76 struct objfile *));
77
78 static void
79 fix_common_block PARAMS ((struct symbol *, int));
80
81 static int
82 read_type_number PARAMS ((char **, int *));
83
84 static struct type *
85 read_range_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
89
90 static struct type *
91 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
92
93 static struct type *
94 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
95
96 static struct type *
97 rs6000_builtin_type PARAMS ((int));
98
99 static int
100 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
101 struct objfile *));
102
103 static int
104 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
105 struct objfile *));
106
107 static int
108 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
109 struct objfile *));
110
111 static int
112 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
113 struct objfile *));
114
115 static int
116 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
117
118 static int
119 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
120 struct objfile *));
121
122 static struct type *
123 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
124
125 static struct type *
126 read_array_type PARAMS ((char **, struct type *, struct objfile *));
127
128 static struct type **
129 read_args PARAMS ((char **, int, struct objfile *));
130
131 static int
132 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
133 struct objfile *));
134
135 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
136 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
137
138 /* Define this as 1 if a pcc declaration of a char or short argument
139 gives the correct address. Otherwise assume pcc gives the
140 address of the corresponding int, which is not the same on a
141 big-endian machine. */
142
143 #ifndef BELIEVE_PCC_PROMOTION
144 #define BELIEVE_PCC_PROMOTION 0
145 #endif
146
147 #if 0
148 /* I think this can go away, all current uses have been removed.
149 GCC emits a few crazy types which can only be distinguished by the
150 name (complex, long long on some machines), but I'd say fix GCC. */
151
152 /* During some calls to read_type (and thus to read_range_type), this
153 contains the name of the type being defined. Range types are only
154 used in C as basic types. We use the name to distinguish the otherwise
155 identical basic types "int" and "long" and their unsigned versions.
156 FIXME, this should disappear with better type management. */
157
158 static char *long_kludge_name;
159 #endif
160
161 #if 0
162 struct complaint dbx_class_complaint =
163 {
164 "encountered DBX-style class variable debugging information.\n\
165 You seem to have compiled your program with \
166 \"g++ -g0\" instead of \"g++ -g\".\n\
167 Therefore GDB will not know about your class variables", 0, 0
168 };
169 #endif
170
171 struct complaint invalid_cpp_abbrev_complaint =
172 {"invalid C++ abbreviation `%s'", 0, 0};
173
174 struct complaint invalid_cpp_type_complaint =
175 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
176
177 struct complaint member_fn_complaint =
178 {"member function type missing, got '%c'", 0, 0};
179
180 struct complaint const_vol_complaint =
181 {"const/volatile indicator missing, got '%c'", 0, 0};
182
183 struct complaint error_type_complaint =
184 {"debug info mismatch between compiler and debugger", 0, 0};
185
186 struct complaint invalid_member_complaint =
187 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
188
189 struct complaint range_type_base_complaint =
190 {"base type %d of range type is not defined", 0, 0};
191
192 struct complaint reg_value_complaint =
193 {"register number too large in symbol %s", 0, 0};
194
195 struct complaint vtbl_notfound_complaint =
196 {"virtual function table pointer not found when defining class `%s'", 0, 0};
197
198 struct complaint unrecognized_cplus_name_complaint =
199 {"Unknown C++ symbol name `%s'", 0, 0};
200
201 struct complaint rs6000_builtin_complaint =
202 {"Unknown builtin type %d", 0, 0};
203
204 struct complaint stabs_general_complaint =
205 {"%s", 0, 0};
206
207 /* Make a list of forward references which haven't been defined. */
208
209 static struct type **undef_types;
210 static int undef_types_allocated;
211 static int undef_types_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp) \
215 do { \
216 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
217 } while (0)
218
219 \f
220 /* Look up a dbx type-number pair. Return the address of the slot
221 where the type for that number-pair is stored.
222 The number-pair is in TYPENUMS.
223
224 This can be used for finding the type associated with that pair
225 or for associating a new type with the pair. */
226
227 struct type **
228 dbx_lookup_type (typenums)
229 int typenums[2];
230 {
231 register int filenum = typenums[0];
232 register int index = typenums[1];
233 unsigned old_len;
234 register int real_filenum;
235 register struct header_file *f;
236 int f_orig_length;
237
238 if (filenum == -1) /* -1,-1 is for temporary types. */
239 return 0;
240
241 if (filenum < 0 || filenum >= n_this_object_header_files)
242 {
243 static struct complaint msg = {"\
244 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
245 0, 0};
246 complain (&msg, filenum, index, symnum);
247 goto error_return;
248 }
249
250 if (filenum == 0)
251 {
252 if (index < 0)
253 {
254 /* Caller wants address of address of type. We think
255 that negative (rs6k builtin) types will never appear as
256 "lvalues", (nor should they), so we stuff the real type
257 pointer into a temp, and return its address. If referenced,
258 this will do the right thing. */
259 static struct type *temp_type;
260
261 temp_type = rs6000_builtin_type(index);
262 return &temp_type;
263 }
264
265 /* Type is defined outside of header files.
266 Find it in this object file's type vector. */
267 if (index >= type_vector_length)
268 {
269 old_len = type_vector_length;
270 if (old_len == 0)
271 {
272 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
273 type_vector = (struct type **)
274 malloc (type_vector_length * sizeof (struct type *));
275 }
276 while (index >= type_vector_length)
277 {
278 type_vector_length *= 2;
279 }
280 type_vector = (struct type **)
281 xrealloc ((char *) type_vector,
282 (type_vector_length * sizeof (struct type *)));
283 memset (&type_vector[old_len], 0,
284 (type_vector_length - old_len) * sizeof (struct type *));
285 }
286 return (&type_vector[index]);
287 }
288 else
289 {
290 real_filenum = this_object_header_files[filenum];
291
292 if (real_filenum >= n_header_files)
293 {
294 struct type *temp_type;
295 struct type **temp_type_p;
296
297 warning ("GDB internal error: bad real_filenum");
298
299 error_return:
300 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
301 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
302 *temp_type_p = temp_type;
303 return temp_type_p;
304 }
305
306 f = &header_files[real_filenum];
307
308 f_orig_length = f->length;
309 if (index >= f_orig_length)
310 {
311 while (index >= f->length)
312 {
313 f->length *= 2;
314 }
315 f->vector = (struct type **)
316 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
317 memset (&f->vector[f_orig_length], 0,
318 (f->length - f_orig_length) * sizeof (struct type *));
319 }
320 return (&f->vector[index]);
321 }
322 }
323
324 /* Make sure there is a type allocated for type numbers TYPENUMS
325 and return the type object.
326 This can create an empty (zeroed) type object.
327 TYPENUMS may be (-1, -1) to return a new type object that is not
328 put into the type vector, and so may not be referred to by number. */
329
330 static struct type *
331 dbx_alloc_type (typenums, objfile)
332 int typenums[2];
333 struct objfile *objfile;
334 {
335 register struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (symbols, stabs, objfile)
360 struct pending *symbols;
361 struct pending_stabs *stabs;
362 struct objfile *objfile;
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371
372 /* for all the stab entries, find their corresponding symbols and
373 patch their types! */
374
375 for (ii = 0; ii < stabs->count; ++ii)
376 {
377 name = stabs->stab[ii];
378 pp = (char*) strchr (name, ':');
379 sym = find_symbol_in_list (symbols, name, pp-name);
380 if (!sym)
381 {
382 /* On xcoff, if a global is defined and never referenced,
383 ld will remove it from the executable. There is then
384 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
385 sym = (struct symbol *)
386 obstack_alloc (&objfile->symbol_obstack,
387 sizeof (struct symbol));
388
389 memset (sym, 0, sizeof (struct symbol));
390 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
391 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
392 SYMBOL_NAME (sym) =
393 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
394 pp += 2;
395 if (*(pp-1) == 'F' || *(pp-1) == 'f')
396 {
397 /* I don't think the linker does this with functions,
398 so as far as I know this is never executed.
399 But it doesn't hurt to check. */
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 add_symbol_to_list (sym, &global_symbols);
408 }
409 else
410 {
411 pp += 2;
412 if (*(pp-1) == 'F' || *(pp-1) == 'f')
413 {
414 SYMBOL_TYPE (sym) =
415 lookup_function_type (read_type (&pp, objfile));
416 }
417 else
418 {
419 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
420 }
421 }
422 }
423 }
424 }
425
426 \f
427 /* Read a number by which a type is referred to in dbx data,
428 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
429 Just a single number N is equivalent to (0,N).
430 Return the two numbers by storing them in the vector TYPENUMS.
431 TYPENUMS will then be used as an argument to dbx_lookup_type.
432
433 Returns 0 for success, -1 for error. */
434
435 static int
436 read_type_number (pp, typenums)
437 register char **pp;
438 register int *typenums;
439 {
440 int nbits;
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_huge_number (pp, ',', &nbits);
445 if (nbits != 0) return -1;
446 typenums[1] = read_huge_number (pp, ')', &nbits);
447 if (nbits != 0) return -1;
448 }
449 else
450 {
451 typenums[0] = 0;
452 typenums[1] = read_huge_number (pp, 0, &nbits);
453 if (nbits != 0) return -1;
454 }
455 return 0;
456 }
457
458 \f
459 /* To handle GNU C++ typename abbreviation, we need to be able to
460 fill in a type's name as soon as space for that type is allocated.
461 `type_synonym_name' is the name of the type being allocated.
462 It is cleared as soon as it is used (lest all allocated types
463 get this name). */
464
465 static char *type_synonym_name;
466
467 /* ARGSUSED */
468 struct symbol *
469 define_symbol (valu, string, desc, type, objfile)
470 CORE_ADDR valu;
471 char *string;
472 int desc;
473 int type;
474 struct objfile *objfile;
475 {
476 register struct symbol *sym;
477 char *p = (char *) strchr (string, ':');
478 int deftype;
479 int synonym = 0;
480 register int i;
481
482 /* We would like to eliminate nameless symbols, but keep their types.
483 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
484 to type 2, but, should not create a symbol to address that type. Since
485 the symbol will be nameless, there is no way any user can refer to it. */
486
487 int nameless;
488
489 /* Ignore syms with empty names. */
490 if (string[0] == 0)
491 return 0;
492
493 /* Ignore old-style symbols from cc -go */
494 if (p == 0)
495 return 0;
496
497 /* If a nameless stab entry, all we need is the type, not the symbol.
498 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
499 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
500
501 sym = (struct symbol *)
502 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
503 memset (sym, 0, sizeof (struct symbol));
504
505 if (processing_gcc_compilation)
506 {
507 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
508 number of bytes occupied by a type or object, which we ignore. */
509 SYMBOL_LINE(sym) = desc;
510 }
511 else
512 {
513 SYMBOL_LINE(sym) = 0; /* unknown */
514 }
515
516 if (string[0] == CPLUS_MARKER)
517 {
518 /* Special GNU C++ names. */
519 switch (string[1])
520 {
521 case 't':
522 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
523 &objfile -> symbol_obstack);
524 break;
525
526 case 'v': /* $vtbl_ptr_type */
527 /* Was: SYMBOL_NAME (sym) = "vptr"; */
528 goto normal;
529
530 case 'e':
531 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
532 &objfile -> symbol_obstack);
533 break;
534
535 case '_':
536 /* This was an anonymous type that was never fixed up. */
537 goto normal;
538
539 default:
540 complain (&unrecognized_cplus_name_complaint, string);
541 goto normal; /* Do *something* with it */
542 }
543 }
544 else
545 {
546 normal:
547 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
548 SYMBOL_NAME (sym) = (char *)
549 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
550 /* Open-coded memcpy--saves function call time. */
551 /* FIXME: Does it really? Try replacing with simple strcpy and
552 try it on an executable with a large symbol table. */
553 /* FIXME: considering that gcc can open code memcpy anyway, I
554 doubt it. xoxorich. */
555 {
556 register char *p1 = string;
557 register char *p2 = SYMBOL_NAME (sym);
558 while (p1 != p)
559 {
560 *p2++ = *p1++;
561 }
562 *p2++ = '\0';
563 }
564
565 /* If this symbol is from a C++ compilation, then attempt to cache the
566 demangled form for future reference. This is a typical time versus
567 space tradeoff, that was decided in favor of time because it sped up
568 C++ symbol lookups by a factor of about 20. */
569
570 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
571 }
572 p++;
573
574 /* Determine the type of name being defined. */
575 #if 0
576 /* Getting GDB to correctly skip the symbol on an undefined symbol
577 descriptor and not ever dump core is a very dodgy proposition if
578 we do things this way. I say the acorn RISC machine can just
579 fix their compiler. */
580 /* The Acorn RISC machine's compiler can put out locals that don't
581 start with "234=" or "(3,4)=", so assume anything other than the
582 deftypes we know how to handle is a local. */
583 if (!strchr ("cfFGpPrStTvVXCR", *p))
584 #else
585 if (isdigit (*p) || *p == '(' || *p == '-')
586 #endif
587 deftype = 'l';
588 else
589 deftype = *p++;
590
591 switch (deftype)
592 {
593 case 'c':
594 /* c is a special case, not followed by a type-number.
