Move allocate_stub_method to stabsread.c
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct stabs_nextfield
65 {
66 struct stabs_nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct stabs_nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static int read_type_number (const char **, int *);
111
112 static struct type *read_type (const char **, struct objfile *);
113
114 static struct type *read_range_type (const char **, int[2],
115 int, struct objfile *);
116
117 static struct type *read_sun_builtin_type (const char **,
118 int[2], struct objfile *);
119
120 static struct type *read_sun_floating_type (const char **, int[2],
121 struct objfile *);
122
123 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
124
125 static struct type *rs6000_builtin_type (int, struct objfile *);
126
127 static int
128 read_member_functions (struct stab_field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_struct_fields (struct stab_field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int
136 read_baseclasses (struct stab_field_info *, const char **, struct type *,
137 struct objfile *);
138
139 static int
140 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
141 struct objfile *);
142
143 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
144
145 static int attach_fields_to_type (struct stab_field_info *, struct type *,
146 struct objfile *);
147
148 static struct type *read_struct_type (const char **, struct type *,
149 enum type_code,
150 struct objfile *);
151
152 static struct type *read_array_type (const char **, struct type *,
153 struct objfile *);
154
155 static struct field *read_args (const char **, int, struct objfile *,
156 int *, int *);
157
158 static void add_undefined_type (struct type *, int[2]);
159
160 static int
161 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
162 struct objfile *);
163
164 static const char *find_name_end (const char *name);
165
166 static int process_reference (const char **string);
167
168 void stabsread_clear_cache (void);
169
170 static const char vptr_name[] = "_vptr$";
171 static const char vb_name[] = "_vb$";
172
173 static void
174 invalid_cpp_abbrev_complaint (const char *arg1)
175 {
176 complaint (_("invalid C++ abbreviation `%s'"), arg1);
177 }
178
179 static void
180 reg_value_complaint (int regnum, int num_regs, const char *sym)
181 {
182 complaint (_("bad register number %d (max %d) in symbol %s"),
183 regnum, num_regs - 1, sym);
184 }
185
186 static void
187 stabs_general_complaint (const char *arg1)
188 {
189 complaint ("%s", arg1);
190 }
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197 static struct symbol *current_symbol = NULL;
198
199 /* Make a list of nameless types that are undefined.
200 This happens when another type is referenced by its number
201 before this type is actually defined. For instance "t(0,1)=k(0,2)"
202 and type (0,2) is defined only later. */
203
204 struct nat
205 {
206 int typenums[2];
207 struct type *type;
208 };
209 static struct nat *noname_undefs;
210 static int noname_undefs_allocated;
211 static int noname_undefs_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp,objfile) \
215 do { \
216 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
217 *(pp) = next_symbol_text (objfile); \
218 } while (0)
219
220 /* Vector of types defined so far, indexed by their type numbers.
221 (In newer sun systems, dbx uses a pair of numbers in parens,
222 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
223 Then these numbers must be translated through the type_translations
224 hash table to get the index into the type vector.) */
225
226 static struct type **type_vector;
227
228 /* Number of elements allocated for type_vector currently. */
229
230 static int type_vector_length;
231
232 /* Initial size of type vector. Is realloc'd larger if needed, and
233 realloc'd down to the size actually used, when completed. */
234
235 #define INITIAL_TYPE_VECTOR_LENGTH 160
236 \f
237
238 /* Look up a dbx type-number pair. Return the address of the slot
239 where the type for that number-pair is stored.
240 The number-pair is in TYPENUMS.
241
242 This can be used for finding the type associated with that pair
243 or for associating a new type with the pair. */
244
245 static struct type **
246 dbx_lookup_type (int typenums[2], struct objfile *objfile)
247 {
248 int filenum = typenums[0];
249 int index = typenums[1];
250 unsigned old_len;
251 int real_filenum;
252 struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 complaint (_("Invalid symbol data: type number "
261 "(%d,%d) out of range at symtab pos %d."),
262 filenum, index, symnum);
263 goto error_return;
264 }
265
266 if (filenum == 0)
267 {
268 if (index < 0)
269 {
270 /* Caller wants address of address of type. We think
271 that negative (rs6k builtin) types will never appear as
272 "lvalues", (nor should they), so we stuff the real type
273 pointer into a temp, and return its address. If referenced,
274 this will do the right thing. */
275 static struct type *temp_type;
276
277 temp_type = rs6000_builtin_type (index, objfile);
278 return &temp_type;
279 }
280
281 /* Type is defined outside of header files.
282 Find it in this object file's type vector. */
283 if (index >= type_vector_length)
284 {
285 old_len = type_vector_length;
286 if (old_len == 0)
287 {
288 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
289 type_vector = XNEWVEC (struct type *, type_vector_length);
290 }
291 while (index >= type_vector_length)
292 {
293 type_vector_length *= 2;
294 }
295 type_vector = (struct type **)
296 xrealloc ((char *) type_vector,
297 (type_vector_length * sizeof (struct type *)));
298 memset (&type_vector[old_len], 0,
299 (type_vector_length - old_len) * sizeof (struct type *));
300 }
301 return (&type_vector[index]);
302 }
303 else
304 {
305 real_filenum = this_object_header_files[filenum];
306
307 if (real_filenum >= N_HEADER_FILES (objfile))
308 {
309 static struct type *temp_type;
310
311 warning (_("GDB internal error: bad real_filenum"));
312
313 error_return:
314 temp_type = objfile_type (objfile)->builtin_error;
315 return &temp_type;
316 }
317
318 f = HEADER_FILES (objfile) + real_filenum;
319
320 f_orig_length = f->length;
321 if (index >= f_orig_length)
322 {
323 while (index >= f->length)
324 {
325 f->length *= 2;
326 }
327 f->vector = (struct type **)
328 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
329 memset (&f->vector[f_orig_length], 0,
330 (f->length - f_orig_length) * sizeof (struct type *));
331 }
332 return (&f->vector[index]);
333 }
334 }
335
336 /* Make sure there is a type allocated for type numbers TYPENUMS
337 and return the type object.
338 This can create an empty (zeroed) type object.
339 TYPENUMS may be (-1, -1) to return a new type object that is not
340 put into the type vector, and so may not be referred to by number. */
341
342 static struct type *
343 dbx_alloc_type (int typenums[2], struct objfile *objfile)
344 {
345 struct type **type_addr;
346
347 if (typenums[0] == -1)
348 {
349 return (alloc_type (objfile));
350 }
351
352 type_addr = dbx_lookup_type (typenums, objfile);
353
354 /* If we are referring to a type not known at all yet,
355 allocate an empty type for it.
356 We will fill it in later if we find out how. */
357 if (*type_addr == 0)
358 {
359 *type_addr = alloc_type (objfile);
360 }
361
362 return (*type_addr);
363 }
364
365 /* Allocate a floating-point type of size BITS. */
366
367 static struct type *
368 dbx_init_float_type (struct objfile *objfile, int bits)
369 {
370 struct gdbarch *gdbarch = objfile->arch ();
371 const struct floatformat **format;
372 struct type *type;
373
374 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
375 if (format)
376 type = init_float_type (objfile, bits, NULL, format);
377 else
378 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
379
380 return type;
381 }
382
383 /* for all the stabs in a given stab vector, build appropriate types
384 and fix their symbols in given symbol vector. */
385
386 static void
387 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
388 struct objfile *objfile)
389 {
390 int ii;
391 char *name;
392 const char *pp;
393 struct symbol *sym;
394
395 if (stabs)
396 {
397 /* for all the stab entries, find their corresponding symbols and
398 patch their types! */
399
400 for (ii = 0; ii < stabs->count; ++ii)
401 {
402 name = stabs->stab[ii];
403 pp = (char *) strchr (name, ':');
404 gdb_assert (pp); /* Must find a ':' or game's over. */
405 while (pp[1] == ':')
406 {
407 pp += 2;
408 pp = (char *) strchr (pp, ':');
409 }
410 sym = find_symbol_in_list (symbols, name, pp - name);
411 if (!sym)
412 {
413 /* FIXME-maybe: it would be nice if we noticed whether
414 the variable was defined *anywhere*, not just whether
415 it is defined in this compilation unit. But neither
416 xlc or GCC seem to need such a definition, and until
417 we do psymtabs (so that the minimal symbols from all
418 compilation units are available now), I'm not sure
419 how to get the information. */
420
421 /* On xcoff, if a global is defined and never referenced,
422 ld will remove it from the executable. There is then
423 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
424 sym = new (&objfile->objfile_obstack) symbol;
425 sym->set_domain (VAR_DOMAIN);
426 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
427 sym->set_linkage_name
428 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
429 pp += 2;
430 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
431 {
432 /* I don't think the linker does this with functions,
433 so as far as I know this is never executed.
434 But it doesn't hurt to check. */
435 sym->set_type
436 (lookup_function_type (read_type (&pp, objfile)));
437 }
438 else
439 {
440 sym->set_type (read_type (&pp, objfile));
441 }
442 add_symbol_to_list (sym, get_global_symbols ());
443 }
444 else
445 {
446 pp += 2;
447 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
448 {
449 sym->set_type
450 (lookup_function_type (read_type (&pp, objfile)));
451 }
452 else
453 {
454 sym->set_type (read_type (&pp, objfile));
455 }
456 }
457 }
458 }
459 }
460 \f
461
462 /* Read a number by which a type is referred to in dbx data,
463 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
464 Just a single number N is equivalent to (0,N).
465 Return the two numbers by storing them in the vector TYPENUMS.
466 TYPENUMS will then be used as an argument to dbx_lookup_type.
467
468 Returns 0 for success, -1 for error. */
469
470 static int
471 read_type_number (const char **pp, int *typenums)
472 {
473 int nbits;
474
475 if (**pp == '(')
476 {
477 (*pp)++;
478 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
479 if (nbits != 0)
480 return -1;
481 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 else
486 {
487 typenums[0] = 0;
488 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
489 if (nbits != 0)
490 return -1;
491 }
492 return 0;
493 }
494 \f
495
496 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
497 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
498 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
499 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
500
501 /* Structure for storing pointers to reference definitions for fast lookup
502 during "process_later". */
503
504 struct ref_map
505 {
506 const char *stabs;
507 CORE_ADDR value;
508 struct symbol *sym;
509 };
510
511 #define MAX_CHUNK_REFS 100
512 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
513 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
514
515 static struct ref_map *ref_map;
516
517 /* Ptr to free cell in chunk's linked list. */
518 static int ref_count = 0;
519
520 /* Number of chunks malloced. */
521 static int ref_chunk = 0;
522
523 /* This file maintains a cache of stabs aliases found in the symbol
524 table. If the symbol table changes, this cache must be cleared
525 or we are left holding onto data in invalid obstacks. */
526 void
527 stabsread_clear_cache (void)
528 {
529 ref_count = 0;
530 ref_chunk = 0;
531 }
532
533 /* Create array of pointers mapping refids to symbols and stab strings.
534 Add pointers to reference definition symbols and/or their values as we
535 find them, using their reference numbers as our index.
536 These will be used later when we resolve references. */
537 void
538 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
539 {
540 if (ref_count == 0)
541 ref_chunk = 0;
542 if (refnum >= ref_count)
543 ref_count = refnum + 1;
544 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
545 {
546 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
547 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
548
549 ref_map = (struct ref_map *)
550 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
551 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
552 new_chunks * REF_CHUNK_SIZE);
553 ref_chunk += new_chunks;
554 }
555 ref_map[refnum].stabs = stabs;
556 ref_map[refnum].sym = sym;
557 ref_map[refnum].value = value;
558 }
559
560 /* Return defined sym for the reference REFNUM. */
561 struct symbol *
562 ref_search (int refnum)
563 {
564 if (refnum < 0 || refnum > ref_count)
565 return 0;
566 return ref_map[refnum].sym;
567 }
568
569 /* Parse a reference id in STRING and return the resulting
570 reference number. Move STRING beyond the reference id. */
571
572 static int
573 process_reference (const char **string)
574 {
575 const char *p;
576 int refnum = 0;
577
578 if (**string != '#')
579 return 0;
580
581 /* Advance beyond the initial '#'. */
582 p = *string + 1;
583
584 /* Read number as reference id. */
585 while (*p && isdigit (*p))
586 {
587 refnum = refnum * 10 + *p - '0';
588 p++;
589 }
590 *string = p;
591 return refnum;
592 }
593
594 /* If STRING defines a reference, store away a pointer to the reference
595 definition for later use. Return the reference number. */
596
597 int
598 symbol_reference_defined (const char **string)
599 {
600 const char *p = *string;
601 int refnum = 0;
602
603 refnum = process_reference (&p);
604
605 /* Defining symbols end in '='. */
606 if (*p == '=')
607 {
608 /* Symbol is being defined here. */
609 *string = p + 1;
610 return refnum;
611 }
612 else
613 {
614 /* Must be a reference. Either the symbol has already been defined,
615 or this is a forward reference to it. */
616 *string = p;
617 return -1;
618 }
619 }
620
621 static int
622 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
623 {
624 int regno = gdbarch_stab_reg_to_regnum (gdbarch, sym->value_longest ());
625
626 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
627 {
628 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
629 sym->print_name ());
630
631 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
632 }
633
634 return regno;
635 }
636
637 static const struct symbol_register_ops stab_register_funcs = {
638 stab_reg_to_regnum
639 };
640
641 /* The "aclass" indices for computed symbols. */
642
643 static int stab_register_index;
644 static int stab_regparm_index;
645
646 struct symbol *
647 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
648 struct objfile *objfile)
649 {
650 struct gdbarch *gdbarch = objfile->arch ();
651 struct symbol *sym;
652 const char *p = find_name_end (string);
653 int deftype;
654 int synonym = 0;
655 int i;
656
657 /* We would like to eliminate nameless symbols, but keep their types.
658 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
659 to type 2, but, should not create a symbol to address that type. Since
660 the symbol will be nameless, there is no way any user can refer to it. */
661
662 int nameless;
663
664 /* Ignore syms with empty names. */
665 if (string[0] == 0)
666 return 0;
667
668 /* Ignore old-style symbols from cc -go. */
669 if (p == 0)
670 return 0;
671
672 while (p[1] == ':')
673 {
674 p += 2;
675 p = strchr (p, ':');
676 if (p == NULL)
677 {
678 complaint (
679 _("Bad stabs string '%s'"), string);
680 return NULL;
681 }
682 }
683
684 /* If a nameless stab entry, all we need is the type, not the symbol.
