* gdbtypes.h (struct cplus_struct_type): Delete member
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "gdb_string.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "doublest.h"
45 #include "cp-abi.h"
46 #include "cp-support.h"
47 #include "gdb_assert.h"
48
49 #include <ctype.h>
50
51 /* Ask stabsread.h to define the vars it normally declares `extern'. */
52 #define EXTERN
53 /**/
54 #include "stabsread.h" /* Our own declarations */
55 #undef EXTERN
56
57 extern void _initialize_stabsread (void);
58
59 /* The routines that read and process a complete stabs for a C struct or
60 C++ class pass lists of data member fields and lists of member function
61 fields in an instance of a field_info structure, as defined below.
62 This is part of some reorganization of low level C++ support and is
63 expected to eventually go away... (FIXME) */
64
65 struct field_info
66 {
67 struct nextfield
68 {
69 struct nextfield *next;
70
71 /* This is the raw visibility from the stab. It is not checked
72 for being one of the visibilities we recognize, so code which
73 examines this field better be able to deal. */
74 int visibility;
75
76 struct field field;
77 }
78 *list;
79 struct next_fnfieldlist
80 {
81 struct next_fnfieldlist *next;
82 struct fn_fieldlist fn_fieldlist;
83 }
84 *fnlist;
85 };
86
87 static void
88 read_one_struct_field (struct field_info *, char **, char *,
89 struct type *, struct objfile *);
90
91 static struct type *dbx_alloc_type (int[2], struct objfile *);
92
93 static long read_huge_number (char **, int, int *, int);
94
95 static struct type *error_type (char **, struct objfile *);
96
97 static void
98 patch_block_stabs (struct pending *, struct pending_stabs *,
99 struct objfile *);
100
101 static void fix_common_block (struct symbol *, int);
102
103 static int read_type_number (char **, int *);
104
105 static struct type *read_type (char **, struct objfile *);
106
107 static struct type *read_range_type (char **, int[2], int, struct objfile *);
108
109 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
110
111 static struct type *read_sun_floating_type (char **, int[2],
112 struct objfile *);
113
114 static struct type *read_enum_type (char **, struct type *, struct objfile *);
115
116 static struct type *rs6000_builtin_type (int, struct objfile *);
117
118 static int
119 read_member_functions (struct field_info *, char **, struct type *,
120 struct objfile *);
121
122 static int
123 read_struct_fields (struct field_info *, char **, struct type *,
124 struct objfile *);
125
126 static int
127 read_baseclasses (struct field_info *, char **, struct type *,
128 struct objfile *);
129
130 static int
131 read_tilde_fields (struct field_info *, char **, struct type *,
132 struct objfile *);
133
134 static int attach_fn_fields_to_type (struct field_info *, struct type *);
135
136 static int attach_fields_to_type (struct field_info *, struct type *,
137 struct objfile *);
138
139 static struct type *read_struct_type (char **, struct type *,
140 enum type_code,
141 struct objfile *);
142
143 static struct type *read_array_type (char **, struct type *,
144 struct objfile *);
145
146 static struct field *read_args (char **, int, struct objfile *, int *, int *);
147
148 static void add_undefined_type (struct type *, int[2]);
149
150 static int
151 read_cpp_abbrev (struct field_info *, char **, struct type *,
152 struct objfile *);
153
154 static char *find_name_end (char *name);
155
156 static int process_reference (char **string);
157
158 void stabsread_clear_cache (void);
159
160 static const char vptr_name[] = "_vptr$";
161 static const char vb_name[] = "_vb$";
162
163 static void
164 invalid_cpp_abbrev_complaint (const char *arg1)
165 {
166 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
167 }
168
169 static void
170 reg_value_complaint (int regnum, int num_regs, const char *sym)
171 {
172 complaint (&symfile_complaints,
173 _("register number %d too large (max %d) in symbol %s"),
174 regnum, num_regs - 1, sym);
175 }
176
177 static void
178 stabs_general_complaint (const char *arg1)
179 {
180 complaint (&symfile_complaints, "%s", arg1);
181 }
182
183 /* Make a list of forward references which haven't been defined. */
184
185 static struct type **undef_types;
186 static int undef_types_allocated;
187 static int undef_types_length;
188 static struct symbol *current_symbol = NULL;
189
190 /* Make a list of nameless types that are undefined.
191 This happens when another type is referenced by its number
192 before this type is actually defined. For instance "t(0,1)=k(0,2)"
193 and type (0,2) is defined only later. */
194
195 struct nat
196 {
197 int typenums[2];
198 struct type *type;
199 };
200 static struct nat *noname_undefs;
201 static int noname_undefs_allocated;
202 static int noname_undefs_length;
203
204 /* Check for and handle cretinous stabs symbol name continuation! */
205 #define STABS_CONTINUE(pp,objfile) \
206 do { \
207 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
208 *(pp) = next_symbol_text (objfile); \
209 } while (0)
210 \f
211
212 /* Look up a dbx type-number pair. Return the address of the slot
213 where the type for that number-pair is stored.
214 The number-pair is in TYPENUMS.
215
216 This can be used for finding the type associated with that pair
217 or for associating a new type with the pair. */
218
219 static struct type **
220 dbx_lookup_type (int typenums[2], struct objfile *objfile)
221 {
222 int filenum = typenums[0];
223 int index = typenums[1];
224 unsigned old_len;
225 int real_filenum;
226 struct header_file *f;
227 int f_orig_length;
228
229 if (filenum == -1) /* -1,-1 is for temporary types. */
230 return 0;
231
232 if (filenum < 0 || filenum >= n_this_object_header_files)
233 {
234 complaint (&symfile_complaints,
235 _("Invalid symbol data: type number "
236 "(%d,%d) out of range at symtab pos %d."),
237 filenum, index, symnum);
238 goto error_return;
239 }
240
241 if (filenum == 0)
242 {
243 if (index < 0)
244 {
245 /* Caller wants address of address of type. We think
246 that negative (rs6k builtin) types will never appear as
247 "lvalues", (nor should they), so we stuff the real type
248 pointer into a temp, and return its address. If referenced,
249 this will do the right thing. */
250 static struct type *temp_type;
251
252 temp_type = rs6000_builtin_type (index, objfile);
253 return &temp_type;
254 }
255
256 /* Type is defined outside of header files.
257 Find it in this object file's type vector. */
258 if (index >= type_vector_length)
259 {
260 old_len = type_vector_length;
261 if (old_len == 0)
262 {
263 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
264 type_vector = (struct type **)
265 xmalloc (type_vector_length * sizeof (struct type *));
266 }
267 while (index >= type_vector_length)
268 {
269 type_vector_length *= 2;
270 }
271 type_vector = (struct type **)
272 xrealloc ((char *) type_vector,
273 (type_vector_length * sizeof (struct type *)));
274 memset (&type_vector[old_len], 0,
275 (type_vector_length - old_len) * sizeof (struct type *));
276 }
277 return (&type_vector[index]);
278 }
279 else
280 {
281 real_filenum = this_object_header_files[filenum];
282
283 if (real_filenum >= N_HEADER_FILES (objfile))
284 {
285 static struct type *temp_type;
286
287 warning (_("GDB internal error: bad real_filenum"));
288
289 error_return:
290 temp_type = objfile_type (objfile)->builtin_error;
291 return &temp_type;
292 }
293
294 f = HEADER_FILES (objfile) + real_filenum;
295
296 f_orig_length = f->length;
297 if (index >= f_orig_length)
298 {
299 while (index >= f->length)
300 {
301 f->length *= 2;
302 }
303 f->vector = (struct type **)
304 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
305 memset (&f->vector[f_orig_length], 0,
306 (f->length - f_orig_length) * sizeof (struct type *));
307 }
308 return (&f->vector[index]);
309 }
310 }
311
312 /* Make sure there is a type allocated for type numbers TYPENUMS
313 and return the type object.
314 This can create an empty (zeroed) type object.
315 TYPENUMS may be (-1, -1) to return a new type object that is not
316 put into the type vector, and so may not be referred to by number. */
317
318 static struct type *
319 dbx_alloc_type (int typenums[2], struct objfile *objfile)
320 {
321 struct type **type_addr;
322
323 if (typenums[0] == -1)
324 {
325 return (alloc_type (objfile));
326 }
327
328 type_addr = dbx_lookup_type (typenums, objfile);
329
330 /* If we are referring to a type not known at all yet,
331 allocate an empty type for it.
332 We will fill it in later if we find out how. */
333 if (*type_addr == 0)
334 {
335 *type_addr = alloc_type (objfile);
336 }
337
338 return (*type_addr);
339 }
340
341 /* for all the stabs in a given stab vector, build appropriate types
342 and fix their symbols in given symbol vector. */
343
344 static void
345 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
346 struct objfile *objfile)
347 {
348 int ii;
349 char *name;
350 char *pp;
351 struct symbol *sym;
352
353 if (stabs)
354 {
355 /* for all the stab entries, find their corresponding symbols and
356 patch their types! */
357
358 for (ii = 0; ii < stabs->count; ++ii)
359 {
360 name = stabs->stab[ii];
361 pp = (char *) strchr (name, ':');
362 gdb_assert (pp); /* Must find a ':' or game's over. */
363 while (pp[1] == ':')
364 {
365 pp += 2;
366 pp = (char *) strchr (pp, ':');
367 }
368 sym = find_symbol_in_list (symbols, name, pp - name);
369 if (!sym)
370 {
371 /* FIXME-maybe: it would be nice if we noticed whether
372 the variable was defined *anywhere*, not just whether
373 it is defined in this compilation unit. But neither
374 xlc or GCC seem to need such a definition, and until
375 we do psymtabs (so that the minimal symbols from all
376 compilation units are available now), I'm not sure
377 how to get the information. */
378
379 /* On xcoff, if a global is defined and never referenced,
380 ld will remove it from the executable. There is then
381 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
382 sym = (struct symbol *)
383 obstack_alloc (&objfile->objfile_obstack,
384 sizeof (struct symbol));
385
386 memset (sym, 0, sizeof (struct symbol));
387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
388 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
389 SYMBOL_SET_LINKAGE_NAME
390 (sym, obsavestring (name, pp - name,
391 &objfile->objfile_obstack));
392 pp += 2;
393 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
394 {
395 /* I don't think the linker does this with functions,
396 so as far as I know this is never executed.
397 But it doesn't hurt to check. */
398 SYMBOL_TYPE (sym) =
399 lookup_function_type (read_type (&pp, objfile));
400 }
401 else
402 {
403 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
404 }
405 add_symbol_to_list (sym, &global_symbols);
406 }
407 else
408 {
409 pp += 2;
410 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
411 {
412 SYMBOL_TYPE (sym) =
413 lookup_function_type (read_type (&pp, objfile));
414 }
415 else
416 {
417 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
418 }
419 }
420 }
421 }
422 }
423 \f
424
425 /* Read a number by which a type is referred to in dbx data,
426 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
427 Just a single number N is equivalent to (0,N).
428 Return the two numbers by storing them in the vector TYPENUMS.
429 TYPENUMS will then be used as an argument to dbx_lookup_type.
430
431 Returns 0 for success, -1 for error. */
432
433 static int
434 read_type_number (char **pp, int *typenums)
435 {
436 int nbits;
437
438 if (**pp == '(')
439 {
440 (*pp)++;
441 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
442 if (nbits != 0)
443 return -1;
444 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
445 if (nbits != 0)
446 return -1;
447 }
448 else
449 {
450 typenums[0] = 0;
451 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 }
455 return 0;
456 }
457 \f
458
459 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
460 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
461 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
462 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
463
464 /* Structure for storing pointers to reference definitions for fast lookup
465 during "process_later". */
466
467 struct ref_map
468 {
469 char *stabs;
470 CORE_ADDR value;
471 struct symbol *sym;
472 };
473
474 #define MAX_CHUNK_REFS 100
475 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
476 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
477
478 static struct ref_map *ref_map;
479
480 /* Ptr to free cell in chunk's linked list. */
481 static int ref_count = 0;
482
483 /* Number of chunks malloced. */
484 static int ref_chunk = 0;
485
486 /* This file maintains a cache of stabs aliases found in the symbol
487 table. If the symbol table changes, this cache must be cleared
488 or we are left holding onto data in invalid obstacks. */
489 void
490 stabsread_clear_cache (void)
491 {
492 ref_count = 0;
493 ref_chunk = 0;
494 }
495
496 /* Create array of pointers mapping refids to symbols and stab strings.
497 Add pointers to reference definition symbols and/or their values as we
498 find them, using their reference numbers as our index.
499 These will be used later when we resolve references. */
500 void
501 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
502 {
503 if (ref_count == 0)
504 ref_chunk = 0;
505 if (refnum >= ref_count)
506 ref_count = refnum + 1;
507 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
508 {
509 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
510 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
511
512 ref_map = (struct ref_map *)
513 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
514 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
515 new_chunks * REF_CHUNK_SIZE);
516 ref_chunk += new_chunks;
517 }
518 ref_map[refnum].stabs = stabs;
519 ref_map[refnum].sym = sym;
520 ref_map[refnum].value = value;
521 }
522
523 /* Return defined sym for the reference REFNUM. */
524 struct symbol *
525 ref_search (int refnum)
526 {
527 if (refnum < 0 || refnum > ref_count)
528 return 0;
529 return ref_map[refnum].sym;
530 }
531
532 /* Parse a reference id in STRING and return the resulting
533 reference number. Move STRING beyond the reference id. */
534
535 static int
536 process_reference (char **string)
537 {
538 char *p;
539 int refnum = 0;
540
541 if (**string != '#')
542 return 0;
543
544 /* Advance beyond the initial '#'. */
545 p = *string + 1;
546
547 /* Read number as reference id. */
548 while (*p && isdigit (*p))
549 {
550 refnum = refnum * 10 + *p - '0';
551 p++;
552 }
553 *string = p;
554 return refnum;
555 }
556
557 /* If STRING defines a reference, store away a pointer to the reference
558 definition for later use. Return the reference number. */
559
560 int
561 symbol_reference_defined (char **string)
562 {
563 char *p = *string;
564 int refnum = 0;
565
566 refnum = process_reference (&p);
567
568 /* Defining symbols end in '='. */
569 if (*p == '=')
570 {
571 /* Symbol is being defined here. */
572 *string = p + 1;
573 return refnum;
574 }
575 else
576 {
577 /* Must be a reference. Either the symbol has already been defined,
578 or this is a forward reference to it. */
579 *string = p;
580 return -1;
581 }
582 }
583
584 static int
585 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
586 {
587 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
588
589 if (regno >= gdbarch_num_regs (gdbarch)
590 + gdbarch_num_pseudo_regs (gdbarch))
591 {
592 reg_value_complaint (regno,
593 gdbarch_num_regs (gdbarch)
594 + gdbarch_num_pseudo_regs (gdbarch),
595 SYMBOL_PRINT_NAME (sym));
596
597 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
598 }
599
600 return regno;
601 }
602
603 static const struct symbol_register_ops stab_register_funcs = {
604 stab_reg_to_regnum
605 };
606
607 struct symbol *
608 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
609 struct objfile *objfile)
610 {
611 struct gdbarch *gdbarch = get_objfile_arch (objfile);
612 struct symbol *sym;
613 char *p = (char *) find_name_end (string);
614 int deftype;
615 int synonym = 0;
616 int i;
617 char *new_name = NULL;
618
619 /* We would like to eliminate nameless symbols, but keep their types.