595 SYMBOL:c=iVALUE for an integer constant symbol.
596 SYMBOL:c=rVALUE for a floating constant symbol.
597 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
598 e.g. "b:c=e6,0" for "const b = blob1"
599 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
600 if (*p != '=')
601 {
602 SYMBOL_CLASS (sym) = LOC_CONST;
603 SYMBOL_TYPE (sym) = error_type (&p);
604 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
605 add_symbol_to_list (sym, &file_symbols);
606 return sym;
607 }
608 ++p;
609 switch (*p++)
610 {
611 case 'r':
612 {
613 double d = atof (p);
614 char *dbl_valu;
615
616 /* FIXME-if-picky-about-floating-accuracy: Should be using
617 target arithmetic to get the value. real.c in GCC
618 probably has the necessary code. */
619
620 /* FIXME: lookup_fundamental_type is a hack. We should be
621 creating a type especially for the type of float constants.
622 Problem is, what type should it be?
623
624 Also, what should the name of this type be? Should we
625 be using 'S' constants (see stabs.texinfo) instead? */
626
627 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
628 FT_DBL_PREC_FLOAT);
629 dbl_valu = (char *)
630 obstack_alloc (&objfile -> symbol_obstack,
631 TYPE_LENGTH (SYMBOL_TYPE (sym)));
632 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
633 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
634 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
635 }
636 break;
637 case 'i':
638 {
639 /* Defining integer constants this way is kind of silly,
640 since 'e' constants allows the compiler to give not
641 only the value, but the type as well. C has at least
642 int, long, unsigned int, and long long as constant
643 types; other languages probably should have at least
644 unsigned as well as signed constants. */
645
646 /* We just need one int constant type for all objfiles.
647 It doesn't depend on languages or anything (arguably its
648 name should be a language-specific name for a type of
649 that size, but I'm inclined to say that if the compiler
650 wants a nice name for the type, it can use 'e'). */
651 static struct type *int_const_type;
652
653 /* Yes, this is as long as a *host* int. That is because we
654 use atoi. */
655 if (int_const_type == NULL)
656 int_const_type =
657 init_type (TYPE_CODE_INT,
658 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
659 "integer constant",
660 (struct objfile *)NULL);
661 SYMBOL_TYPE (sym) = int_const_type;
662 SYMBOL_VALUE (sym) = atoi (p);
663 SYMBOL_CLASS (sym) = LOC_CONST;
664 }
665 break;
666 case 'e':
667 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
668 can be represented as integral.
669 e.g. "b:c=e6,0" for "const b = blob1"
670 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
671 {
672 SYMBOL_CLASS (sym) = LOC_CONST;
673 SYMBOL_TYPE (sym) = read_type (&p, objfile);
674
675 if (*p != ',')
676 {
677 SYMBOL_TYPE (sym) = error_type (&p);
678 break;
679 }
680 ++p;
681
682 /* If the value is too big to fit in an int (perhaps because
683 it is unsigned), or something like that, we silently get
684 a bogus value. The type and everything else about it is
685 correct. Ideally, we should be using whatever we have
686 available for parsing unsigned and long long values,
687 however. */
688 SYMBOL_VALUE (sym) = atoi (p);
689 }
690 break;
691 default:
692 {
693 SYMBOL_CLASS (sym) = LOC_CONST;
694 SYMBOL_TYPE (sym) = error_type (&p);
695 }
696 }
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 add_symbol_to_list (sym, &file_symbols);
699 return sym;
700
701 case 'C':
702 /* The name of a caught exception. */
703 SYMBOL_TYPE (sym) = read_type (&p, objfile);
704 SYMBOL_CLASS (sym) = LOC_LABEL;
705 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
706 SYMBOL_VALUE_ADDRESS (sym) = valu;
707 add_symbol_to_list (sym, &local_symbols);
708 break;
709
710 case 'f':
711 /* A static function definition. */
712 SYMBOL_TYPE (sym) = read_type (&p, objfile);
713 SYMBOL_CLASS (sym) = LOC_BLOCK;
714 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
715 add_symbol_to_list (sym, &file_symbols);
716 /* fall into process_function_types. */
717
718 process_function_types:
719 /* Function result types are described as the result type in stabs.
720 We need to convert this to the function-returning-type-X type
721 in GDB. E.g. "int" is converted to "function returning int". */
722 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
723 {
724 #if 0
725 /* This code doesn't work -- it needs to realloc and can't. */
726 /* Attempt to set up to record a function prototype... */
727 struct type *new = alloc_type (objfile);
728
729 /* Generate a template for the type of this function. The
730 types of the arguments will be added as we read the symbol
731 table. */
732 *new = *lookup_function_type (SYMBOL_TYPE(sym));
733 SYMBOL_TYPE(sym) = new;
734 TYPE_OBJFILE (new) = objfile;
735 in_function_type = new;
736 #else
737 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
738 #endif
739 }
740 /* fall into process_prototype_types */
741
742 process_prototype_types:
743 /* Sun acc puts declared types of arguments here. We don't care
744 about their actual types (FIXME -- we should remember the whole
745 function prototype), but the list may define some new types
746 that we have to remember, so we must scan it now. */
747 while (*p == ';') {
748 p++;
749 read_type (&p, objfile);
750 }
751 break;
752
753 case 'F':
754 /* A global function definition. */
755 SYMBOL_TYPE (sym) = read_type (&p, objfile);
756 SYMBOL_CLASS (sym) = LOC_BLOCK;
757 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
758 add_symbol_to_list (sym, &global_symbols);
759 goto process_function_types;
760
761 case 'G':
762 /* For a class G (global) symbol, it appears that the
763 value is not correct. It is necessary to search for the
764 corresponding linker definition to find the value.
765 These definitions appear at the end of the namelist. */
766 SYMBOL_TYPE (sym) = read_type (&p, objfile);
767 i = hashname (SYMBOL_NAME (sym));
768 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
769 global_sym_chain[i] = sym;
770 SYMBOL_CLASS (sym) = LOC_STATIC;
771 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
772 add_symbol_to_list (sym, &global_symbols);
773 break;
774
775 /* This case is faked by a conditional above,
776 when there is no code letter in the dbx data.
777 Dbx data never actually contains 'l'. */
778 case 'l':
779 SYMBOL_TYPE (sym) = read_type (&p, objfile);
780 SYMBOL_CLASS (sym) = LOC_LOCAL;
781 SYMBOL_VALUE (sym) = valu;
782 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
783 add_symbol_to_list (sym, &local_symbols);
784 break;
785
786 case 'p':
787 if (*p == 'F')
788 /* pF is a two-letter code that means a function parameter in Fortran.
789 The type-number specifies the type of the return value.
790 Translate it into a pointer-to-function type. */
791 {
792 p++;
793 SYMBOL_TYPE (sym)
794 = lookup_pointer_type
795 (lookup_function_type (read_type (&p, objfile)));
796 }
797 else
798 SYMBOL_TYPE (sym) = read_type (&p, objfile);
799
800 /* Normally this is a parameter, a LOC_ARG. On the i960, it
801 can also be a LOC_LOCAL_ARG depending on symbol type. */
802 #ifndef DBX_PARM_SYMBOL_CLASS
803 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
804 #endif
805
806 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
807 SYMBOL_VALUE (sym) = valu;
808 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
809 #if 0
810 /* This doesn't work yet. */
811 add_param_to_type (&in_function_type, sym);
812 #endif
813 add_symbol_to_list (sym, &local_symbols);
814
815 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
816 /* On little-endian machines, this crud is never necessary, and,
817 if the extra bytes contain garbage, is harmful. */
818 break;
819 #else /* Big endian. */
820 /* If it's gcc-compiled, if it says `short', believe it. */
821 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
822 break;
823
824 #if !BELIEVE_PCC_PROMOTION
825 {
826 /* This is the signed type which arguments get promoted to. */
827 static struct type *pcc_promotion_type;
828 /* This is the unsigned type which arguments get promoted to. */
829 static struct type *pcc_unsigned_promotion_type;
830
831 /* Call it "int" because this is mainly C lossage. */
832 if (pcc_promotion_type == NULL)
833 pcc_promotion_type =
834 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
835 0, "int", NULL);
836
837 if (pcc_unsigned_promotion_type == NULL)
838 pcc_unsigned_promotion_type =
839 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
840 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
841
842 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
843 /* This macro is defined on machines (e.g. sparc) where
844 we should believe the type of a PCC 'short' argument,
845 but shouldn't believe the address (the address is
846 the address of the corresponding int).
847
848 My guess is that this correction, as opposed to changing
849 the parameter to an 'int' (as done below, for PCC
850 on most machines), is the right thing to do
851 on all machines, but I don't want to risk breaking
852 something that already works. On most PCC machines,
853 the sparc problem doesn't come up because the calling
854 function has to zero the top bytes (not knowing whether
855 the called function wants an int or a short), so there
856 is little practical difference between an int and a short
857 (except perhaps what happens when the GDB user types
858 "print short_arg = 0x10000;").
859
860 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
861 actually produces the correct address (we don't need to fix it
862 up). I made this code adapt so that it will offset the symbol
863 if it was pointing at an int-aligned location and not
864 otherwise. This way you can use the same gdb for 4.0.x and
865 4.1 systems.
866
867 If the parameter is shorter than an int, and is integral
868 (e.g. char, short, or unsigned equivalent), and is claimed to
869 be passed on an integer boundary, don't believe it! Offset the
870 parameter's address to the tail-end of that integer. */
871
872 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
873 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
874 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
875 {
876 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
877 - TYPE_LENGTH (SYMBOL_TYPE (sym));
878 }
879 break;
880
881 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
882
883 /* If PCC says a parameter is a short or a char,
884 it is really an int. */
885 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
886 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
887 {
888 SYMBOL_TYPE (sym) =
889 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
890 ? pcc_unsigned_promotion_type
891 : pcc_promotion_type;
892 }
893 break;
894
895 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
896 }
897 #endif /* !BELIEVE_PCC_PROMOTION. */
898 #endif /* Big endian. */
899
900 case 'P':
901 /* acc seems to use P to delare the prototypes of functions that
902 are referenced by this file. gdb is not prepared to deal
903 with this extra information. FIXME, it ought to. */
904 if (type == N_FUN)
905 {
906 read_type (&p, objfile);
907 goto process_prototype_types;
908 }
909 /*FALLTHROUGH*/
910
911 case 'R':
912 /* Parameter which is in a register. */
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914 SYMBOL_CLASS (sym) = LOC_REGPARM;
915 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
916 if (SYMBOL_VALUE (sym) >= NUM_REGS)
917 {
918 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
919 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
920 }
921 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'r':
926 /* Register variable (either global or local). */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928 SYMBOL_CLASS (sym) = LOC_REGISTER;
929 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
930 if (SYMBOL_VALUE (sym) >= NUM_REGS)
931 {
932 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
933 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
934 }
935 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
936 if (within_function)
937 {
938 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
939 name to represent an argument passed in a register.
940 GCC uses 'P' for the same case. So if we find such a symbol pair
941 we combine it into one 'P' symbol.
942 Note that this code illegally combines
943 main(argc) int argc; { register int argc = 1; }
944 but this case is considered pathological and causes a warning
945 from a decent compiler. */
946 if (local_symbols
947 && local_symbols->nsyms > 0)
948 {
949 struct symbol *prev_sym;
950 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
951 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
952 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
953 {
954 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
955 /* Use the type from the LOC_REGISTER; that is the type
956 that is actually in that register. */
957 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
958 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
959 sym = prev_sym;
960 break;
961 }
962 }
963 add_symbol_to_list (sym, &local_symbols);
964 }
965 else
966 add_symbol_to_list (sym, &file_symbols);
967 break;
968
969 case 'S':
970 /* Static symbol at top level of file */
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
972 SYMBOL_CLASS (sym) = LOC_STATIC;
973 SYMBOL_VALUE_ADDRESS (sym) = valu;
974 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
975 add_symbol_to_list (sym, &file_symbols);
976 break;
977
978 case 't':
979 #if 0
980 /* See comment where long_kludge_name is declared. */
981 /* Here we save the name of the symbol for read_range_type, which
982 ends up reading in the basic types. In stabs, unfortunately there
983 is no distinction between "int" and "long" types except their
984 names. Until we work out a saner type policy (eliminating most
985 builtin types and using the names specified in the files), we
986 save away the name so that far away from here in read_range_type,
987 we can examine it to decide between "int" and "long". FIXME. */
988 long_kludge_name = SYMBOL_NAME (sym);
989 #endif
990 SYMBOL_TYPE (sym) = read_type (&p, objfile);
991
992 /* For a nameless type, we don't want a create a symbol, thus we
993 did not use `sym'. Return without further processing. */
994 if (nameless) return NULL;
995
996 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
997 SYMBOL_VALUE (sym) = valu;
998 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
999 /* C++ vagaries: we may have a type which is derived from
1000 a base type which did not have its name defined when the
1001 derived class was output. We fill in the derived class's
1002 base part member's name here in that case. */
1003 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1004 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1005 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1006 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1007 {
1008 int j;
1009 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1010 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1011 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1012 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1013 }
1014
1015 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1016 {
1017 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1018 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1019 {
1020 /* If we are giving a name to a type such as "pointer to
1021 foo" or "function returning foo", we better not set
1022 the TYPE_NAME. If the program contains "typedef char
1023 *caddr_t;", we don't want all variables of type char
1024 * to print as caddr_t. This is not just a
1025 consequence of GDB's type management; PCC and GCC (at
1026 least through version 2.4) both output variables of
1027 either type char * or caddr_t with the type number
1028 defined in the 't' symbol for caddr_t. If a future
1029 compiler cleans this up it GDB is not ready for it
1030 yet, but if it becomes ready we somehow need to
1031 disable this check (without breaking the PCC/GCC2.4
1032 case).