685 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
686 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
687
688 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
689
690 if (processing_gcc_compilation)
691 {
692 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
693 number of bytes occupied by a type or object, which we ignore. */
694 sym->set_line (desc);
695 }
696 else
697 {
698 sym->set_line (0); /* unknown */
699 }
700
701 sym->set_language (get_current_subfile ()->language,
702 &objfile->objfile_obstack);
703
704 if (is_cplus_marker (string[0]))
705 {
706 /* Special GNU C++ names. */
707 switch (string[1])
708 {
709 case 't':
710 sym->set_linkage_name ("this");
711 break;
712
713 case 'v': /* $vtbl_ptr_type */
714 goto normal;
715
716 case 'e':
717 sym->set_linkage_name ("eh_throw");
718 break;
719
720 case '_':
721 /* This was an anonymous type that was never fixed up. */
722 goto normal;
723
724 default:
725 complaint (_("Unknown C++ symbol name `%s'"),
726 string);
727 goto normal; /* Do *something* with it. */
728 }
729 }
730 else
731 {
732 normal:
733 gdb::unique_xmalloc_ptr<char> new_name;
734
735 if (sym->language () == language_cplus)
736 {
737 std::string name (string, p - string);
738 new_name = cp_canonicalize_string (name.c_str ());
739 }
740 else if (sym->language () == language_c)
741 {
742 std::string name (string, p - string);
743 new_name = c_canonicalize_name (name.c_str ());
744 }
745 if (new_name != nullptr)
746 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
747 else
748 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
749 objfile->per_bfd);
750
751 if (sym->language () == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
753 objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 sym->set_aclass_index (LOC_CONST);
787 sym->set_type (error_type (&p, objfile));
788 sym->set_domain (VAR_DOMAIN);
789 add_symbol_to_list (sym, get_file_symbols ());
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 gdb_byte *dbl_valu;
798 struct type *dbl_type;
799
800 dbl_type = objfile_type (objfile)->builtin_double;
801 dbl_valu
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 dbl_type->length ());
804
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
806
807 sym->set_type (dbl_type);
808 sym->set_value_bytes (dbl_valu);
809 sym->set_aclass_index (LOC_CONST_BYTES);
810 }
811 break;
812 case 'i':
813 {
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
820
821 sym->set_type (objfile_type (objfile)->builtin_long);
822 sym->set_value_longest (atoi (p));
823 sym->set_aclass_index (LOC_CONST);
824 }
825 break;
826
827 case 'c':
828 {
829 sym->set_type (objfile_type (objfile)->builtin_char);
830 sym->set_value_longest (atoi (p));
831 sym->set_aclass_index (LOC_CONST);
832 }
833 break;
834
835 case 's':
836 {
837 struct type *range_type;
838 int ind = 0;
839 char quote = *p++;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
842
843 if (quote != '\'' && quote != '"')
844 {
845 sym->set_aclass_index (LOC_CONST);
846 sym->set_type (error_type (&p, objfile));
847 sym->set_domain (VAR_DOMAIN);
848 add_symbol_to_list (sym, get_file_symbols ());
849 return sym;
850 }
851
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
854 {
855 if (*p == '\\' && p[1] == quote)
856 {
857 string_local[ind] = (gdb_byte) quote;
858 ind++;
859 p += 2;
860 }
861 else if (*p)
862 {
863 string_local[ind] = (gdb_byte) (*p);
864 ind++;
865 p++;
866 }
867 }
868 if (*p != quote)
869 {
870 sym->set_aclass_index (LOC_CONST);
871 sym->set_type (error_type (&p, objfile));
872 sym->set_domain (VAR_DOMAIN);
873 add_symbol_to_list (sym, get_file_symbols ());
874 return sym;
875 }
876
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
879 range_type
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
882 0, ind);
883 sym->set_type
884 (create_array_type (NULL, objfile_type (objfile)->builtin_char,
885 range_type));
886 string_value
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
889 p++;
890
891 sym->set_value_bytes (string_value);
892 sym->set_aclass_index (LOC_CONST_BYTES);
893 }
894 break;
895
896 case 'e':
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
901 {
902 sym->set_aclass_index (LOC_CONST);
903 sym->set_type (read_type (&p, objfile));
904
905 if (*p != ',')
906 {
907 sym->set_type (error_type (&p, objfile));
908 break;
909 }
910 ++p;
911
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
917 however. */
918 sym->set_value_longest (atoi (p));
919 }
920 break;
921 default:
922 {
923 sym->set_aclass_index (LOC_CONST);
924 sym->set_type (error_type (&p, objfile));
925 }
926 }
927 sym->set_domain (VAR_DOMAIN);
928 add_symbol_to_list (sym, get_file_symbols ());
929 return sym;
930
931 case 'C':
932 /* The name of a caught exception. */
933 sym->set_type (read_type (&p, objfile));
934 sym->set_aclass_index (LOC_LABEL);
935 sym->set_domain (VAR_DOMAIN);
936 sym->set_value_address (valu);
937 add_symbol_to_list (sym, get_local_symbols ());
938 break;
939
940 case 'f':
941 /* A static function definition. */
942 sym->set_type (read_type (&p, objfile));
943 sym->set_aclass_index (LOC_BLOCK);
944 sym->set_domain (VAR_DOMAIN);
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
947
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (sym->type ()->code () != TYPE_CODE_FUNC)
953 sym->set_type (lookup_function_type (sym->type ()));
954
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 sym->type ()->set_is_prototyped (true);
962
963 /* fall into process_prototype_types. */
964
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
967 if (*p == ';')
968 {
969 struct type *ftype = sym->type ();
970 int nsemi = 0;
971 int nparams = 0;
972 const char *p1 = p;
973
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
976 while (*p1)
977 {
978 if (*p1++ == ';')
979 nsemi++;
980 }
981
982 /* Allocate parameter information fields and fill them in. */
983 ftype->set_fields
984 ((struct field *)
985 TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
986 while (*p++ == ';')
987 {
988 struct type *ptype;
989
990 /* A type number of zero indicates the start of varargs.
991 FIXME: GDB currently ignores vararg functions. */
992 if (p[0] == '0' && p[1] == '\0')
993 break;
994 ptype = read_type (&p, objfile);
995
996 /* The Sun compilers mark integer arguments, which should
997 be promoted to the width of the calling conventions, with
998 a type which references itself. This type is turned into
999 a TYPE_CODE_VOID type by read_type, and we have to turn
1000 it back into builtin_int here.
1001 FIXME: Do we need a new builtin_promoted_int_arg ? */
1002 if (ptype->code () == TYPE_CODE_VOID)
1003 ptype = objfile_type (objfile)->builtin_int;
1004 ftype->field (nparams).set_type (ptype);
1005 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1006 }
1007 ftype->set_num_fields (nparams);
1008 ftype->set_is_prototyped (true);
1009 }
1010 break;
1011
1012 case 'F':
1013 /* A global function definition. */
1014 sym->set_type (read_type (&p, objfile));
1015 sym->set_aclass_index (LOC_BLOCK);
1016 sym->set_domain (VAR_DOMAIN);
1017 add_symbol_to_list (sym, get_global_symbols ());
1018 goto process_function_types;
1019
1020 case 'G':
1021 /* For a class G (global) symbol, it appears that the
1022 value is not correct. It is necessary to search for the
1023 corresponding linker definition to find the value.
1024 These definitions appear at the end of the namelist. */
1025 sym->set_type (read_type (&p, objfile));
1026 sym->set_aclass_index (LOC_STATIC);
1027 sym->set_domain (VAR_DOMAIN);
1028 /* Don't add symbol references to global_sym_chain.
1029 Symbol references don't have valid names and wont't match up with
1030 minimal symbols when the global_sym_chain is relocated.
1031 We'll fixup symbol references when we fixup the defining symbol. */
1032 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1033 {
1034 i = hashname (sym->linkage_name ());
1035 sym->set_value_chain (global_sym_chain[i]);
1036 global_sym_chain[i] = sym;
1037 }
1038 add_symbol_to_list (sym, get_global_symbols ());
1039 break;
1040
1041 /* This case is faked by a conditional above,
1042 when there is no code letter in the dbx data.
1043 Dbx data never actually contains 'l'. */
1044 case 's':
1045 case 'l':
1046 sym->set_type (read_type (&p, objfile));
1047 sym->set_aclass_index (LOC_LOCAL);
1048 sym->set_value_longest (valu);
1049 sym->set_domain (VAR_DOMAIN);
1050 add_symbol_to_list (sym, get_local_symbols ());
1051 break;
1052
1053 case 'p':
1054 if (*p == 'F')
1055 /* pF is a two-letter code that means a function parameter in Fortran.
1056 The type-number specifies the type of the return value.
1057 Translate it into a pointer-to-function type. */
1058 {
1059 p++;
1060 sym->set_type
1061 (lookup_pointer_type
1062 (lookup_function_type (read_type (&p, objfile))));
1063 }
1064 else
1065 sym->set_type (read_type (&p, objfile));
1066
1067 sym->set_aclass_index (LOC_ARG);
1068 sym->set_value_longest (valu);
1069 sym->set_domain (VAR_DOMAIN);
1070 sym->set_is_argument (1);
1071 add_symbol_to_list (sym, get_local_symbols ());
1072
1073 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1074 {
1075 /* On little-endian machines, this crud is never necessary,
1076 and, if the extra bytes contain garbage, is harmful. */
1077 break;
1078 }
1079
1080 /* If it's gcc-compiled, if it says `short', believe it. */
1081 if (processing_gcc_compilation
1082 || gdbarch_believe_pcc_promotion (gdbarch))
1083 break;
1084
1085 if (!gdbarch_believe_pcc_promotion (gdbarch))
1086 {
1087 /* If PCC says a parameter is a short or a char, it is
1088 really an int. */
1089 if (sym->type ()->length ()
1090 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1091 && sym->type ()->code () == TYPE_CODE_INT)
1092 {
1093 sym->set_type
1094 (sym->type ()->is_unsigned ()
1095 ? objfile_type (objfile)->builtin_unsigned_int
1096 : objfile_type (objfile)->builtin_int);
1097 }
1098 break;
1099 }
1100 /* Fall through. */
1101
1102 case 'P':
1103 /* acc seems to use P to declare the prototypes of functions that
1104 are referenced by this file. gdb is not prepared to deal
1105 with this extra information. FIXME, it ought to. */
1106 if (type == N_FUN)
1107 {
1108 sym->set_type (read_type (&p, objfile));
1109 goto process_prototype_types;
1110 }
1111 /*FALLTHROUGH */
1112
1113 case 'R':
1114 /* Parameter which is in a register. */
1115 sym->set_type (read_type (&p, objfile));
1116 sym->set_aclass_index (stab_register_index);
1117 sym->set_is_argument (1);
1118 sym->set_value_longest (valu);
1119 sym->set_domain (VAR_DOMAIN);
1120 add_symbol_to_list (sym, get_local_symbols ());
1121 break;
1122
1123 case 'r':
1124 /* Register variable (either global or local). */
1125 sym->set_type (read_type (&p, objfile));
1126 sym->set_aclass_index (stab_register_index);
1127 sym->set_value_longest (valu);
1128 sym->set_domain (VAR_DOMAIN);
1129 if (within_function)
1130 {
1131 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1132 the same name to represent an argument passed in a
1133 register. GCC uses 'P' for the same case. So if we find
1134 such a symbol pair we combine it into one 'P' symbol.
1135 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1137 the stack.
1138
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1143 etc.).
1144
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1149
1150 struct pending *local_symbols = *get_local_symbols ();
1151 if (local_symbols
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, sym->type ()))
1154 {
1155 struct symbol *prev_sym;
1156
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((prev_sym->aclass () == LOC_REF_ARG
1159 || prev_sym->aclass () == LOC_ARG)
1160 && strcmp (prev_sym->linkage_name (),
1161 sym->linkage_name ()) == 0)
1162 {
1163 prev_sym->set_aclass_index (stab_register_index);
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 prev_sym->set_type (sym->type ());
1167 prev_sym->set_value_longest (sym->value_longest ());
1168 sym = prev_sym;
1169 break;
1170 }
1171 }
1172 add_symbol_to_list (sym, get_local_symbols ());
1173 }
1174 else
1175 add_symbol_to_list (sym, get_file_symbols ());
1176 break;
1177
1178 case 'S':
1179 /* Static symbol at top level of file. */
1180 sym->set_type (read_type (&p, objfile));
1181 sym->set_aclass_index (LOC_STATIC);
1182 sym->set_value_address (valu);
1183 sym->set_domain (VAR_DOMAIN);
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (sym->language () == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 sym->set_type (read_type (&p, objfile));
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 sym->set_aclass_index (LOC_TYPEDEF);
1213 sym->set_value_longest (valu);
1214 sym->set_domain (VAR_DOMAIN);
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (sym->type ()->name () != NULL)
1220 if ((sym->type ()->code () == TYPE_CODE_STRUCT
1221 || sym->type ()->code () == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (sym->type ()))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (sym->type ()) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (sym->type (), j) == 0)
1228 sym->type ()->field (j).set_name
1229 (TYPE_BASECLASS (sym->type (), j)->name ());
1230 }
1231
1232 if (sym->type ()->name () == NULL)
1233 {
1234 if ((sym->type ()->code () == TYPE_CODE_PTR
1235 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1236 || sym->type ()->code () == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (get_current_subfile ()->language == language_pascal)
1275 sym->type ()->set_name (sym->linkage_name ());
1276 }
1277 else
1278 sym->type ()->set_name (sym->linkage_name ());
1279 }
1280
1281 add_symbol_to_list (sym, get_file_symbols ());
1282
1283 if (synonym)
1284 {
1285 /* Create the STRUCT_DOMAIN clone. */
1286 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1287
1288 *struct_sym = *sym;
1289 struct_sym->set_aclass_index (LOC_TYPEDEF);
1290 struct_sym->set_value_longest (valu);
1291 struct_sym->set_domain (STRUCT_DOMAIN);
1292 if (sym->type ()->name () == 0)
1293 sym->type ()->set_name
1294 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1295 (char *) NULL));
1296 add_symbol_to_list (struct_sym, get_file_symbols ());
1297 }
1298
1299 break;
1300
1301 case 'T':
1302 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1303 by 't' which means we are typedef'ing it as well. */
1304 synonym = *p == 't';
1305
1306 if (synonym)
1307 p++;
1308
1309 sym->set_type (read_type (&p, objfile));
1310
1311 /* For a nameless type, we don't want a create a symbol, thus we
1312 did not use `sym'. Return without further processing. */
1313 if (nameless)
1314 return NULL;
1315
1316 sym->set_aclass_index (LOC_TYPEDEF);
1317 sym->set_value_longest (valu);
1318 sym->set_domain (STRUCT_DOMAIN);
1319 if (sym->type ()->name () == 0)
1320 sym->type ()->set_name
1321 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1322 (char *) NULL));
1323 add_symbol_to_list (sym, get_file_symbols ());
1324
1325 if (synonym)
1326 {
1327 /* Clone the sym and then modify it. */
1328 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1329
1330 *typedef_sym = *sym;
1331 typedef_sym->set_aclass_index (LOC_TYPEDEF);
1332 typedef_sym->set_value_longest (valu);
1333 typedef_sym->set_domain (VAR_DOMAIN);
1334 if (sym->type ()->name () == 0)
1335 sym->type ()->set_name
1336 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1337 (char *) NULL));
1338 add_symbol_to_list (typedef_sym, get_file_symbols ());
1339 }
1340 break;
1341
1342 case 'V':
1343 /* Static symbol of local scope. */
1344 sym->set_type (read_type (&p, objfile));
1345 sym->set_aclass_index (LOC_STATIC);
1346 sym->set_value_address (valu);
1347 sym->set_domain (VAR_DOMAIN);
1348 add_symbol_to_list (sym, get_local_symbols ());
1349 break;
1350
1351 case 'v':
1352 /* Reference parameter */
1353 sym->set_type (read_type (&p, objfile));
1354 sym->set_aclass_index (LOC_REF_ARG);
1355 sym->set_is_argument (1);
1356 sym->set_value_longest (valu);
1357 sym->set_domain (VAR_DOMAIN);
1358 add_symbol_to_list (sym, get_local_symbols ());
1359 break;
1360
1361 case 'a':
1362 /* Reference parameter which is in a register. */
1363 sym->set_type (read_type (&p, objfile));
1364 sym->set_aclass_index (stab_regparm_index);
1365 sym->set_is_argument (1);
1366 sym->set_value_longest (valu);
1367 sym->set_domain (VAR_DOMAIN);
1368 add_symbol_to_list (sym, get_local_symbols ());
1369 break;
1370
1371 case 'X':
1372 /* This is used by Sun FORTRAN for "function result value".
1373 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1374 that Pascal uses it too, but when I tried it Pascal used
1375 "x:3" (local symbol) instead. */
1376 sym->set_type (read_type (&p, objfile));
1377 sym->set_aclass_index (LOC_LOCAL);
1378 sym->set_value_longest (valu);
1379 sym->set_domain (VAR_DOMAIN);
1380 add_symbol_to_list (sym, get_local_symbols ());
1381 break;
1382
1383 default:
1384 sym->set_type (error_type (&p, objfile));
1385 sym->set_aclass_index (LOC_CONST);
1386 sym->set_value_longest (0);
1387 sym->set_domain (VAR_DOMAIN);
1388 add_symbol_to_list (sym, get_file_symbols ());
1389 break;
1390 }
1391
1392 /* Some systems pass variables of certain types by reference instead
1393 of by value, i.e. they will pass the address of a structure (in a
1394 register or on the stack) instead of the structure itself. */
1395
1396 if (gdbarch_stabs_argument_has_addr (gdbarch, sym->type ())
1397 && sym->is_argument ())
1398 {
1399 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1400 variables passed in a register). */
1401 if (sym->aclass () == LOC_REGISTER)
1402 sym->set_aclass_index (LOC_REGPARM_ADDR);
1403 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1404 and subsequent arguments on SPARC, for example). */
1405 else if (sym->aclass () == LOC_ARG)
1406 sym->set_aclass_index (LOC_REF_ARG);
1407 }
1408
1409 return sym;
1410 }
1411
1412 /* Skip rest of this symbol and return an error type.
1413
1414 General notes on error recovery: error_type always skips to the
1415 end of the symbol (modulo cretinous dbx symbol name continuation).