620 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
621 to type 2, but, should not create a symbol to address that type. Since
622 the symbol will be nameless, there is no way any user can refer to it. */
623
624 int nameless;
625
626 /* Ignore syms with empty names. */
627 if (string[0] == 0)
628 return 0;
629
630 /* Ignore old-style symbols from cc -go. */
631 if (p == 0)
632 return 0;
633
634 while (p[1] == ':')
635 {
636 p += 2;
637 p = strchr (p, ':');
638 if (p == NULL)
639 {
640 complaint (&symfile_complaints,
641 _("Bad stabs string '%s'"), string);
642 return NULL;
643 }
644 }
645
646 /* If a nameless stab entry, all we need is the type, not the symbol.
647 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
648 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
649
650 current_symbol = sym = (struct symbol *)
651 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
652 memset (sym, 0, sizeof (struct symbol));
653
654 switch (type & N_TYPE)
655 {
656 case N_TEXT:
657 SYMBOL_SECTION (sym) = SECT_OFF_TEXT (objfile);
658 break;
659 case N_DATA:
660 SYMBOL_SECTION (sym) = SECT_OFF_DATA (objfile);
661 break;
662 case N_BSS:
663 SYMBOL_SECTION (sym) = SECT_OFF_BSS (objfile);
664 break;
665 }
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 if (is_cplus_marker (string[0]))
679 {
680 /* Special GNU C++ names. */
681 switch (string[1])
682 {
683 case 't':
684 SYMBOL_SET_LINKAGE_NAME (sym, "this");
685 break;
686
687 case 'v': /* $vtbl_ptr_type */
688 goto normal;
689
690 case 'e':
691 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
692 break;
693
694 case '_':
695 /* This was an anonymous type that was never fixed up. */
696 goto normal;
697
698 case 'X':
699 /* SunPRO (3.0 at least) static variable encoding. */
700 if (gdbarch_static_transform_name_p (gdbarch))
701 goto normal;
702 /* ... fall through ... */
703
704 default:
705 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
706 string);
707 goto normal; /* Do *something* with it. */
708 }
709 }
710 else
711 {
712 normal:
713 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
714 if (SYMBOL_LANGUAGE (sym) == language_cplus)
715 {
716 char *name = alloca (p - string + 1);
717
718 memcpy (name, string, p - string);
719 name[p - string] = '\0';
720 new_name = cp_canonicalize_string (name);
721 }
722 if (new_name != NULL)
723 {
724 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
725 xfree (new_name);
726 }
727 else
728 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
729
730 if (SYMBOL_LANGUAGE (sym) == language_cplus)
731 cp_scan_for_anonymous_namespaces (sym, objfile);
732
733 }
734 p++;
735
736 /* Determine the type of name being defined. */
737 #if 0
738 /* Getting GDB to correctly skip the symbol on an undefined symbol
739 descriptor and not ever dump core is a very dodgy proposition if
740 we do things this way. I say the acorn RISC machine can just
741 fix their compiler. */
742 /* The Acorn RISC machine's compiler can put out locals that don't
743 start with "234=" or "(3,4)=", so assume anything other than the
744 deftypes we know how to handle is a local. */
745 if (!strchr ("cfFGpPrStTvVXCR", *p))
746 #else
747 if (isdigit (*p) || *p == '(' || *p == '-')
748 #endif
749 deftype = 'l';
750 else
751 deftype = *p++;
752
753 switch (deftype)
754 {
755 case 'c':
756 /* c is a special case, not followed by a type-number.
757 SYMBOL:c=iVALUE for an integer constant symbol.
758 SYMBOL:c=rVALUE for a floating constant symbol.
759 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
760 e.g. "b:c=e6,0" for "const b = blob1"
761 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
762 if (*p != '=')
763 {
764 SYMBOL_CLASS (sym) = LOC_CONST;
765 SYMBOL_TYPE (sym) = error_type (&p, objfile);
766 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
767 add_symbol_to_list (sym, &file_symbols);
768 return sym;
769 }
770 ++p;
771 switch (*p++)
772 {
773 case 'r':
774 {
775 double d = atof (p);
776 gdb_byte *dbl_valu;
777 struct type *dbl_type;
778
779 /* FIXME-if-picky-about-floating-accuracy: Should be using
780 target arithmetic to get the value. real.c in GCC
781 probably has the necessary code. */
782
783 dbl_type = objfile_type (objfile)->builtin_double;
784 dbl_valu =
785 obstack_alloc (&objfile->objfile_obstack,
786 TYPE_LENGTH (dbl_type));
787 store_typed_floating (dbl_valu, dbl_type, d);
788
789 SYMBOL_TYPE (sym) = dbl_type;
790 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
791 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
792 }
793 break;
794 case 'i':
795 {
796 /* Defining integer constants this way is kind of silly,
797 since 'e' constants allows the compiler to give not
798 only the value, but the type as well. C has at least
799 int, long, unsigned int, and long long as constant
800 types; other languages probably should have at least
801 unsigned as well as signed constants. */
802
803 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
804 SYMBOL_VALUE (sym) = atoi (p);
805 SYMBOL_CLASS (sym) = LOC_CONST;
806 }
807 break;
808
809 case 'c':
810 {
811 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
812 SYMBOL_VALUE (sym) = atoi (p);
813 SYMBOL_CLASS (sym) = LOC_CONST;
814 }
815 break;
816
817 case 's':
818 {
819 struct type *range_type;
820 int ind = 0;
821 char quote = *p++;
822 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
823 gdb_byte *string_value;
824
825 if (quote != '\'' && quote != '"')
826 {
827 SYMBOL_CLASS (sym) = LOC_CONST;
828 SYMBOL_TYPE (sym) = error_type (&p, objfile);
829 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
830 add_symbol_to_list (sym, &file_symbols);
831 return sym;
832 }
833
834 /* Find matching quote, rejecting escaped quotes. */
835 while (*p && *p != quote)
836 {
837 if (*p == '\\' && p[1] == quote)
838 {
839 string_local[ind] = (gdb_byte) quote;
840 ind++;
841 p += 2;
842 }
843 else if (*p)
844 {
845 string_local[ind] = (gdb_byte) (*p);
846 ind++;
847 p++;
848 }
849 }
850 if (*p != quote)
851 {
852 SYMBOL_CLASS (sym) = LOC_CONST;
853 SYMBOL_TYPE (sym) = error_type (&p, objfile);
854 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
855 add_symbol_to_list (sym, &file_symbols);
856 return sym;
857 }
858
859 /* NULL terminate the string. */
860 string_local[ind] = 0;
861 range_type
862 = create_range_type (NULL,
863 objfile_type (objfile)->builtin_int,
864 0, ind);
865 SYMBOL_TYPE (sym) = create_array_type (NULL,
866 objfile_type (objfile)->builtin_char,
867 range_type);
868 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
869 memcpy (string_value, string_local, ind + 1);
870 p++;
871
872 SYMBOL_VALUE_BYTES (sym) = string_value;
873 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
874 }
875 break;
876
877 case 'e':
878 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
879 can be represented as integral.
880 e.g. "b:c=e6,0" for "const b = blob1"
881 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
882 {
883 SYMBOL_CLASS (sym) = LOC_CONST;
884 SYMBOL_TYPE (sym) = read_type (&p, objfile);
885
886 if (*p != ',')
887 {
888 SYMBOL_TYPE (sym) = error_type (&p, objfile);
889 break;
890 }
891 ++p;
892
893 /* If the value is too big to fit in an int (perhaps because
894 it is unsigned), or something like that, we silently get
895 a bogus value. The type and everything else about it is
896 correct. Ideally, we should be using whatever we have
897 available for parsing unsigned and long long values,
898 however. */
899 SYMBOL_VALUE (sym) = atoi (p);
900 }
901 break;
902 default:
903 {
904 SYMBOL_CLASS (sym) = LOC_CONST;
905 SYMBOL_TYPE (sym) = error_type (&p, objfile);
906 }
907 }
908 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
909 add_symbol_to_list (sym, &file_symbols);
910 return sym;
911
912 case 'C':
913 /* The name of a caught exception. */
914 SYMBOL_TYPE (sym) = read_type (&p, objfile);
915 SYMBOL_CLASS (sym) = LOC_LABEL;
916 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
917 SYMBOL_VALUE_ADDRESS (sym) = valu;
918 add_symbol_to_list (sym, &local_symbols);
919 break;
920
921 case 'f':
922 /* A static function definition. */
923 SYMBOL_TYPE (sym) = read_type (&p, objfile);
924 SYMBOL_CLASS (sym) = LOC_BLOCK;
925 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
926 add_symbol_to_list (sym, &file_symbols);
927 /* fall into process_function_types. */
928
929 process_function_types:
930 /* Function result types are described as the result type in stabs.
931 We need to convert this to the function-returning-type-X type
932 in GDB. E.g. "int" is converted to "function returning int". */
933 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
934 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
935
936 /* All functions in C++ have prototypes. Stabs does not offer an
937 explicit way to identify prototyped or unprototyped functions,
938 but both GCC and Sun CC emit stabs for the "call-as" type rather
939 than the "declared-as" type for unprototyped functions, so
940 we treat all functions as if they were prototyped. This is used
941 primarily for promotion when calling the function from GDB. */
942 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
943
944 /* fall into process_prototype_types. */
945
946 process_prototype_types:
947 /* Sun acc puts declared types of arguments here. */
948 if (*p == ';')
949 {
950 struct type *ftype = SYMBOL_TYPE (sym);
951 int nsemi = 0;
952 int nparams = 0;
953 char *p1 = p;
954
955 /* Obtain a worst case guess for the number of arguments
956 by counting the semicolons. */
957 while (*p1)
958 {
959 if (*p1++ == ';')
960 nsemi++;
961 }
962
963 /* Allocate parameter information fields and fill them in. */
964 TYPE_FIELDS (ftype) = (struct field *)
965 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
966 while (*p++ == ';')
967 {
968 struct type *ptype;
969
970 /* A type number of zero indicates the start of varargs.
971 FIXME: GDB currently ignores vararg functions. */
972 if (p[0] == '0' && p[1] == '\0')
973 break;
974 ptype = read_type (&p, objfile);
975
976 /* The Sun compilers mark integer arguments, which should
977 be promoted to the width of the calling conventions, with
978 a type which references itself. This type is turned into
979 a TYPE_CODE_VOID type by read_type, and we have to turn
980 it back into builtin_int here.
981 FIXME: Do we need a new builtin_promoted_int_arg ? */
982 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
983 ptype = objfile_type (objfile)->builtin_int;
984 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
985 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
986 }
987 TYPE_NFIELDS (ftype) = nparams;
988 TYPE_PROTOTYPED (ftype) = 1;
989 }
990 break;
991
992 case 'F':
993 /* A global function definition. */
994 SYMBOL_TYPE (sym) = read_type (&p, objfile);
995 SYMBOL_CLASS (sym) = LOC_BLOCK;
996 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
997 add_symbol_to_list (sym, &global_symbols);
998 goto process_function_types;
999
1000 case 'G':
1001 /* For a class G (global) symbol, it appears that the
1002 value is not correct. It is necessary to search for the
1003 corresponding linker definition to find the value.
1004 These definitions appear at the end of the namelist. */
1005 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1006 SYMBOL_CLASS (sym) = LOC_STATIC;
1007 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1008 /* Don't add symbol references to global_sym_chain.
1009 Symbol references don't have valid names and wont't match up with
1010 minimal symbols when the global_sym_chain is relocated.
1011 We'll fixup symbol references when we fixup the defining symbol. */
1012 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1013 {
1014 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1015 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1016 global_sym_chain[i] = sym;
1017 }
1018 add_symbol_to_list (sym, &global_symbols);
1019 break;
1020
1021 /* This case is faked by a conditional above,
1022 when there is no code letter in the dbx data.
1023 Dbx data never actually contains 'l'. */
1024 case 's':
1025 case 'l':
1026 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1027 SYMBOL_CLASS (sym) = LOC_LOCAL;
1028 SYMBOL_VALUE (sym) = valu;
1029 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1030 add_symbol_to_list (sym, &local_symbols);
1031 break;
1032
1033 case 'p':
1034 if (*p == 'F')
1035 /* pF is a two-letter code that means a function parameter in Fortran.
1036 The type-number specifies the type of the return value.
1037 Translate it into a pointer-to-function type. */
1038 {
1039 p++;
1040 SYMBOL_TYPE (sym)
1041 = lookup_pointer_type
1042 (lookup_function_type (read_type (&p, objfile)));
1043 }
1044 else
1045 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1046
1047 SYMBOL_CLASS (sym) = LOC_ARG;
1048 SYMBOL_VALUE (sym) = valu;
1049 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1050 SYMBOL_IS_ARGUMENT (sym) = 1;
1051 add_symbol_to_list (sym, &local_symbols);
1052
1053 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1054 {
1055 /* On little-endian machines, this crud is never necessary,
1056 and, if the extra bytes contain garbage, is harmful. */
1057 break;
1058 }
1059
1060 /* If it's gcc-compiled, if it says `short', believe it. */
1061 if (processing_gcc_compilation
1062 || gdbarch_believe_pcc_promotion (gdbarch))
1063 break;
1064
1065 if (!gdbarch_believe_pcc_promotion (gdbarch))
1066 {
1067 /* If PCC says a parameter is a short or a char, it is
1068 really an int. */
1069 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1070 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1071 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1072 {
1073 SYMBOL_TYPE (sym) =
1074 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1075 ? objfile_type (objfile)->builtin_unsigned_int
1076 : objfile_type (objfile)->builtin_int;
1077 }
1078 break;
1079 }
1080
1081 case 'P':
1082 /* acc seems to use P to declare the prototypes of functions that
1083 are referenced by this file. gdb is not prepared to deal
1084 with this extra information. FIXME, it ought to. */
1085 if (type == N_FUN)
1086 {
1087 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1088 goto process_prototype_types;
1089 }
1090 /*FALLTHROUGH */
1091
1092 case 'R':
1093 /* Parameter which is in a register. */
1094 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1095 SYMBOL_CLASS (sym) = LOC_REGISTER;
1096 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1097 SYMBOL_IS_ARGUMENT (sym) = 1;
1098 SYMBOL_VALUE (sym) = valu;
1099 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1100 add_symbol_to_list (sym, &local_symbols);
1101 break;
1102
1103 case 'r':
1104 /* Register variable (either global or local). */
1105 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1106 SYMBOL_CLASS (sym) = LOC_REGISTER;
1107 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1108 SYMBOL_VALUE (sym) = valu;
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 if (within_function)
1111 {
1112 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 the same name to represent an argument passed in a
1114 register. GCC uses 'P' for the same case. So if we find
1115 such a symbol pair we combine it into one 'P' symbol.