1033
1034 Sigh.
1035
1036 Fortunately, this check seems not to be necessary
1037 for anything except pointers or functions. */
1038 }
1039 else
1040 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1041 }
1042
1043 add_symbol_to_list (sym, &file_symbols);
1044 break;
1045
1046 case 'T':
1047 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1048 by 't' which means we are typedef'ing it as well. */
1049 synonym = *p == 't';
1050
1051 if (synonym)
1052 {
1053 p++;
1054 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1055 strlen (SYMBOL_NAME (sym)),
1056 &objfile -> symbol_obstack);
1057 }
1058
1059 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1060
1061 /* For a nameless type, we don't want a create a symbol, thus we
1062 did not use `sym'. Return without further processing. */
1063 if (nameless) return NULL;
1064
1065 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1066 SYMBOL_VALUE (sym) = valu;
1067 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1068 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1069 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1070 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1071 add_symbol_to_list (sym, &file_symbols);
1072
1073 if (synonym)
1074 {
1075 /* Clone the sym and then modify it. */
1076 register struct symbol *typedef_sym = (struct symbol *)
1077 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1078 *typedef_sym = *sym;
1079 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1080 SYMBOL_VALUE (typedef_sym) = valu;
1081 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1082 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1083 TYPE_NAME (SYMBOL_TYPE (sym))
1084 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1085 add_symbol_to_list (typedef_sym, &file_symbols);
1086 }
1087 break;
1088
1089 case 'V':
1090 /* Static symbol of local scope */
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 SYMBOL_CLASS (sym) = LOC_STATIC;
1093 SYMBOL_VALUE_ADDRESS (sym) = valu;
1094 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1095 add_symbol_to_list (sym, &local_symbols);
1096 break;
1097
1098 case 'v':
1099 /* Reference parameter */
1100 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1101 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'X':
1108 /* This is used by Sun FORTRAN for "function result value".
1109 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1110 that Pascal uses it too, but when I tried it Pascal used
1111 "x:3" (local symbol) instead. */
1112 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1113 SYMBOL_CLASS (sym) = LOC_LOCAL;
1114 SYMBOL_VALUE (sym) = valu;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &local_symbols);
1117 break;
1118
1119 default:
1120 SYMBOL_TYPE (sym) = error_type (&p);
1121 SYMBOL_CLASS (sym) = LOC_CONST;
1122 SYMBOL_VALUE (sym) = 0;
1123 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1124 add_symbol_to_list (sym, &file_symbols);
1125 break;
1126 }
1127
1128 /* When passing structures to a function, some systems sometimes pass
1129 the address in a register, not the structure itself.
1130
1131 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1132 to LOC_REGPARM_ADDR for structures and unions. */
1133
1134 #if !defined (REG_STRUCT_HAS_ADDR)
1135 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1136 #endif
1137
1138 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1139 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1140 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1141 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1142 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1143
1144 return sym;
1145 }
1146
1147 \f
1148 /* Skip rest of this symbol and return an error type.
1149
1150 General notes on error recovery: error_type always skips to the
1151 end of the symbol (modulo cretinous dbx symbol name continuation).
1152 Thus code like this:
1153
1154 if (*(*pp)++ != ';')
1155 return error_type (pp);
1156
1157 is wrong because if *pp starts out pointing at '\0' (typically as the
1158 result of an earlier error), it will be incremented to point to the
1159 start of the next symbol, which might produce strange results, at least
1160 if you run off the end of the string table. Instead use
1161
1162 if (**pp != ';')
1163 return error_type (pp);
1164 ++*pp;
1165
1166 or
1167
1168 if (**pp != ';')
1169 foo = error_type (pp);
1170 else
1171 ++*pp;
1172
1173 And in case it isn't obvious, the point of all this hair is so the compiler
1174 can define new types and new syntaxes, and old versions of the
1175 debugger will be able to read the new symbol tables. */
1176
1177 static struct type *
1178 error_type (pp)
1179 char **pp;
1180 {
1181 complain (&error_type_complaint);
1182 while (1)
1183 {
1184 /* Skip to end of symbol. */
1185 while (**pp != '\0')
1186 {
1187 (*pp)++;
1188 }
1189
1190 /* Check for and handle cretinous dbx symbol name continuation! */
1191 if ((*pp)[-1] == '\\')
1192 {
1193 *pp = next_symbol_text ();
1194 }
1195 else
1196 {
1197 break;
1198 }
1199 }
1200 return (builtin_type_error);
1201 }
1202
1203 \f
1204 /* Read type information or a type definition; return the type. Even
1205 though this routine accepts either type information or a type
1206 definition, the distinction is relevant--some parts of stabsread.c
1207 assume that type information starts with a digit, '-', or '(' in
1208 deciding whether to call read_type. */
1209
1210 struct type *
1211 read_type (pp, objfile)
1212 register char **pp;
1213 struct objfile *objfile;
1214 {
1215 register struct type *type = 0;
1216 struct type *type1;
1217 int typenums[2];
1218 int xtypenums[2];
1219 char type_descriptor;
1220
1221 /* Size in bits of type if specified by a type attribute, or -1 if
1222 there is no size attribute. */
1223 int type_size = -1;
1224
1225 /* Read type number if present. The type number may be omitted.
1226 for instance in a two-dimensional array declared with type
1227 "ar1;1;10;ar1;1;10;4". */
1228 if ((**pp >= '0' && **pp <= '9')
1229 || **pp == '('
1230 || **pp == '-')
1231 {
1232 if (read_type_number (pp, typenums) != 0)
1233 return error_type (pp);
1234
1235 /* Type is not being defined here. Either it already exists,
1236 or this is a forward reference to it. dbx_alloc_type handles
1237 both cases. */
1238 if (**pp != '=')
1239 return dbx_alloc_type (typenums, objfile);
1240
1241 /* Type is being defined here. */
1242 /* Skip the '='. */
1243 ++(*pp);
1244
1245 while (**pp == '@')
1246 {
1247 char *p = *pp + 1;
1248 /* It might be a type attribute or a member type. */
1249 if (isdigit (*p) || *p == '(' || *p == '-')
1250 /* Member type. */
1251 break;
1252 else
1253 {
1254 /* Type attributes. */
1255 char *attr = p;
1256
1257 /* Skip to the semicolon. */
1258 while (*p != ';' && *p != '\0')
1259 ++p;
1260 *pp = p;
1261 if (*p == '\0')
1262 return error_type (pp);
1263 else
1264 /* Skip the semicolon. */
1265 ++*pp;
1266
1267 switch (*attr)
1268 {
1269 case 's':
1270 type_size = atoi (attr + 1);
1271 if (type_size <= 0)
1272 type_size = -1;
1273 break;
1274 default:
1275 /* Ignore unrecognized type attributes, so future compilers
1276 can invent new ones. */
1277 break;
1278 }
1279 }
1280 }
1281 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1282 ++(*pp);
1283 }
1284 else
1285 {
1286 /* 'typenums=' not present, type is anonymous. Read and return
1287 the definition, but don't put it in the type vector. */
1288 typenums[0] = typenums[1] = -1;
1289 (*pp)++;
1290 }
1291
1292 type_descriptor = (*pp)[-1];
1293 switch (type_descriptor)
1294 {
1295 case 'x':
1296 {
1297 enum type_code code;
1298
1299 /* Used to index through file_symbols. */
1300 struct pending *ppt;
1301 int i;
1302
1303 /* Name including "struct", etc. */
1304 char *type_name;
1305
1306 {
1307 char *from, *to;
1308
1309 /* Set the type code according to the following letter. */
1310 switch ((*pp)[0])
1311 {
1312 case 's':
1313 code = TYPE_CODE_STRUCT;
1314 break;
1315 case 'u':
1316 code = TYPE_CODE_UNION;
1317 break;
1318 case 'e':
1319 code = TYPE_CODE_ENUM;
1320 break;
1321 default:
1322 return error_type (pp);
1323 }
1324
1325 to = type_name = (char *)
1326 obstack_alloc (&objfile -> type_obstack,
1327 (((char *) strchr (*pp, ':') - (*pp)) + 1));
1328
1329 /* Copy the name. */
1330 from = *pp + 1;
1331 while ((*to++ = *from++) != ':')
1332 ;
1333 *--to = '\0';
1334
1335 /* Set the pointer ahead of the name which we just read. */
1336 *pp = from;
1337 }
1338
1339 /* Now check to see whether the type has already been declared. */
1340 /* This is necessary at least in the case where the
1341 program says something like
1342 struct foo bar[5];
1343 The compiler puts out a cross-reference; we better find
1344 set the length of the structure correctly so we can
1345 set the length of the array. */
1346 for (ppt = file_symbols; ppt; ppt = ppt->next)
1347 for (i = 0; i < ppt->nsyms; i++)
1348 {
1349 struct symbol *sym = ppt->symbol[i];
1350
1351 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1352 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1353 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1354 && STREQ (SYMBOL_NAME (sym), type_name))
1355 {
1356 obstack_free (&objfile -> type_obstack, type_name);
1357 type = SYMBOL_TYPE (sym);
1358 return type;
1359 }
1360 }
1361
1362 /* Didn't find the type to which this refers, so we must
1363 be dealing with a forward reference. Allocate a type
1364 structure for it, and keep track of it so we can
1365 fill in the rest of the fields when we get the full
1366 type. */
1367 type = dbx_alloc_type (typenums, objfile);
1368 TYPE_CODE (type) = code;
1369 TYPE_TAG_NAME (type) = type_name;
1370 INIT_CPLUS_SPECIFIC(type);
1371 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1372
1373 add_undefined_type (type);
1374 return type;
1375 }
1376
1377 case '-': /* RS/6000 built-in type */
1378 case '0':
1379 case '1':
1380 case '2':
1381 case '3':
1382 case '4':
1383 case '5':
1384 case '6':
1385 case '7':
1386 case '8':
1387 case '9':
1388 case '(':
1389
1390 (*pp)--;
1391 if (read_type_number (pp, xtypenums) != 0)
1392 return error_type (pp);
1393
1394 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1395 /* It's being defined as itself. That means it is "void". */
1396 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1397 else
1398 {
1399 struct type *xtype = *dbx_lookup_type (xtypenums);
1400
1401 /* This can happen if we had '-' followed by a garbage character,
1402 for example. */
1403 if (xtype == NULL)
1404 return error_type (pp);
1405
1406 /* The type is being defined to another type. So we copy the type.