1416 Thus code like this:
1417
1418 if (*(*pp)++ != ';')
1419 return error_type (pp, objfile);
1420
1421 is wrong because if *pp starts out pointing at '\0' (typically as the
1422 result of an earlier error), it will be incremented to point to the
1423 start of the next symbol, which might produce strange results, at least
1424 if you run off the end of the string table. Instead use
1425
1426 if (**pp != ';')
1427 return error_type (pp, objfile);
1428 ++*pp;
1429
1430 or
1431
1432 if (**pp != ';')
1433 foo = error_type (pp, objfile);
1434 else
1435 ++*pp;
1436
1437 And in case it isn't obvious, the point of all this hair is so the compiler
1438 can define new types and new syntaxes, and old versions of the
1439 debugger will be able to read the new symbol tables. */
1440
1441 static struct type *
1442 error_type (const char **pp, struct objfile *objfile)
1443 {
1444 complaint (_("couldn't parse type; debugger out of date?"));
1445 while (1)
1446 {
1447 /* Skip to end of symbol. */
1448 while (**pp != '\0')
1449 {
1450 (*pp)++;
1451 }
1452
1453 /* Check for and handle cretinous dbx symbol name continuation! */
1454 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1455 {
1456 *pp = next_symbol_text (objfile);
1457 }
1458 else
1459 {
1460 break;
1461 }
1462 }
1463 return objfile_type (objfile)->builtin_error;
1464 }
1465 \f
1466
1467 /* Allocate a stub method whose return type is TYPE. This apparently
1468 happens for speed of symbol reading, since parsing out the
1469 arguments to the method is cpu-intensive, the way we are doing it.
1470 So, we will fill in arguments later. This always returns a fresh
1471 type. */
1472
1473 static struct type *
1474 allocate_stub_method (struct type *type)
1475 {
1476 struct type *mtype;
1477
1478 mtype = alloc_type_copy (type);
1479 mtype->set_code (TYPE_CODE_METHOD);
1480 mtype->set_length (1);
1481 mtype->set_is_stub (true);
1482 mtype->set_target_type (type);
1483 /* TYPE_SELF_TYPE (mtype) = unknown yet */
1484 return mtype;
1485 }
1486
1487 /* Read type information or a type definition; return the type. Even
1488 though this routine accepts either type information or a type
1489 definition, the distinction is relevant--some parts of stabsread.c
1490 assume that type information starts with a digit, '-', or '(' in
1491 deciding whether to call read_type. */
1492
1493 static struct type *
1494 read_type (const char **pp, struct objfile *objfile)
1495 {
1496 struct type *type = 0;
1497 struct type *type1;
1498 int typenums[2];
1499 char type_descriptor;
1500
1501 /* Size in bits of type if specified by a type attribute, or -1 if
1502 there is no size attribute. */
1503 int type_size = -1;
1504
1505 /* Used to distinguish string and bitstring from char-array and set. */
1506 int is_string = 0;
1507
1508 /* Used to distinguish vector from array. */
1509 int is_vector = 0;
1510
1511 /* Read type number if present. The type number may be omitted.
1512 for instance in a two-dimensional array declared with type
1513 "ar1;1;10;ar1;1;10;4". */
1514 if ((**pp >= '0' && **pp <= '9')
1515 || **pp == '('
1516 || **pp == '-')
1517 {
1518 if (read_type_number (pp, typenums) != 0)
1519 return error_type (pp, objfile);
1520
1521 if (**pp != '=')
1522 {
1523 /* Type is not being defined here. Either it already
1524 exists, or this is a forward reference to it.
1525 dbx_alloc_type handles both cases. */
1526 type = dbx_alloc_type (typenums, objfile);
1527
1528 /* If this is a forward reference, arrange to complain if it
1529 doesn't get patched up by the time we're done
1530 reading. */
1531 if (type->code () == TYPE_CODE_UNDEF)
1532 add_undefined_type (type, typenums);
1533
1534 return type;
1535 }
1536
1537 /* Type is being defined here. */
1538 /* Skip the '='.
1539 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1540 (*pp) += 2;
1541 }
1542 else
1543 {
1544 /* 'typenums=' not present, type is anonymous. Read and return
1545 the definition, but don't put it in the type vector. */
1546 typenums[0] = typenums[1] = -1;
1547 (*pp)++;
1548 }
1549
1550 again:
1551 type_descriptor = (*pp)[-1];
1552 switch (type_descriptor)
1553 {
1554 case 'x':
1555 {
1556 enum type_code code;
1557
1558 /* Used to index through file_symbols. */
1559 struct pending *ppt;
1560 int i;
1561
1562 /* Name including "struct", etc. */
1563 char *type_name;
1564
1565 {
1566 const char *from, *p, *q1, *q2;
1567
1568 /* Set the type code according to the following letter. */
1569 switch ((*pp)[0])
1570 {
1571 case 's':
1572 code = TYPE_CODE_STRUCT;
1573 break;
1574 case 'u':
1575 code = TYPE_CODE_UNION;
1576 break;
1577 case 'e':
1578 code = TYPE_CODE_ENUM;
1579 break;
1580 default:
1581 {
1582 /* Complain and keep going, so compilers can invent new
1583 cross-reference types. */
1584 complaint (_("Unrecognized cross-reference type `%c'"),
1585 (*pp)[0]);
1586 code = TYPE_CODE_STRUCT;
1587 break;
1588 }
1589 }
1590
1591 q1 = strchr (*pp, '<');
1592 p = strchr (*pp, ':');
1593 if (p == NULL)
1594 return error_type (pp, objfile);
1595 if (q1 && p > q1 && p[1] == ':')
1596 {
1597 int nesting_level = 0;
1598
1599 for (q2 = q1; *q2; q2++)
1600 {
1601 if (*q2 == '<')
1602 nesting_level++;
1603 else if (*q2 == '>')
1604 nesting_level--;
1605 else if (*q2 == ':' && nesting_level == 0)
1606 break;
1607 }
1608 p = q2;
1609 if (*p != ':')
1610 return error_type (pp, objfile);
1611 }
1612 type_name = NULL;
1613 if (get_current_subfile ()->language == language_cplus)
1614 {
1615 std::string name (*pp, p - *pp);
1616 gdb::unique_xmalloc_ptr<char> new_name
1617 = cp_canonicalize_string (name.c_str ());
1618 if (new_name != nullptr)
1619 type_name = obstack_strdup (&objfile->objfile_obstack,
1620 new_name.get ());
1621 }
1622 else if (get_current_subfile ()->language == language_c)
1623 {
1624 std::string name (*pp, p - *pp);
1625 gdb::unique_xmalloc_ptr<char> new_name
1626 = c_canonicalize_name (name.c_str ());
1627 if (new_name != nullptr)
1628 type_name = obstack_strdup (&objfile->objfile_obstack,
1629 new_name.get ());
1630 }
1631 if (type_name == NULL)
1632 {
1633 char *to = type_name = (char *)
1634 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1635
1636 /* Copy the name. */
1637 from = *pp + 1;
1638 while (from < p)
1639 *to++ = *from++;
1640 *to = '\0';
1641 }
1642
1643 /* Set the pointer ahead of the name which we just read, and
1644 the colon. */
1645 *pp = p + 1;
1646 }
1647
1648 /* If this type has already been declared, then reuse the same
1649 type, rather than allocating a new one. This saves some
1650 memory. */
1651
1652 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1653 for (i = 0; i < ppt->nsyms; i++)
1654 {
1655 struct symbol *sym = ppt->symbol[i];
1656
1657 if (sym->aclass () == LOC_TYPEDEF
1658 && sym->domain () == STRUCT_DOMAIN
1659 && (sym->type ()->code () == code)
1660 && strcmp (sym->linkage_name (), type_name) == 0)
1661 {
1662 obstack_free (&objfile->objfile_obstack, type_name);
1663 type = sym->type ();
1664 if (typenums[0] != -1)
1665 *dbx_lookup_type (typenums, objfile) = type;
1666 return type;
1667 }
1668 }
1669
1670 /* Didn't find the type to which this refers, so we must
1671 be dealing with a forward reference. Allocate a type
1672 structure for it, and keep track of it so we can
1673 fill in the rest of the fields when we get the full
1674 type. */
1675 type = dbx_alloc_type (typenums, objfile);
1676 type->set_code (code);
1677 type->set_name (type_name);
1678 INIT_CPLUS_SPECIFIC (type);
1679 type->set_is_stub (true);
1680
1681 add_undefined_type (type, typenums);
1682 return type;
1683 }
1684
1685 case '-': /* RS/6000 built-in type */
1686 case '0':
1687 case '1':
1688 case '2':
1689 case '3':
1690 case '4':
1691 case '5':
1692 case '6':
1693 case '7':
1694 case '8':
1695 case '9':
1696 case '(':
1697 (*pp)--;
1698
1699 /* We deal with something like t(1,2)=(3,4)=... which
1700 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1701
1702 /* Allocate and enter the typedef type first.
1703 This handles recursive types. */
1704 type = dbx_alloc_type (typenums, objfile);
1705 type->set_code (TYPE_CODE_TYPEDEF);
1706 {
1707 struct type *xtype = read_type (pp, objfile);
1708
1709 if (type == xtype)
1710 {
1711 /* It's being defined as itself. That means it is "void". */
1712 type->set_code (TYPE_CODE_VOID);
1713 type->set_length (1);
1714 }
1715 else if (type_size >= 0 || is_string)
1716 {
1717 /* This is the absolute wrong way to construct types. Every
1718 other debug format has found a way around this problem and
1719 the related problems with unnecessarily stubbed types;
1720 someone motivated should attempt to clean up the issue
1721 here as well. Once a type pointed to has been created it
1722 should not be modified.
1723
1724 Well, it's not *absolutely* wrong. Constructing recursive
1725 types (trees, linked lists) necessarily entails modifying
1726 types after creating them. Constructing any loop structure
1727 entails side effects. The Dwarf 2 reader does handle this
1728 more gracefully (it never constructs more than once
1729 instance of a type object, so it doesn't have to copy type
1730 objects wholesale), but it still mutates type objects after
1731 other folks have references to them.
1732
1733 Keep in mind that this circularity/mutation issue shows up
1734 at the source language level, too: C's "incomplete types",
1735 for example. So the proper cleanup, I think, would be to
1736 limit GDB's type smashing to match exactly those required
1737 by the source language. So GDB could have a
1738 "complete_this_type" function, but never create unnecessary
1739 copies of a type otherwise. */
1740 replace_type (type, xtype);
1741 type->set_name (NULL);
1742 }
1743 else
1744 {
1745 type->set_target_is_stub (true);
1746 type->set_target_type (xtype);
1747 }
1748 }
1749 break;
1750
1751 /* In the following types, we must be sure to overwrite any existing
1752 type that the typenums refer to, rather than allocating a new one
1753 and making the typenums point to the new one. This is because there
1754 may already be pointers to the existing type (if it had been
1755 forward-referenced), and we must change it to a pointer, function,
1756 reference, or whatever, *in-place*. */
1757
1758 case '*': /* Pointer to another type */
1759 type1 = read_type (pp, objfile);
1760 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1761 break;
1762
1763 case '&': /* Reference to another type */
1764 type1 = read_type (pp, objfile);
1765 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1766 TYPE_CODE_REF);
1767 break;
1768
1769 case 'f': /* Function returning another type */
1770 type1 = read_type (pp, objfile);
1771 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1772 break;
1773
1774 case 'g': /* Prototyped function. (Sun) */
1775 {
1776 /* Unresolved questions:
1777
1778 - According to Sun's ``STABS Interface Manual'', for 'f'
1779 and 'F' symbol descriptors, a `0' in the argument type list
1780 indicates a varargs function. But it doesn't say how 'g'
1781 type descriptors represent that info. Someone with access
1782 to Sun's toolchain should try it out.
1783
1784 - According to the comment in define_symbol (search for
1785 `process_prototype_types:'), Sun emits integer arguments as
1786 types which ref themselves --- like `void' types. Do we
1787 have to deal with that here, too? Again, someone with
1788 access to Sun's toolchain should try it out and let us
1789 know. */
1790
1791 const char *type_start = (*pp) - 1;
1792 struct type *return_type = read_type (pp, objfile);
1793 struct type *func_type
1794 = make_function_type (return_type,
1795 dbx_lookup_type (typenums, objfile));
1796 struct type_list {
1797 struct type *type;
1798 struct type_list *next;
1799 } *arg_types = 0;
1800 int num_args = 0;
1801
1802 while (**pp && **pp != '#')
1803 {
1804 struct type *arg_type = read_type (pp, objfile);
1805 struct type_list *newobj = XALLOCA (struct type_list);
1806 newobj->type = arg_type;
1807 newobj->next = arg_types;
1808 arg_types = newobj;
1809 num_args++;
1810 }
1811 if (**pp == '#')
1812 ++*pp;
1813 else
1814 {
1815 complaint (_("Prototyped function type didn't "
1816 "end arguments with `#':\n%s"),
1817 type_start);
1818 }
1819
1820 /* If there is just one argument whose type is `void', then
1821 that's just an empty argument list. */
1822 if (arg_types
1823 && ! arg_types->next
1824 && arg_types->type->code () == TYPE_CODE_VOID)
1825 num_args = 0;
1826
1827 func_type->set_fields
1828 ((struct field *) TYPE_ALLOC (func_type,
1829 num_args * sizeof (struct field)));
1830 memset (func_type->fields (), 0, num_args * sizeof (struct field));
1831 {
1832 int i;
1833 struct type_list *t;
1834
1835 /* We stuck each argument type onto the front of the list
1836 when we read it, so the list is reversed. Build the
1837 fields array right-to-left. */
1838 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1839 func_type->field (i).set_type (t->type);
1840 }
1841 func_type->set_num_fields (num_args);
1842 func_type->set_is_prototyped (true);
1843
1844 type = func_type;
1845 break;
1846 }
1847
1848 case 'k': /* Const qualifier on some type (Sun) */
1849 type = read_type (pp, objfile);
1850 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1851 dbx_lookup_type (typenums, objfile));
1852 break;
1853
1854 case 'B': /* Volatile qual on some type (Sun) */
1855 type = read_type (pp, objfile);
1856 type = make_cv_type (TYPE_CONST (type), 1, type,
1857 dbx_lookup_type (typenums, objfile));
1858 break;
1859
1860 case '@':
1861 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1862 { /* Member (class & variable) type */
1863 /* FIXME -- we should be doing smash_to_XXX types here. */
1864
1865 struct type *domain = read_type (pp, objfile);
1866 struct type *memtype;
1867
1868 if (**pp != ',')
1869 /* Invalid member type data format. */
1870 return error_type (pp, objfile);
1871 ++*pp;
1872
1873 memtype = read_type (pp, objfile);
1874 type = dbx_alloc_type (typenums, objfile);
1875 smash_to_memberptr_type (type, domain, memtype);
1876 }
1877 else
1878 /* type attribute */
1879 {
1880 const char *attr = *pp;
1881
1882 /* Skip to the semicolon. */
1883 while (**pp != ';' && **pp != '\0')
1884 ++(*pp);
1885 if (**pp == '\0')
1886 return error_type (pp, objfile);
1887 else
1888 ++ * pp; /* Skip the semicolon. */
1889
1890 switch (*attr)
1891 {
1892 case 's': /* Size attribute */
1893 type_size = atoi (attr + 1);
1894 if (type_size <= 0)
1895 type_size = -1;
1896 break;
1897
1898 case 'S': /* String attribute */
1899 /* FIXME: check to see if following type is array? */
1900 is_string = 1;
1901 break;
1902
1903 case 'V': /* Vector attribute */
1904 /* FIXME: check to see if following type is array? */
1905 is_vector = 1;
1906 break;
1907
1908 default:
1909 /* Ignore unrecognized type attributes, so future compilers
1910 can invent new ones. */
1911 break;
1912 }
1913 ++*pp;
1914 goto again;
1915 }
1916 break;
1917
1918 case '#': /* Method (class & fn) type */
1919 if ((*pp)[0] == '#')
1920 {
1921 /* We'll get the parameter types from the name. */
1922 struct type *return_type;
1923
1924 (*pp)++;
1925 return_type = read_type (pp, objfile);
1926 if (*(*pp)++ != ';')
1927 complaint (_("invalid (minimal) member type "
1928 "data format at symtab pos %d."),
1929 symnum);
1930 type = allocate_stub_method (return_type);
1931 if (typenums[0] != -1)
1932 *dbx_lookup_type (typenums, objfile) = type;
1933 }
1934 else
1935 {
1936 struct type *domain = read_type (pp, objfile);
1937 struct type *return_type;
1938 struct field *args;
1939 int nargs, varargs;
1940
1941 if (**pp != ',')
1942 /* Invalid member type data format. */
1943 return error_type (pp, objfile);
1944 else
1945 ++(*pp);
1946
1947 return_type = read_type (pp, objfile);
1948 args = read_args (pp, ';', objfile, &nargs, &varargs);
1949 if (args == NULL)
1950 return error_type (pp, objfile);
1951 type = dbx_alloc_type (typenums, objfile);
1952 smash_to_method_type (type, domain, return_type, args,
1953 nargs, varargs);
1954 }
1955 break;
1956
1957 case 'r': /* Range type */
1958 type = read_range_type (pp, typenums, type_size, objfile);
1959 if (typenums[0] != -1)
1960 *dbx_lookup_type (typenums, objfile) = type;
1961 break;
1962
1963 case 'b':
1964 {
1965 /* Sun ACC builtin int type */
1966 type = read_sun_builtin_type (pp, typenums, objfile);
1967 if (typenums[0] != -1)
1968 *dbx_lookup_type (typenums, objfile) = type;
1969 }
1970 break;
1971
1972 case 'R': /* Sun ACC builtin float type */
1973 type = read_sun_floating_type (pp, typenums, objfile);
1974 if (typenums[0] != -1)
1975 *dbx_lookup_type (typenums, objfile) = type;
1976 break;
1977
1978 case 'e': /* Enumeration type */
1979 type = dbx_alloc_type (typenums, objfile);
1980 type = read_enum_type (pp, type, objfile);
1981 if (typenums[0] != -1)
1982 *dbx_lookup_type (typenums, objfile) = type;
1983 break;
1984
1985 case 's': /* Struct type */
1986 case 'u': /* Union type */
1987 {
1988 enum type_code type_code = TYPE_CODE_UNDEF;
1989 type = dbx_alloc_type (typenums, objfile);
1990 switch (type_descriptor)
1991 {
1992 case 's':
1993 type_code = TYPE_CODE_STRUCT;
1994 break;
1995 case 'u':
1996 type_code = TYPE_CODE_UNION;
1997 break;
1998 }
1999 type = read_struct_type (pp, type, type_code, objfile);
2000 break;
2001 }
2002
2003 case 'a': /* Array type */
2004 if (**pp != 'r')
2005 return error_type (pp, objfile);
2006 ++*pp;
2007
2008 type = dbx_alloc_type (typenums, objfile);
2009 type = read_array_type (pp, type, objfile);
2010 if (is_string)
2011 type->set_code (TYPE_CODE_STRING);
2012 if (is_vector)
2013 make_vector_type (type);
2014 break;
2015
2016 case 'S': /* Set type */
2017 type1 = read_type (pp, objfile);
2018 type = create_set_type (NULL, type1);
2019 if (typenums[0] != -1)
2020 *dbx_lookup_type (typenums, objfile) = type;
2021 break;
2022
2023 default:
2024 --*pp; /* Go back to the symbol in error. */
2025 /* Particularly important if it was \0! */
2026 return error_type (pp, objfile);
2027 }
2028
2029 if (type == 0)
2030 {
2031 warning (_("GDB internal error, type is NULL in stabsread.c."));
2032 return error_type (pp, objfile);
2033 }
2034
2035 /* Size specified in a type attribute overrides any other size. */
2036 if (type_size != -1)
2037 type->set_length ((type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT);
2038
2039 return type;
2040 }
2041 \f
2042 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2043 Return the proper type node for a given builtin type number. */
2044
2045 static const registry<objfile>::key<struct type *,
2046 gdb::noop_deleter<struct type *>>
2047 rs6000_builtin_type_data;
2048
2049 static struct type *
2050 rs6000_builtin_type (int typenum, struct objfile *objfile)
2051 {
2052 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2053
2054 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2055 #define NUMBER_RECOGNIZED 34
2056 struct type *rettype = NULL;
2057
2058 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2059 {
2060 complaint (_("Unknown builtin type %d"), typenum);
2061 return objfile_type (objfile)->builtin_error;
2062 }
2063
2064 if (!negative_types)
2065 {
2066 /* This includes an empty slot for type number -0. */
2067 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2068 NUMBER_RECOGNIZED + 1, struct type *);
2069 rs6000_builtin_type_data.set (objfile, negative_types);
2070 }
2071
2072 if (negative_types[-typenum] != NULL)
2073 return negative_types[-typenum];
2074
2075 #if TARGET_CHAR_BIT != 8
2076 #error This code wrong for TARGET_CHAR_BIT not 8
2077 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2078 that if that ever becomes not true, the correct fix will be to
2079 make the size in the struct type to be in bits, not in units of
2080 TARGET_CHAR_BIT. */
2081 #endif
2082
2083 switch (-typenum)
2084 {
2085 case 1:
2086 /* The size of this and all the other types are fixed, defined
2087 by the debugging format. If there is a type called "int" which
2088 is other than 32 bits, then it should use a new negative type
2089 number (or avoid negative type numbers for that case).