1116 For Sun cc we need to do this regardless of
1117 stabs_argument_has_addr, because the compiler puts out
1118 the 'p' symbol even if it never saves the argument onto
1119 the stack.
1120
1121 On most machines, we want to preserve both symbols, so
1122 that we can still get information about what is going on
1123 with the stack (VAX for computing args_printed, using
1124 stack slots instead of saved registers in backtraces,
1125 etc.).
1126
1127 Note that this code illegally combines
1128 main(argc) struct foo argc; { register struct foo argc; }
1129 but this case is considered pathological and causes a warning
1130 from a decent compiler. */
1131
1132 if (local_symbols
1133 && local_symbols->nsyms > 0
1134 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 {
1136 struct symbol *prev_sym;
1137
1138 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 {
1144 SYMBOL_CLASS (prev_sym) = LOC_REGISTER;
1145 SYMBOL_REGISTER_OPS (prev_sym) = &stab_register_funcs;
1146 /* Use the type from the LOC_REGISTER; that is the type
1147 that is actually in that register. */
1148 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1149 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1150 sym = prev_sym;
1151 break;
1152 }
1153 }
1154 add_symbol_to_list (sym, &local_symbols);
1155 }
1156 else
1157 add_symbol_to_list (sym, &file_symbols);
1158 break;
1159
1160 case 'S':
1161 /* Static symbol at top level of file. */
1162 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1163 SYMBOL_CLASS (sym) = LOC_STATIC;
1164 SYMBOL_VALUE_ADDRESS (sym) = valu;
1165 if (gdbarch_static_transform_name_p (gdbarch)
1166 && gdbarch_static_transform_name (gdbarch,
1167 SYMBOL_LINKAGE_NAME (sym))
1168 != SYMBOL_LINKAGE_NAME (sym))
1169 {
1170 struct minimal_symbol *msym;
1171
1172 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1173 NULL, objfile);
1174 if (msym != NULL)
1175 {
1176 char *new_name = gdbarch_static_transform_name
1177 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1178
1179 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1180 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1181 }
1182 }
1183 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1184 add_symbol_to_list (sym, &file_symbols);
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1213 SYMBOL_VALUE (sym) = valu;
1214 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1220 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1221 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1228 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1229 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1230 }
1231
1232 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1233 {
1234 /* gcc-2.6 or later (when using -fvtable-thunks)
1235 emits a unique named type for a vtable entry.
1236 Some gdb code depends on that specific name. */
1237 extern const char vtbl_ptr_name[];
1238
1239 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1240 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1241 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1242 {
1243 /* If we are giving a name to a type such as "pointer to
1244 foo" or "function returning foo", we better not set
1245 the TYPE_NAME. If the program contains "typedef char
1246 *caddr_t;", we don't want all variables of type char
1247 * to print as caddr_t. This is not just a
1248 consequence of GDB's type management; PCC and GCC (at
1249 least through version 2.4) both output variables of
1250 either type char * or caddr_t with the type number
1251 defined in the 't' symbol for caddr_t. If a future
1252 compiler cleans this up it GDB is not ready for it
1253 yet, but if it becomes ready we somehow need to
1254 disable this check (without breaking the PCC/GCC2.4
1255 case).
1256
1257 Sigh.
1258
1259 Fortunately, this check seems not to be necessary
1260 for anything except pointers or functions. */
1261 /* ezannoni: 2000-10-26. This seems to apply for
1262 versions of gcc older than 2.8. This was the original
1263 problem: with the following code gdb would tell that
1264 the type for name1 is caddr_t, and func is char().
1265
1266 typedef char *caddr_t;
1267 char *name2;
1268 struct x
1269 {
1270 char *name1;
1271 } xx;
1272 char *func()
1273 {
1274 }
1275 main () {}
1276 */
1277
1278 /* Pascal accepts names for pointer types. */
1279 if (current_subfile->language == language_pascal)
1280 {
1281 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1282 }
1283 }
1284 else
1285 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1286 }
1287
1288 add_symbol_to_list (sym, &file_symbols);
1289
1290 if (synonym)
1291 {
1292 /* Create the STRUCT_DOMAIN clone. */
1293 struct symbol *struct_sym = (struct symbol *)
1294 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1295
1296 *struct_sym = *sym;
1297 SYMBOL_CLASS (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = (struct symbol *)
1339 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_CLASS (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct minimal_symbol *msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym != NULL)
1369 {
1370 char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1395 SYMBOL_REGISTER_OPS (sym) = &stab_register_funcs;
1396 SYMBOL_IS_ARGUMENT (sym) = 1;
1397 SYMBOL_VALUE (sym) = valu;
1398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1399 add_symbol_to_list (sym, &local_symbols);
1400 break;
1401
1402 case 'X':
1403 /* This is used by Sun FORTRAN for "function result value".
1404 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1405 that Pascal uses it too, but when I tried it Pascal used
1406 "x:3" (local symbol) instead. */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_CLASS (sym) = LOC_LOCAL;
1409 SYMBOL_VALUE (sym) = valu;
1410 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1411 add_symbol_to_list (sym, &local_symbols);
1412 break;
1413
1414 default:
1415 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1416 SYMBOL_CLASS (sym) = LOC_CONST;
1417 SYMBOL_VALUE (sym) = 0;
1418 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1419 add_symbol_to_list (sym, &file_symbols);
1420 break;
1421 }
1422
1423 /* Some systems pass variables of certain types by reference instead
1424 of by value, i.e. they will pass the address of a structure (in a
1425 register or on the stack) instead of the structure itself. */
1426
1427 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1428 && SYMBOL_IS_ARGUMENT (sym))
1429 {
1430 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1431 variables passed in a register). */
1432 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1433 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1434 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1435 and subsequent arguments on SPARC, for example). */
1436 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1437 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1438 }
1439
1440 return sym;
1441 }
1442
1443 /* Skip rest of this symbol and return an error type.
1444
1445 General notes on error recovery: error_type always skips to the
1446 end of the symbol (modulo cretinous dbx symbol name continuation).
1447 Thus code like this:
1448
1449 if (*(*pp)++ != ';')
1450 return error_type (pp, objfile);
1451
1452 is wrong because if *pp starts out pointing at '\0' (typically as the
1453 result of an earlier error), it will be incremented to point to the
1454 start of the next symbol, which might produce strange results, at least
1455 if you run off the end of the string table. Instead use
1456
1457 if (**pp != ';')
1458 return error_type (pp, objfile);
1459 ++*pp;
1460
1461 or
1462
1463 if (**pp != ';')
1464 foo = error_type (pp, objfile);
1465 else
1466 ++*pp;
1467
1468 And in case it isn't obvious, the point of all this hair is so the compiler
1469 can define new types and new syntaxes, and old versions of the
1470 debugger will be able to read the new symbol tables. */
1471
1472 static struct type *
1473 error_type (char **pp, struct objfile *objfile)
1474 {
1475 complaint (&symfile_complaints,
1476 _("couldn't parse type; debugger out of date?"));
1477 while (1)
1478 {
1479 /* Skip to end of symbol. */
1480 while (**pp != '\0')
1481 {
1482 (*pp)++;
1483 }
1484
1485 /* Check for and handle cretinous dbx symbol name continuation! */
1486 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1487 {
1488 *pp = next_symbol_text (objfile);
1489 }
1490 else
1491 {
1492 break;
1493 }
1494 }
1495 return objfile_type (objfile)->builtin_error;
1496 }
1497 \f
1498
1499 /* Read type information or a type definition; return the type. Even
1500 though this routine accepts either type information or a type
1501 definition, the distinction is relevant--some parts of stabsread.c
1502 assume that type information starts with a digit, '-', or '(' in
1503 deciding whether to call read_type. */
1504
1505 static struct type *
1506 read_type (char **pp, struct objfile *objfile)
1507 {
1508 struct type *type = 0;
1509 struct type *type1;
1510 int typenums[2];
1511 char type_descriptor;
1512
1513 /* Size in bits of type if specified by a type attribute, or -1 if
1514 there is no size attribute. */
1515 int type_size = -1;
1516
1517 /* Used to distinguish string and bitstring from char-array and set. */
1518 int is_string = 0;
1519
1520 /* Used to distinguish vector from array. */
1521 int is_vector = 0;
1522
1523 /* Read type number if present. The type number may be omitted.
1524 for instance in a two-dimensional array declared with type
1525 "ar1;1;10;ar1;1;10;4". */
1526 if ((**pp >= '0' && **pp <= '9')
1527 || **pp == '('
1528 || **pp == '-')
1529 {
1530 if (read_type_number (pp, typenums) != 0)
1531 return error_type (pp, objfile);
1532
1533 if (**pp != '=')
1534 {
1535 /* Type is not being defined here. Either it already
1536 exists, or this is a forward reference to it.
1537 dbx_alloc_type handles both cases. */
1538 type = dbx_alloc_type (typenums, objfile);
1539
1540 /* If this is a forward reference, arrange to complain if it
1541 doesn't get patched up by the time we're done
1542 reading. */
1543 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1544 add_undefined_type (type, typenums);
1545
1546 return type;
1547 }
1548
1549 /* Type is being defined here. */
1550 /* Skip the '='.
1551 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1552 (*pp) += 2;
1553 }
1554 else
1555 {
1556 /* 'typenums=' not present, type is anonymous. Read and return
1557 the definition, but don't put it in the type vector. */
1558 typenums[0] = typenums[1] = -1;
1559 (*pp)++;
1560 }
1561
1562 again:
1563 type_descriptor = (*pp)[-1];
1564 switch (type_descriptor)
1565 {
1566 case 'x':
1567 {
1568 enum type_code code;
1569
1570 /* Used to index through file_symbols. */
1571 struct pending *ppt;
1572 int i;
1573
1574 /* Name including "struct", etc. */
1575 char *type_name;
1576
1577 {
1578 char *from, *to, *p, *q1, *q2;
1579
1580 /* Set the type code according to the following letter. */
1581 switch ((*pp)[0])
1582 {
1583 case 's':
1584 code = TYPE_CODE_STRUCT;
1585 break;
1586 case 'u':
1587 code = TYPE_CODE_UNION;
1588 break;
1589 case 'e':
1590 code = TYPE_CODE_ENUM;
1591 break;
1592 default:
1593 {
1594 /* Complain and keep going, so compilers can invent new
1595 cross-reference types. */
1596 complaint (&symfile_complaints,
1597 _("Unrecognized cross-reference type `%c'"),
1598 (*pp)[0]);
1599 code = TYPE_CODE_STRUCT;
1600 break;
1601 }
1602 }
1603
1604 q1 = strchr (*pp, '<');
1605 p = strchr (*pp, ':');
1606 if (p == NULL)
1607 return error_type (pp, objfile);
1608 if (q1 && p > q1 && p[1] == ':')
1609 {
1610 int nesting_level = 0;
1611
1612 for (q2 = q1; *q2; q2++)
1613 {
1614 if (*q2 == '<')
1615 nesting_level++;
1616 else if (*q2 == '>')
1617 nesting_level--;
1618 else if (*q2 == ':' && nesting_level == 0)
1619 break;
1620 }
1621 p = q2;
1622 if (*p != ':')
1623 return error_type (pp, objfile);
1624 }
1625 type_name = NULL;
1626 if (current_subfile->language == language_cplus)
1627 {
1628 char *new_name, *name = alloca (p - *pp + 1);
1629
1630 memcpy (name, *pp, p - *pp);
1631 name[p - *pp] = '\0';
1632 new_name = cp_canonicalize_string (name);
1633 if (new_name != NULL)
1634 {
1635 type_name = obsavestring (new_name, strlen (new_name),
1636 &objfile->objfile_obstack);
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *new = alloca (sizeof (*new));
1815 new->type = arg_type;
1816 new->next = arg_types;
1817 arg_types = new;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set or bitstring type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (is_string)
2031 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
2032 if (typenums[0] != -1)
2033 *dbx_lookup_type (typenums, objfile) = type;
2034 break;
2035
2036 default:
2037 --*pp; /* Go back to the symbol in error. */
2038 /* Particularly important if it was \0! */
2039 return error_type (pp, objfile);
2040 }
2041
2042 if (type == 0)
2043 {
2044 warning (_("GDB internal error, type is NULL in stabsread.c."));
2045 return error_type (pp, objfile);
2046 }
2047
2048 /* Size specified in a type attribute overrides any other size. */
2049 if (type_size != -1)
2050 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2051
2052 return type;
2053 }
2054 \f
2055 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2056 Return the proper type node for a given builtin type number. */
2057
2058 static const struct objfile_data *rs6000_builtin_type_data;
2059
2060 static struct type *
2061 rs6000_builtin_type (int typenum, struct objfile *objfile)
2062 {
2063 struct type **negative_types = objfile_data (objfile,
2064 rs6000_builtin_type_data);
2065
2066 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2067 #define NUMBER_RECOGNIZED 34
2068 struct type *rettype = NULL;
2069
2070 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2071 {
2072 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2073 return objfile_type (objfile)->builtin_error;
2074 }
2075
2076 if (!negative_types)
2077 {
2078 /* This includes an empty slot for type number -0. */
2079 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2080 NUMBER_RECOGNIZED + 1, struct type *);
2081 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2082 }
2083
2084 if (negative_types[-typenum] != NULL)
2085 return negative_types[-typenum];
2086
2087 #if TARGET_CHAR_BIT != 8
2088 #error This code wrong for TARGET_CHAR_BIT not 8
2089 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2090 that if that ever becomes not true, the correct fix will be to
2091 make the size in the struct type to be in bits, not in units of
2092 TARGET_CHAR_BIT. */
2093 #endif
2094
2095 switch (-typenum)
2096 {
2097 case 1:
2098 /* The size of this and all the other types are fixed, defined
2099 by the debugging format. If there is a type called "int" which
2100 is other than 32 bits, then it should use a new negative type
2101 number (or avoid negative type numbers for that case).