1407 This loses if we copy a C++ class and so we lose track of how
1408 the names are mangled (but g++ doesn't output stabs like this
1409 now anyway). */
1410
1411 type = alloc_type (objfile);
1412 memcpy (type, xtype, sizeof (struct type));
1413
1414 /* The idea behind clearing the names is that the only purpose
1415 for defining a type to another type is so that the name of
1416 one can be different. So we probably don't need to worry much
1417 about the case where the compiler doesn't give a name to the
1418 new type. */
1419 TYPE_NAME (type) = NULL;
1420 TYPE_TAG_NAME (type) = NULL;
1421 }
1422 if (typenums[0] != -1)
1423 *dbx_lookup_type (typenums) = type;
1424 break;
1425
1426 /* In the following types, we must be sure to overwrite any existing
1427 type that the typenums refer to, rather than allocating a new one
1428 and making the typenums point to the new one. This is because there
1429 may already be pointers to the existing type (if it had been
1430 forward-referenced), and we must change it to a pointer, function,
1431 reference, or whatever, *in-place*. */
1432
1433 case '*':
1434 type1 = read_type (pp, objfile);
1435 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1436 break;
1437
1438 case '&': /* Reference to another type */
1439 type1 = read_type (pp, objfile);
1440 type = make_reference_type (type1, dbx_lookup_type (typenums));
1441 break;
1442
1443 case 'f': /* Function returning another type */
1444 type1 = read_type (pp, objfile);
1445 type = make_function_type (type1, dbx_lookup_type (typenums));
1446 break;
1447
1448 case 'k': /* Const qualifier on some type (Sun) */
1449 type = read_type (pp, objfile);
1450 /* FIXME! For now, we ignore const and volatile qualifiers. */
1451 break;
1452
1453 case 'B': /* Volatile qual on some type (Sun) */
1454 type = read_type (pp, objfile);
1455 /* FIXME! For now, we ignore const and volatile qualifiers. */
1456 break;
1457
1458 /* FIXME -- we should be doing smash_to_XXX types here. */
1459 case '@': /* Member (class & variable) type */
1460 {
1461 struct type *domain = read_type (pp, objfile);
1462 struct type *memtype;
1463
1464 if (**pp != ',')
1465 /* Invalid member type data format. */
1466 return error_type (pp);
1467 ++*pp;
1468
1469 memtype = read_type (pp, objfile);
1470 type = dbx_alloc_type (typenums, objfile);
1471 smash_to_member_type (type, domain, memtype);
1472 }
1473 break;
1474
1475 case '#': /* Method (class & fn) type */
1476 if ((*pp)[0] == '#')
1477 {
1478 /* We'll get the parameter types from the name. */
1479 struct type *return_type;
1480
1481 (*pp)++;
1482 return_type = read_type (pp, objfile);
1483 if (*(*pp)++ != ';')
1484 complain (&invalid_member_complaint, symnum);
1485 type = allocate_stub_method (return_type);
1486 if (typenums[0] != -1)
1487 *dbx_lookup_type (typenums) = type;
1488 }
1489 else
1490 {
1491 struct type *domain = read_type (pp, objfile);
1492 struct type *return_type;
1493 struct type **args;
1494
1495 if (**pp != ',')
1496 /* Invalid member type data format. */
1497 return error_type (pp);
1498 else
1499 ++(*pp);
1500
1501 return_type = read_type (pp, objfile);
1502 args = read_args (pp, ';', objfile);
1503 type = dbx_alloc_type (typenums, objfile);
1504 smash_to_method_type (type, domain, return_type, args);
1505 }
1506 break;
1507
1508 case 'r': /* Range type */
1509 type = read_range_type (pp, typenums, objfile);
1510 if (typenums[0] != -1)
1511 *dbx_lookup_type (typenums) = type;
1512 break;
1513
1514 case 'b': /* Sun ACC builtin int type */
1515 type = read_sun_builtin_type (pp, typenums, objfile);
1516 if (typenums[0] != -1)
1517 *dbx_lookup_type (typenums) = type;
1518 break;
1519
1520 case 'R': /* Sun ACC builtin float type */
1521 type = read_sun_floating_type (pp, typenums, objfile);
1522 if (typenums[0] != -1)
1523 *dbx_lookup_type (typenums) = type;
1524 break;
1525
1526 case 'e': /* Enumeration type */
1527 type = dbx_alloc_type (typenums, objfile);
1528 type = read_enum_type (pp, type, objfile);
1529 if (typenums[0] != -1)
1530 *dbx_lookup_type (typenums) = type;
1531 break;
1532
1533 case 's': /* Struct type */
1534 case 'u': /* Union type */
1535 type = dbx_alloc_type (typenums, objfile);
1536 if (!TYPE_NAME (type))
1537 {
1538 TYPE_NAME (type) = type_synonym_name;
1539 }
1540 type_synonym_name = NULL;
1541 switch (type_descriptor)
1542 {
1543 case 's':
1544 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1545 break;
1546 case 'u':
1547 TYPE_CODE (type) = TYPE_CODE_UNION;
1548 break;
1549 }
1550 type = read_struct_type (pp, type, objfile);
1551 break;
1552
1553 case 'a': /* Array type */
1554 if (**pp != 'r')
1555 return error_type (pp);
1556 ++*pp;
1557
1558 type = dbx_alloc_type (typenums, objfile);
1559 type = read_array_type (pp, type, objfile);
1560 break;
1561
1562 default:
1563 --*pp; /* Go back to the symbol in error */
1564 /* Particularly important if it was \0! */
1565 return error_type (pp);
1566 }
1567
1568 if (type == 0)
1569 {
1570 warning ("GDB internal error, type is NULL in stabsread.c\n");
1571 return error_type (pp);
1572 }
1573
1574 /* Size specified in a type attribute overrides any other size. */
1575 if (type_size != -1)
1576 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1577
1578 return type;
1579 }
1580 \f
1581 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1582 Return the proper type node for a given builtin type number. */
1583
1584 static struct type *
1585 rs6000_builtin_type (typenum)
1586 int typenum;
1587 {
1588 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1589 #define NUMBER_RECOGNIZED 30
1590 /* This includes an empty slot for type number -0. */
1591 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1592 struct type *rettype = NULL;
1593
1594 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1595 {
1596 complain (&rs6000_builtin_complaint, typenum);
1597 return builtin_type_error;
1598 }
1599 if (negative_types[-typenum] != NULL)
1600 return negative_types[-typenum];
1601
1602 #if TARGET_CHAR_BIT != 8
1603 #error This code wrong for TARGET_CHAR_BIT not 8
1604 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1605 that if that ever becomes not true, the correct fix will be to
1606 make the size in the struct type to be in bits, not in units of
1607 TARGET_CHAR_BIT. */
1608 #endif
1609
1610 switch (-typenum)
1611 {
1612 case 1:
1613 /* The size of this and all the other types are fixed, defined
1614 by the debugging format. If there is a type called "int" which
1615 is other than 32 bits, then it should use a new negative type
1616 number (or avoid negative type numbers for that case).
1617 See stabs.texinfo. */
1618 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1619 break;
1620 case 2:
1621 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1622 break;
1623 case 3:
1624 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1625 break;
1626 case 4:
1627 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1628 break;
1629 case 5:
1630 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1631 "unsigned char", NULL);
1632 break;
1633 case 6:
1634 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1635 break;
1636 case 7:
1637 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1638 "unsigned short", NULL);
1639 break;
1640 case 8:
1641 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1642 "unsigned int", NULL);
1643 break;
1644 case 9:
1645 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1646 "unsigned", NULL);
1647 case 10:
1648 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1649 "unsigned long", NULL);
1650 break;
1651 case 11:
1652 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1653 break;
1654 case 12:
1655 /* IEEE single precision (32 bit). */
1656 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1657 break;
1658 case 13:
1659 /* IEEE double precision (64 bit). */
1660 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1661 break;
1662 case 14:
1663 /* This is an IEEE double on the RS/6000, and different machines with
1664 different sizes for "long double" should use different negative
1665 type numbers. See stabs.texinfo. */
1666 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1667 break;
1668 case 15:
1669 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1670 break;
1671 case 16:
1672 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1673 break;
1674 case 17:
1675 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1676 break;
1677 case 18:
1678 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1679 break;
1680 case 19:
1681 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1682 break;
1683 case 20:
1684 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1685 "character", NULL);
1686 break;
1687 case 21:
1688 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1689 "logical*1", NULL);
1690 break;
1691 case 22:
1692 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1693 "logical*2", NULL);
1694 break;
1695 case 23:
1696 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1697 "logical*4", NULL);
1698 break;
1699 case 24:
1700 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1701 "logical", NULL);
1702 break;
1703 case 25:
1704 /* Complex type consisting of two IEEE single precision values. */
1705 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1706 break;
1707 case 26:
1708 /* Complex type consisting of two IEEE double precision values. */
1709 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1710 break;
1711 case 27:
1712 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1713 break;
1714 case 28:
1715 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1716 break;
1717 case 29:
1718 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1719 break;
1720 case 30:
1721 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1722 break;
1723 }
1724 negative_types[-typenum] = rettype;
1725 return rettype;
1726 }
1727 \f
1728 /* This page contains subroutines of read_type. */
1729
1730 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1731 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1732 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1733 #define VISIBILITY_IGNORE '9' /* artificial character for ignore the field */
1734
1735 /* Read member function stabs info for C++ classes. The form of each member
1736 function data is:
1737
1738 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1739
1740 An example with two member functions is:
1741
1742 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1743
1744 For the case of overloaded operators, the format is op$::*.funcs, where
1745 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1746 name (such as `+=') and `.' marks the end of the operator name.
1747
1748 Returns 1 for success, 0 for failure. */
1749
1750 static int
1751 read_member_functions (fip, pp, type, objfile)
1752 struct field_info *fip;
1753 char **pp;
1754 struct type *type;
1755 struct objfile *objfile;
1756 {
1757 int nfn_fields = 0;
1758 int length = 0;
1759 /* Total number of member functions defined in this class. If the class
1760 defines two `f' functions, and one `g' function, then this will have
1761 the value 3. */
1762 int total_length = 0;
1763 int i;
1764 struct next_fnfield
1765 {
1766 struct next_fnfield *next;
1767 struct fn_field fn_field;
1768 } *sublist;
1769 struct type *look_ahead_type;
1770 struct next_fnfieldlist *new_fnlist;
1771 struct next_fnfield *new_sublist;
1772 char *main_fn_name;
1773 register char *p;
1774
1775 /* Process each list until we find something that is not a member function
1776 or find the end of the functions. */
1777
1778 while (**pp != ';')
1779 {
1780 /* We should be positioned at the start of the function name.
1781 Scan forward to find the first ':' and if it is not the
1782 first of a "::" delimiter, then this is not a member function. */
1783 p = *pp;
1784 while (*p != ':')
1785 {
1786 p++;
1787 }
1788 if (p[1] != ':')
1789 {
1790 break;
1791 }
1792
1793 sublist = NULL;
1794 look_ahead_type = NULL;
1795 length = 0;
1796
1797 new_fnlist = (struct next_fnfieldlist *)
1798 xmalloc (sizeof (struct next_fnfieldlist));
1799 make_cleanup (free, new_fnlist);
1800 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1801
1802 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1803 {
1804 /* This is a completely wierd case. In order to stuff in the
1805 names that might contain colons (the usual name delimiter),
1806 Mike Tiemann defined a different name format which is
1807 signalled if the identifier is "op$". In that case, the
1808 format is "op$::XXXX." where XXXX is the name. This is
1809 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1810 /* This lets the user type "break operator+".
1811 We could just put in "+" as the name, but that wouldn't
1812 work for "*". */
1813 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1814 char *o = opname + 3;
1815
1816 /* Skip past '::'. */
1817 *pp = p + 2;
1818
1819 STABS_CONTINUE (pp);
1820 p = *pp;
1821 while (*p != '.')
1822 {
1823 *o++ = *p++;
1824 }
1825 main_fn_name = savestring (opname, o - opname);
1826 /* Skip past '.' */
1827 *pp = p + 1;
1828 }
1829 else
1830 {
1831 main_fn_name = savestring (*pp, p - *pp);
1832 /* Skip past '::'. */
1833 *pp = p + 2;
1834 }
1835 new_fnlist -> fn_fieldlist.name = main_fn_name;
1836
1837 do
1838 {
1839 new_sublist =
1840 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1841 make_cleanup (free, new_sublist);
1842 memset (new_sublist, 0, sizeof (struct next_fnfield));
1843
1844 /* Check for and handle cretinous dbx symbol name continuation! */
1845 if (look_ahead_type == NULL)
1846 {
1847 /* Normal case. */
1848 STABS_CONTINUE (pp);
1849
1850 new_sublist -> fn_field.type = read_type (pp, objfile);
1851 if (**pp != ':')
1852 {
1853 /* Invalid symtab info for member function. */
1854 return 0;
1855 }
1856 }
1857 else
1858 {
1859 /* g++ version 1 kludge */
1860 new_sublist -> fn_field.type = look_ahead_type;
1861 look_ahead_type = NULL;
1862 }
1863
1864 (*pp)++;
1865 p = *pp;
1866 while (*p != ';')
1867 {
1868 p++;
1869 }
1870
1871 /* If this is just a stub, then we don't have the real name here. */
1872
1873 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1874 {
1875 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1876 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1877 new_sublist -> fn_field.is_stub = 1;
1878 }
1879 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1880 *pp = p + 1;
1881
1882 /* Set this member function's visibility fields. */
1883 switch (*(*pp)++)
1884 {
1885 case VISIBILITY_PRIVATE:
1886 new_sublist -> fn_field.is_private = 1;
1887 break;
1888 case VISIBILITY_PROTECTED:
1889 new_sublist -> fn_field.is_protected = 1;
1890 break;
1891 }
1892
1893 STABS_CONTINUE (pp);
1894 switch (**pp)
1895 {
1896 case 'A': /* Normal functions. */
1897 new_sublist -> fn_field.is_const = 0;
1898 new_sublist -> fn_field.is_volatile = 0;
1899 (*pp)++;
1900 break;
1901 case 'B': /* `const' member functions. */
1902 new_sublist -> fn_field.is_const = 1;
1903 new_sublist -> fn_field.is_volatile = 0;
1904 (*pp)++;
1905 break;
1906 case 'C': /* `volatile' member function. */
1907 new_sublist -> fn_field.is_const = 0;
1908 new_sublist -> fn_field.is_volatile = 1;
1909 (*pp)++;
1910 break;
1911 case 'D': /* `const volatile' member function. */
1912 new_sublist -> fn_field.is_const = 1;
1913 new_sublist -> fn_field.is_volatile = 1;
1914 (*pp)++;
1915 break;
1916 case '*': /* File compiled with g++ version 1 -- no info */
1917 case '?':
1918 case '.':
1919 break;
1920 default:
1921 complain (&const_vol_complaint, **pp);
1922 break;
1923 }
1924
1925 switch (*(*pp)++)
1926 {
1927 case '*':
1928 {
1929 int nbits;
1930 /* virtual member function, followed by index.
1931 The sign bit is set to distinguish pointers-to-methods
1932 from virtual function indicies. Since the array is
1933 in words, the quantity must be shifted left by 1
1934 on 16 bit machine, and by 2 on 32 bit machine, forcing
1935 the sign bit out, and usable as a valid index into
1936 the array. Remove the sign bit here. */
1937 new_sublist -> fn_field.voffset =
1938 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1939 if (nbits != 0)
1940 return 0;
1941
1942 STABS_CONTINUE (pp);
1943 if (**pp == ';' || **pp == '\0')
1944 {
1945 /* Must be g++ version 1. */
1946 new_sublist -> fn_field.fcontext = 0;
1947 }
1948 else
1949 {
1950 /* Figure out from whence this virtual function came.