2090 See stabs.texinfo. */
2091 rettype = init_integer_type (objfile, 32, 0, "int");
2092 break;
2093 case 2:
2094 rettype = init_integer_type (objfile, 8, 0, "char");
2095 rettype->set_has_no_signedness (true);
2096 break;
2097 case 3:
2098 rettype = init_integer_type (objfile, 16, 0, "short");
2099 break;
2100 case 4:
2101 rettype = init_integer_type (objfile, 32, 0, "long");
2102 break;
2103 case 5:
2104 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2105 break;
2106 case 6:
2107 rettype = init_integer_type (objfile, 8, 0, "signed char");
2108 break;
2109 case 7:
2110 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2111 break;
2112 case 8:
2113 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2114 break;
2115 case 9:
2116 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2117 break;
2118 case 10:
2119 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2120 break;
2121 case 11:
2122 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2123 break;
2124 case 12:
2125 /* IEEE single precision (32 bit). */
2126 rettype = init_float_type (objfile, 32, "float",
2127 floatformats_ieee_single);
2128 break;
2129 case 13:
2130 /* IEEE double precision (64 bit). */
2131 rettype = init_float_type (objfile, 64, "double",
2132 floatformats_ieee_double);
2133 break;
2134 case 14:
2135 /* This is an IEEE double on the RS/6000, and different machines with
2136 different sizes for "long double" should use different negative
2137 type numbers. See stabs.texinfo. */
2138 rettype = init_float_type (objfile, 64, "long double",
2139 floatformats_ieee_double);
2140 break;
2141 case 15:
2142 rettype = init_integer_type (objfile, 32, 0, "integer");
2143 break;
2144 case 16:
2145 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2146 break;
2147 case 17:
2148 rettype = init_float_type (objfile, 32, "short real",
2149 floatformats_ieee_single);
2150 break;
2151 case 18:
2152 rettype = init_float_type (objfile, 64, "real",
2153 floatformats_ieee_double);
2154 break;
2155 case 19:
2156 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2157 break;
2158 case 20:
2159 rettype = init_character_type (objfile, 8, 1, "character");
2160 break;
2161 case 21:
2162 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2163 break;
2164 case 22:
2165 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2166 break;
2167 case 23:
2168 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2169 break;
2170 case 24:
2171 rettype = init_boolean_type (objfile, 32, 1, "logical");
2172 break;
2173 case 25:
2174 /* Complex type consisting of two IEEE single precision values. */
2175 rettype = init_complex_type ("complex",
2176 rs6000_builtin_type (12, objfile));
2177 break;
2178 case 26:
2179 /* Complex type consisting of two IEEE double precision values. */
2180 rettype = init_complex_type ("double complex",
2181 rs6000_builtin_type (13, objfile));
2182 break;
2183 case 27:
2184 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2185 break;
2186 case 28:
2187 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2188 break;
2189 case 29:
2190 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2191 break;
2192 case 30:
2193 rettype = init_character_type (objfile, 16, 0, "wchar");
2194 break;
2195 case 31:
2196 rettype = init_integer_type (objfile, 64, 0, "long long");
2197 break;
2198 case 32:
2199 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2200 break;
2201 case 33:
2202 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2203 break;
2204 case 34:
2205 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2206 break;
2207 }
2208 negative_types[-typenum] = rettype;
2209 return rettype;
2210 }
2211 \f
2212 /* This page contains subroutines of read_type. */
2213
2214 /* Wrapper around method_name_from_physname to flag a complaint
2215 if there is an error. */
2216
2217 static char *
2218 stabs_method_name_from_physname (const char *physname)
2219 {
2220 char *method_name;
2221
2222 method_name = method_name_from_physname (physname);
2223
2224 if (method_name == NULL)
2225 {
2226 complaint (_("Method has bad physname %s\n"), physname);
2227 return NULL;
2228 }
2229
2230 return method_name;
2231 }
2232
2233 /* Read member function stabs info for C++ classes. The form of each member
2234 function data is:
2235
2236 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2237
2238 An example with two member functions is:
2239
2240 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2241
2242 For the case of overloaded operators, the format is op$::*.funcs, where
2243 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2244 name (such as `+=') and `.' marks the end of the operator name.
2245
2246 Returns 1 for success, 0 for failure. */
2247
2248 static int
2249 read_member_functions (struct stab_field_info *fip, const char **pp,
2250 struct type *type, struct objfile *objfile)
2251 {
2252 int nfn_fields = 0;
2253 int length = 0;
2254 int i;
2255 struct next_fnfield
2256 {
2257 struct next_fnfield *next;
2258 struct fn_field fn_field;
2259 }
2260 *sublist;
2261 struct type *look_ahead_type;
2262 struct next_fnfieldlist *new_fnlist;
2263 struct next_fnfield *new_sublist;
2264 char *main_fn_name;
2265 const char *p;
2266
2267 /* Process each list until we find something that is not a member function
2268 or find the end of the functions. */
2269
2270 while (**pp != ';')
2271 {
2272 /* We should be positioned at the start of the function name.
2273 Scan forward to find the first ':' and if it is not the
2274 first of a "::" delimiter, then this is not a member function. */
2275 p = *pp;
2276 while (*p != ':')
2277 {
2278 p++;
2279 }
2280 if (p[1] != ':')
2281 {
2282 break;
2283 }
2284
2285 sublist = NULL;
2286 look_ahead_type = NULL;
2287 length = 0;
2288
2289 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2290
2291 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2292 {
2293 /* This is a completely wierd case. In order to stuff in the
2294 names that might contain colons (the usual name delimiter),
2295 Mike Tiemann defined a different name format which is
2296 signalled if the identifier is "op$". In that case, the
2297 format is "op$::XXXX." where XXXX is the name. This is
2298 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2299 /* This lets the user type "break operator+".
2300 We could just put in "+" as the name, but that wouldn't
2301 work for "*". */
2302 static char opname[32] = "op$";
2303 char *o = opname + 3;
2304
2305 /* Skip past '::'. */
2306 *pp = p + 2;
2307
2308 STABS_CONTINUE (pp, objfile);
2309 p = *pp;
2310 while (*p != '.')
2311 {
2312 *o++ = *p++;
2313 }
2314 main_fn_name = savestring (opname, o - opname);
2315 /* Skip past '.' */
2316 *pp = p + 1;
2317 }
2318 else
2319 {
2320 main_fn_name = savestring (*pp, p - *pp);
2321 /* Skip past '::'. */
2322 *pp = p + 2;
2323 }
2324 new_fnlist->fn_fieldlist.name = main_fn_name;
2325
2326 do
2327 {
2328 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2329
2330 /* Check for and handle cretinous dbx symbol name continuation! */
2331 if (look_ahead_type == NULL)
2332 {
2333 /* Normal case. */
2334 STABS_CONTINUE (pp, objfile);
2335
2336 new_sublist->fn_field.type = read_type (pp, objfile);
2337 if (**pp != ':')
2338 {
2339 /* Invalid symtab info for member function. */
2340 return 0;
2341 }
2342 }
2343 else
2344 {
2345 /* g++ version 1 kludge */
2346 new_sublist->fn_field.type = look_ahead_type;
2347 look_ahead_type = NULL;
2348 }
2349
2350 (*pp)++;
2351 p = *pp;
2352 while (*p != ';')
2353 {
2354 p++;
2355 }
2356
2357 /* These are methods, not functions. */
2358 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2359 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2360
2361 /* If this is just a stub, then we don't have the real name here. */
2362 if (new_sublist->fn_field.type->is_stub ())
2363 {
2364 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2365 set_type_self_type (new_sublist->fn_field.type, type);
2366 new_sublist->fn_field.is_stub = 1;
2367 }
2368
2369 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2370 *pp = p + 1;
2371
2372 /* Set this member function's visibility fields. */
2373 switch (*(*pp)++)
2374 {
2375 case VISIBILITY_PRIVATE:
2376 new_sublist->fn_field.is_private = 1;
2377 break;
2378 case VISIBILITY_PROTECTED:
2379 new_sublist->fn_field.is_protected = 1;
2380 break;
2381 }
2382
2383 STABS_CONTINUE (pp, objfile);
2384 switch (**pp)
2385 {
2386 case 'A': /* Normal functions. */
2387 new_sublist->fn_field.is_const = 0;
2388 new_sublist->fn_field.is_volatile = 0;
2389 (*pp)++;
2390 break;
2391 case 'B': /* `const' member functions. */
2392 new_sublist->fn_field.is_const = 1;
2393 new_sublist->fn_field.is_volatile = 0;
2394 (*pp)++;
2395 break;
2396 case 'C': /* `volatile' member function. */
2397 new_sublist->fn_field.is_const = 0;
2398 new_sublist->fn_field.is_volatile = 1;
2399 (*pp)++;
2400 break;
2401 case 'D': /* `const volatile' member function. */
2402 new_sublist->fn_field.is_const = 1;
2403 new_sublist->fn_field.is_volatile = 1;
2404 (*pp)++;
2405 break;
2406 case '*': /* File compiled with g++ version 1 --
2407 no info. */
2408 case '?':
2409 case '.':
2410 break;
2411 default:
2412 complaint (_("const/volatile indicator missing, got '%c'"),
2413 **pp);
2414 break;
2415 }
2416
2417 switch (*(*pp)++)
2418 {
2419 case '*':
2420 {
2421 int nbits;
2422 /* virtual member function, followed by index.
2423 The sign bit is set to distinguish pointers-to-methods
2424 from virtual function indicies. Since the array is
2425 in words, the quantity must be shifted left by 1
2426 on 16 bit machine, and by 2 on 32 bit machine, forcing
2427 the sign bit out, and usable as a valid index into
2428 the array. Remove the sign bit here. */
2429 new_sublist->fn_field.voffset =
2430 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2431 if (nbits != 0)
2432 return 0;
2433
2434 STABS_CONTINUE (pp, objfile);
2435 if (**pp == ';' || **pp == '\0')
2436 {
2437 /* Must be g++ version 1. */
2438 new_sublist->fn_field.fcontext = 0;
2439 }
2440 else
2441 {
2442 /* Figure out from whence this virtual function came.
2443 It may belong to virtual function table of
2444 one of its baseclasses. */
2445 look_ahead_type = read_type (pp, objfile);
2446 if (**pp == ':')
2447 {
2448 /* g++ version 1 overloaded methods. */
2449 }
2450 else
2451 {
2452 new_sublist->fn_field.fcontext = look_ahead_type;
2453 if (**pp != ';')
2454 {
2455 return 0;
2456 }
2457 else
2458 {
2459 ++*pp;
2460 }
2461 look_ahead_type = NULL;
2462 }
2463 }
2464 break;
2465 }
2466 case '?':
2467 /* static member function. */
2468 {
2469 int slen = strlen (main_fn_name);
2470
2471 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2472
2473 /* For static member functions, we can't tell if they
2474 are stubbed, as they are put out as functions, and not as
2475 methods.
2476 GCC v2 emits the fully mangled name if
2477 dbxout.c:flag_minimal_debug is not set, so we have to
2478 detect a fully mangled physname here and set is_stub
2479 accordingly. Fully mangled physnames in v2 start with
2480 the member function name, followed by two underscores.
2481 GCC v3 currently always emits stubbed member functions,
2482 but with fully mangled physnames, which start with _Z. */
2483 if (!(strncmp (new_sublist->fn_field.physname,
2484 main_fn_name, slen) == 0
2485 && new_sublist->fn_field.physname[slen] == '_'
2486 && new_sublist->fn_field.physname[slen + 1] == '_'))
2487 {
2488 new_sublist->fn_field.is_stub = 1;
2489 }
2490 break;
2491 }
2492
2493 default:
2494 /* error */
2495 complaint (_("member function type missing, got '%c'"),
2496 (*pp)[-1]);
2497 /* Normal member function. */
2498 /* Fall through. */
2499
2500 case '.':
2501 /* normal member function. */
2502 new_sublist->fn_field.voffset = 0;
2503 new_sublist->fn_field.fcontext = 0;
2504 break;
2505 }
2506
2507 new_sublist->next = sublist;
2508 sublist = new_sublist;
2509 length++;
2510 STABS_CONTINUE (pp, objfile);
2511 }
2512 while (**pp != ';' && **pp != '\0');
2513
2514 (*pp)++;
2515 STABS_CONTINUE (pp, objfile);
2516
2517 /* Skip GCC 3.X member functions which are duplicates of the callable
2518 constructor/destructor. */
2519 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2520 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2521 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2522 {
2523 xfree (main_fn_name);
2524 }
2525 else
2526 {
2527 int has_destructor = 0, has_other = 0;
2528 int is_v3 = 0;
2529 struct next_fnfield *tmp_sublist;
2530
2531 /* Various versions of GCC emit various mostly-useless
2532 strings in the name field for special member functions.