2102 See stabs.texinfo. */
2103 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2104 break;
2105 case 2:
2106 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2107 break;
2108 case 3:
2109 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2110 break;
2111 case 4:
2112 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2113 break;
2114 case 5:
2115 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2116 "unsigned char", objfile);
2117 break;
2118 case 6:
2119 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2120 break;
2121 case 7:
2122 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2123 "unsigned short", objfile);
2124 break;
2125 case 8:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 "unsigned int", objfile);
2128 break;
2129 case 9:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2131 "unsigned", objfile);
2132 break;
2133 case 10:
2134 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2135 "unsigned long", objfile);
2136 break;
2137 case 11:
2138 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2139 break;
2140 case 12:
2141 /* IEEE single precision (32 bit). */
2142 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2143 break;
2144 case 13:
2145 /* IEEE double precision (64 bit). */
2146 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2147 break;
2148 case 14:
2149 /* This is an IEEE double on the RS/6000, and different machines with
2150 different sizes for "long double" should use different negative
2151 type numbers. See stabs.texinfo. */
2152 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2153 break;
2154 case 15:
2155 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2156 break;
2157 case 16:
2158 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2159 "boolean", objfile);
2160 break;
2161 case 17:
2162 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2163 break;
2164 case 18:
2165 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2166 break;
2167 case 19:
2168 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2169 break;
2170 case 20:
2171 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2172 "character", objfile);
2173 break;
2174 case 21:
2175 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2176 "logical*1", objfile);
2177 break;
2178 case 22:
2179 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2180 "logical*2", objfile);
2181 break;
2182 case 23:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2184 "logical*4", objfile);
2185 break;
2186 case 24:
2187 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2188 "logical", objfile);
2189 break;
2190 case 25:
2191 /* Complex type consisting of two IEEE single precision values. */
2192 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2193 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2194 objfile);
2195 break;
2196 case 26:
2197 /* Complex type consisting of two IEEE double precision values. */
2198 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2199 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2200 objfile);
2201 break;
2202 case 27:
2203 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2204 break;
2205 case 28:
2206 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2207 break;
2208 case 29:
2209 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2210 break;
2211 case 30:
2212 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2213 break;
2214 case 31:
2215 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2216 break;
2217 case 32:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2219 "unsigned long long", objfile);
2220 break;
2221 case 33:
2222 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2223 "logical*8", objfile);
2224 break;
2225 case 34:
2226 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2227 break;
2228 }
2229 negative_types[-typenum] = rettype;
2230 return rettype;
2231 }
2232 \f
2233 /* This page contains subroutines of read_type. */
2234
2235 /* Replace *OLD_NAME with the method name portion of PHYSNAME. */
2236
2237 static void
2238 update_method_name_from_physname (char **old_name, const char *physname)
2239 {
2240 char *method_name;
2241
2242 method_name = method_name_from_physname (physname);
2243
2244 if (method_name == NULL)
2245 {
2246 complaint (&symfile_complaints,
2247 _("Method has bad physname %s\n"), physname);
2248 return;
2249 }
2250
2251 if (strcmp (*old_name, method_name) != 0)
2252 {
2253 xfree (*old_name);
2254 *old_name = method_name;
2255 }
2256 else
2257 xfree (method_name);
2258 }
2259
2260 /* Read member function stabs info for C++ classes. The form of each member
2261 function data is:
2262
2263 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2264
2265 An example with two member functions is:
2266
2267 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2268
2269 For the case of overloaded operators, the format is op$::*.funcs, where
2270 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2271 name (such as `+=') and `.' marks the end of the operator name.
2272
2273 Returns 1 for success, 0 for failure. */
2274
2275 static int
2276 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2277 struct objfile *objfile)
2278 {
2279 int nfn_fields = 0;
2280 int length = 0;
2281 int i;
2282 struct next_fnfield
2283 {
2284 struct next_fnfield *next;
2285 struct fn_field fn_field;
2286 }
2287 *sublist;
2288 struct type *look_ahead_type;
2289 struct next_fnfieldlist *new_fnlist;
2290 struct next_fnfield *new_sublist;
2291 char *main_fn_name;
2292 char *p;
2293
2294 /* Process each list until we find something that is not a member function
2295 or find the end of the functions. */
2296
2297 while (**pp != ';')
2298 {
2299 /* We should be positioned at the start of the function name.
2300 Scan forward to find the first ':' and if it is not the
2301 first of a "::" delimiter, then this is not a member function. */
2302 p = *pp;
2303 while (*p != ':')
2304 {
2305 p++;
2306 }
2307 if (p[1] != ':')
2308 {
2309 break;
2310 }
2311
2312 sublist = NULL;
2313 look_ahead_type = NULL;
2314 length = 0;
2315
2316 new_fnlist = (struct next_fnfieldlist *)
2317 xmalloc (sizeof (struct next_fnfieldlist));
2318 make_cleanup (xfree, new_fnlist);
2319 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2320
2321 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2322 {
2323 /* This is a completely wierd case. In order to stuff in the
2324 names that might contain colons (the usual name delimiter),
2325 Mike Tiemann defined a different name format which is
2326 signalled if the identifier is "op$". In that case, the
2327 format is "op$::XXXX." where XXXX is the name. This is
2328 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2329 /* This lets the user type "break operator+".
2330 We could just put in "+" as the name, but that wouldn't
2331 work for "*". */
2332 static char opname[32] = "op$";
2333 char *o = opname + 3;
2334
2335 /* Skip past '::'. */
2336 *pp = p + 2;
2337
2338 STABS_CONTINUE (pp, objfile);
2339 p = *pp;
2340 while (*p != '.')
2341 {
2342 *o++ = *p++;
2343 }
2344 main_fn_name = savestring (opname, o - opname);
2345 /* Skip past '.' */
2346 *pp = p + 1;
2347 }
2348 else
2349 {
2350 main_fn_name = savestring (*pp, p - *pp);
2351 /* Skip past '::'. */
2352 *pp = p + 2;
2353 }
2354 new_fnlist->fn_fieldlist.name = main_fn_name;
2355
2356 do
2357 {
2358 new_sublist =
2359 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2360 make_cleanup (xfree, new_sublist);
2361 memset (new_sublist, 0, sizeof (struct next_fnfield));
2362
2363 /* Check for and handle cretinous dbx symbol name continuation! */
2364 if (look_ahead_type == NULL)
2365 {
2366 /* Normal case. */
2367 STABS_CONTINUE (pp, objfile);
2368
2369 new_sublist->fn_field.type = read_type (pp, objfile);
2370 if (**pp != ':')
2371 {
2372 /* Invalid symtab info for member function. */
2373 return 0;
2374 }
2375 }
2376 else
2377 {
2378 /* g++ version 1 kludge */
2379 new_sublist->fn_field.type = look_ahead_type;
2380 look_ahead_type = NULL;
2381 }
2382
2383 (*pp)++;
2384 p = *pp;
2385 while (*p != ';')
2386 {
2387 p++;
2388 }
2389
2390 /* If this is just a stub, then we don't have the real name here. */
2391
2392 if (TYPE_STUB (new_sublist->fn_field.type))
2393 {
2394 if (!TYPE_DOMAIN_TYPE (new_sublist->fn_field.type))
2395 TYPE_DOMAIN_TYPE (new_sublist->fn_field.type) = type;
2396 new_sublist->fn_field.is_stub = 1;
2397 }
2398 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2399 *pp = p + 1;
2400
2401 /* Set this member function's visibility fields. */
2402 switch (*(*pp)++)
2403 {
2404 case VISIBILITY_PRIVATE:
2405 new_sublist->fn_field.is_private = 1;
2406 break;
2407 case VISIBILITY_PROTECTED:
2408 new_sublist->fn_field.is_protected = 1;
2409 break;
2410 }
2411
2412 STABS_CONTINUE (pp, objfile);
2413 switch (**pp)
2414 {
2415 case 'A': /* Normal functions. */
2416 new_sublist->fn_field.is_const = 0;
2417 new_sublist->fn_field.is_volatile = 0;
2418 (*pp)++;
2419 break;
2420 case 'B': /* `const' member functions. */
2421 new_sublist->fn_field.is_const = 1;
2422 new_sublist->fn_field.is_volatile = 0;
2423 (*pp)++;
2424 break;
2425 case 'C': /* `volatile' member function. */
2426 new_sublist->fn_field.is_const = 0;
2427 new_sublist->fn_field.is_volatile = 1;
2428 (*pp)++;
2429 break;
2430 case 'D': /* `const volatile' member function. */
2431 new_sublist->fn_field.is_const = 1;
2432 new_sublist->fn_field.is_volatile = 1;
2433 (*pp)++;
2434 break;
2435 case '*': /* File compiled with g++ version 1 --
2436 no info. */
2437 case '?':
2438 case '.':
2439 break;
2440 default:
2441 complaint (&symfile_complaints,
2442 _("const/volatile indicator missing, got '%c'"),
2443 **pp);
2444 break;
2445 }
2446
2447 switch (*(*pp)++)
2448 {
2449 case '*':
2450 {
2451 int nbits;
2452 /* virtual member function, followed by index.
2453 The sign bit is set to distinguish pointers-to-methods
2454 from virtual function indicies. Since the array is
2455 in words, the quantity must be shifted left by 1
2456 on 16 bit machine, and by 2 on 32 bit machine, forcing
2457 the sign bit out, and usable as a valid index into
2458 the array. Remove the sign bit here. */
2459 new_sublist->fn_field.voffset =
2460 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2461 if (nbits != 0)
2462 return 0;
2463
2464 STABS_CONTINUE (pp, objfile);
2465 if (**pp == ';' || **pp == '\0')
2466 {
2467 /* Must be g++ version 1. */
2468 new_sublist->fn_field.fcontext = 0;
2469 }
2470 else
2471 {
2472 /* Figure out from whence this virtual function came.
2473 It may belong to virtual function table of
2474 one of its baseclasses. */
2475 look_ahead_type = read_type (pp, objfile);
2476 if (**pp == ':')
2477 {
2478 /* g++ version 1 overloaded methods. */
2479 }
2480 else
2481 {
2482 new_sublist->fn_field.fcontext = look_ahead_type;
2483 if (**pp != ';')
2484 {
2485 return 0;
2486 }
2487 else
2488 {
2489 ++*pp;
2490 }
2491 look_ahead_type = NULL;
2492 }
2493 }
2494 break;
2495 }
2496 case '?':
2497 /* static member function. */
2498 {
2499 int slen = strlen (main_fn_name);
2500
2501 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2502
2503 /* For static member functions, we can't tell if they
2504 are stubbed, as they are put out as functions, and not as
2505 methods.
2506 GCC v2 emits the fully mangled name if
2507 dbxout.c:flag_minimal_debug is not set, so we have to
2508 detect a fully mangled physname here and set is_stub
2509 accordingly. Fully mangled physnames in v2 start with
2510 the member function name, followed by two underscores.
2511 GCC v3 currently always emits stubbed member functions,
2512 but with fully mangled physnames, which start with _Z. */
2513 if (!(strncmp (new_sublist->fn_field.physname,
2514 main_fn_name, slen) == 0
2515 && new_sublist->fn_field.physname[slen] == '_'
2516 && new_sublist->fn_field.physname[slen + 1] == '_'))
2517 {
2518 new_sublist->fn_field.is_stub = 1;
2519 }
2520 break;
2521 }
2522
2523 default:
2524 /* error */
2525 complaint (&symfile_complaints,
2526 _("member function type missing, got '%c'"),
2527 (*pp)[-1]);
2528 /* Fall through into normal member function. */
2529
2530 case '.':
2531 /* normal member function. */
2532 new_sublist->fn_field.voffset = 0;
2533 new_sublist->fn_field.fcontext = 0;
2534 break;
2535 }
2536
2537 new_sublist->next = sublist;
2538 sublist = new_sublist;
2539 length++;
2540 STABS_CONTINUE (pp, objfile);
2541 }
2542 while (**pp != ';' && **pp != '\0');
2543
2544 (*pp)++;
2545 STABS_CONTINUE (pp, objfile);
2546
2547 /* Skip GCC 3.X member functions which are duplicates of the callable
2548 constructor/destructor. */
2549 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2550 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2551 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2552 {
2553 xfree (main_fn_name);
2554 }
2555 else
2556 {
2557 int has_stub = 0;
2558 int has_destructor = 0, has_other = 0;
2559 int is_v3 = 0;
2560 struct next_fnfield *tmp_sublist;
2561
2562 /* Various versions of GCC emit various mostly-useless
2563 strings in the name field for special member functions.
2564
2565 For stub methods, we need to defer correcting the name
2566 until we are ready to unstub the method, because the current
2567 name string is used by gdb_mangle_name. The only stub methods
2568 of concern here are GNU v2 operators; other methods have their
2569 names correct (see caveat below).
2570
2571 For non-stub methods, in GNU v3, we have a complete physname.
2572 Therefore we can safely correct the name now. This primarily
2573 affects constructors and destructors, whose name will be
2574 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2575 operators will also have incorrect names; for instance,
2576 "operator int" will be named "operator i" (i.e. the type is
2577 mangled).
2578
2579 For non-stub methods in GNU v2, we have no easy way to
2580 know if we have a complete physname or not. For most
2581 methods the result depends on the platform (if CPLUS_MARKER
2582 can be `$' or `.', it will use minimal debug information, or
2583 otherwise the full physname will be included).
2584
2585 Rather than dealing with this, we take a different approach.
2586 For v3 mangled names, we can use the full physname; for v2,
2587 we use cplus_demangle_opname (which is actually v2 specific),
2588 because the only interesting names are all operators - once again
2589 barring the caveat below. Skip this process if any method in the
2590 group is a stub, to prevent our fouling up the workings of
2591 gdb_mangle_name.
2592
2593 The caveat: GCC 2.95.x (and earlier?) put constructors and
2594 destructors in the same method group. We need to split this
2595 into two groups, because they should have different names.
2596 So for each method group we check whether it contains both
2597 routines whose physname appears to be a destructor (the physnames
2598 for and destructors are always provided, due to quirks in v2
2599 mangling) and routines whose physname does not appear to be a
2600 destructor. If so then we break up the list into two halves.
2601 Even if the constructors and destructors aren't in the same group
2602 the destructor will still lack the leading tilde, so that also
2603 needs to be fixed.