1951 It may belong to virtual function table of
1952 one of its baseclasses. */
1953 look_ahead_type = read_type (pp, objfile);
1954 if (**pp == ':')
1955 {
1956 /* g++ version 1 overloaded methods. */
1957 }
1958 else
1959 {
1960 new_sublist -> fn_field.fcontext = look_ahead_type;
1961 if (**pp != ';')
1962 {
1963 return 0;
1964 }
1965 else
1966 {
1967 ++*pp;
1968 }
1969 look_ahead_type = NULL;
1970 }
1971 }
1972 break;
1973 }
1974 case '?':
1975 /* static member function. */
1976 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1977 if (strncmp (new_sublist -> fn_field.physname,
1978 main_fn_name, strlen (main_fn_name)))
1979 {
1980 new_sublist -> fn_field.is_stub = 1;
1981 }
1982 break;
1983
1984 default:
1985 /* error */
1986 complain (&member_fn_complaint, (*pp)[-1]);
1987 /* Fall through into normal member function. */
1988
1989 case '.':
1990 /* normal member function. */
1991 new_sublist -> fn_field.voffset = 0;
1992 new_sublist -> fn_field.fcontext = 0;
1993 break;
1994 }
1995
1996 new_sublist -> next = sublist;
1997 sublist = new_sublist;
1998 length++;
1999 STABS_CONTINUE (pp);
2000 }
2001 while (**pp != ';' && **pp != '\0');
2002
2003 (*pp)++;
2004
2005 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2006 obstack_alloc (&objfile -> type_obstack,
2007 sizeof (struct fn_field) * length);
2008 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2009 sizeof (struct fn_field) * length);
2010 for (i = length; (i--, sublist); sublist = sublist -> next)
2011 {
2012 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2013 }
2014
2015 new_fnlist -> fn_fieldlist.length = length;
2016 new_fnlist -> next = fip -> fnlist;
2017 fip -> fnlist = new_fnlist;
2018 nfn_fields++;
2019 total_length += length;
2020 STABS_CONTINUE (pp);
2021 }
2022
2023 if (nfn_fields)
2024 {
2025 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2026 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2027 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2028 memset (TYPE_FN_FIELDLISTS (type), 0,
2029 sizeof (struct fn_fieldlist) * nfn_fields);
2030 TYPE_NFN_FIELDS (type) = nfn_fields;
2031 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2032 }
2033
2034 return 1;
2035 }
2036
2037 /* Special GNU C++ name.
2038
2039 Returns 1 for success, 0 for failure. "failure" means that we can't
2040 keep parsing and it's time for error_type(). */
2041
2042 static int
2043 read_cpp_abbrev (fip, pp, type, objfile)
2044 struct field_info *fip;
2045 char **pp;
2046 struct type *type;
2047 struct objfile *objfile;
2048 {
2049 register char *p;
2050 char *name;
2051 char cpp_abbrev;
2052 struct type *context;
2053
2054 p = *pp;
2055 if (*++p == 'v')
2056 {
2057 name = NULL;
2058 cpp_abbrev = *++p;
2059
2060 *pp = p + 1;
2061
2062 /* At this point, *pp points to something like "22:23=*22...",
2063 where the type number before the ':' is the "context" and
2064 everything after is a regular type definition. Lookup the
2065 type, find it's name, and construct the field name. */
2066
2067 context = read_type (pp, objfile);
2068
2069 switch (cpp_abbrev)
2070 {
2071 case 'f': /* $vf -- a virtual function table pointer */
2072 fip->list->field.name =
2073 obconcat (&objfile->type_obstack, vptr_name, "", "");
2074 break;
2075
2076 case 'b': /* $vb -- a virtual bsomethingorother */
2077 name = type_name_no_tag (context);
2078 if (name == NULL)
2079 {
2080 complain (&invalid_cpp_type_complaint, symnum);
2081 name = "FOO";
2082 }
2083 fip->list->field.name =
2084 obconcat (&objfile->type_obstack, vb_name, name, "");
2085 break;
2086
2087 default:
2088 complain (&invalid_cpp_abbrev_complaint, *pp);
2089 fip->list->field.name =
2090 obconcat (&objfile->type_obstack,
2091 "INVALID_CPLUSPLUS_ABBREV", "", "");
2092 break;
2093 }
2094
2095 /* At this point, *pp points to the ':'. Skip it and read the
2096 field type. */
2097
2098 p = ++(*pp);
2099 if (p[-1] != ':')
2100 {
2101 complain (&invalid_cpp_abbrev_complaint, *pp);
2102 return 0;
2103 }
2104 fip->list->field.type = read_type (pp, objfile);
2105 if (**pp == ',')
2106 (*pp)++; /* Skip the comma. */
2107 else
2108 return 0;
2109
2110 {
2111 int nbits;
2112 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2113 if (nbits != 0)
2114 return 0;
2115 }
2116 /* This field is unpacked. */
2117 fip->list->field.bitsize = 0;
2118 fip->list->visibility = VISIBILITY_PRIVATE;
2119 }
2120 else
2121 {
2122 complain (&invalid_cpp_abbrev_complaint, *pp);
2123 /* We have no idea what syntax an unrecognized abbrev would have, so
2124 better return 0. If we returned 1, we would need to at least advance
2125 *pp to avoid an infinite loop. */
2126 return 0;
2127 }
2128 return 1;
2129 }
2130
2131 static void
2132 read_one_struct_field (fip, pp, p, type, objfile)
2133 struct field_info *fip;
2134 char **pp;
2135 char *p;
2136 struct type *type;
2137 struct objfile *objfile;
2138 {
2139 fip -> list -> field.name =
2140 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2141 *pp = p + 1;
2142
2143 /* This means we have a visibility for a field coming. */
2144 if (**pp == '/')
2145 {
2146 (*pp)++;
2147 fip -> list -> visibility = *(*pp)++;
2148 switch (fip -> list -> visibility)
2149 {
2150 case VISIBILITY_PRIVATE:
2151 case VISIBILITY_PROTECTED:
2152 break;
2153
2154 case VISIBILITY_PUBLIC:
2155 /* Nothing to do */
2156 break;
2157
2158 default:
2159 /* Unknown visibility specifier. */
2160 complain (&stabs_general_complaint,
2161 "unknown visibility specifier");
2162 return;
2163 break;
2164 }
2165 }
2166 else
2167 {
2168 /* normal dbx-style format, no explicit visibility */
2169 fip -> list -> visibility = VISIBILITY_PUBLIC;
2170 }
2171
2172 fip -> list -> field.type = read_type (pp, objfile);
2173 if (**pp == ':')
2174 {
2175 p = ++(*pp);
2176 #if 0
2177 /* Possible future hook for nested types. */
2178 if (**pp == '!')
2179 {
2180 fip -> list -> field.bitpos = (long)-2; /* nested type */
2181 p = ++(*pp);
2182 }
2183 else
2184 #endif
2185 {
2186 /* Static class member. */
2187 fip -> list -> field.bitpos = (long) -1;
2188 }
2189 while (*p != ';')
2190 {
2191 p++;
2192 }
2193 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2194 *pp = p + 1;
2195 return;
2196 }
2197 else if (**pp != ',')
2198 {
2199 /* Bad structure-type format. */
2200 complain (&stabs_general_complaint, "bad structure-type format");
2201 return;
2202 }
2203
2204 (*pp)++; /* Skip the comma. */
2205
2206 {
2207 int nbits;
2208 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2209 if (nbits != 0)
2210 {
2211 complain (&stabs_general_complaint, "bad structure-type format");
2212 return;
2213 }
2214 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2215 if (nbits != 0)
2216 {
2217 complain (&stabs_general_complaint, "bad structure-type format");
2218 return;
2219 }
2220 }
2221 /* kung: I add a new visibility type VISIBILITY_IGNORE, so that
2222 when printing value, this field will print <no value>. ptype
2223 will still print the type info of the field. */
2224 /* FIXME-tiemann: Can't the compiler put out something which
2225 lets us distinguish these? (or maybe just not put out anything
2226 for the field). What is the story here? What does the compiler
2227 really do? Also, patch gdb.texinfo for this case; I document
2228 it as a possible problem there. Search for "DBX-style". */
2229
2230 /* This is wrong because this is identical to the symbols
2231 produced for GCC 0-size arrays. For example:
2232 typedef union {
2233 int num;
2234 char str[0];
2235 } foo;
2236 The code which dumped core in such circumstances should be
2237 fixed not to dump core. */
2238
2239 /* g++ -g0 can put out bitpos & bitsize zero for a static
2240 field. This does not give us any way of getting its
2241 class, so we can't know its name. But we can just
2242 ignore the field so we don't dump core and other nasty
2243 stuff. */
2244 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2245 {
2246 /* complain (&dbx_class_complaint); */
2247 /* Ignore this field. */
2248 fip -> list-> visibility = VISIBILITY_IGNORE;
2249 }
2250 else
2251 {
2252 /* Detect an unpacked field and mark it as such.
2253 dbx gives a bit size for all fields.
2254 Note that forward refs cannot be packed,
2255 and treat enums as if they had the width of ints. */
2256
2257 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2258 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2259 {
2260 fip -> list -> field.bitsize = 0;
2261 }
2262 if ((fip -> list -> field.bitsize
2263 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2264 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2265 && (fip -> list -> field.bitsize
2266 == TARGET_INT_BIT)
2267 )
2268 )
2269 &&
2270 fip -> list -> field.bitpos % 8 == 0)
2271 {
2272 fip -> list -> field.bitsize = 0;
2273 }
2274 }
2275 }
2276
2277
2278 /* Read struct or class data fields. They have the form:
2279
2280 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2281
2282 At the end, we see a semicolon instead of a field.
2283
2284 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2285 a static field.
2286
2287 The optional VISIBILITY is one of:
2288
2289 '/0' (VISIBILITY_PRIVATE)
2290 '/1' (VISIBILITY_PROTECTED)
2291 '/2' (VISIBILITY_PUBLIC)
2292
2293 or nothing, for C style fields with public visibility.
2294
2295 Returns 1 for success, 0 for failure. */
2296
2297 static int
2298 read_struct_fields (fip, pp, type, objfile)
2299 struct field_info *fip;
2300 char **pp;
2301 struct type *type;
2302 struct objfile *objfile;
2303 {
2304 register char *p;
2305 struct nextfield *new;
2306
2307 /* We better set p right now, in case there are no fields at all... */
2308
2309 p = *pp;
2310
2311 /* Read each data member type until we find the terminating ';' at the end of
2312 the data member list, or break for some other reason such as finding the
2313 start of the member function list. */
2314
2315 while (**pp != ';')
2316 {
2317 STABS_CONTINUE (pp);
2318 /* Get space to record the next field's data. */
2319 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2320 make_cleanup (free, new);
2321 memset (new, 0, sizeof (struct nextfield));
2322 new -> next = fip -> list;
2323 fip -> list = new;
2324
2325 /* Get the field name. */
2326 p = *pp;
2327
2328 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2329 unless the CPLUS_MARKER is followed by an underscore, in
2330 which case it is just the name of an anonymous type, which we
2331 should handle like any other type name. We accept either '$'
2332 or '.', because a field name can never contain one of these
2333 characters except as a CPLUS_MARKER (we probably should be
2334 doing that in most parts of GDB). */
2335
2336 if ((*p == '$' || *p == '.') && p[1] != '_')
2337 {
2338 if (!read_cpp_abbrev (fip, pp, type, objfile))
2339 return 0;
2340 continue;
2341 }
2342
2343 /* Look for the ':' that separates the field name from the field
2344 values. Data members are delimited by a single ':', while member
2345 functions are delimited by a pair of ':'s. When we hit the member
2346 functions (if any), terminate scan loop and return. */
2347
2348 while (*p != ':' && *p != '\0')
2349 {
2350 p++;
2351 }
2352 if (*p == '\0')
2353 return 0;
2354
2355 /* Check to see if we have hit the member functions yet. */
2356 if (p[1] == ':')
2357 {
2358 break;
2359 }
2360 read_one_struct_field (fip, pp, p, type, objfile);
2361 }
2362 if (p[1] == ':')
2363 {
2364 /* chill the list of fields: the last entry (at the head) is a
2365 partially constructed entry which we now scrub. */
2366 fip -> list = fip -> list -> next;
2367 }
2368 return 1;
2369 }
2370
2371 /* The stabs for C++ derived classes contain baseclass information which
2372 is marked by a '!' character after the total size. This function is
2373 called when we encounter the baseclass marker, and slurps up all the
2374 baseclass information.
2375
2376 Immediately following the '!' marker is the number of base classes that
2377 the class is derived from, followed by information for each base class.
2378 For each base class, there are two visibility specifiers, a bit offset
2379 to the base class information within the derived class, a reference to
2380 the type for the base class, and a terminating semicolon.