2533
2534 For stub methods, we need to defer correcting the name
2535 until we are ready to unstub the method, because the current
2536 name string is used by gdb_mangle_name. The only stub methods
2537 of concern here are GNU v2 operators; other methods have their
2538 names correct (see caveat below).
2539
2540 For non-stub methods, in GNU v3, we have a complete physname.
2541 Therefore we can safely correct the name now. This primarily
2542 affects constructors and destructors, whose name will be
2543 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2544 operators will also have incorrect names; for instance,
2545 "operator int" will be named "operator i" (i.e. the type is
2546 mangled).
2547
2548 For non-stub methods in GNU v2, we have no easy way to
2549 know if we have a complete physname or not. For most
2550 methods the result depends on the platform (if CPLUS_MARKER
2551 can be `$' or `.', it will use minimal debug information, or
2552 otherwise the full physname will be included).
2553
2554 Rather than dealing with this, we take a different approach.
2555 For v3 mangled names, we can use the full physname; for v2,
2556 we use cplus_demangle_opname (which is actually v2 specific),
2557 because the only interesting names are all operators - once again
2558 barring the caveat below. Skip this process if any method in the
2559 group is a stub, to prevent our fouling up the workings of
2560 gdb_mangle_name.
2561
2562 The caveat: GCC 2.95.x (and earlier?) put constructors and
2563 destructors in the same method group. We need to split this
2564 into two groups, because they should have different names.
2565 So for each method group we check whether it contains both
2566 routines whose physname appears to be a destructor (the physnames
2567 for and destructors are always provided, due to quirks in v2
2568 mangling) and routines whose physname does not appear to be a
2569 destructor. If so then we break up the list into two halves.
2570 Even if the constructors and destructors aren't in the same group
2571 the destructor will still lack the leading tilde, so that also
2572 needs to be fixed.
2573
2574 So, to summarize what we expect and handle here:
2575
2576 Given Given Real Real Action
2577 method name physname physname method name
2578
2579 __opi [none] __opi__3Foo operator int opname
2580 [now or later]
2581 Foo _._3Foo _._3Foo ~Foo separate and
2582 rename
2583 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2584 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2585 */
2586
2587 tmp_sublist = sublist;
2588 while (tmp_sublist != NULL)
2589 {
2590 if (tmp_sublist->fn_field.physname[0] == '_'
2591 && tmp_sublist->fn_field.physname[1] == 'Z')
2592 is_v3 = 1;
2593
2594 if (is_destructor_name (tmp_sublist->fn_field.physname))
2595 has_destructor++;
2596 else
2597 has_other++;
2598
2599 tmp_sublist = tmp_sublist->next;
2600 }
2601
2602 if (has_destructor && has_other)
2603 {
2604 struct next_fnfieldlist *destr_fnlist;
2605 struct next_fnfield *last_sublist;
2606
2607 /* Create a new fn_fieldlist for the destructors. */
2608
2609 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2610 struct next_fnfieldlist);
2611
2612 destr_fnlist->fn_fieldlist.name
2613 = obconcat (&objfile->objfile_obstack, "~",
2614 new_fnlist->fn_fieldlist.name, (char *) NULL);
2615
2616 destr_fnlist->fn_fieldlist.fn_fields =
2617 XOBNEWVEC (&objfile->objfile_obstack,
2618 struct fn_field, has_destructor);
2619 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2620 sizeof (struct fn_field) * has_destructor);
2621 tmp_sublist = sublist;
2622 last_sublist = NULL;
2623 i = 0;
2624 while (tmp_sublist != NULL)
2625 {
2626 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2627 {
2628 tmp_sublist = tmp_sublist->next;
2629 continue;
2630 }
2631
2632 destr_fnlist->fn_fieldlist.fn_fields[i++]
2633 = tmp_sublist->fn_field;
2634 if (last_sublist)
2635 last_sublist->next = tmp_sublist->next;
2636 else
2637 sublist = tmp_sublist->next;
2638 last_sublist = tmp_sublist;
2639 tmp_sublist = tmp_sublist->next;
2640 }
2641
2642 destr_fnlist->fn_fieldlist.length = has_destructor;
2643 destr_fnlist->next = fip->fnlist;
2644 fip->fnlist = destr_fnlist;
2645 nfn_fields++;
2646 length -= has_destructor;
2647 }
2648 else if (is_v3)
2649 {
2650 /* v3 mangling prevents the use of abbreviated physnames,
2651 so we can do this here. There are stubbed methods in v3
2652 only:
2653 - in -gstabs instead of -gstabs+
2654 - or for static methods, which are output as a function type
2655 instead of a method type. */
2656 char *new_method_name =
2657 stabs_method_name_from_physname (sublist->fn_field.physname);
2658
2659 if (new_method_name != NULL
2660 && strcmp (new_method_name,
2661 new_fnlist->fn_fieldlist.name) != 0)
2662 {
2663 new_fnlist->fn_fieldlist.name = new_method_name;
2664 xfree (main_fn_name);
2665 }
2666 else
2667 xfree (new_method_name);
2668 }
2669 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2670 {
2671 new_fnlist->fn_fieldlist.name =
2672 obconcat (&objfile->objfile_obstack,
2673 "~", main_fn_name, (char *)NULL);
2674 xfree (main_fn_name);
2675 }
2676
2677 new_fnlist->fn_fieldlist.fn_fields
2678 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2679 for (i = length; (i--, sublist); sublist = sublist->next)
2680 {
2681 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2682 }
2683
2684 new_fnlist->fn_fieldlist.length = length;
2685 new_fnlist->next = fip->fnlist;
2686 fip->fnlist = new_fnlist;
2687 nfn_fields++;
2688 }
2689 }
2690
2691 if (nfn_fields)
2692 {
2693 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2694 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2695 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2696 memset (TYPE_FN_FIELDLISTS (type), 0,
2697 sizeof (struct fn_fieldlist) * nfn_fields);
2698 TYPE_NFN_FIELDS (type) = nfn_fields;
2699 }
2700
2701 return 1;
2702 }
2703
2704 /* Special GNU C++ name.
2705
2706 Returns 1 for success, 0 for failure. "failure" means that we can't
2707 keep parsing and it's time for error_type(). */
2708
2709 static int
2710 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2711 struct type *type, struct objfile *objfile)
2712 {
2713 const char *p;
2714 const char *name;
2715 char cpp_abbrev;
2716 struct type *context;
2717
2718 p = *pp;
2719 if (*++p == 'v')
2720 {
2721 name = NULL;
2722 cpp_abbrev = *++p;
2723
2724 *pp = p + 1;
2725
2726 /* At this point, *pp points to something like "22:23=*22...",
2727 where the type number before the ':' is the "context" and
2728 everything after is a regular type definition. Lookup the
2729 type, find it's name, and construct the field name. */
2730
2731 context = read_type (pp, objfile);
2732
2733 switch (cpp_abbrev)
2734 {
2735 case 'f': /* $vf -- a virtual function table pointer */
2736 name = context->name ();
2737 if (name == NULL)
2738 {
2739 name = "";
2740 }
2741 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2742 vptr_name, name, (char *) NULL));
2743 break;
2744
2745 case 'b': /* $vb -- a virtual bsomethingorother */
2746 name = context->name ();
2747 if (name == NULL)
2748 {
2749 complaint (_("C++ abbreviated type name "
2750 "unknown at symtab pos %d"),
2751 symnum);
2752 name = "FOO";
2753 }
2754 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2755 vb_name, name, (char *) NULL));
2756 break;
2757
2758 default:
2759 invalid_cpp_abbrev_complaint (*pp);
2760 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2761 "INVALID_CPLUSPLUS_ABBREV",
2762 (char *) NULL));
2763 break;
2764 }
2765
2766 /* At this point, *pp points to the ':'. Skip it and read the
2767 field type. */
2768
2769 p = ++(*pp);
2770 if (p[-1] != ':')
2771 {
2772 invalid_cpp_abbrev_complaint (*pp);
2773 return 0;
2774 }
2775 fip->list->field.set_type (read_type (pp, objfile));
2776 if (**pp == ',')
2777 (*pp)++; /* Skip the comma. */
2778 else
2779 return 0;
2780
2781 {
2782 int nbits;
2783
2784 fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
2785 if (nbits != 0)
2786 return 0;
2787 }
2788 /* This field is unpacked. */
2789 FIELD_BITSIZE (fip->list->field) = 0;
2790 fip->list->visibility = VISIBILITY_PRIVATE;
2791 }
2792 else
2793 {
2794 invalid_cpp_abbrev_complaint (*pp);
2795 /* We have no idea what syntax an unrecognized abbrev would have, so
2796 better return 0. If we returned 1, we would need to at least advance
2797 *pp to avoid an infinite loop. */
2798 return 0;
2799 }
2800 return 1;
2801 }
2802
2803 static void
2804 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2805 const char *p, struct type *type,
2806 struct objfile *objfile)
2807 {
2808 struct gdbarch *gdbarch = objfile->arch ();
2809
2810 fip->list->field.set_name
2811 (obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
2812 *pp = p + 1;
2813
2814 /* This means we have a visibility for a field coming. */
2815 if (**pp == '/')
2816 {
2817 (*pp)++;
2818 fip->list->visibility = *(*pp)++;
2819 }
2820 else
2821 {
2822 /* normal dbx-style format, no explicit visibility */
2823 fip->list->visibility = VISIBILITY_PUBLIC;
2824 }
2825
2826 fip->list->field.set_type (read_type (pp, objfile));
2827 if (**pp == ':')
2828 {
2829 p = ++(*pp);
2830 #if 0
2831 /* Possible future hook for nested types. */
2832 if (**pp == '!')
2833 {
2834 fip->list->field.bitpos = (long) -2; /* nested type */
2835 p = ++(*pp);
2836 }
2837 else
2838 ...;
2839 #endif
2840 while (*p != ';')
2841 {
2842 p++;
2843 }
2844 /* Static class member. */
2845 fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
2846 *pp = p + 1;
2847 return;
2848 }
2849 else if (**pp != ',')
2850 {
2851 /* Bad structure-type format. */
2852 stabs_general_complaint ("bad structure-type format");
2853 return;
2854 }
2855
2856 (*pp)++; /* Skip the comma. */
2857
2858 {
2859 int nbits;
2860
2861 fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
2862 if (nbits != 0)
2863 {
2864 stabs_general_complaint ("bad structure-type format");
2865 return;
2866 }
2867 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2868 if (nbits != 0)
2869 {
2870 stabs_general_complaint ("bad structure-type format");
2871 return;
2872 }
2873 }
2874
2875 if (fip->list->field.loc_bitpos () == 0
2876 && FIELD_BITSIZE (fip->list->field) == 0)
2877 {
2878 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2879 it is a field which has been optimized out. The correct stab for
2880 this case is to use VISIBILITY_IGNORE, but that is a recent
2881 invention. (2) It is a 0-size array. For example
2882 union { int num; char str[0]; } foo. Printing _("<no value>" for
2883 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2884 will continue to work, and a 0-size array as a whole doesn't
2885 have any contents to print.
2886
2887 I suspect this probably could also happen with gcc -gstabs (not
2888 -gstabs+) for static fields, and perhaps other C++ extensions.
2889 Hopefully few people use -gstabs with gdb, since it is intended
2890 for dbx compatibility. */
2891
2892 /* Ignore this field. */
2893 fip->list->visibility = VISIBILITY_IGNORE;
2894 }
2895 else
2896 {
2897 /* Detect an unpacked field and mark it as such.
2898 dbx gives a bit size for all fields.
2899 Note that forward refs cannot be packed,
2900 and treat enums as if they had the width of ints. */
2901
2902 struct type *field_type = check_typedef (fip->list->field.type ());
2903
2904 if (field_type->code () != TYPE_CODE_INT
2905 && field_type->code () != TYPE_CODE_RANGE
2906 && field_type->code () != TYPE_CODE_BOOL
2907 && field_type->code () != TYPE_CODE_ENUM)
2908 {
2909 FIELD_BITSIZE (fip->list->field) = 0;
2910 }
2911 if ((FIELD_BITSIZE (fip->list->field)
2912 == TARGET_CHAR_BIT * field_type->length ()
2913 || (field_type->code () == TYPE_CODE_ENUM
2914 && FIELD_BITSIZE (fip->list->field)
2915 == gdbarch_int_bit (gdbarch))
2916 )
2917 &&
2918 fip->list->field.loc_bitpos () % 8 == 0)
2919 {
2920 FIELD_BITSIZE (fip->list->field) = 0;
2921 }
2922 }
2923 }
2924
2925
2926 /* Read struct or class data fields. They have the form:
2927
2928 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2929
2930 At the end, we see a semicolon instead of a field.
2931
2932 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2933 a static field.
2934
2935 The optional VISIBILITY is one of:
2936
2937 '/0' (VISIBILITY_PRIVATE)
2938 '/1' (VISIBILITY_PROTECTED)
2939 '/2' (VISIBILITY_PUBLIC)
2940 '/9' (VISIBILITY_IGNORE)
2941
2942 or nothing, for C style fields with public visibility.
2943
2944 Returns 1 for success, 0 for failure. */
2945
2946 static int
2947 read_struct_fields (struct stab_field_info *fip, const char **pp,
2948 struct type *type, struct objfile *objfile)
2949 {
2950 const char *p;
2951 struct stabs_nextfield *newobj;
2952
2953 /* We better set p right now, in case there are no fields at all... */
2954
2955 p = *pp;
2956
2957 /* Read each data member type until we find the terminating ';' at the end of
2958 the data member list, or break for some other reason such as finding the
2959 start of the member function list. */
2960 /* Stab string for structure/union does not end with two ';' in
2961 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2962
2963 while (**pp != ';' && **pp != '\0')
2964 {
2965 STABS_CONTINUE (pp, objfile);
2966 /* Get space to record the next field's data. */
2967 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
2968
2969 newobj->next = fip->list;
2970 fip->list = newobj;
2971
2972 /* Get the field name. */
2973 p = *pp;
2974
2975 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2976 unless the CPLUS_MARKER is followed by an underscore, in
2977 which case it is just the name of an anonymous type, which we
2978 should handle like any other type name. */
2979
2980 if (is_cplus_marker (p[0]) && p[1] != '_')
2981 {
2982 if (!read_cpp_abbrev (fip, pp, type, objfile))
2983 return 0;
2984 continue;
2985 }
2986
2987 /* Look for the ':' that separates the field name from the field
2988 values. Data members are delimited by a single ':', while member
2989 functions are delimited by a pair of ':'s. When we hit the member
2990 functions (if any), terminate scan loop and return. */
2991
2992 while (*p != ':' && *p != '\0')
2993 {
2994 p++;
2995 }
2996 if (*p == '\0')
2997 return 0;
2998
2999 /* Check to see if we have hit the member functions yet. */
3000 if (p[1] == ':')
3001 {
3002 break;
3003 }
3004 read_one_struct_field (fip, pp, p, type, objfile);
3005 }
3006 if (p[0] == ':' && p[1] == ':')
3007 {
3008 /* (the deleted) chill the list of fields: the last entry (at
3009 the head) is a partially constructed entry which we now
3010 scrub. */
3011 fip->list = fip->list->next;
3012 }
3013 return 1;
3014 }
3015 /* The stabs for C++ derived classes contain baseclass information which
3016 is marked by a '!' character after the total size. This function is
3017 called when we encounter the baseclass marker, and slurps up all the
3018 baseclass information.
3019
3020 Immediately following the '!' marker is the number of base classes that
3021 the class is derived from, followed by information for each base class.
3022 For each base class, there are two visibility specifiers, a bit offset
3023 to the base class information within the derived class, a reference to
3024 the type for the base class, and a terminating semicolon.
3025
3026 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3027 ^^ ^ ^ ^ ^ ^ ^
3028 Baseclass information marker __________________|| | | | | | |
3029 Number of baseclasses __________________________| | | | | | |
3030 Visibility specifiers (2) ________________________| | | | | |
3031 Offset in bits from start of class _________________| | | | |
3032 Type number for base class ___________________________| | | |
3033 Visibility specifiers (2) _______________________________| | |
3034 Offset in bits from start of class ________________________| |
3035 Type number of base class ____________________________________|
3036
3037 Return 1 for success, 0 for (error-type-inducing) failure. */
3038
3039
3040
3041 static int
3042 read_baseclasses (struct stab_field_info *fip, const char **pp,
3043 struct type *type, struct objfile *objfile)
3044 {
3045 int i;
3046 struct stabs_nextfield *newobj;
3047
3048 if (**pp != '!')