2604
2605 So, to summarize what we expect and handle here:
2606
2607 Given Given Real Real Action
2608 method name physname physname method name
2609
2610 __opi [none] __opi__3Foo operator int opname
2611 [now or later]
2612 Foo _._3Foo _._3Foo ~Foo separate and
2613 rename
2614 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2615 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2616 */
2617
2618 tmp_sublist = sublist;
2619 while (tmp_sublist != NULL)
2620 {
2621 if (tmp_sublist->fn_field.is_stub)
2622 has_stub = 1;
2623 if (tmp_sublist->fn_field.physname[0] == '_'
2624 && tmp_sublist->fn_field.physname[1] == 'Z')
2625 is_v3 = 1;
2626
2627 if (is_destructor_name (tmp_sublist->fn_field.physname))
2628 has_destructor++;
2629 else
2630 has_other++;
2631
2632 tmp_sublist = tmp_sublist->next;
2633 }
2634
2635 if (has_destructor && has_other)
2636 {
2637 struct next_fnfieldlist *destr_fnlist;
2638 struct next_fnfield *last_sublist;
2639
2640 /* Create a new fn_fieldlist for the destructors. */
2641
2642 destr_fnlist = (struct next_fnfieldlist *)
2643 xmalloc (sizeof (struct next_fnfieldlist));
2644 make_cleanup (xfree, destr_fnlist);
2645 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2646 destr_fnlist->fn_fieldlist.name
2647 = obconcat (&objfile->objfile_obstack, "~",
2648 new_fnlist->fn_fieldlist.name, (char *) NULL);
2649
2650 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2651 obstack_alloc (&objfile->objfile_obstack,
2652 sizeof (struct fn_field) * has_destructor);
2653 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2654 sizeof (struct fn_field) * has_destructor);
2655 tmp_sublist = sublist;
2656 last_sublist = NULL;
2657 i = 0;
2658 while (tmp_sublist != NULL)
2659 {
2660 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2661 {
2662 tmp_sublist = tmp_sublist->next;
2663 continue;
2664 }
2665
2666 destr_fnlist->fn_fieldlist.fn_fields[i++]
2667 = tmp_sublist->fn_field;
2668 if (last_sublist)
2669 last_sublist->next = tmp_sublist->next;
2670 else
2671 sublist = tmp_sublist->next;
2672 last_sublist = tmp_sublist;
2673 tmp_sublist = tmp_sublist->next;
2674 }
2675
2676 destr_fnlist->fn_fieldlist.length = has_destructor;
2677 destr_fnlist->next = fip->fnlist;
2678 fip->fnlist = destr_fnlist;
2679 nfn_fields++;
2680 length -= has_destructor;
2681 }
2682 else if (is_v3)
2683 {
2684 /* v3 mangling prevents the use of abbreviated physnames,
2685 so we can do this here. There are stubbed methods in v3
2686 only:
2687 - in -gstabs instead of -gstabs+
2688 - or for static methods, which are output as a function type
2689 instead of a method type. */
2690
2691 update_method_name_from_physname (&new_fnlist->fn_fieldlist.name,
2692 sublist->fn_field.physname);
2693 }
2694 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2695 {
2696 new_fnlist->fn_fieldlist.name =
2697 concat ("~", main_fn_name, (char *)NULL);
2698 xfree (main_fn_name);
2699 }
2700 else if (!has_stub)
2701 {
2702 char dem_opname[256];
2703 int ret;
2704
2705 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2706 dem_opname, DMGL_ANSI);
2707 if (!ret)
2708 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2709 dem_opname, 0);
2710 if (ret)
2711 new_fnlist->fn_fieldlist.name
2712 = obsavestring (dem_opname, strlen (dem_opname),
2713 &objfile->objfile_obstack);
2714 }
2715
2716 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2717 obstack_alloc (&objfile->objfile_obstack,
2718 sizeof (struct fn_field) * length);
2719 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2720 sizeof (struct fn_field) * length);
2721 for (i = length; (i--, sublist); sublist = sublist->next)
2722 {
2723 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2724 }
2725
2726 new_fnlist->fn_fieldlist.length = length;
2727 new_fnlist->next = fip->fnlist;
2728 fip->fnlist = new_fnlist;
2729 nfn_fields++;
2730 }
2731 }
2732
2733 if (nfn_fields)
2734 {
2735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2736 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2737 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2738 memset (TYPE_FN_FIELDLISTS (type), 0,
2739 sizeof (struct fn_fieldlist) * nfn_fields);
2740 TYPE_NFN_FIELDS (type) = nfn_fields;
2741 }
2742
2743 return 1;
2744 }
2745
2746 /* Special GNU C++ name.
2747
2748 Returns 1 for success, 0 for failure. "failure" means that we can't
2749 keep parsing and it's time for error_type(). */
2750
2751 static int
2752 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2753 struct objfile *objfile)
2754 {
2755 char *p;
2756 char *name;
2757 char cpp_abbrev;
2758 struct type *context;
2759
2760 p = *pp;
2761 if (*++p == 'v')
2762 {
2763 name = NULL;
2764 cpp_abbrev = *++p;
2765
2766 *pp = p + 1;
2767
2768 /* At this point, *pp points to something like "22:23=*22...",
2769 where the type number before the ':' is the "context" and
2770 everything after is a regular type definition. Lookup the
2771 type, find it's name, and construct the field name. */
2772
2773 context = read_type (pp, objfile);
2774
2775 switch (cpp_abbrev)
2776 {
2777 case 'f': /* $vf -- a virtual function table pointer */
2778 name = type_name_no_tag (context);
2779 if (name == NULL)
2780 {
2781 name = "";
2782 }
2783 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2784 vptr_name, name, (char *) NULL);
2785 break;
2786
2787 case 'b': /* $vb -- a virtual bsomethingorother */
2788 name = type_name_no_tag (context);
2789 if (name == NULL)
2790 {
2791 complaint (&symfile_complaints,
2792 _("C++ abbreviated type name "
2793 "unknown at symtab pos %d"),
2794 symnum);
2795 name = "FOO";
2796 }
2797 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2798 name, (char *) NULL);
2799 break;
2800
2801 default:
2802 invalid_cpp_abbrev_complaint (*pp);
2803 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2804 "INVALID_CPLUSPLUS_ABBREV",
2805 (char *) NULL);
2806 break;
2807 }
2808
2809 /* At this point, *pp points to the ':'. Skip it and read the
2810 field type. */
2811
2812 p = ++(*pp);
2813 if (p[-1] != ':')
2814 {
2815 invalid_cpp_abbrev_complaint (*pp);
2816 return 0;
2817 }
2818 fip->list->field.type = read_type (pp, objfile);
2819 if (**pp == ',')
2820 (*pp)++; /* Skip the comma. */
2821 else
2822 return 0;
2823
2824 {
2825 int nbits;
2826
2827 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ';', &nbits,
2828 0);
2829 if (nbits != 0)
2830 return 0;
2831 }
2832 /* This field is unpacked. */
2833 FIELD_BITSIZE (fip->list->field) = 0;
2834 fip->list->visibility = VISIBILITY_PRIVATE;
2835 }
2836 else
2837 {
2838 invalid_cpp_abbrev_complaint (*pp);
2839 /* We have no idea what syntax an unrecognized abbrev would have, so
2840 better return 0. If we returned 1, we would need to at least advance
2841 *pp to avoid an infinite loop. */
2842 return 0;
2843 }
2844 return 1;
2845 }
2846
2847 static void
2848 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2849 struct type *type, struct objfile *objfile)
2850 {
2851 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2852
2853 fip->list->field.name =
2854 obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
2855 *pp = p + 1;
2856
2857 /* This means we have a visibility for a field coming. */
2858 if (**pp == '/')
2859 {
2860 (*pp)++;
2861 fip->list->visibility = *(*pp)++;
2862 }
2863 else
2864 {
2865 /* normal dbx-style format, no explicit visibility */
2866 fip->list->visibility = VISIBILITY_PUBLIC;
2867 }
2868
2869 fip->list->field.type = read_type (pp, objfile);
2870 if (**pp == ':')
2871 {
2872 p = ++(*pp);
2873 #if 0
2874 /* Possible future hook for nested types. */
2875 if (**pp == '!')
2876 {
2877 fip->list->field.bitpos = (long) -2; /* nested type */
2878 p = ++(*pp);
2879 }
2880 else
2881 ...;
2882 #endif
2883 while (*p != ';')
2884 {
2885 p++;
2886 }
2887 /* Static class member. */
2888 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2889 *pp = p + 1;
2890 return;
2891 }
2892 else if (**pp != ',')
2893 {
2894 /* Bad structure-type format. */
2895 stabs_general_complaint ("bad structure-type format");
2896 return;
2897 }
2898
2899 (*pp)++; /* Skip the comma. */
2900
2901 {
2902 int nbits;
2903
2904 FIELD_BITPOS (fip->list->field) = read_huge_number (pp, ',', &nbits, 0);
2905 if (nbits != 0)
2906 {
2907 stabs_general_complaint ("bad structure-type format");
2908 return;
2909 }
2910 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2911 if (nbits != 0)
2912 {
2913 stabs_general_complaint ("bad structure-type format");
2914 return;
2915 }
2916 }
2917
2918 if (FIELD_BITPOS (fip->list->field) == 0
2919 && FIELD_BITSIZE (fip->list->field) == 0)
2920 {
2921 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2922 it is a field which has been optimized out. The correct stab for
2923 this case is to use VISIBILITY_IGNORE, but that is a recent
2924 invention. (2) It is a 0-size array. For example
2925 union { int num; char str[0]; } foo. Printing _("<no value>" for
2926 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2927 will continue to work, and a 0-size array as a whole doesn't
2928 have any contents to print.
2929
2930 I suspect this probably could also happen with gcc -gstabs (not
2931 -gstabs+) for static fields, and perhaps other C++ extensions.
2932 Hopefully few people use -gstabs with gdb, since it is intended
2933 for dbx compatibility. */
2934
2935 /* Ignore this field. */
2936 fip->list->visibility = VISIBILITY_IGNORE;
2937 }
2938 else
2939 {
2940 /* Detect an unpacked field and mark it as such.
2941 dbx gives a bit size for all fields.
2942 Note that forward refs cannot be packed,
2943 and treat enums as if they had the width of ints. */
2944
2945 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2946
2947 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2948 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2949 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2950 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2951 {
2952 FIELD_BITSIZE (fip->list->field) = 0;
2953 }
2954 if ((FIELD_BITSIZE (fip->list->field)
2955 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2956 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2957 && FIELD_BITSIZE (fip->list->field)
2958 == gdbarch_int_bit (gdbarch))
2959 )
2960 &&
2961 FIELD_BITPOS (fip->list->field) % 8 == 0)
2962 {
2963 FIELD_BITSIZE (fip->list->field) = 0;
2964 }
2965 }
2966 }
2967
2968
2969 /* Read struct or class data fields. They have the form:
2970
2971 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2972
2973 At the end, we see a semicolon instead of a field.
2974
2975 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2976 a static field.
2977
2978 The optional VISIBILITY is one of:
2979
2980 '/0' (VISIBILITY_PRIVATE)
2981 '/1' (VISIBILITY_PROTECTED)
2982 '/2' (VISIBILITY_PUBLIC)
2983 '/9' (VISIBILITY_IGNORE)
2984
2985 or nothing, for C style fields with public visibility.
2986
2987 Returns 1 for success, 0 for failure. */
2988
2989 static int
2990 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2991 struct objfile *objfile)
2992 {
2993 char *p;
2994 struct nextfield *new;
2995
2996 /* We better set p right now, in case there are no fields at all... */
2997
2998 p = *pp;
2999
3000 /* Read each data member type until we find the terminating ';' at the end of
3001 the data member list, or break for some other reason such as finding the
3002 start of the member function list. */
3003 /* Stab string for structure/union does not end with two ';' in
3004 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3005
3006 while (**pp != ';' && **pp != '\0')
3007 {
3008 STABS_CONTINUE (pp, objfile);
3009 /* Get space to record the next field's data. */
3010 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3011 make_cleanup (xfree, new);
3012 memset (new, 0, sizeof (struct nextfield));
3013 new->next = fip->list;
3014 fip->list = new;
3015
3016 /* Get the field name. */
3017 p = *pp;
3018
3019 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3020 unless the CPLUS_MARKER is followed by an underscore, in
3021 which case it is just the name of an anonymous type, which we
3022 should handle like any other type name. */
3023
3024 if (is_cplus_marker (p[0]) && p[1] != '_')
3025 {
3026 if (!read_cpp_abbrev (fip, pp, type, objfile))
3027 return 0;
3028 continue;
3029 }
3030
3031 /* Look for the ':' that separates the field name from the field
3032 values. Data members are delimited by a single ':', while member
3033 functions are delimited by a pair of ':'s. When we hit the member
3034 functions (if any), terminate scan loop and return. */
3035
3036 while (*p != ':' && *p != '\0')
3037 {
3038 p++;
3039 }
3040 if (*p == '\0')
3041 return 0;
3042
3043 /* Check to see if we have hit the member functions yet. */
3044 if (p[1] == ':')
3045 {
3046 break;
3047 }
3048 read_one_struct_field (fip, pp, p, type, objfile);
3049 }
3050 if (p[0] == ':' && p[1] == ':')
3051 {
3052 /* (the deleted) chill the list of fields: the last entry (at
3053 the head) is a partially constructed entry which we now
3054 scrub. */
3055 fip->list = fip->list->next;
3056 }
3057 return 1;
3058 }
3059 /* *INDENT-OFF* */
3060 /* The stabs for C++ derived classes contain baseclass information which
3061 is marked by a '!' character after the total size. This function is
3062 called when we encounter the baseclass marker, and slurps up all the
3063 baseclass information.
3064
3065 Immediately following the '!' marker is the number of base classes that
3066 the class is derived from, followed by information for each base class.
3067 For each base class, there are two visibility specifiers, a bit offset
3068 to the base class information within the derived class, a reference to
3069 the type for the base class, and a terminating semicolon.
3070
3071 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3072 ^^ ^ ^ ^ ^ ^ ^
3073 Baseclass information marker __________________|| | | | | | |
3074 Number of baseclasses __________________________| | | | | | |
3075 Visibility specifiers (2) ________________________| | | | | |
3076 Offset in bits from start of class _________________| | | | |
3077 Type number for base class ___________________________| | | |
3078 Visibility specifiers (2) _______________________________| | |
3079 Offset in bits from start of class ________________________| |
3080 Type number of base class ____________________________________|
3081
3082 Return 1 for success, 0 for (error-type-inducing) failure. */
3083 /* *INDENT-ON* */
3084
3085
3086
3087 static int
3088 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3089 struct objfile *objfile)
3090 {
3091 int i;
3092 struct nextfield *new;
3093
3094 if (**pp != '!')