2381
2382 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2383 ^^ ^ ^ ^ ^ ^ ^
2384 Baseclass information marker __________________|| | | | | | |
2385 Number of baseclasses __________________________| | | | | | |
2386 Visibility specifiers (2) ________________________| | | | | |
2387 Offset in bits from start of class _________________| | | | |
2388 Type number for base class ___________________________| | | |
2389 Visibility specifiers (2) _______________________________| | |
2390 Offset in bits from start of class ________________________| |
2391 Type number of base class ____________________________________|
2392
2393 Return 1 for success, 0 for (error-type-inducing) failure. */
2394
2395 static int
2396 read_baseclasses (fip, pp, type, objfile)
2397 struct field_info *fip;
2398 char **pp;
2399 struct type *type;
2400 struct objfile *objfile;
2401 {
2402 int i;
2403 struct nextfield *new;
2404
2405 if (**pp != '!')
2406 {
2407 return 1;
2408 }
2409 else
2410 {
2411 /* Skip the '!' baseclass information marker. */
2412 (*pp)++;
2413 }
2414
2415 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2416 {
2417 int nbits;
2418 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2419 if (nbits != 0)
2420 return 0;
2421 }
2422
2423 #if 0
2424 /* Some stupid compilers have trouble with the following, so break
2425 it up into simpler expressions. */
2426 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2427 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2428 #else
2429 {
2430 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2431 char *pointer;
2432
2433 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2434 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2435 }
2436 #endif /* 0 */
2437
2438 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2439
2440 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2441 {
2442 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2443 make_cleanup (free, new);
2444 memset (new, 0, sizeof (struct nextfield));
2445 new -> next = fip -> list;
2446 fip -> list = new;
2447 new -> field.bitsize = 0; /* this should be an unpacked field! */
2448
2449 STABS_CONTINUE (pp);
2450 switch (*(*pp)++)
2451 {
2452 case '0':
2453 /* Nothing to do. */
2454 break;
2455 case '1':
2456 SET_TYPE_FIELD_VIRTUAL (type, i);
2457 break;
2458 default:
2459 /* Bad visibility format. */
2460 return 0;
2461 }
2462
2463 new -> visibility = *(*pp)++;
2464 switch (new -> visibility)
2465 {
2466 case VISIBILITY_PRIVATE:
2467 case VISIBILITY_PROTECTED:
2468 case VISIBILITY_PUBLIC:
2469 break;
2470 default:
2471 /* Bad visibility format. */
2472 return 0;
2473 }
2474
2475 {
2476 int nbits;
2477
2478 /* The remaining value is the bit offset of the portion of the object
2479 corresponding to this baseclass. Always zero in the absence of
2480 multiple inheritance. */
2481
2482 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2483 if (nbits != 0)
2484 return 0;
2485 }
2486
2487 /* The last piece of baseclass information is the type of the
2488 base class. Read it, and remember it's type name as this
2489 field's name. */
2490
2491 new -> field.type = read_type (pp, objfile);
2492 new -> field.name = type_name_no_tag (new -> field.type);
2493
2494 /* skip trailing ';' and bump count of number of fields seen */
2495 if (**pp == ';')
2496 (*pp)++;
2497 else
2498 return 0;
2499 }
2500 return 1;
2501 }
2502
2503 /* The tail end of stabs for C++ classes that contain a virtual function
2504 pointer contains a tilde, a %, and a type number.
2505 The type number refers to the base class (possibly this class itself) which
2506 contains the vtable pointer for the current class.
2507
2508 This function is called when we have parsed all the method declarations,
2509 so we can look for the vptr base class info. */
2510
2511 static int
2512 read_tilde_fields (fip, pp, type, objfile)
2513 struct field_info *fip;
2514 char **pp;
2515 struct type *type;
2516 struct objfile *objfile;
2517 {
2518 register char *p;
2519
2520 STABS_CONTINUE (pp);
2521
2522 /* If we are positioned at a ';', then skip it. */
2523 if (**pp == ';')
2524 {
2525 (*pp)++;
2526 }
2527
2528 if (**pp == '~')
2529 {
2530 (*pp)++;
2531
2532 if (**pp == '=' || **pp == '+' || **pp == '-')
2533 {
2534 /* Obsolete flags that used to indicate the presence
2535 of constructors and/or destructors. */
2536 (*pp)++;
2537 }
2538
2539 /* Read either a '%' or the final ';'. */
2540 if (*(*pp)++ == '%')
2541 {
2542 /* The next number is the type number of the base class
2543 (possibly our own class) which supplies the vtable for
2544 this class. Parse it out, and search that class to find
2545 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2546 and TYPE_VPTR_FIELDNO. */
2547
2548 struct type *t;
2549 int i;
2550
2551 t = read_type (pp, objfile);
2552 p = (*pp)++;
2553 while (*p != '\0' && *p != ';')
2554 {
2555 p++;
2556 }
2557 if (*p == '\0')
2558 {
2559 /* Premature end of symbol. */
2560 return 0;
2561 }
2562
2563 TYPE_VPTR_BASETYPE (type) = t;
2564 if (type == t) /* Our own class provides vtbl ptr */
2565 {
2566 for (i = TYPE_NFIELDS (t) - 1;
2567 i >= TYPE_N_BASECLASSES (t);
2568 --i)
2569 {
2570 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2571 sizeof (vptr_name) - 1))
2572 {
2573 TYPE_VPTR_FIELDNO (type) = i;
2574 goto gotit;
2575 }
2576 }
2577 /* Virtual function table field not found. */
2578 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2579 return 0;
2580 }
2581 else
2582 {
2583 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2584 }
2585
2586 gotit:
2587 *pp = p + 1;
2588 }
2589 }
2590 return 1;
2591 }
2592
2593 static int
2594 attach_fn_fields_to_type (fip, type)
2595 struct field_info *fip;
2596 register struct type *type;
2597 {
2598 register int n;
2599
2600 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2601 {
2602 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2603 {
2604 /* @@ Memory leak on objfile -> type_obstack? */
2605 return 0;
2606 }
2607 TYPE_NFN_FIELDS_TOTAL (type) +=
2608 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2609 }
2610
2611 for (n = TYPE_NFN_FIELDS (type);
2612 fip -> fnlist != NULL;
2613 fip -> fnlist = fip -> fnlist -> next)
2614 {
2615 --n; /* Circumvent Sun3 compiler bug */
2616 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2617 }
2618 return 1;
2619 }
2620
2621 /* Create the vector of fields, and record how big it is.
2622 We need this info to record proper virtual function table information
2623 for this class's virtual functions. */
2624
2625 static int
2626 attach_fields_to_type (fip, type, objfile)
2627 struct field_info *fip;
2628 register struct type *type;
2629 struct objfile *objfile;
2630 {
2631 register int nfields = 0;
2632 register int non_public_fields = 0;
2633 register struct nextfield *scan;
2634
2635 /* Count up the number of fields that we have, as well as taking note of
2636 whether or not there are any non-public fields, which requires us to
2637 allocate and build the private_field_bits and protected_field_bits
2638 bitfields. */
2639
2640 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2641 {
2642 nfields++;
2643 if (scan -> visibility != VISIBILITY_PUBLIC)
2644 {
2645 non_public_fields++;
2646 }
2647 }
2648
2649 /* Now we know how many fields there are, and whether or not there are any
2650 non-public fields. Record the field count, allocate space for the
2651 array of fields, and create blank visibility bitfields if necessary. */
2652
2653 TYPE_NFIELDS (type) = nfields;
2654 TYPE_FIELDS (type) = (struct field *)
2655 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2656 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2657
2658 if (non_public_fields)
2659 {
2660 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2661
2662 TYPE_FIELD_PRIVATE_BITS (type) =
2663 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2664 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2665
2666 TYPE_FIELD_PROTECTED_BITS (type) =
2667 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2668 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2669
2670 TYPE_FIELD_IGNORE_BITS (type) =
2671 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2672 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2673 }
2674
2675 /* Copy the saved-up fields into the field vector. Start from the head
2676 of the list, adding to the tail of the field array, so that they end
2677 up in the same order in the array in which they were added to the list. */
2678
2679 while (nfields-- > 0)
2680 {
2681 TYPE_FIELD (type, nfields) = fip -> list -> field;
2682 switch (fip -> list -> visibility)
2683 {
2684 case VISIBILITY_PRIVATE:
2685 SET_TYPE_FIELD_PRIVATE (type, nfields);
2686 break;
2687
2688 case VISIBILITY_PROTECTED:
2689 SET_TYPE_FIELD_PROTECTED (type, nfields);
2690 break;
2691
2692 case VISIBILITY_IGNORE:
2693 SET_TYPE_FIELD_IGNORE (type, nfields);
2694
2695 case VISIBILITY_PUBLIC:
2696 break;
2697
2698 default:
2699 /* Should warn about this unknown visibility? */
2700 break;
2701 }
2702 fip -> list = fip -> list -> next;
2703 }
2704 return 1;
2705 }
2706
2707 /* Read the description of a structure (or union type) and return an object
2708 describing the type.
2709
2710 PP points to a character pointer that points to the next unconsumed token
2711 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2712 *PP will point to "4a:1,0,32;;".
2713
2714 TYPE points to an incomplete type that needs to be filled in.
2715
2716 OBJFILE points to the current objfile from which the stabs information is
2717 being read. (Note that it is redundant in that TYPE also contains a pointer
2718 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2719 */
2720
2721 static struct type *
2722 read_struct_type (pp, type, objfile)
2723 char **pp;
2724 struct type *type;
2725 struct objfile *objfile;
2726 {
2727 struct cleanup *back_to;
2728 struct field_info fi;
2729
2730 fi.list = NULL;
2731 fi.fnlist = NULL;
2732
2733 back_to = make_cleanup (null_cleanup, 0);
2734
2735 INIT_CPLUS_SPECIFIC (type);
2736 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2737
2738 /* First comes the total size in bytes. */
2739
2740 {
2741 int nbits;
2742 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2743 if (nbits != 0)
2744 return error_type (pp);
2745 }
2746
2747 /* Now read the baseclasses, if any, read the regular C struct or C++
2748 class member fields, attach the fields to the type, read the C++
2749 member functions, attach them to the type, and then read any tilde
2750 field (baseclass specifier for the class holding the main vtable). */
2751
2752 if (!read_baseclasses (&fi, pp, type, objfile)
2753 || !read_struct_fields (&fi, pp, type, objfile)
2754 || !attach_fields_to_type (&fi, type, objfile)
2755 || !read_member_functions (&fi, pp, type, objfile)
2756 || !attach_fn_fields_to_type (&fi, type)
2757 || !read_tilde_fields (&fi, pp, type, objfile))
2758 {
2759 do_cleanups (back_to);
2760 return (error_type (pp));
2761 }
2762
2763 do_cleanups (back_to);
2764 return (type);
2765 }
2766
2767 /* Read a definition of an array type,
2768 and create and return a suitable type object.
2769 Also creates a range type which represents the bounds of that
2770 array. */
2771
2772 static struct type *
2773 read_array_type (pp, type, objfile)
2774 register char **pp;
2775 register struct type *type;
2776 struct objfile *objfile;
2777 {
2778 struct type *index_type, *element_type, *range_type;
2779 int lower, upper;
2780 int adjustable = 0;
2781 int nbits;
2782
2783 /* Format of an array type:
2784 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2785 to handle this.
2786
2787 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2788 for these, produce a type like float[][]. */
2789
2790 index_type = read_type (pp, objfile);
2791 if (**pp != ';')
2792 /* Improper format of array type decl. */
2793 return error_type (pp);
2794 ++*pp;
2795
2796 if (!(**pp >= '0' && **pp <= '9'))
2797 {
2798 (*pp)++;
2799 adjustable = 1;
2800 }
2801 lower = read_huge_number (pp, ';', &nbits);
2802 if (nbits != 0)
2803 return error_type (pp);
2804
2805 if (!(**pp >= '0' && **pp <= '9'))
2806 {
2807 (*pp)++;
2808 adjustable = 1;
2809 }
2810 upper = read_huge_number (pp, ';', &nbits);
2811 if (nbits != 0)
2812 return error_type (pp);
2813
2814 element_type = read_type (pp, objfile);
2815
2816 if (adjustable)
2817 {
2818 lower = 0;
2819 upper = -1;
2820 }
2821
2822 range_type =
2823 create_range_type ((struct type *) NULL, index_type, lower, upper);
2824 type = create_array_type (type, element_type, range_type);
2825
2826 /* If we have an array whose element type is not yet known, but whose
2827 bounds *are* known, record it to be adjusted at the end of the file. */
2828
2829 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2830 {
2831 add_undefined_type (type);
2832 }
2833
2834 return type;
2835 }
2836
2837
2838 /* Read a definition of an enumeration type,
2839 and create and return a suitable type object.
2840 Also defines the symbols that represent the values of the type. */
2841
2842 static struct type *
2843 read_enum_type (pp, type, objfile)
2844 register char **pp;
2845 register struct type *type;
2846 struct objfile *objfile;
2847 {
2848 register char *p;
2849 char *name;
2850 register long n;
2851 register struct symbol *sym;
2852 int nsyms = 0;
2853 struct pending **symlist;
2854 struct pending *osyms, *syms;
2855 int o_nsyms;
2856
2857 #if 0
2858 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2859 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2860 to do? For now, force all enum values to file scope. */
2861 if (within_function)
2862 symlist = &local_symbols;
2863 else
2864 #endif
2865 symlist = &file_symbols;
2866 osyms = *symlist;
2867 o_nsyms = osyms ? osyms->nsyms : 0;
2868
2869 /* Read the value-names and their values.