3049 {
3050 return 1;
3051 }
3052 else
3053 {
3054 /* Skip the '!' baseclass information marker. */
3055 (*pp)++;
3056 }
3057
3058 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3059 {
3060 int nbits;
3061
3062 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3063 if (nbits != 0)
3064 return 0;
3065 }
3066
3067 #if 0
3068 /* Some stupid compilers have trouble with the following, so break
3069 it up into simpler expressions. */
3070 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3071 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3072 #else
3073 {
3074 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3075 char *pointer;
3076
3077 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3078 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3079 }
3080 #endif /* 0 */
3081
3082 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3083
3084 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3085 {
3086 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
3087
3088 newobj->next = fip->list;
3089 fip->list = newobj;
3090 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3091 field! */
3092
3093 STABS_CONTINUE (pp, objfile);
3094 switch (**pp)
3095 {
3096 case '0':
3097 /* Nothing to do. */
3098 break;
3099 case '1':
3100 SET_TYPE_FIELD_VIRTUAL (type, i);
3101 break;
3102 default:
3103 /* Unknown character. Complain and treat it as non-virtual. */
3104 {
3105 complaint (_("Unknown virtual character `%c' for baseclass"),
3106 **pp);
3107 }
3108 }
3109 ++(*pp);
3110
3111 newobj->visibility = *(*pp)++;
3112 switch (newobj->visibility)
3113 {
3114 case VISIBILITY_PRIVATE:
3115 case VISIBILITY_PROTECTED:
3116 case VISIBILITY_PUBLIC:
3117 break;
3118 default:
3119 /* Bad visibility format. Complain and treat it as
3120 public. */
3121 {
3122 complaint (_("Unknown visibility `%c' for baseclass"),
3123 newobj->visibility);
3124 newobj->visibility = VISIBILITY_PUBLIC;
3125 }
3126 }
3127
3128 {
3129 int nbits;
3130
3131 /* The remaining value is the bit offset of the portion of the object
3132 corresponding to this baseclass. Always zero in the absence of
3133 multiple inheritance. */
3134
3135 newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
3136 if (nbits != 0)
3137 return 0;
3138 }
3139
3140 /* The last piece of baseclass information is the type of the
3141 base class. Read it, and remember it's type name as this
3142 field's name. */
3143
3144 newobj->field.set_type (read_type (pp, objfile));
3145 newobj->field.set_name (newobj->field.type ()->name ());
3146
3147 /* Skip trailing ';' and bump count of number of fields seen. */
3148 if (**pp == ';')
3149 (*pp)++;
3150 else
3151 return 0;
3152 }
3153 return 1;
3154 }
3155
3156 /* The tail end of stabs for C++ classes that contain a virtual function
3157 pointer contains a tilde, a %, and a type number.
3158 The type number refers to the base class (possibly this class itself) which
3159 contains the vtable pointer for the current class.
3160
3161 This function is called when we have parsed all the method declarations,
3162 so we can look for the vptr base class info. */
3163
3164 static int
3165 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3166 struct type *type, struct objfile *objfile)
3167 {
3168 const char *p;
3169
3170 STABS_CONTINUE (pp, objfile);
3171
3172 /* If we are positioned at a ';', then skip it. */
3173 if (**pp == ';')
3174 {
3175 (*pp)++;
3176 }
3177
3178 if (**pp == '~')
3179 {
3180 (*pp)++;
3181
3182 if (**pp == '=' || **pp == '+' || **pp == '-')
3183 {
3184 /* Obsolete flags that used to indicate the presence
3185 of constructors and/or destructors. */
3186 (*pp)++;
3187 }
3188
3189 /* Read either a '%' or the final ';'. */
3190 if (*(*pp)++ == '%')
3191 {
3192 /* The next number is the type number of the base class
3193 (possibly our own class) which supplies the vtable for
3194 this class. Parse it out, and search that class to find
3195 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3196 and TYPE_VPTR_FIELDNO. */
3197
3198 struct type *t;
3199 int i;
3200
3201 t = read_type (pp, objfile);
3202 p = (*pp)++;
3203 while (*p != '\0' && *p != ';')
3204 {
3205 p++;
3206 }
3207 if (*p == '\0')
3208 {
3209 /* Premature end of symbol. */
3210 return 0;
3211 }
3212
3213 set_type_vptr_basetype (type, t);
3214 if (type == t) /* Our own class provides vtbl ptr. */
3215 {
3216 for (i = t->num_fields () - 1;
3217 i >= TYPE_N_BASECLASSES (t);
3218 --i)
3219 {
3220 const char *name = t->field (i).name ();
3221
3222 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3223 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3224 {
3225 set_type_vptr_fieldno (type, i);
3226 goto gotit;
3227 }
3228 }
3229 /* Virtual function table field not found. */
3230 complaint (_("virtual function table pointer "
3231 "not found when defining class `%s'"),
3232 type->name ());
3233 return 0;
3234 }
3235 else
3236 {
3237 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3238 }
3239
3240 gotit:
3241 *pp = p + 1;
3242 }
3243 }
3244 return 1;
3245 }
3246
3247 static int
3248 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3249 {
3250 int n;
3251
3252 for (n = TYPE_NFN_FIELDS (type);
3253 fip->fnlist != NULL;
3254 fip->fnlist = fip->fnlist->next)
3255 {
3256 --n; /* Circumvent Sun3 compiler bug. */
3257 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3258 }
3259 return 1;
3260 }
3261
3262 /* Create the vector of fields, and record how big it is.
3263 We need this info to record proper virtual function table information
3264 for this class's virtual functions. */
3265
3266 static int
3267 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3268 struct objfile *objfile)
3269 {
3270 int nfields = 0;
3271 int non_public_fields = 0;
3272 struct stabs_nextfield *scan;
3273
3274 /* Count up the number of fields that we have, as well as taking note of
3275 whether or not there are any non-public fields, which requires us to
3276 allocate and build the private_field_bits and protected_field_bits
3277 bitfields. */
3278
3279 for (scan = fip->list; scan != NULL; scan = scan->next)
3280 {
3281 nfields++;
3282 if (scan->visibility != VISIBILITY_PUBLIC)
3283 {
3284 non_public_fields++;
3285 }
3286 }
3287
3288 /* Now we know how many fields there are, and whether or not there are any
3289 non-public fields. Record the field count, allocate space for the
3290 array of fields, and create blank visibility bitfields if necessary. */
3291
3292 type->set_num_fields (nfields);
3293 type->set_fields
3294 ((struct field *)
3295 TYPE_ALLOC (type, sizeof (struct field) * nfields));
3296 memset (type->fields (), 0, sizeof (struct field) * nfields);
3297
3298 if (non_public_fields)
3299 {
3300 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3301
3302 TYPE_FIELD_PRIVATE_BITS (type) =
3303 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3304 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3305
3306 TYPE_FIELD_PROTECTED_BITS (type) =
3307 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3308 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3309
3310 TYPE_FIELD_IGNORE_BITS (type) =
3311 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3312 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3313 }
3314
3315 /* Copy the saved-up fields into the field vector. Start from the
3316 head of the list, adding to the tail of the field array, so that
3317 they end up in the same order in the array in which they were
3318 added to the list. */
3319
3320 while (nfields-- > 0)
3321 {
3322 type->field (nfields) = fip->list->field;
3323 switch (fip->list->visibility)
3324 {
3325 case VISIBILITY_PRIVATE:
3326 SET_TYPE_FIELD_PRIVATE (type, nfields);
3327 break;
3328
3329 case VISIBILITY_PROTECTED:
3330 SET_TYPE_FIELD_PROTECTED (type, nfields);
3331 break;
3332
3333 case VISIBILITY_IGNORE:
3334 SET_TYPE_FIELD_IGNORE (type, nfields);
3335 break;
3336
3337 case VISIBILITY_PUBLIC:
3338 break;
3339
3340 default:
3341 /* Unknown visibility. Complain and treat it as public. */
3342 {
3343 complaint (_("Unknown visibility `%c' for field"),
3344 fip->list->visibility);
3345 }
3346 break;
3347 }
3348 fip->list = fip->list->next;
3349 }
3350 return 1;
3351 }
3352
3353
3354 /* Complain that the compiler has emitted more than one definition for the
3355 structure type TYPE. */
3356 static void
3357 complain_about_struct_wipeout (struct type *type)
3358 {
3359 const char *name = "";
3360 const char *kind = "";
3361
3362 if (type->name ())
3363 {
3364 name = type->name ();
3365 switch (type->code ())
3366 {
3367 case TYPE_CODE_STRUCT: kind = "struct "; break;
3368 case TYPE_CODE_UNION: kind = "union "; break;
3369 case TYPE_CODE_ENUM: kind = "enum "; break;
3370 default: kind = "";
3371 }
3372 }
3373 else
3374 {
3375 name = "<unknown>";
3376 kind = "";
3377 }
3378
3379 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3380 }
3381
3382 /* Set the length for all variants of a same main_type, which are
3383 connected in the closed chain.
3384
3385 This is something that needs to be done when a type is defined *after*
3386 some cross references to this type have already been read. Consider
3387 for instance the following scenario where we have the following two
3388 stabs entries:
3389
3390 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3391 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3392
3393 A stubbed version of type dummy is created while processing the first
3394 stabs entry. The length of that type is initially set to zero, since
3395 it is unknown at this point. Also, a "constant" variation of type
3396 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3397 the stabs line).
3398
3399 The second stabs entry allows us to replace the stubbed definition
3400 with the real definition. However, we still need to adjust the length
3401 of the "constant" variation of that type, as its length was left
3402 untouched during the main type replacement... */
3403
3404 static void
3405 set_length_in_type_chain (struct type *type)
3406 {
3407 struct type *ntype = TYPE_CHAIN (type);
3408
3409 while (ntype != type)
3410 {
3411 if (ntype->length () == 0)
3412 ntype->set_length (type->length ());
3413 else
3414 complain_about_struct_wipeout (ntype);
3415 ntype = TYPE_CHAIN (ntype);
3416 }
3417 }
3418
3419 /* Read the description of a structure (or union type) and return an object
3420 describing the type.
3421
3422 PP points to a character pointer that points to the next unconsumed token
3423 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3424 *PP will point to "4a:1,0,32;;".
3425
3426 TYPE points to an incomplete type that needs to be filled in.
3427
3428 OBJFILE points to the current objfile from which the stabs information is
3429 being read. (Note that it is redundant in that TYPE also contains a pointer
3430 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3431 */
3432
3433 static struct type *
3434 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3435 struct objfile *objfile)
3436 {
3437 struct stab_field_info fi;
3438
3439 /* When describing struct/union/class types in stabs, G++ always drops
3440 all qualifications from the name. So if you've got:
3441 struct A { ... struct B { ... }; ... };
3442 then G++ will emit stabs for `struct A::B' that call it simply
3443 `struct B'. Obviously, if you've got a real top-level definition for
3444 `struct B', or other nested definitions, this is going to cause
3445 problems.
3446
3447 Obviously, GDB can't fix this by itself, but it can at least avoid
3448 scribbling on existing structure type objects when new definitions
3449 appear. */
3450 if (! (type->code () == TYPE_CODE_UNDEF
3451 || type->is_stub ()))
3452 {
3453 complain_about_struct_wipeout (type);
3454
3455 /* It's probably best to return the type unchanged. */
3456 return type;
3457 }
3458
3459 INIT_CPLUS_SPECIFIC (type);
3460 type->set_code (type_code);
3461 type->set_is_stub (false);
3462
3463 /* First comes the total size in bytes. */
3464
3465 {
3466 int nbits;
3467
3468 type->set_length (read_huge_number (pp, 0, &nbits, 0));
3469 if (nbits != 0)
3470 return error_type (pp, objfile);
3471 set_length_in_type_chain (type);
3472 }
3473
3474 /* Now read the baseclasses, if any, read the regular C struct or C++
3475 class member fields, attach the fields to the type, read the C++
3476 member functions, attach them to the type, and then read any tilde
3477 field (baseclass specifier for the class holding the main vtable). */
3478
3479 if (!read_baseclasses (&fi, pp, type, objfile)
3480 || !read_struct_fields (&fi, pp, type, objfile)
3481 || !attach_fields_to_type (&fi, type, objfile)
3482 || !read_member_functions (&fi, pp, type, objfile)
3483 || !attach_fn_fields_to_type (&fi, type)
3484 || !read_tilde_fields (&fi, pp, type, objfile))
3485 {
3486 type = error_type (pp, objfile);
3487 }
3488
3489 return (type);
3490 }
3491
3492 /* Read a definition of an array type,
3493 and create and return a suitable type object.
3494 Also creates a range type which represents the bounds of that
3495 array. */
3496
3497 static struct type *
3498 read_array_type (const char **pp, struct type *type,
3499 struct objfile *objfile)
3500 {
3501 struct type *index_type, *element_type, *range_type;
3502 int lower, upper;
3503 int adjustable = 0;
3504 int nbits;
3505
3506 /* Format of an array type:
3507 "ar<index type>;lower;upper;<array_contents_type>".
3508 OS9000: "arlower,upper;<array_contents_type>".
3509
3510 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3511 for these, produce a type like float[][]. */
3512
3513 {
3514 index_type = read_type (pp, objfile);
3515 if (**pp != ';')
3516 /* Improper format of array type decl. */
3517 return error_type (pp, objfile);
3518 ++*pp;
3519 }
3520
3521 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3522 {
3523 (*pp)++;
3524 adjustable = 1;
3525 }
3526 lower = read_huge_number (pp, ';', &nbits, 0);
3527
3528 if (nbits != 0)
3529 return error_type (pp, objfile);
3530
3531 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3532 {
3533 (*pp)++;
3534 adjustable = 1;
3535 }
3536 upper = read_huge_number (pp, ';', &nbits, 0);
3537 if (nbits != 0)
3538 return error_type (pp, objfile);
3539
3540 element_type = read_type (pp, objfile);
3541
3542 if (adjustable)
3543 {
3544 lower = 0;
3545 upper = -1;
3546 }
3547
3548 range_type =
3549 create_static_range_type (NULL, index_type, lower, upper);
3550 type = create_array_type (type, element_type, range_type);
3551
3552 return type;
3553 }
3554
3555
3556 /* Read a definition of an enumeration type,
3557 and create and return a suitable type object.
3558 Also defines the symbols that represent the values of the type. */
3559
3560 static struct type *
3561 read_enum_type (const char **pp, struct type *type,
3562 struct objfile *objfile)
3563 {
3564 struct gdbarch *gdbarch = objfile->arch ();
3565 const char *p;
3566 char *name;
3567 long n;
3568 struct symbol *sym;
3569 int nsyms = 0;
3570 struct pending **symlist;
3571 struct pending *osyms, *syms;
3572 int o_nsyms;
3573 int nbits;
3574 int unsigned_enum = 1;
3575
3576 #if 0
3577 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3578 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3579 to do? For now, force all enum values to file scope. */
3580 if (within_function)
3581 symlist = get_local_symbols ();
3582 else
3583 #endif
3584 symlist = get_file_symbols ();
3585 osyms = *symlist;
3586 o_nsyms = osyms ? osyms->nsyms : 0;
3587
3588 /* The aix4 compiler emits an extra field before the enum members;
3589 my guess is it's a type of some sort. Just ignore it. */
3590 if (**pp == '-')
3591 {
3592 /* Skip over the type. */
3593 while (**pp != ':')
3594 (*pp)++;
3595
3596 /* Skip over the colon. */
3597 (*pp)++;
3598 }
3599
3600 /* Read the value-names and their values.
3601 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3602 A semicolon or comma instead of a NAME means the end. */
3603 while (**pp && **pp != ';' && **pp != ',')
3604 {
3605 STABS_CONTINUE (pp, objfile);
3606 p = *pp;
3607 while (*p != ':')
3608 p++;
3609 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3610 *pp = p + 1;
3611 n = read_huge_number (pp, ',', &nbits, 0);
3612 if (nbits != 0)
3613 return error_type (pp, objfile);
3614
3615 sym = new (&objfile->objfile_obstack) symbol;
3616 sym->set_linkage_name (name);
3617 sym->set_language (get_current_subfile ()->language,
3618 &objfile->objfile_obstack);
3619 sym->set_aclass_index (LOC_CONST);
3620 sym->set_domain (VAR_DOMAIN);
3621 sym->set_value_longest (n);
3622 if (n < 0)
3623 unsigned_enum = 0;
3624 add_symbol_to_list (sym, symlist);
3625 nsyms++;
3626 }
3627
3628 if (**pp == ';')
3629 (*pp)++; /* Skip the semicolon. */
3630
3631 /* Now fill in the fields of the type-structure. */
3632
3633 type->set_length (gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT);
3634 set_length_in_type_chain (type);
3635 type->set_code (TYPE_CODE_ENUM);
3636 type->set_is_stub (false);
3637 if (unsigned_enum)
3638 type->set_is_unsigned (true);
3639 type->set_num_fields (nsyms);
3640 type->set_fields
3641 ((struct field *)
3642 TYPE_ALLOC (type, sizeof (struct field) * nsyms));
3643 memset (type->fields (), 0, sizeof (struct field) * nsyms);
3644
3645 /* Find the symbols for the values and put them into the type.