3095 {
3096 return 1;
3097 }
3098 else
3099 {
3100 /* Skip the '!' baseclass information marker. */
3101 (*pp)++;
3102 }
3103
3104 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3105 {
3106 int nbits;
3107
3108 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3109 if (nbits != 0)
3110 return 0;
3111 }
3112
3113 #if 0
3114 /* Some stupid compilers have trouble with the following, so break
3115 it up into simpler expressions. */
3116 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3117 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3118 #else
3119 {
3120 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3121 char *pointer;
3122
3123 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3125 }
3126 #endif /* 0 */
3127
3128 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3129
3130 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3131 {
3132 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3133 make_cleanup (xfree, new);
3134 memset (new, 0, sizeof (struct nextfield));
3135 new->next = fip->list;
3136 fip->list = new;
3137 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3138 field! */
3139
3140 STABS_CONTINUE (pp, objfile);
3141 switch (**pp)
3142 {
3143 case '0':
3144 /* Nothing to do. */
3145 break;
3146 case '1':
3147 SET_TYPE_FIELD_VIRTUAL (type, i);
3148 break;
3149 default:
3150 /* Unknown character. Complain and treat it as non-virtual. */
3151 {
3152 complaint (&symfile_complaints,
3153 _("Unknown virtual character `%c' for baseclass"),
3154 **pp);
3155 }
3156 }
3157 ++(*pp);
3158
3159 new->visibility = *(*pp)++;
3160 switch (new->visibility)
3161 {
3162 case VISIBILITY_PRIVATE:
3163 case VISIBILITY_PROTECTED:
3164 case VISIBILITY_PUBLIC:
3165 break;
3166 default:
3167 /* Bad visibility format. Complain and treat it as
3168 public. */
3169 {
3170 complaint (&symfile_complaints,
3171 _("Unknown visibility `%c' for baseclass"),
3172 new->visibility);
3173 new->visibility = VISIBILITY_PUBLIC;
3174 }
3175 }
3176
3177 {
3178 int nbits;
3179
3180 /* The remaining value is the bit offset of the portion of the object
3181 corresponding to this baseclass. Always zero in the absence of
3182 multiple inheritance. */
3183
3184 FIELD_BITPOS (new->field) = read_huge_number (pp, ',', &nbits, 0);
3185 if (nbits != 0)
3186 return 0;
3187 }
3188
3189 /* The last piece of baseclass information is the type of the
3190 base class. Read it, and remember it's type name as this
3191 field's name. */
3192
3193 new->field.type = read_type (pp, objfile);
3194 new->field.name = type_name_no_tag (new->field.type);
3195
3196 /* Skip trailing ';' and bump count of number of fields seen. */
3197 if (**pp == ';')
3198 (*pp)++;
3199 else
3200 return 0;
3201 }
3202 return 1;
3203 }
3204
3205 /* The tail end of stabs for C++ classes that contain a virtual function
3206 pointer contains a tilde, a %, and a type number.
3207 The type number refers to the base class (possibly this class itself) which
3208 contains the vtable pointer for the current class.
3209
3210 This function is called when we have parsed all the method declarations,
3211 so we can look for the vptr base class info. */
3212
3213 static int
3214 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3215 struct objfile *objfile)
3216 {
3217 char *p;
3218
3219 STABS_CONTINUE (pp, objfile);
3220
3221 /* If we are positioned at a ';', then skip it. */
3222 if (**pp == ';')
3223 {
3224 (*pp)++;
3225 }
3226
3227 if (**pp == '~')
3228 {
3229 (*pp)++;
3230
3231 if (**pp == '=' || **pp == '+' || **pp == '-')
3232 {
3233 /* Obsolete flags that used to indicate the presence
3234 of constructors and/or destructors. */
3235 (*pp)++;
3236 }
3237
3238 /* Read either a '%' or the final ';'. */
3239 if (*(*pp)++ == '%')
3240 {
3241 /* The next number is the type number of the base class
3242 (possibly our own class) which supplies the vtable for
3243 this class. Parse it out, and search that class to find
3244 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3245 and TYPE_VPTR_FIELDNO. */
3246
3247 struct type *t;
3248 int i;
3249
3250 t = read_type (pp, objfile);
3251 p = (*pp)++;
3252 while (*p != '\0' && *p != ';')
3253 {
3254 p++;
3255 }
3256 if (*p == '\0')
3257 {
3258 /* Premature end of symbol. */
3259 return 0;
3260 }
3261
3262 TYPE_VPTR_BASETYPE (type) = t;
3263 if (type == t) /* Our own class provides vtbl ptr. */
3264 {
3265 for (i = TYPE_NFIELDS (t) - 1;
3266 i >= TYPE_N_BASECLASSES (t);
3267 --i)
3268 {
3269 char *name = TYPE_FIELD_NAME (t, i);
3270
3271 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3272 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3273 {
3274 TYPE_VPTR_FIELDNO (type) = i;
3275 goto gotit;
3276 }
3277 }
3278 /* Virtual function table field not found. */
3279 complaint (&symfile_complaints,
3280 _("virtual function table pointer "
3281 "not found when defining class `%s'"),
3282 TYPE_NAME (type));
3283 return 0;
3284 }
3285 else
3286 {
3287 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
3288 }
3289
3290 gotit:
3291 *pp = p + 1;
3292 }
3293 }
3294 return 1;
3295 }
3296
3297 static int
3298 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3299 {
3300 int n;
3301
3302 for (n = TYPE_NFN_FIELDS (type);
3303 fip->fnlist != NULL;
3304 fip->fnlist = fip->fnlist->next)
3305 {
3306 --n; /* Circumvent Sun3 compiler bug. */
3307 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3308 }
3309 return 1;
3310 }
3311
3312 /* Create the vector of fields, and record how big it is.
3313 We need this info to record proper virtual function table information
3314 for this class's virtual functions. */
3315
3316 static int
3317 attach_fields_to_type (struct field_info *fip, struct type *type,
3318 struct objfile *objfile)
3319 {
3320 int nfields = 0;
3321 int non_public_fields = 0;
3322 struct nextfield *scan;
3323
3324 /* Count up the number of fields that we have, as well as taking note of
3325 whether or not there are any non-public fields, which requires us to
3326 allocate and build the private_field_bits and protected_field_bits
3327 bitfields. */
3328
3329 for (scan = fip->list; scan != NULL; scan = scan->next)
3330 {
3331 nfields++;
3332 if (scan->visibility != VISIBILITY_PUBLIC)
3333 {
3334 non_public_fields++;
3335 }
3336 }
3337
3338 /* Now we know how many fields there are, and whether or not there are any
3339 non-public fields. Record the field count, allocate space for the
3340 array of fields, and create blank visibility bitfields if necessary. */
3341
3342 TYPE_NFIELDS (type) = nfields;
3343 TYPE_FIELDS (type) = (struct field *)
3344 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3345 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3346
3347 if (non_public_fields)
3348 {
3349 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3350
3351 TYPE_FIELD_PRIVATE_BITS (type) =
3352 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3353 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3354
3355 TYPE_FIELD_PROTECTED_BITS (type) =
3356 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3357 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3358
3359 TYPE_FIELD_IGNORE_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3362 }
3363
3364 /* Copy the saved-up fields into the field vector. Start from the
3365 head of the list, adding to the tail of the field array, so that
3366 they end up in the same order in the array in which they were
3367 added to the list. */
3368
3369 while (nfields-- > 0)
3370 {
3371 TYPE_FIELD (type, nfields) = fip->list->field;
3372 switch (fip->list->visibility)
3373 {
3374 case VISIBILITY_PRIVATE:
3375 SET_TYPE_FIELD_PRIVATE (type, nfields);
3376 break;
3377
3378 case VISIBILITY_PROTECTED:
3379 SET_TYPE_FIELD_PROTECTED (type, nfields);
3380 break;
3381
3382 case VISIBILITY_IGNORE:
3383 SET_TYPE_FIELD_IGNORE (type, nfields);
3384 break;
3385
3386 case VISIBILITY_PUBLIC:
3387 break;
3388
3389 default:
3390 /* Unknown visibility. Complain and treat it as public. */
3391 {
3392 complaint (&symfile_complaints,
3393 _("Unknown visibility `%c' for field"),
3394 fip->list->visibility);
3395 }
3396 break;
3397 }
3398 fip->list = fip->list->next;
3399 }
3400 return 1;
3401 }
3402
3403
3404 /* Complain that the compiler has emitted more than one definition for the
3405 structure type TYPE. */
3406 static void
3407 complain_about_struct_wipeout (struct type *type)
3408 {
3409 char *name = "";
3410 char *kind = "";
3411
3412 if (TYPE_TAG_NAME (type))
3413 {
3414 name = TYPE_TAG_NAME (type);
3415 switch (TYPE_CODE (type))
3416 {
3417 case TYPE_CODE_STRUCT: kind = "struct "; break;
3418 case TYPE_CODE_UNION: kind = "union "; break;
3419 case TYPE_CODE_ENUM: kind = "enum "; break;
3420 default: kind = "";
3421 }
3422 }
3423 else if (TYPE_NAME (type))
3424 {
3425 name = TYPE_NAME (type);
3426 kind = "";
3427 }
3428 else
3429 {
3430 name = "<unknown>";
3431 kind = "";
3432 }
3433
3434 complaint (&symfile_complaints,
3435 _("struct/union type gets multiply defined: %s%s"), kind, name);
3436 }
3437
3438 /* Set the length for all variants of a same main_type, which are
3439 connected in the closed chain.
3440
3441 This is something that needs to be done when a type is defined *after*
3442 some cross references to this type have already been read. Consider
3443 for instance the following scenario where we have the following two
3444 stabs entries:
3445
3446 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3447 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3448
3449 A stubbed version of type dummy is created while processing the first
3450 stabs entry. The length of that type is initially set to zero, since
3451 it is unknown at this point. Also, a "constant" variation of type
3452 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3453 the stabs line).
3454
3455 The second stabs entry allows us to replace the stubbed definition
3456 with the real definition. However, we still need to adjust the length
3457 of the "constant" variation of that type, as its length was left
3458 untouched during the main type replacement... */
3459
3460 static void
3461 set_length_in_type_chain (struct type *type)
3462 {
3463 struct type *ntype = TYPE_CHAIN (type);
3464
3465 while (ntype != type)
3466 {
3467 if (TYPE_LENGTH(ntype) == 0)
3468 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3469 else
3470 complain_about_struct_wipeout (ntype);
3471 ntype = TYPE_CHAIN (ntype);
3472 }
3473 }
3474
3475 /* Read the description of a structure (or union type) and return an object
3476 describing the type.
3477
3478 PP points to a character pointer that points to the next unconsumed token
3479 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3480 *PP will point to "4a:1,0,32;;".
3481
3482 TYPE points to an incomplete type that needs to be filled in.
3483
3484 OBJFILE points to the current objfile from which the stabs information is
3485 being read. (Note that it is redundant in that TYPE also contains a pointer
3486 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3487 */
3488
3489 static struct type *
3490 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3491 struct objfile *objfile)
3492 {
3493 struct cleanup *back_to;
3494 struct field_info fi;
3495
3496 fi.list = NULL;
3497 fi.fnlist = NULL;
3498
3499 /* When describing struct/union/class types in stabs, G++ always drops
3500 all qualifications from the name. So if you've got:
3501 struct A { ... struct B { ... }; ... };
3502 then G++ will emit stabs for `struct A::B' that call it simply
3503 `struct B'. Obviously, if you've got a real top-level definition for
3504 `struct B', or other nested definitions, this is going to cause
3505 problems.
3506
3507 Obviously, GDB can't fix this by itself, but it can at least avoid
3508 scribbling on existing structure type objects when new definitions
3509 appear. */
3510 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3511 || TYPE_STUB (type)))
3512 {
3513 complain_about_struct_wipeout (type);
3514
3515 /* It's probably best to return the type unchanged. */
3516 return type;
3517 }
3518
3519 back_to = make_cleanup (null_cleanup, 0);
3520
3521 INIT_CPLUS_SPECIFIC (type);
3522 TYPE_CODE (type) = type_code;
3523 TYPE_STUB (type) = 0;
3524
3525 /* First comes the total size in bytes. */
3526
3527 {
3528 int nbits;
3529
3530 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3531 if (nbits != 0)
3532 return error_type (pp, objfile);
3533 set_length_in_type_chain (type);
3534 }
3535
3536 /* Now read the baseclasses, if any, read the regular C struct or C++
3537 class member fields, attach the fields to the type, read the C++
3538 member functions, attach them to the type, and then read any tilde
3539 field (baseclass specifier for the class holding the main vtable). */
3540
3541 if (!read_baseclasses (&fi, pp, type, objfile)
3542 || !read_struct_fields (&fi, pp, type, objfile)
3543 || !attach_fields_to_type (&fi, type, objfile)
3544 || !read_member_functions (&fi, pp, type, objfile)
3545 || !attach_fn_fields_to_type (&fi, type)
3546 || !read_tilde_fields (&fi, pp, type, objfile))
3547 {
3548 type = error_type (pp, objfile);
3549 }
3550
3551 do_cleanups (back_to);
3552 return (type);
3553 }
3554
3555 /* Read a definition of an array type,
3556 and create and return a suitable type object.
3557 Also creates a range type which represents the bounds of that
3558 array. */
3559
3560 static struct type *
3561 read_array_type (char **pp, struct type *type,
3562 struct objfile *objfile)
3563 {
3564 struct type *index_type, *element_type, *range_type;
3565 int lower, upper;
3566 int adjustable = 0;
3567 int nbits;
3568
3569 /* Format of an array type:
3570 "ar<index type>;lower;upper;<array_contents_type>".
3571 OS9000: "arlower,upper;<array_contents_type>".
3572
3573 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3574 for these, produce a type like float[][]. */
3575
3576 {
3577 index_type = read_type (pp, objfile);
3578 if (**pp != ';')
3579 /* Improper format of array type decl. */
3580 return error_type (pp, objfile);
3581 ++*pp;
3582 }
3583
3584 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3585 {
3586 (*pp)++;
3587 adjustable = 1;
3588 }
3589 lower = read_huge_number (pp, ';', &nbits, 0);
3590
3591 if (nbits != 0)
3592 return error_type (pp, objfile);
3593
3594 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3595 {
3596 (*pp)++;
3597 adjustable = 1;
3598 }
3599 upper = read_huge_number (pp, ';', &nbits, 0);
3600 if (nbits != 0)
3601 return error_type (pp, objfile);
3602
3603 element_type = read_type (pp, objfile);
3604
3605 if (adjustable)
3606 {
3607 lower = 0;
3608 upper = -1;
3609 }
3610
3611 range_type =
3612 create_range_type ((struct type *) NULL, index_type, lower, upper);
3613 type = create_array_type (type, element_type, range_type);
3614
3615 return type;
3616 }
3617
3618
3619 /* Read a definition of an enumeration type,
3620 and create and return a suitable type object.
3621 Also defines the symbols that represent the values of the type. */
3622
3623 static struct type *
3624 read_enum_type (char **pp, struct type *type,
3625 struct objfile *objfile)
3626 {
3627 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3628 char *p;
3629 char *name;
3630 long n;
3631 struct symbol *sym;
3632 int nsyms = 0;
3633 struct pending **symlist;
3634 struct pending *osyms, *syms;
3635 int o_nsyms;
3636 int nbits;
3637 int unsigned_enum = 1;
3638
3639 #if 0
3640 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3641 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3642 to do? For now, force all enum values to file scope. */
3643 if (within_function)
3644 symlist = &local_symbols;
3645 else
3646 #endif
3647 symlist = &file_symbols;
3648 osyms = *symlist;
3649 o_nsyms = osyms ? osyms->nsyms : 0;
3650
3651 /* The aix4 compiler emits an extra field before the enum members;
3652 my guess is it's a type of some sort. Just ignore it. */
3653 if (**pp == '-')
3654 {
3655 /* Skip over the type. */
3656 while (**pp != ':')
3657 (*pp)++;
3658
3659 /* Skip over the colon. */
3660 (*pp)++;
3661 }
3662
3663 /* Read the value-names and their values.