2870 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2871 A semicolon or comma instead of a NAME means the end. */
2872 while (**pp && **pp != ';' && **pp != ',')
2873 {
2874 int nbits;
2875 STABS_CONTINUE (pp);
2876 p = *pp;
2877 while (*p != ':') p++;
2878 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2879 *pp = p + 1;
2880 n = read_huge_number (pp, ',', &nbits);
2881 if (nbits != 0)
2882 return error_type (pp);
2883
2884 sym = (struct symbol *)
2885 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2886 memset (sym, 0, sizeof (struct symbol));
2887 SYMBOL_NAME (sym) = name;
2888 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2889 SYMBOL_CLASS (sym) = LOC_CONST;
2890 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2891 SYMBOL_VALUE (sym) = n;
2892 add_symbol_to_list (sym, symlist);
2893 nsyms++;
2894 }
2895
2896 if (**pp == ';')
2897 (*pp)++; /* Skip the semicolon. */
2898
2899 /* Now fill in the fields of the type-structure. */
2900
2901 TYPE_LENGTH (type) = sizeof (int);
2902 TYPE_CODE (type) = TYPE_CODE_ENUM;
2903 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2904 TYPE_NFIELDS (type) = nsyms;
2905 TYPE_FIELDS (type) = (struct field *)
2906 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2907 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2908
2909 /* Find the symbols for the values and put them into the type.
2910 The symbols can be found in the symlist that we put them on
2911 to cause them to be defined. osyms contains the old value
2912 of that symlist; everything up to there was defined by us. */
2913 /* Note that we preserve the order of the enum constants, so
2914 that in something like "enum {FOO, LAST_THING=FOO}" we print
2915 FOO, not LAST_THING. */
2916
2917 for (syms = *symlist, n = 0; syms; syms = syms->next)
2918 {
2919 int j = 0;
2920 if (syms == osyms)
2921 j = o_nsyms;
2922 for (; j < syms->nsyms; j++,n++)
2923 {
2924 struct symbol *xsym = syms->symbol[j];
2925 SYMBOL_TYPE (xsym) = type;
2926 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2927 TYPE_FIELD_VALUE (type, n) = 0;
2928 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2929 TYPE_FIELD_BITSIZE (type, n) = 0;
2930 }
2931 if (syms == osyms)
2932 break;
2933 }
2934
2935 #if 0
2936 /* This screws up perfectly good C programs with enums. FIXME. */
2937 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2938 if(TYPE_NFIELDS(type) == 2 &&
2939 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2940 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2941 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2942 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2943 TYPE_CODE(type) = TYPE_CODE_BOOL;
2944 #endif
2945
2946 return type;
2947 }
2948
2949 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2950 typedefs in every file (for int, long, etc):
2951
2952 type = b <signed> <width>; <offset>; <nbits>
2953 signed = u or s. Possible c in addition to u or s (for char?).
2954 offset = offset from high order bit to start bit of type.
2955 width is # bytes in object of this type, nbits is # bits in type.
2956
2957 The width/offset stuff appears to be for small objects stored in
2958 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2959 FIXME. */
2960
2961 static struct type *
2962 read_sun_builtin_type (pp, typenums, objfile)
2963 char **pp;
2964 int typenums[2];
2965 struct objfile *objfile;
2966 {
2967 int type_bits;
2968 int nbits;
2969 int signed_type;
2970
2971 switch (**pp)
2972 {
2973 case 's':
2974 signed_type = 1;
2975 break;
2976 case 'u':
2977 signed_type = 0;
2978 break;
2979 default:
2980 return error_type (pp);
2981 }
2982 (*pp)++;
2983
2984 /* For some odd reason, all forms of char put a c here. This is strange
2985 because no other type has this honor. We can safely ignore this because
2986 we actually determine 'char'acterness by the number of bits specified in
2987 the descriptor. */
2988
2989 if (**pp == 'c')
2990 (*pp)++;
2991
2992 /* The first number appears to be the number of bytes occupied
2993 by this type, except that unsigned short is 4 instead of 2.
2994 Since this information is redundant with the third number,
2995 we will ignore it. */
2996 read_huge_number (pp, ';', &nbits);
2997 if (nbits != 0)
2998 return error_type (pp);
2999
3000 /* The second number is always 0, so ignore it too. */
3001 read_huge_number (pp, ';', &nbits);
3002 if (nbits != 0)
3003 return error_type (pp);
3004
3005 /* The third number is the number of bits for this type. */
3006 type_bits = read_huge_number (pp, 0, &nbits);
3007 if (nbits != 0)
3008 return error_type (pp);
3009
3010 #if 0
3011 /* FIXME. Here we should just be able to make a type of the right
3012 number of bits and signedness. FIXME. */
3013
3014 if (type_bits == TARGET_LONG_LONG_BIT)
3015 return (lookup_fundamental_type (objfile,
3016 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
3017
3018 if (type_bits == TARGET_INT_BIT)
3019 {
3020 /* FIXME -- the only way to distinguish `int' from `long'
3021 is to look at its name! */
3022 if (signed_type)
3023 {
3024 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3025 return lookup_fundamental_type (objfile, FT_LONG);
3026 else
3027 return lookup_fundamental_type (objfile, FT_INTEGER);
3028 }
3029 else
3030 {
3031 if (long_kludge_name
3032 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
3033 long_kludge_name[9] == 'l' /* long */)
3034 || (long_kludge_name[0] == 'l' /* long unsigned */)))
3035 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
3036 else
3037 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
3038 }
3039 }
3040
3041 if (type_bits == TARGET_SHORT_BIT)
3042 return (lookup_fundamental_type (objfile,
3043 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
3044
3045 if (type_bits == TARGET_CHAR_BIT)
3046 return (lookup_fundamental_type (objfile,
3047 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
3048
3049 if (type_bits == 0)
3050 return lookup_fundamental_type (objfile, FT_VOID);
3051
3052 return error_type (pp);
3053 #else
3054 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3055 type_bits / TARGET_CHAR_BIT,
3056 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3057 objfile);
3058 #endif
3059 }
3060
3061 static struct type *
3062 read_sun_floating_type (pp, typenums, objfile)
3063 char **pp;
3064 int typenums[2];
3065 struct objfile *objfile;
3066 {
3067 int nbits;
3068 int details;
3069 int nbytes;
3070
3071 /* The first number has more details about the type, for example
3072 FN_COMPLEX. */
3073 details = read_huge_number (pp, ';', &nbits);
3074 if (nbits != 0)
3075 return error_type (pp);
3076
3077 /* The second number is the number of bytes occupied by this type */
3078 nbytes = read_huge_number (pp, ';', &nbits);
3079 if (nbits != 0)
3080 return error_type (pp);
3081
3082 if (details == NF_COMPLEX || details == NF_COMPLEX16
3083 || details == NF_COMPLEX32)
3084 /* This is a type we can't handle, but we do know the size.
3085 We also will be able to give it a name. */
3086 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3087
3088 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3089 }
3090
3091 /* Read a number from the string pointed to by *PP.
3092 The value of *PP is advanced over the number.
3093 If END is nonzero, the character that ends the
3094 number must match END, or an error happens;
3095 and that character is skipped if it does match.
3096 If END is zero, *PP is left pointing to that character.
3097
3098 If the number fits in a long, set *BITS to 0 and return the value.
3099 If not, set *BITS to be the number of bits in the number and return 0.
3100
3101 If encounter garbage, set *BITS to -1 and return 0. */
3102
3103 static long
3104 read_huge_number (pp, end, bits)
3105 char **pp;
3106 int end;
3107 int *bits;
3108 {
3109 char *p = *pp;
3110 int sign = 1;
3111 long n = 0;
3112 int radix = 10;
3113 char overflow = 0;
3114 int nbits = 0;
3115 int c;
3116 long upper_limit;
3117
3118 if (*p == '-')
3119 {
3120 sign = -1;
3121 p++;
3122 }
3123
3124 /* Leading zero means octal. GCC uses this to output values larger
3125 than an int (because that would be hard in decimal). */
3126 if (*p == '0')
3127 {
3128 radix = 8;
3129 p++;
3130 }
3131
3132 upper_limit = LONG_MAX / radix;
3133 while ((c = *p++) >= '0' && c < ('0' + radix))
3134 {
3135 if (n <= upper_limit)
3136 {
3137 n *= radix;
3138 n += c - '0'; /* FIXME this overflows anyway */
3139 }
3140 else
3141 overflow = 1;
3142
3143 /* This depends on large values being output in octal, which is
3144 what GCC does. */
3145 if (radix == 8)
3146 {
3147 if (nbits == 0)
3148 {
3149 if (c == '0')
3150 /* Ignore leading zeroes. */
3151 ;
3152 else if (c == '1')
3153 nbits = 1;
3154 else if (c == '2' || c == '3')
3155 nbits = 2;
3156 else
3157 nbits = 3;
3158 }
3159 else
3160 nbits += 3;
3161 }
3162 }
3163 if (end)
3164 {
3165 if (c && c != end)
3166 {
3167 if (bits != NULL)
3168 *bits = -1;
3169 return 0;
3170 }
3171 }
3172 else
3173 --p;
3174
3175 *pp = p;
3176 if (overflow)
3177 {
3178 if (nbits == 0)
3179 {
3180 /* Large decimal constants are an error (because it is hard to
3181 count how many bits are in them). */
3182 if (bits != NULL)
3183 *bits = -1;
3184 return 0;
3185 }
3186
3187 /* -0x7f is the same as 0x80. So deal with it by adding one to
3188 the number of bits. */
3189 if (sign == -1)
3190 ++nbits;
3191 if (bits)
3192 *bits = nbits;
3193 }
3194 else
3195 {
3196 if (bits)
3197 *bits = 0;
3198 return n * sign;
3199 }
3200 /* It's *BITS which has the interesting information. */
3201 return 0;
3202 }
3203
3204 static struct type *
3205 read_range_type (pp, typenums, objfile)
3206 char **pp;
3207 int typenums[2];
3208 struct objfile *objfile;
3209 {
3210 int rangenums[2];
3211 long n2, n3;
3212 int n2bits, n3bits;
3213 int self_subrange;
3214 struct type *result_type;
3215 struct type *index_type;
3216
3217 /* First comes a type we are a subrange of.
3218 In C it is usually 0, 1 or the type being defined. */
3219 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3220 not just a type number. */
3221 if (read_type_number (pp, rangenums) != 0)
3222 return error_type (pp);
3223 self_subrange = (rangenums[0] == typenums[0] &&
3224 rangenums[1] == typenums[1]);
3225
3226 /* A semicolon should now follow; skip it. */
3227 if (**pp == ';')
3228 (*pp)++;
3229
3230 /* The remaining two operands are usually lower and upper bounds
3231 of the range. But in some special cases they mean something else. */
3232 n2 = read_huge_number (pp, ';', &n2bits);
3233 n3 = read_huge_number (pp, ';', &n3bits);
3234
3235 if (n2bits == -1 || n3bits == -1)
3236 return error_type (pp);
3237
3238 /* If limits are huge, must be large integral type. */
3239 if (n2bits != 0 || n3bits != 0)
3240 {
3241 char got_signed = 0;
3242 char got_unsigned = 0;
3243 /* Number of bits in the type. */
3244 int nbits = 0;
3245
3246 /* Range from 0 to <large number> is an unsigned large integral type. */
3247 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3248 {
3249 got_unsigned = 1;
3250 nbits = n3bits;
3251 }
3252 /* Range from <large number> to <large number>-1 is a large signed
3253 integral type. Take care of the case where <large number> doesn't
3254 fit in a long but <large number>-1 does. */
3255 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3256 || (n2bits != 0 && n3bits == 0
3257 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3258 && n3 == LONG_MAX))
3259 {
3260 got_signed = 1;
3261 nbits = n2bits;
3262 }
3263
3264 if (got_signed || got_unsigned)
3265 {
3266 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3267 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3268 objfile);
3269 }
3270 else
3271 return error_type (pp);
3272 }
3273
3274 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3275 if (self_subrange && n2 == 0 && n3 == 0)
3276 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3277
3278 /* If n3 is zero and n2 is not, we want a floating type,
3279 and n2 is the width in bytes.
3280
3281 Fortran programs appear to use this for complex types also,
3282 and they give no way to distinguish between double and single-complex!