3646 The symbols can be found in the symlist that we put them on
3647 to cause them to be defined. osyms contains the old value
3648 of that symlist; everything up to there was defined by us. */
3649 /* Note that we preserve the order of the enum constants, so
3650 that in something like "enum {FOO, LAST_THING=FOO}" we print
3651 FOO, not LAST_THING. */
3652
3653 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3654 {
3655 int last = syms == osyms ? o_nsyms : 0;
3656 int j = syms->nsyms;
3657
3658 for (; --j >= last; --n)
3659 {
3660 struct symbol *xsym = syms->symbol[j];
3661
3662 xsym->set_type (type);
3663 type->field (n).set_name (xsym->linkage_name ());
3664 type->field (n).set_loc_enumval (xsym->value_longest ());
3665 TYPE_FIELD_BITSIZE (type, n) = 0;
3666 }
3667 if (syms == osyms)
3668 break;
3669 }
3670
3671 return type;
3672 }
3673
3674 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3675 typedefs in every file (for int, long, etc):
3676
3677 type = b <signed> <width> <format type>; <offset>; <nbits>
3678 signed = u or s.
3679 optional format type = c or b for char or boolean.
3680 offset = offset from high order bit to start bit of type.
3681 width is # bytes in object of this type, nbits is # bits in type.
3682
3683 The width/offset stuff appears to be for small objects stored in
3684 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3685 FIXME. */
3686
3687 static struct type *
3688 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3689 {
3690 int type_bits;
3691 int nbits;
3692 int unsigned_type;
3693 int boolean_type = 0;
3694
3695 switch (**pp)
3696 {
3697 case 's':
3698 unsigned_type = 0;
3699 break;
3700 case 'u':
3701 unsigned_type = 1;
3702 break;
3703 default:
3704 return error_type (pp, objfile);
3705 }
3706 (*pp)++;
3707
3708 /* For some odd reason, all forms of char put a c here. This is strange
3709 because no other type has this honor. We can safely ignore this because
3710 we actually determine 'char'acterness by the number of bits specified in
3711 the descriptor.
3712 Boolean forms, e.g Fortran logical*X, put a b here. */
3713
3714 if (**pp == 'c')
3715 (*pp)++;
3716 else if (**pp == 'b')
3717 {
3718 boolean_type = 1;
3719 (*pp)++;
3720 }
3721
3722 /* The first number appears to be the number of bytes occupied
3723 by this type, except that unsigned short is 4 instead of 2.
3724 Since this information is redundant with the third number,
3725 we will ignore it. */
3726 read_huge_number (pp, ';', &nbits, 0);
3727 if (nbits != 0)
3728 return error_type (pp, objfile);
3729
3730 /* The second number is always 0, so ignore it too. */
3731 read_huge_number (pp, ';', &nbits, 0);
3732 if (nbits != 0)
3733 return error_type (pp, objfile);
3734
3735 /* The third number is the number of bits for this type. */
3736 type_bits = read_huge_number (pp, 0, &nbits, 0);
3737 if (nbits != 0)
3738 return error_type (pp, objfile);
3739 /* The type *should* end with a semicolon. If it are embedded
3740 in a larger type the semicolon may be the only way to know where
3741 the type ends. If this type is at the end of the stabstring we
3742 can deal with the omitted semicolon (but we don't have to like
3743 it). Don't bother to complain(), Sun's compiler omits the semicolon
3744 for "void". */
3745 if (**pp == ';')
3746 ++(*pp);
3747
3748 if (type_bits == 0)
3749 {
3750 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3751 TARGET_CHAR_BIT, NULL);
3752 if (unsigned_type)
3753 type->set_is_unsigned (true);
3754
3755 return type;
3756 }
3757
3758 if (boolean_type)
3759 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3760 else
3761 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3762 }
3763
3764 static struct type *
3765 read_sun_floating_type (const char **pp, int typenums[2],
3766 struct objfile *objfile)
3767 {
3768 int nbits;
3769 int details;
3770 int nbytes;
3771 struct type *rettype;
3772
3773 /* The first number has more details about the type, for example
3774 FN_COMPLEX. */
3775 details = read_huge_number (pp, ';', &nbits, 0);
3776 if (nbits != 0)
3777 return error_type (pp, objfile);
3778
3779 /* The second number is the number of bytes occupied by this type. */
3780 nbytes = read_huge_number (pp, ';', &nbits, 0);
3781 if (nbits != 0)
3782 return error_type (pp, objfile);
3783
3784 nbits = nbytes * TARGET_CHAR_BIT;
3785
3786 if (details == NF_COMPLEX || details == NF_COMPLEX16
3787 || details == NF_COMPLEX32)
3788 {
3789 rettype = dbx_init_float_type (objfile, nbits / 2);
3790 return init_complex_type (NULL, rettype);
3791 }
3792
3793 return dbx_init_float_type (objfile, nbits);
3794 }
3795
3796 /* Read a number from the string pointed to by *PP.
3797 The value of *PP is advanced over the number.
3798 If END is nonzero, the character that ends the
3799 number must match END, or an error happens;
3800 and that character is skipped if it does match.
3801 If END is zero, *PP is left pointing to that character.
3802
3803 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3804 the number is represented in an octal representation, assume that
3805 it is represented in a 2's complement representation with a size of
3806 TWOS_COMPLEMENT_BITS.
3807
3808 If the number fits in a long, set *BITS to 0 and return the value.
3809 If not, set *BITS to be the number of bits in the number and return 0.
3810
3811 If encounter garbage, set *BITS to -1 and return 0. */
3812
3813 static long
3814 read_huge_number (const char **pp, int end, int *bits,
3815 int twos_complement_bits)
3816 {
3817 const char *p = *pp;
3818 int sign = 1;
3819 int sign_bit = 0;
3820 long n = 0;
3821 int radix = 10;
3822 char overflow = 0;
3823 int nbits = 0;
3824 int c;
3825 long upper_limit;
3826 int twos_complement_representation = 0;
3827
3828 if (*p == '-')
3829 {
3830 sign = -1;
3831 p++;
3832 }
3833
3834 /* Leading zero means octal. GCC uses this to output values larger
3835 than an int (because that would be hard in decimal). */
3836 if (*p == '0')
3837 {
3838 radix = 8;
3839 p++;
3840 }
3841
3842 /* Skip extra zeros. */
3843 while (*p == '0')
3844 p++;
3845
3846 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3847 {
3848 /* Octal, possibly signed. Check if we have enough chars for a
3849 negative number. */
3850
3851 size_t len;
3852 const char *p1 = p;
3853
3854 while ((c = *p1) >= '0' && c < '8')
3855 p1++;
3856
3857 len = p1 - p;
3858 if (len > twos_complement_bits / 3
3859 || (twos_complement_bits % 3 == 0
3860 && len == twos_complement_bits / 3))
3861 {
3862 /* Ok, we have enough characters for a signed value, check
3863 for signedness by testing if the sign bit is set. */
3864 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3865 c = *p - '0';
3866 if (c & (1 << sign_bit))
3867 {
3868 /* Definitely signed. */
3869 twos_complement_representation = 1;
3870 sign = -1;
3871 }
3872 }
3873 }
3874
3875 upper_limit = LONG_MAX / radix;
3876
3877 while ((c = *p++) >= '0' && c < ('0' + radix))
3878 {
3879 if (n <= upper_limit)
3880 {
3881 if (twos_complement_representation)
3882 {
3883 /* Octal, signed, twos complement representation. In
3884 this case, n is the corresponding absolute value. */
3885 if (n == 0)
3886 {
3887 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3888
3889 n = -sn;
3890 }
3891 else
3892 {
3893 n *= radix;
3894 n -= c - '0';
3895 }
3896 }
3897 else
3898 {
3899 /* unsigned representation */
3900 n *= radix;
3901 n += c - '0'; /* FIXME this overflows anyway. */
3902 }
3903 }
3904 else
3905 overflow = 1;
3906
3907 /* This depends on large values being output in octal, which is
3908 what GCC does. */
3909 if (radix == 8)
3910 {
3911 if (nbits == 0)
3912 {
3913 if (c == '0')
3914 /* Ignore leading zeroes. */
3915 ;
3916 else if (c == '1')
3917 nbits = 1;
3918 else if (c == '2' || c == '3')
3919 nbits = 2;
3920 else
3921 nbits = 3;
3922 }
3923 else
3924 nbits += 3;
3925 }
3926 }
3927 if (end)
3928 {
3929 if (c && c != end)
3930 {
3931 if (bits != NULL)
3932 *bits = -1;
3933 return 0;
3934 }
3935 }
3936 else
3937 --p;
3938
3939 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3940 {
3941 /* We were supposed to parse a number with maximum
3942 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3943 if (bits != NULL)
3944 *bits = -1;
3945 return 0;
3946 }
3947
3948 *pp = p;
3949 if (overflow)
3950 {
3951 if (nbits == 0)
3952 {
3953 /* Large decimal constants are an error (because it is hard to
3954 count how many bits are in them). */
3955 if (bits != NULL)
3956 *bits = -1;
3957 return 0;
3958 }
3959
3960 /* -0x7f is the same as 0x80. So deal with it by adding one to
3961 the number of bits. Two's complement represention octals
3962 can't have a '-' in front. */
3963 if (sign == -1 && !twos_complement_representation)
3964 ++nbits;
3965 if (bits)
3966 *bits = nbits;
3967 }
3968 else
3969 {
3970 if (bits)
3971 *bits = 0;
3972 return n * sign;
3973 }
3974 /* It's *BITS which has the interesting information. */
3975 return 0;
3976 }
3977
3978 static struct type *
3979 read_range_type (const char **pp, int typenums[2], int type_size,
3980 struct objfile *objfile)
3981 {
3982 struct gdbarch *gdbarch = objfile->arch ();
3983 const char *orig_pp = *pp;
3984 int rangenums[2];
3985 long n2, n3;
3986 int n2bits, n3bits;
3987 int self_subrange;
3988 struct type *result_type;
3989 struct type *index_type = NULL;
3990
3991 /* First comes a type we are a subrange of.
3992 In C it is usually 0, 1 or the type being defined. */
3993 if (read_type_number (pp, rangenums) != 0)
3994 return error_type (pp, objfile);
3995 self_subrange = (rangenums[0] == typenums[0] &&
3996 rangenums[1] == typenums[1]);
3997
3998 if (**pp == '=')
3999 {
4000 *pp = orig_pp;
4001 index_type = read_type (pp, objfile);
4002 }
4003
4004 /* A semicolon should now follow; skip it. */
4005 if (**pp == ';')
4006 (*pp)++;
4007
4008 /* The remaining two operands are usually lower and upper bounds
4009 of the range. But in some special cases they mean something else. */
4010 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4011 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4012
4013 if (n2bits == -1 || n3bits == -1)
4014 return error_type (pp, objfile);
4015
4016 if (index_type)
4017 goto handle_true_range;
4018
4019 /* If limits are huge, must be large integral type. */
4020 if (n2bits != 0 || n3bits != 0)
4021 {
4022 char got_signed = 0;
4023 char got_unsigned = 0;
4024 /* Number of bits in the type. */
4025 int nbits = 0;
4026
4027 /* If a type size attribute has been specified, the bounds of
4028 the range should fit in this size. If the lower bounds needs
4029 more bits than the upper bound, then the type is signed. */
4030 if (n2bits <= type_size && n3bits <= type_size)
4031 {
4032 if (n2bits == type_size && n2bits > n3bits)
4033 got_signed = 1;
4034 else
4035 got_unsigned = 1;
4036 nbits = type_size;
4037 }
4038 /* Range from 0 to <large number> is an unsigned large integral type. */
4039 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4040 {
4041 got_unsigned = 1;
4042 nbits = n3bits;
4043 }
4044 /* Range from <large number> to <large number>-1 is a large signed
4045 integral type. Take care of the case where <large number> doesn't
4046 fit in a long but <large number>-1 does. */
4047 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4048 || (n2bits != 0 && n3bits == 0
4049 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4050 && n3 == LONG_MAX))
4051 {
4052 got_signed = 1;
4053 nbits = n2bits;
4054 }
4055
4056 if (got_signed || got_unsigned)
4057 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4058 else
4059 return error_type (pp, objfile);
4060 }
4061
4062 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4063 if (self_subrange && n2 == 0 && n3 == 0)
4064 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4065
4066 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4067 is the width in bytes.
4068
4069 Fortran programs appear to use this for complex types also. To
4070 distinguish between floats and complex, g77 (and others?) seem
4071 to use self-subranges for the complexes, and subranges of int for
4072 the floats.
4073
4074 Also note that for complexes, g77 sets n2 to the size of one of
4075 the member floats, not the whole complex beast. My guess is that
4076 this was to work well with pre-COMPLEX versions of gdb. */
4077
4078 if (n3 == 0 && n2 > 0)
4079 {
4080 struct type *float_type
4081 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4082
4083 if (self_subrange)
4084 return init_complex_type (NULL, float_type);
4085 else
4086 return float_type;
4087 }
4088
4089 /* If the upper bound is -1, it must really be an unsigned integral. */
4090
4091 else if (n2 == 0 && n3 == -1)
4092 {
4093 int bits = type_size;
4094
4095 if (bits <= 0)
4096 {
4097 /* We don't know its size. It is unsigned int or unsigned
4098 long. GCC 2.3.3 uses this for long long too, but that is
4099 just a GDB 3.5 compatibility hack. */
4100 bits = gdbarch_int_bit (gdbarch);
4101 }
4102
4103 return init_integer_type (objfile, bits, 1, NULL);
4104 }
4105
4106 /* Special case: char is defined (Who knows why) as a subrange of
4107 itself with range 0-127. */
4108 else if (self_subrange && n2 == 0 && n3 == 127)
4109 {
4110 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4111 0, NULL);
4112 type->set_has_no_signedness (true);
4113 return type;
4114 }
4115 /* We used to do this only for subrange of self or subrange of int. */
4116 else if (n2 == 0)
4117 {
4118 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4119 "unsigned long", and we already checked for that,
4120 so don't need to test for it here. */
4121
4122 if (n3 < 0)
4123 /* n3 actually gives the size. */
4124 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4125
4126 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4127 unsigned n-byte integer. But do require n to be a power of
4128 two; we don't want 3- and 5-byte integers flying around. */
4129 {
4130 int bytes;
4131 unsigned long bits;
4132
4133 bits = n3;
4134 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4135 bits >>= 8;
4136 if (bits == 0
4137 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4138 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4139 }
4140 }
4141 /* I think this is for Convex "long long". Since I don't know whether
4142 Convex sets self_subrange, I also accept that particular size regardless
4143 of self_subrange. */
4144 else if (n3 == 0 && n2 < 0
4145 && (self_subrange
4146 || n2 == -gdbarch_long_long_bit
4147 (gdbarch) / TARGET_CHAR_BIT))
4148 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4149 else if (n2 == -n3 - 1)
4150 {
4151 if (n3 == 0x7f)
4152 return init_integer_type (objfile, 8, 0, NULL);
4153 if (n3 == 0x7fff)
4154 return init_integer_type (objfile, 16, 0, NULL);
4155 if (n3 == 0x7fffffff)
4156 return init_integer_type (objfile, 32, 0, NULL);
4157 }
4158
4159 /* We have a real range type on our hands. Allocate space and
4160 return a real pointer. */
4161 handle_true_range:
4162
4163 if (self_subrange)
4164 index_type = objfile_type (objfile)->builtin_int;
4165 else
4166 index_type = *dbx_lookup_type (rangenums, objfile);
4167 if (index_type == NULL)
4168 {
4169 /* Does this actually ever happen? Is that why we are worrying
4170 about dealing with it rather than just calling error_type? */
4171
4172 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4173
4174 index_type = objfile_type (objfile)->builtin_int;
4175 }
4176
4177 result_type
4178 = create_static_range_type (NULL, index_type, n2, n3);
4179 return (result_type);
4180 }
4181
4182 /* Read in an argument list. This is a list of types, separated by commas
4183 and terminated with END. Return the list of types read in, or NULL
4184 if there is an error. */
4185
4186 static struct field *
4187 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4188 int *varargsp)
4189 {
4190 /* FIXME! Remove this arbitrary limit! */
4191 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4192 int n = 0, i;
4193 struct field *rval;
4194
4195 while (**pp != end)
4196 {
4197 if (**pp != ',')
4198 /* Invalid argument list: no ','. */
4199 return NULL;
4200 (*pp)++;
4201 STABS_CONTINUE (pp, objfile);
4202 types[n++] = read_type (pp, objfile);
4203 }
4204 (*pp)++; /* get past `end' (the ':' character). */
4205
4206 if (n == 0)
4207 {
4208 /* We should read at least the THIS parameter here. Some broken stabs
4209 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4210 have been present ";-16,(0,43)" reference instead. This way the
4211 excessive ";" marker prematurely stops the parameters parsing. */
4212
4213 complaint (_("Invalid (empty) method arguments"));
4214 *varargsp = 0;
4215 }
4216 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4217 *varargsp = 1;
4218 else
4219 {
4220 n--;
4221 *varargsp = 0;
4222 }
4223
4224 rval = XCNEWVEC (struct field, n);
4225 for (i = 0; i < n; i++)
4226 rval[i].set_type (types[i]);
4227 *nargsp = n;
4228 return rval;
4229 }
4230 \f
4231 /* Common block handling. */
4232
4233 /* List of symbols declared since the last BCOMM. This list is a tail
4234 of local_symbols. When ECOMM is seen, the symbols on the list
4235 are noted so their proper addresses can be filled in later,
4236 using the common block base address gotten from the assembler
4237 stabs. */
4238
4239 static struct pending *common_block;
4240 static int common_block_i;
4241
4242 /* Name of the current common block. We get it from the BCOMM instead of the
4243 ECOMM to match IBM documentation (even though IBM puts the name both places
4244 like everyone else). */
4245 static char *common_block_name;
4246
4247 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4248 to remain after this function returns. */
4249
4250 void
4251 common_block_start (const char *name, struct objfile *objfile)
4252 {
4253 if (common_block_name != NULL)
4254 {
4255 complaint (_("Invalid symbol data: common block within common block"));
4256 }
4257 common_block = *get_local_symbols ();
4258 common_block_i = common_block ? common_block->nsyms : 0;
4259 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4260 }
4261
4262 /* Process a N_ECOMM symbol. */
4263
4264 void
4265 common_block_end (struct objfile *objfile)
4266 {
4267 /* Symbols declared since the BCOMM are to have the common block
4268 start address added in when we know it. common_block and
4269 common_block_i point to the first symbol after the BCOMM in
4270 the local_symbols list; copy the list and hang it off the
4271 symbol for the common block name for later fixup. */
4272 int i;
4273 struct symbol *sym;
4274 struct pending *newobj = 0;
4275 struct pending *next;
4276 int j;
4277
4278 if (common_block_name == NULL)
4279 {
4280 complaint (_("ECOMM symbol unmatched by BCOMM"));
4281 return;
4282 }
4283
4284 sym = new (&objfile->objfile_obstack) symbol;
4285 /* Note: common_block_name already saved on objfile_obstack. */
4286 sym->set_linkage_name (common_block_name);
4287 sym->set_aclass_index (LOC_BLOCK);
4288
4289 /* Now we copy all the symbols which have been defined since the BCOMM. */
4290
4291 /* Copy all the struct pendings before common_block. */
4292 for (next = *get_local_symbols ();
4293 next != NULL && next != common_block;
4294 next = next->next)
4295 {
4296 for (j = 0; j < next->nsyms; j++)
4297 add_symbol_to_list (next->symbol[j], &newobj);
4298 }
4299
4300 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4301 NULL, it means copy all the local symbols (which we already did
4302 above). */
4303
4304 if (common_block != NULL)
4305 for (j = common_block_i; j < common_block->nsyms; j++)
4306 add_symbol_to_list (common_block->symbol[j], &newobj);
4307
4308 sym->set_type ((struct type *) newobj);
4309
4310 /* Should we be putting local_symbols back to what it was?