3664 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3665 A semicolon or comma instead of a NAME means the end. */
3666 while (**pp && **pp != ';' && **pp != ',')
3667 {
3668 STABS_CONTINUE (pp, objfile);
3669 p = *pp;
3670 while (*p != ':')
3671 p++;
3672 name = obsavestring (*pp, p - *pp, &objfile->objfile_obstack);
3673 *pp = p + 1;
3674 n = read_huge_number (pp, ',', &nbits, 0);
3675 if (nbits != 0)
3676 return error_type (pp, objfile);
3677
3678 sym = (struct symbol *)
3679 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
3680 memset (sym, 0, sizeof (struct symbol));
3681 SYMBOL_SET_LINKAGE_NAME (sym, name);
3682 SYMBOL_SET_LANGUAGE (sym, current_subfile->language);
3683 SYMBOL_CLASS (sym) = LOC_CONST;
3684 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3685 SYMBOL_VALUE (sym) = n;
3686 if (n < 0)
3687 unsigned_enum = 0;
3688 add_symbol_to_list (sym, symlist);
3689 nsyms++;
3690 }
3691
3692 if (**pp == ';')
3693 (*pp)++; /* Skip the semicolon. */
3694
3695 /* Now fill in the fields of the type-structure. */
3696
3697 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3698 set_length_in_type_chain (type);
3699 TYPE_CODE (type) = TYPE_CODE_ENUM;
3700 TYPE_STUB (type) = 0;
3701 if (unsigned_enum)
3702 TYPE_UNSIGNED (type) = 1;
3703 TYPE_NFIELDS (type) = nsyms;
3704 TYPE_FIELDS (type) = (struct field *)
3705 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3706 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3707
3708 /* Find the symbols for the values and put them into the type.
3709 The symbols can be found in the symlist that we put them on
3710 to cause them to be defined. osyms contains the old value
3711 of that symlist; everything up to there was defined by us. */
3712 /* Note that we preserve the order of the enum constants, so
3713 that in something like "enum {FOO, LAST_THING=FOO}" we print
3714 FOO, not LAST_THING. */
3715
3716 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3717 {
3718 int last = syms == osyms ? o_nsyms : 0;
3719 int j = syms->nsyms;
3720
3721 for (; --j >= last; --n)
3722 {
3723 struct symbol *xsym = syms->symbol[j];
3724
3725 SYMBOL_TYPE (xsym) = type;
3726 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3727 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
3728 TYPE_FIELD_BITSIZE (type, n) = 0;
3729 }
3730 if (syms == osyms)
3731 break;
3732 }
3733
3734 return type;
3735 }
3736
3737 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3738 typedefs in every file (for int, long, etc):
3739
3740 type = b <signed> <width> <format type>; <offset>; <nbits>
3741 signed = u or s.
3742 optional format type = c or b for char or boolean.
3743 offset = offset from high order bit to start bit of type.
3744 width is # bytes in object of this type, nbits is # bits in type.
3745
3746 The width/offset stuff appears to be for small objects stored in
3747 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3748 FIXME. */
3749
3750 static struct type *
3751 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3752 {
3753 int type_bits;
3754 int nbits;
3755 int signed_type;
3756 enum type_code code = TYPE_CODE_INT;
3757
3758 switch (**pp)
3759 {
3760 case 's':
3761 signed_type = 1;
3762 break;
3763 case 'u':
3764 signed_type = 0;
3765 break;
3766 default:
3767 return error_type (pp, objfile);
3768 }
3769 (*pp)++;
3770
3771 /* For some odd reason, all forms of char put a c here. This is strange
3772 because no other type has this honor. We can safely ignore this because
3773 we actually determine 'char'acterness by the number of bits specified in
3774 the descriptor.
3775 Boolean forms, e.g Fortran logical*X, put a b here. */
3776
3777 if (**pp == 'c')
3778 (*pp)++;
3779 else if (**pp == 'b')
3780 {
3781 code = TYPE_CODE_BOOL;
3782 (*pp)++;
3783 }
3784
3785 /* The first number appears to be the number of bytes occupied
3786 by this type, except that unsigned short is 4 instead of 2.
3787 Since this information is redundant with the third number,
3788 we will ignore it. */
3789 read_huge_number (pp, ';', &nbits, 0);
3790 if (nbits != 0)
3791 return error_type (pp, objfile);
3792
3793 /* The second number is always 0, so ignore it too. */
3794 read_huge_number (pp, ';', &nbits, 0);
3795 if (nbits != 0)
3796 return error_type (pp, objfile);
3797
3798 /* The third number is the number of bits for this type. */
3799 type_bits = read_huge_number (pp, 0, &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802 /* The type *should* end with a semicolon. If it are embedded
3803 in a larger type the semicolon may be the only way to know where
3804 the type ends. If this type is at the end of the stabstring we
3805 can deal with the omitted semicolon (but we don't have to like
3806 it). Don't bother to complain(), Sun's compiler omits the semicolon
3807 for "void". */
3808 if (**pp == ';')
3809 ++(*pp);
3810
3811 if (type_bits == 0)
3812 return init_type (TYPE_CODE_VOID, 1,
3813 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3814 objfile);
3815 else
3816 return init_type (code,
3817 type_bits / TARGET_CHAR_BIT,
3818 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3819 objfile);
3820 }
3821
3822 static struct type *
3823 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3824 {
3825 int nbits;
3826 int details;
3827 int nbytes;
3828 struct type *rettype;
3829
3830 /* The first number has more details about the type, for example
3831 FN_COMPLEX. */
3832 details = read_huge_number (pp, ';', &nbits, 0);
3833 if (nbits != 0)
3834 return error_type (pp, objfile);
3835
3836 /* The second number is the number of bytes occupied by this type. */
3837 nbytes = read_huge_number (pp, ';', &nbits, 0);
3838 if (nbits != 0)
3839 return error_type (pp, objfile);
3840
3841 if (details == NF_COMPLEX || details == NF_COMPLEX16
3842 || details == NF_COMPLEX32)
3843 {
3844 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3845 TYPE_TARGET_TYPE (rettype)
3846 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3847 return rettype;
3848 }
3849
3850 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3851 }
3852
3853 /* Read a number from the string pointed to by *PP.
3854 The value of *PP is advanced over the number.
3855 If END is nonzero, the character that ends the
3856 number must match END, or an error happens;
3857 and that character is skipped if it does match.
3858 If END is zero, *PP is left pointing to that character.
3859
3860 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3861 the number is represented in an octal representation, assume that
3862 it is represented in a 2's complement representation with a size of
3863 TWOS_COMPLEMENT_BITS.
3864
3865 If the number fits in a long, set *BITS to 0 and return the value.
3866 If not, set *BITS to be the number of bits in the number and return 0.
3867
3868 If encounter garbage, set *BITS to -1 and return 0. */
3869
3870 static long
3871 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3872 {
3873 char *p = *pp;
3874 int sign = 1;
3875 int sign_bit = 0;
3876 long n = 0;
3877 int radix = 10;
3878 char overflow = 0;
3879 int nbits = 0;
3880 int c;
3881 long upper_limit;
3882 int twos_complement_representation = 0;
3883
3884 if (*p == '-')
3885 {
3886 sign = -1;
3887 p++;
3888 }
3889
3890 /* Leading zero means octal. GCC uses this to output values larger
3891 than an int (because that would be hard in decimal). */
3892 if (*p == '0')
3893 {
3894 radix = 8;
3895 p++;
3896 }
3897
3898 /* Skip extra zeros. */
3899 while (*p == '0')
3900 p++;
3901
3902 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3903 {
3904 /* Octal, possibly signed. Check if we have enough chars for a
3905 negative number. */
3906
3907 size_t len;
3908 char *p1 = p;
3909
3910 while ((c = *p1) >= '0' && c < '8')
3911 p1++;
3912
3913 len = p1 - p;
3914 if (len > twos_complement_bits / 3
3915 || (twos_complement_bits % 3 == 0
3916 && len == twos_complement_bits / 3))
3917 {
3918 /* Ok, we have enough characters for a signed value, check
3919 for signness by testing if the sign bit is set. */
3920 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3921 c = *p - '0';
3922 if (c & (1 << sign_bit))
3923 {
3924 /* Definitely signed. */
3925 twos_complement_representation = 1;
3926 sign = -1;
3927 }
3928 }
3929 }
3930
3931 upper_limit = LONG_MAX / radix;
3932
3933 while ((c = *p++) >= '0' && c < ('0' + radix))
3934 {
3935 if (n <= upper_limit)
3936 {
3937 if (twos_complement_representation)
3938 {
3939 /* Octal, signed, twos complement representation. In
3940 this case, n is the corresponding absolute value. */
3941 if (n == 0)
3942 {
3943 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3944
3945 n = -sn;
3946 }
3947 else
3948 {
3949 n *= radix;
3950 n -= c - '0';
3951 }
3952 }
3953 else
3954 {
3955 /* unsigned representation */
3956 n *= radix;
3957 n += c - '0'; /* FIXME this overflows anyway. */
3958 }
3959 }
3960 else
3961 overflow = 1;
3962
3963 /* This depends on large values being output in octal, which is
3964 what GCC does. */
3965 if (radix == 8)
3966 {
3967 if (nbits == 0)
3968 {
3969 if (c == '0')
3970 /* Ignore leading zeroes. */
3971 ;
3972 else if (c == '1')
3973 nbits = 1;
3974 else if (c == '2' || c == '3')
3975 nbits = 2;
3976 else
3977 nbits = 3;
3978 }
3979 else
3980 nbits += 3;
3981 }
3982 }
3983 if (end)
3984 {
3985 if (c && c != end)
3986 {
3987 if (bits != NULL)
3988 *bits = -1;
3989 return 0;
3990 }
3991 }
3992 else
3993 --p;
3994
3995 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3996 {
3997 /* We were supposed to parse a number with maximum
3998 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3999 if (bits != NULL)
4000 *bits = -1;
4001 return 0;
4002 }
4003
4004 *pp = p;
4005 if (overflow)
4006 {
4007 if (nbits == 0)
4008 {
4009 /* Large decimal constants are an error (because it is hard to
4010 count how many bits are in them). */
4011 if (bits != NULL)
4012 *bits = -1;
4013 return 0;
4014 }
4015
4016 /* -0x7f is the same as 0x80. So deal with it by adding one to
4017 the number of bits. Two's complement represention octals
4018 can't have a '-' in front. */
4019 if (sign == -1 && !twos_complement_representation)
4020 ++nbits;
4021 if (bits)
4022 *bits = nbits;
4023 }
4024 else
4025 {
4026 if (bits)
4027 *bits = 0;
4028 return n * sign;
4029 }
4030 /* It's *BITS which has the interesting information. */
4031 return 0;
4032 }
4033
4034 static struct type *
4035 read_range_type (char **pp, int typenums[2], int type_size,
4036 struct objfile *objfile)
4037 {
4038 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4039 char *orig_pp = *pp;
4040 int rangenums[2];
4041 long n2, n3;
4042 int n2bits, n3bits;
4043 int self_subrange;
4044 struct type *result_type;
4045 struct type *index_type = NULL;
4046
4047 /* First comes a type we are a subrange of.
4048 In C it is usually 0, 1 or the type being defined. */
4049 if (read_type_number (pp, rangenums) != 0)
4050 return error_type (pp, objfile);
4051 self_subrange = (rangenums[0] == typenums[0] &&
4052 rangenums[1] == typenums[1]);
4053
4054 if (**pp == '=')
4055 {
4056 *pp = orig_pp;
4057 index_type = read_type (pp, objfile);
4058 }
4059
4060 /* A semicolon should now follow; skip it. */
4061 if (**pp == ';')
4062 (*pp)++;
4063
4064 /* The remaining two operands are usually lower and upper bounds
4065 of the range. But in some special cases they mean something else. */
4066 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4067 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4068
4069 if (n2bits == -1 || n3bits == -1)
4070 return error_type (pp, objfile);
4071
4072 if (index_type)
4073 goto handle_true_range;
4074
4075 /* If limits are huge, must be large integral type. */
4076 if (n2bits != 0 || n3bits != 0)
4077 {
4078 char got_signed = 0;
4079 char got_unsigned = 0;
4080 /* Number of bits in the type. */
4081 int nbits = 0;
4082
4083 /* If a type size attribute has been specified, the bounds of
4084 the range should fit in this size. If the lower bounds needs
4085 more bits than the upper bound, then the type is signed. */
4086 if (n2bits <= type_size && n3bits <= type_size)
4087 {
4088 if (n2bits == type_size && n2bits > n3bits)
4089 got_signed = 1;
4090 else
4091 got_unsigned = 1;
4092 nbits = type_size;
4093 }
4094 /* Range from 0 to <large number> is an unsigned large integral type. */
4095 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4096 {
4097 got_unsigned = 1;
4098 nbits = n3bits;
4099 }
4100 /* Range from <large number> to <large number>-1 is a large signed
4101 integral type. Take care of the case where <large number> doesn't
4102 fit in a long but <large number>-1 does. */
4103 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4104 || (n2bits != 0 && n3bits == 0
4105 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4106 && n3 == LONG_MAX))
4107 {
4108 got_signed = 1;
4109 nbits = n2bits;
4110 }
4111
4112 if (got_signed || got_unsigned)
4113 {
4114 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4115 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4116 objfile);
4117 }
4118 else
4119 return error_type (pp, objfile);
4120 }
4121
4122 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4123 if (self_subrange && n2 == 0 && n3 == 0)
4124 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4125
4126 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4127 is the width in bytes.
4128
4129 Fortran programs appear to use this for complex types also. To
4130 distinguish between floats and complex, g77 (and others?) seem
4131 to use self-subranges for the complexes, and subranges of int for
4132 the floats.