3283
3284 GDB does not have complex types.
3285
3286 Just return the complex as a float of that size. It won't work right
3287 for the complex values, but at least it makes the file loadable. */
3288
3289 if (n3 == 0 && n2 > 0)
3290 {
3291 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3292 }
3293
3294 /* If the upper bound is -1, it must really be an unsigned int. */
3295
3296 else if (n2 == 0 && n3 == -1)
3297 {
3298 /* It is unsigned int or unsigned long. */
3299 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3300 compatibility hack. */
3301 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3302 TYPE_FLAG_UNSIGNED, NULL, objfile);
3303 }
3304
3305 /* Special case: char is defined (Who knows why) as a subrange of
3306 itself with range 0-127. */
3307 else if (self_subrange && n2 == 0 && n3 == 127)
3308 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3309
3310 /* We used to do this only for subrange of self or subrange of int. */
3311 else if (n2 == 0)
3312 {
3313 if (n3 < 0)
3314 /* n3 actually gives the size. */
3315 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3316 NULL, objfile);
3317 if (n3 == 0xff)
3318 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3319 if (n3 == 0xffff)
3320 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3321
3322 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3323 "unsigned long", and we already checked for that,
3324 so don't need to test for it here. */
3325 }
3326 /* I think this is for Convex "long long". Since I don't know whether
3327 Convex sets self_subrange, I also accept that particular size regardless
3328 of self_subrange. */
3329 else if (n3 == 0 && n2 < 0
3330 && (self_subrange
3331 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3332 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3333 else if (n2 == -n3 -1)
3334 {
3335 if (n3 == 0x7f)
3336 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3337 if (n3 == 0x7fff)
3338 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3339 if (n3 == 0x7fffffff)
3340 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3341 }
3342
3343 /* We have a real range type on our hands. Allocate space and
3344 return a real pointer. */
3345
3346 /* At this point I don't have the faintest idea how to deal with
3347 a self_subrange type; I'm going to assume that this is used
3348 as an idiom, and that all of them are special cases. So . . . */
3349 if (self_subrange)
3350 return error_type (pp);
3351
3352 index_type = *dbx_lookup_type (rangenums);
3353 if (index_type == NULL)
3354 {
3355 /* Does this actually ever happen? Is that why we are worrying
3356 about dealing with it rather than just calling error_type? */
3357
3358 static struct type *range_type_index;
3359
3360 complain (&range_type_base_complaint, rangenums[1]);
3361 if (range_type_index == NULL)
3362 range_type_index =
3363 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3364 0, "range type index type", NULL);
3365 index_type = range_type_index;
3366 }
3367
3368 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3369 return (result_type);
3370 }
3371
3372 /* Read in an argument list. This is a list of types, separated by commas
3373 and terminated with END. Return the list of types read in, or (struct type
3374 **)-1 if there is an error. */
3375
3376 static struct type **
3377 read_args (pp, end, objfile)
3378 char **pp;
3379 int end;
3380 struct objfile *objfile;
3381 {
3382 /* FIXME! Remove this arbitrary limit! */
3383 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3384 int n = 0;
3385
3386 while (**pp != end)
3387 {
3388 if (**pp != ',')
3389 /* Invalid argument list: no ','. */
3390 return (struct type **)-1;
3391 (*pp)++;
3392 STABS_CONTINUE (pp);
3393 types[n++] = read_type (pp, objfile);
3394 }
3395 (*pp)++; /* get past `end' (the ':' character) */
3396
3397 if (n == 1)
3398 {
3399 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3400 }
3401 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3402 {
3403 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3404 memset (rval + n, 0, sizeof (struct type *));
3405 }
3406 else
3407 {
3408 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3409 }
3410 memcpy (rval, types, n * sizeof (struct type *));
3411 return rval;
3412 }
3413 \f
3414 /* Common block handling. */
3415
3416 /* List of symbols declared since the last BCOMM. This list is a tail
3417 of local_symbols. When ECOMM is seen, the symbols on the list
3418 are noted so their proper addresses can be filled in later,
3419 using the common block base address gotten from the assembler
3420 stabs. */
3421
3422 static struct pending *common_block;
3423 static int common_block_i;
3424
3425 /* Name of the current common block. We get it from the BCOMM instead of the
3426 ECOMM to match IBM documentation (even though IBM puts the name both places
3427 like everyone else). */
3428 static char *common_block_name;
3429
3430 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3431 to remain after this function returns. */
3432
3433 void
3434 common_block_start (name, objfile)
3435 char *name;
3436 struct objfile *objfile;
3437 {
3438 if (common_block_name != NULL)
3439 {
3440 static struct complaint msg = {
3441 "Invalid symbol data: common block within common block",
3442 0, 0};
3443 complain (&msg);
3444 }
3445 common_block = local_symbols;
3446 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3447 common_block_name = obsavestring (name, strlen (name),
3448 &objfile -> symbol_obstack);
3449 }
3450
3451 /* Process a N_ECOMM symbol. */
3452
3453 void
3454 common_block_end (objfile)
3455 struct objfile *objfile;
3456 {
3457 /* Symbols declared since the BCOMM are to have the common block
3458 start address added in when we know it. common_block and
3459 common_block_i point to the first symbol after the BCOMM in
3460 the local_symbols list; copy the list and hang it off the
3461 symbol for the common block name for later fixup. */
3462 int i;
3463 struct symbol *sym;
3464 struct pending *new = 0;
3465 struct pending *next;
3466 int j;
3467
3468 if (common_block_name == NULL)
3469 {
3470 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3471 complain (&msg);
3472 return;
3473 }
3474
3475 sym = (struct symbol *)
3476 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3477 memset (sym, 0, sizeof (struct symbol));
3478 SYMBOL_NAME (sym) = common_block_name;
3479 SYMBOL_CLASS (sym) = LOC_BLOCK;
3480
3481 /* Now we copy all the symbols which have been defined since the BCOMM. */
3482
3483 /* Copy all the struct pendings before common_block. */
3484 for (next = local_symbols;
3485 next != NULL && next != common_block;
3486 next = next->next)
3487 {
3488 for (j = 0; j < next->nsyms; j++)
3489 add_symbol_to_list (next->symbol[j], &new);
3490 }
3491
3492 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3493 NULL, it means copy all the local symbols (which we already did
3494 above). */
3495
3496 if (common_block != NULL)
3497 for (j = common_block_i; j < common_block->nsyms; j++)
3498 add_symbol_to_list (common_block->symbol[j], &new);
3499
3500 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3501
3502 /* Should we be putting local_symbols back to what it was?
3503 Does it matter? */
3504
3505 i = hashname (SYMBOL_NAME (sym));
3506 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3507 global_sym_chain[i] = sym;
3508 common_block_name = NULL;
3509 }
3510
3511 /* Add a common block's start address to the offset of each symbol
3512 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3513 the common block name). */
3514
3515 static void
3516 fix_common_block (sym, valu)
3517 struct symbol *sym;
3518 int valu;
3519 {
3520 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3521 for ( ; next; next = next->next)
3522 {
3523 register int j;
3524 for (j = next->nsyms - 1; j >= 0; j--)
3525 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3526 }
3527 }
3528
3529
3530 \f
3531 /* What about types defined as forward references inside of a small lexical
3532 scope? */
3533 /* Add a type to the list of undefined types to be checked through
3534 once this file has been read in. */
3535
3536 void
3537 add_undefined_type (type)
3538 struct type *type;
3539 {
3540 if (undef_types_length == undef_types_allocated)
3541 {
3542 undef_types_allocated *= 2;
3543 undef_types = (struct type **)
3544 xrealloc ((char *) undef_types,
3545 undef_types_allocated * sizeof (struct type *));
3546 }
3547 undef_types[undef_types_length++] = type;
3548 }
3549
3550 /* Go through each undefined type, see if it's still undefined, and fix it
3551 up if possible. We have two kinds of undefined types:
3552
3553 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3554 Fix: update array length using the element bounds
3555 and the target type's length.
3556 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3557 yet defined at the time a pointer to it was made.
3558 Fix: Do a full lookup on the struct/union tag. */
3559 void
3560 cleanup_undefined_types ()
3561 {
3562 struct type **type;
3563
3564 for (type = undef_types; type < undef_types + undef_types_length; type++)
3565 {
3566 switch (TYPE_CODE (*type))
3567 {
3568
3569 case TYPE_CODE_STRUCT:
3570 case TYPE_CODE_UNION:
3571 case TYPE_CODE_ENUM:
3572 {
3573 /* Check if it has been defined since. */
3574 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3575 {
3576 struct pending *ppt;
3577 int i;
3578 /* Name of the type, without "struct" or "union" */
3579 char *typename = TYPE_TAG_NAME (*type);
3580
3581 if (typename == NULL)
3582 {
3583 static struct complaint msg = {"need a type name", 0, 0};
3584 complain (&msg);
3585 break;
3586 }
3587 for (ppt = file_symbols; ppt; ppt = ppt->next)
3588 {
3589 for (i = 0; i < ppt->nsyms; i++)
3590 {
3591 struct symbol *sym = ppt->symbol[i];
3592
3593 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3594 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3595 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3596 TYPE_CODE (*type))
3597 && STREQ (SYMBOL_NAME (sym), typename))
3598 {
3599 memcpy (*type, SYMBOL_TYPE (sym),
3600 sizeof (struct type));
3601 }
3602 }
3603 }
3604 }
3605 }
3606 break;
3607
3608 case TYPE_CODE_ARRAY:
3609 {
3610 struct type *range_type;
3611 int lower, upper;
3612
3613 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3614 goto badtype;
3615 if (TYPE_NFIELDS (*type) != 1)
3616 goto badtype;
3617 range_type = TYPE_FIELD_TYPE (*type, 0);
3618 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3619 goto badtype;
3620
3621 /* Now recompute the length of the array type, based on its
3622 number of elements and the target type's length. */
3623 lower = TYPE_FIELD_BITPOS (range_type, 0);
3624 upper = TYPE_FIELD_BITPOS (range_type, 1);
3625 TYPE_LENGTH (*type) = (upper - lower + 1)
3626 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3627 }
3628 break;
3629
3630 default:
3631 badtype:
3632 {
3633 static struct complaint msg = {"\
3634 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3635 complain (&msg, TYPE_CODE (*type));
3636 }
3637 break;
3638 }
3639 }
3640 undef_types_length = 0;
3641 }
3642
3643 /* Scan through all of the global symbols defined in the object file,
3644 assigning values to the debugging symbols that need to be assigned
3645 to. Get these symbols from the minimal symbol table. */
3646
3647 void
3648 scan_file_globals (objfile)
3649 struct objfile *objfile;
3650 {
3651 int hash;
3652 struct minimal_symbol *msymbol;
3653 struct symbol *sym, *prev;
3654
3655 if (objfile->msymbols == 0) /* Beware the null file. */
3656 return;
3657
3658 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3659 {
3660 QUIT;
3661
3662 prev = NULL;
3663
3664 /* Get the hash index and check all the symbols
3665 under that hash index. */
3666
3667 hash = hashname (SYMBOL_NAME (msymbol));
3668
3669 for (sym = global_sym_chain[hash]; sym;)
3670 {
3671 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3672 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3673 {
3674 /* Splice this symbol out of the hash chain and
3675 assign the value we have to it. */
3676 if (prev)
3677 {
3678 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3679 }
3680 else
3681 {
3682 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3683 }
3684
3685 /* Check to see whether we need to fix up a common block. */
3686 /* Note: this code might be executed several times for
3687 the same symbol if there are multiple references. */
3688
3689 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3690 {
3691 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3692 }
3693 else
3694 {
3695 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3696 }
3697
3698 if (prev)
3699 {
3700 sym = SYMBOL_VALUE_CHAIN (prev);
3701 }
3702 else
3703 {
3704 sym = global_sym_chain[hash];
3705 }
3706 }
3707 else
3708 {
3709 prev = sym;
3710 sym = SYMBOL_VALUE_CHAIN (sym);
3711 }
3712 }
3713 }
3714 }
3715
3716 /* Initialize anything that needs initializing when starting to read
3717 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3718 to a psymtab. */
3719
3720 void
3721 stabsread_init ()
3722 {
3723 }
3724
3725 /* Initialize anything that needs initializing when a completely new
3726 symbol file is specified (not just adding some symbols from another
3727 file, e.g. a shared library). */
3728
3729 void
3730 stabsread_new_init ()
3731 {
3732 /* Empty the hash table of global syms looking for values. */
3733 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3734 }
3735
3736 /* Initialize anything that needs initializing at the same time as
3737 start_symtab() is called. */
3738
3739 void start_stabs ()
3740 {
3741 global_stabs = NULL; /* AIX COFF */
3742 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3743 n_this_object_header_files = 1;
3744 type_vector_length = 0;
3745 type_vector = (struct type **) 0;
3746
3747 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3748 common_block_name = NULL;
3749 }
3750
3751 /* Call after end_symtab() */
3752
3753 void end_stabs ()
3754 {
3755 if (type_vector)
3756 {
3757 free ((char *) type_vector);
3758 }
3759 type_vector = 0;
3760 type_vector_length = 0;
3761 previous_stab_code = 0;
3762 }
3763
3764 void
3765 finish_global_stabs (objfile)
3766 struct objfile *objfile;
3767 {
3768 if (global_stabs)
3769 {
3770 patch_block_stabs (global_symbols, global_stabs, objfile);
3771 free ((PTR) global_stabs);
3772 global_stabs = NULL;
3773 }
3774 }
3775
3776 /* Initializer for this module */
3777
3778 void
3779 _initialize_stabsread ()
3780 {
3781 undef_types_allocated = 20;
3782 undef_types_length = 0;
3783 undef_types = (struct type **)
3784 xmalloc (undef_types_allocated * sizeof (struct type *));
3785 }