4311 Does it matter? */
4312
4313 i = hashname (sym->linkage_name ());
4314 sym->set_value_chain (global_sym_chain[i]);
4315 global_sym_chain[i] = sym;
4316 common_block_name = NULL;
4317 }
4318
4319 /* Add a common block's start address to the offset of each symbol
4320 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4321 the common block name). */
4322
4323 static void
4324 fix_common_block (struct symbol *sym, CORE_ADDR valu, int section_index)
4325 {
4326 struct pending *next = (struct pending *) sym->type ();
4327
4328 for (; next; next = next->next)
4329 {
4330 int j;
4331
4332 for (j = next->nsyms - 1; j >= 0; j--)
4333 {
4334 next->symbol[j]->set_value_address
4335 (next->symbol[j]->value_address () + valu);
4336 next->symbol[j]->set_section_index (section_index);
4337 }
4338 }
4339 }
4340 \f
4341
4342
4343 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4344 See add_undefined_type for more details. */
4345
4346 static void
4347 add_undefined_type_noname (struct type *type, int typenums[2])
4348 {
4349 struct nat nat;
4350
4351 nat.typenums[0] = typenums [0];
4352 nat.typenums[1] = typenums [1];
4353 nat.type = type;
4354
4355 if (noname_undefs_length == noname_undefs_allocated)
4356 {
4357 noname_undefs_allocated *= 2;
4358 noname_undefs = (struct nat *)
4359 xrealloc ((char *) noname_undefs,
4360 noname_undefs_allocated * sizeof (struct nat));
4361 }
4362 noname_undefs[noname_undefs_length++] = nat;
4363 }
4364
4365 /* Add TYPE to the UNDEF_TYPES vector.
4366 See add_undefined_type for more details. */
4367
4368 static void
4369 add_undefined_type_1 (struct type *type)
4370 {
4371 if (undef_types_length == undef_types_allocated)
4372 {
4373 undef_types_allocated *= 2;
4374 undef_types = (struct type **)
4375 xrealloc ((char *) undef_types,
4376 undef_types_allocated * sizeof (struct type *));
4377 }
4378 undef_types[undef_types_length++] = type;
4379 }
4380
4381 /* What about types defined as forward references inside of a small lexical
4382 scope? */
4383 /* Add a type to the list of undefined types to be checked through
4384 once this file has been read in.
4385
4386 In practice, we actually maintain two such lists: The first list
4387 (UNDEF_TYPES) is used for types whose name has been provided, and
4388 concerns forward references (eg 'xs' or 'xu' forward references);
4389 the second list (NONAME_UNDEFS) is used for types whose name is
4390 unknown at creation time, because they were referenced through
4391 their type number before the actual type was declared.
4392 This function actually adds the given type to the proper list. */
4393
4394 static void
4395 add_undefined_type (struct type *type, int typenums[2])
4396 {
4397 if (type->name () == NULL)
4398 add_undefined_type_noname (type, typenums);
4399 else
4400 add_undefined_type_1 (type);
4401 }
4402
4403 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4404
4405 static void
4406 cleanup_undefined_types_noname (struct objfile *objfile)
4407 {
4408 int i;
4409
4410 for (i = 0; i < noname_undefs_length; i++)
4411 {
4412 struct nat nat = noname_undefs[i];
4413 struct type **type;
4414
4415 type = dbx_lookup_type (nat.typenums, objfile);
4416 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4417 {
4418 /* The instance flags of the undefined type are still unset,
4419 and needs to be copied over from the reference type.
4420 Since replace_type expects them to be identical, we need
4421 to set these flags manually before hand. */
4422 nat.type->set_instance_flags ((*type)->instance_flags ());
4423 replace_type (nat.type, *type);
4424 }
4425 }
4426
4427 noname_undefs_length = 0;
4428 }
4429
4430 /* Go through each undefined type, see if it's still undefined, and fix it
4431 up if possible. We have two kinds of undefined types:
4432
4433 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4434 Fix: update array length using the element bounds
4435 and the target type's length.
4436 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4437 yet defined at the time a pointer to it was made.
4438 Fix: Do a full lookup on the struct/union tag. */
4439
4440 static void
4441 cleanup_undefined_types_1 (void)
4442 {
4443 struct type **type;
4444
4445 /* Iterate over every undefined type, and look for a symbol whose type
4446 matches our undefined type. The symbol matches if:
4447 1. It is a typedef in the STRUCT domain;
4448 2. It has the same name, and same type code;
4449 3. The instance flags are identical.
4450
4451 It is important to check the instance flags, because we have seen
4452 examples where the debug info contained definitions such as:
4453
4454 "foo_t:t30=B31=xefoo_t:"
4455
4456 In this case, we have created an undefined type named "foo_t" whose
4457 instance flags is null (when processing "xefoo_t"), and then created
4458 another type with the same name, but with different instance flags
4459 ('B' means volatile). I think that the definition above is wrong,
4460 since the same type cannot be volatile and non-volatile at the same
4461 time, but we need to be able to cope with it when it happens. The
4462 approach taken here is to treat these two types as different. */
4463
4464 for (type = undef_types; type < undef_types + undef_types_length; type++)
4465 {
4466 switch ((*type)->code ())
4467 {
4468
4469 case TYPE_CODE_STRUCT:
4470 case TYPE_CODE_UNION:
4471 case TYPE_CODE_ENUM:
4472 {
4473 /* Check if it has been defined since. Need to do this here
4474 as well as in check_typedef to deal with the (legitimate in
4475 C though not C++) case of several types with the same name
4476 in different source files. */
4477 if ((*type)->is_stub ())
4478 {
4479 struct pending *ppt;
4480 int i;
4481 /* Name of the type, without "struct" or "union". */
4482 const char *type_name = (*type)->name ();
4483
4484 if (type_name == NULL)
4485 {
4486 complaint (_("need a type name"));
4487 break;
4488 }
4489 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4490 {
4491 for (i = 0; i < ppt->nsyms; i++)
4492 {
4493 struct symbol *sym = ppt->symbol[i];
4494
4495 if (sym->aclass () == LOC_TYPEDEF
4496 && sym->domain () == STRUCT_DOMAIN
4497 && (sym->type ()->code () == (*type)->code ())
4498 && ((*type)->instance_flags ()
4499 == sym->type ()->instance_flags ())
4500 && strcmp (sym->linkage_name (), type_name) == 0)
4501 replace_type (*type, sym->type ());
4502 }
4503 }
4504 }
4505 }
4506 break;
4507
4508 default:
4509 {
4510 complaint (_("forward-referenced types left unresolved, "
4511 "type code %d."),
4512 (*type)->code ());
4513 }
4514 break;
4515 }
4516 }
4517
4518 undef_types_length = 0;
4519 }
4520
4521 /* Try to fix all the undefined types we encountered while processing
4522 this unit. */
4523
4524 void
4525 cleanup_undefined_stabs_types (struct objfile *objfile)
4526 {
4527 cleanup_undefined_types_1 ();
4528 cleanup_undefined_types_noname (objfile);
4529 }
4530
4531 /* See stabsread.h. */
4532
4533 void
4534 scan_file_globals (struct objfile *objfile)
4535 {
4536 int hash;
4537 struct symbol *sym, *prev;
4538 struct objfile *resolve_objfile;
4539
4540 /* SVR4 based linkers copy referenced global symbols from shared
4541 libraries to the main executable.
4542 If we are scanning the symbols for a shared library, try to resolve
4543 them from the minimal symbols of the main executable first. */
4544
4545 if (current_program_space->symfile_object_file
4546 && objfile != current_program_space->symfile_object_file)
4547 resolve_objfile = current_program_space->symfile_object_file;
4548 else
4549 resolve_objfile = objfile;
4550
4551 while (1)
4552 {
4553 /* Avoid expensive loop through all minimal symbols if there are
4554 no unresolved symbols. */
4555 for (hash = 0; hash < HASHSIZE; hash++)
4556 {
4557 if (global_sym_chain[hash])
4558 break;
4559 }
4560 if (hash >= HASHSIZE)
4561 return;
4562
4563 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4564 {
4565 QUIT;
4566
4567 /* Skip static symbols. */
4568 switch (msymbol->type ())
4569 {
4570 case mst_file_text:
4571 case mst_file_data:
4572 case mst_file_bss:
4573 continue;
4574 default:
4575 break;
4576 }
4577
4578 prev = NULL;
4579
4580 /* Get the hash index and check all the symbols
4581 under that hash index. */
4582
4583 hash = hashname (msymbol->linkage_name ());
4584
4585 for (sym = global_sym_chain[hash]; sym;)
4586 {
4587 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4588 {
4589 /* Splice this symbol out of the hash chain and
4590 assign the value we have to it. */
4591 if (prev)
4592 {
4593 prev->set_value_chain (sym->value_chain ());
4594 }
4595 else
4596 {
4597 global_sym_chain[hash] = sym->value_chain ();
4598 }
4599
4600 /* Check to see whether we need to fix up a common block. */
4601 /* Note: this code might be executed several times for
4602 the same symbol if there are multiple references. */
4603 if (sym)
4604 {
4605 if (sym->aclass () == LOC_BLOCK)
4606 fix_common_block
4607 (sym, msymbol->value_address (resolve_objfile),
4608 msymbol->section_index ());
4609 else
4610 sym->set_value_address
4611 (msymbol->value_address (resolve_objfile));
4612 sym->set_section_index (msymbol->section_index ());
4613 }
4614
4615 if (prev)
4616 {
4617 sym = prev->value_chain ();
4618 }
4619 else
4620 {
4621 sym = global_sym_chain[hash];
4622 }
4623 }
4624 else
4625 {
4626 prev = sym;
4627 sym = sym->value_chain ();
4628 }
4629 }
4630 }
4631 if (resolve_objfile == objfile)
4632 break;
4633 resolve_objfile = objfile;
4634 }
4635
4636 /* Change the storage class of any remaining unresolved globals to
4637 LOC_UNRESOLVED and remove them from the chain. */
4638 for (hash = 0; hash < HASHSIZE; hash++)
4639 {
4640 sym = global_sym_chain[hash];
4641 while (sym)
4642 {
4643 prev = sym;
4644 sym = sym->value_chain ();
4645
4646 /* Change the symbol address from the misleading chain value
4647 to address zero. */
4648 prev->set_value_address (0);
4649
4650 /* Complain about unresolved common block symbols. */
4651 if (prev->aclass () == LOC_STATIC)
4652 prev->set_aclass_index (LOC_UNRESOLVED);
4653 else
4654 complaint (_("%s: common block `%s' from "
4655 "global_sym_chain unresolved"),
4656 objfile_name (objfile), prev->print_name ());
4657 }
4658 }
4659 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4660 }
4661
4662 /* Initialize anything that needs initializing when starting to read
4663 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4664 to a psymtab. */
4665
4666 void
4667 stabsread_init (void)
4668 {
4669 }
4670
4671 /* Initialize anything that needs initializing when a completely new
4672 symbol file is specified (not just adding some symbols from another
4673 file, e.g. a shared library). */
4674
4675 void
4676 stabsread_new_init (void)
4677 {
4678 /* Empty the hash table of global syms looking for values. */
4679 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4680 }
4681
4682 /* Initialize anything that needs initializing at the same time as
4683 start_compunit_symtab() is called. */
4684
4685 void
4686 start_stabs (void)
4687 {
4688 global_stabs = NULL; /* AIX COFF */
4689 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4690 n_this_object_header_files = 1;
4691 type_vector_length = 0;
4692 type_vector = (struct type **) 0;
4693 within_function = 0;
4694
4695 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4696 common_block_name = NULL;
4697 }
4698
4699 /* Call after end_compunit_symtab(). */
4700
4701 void
4702 end_stabs (void)
4703 {
4704 if (type_vector)
4705 {
4706 xfree (type_vector);
4707 }
4708 type_vector = 0;
4709 type_vector_length = 0;
4710 previous_stab_code = 0;
4711 }
4712
4713 void
4714 finish_global_stabs (struct objfile *objfile)
4715 {
4716 if (global_stabs)
4717 {
4718 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4719 xfree (global_stabs);
4720 global_stabs = NULL;
4721 }
4722 }
4723
4724 /* Find the end of the name, delimited by a ':', but don't match
4725 ObjC symbols which look like -[Foo bar::]:bla. */
4726 static const char *
4727 find_name_end (const char *name)
4728 {
4729 const char *s = name;
4730
4731 if (s[0] == '-' || *s == '+')
4732 {
4733 /* Must be an ObjC method symbol. */
4734 if (s[1] != '[')
4735 {
4736 error (_("invalid symbol name \"%s\""), name);
4737 }
4738 s = strchr (s, ']');
4739 if (s == NULL)
4740 {
4741 error (_("invalid symbol name \"%s\""), name);
4742 }
4743 return strchr (s, ':');
4744 }
4745 else
4746 {
4747 return strchr (s, ':');
4748 }
4749 }
4750
4751 /* See stabsread.h. */
4752
4753 int
4754 hashname (const char *name)
4755 {
4756 return fast_hash (name, strlen (name)) % HASHSIZE;
4757 }
4758
4759 /* Initializer for this module. */
4760
4761 void _initialize_stabsread ();
4762 void
4763 _initialize_stabsread ()
4764 {
4765 undef_types_allocated = 20;
4766 undef_types_length = 0;
4767 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4768
4769 noname_undefs_allocated = 20;
4770 noname_undefs_length = 0;
4771 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4772
4773 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4774 &stab_register_funcs);
4775 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4776 &stab_register_funcs);
4777 }