4133
4134 Also note that for complexes, g77 sets n2 to the size of one of
4135 the member floats, not the whole complex beast. My guess is that
4136 this was to work well with pre-COMPLEX versions of gdb. */
4137
4138 if (n3 == 0 && n2 > 0)
4139 {
4140 struct type *float_type
4141 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4142
4143 if (self_subrange)
4144 {
4145 struct type *complex_type =
4146 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4147
4148 TYPE_TARGET_TYPE (complex_type) = float_type;
4149 return complex_type;
4150 }
4151 else
4152 return float_type;
4153 }
4154
4155 /* If the upper bound is -1, it must really be an unsigned integral. */
4156
4157 else if (n2 == 0 && n3 == -1)
4158 {
4159 int bits = type_size;
4160
4161 if (bits <= 0)
4162 {
4163 /* We don't know its size. It is unsigned int or unsigned
4164 long. GCC 2.3.3 uses this for long long too, but that is
4165 just a GDB 3.5 compatibility hack. */
4166 bits = gdbarch_int_bit (gdbarch);
4167 }
4168
4169 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4170 TYPE_FLAG_UNSIGNED, NULL, objfile);
4171 }
4172
4173 /* Special case: char is defined (Who knows why) as a subrange of
4174 itself with range 0-127. */
4175 else if (self_subrange && n2 == 0 && n3 == 127)
4176 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4177
4178 /* We used to do this only for subrange of self or subrange of int. */
4179 else if (n2 == 0)
4180 {
4181 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4182 "unsigned long", and we already checked for that,
4183 so don't need to test for it here. */
4184
4185 if (n3 < 0)
4186 /* n3 actually gives the size. */
4187 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4188 NULL, objfile);
4189
4190 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4191 unsigned n-byte integer. But do require n to be a power of
4192 two; we don't want 3- and 5-byte integers flying around. */
4193 {
4194 int bytes;
4195 unsigned long bits;
4196
4197 bits = n3;
4198 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4199 bits >>= 8;
4200 if (bits == 0
4201 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4202 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4203 objfile);
4204 }
4205 }
4206 /* I think this is for Convex "long long". Since I don't know whether
4207 Convex sets self_subrange, I also accept that particular size regardless
4208 of self_subrange. */
4209 else if (n3 == 0 && n2 < 0
4210 && (self_subrange
4211 || n2 == -gdbarch_long_long_bit
4212 (gdbarch) / TARGET_CHAR_BIT))
4213 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4214 else if (n2 == -n3 - 1)
4215 {
4216 if (n3 == 0x7f)
4217 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4218 if (n3 == 0x7fff)
4219 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4220 if (n3 == 0x7fffffff)
4221 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4222 }
4223
4224 /* We have a real range type on our hands. Allocate space and
4225 return a real pointer. */
4226 handle_true_range:
4227
4228 if (self_subrange)
4229 index_type = objfile_type (objfile)->builtin_int;
4230 else
4231 index_type = *dbx_lookup_type (rangenums, objfile);
4232 if (index_type == NULL)
4233 {
4234 /* Does this actually ever happen? Is that why we are worrying
4235 about dealing with it rather than just calling error_type? */
4236
4237 complaint (&symfile_complaints,
4238 _("base type %d of range type is not defined"), rangenums[1]);
4239
4240 index_type = objfile_type (objfile)->builtin_int;
4241 }
4242
4243 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
4244 return (result_type);
4245 }
4246
4247 /* Read in an argument list. This is a list of types, separated by commas
4248 and terminated with END. Return the list of types read in, or NULL
4249 if there is an error. */
4250
4251 static struct field *
4252 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4253 int *varargsp)
4254 {
4255 /* FIXME! Remove this arbitrary limit! */
4256 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4257 int n = 0, i;
4258 struct field *rval;
4259
4260 while (**pp != end)
4261 {
4262 if (**pp != ',')
4263 /* Invalid argument list: no ','. */
4264 return NULL;
4265 (*pp)++;
4266 STABS_CONTINUE (pp, objfile);
4267 types[n++] = read_type (pp, objfile);
4268 }
4269 (*pp)++; /* get past `end' (the ':' character). */
4270
4271 if (n == 0)
4272 {
4273 /* We should read at least the THIS parameter here. Some broken stabs
4274 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4275 have been present ";-16,(0,43)" reference instead. This way the
4276 excessive ";" marker prematurely stops the parameters parsing. */
4277
4278 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4279 *varargsp = 0;
4280 }
4281 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4282 *varargsp = 1;
4283 else
4284 {
4285 n--;
4286 *varargsp = 0;
4287 }
4288
4289 rval = (struct field *) xmalloc (n * sizeof (struct field));
4290 memset (rval, 0, n * sizeof (struct field));
4291 for (i = 0; i < n; i++)
4292 rval[i].type = types[i];
4293 *nargsp = n;
4294 return rval;
4295 }
4296 \f
4297 /* Common block handling. */
4298
4299 /* List of symbols declared since the last BCOMM. This list is a tail
4300 of local_symbols. When ECOMM is seen, the symbols on the list
4301 are noted so their proper addresses can be filled in later,
4302 using the common block base address gotten from the assembler
4303 stabs. */
4304
4305 static struct pending *common_block;
4306 static int common_block_i;
4307
4308 /* Name of the current common block. We get it from the BCOMM instead of the
4309 ECOMM to match IBM documentation (even though IBM puts the name both places
4310 like everyone else). */
4311 static char *common_block_name;
4312
4313 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4314 to remain after this function returns. */
4315
4316 void
4317 common_block_start (char *name, struct objfile *objfile)
4318 {
4319 if (common_block_name != NULL)
4320 {
4321 complaint (&symfile_complaints,
4322 _("Invalid symbol data: common block within common block"));
4323 }
4324 common_block = local_symbols;
4325 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4326 common_block_name = obsavestring (name, strlen (name),
4327 &objfile->objfile_obstack);
4328 }
4329
4330 /* Process a N_ECOMM symbol. */
4331
4332 void
4333 common_block_end (struct objfile *objfile)
4334 {
4335 /* Symbols declared since the BCOMM are to have the common block
4336 start address added in when we know it. common_block and
4337 common_block_i point to the first symbol after the BCOMM in
4338 the local_symbols list; copy the list and hang it off the
4339 symbol for the common block name for later fixup. */
4340 int i;
4341 struct symbol *sym;
4342 struct pending *new = 0;
4343 struct pending *next;
4344 int j;
4345
4346 if (common_block_name == NULL)
4347 {
4348 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4349 return;
4350 }
4351
4352 sym = (struct symbol *)
4353 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symbol));
4354 memset (sym, 0, sizeof (struct symbol));
4355 /* Note: common_block_name already saved on objfile_obstack. */
4356 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4357 SYMBOL_CLASS (sym) = LOC_BLOCK;
4358
4359 /* Now we copy all the symbols which have been defined since the BCOMM. */
4360
4361 /* Copy all the struct pendings before common_block. */
4362 for (next = local_symbols;
4363 next != NULL && next != common_block;
4364 next = next->next)
4365 {
4366 for (j = 0; j < next->nsyms; j++)
4367 add_symbol_to_list (next->symbol[j], &new);
4368 }
4369
4370 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4371 NULL, it means copy all the local symbols (which we already did
4372 above). */
4373
4374 if (common_block != NULL)
4375 for (j = common_block_i; j < common_block->nsyms; j++)
4376 add_symbol_to_list (common_block->symbol[j], &new);
4377
4378 SYMBOL_TYPE (sym) = (struct type *) new;
4379
4380 /* Should we be putting local_symbols back to what it was?
4381 Does it matter? */
4382
4383 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4384 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4385 global_sym_chain[i] = sym;
4386 common_block_name = NULL;
4387 }
4388
4389 /* Add a common block's start address to the offset of each symbol
4390 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4391 the common block name). */
4392
4393 static void
4394 fix_common_block (struct symbol *sym, int valu)
4395 {
4396 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4397
4398 for (; next; next = next->next)
4399 {
4400 int j;
4401
4402 for (j = next->nsyms - 1; j >= 0; j--)
4403 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4404 }
4405 }
4406 \f
4407
4408
4409 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4410 See add_undefined_type for more details. */
4411
4412 static void
4413 add_undefined_type_noname (struct type *type, int typenums[2])
4414 {
4415 struct nat nat;
4416
4417 nat.typenums[0] = typenums [0];
4418 nat.typenums[1] = typenums [1];
4419 nat.type = type;
4420
4421 if (noname_undefs_length == noname_undefs_allocated)
4422 {
4423 noname_undefs_allocated *= 2;
4424 noname_undefs = (struct nat *)
4425 xrealloc ((char *) noname_undefs,
4426 noname_undefs_allocated * sizeof (struct nat));
4427 }
4428 noname_undefs[noname_undefs_length++] = nat;
4429 }
4430
4431 /* Add TYPE to the UNDEF_TYPES vector.
4432 See add_undefined_type for more details. */
4433
4434 static void
4435 add_undefined_type_1 (struct type *type)
4436 {
4437 if (undef_types_length == undef_types_allocated)
4438 {
4439 undef_types_allocated *= 2;
4440 undef_types = (struct type **)
4441 xrealloc ((char *) undef_types,
4442 undef_types_allocated * sizeof (struct type *));
4443 }
4444 undef_types[undef_types_length++] = type;
4445 }
4446
4447 /* What about types defined as forward references inside of a small lexical
4448 scope? */
4449 /* Add a type to the list of undefined types to be checked through
4450 once this file has been read in.
4451
4452 In practice, we actually maintain two such lists: The first list
4453 (UNDEF_TYPES) is used for types whose name has been provided, and
4454 concerns forward references (eg 'xs' or 'xu' forward references);
4455 the second list (NONAME_UNDEFS) is used for types whose name is
4456 unknown at creation time, because they were referenced through
4457 their type number before the actual type was declared.
4458 This function actually adds the given type to the proper list. */
4459
4460 static void
4461 add_undefined_type (struct type *type, int typenums[2])
4462 {
4463 if (TYPE_TAG_NAME (type) == NULL)
4464 add_undefined_type_noname (type, typenums);
4465 else
4466 add_undefined_type_1 (type);
4467 }
4468
4469 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4470
4471 static void
4472 cleanup_undefined_types_noname (struct objfile *objfile)
4473 {
4474 int i;
4475
4476 for (i = 0; i < noname_undefs_length; i++)
4477 {
4478 struct nat nat = noname_undefs[i];
4479 struct type **type;
4480
4481 type = dbx_lookup_type (nat.typenums, objfile);
4482 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4483 {
4484 /* The instance flags of the undefined type are still unset,
4485 and needs to be copied over from the reference type.
4486 Since replace_type expects them to be identical, we need
4487 to set these flags manually before hand. */
4488 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4489 replace_type (nat.type, *type);
4490 }
4491 }
4492
4493 noname_undefs_length = 0;
4494 }
4495
4496 /* Go through each undefined type, see if it's still undefined, and fix it
4497 up if possible. We have two kinds of undefined types:
4498
4499 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4500 Fix: update array length using the element bounds
4501 and the target type's length.
4502 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4503 yet defined at the time a pointer to it was made.
4504 Fix: Do a full lookup on the struct/union tag. */
4505
4506 static void
4507 cleanup_undefined_types_1 (void)
4508 {
4509 struct type **type;
4510
4511 /* Iterate over every undefined type, and look for a symbol whose type
4512 matches our undefined type. The symbol matches if:
4513 1. It is a typedef in the STRUCT domain;
4514 2. It has the same name, and same type code;
4515 3. The instance flags are identical.
4516
4517 It is important to check the instance flags, because we have seen
4518 examples where the debug info contained definitions such as:
4519
4520 "foo_t:t30=B31=xefoo_t:"
4521
4522 In this case, we have created an undefined type named "foo_t" whose
4523 instance flags is null (when processing "xefoo_t"), and then created
4524 another type with the same name, but with different instance flags
4525 ('B' means volatile). I think that the definition above is wrong,
4526 since the same type cannot be volatile and non-volatile at the same
4527 time, but we need to be able to cope with it when it happens. The
4528 approach taken here is to treat these two types as different. */
4529
4530 for (type = undef_types; type < undef_types + undef_types_length; type++)
4531 {
4532 switch (TYPE_CODE (*type))
4533 {
4534
4535 case TYPE_CODE_STRUCT:
4536 case TYPE_CODE_UNION:
4537 case TYPE_CODE_ENUM:
4538 {
4539 /* Check if it has been defined since. Need to do this here
4540 as well as in check_typedef to deal with the (legitimate in
4541 C though not C++) case of several types with the same name
4542 in different source files. */
4543 if (TYPE_STUB (*type))
4544 {
4545 struct pending *ppt;
4546 int i;
4547 /* Name of the type, without "struct" or "union". */
4548 char *typename = TYPE_TAG_NAME (*type);
4549
4550 if (typename == NULL)
4551 {
4552 complaint (&symfile_complaints, _("need a type name"));
4553 break;
4554 }
4555 for (ppt = file_symbols; ppt; ppt = ppt->next)
4556 {
4557 for (i = 0; i < ppt->nsyms; i++)
4558 {
4559 struct symbol *sym = ppt->symbol[i];
4560
4561 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4562 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4563 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4564 TYPE_CODE (*type))
4565 && (TYPE_INSTANCE_FLAGS (*type) ==
4566 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4567 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4568 typename) == 0)
4569 replace_type (*type, SYMBOL_TYPE (sym));
4570 }
4571 }
4572 }
4573 }
4574 break;
4575
4576 default:
4577 {
4578 complaint (&symfile_complaints,
4579 _("forward-referenced types left unresolved, "
4580 "type code %d."),
4581 TYPE_CODE (*type));
4582 }
4583 break;
4584 }
4585 }
4586
4587 undef_types_length = 0;
4588 }
4589
4590 /* Try to fix all the undefined types we ecountered while processing
4591 this unit. */
4592
4593 void
4594 cleanup_undefined_types (struct objfile *objfile)
4595 {
4596 cleanup_undefined_types_1 ();
4597 cleanup_undefined_types_noname (objfile);
4598 }
4599
4600 /* Scan through all of the global symbols defined in the object file,
4601 assigning values to the debugging symbols that need to be assigned
4602 to. Get these symbols from the minimal symbol table. */
4603
4604 void
4605 scan_file_globals (struct objfile *objfile)
4606 {
4607 int hash;
4608 struct minimal_symbol *msymbol;
4609 struct symbol *sym, *prev;
4610 struct objfile *resolve_objfile;
4611
4612 /* SVR4 based linkers copy referenced global symbols from shared
4613 libraries to the main executable.
4614 If we are scanning the symbols for a shared library, try to resolve
4615 them from the minimal symbols of the main executable first. */
4616
4617 if (symfile_objfile && objfile != symfile_objfile)
4618 resolve_objfile = symfile_objfile;
4619 else
4620 resolve_objfile = objfile;
4621
4622 while (1)
4623 {
4624 /* Avoid expensive loop through all minimal symbols if there are
4625 no unresolved symbols. */
4626 for (hash = 0; hash < HASHSIZE; hash++)
4627 {
4628 if (global_sym_chain[hash])
4629 break;
4630 }
4631 if (hash >= HASHSIZE)
4632 return;
4633
4634 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4635 {
4636 QUIT;
4637
4638 /* Skip static symbols. */
4639 switch (MSYMBOL_TYPE (msymbol))
4640 {
4641 case mst_file_text:
4642 case mst_file_data:
4643 case mst_file_bss:
4644 continue;
4645 default:
4646 break;
4647 }
4648
4649 prev = NULL;
4650
4651 /* Get the hash index and check all the symbols
4652 under that hash index. */
4653
4654 hash = hashname (SYMBOL_LINKAGE_NAME (msymbol));
4655
4656 for (sym = global_sym_chain[hash]; sym;)
4657 {
4658 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol),
4659 SYMBOL_LINKAGE_NAME (sym)) == 0)
4660 {
4661 /* Splice this symbol out of the hash chain and
4662 assign the value we have to it. */
4663 if (prev)
4664 {
4665 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4666 }
4667 else
4668 {
4669 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4670 }
4671
4672 /* Check to see whether we need to fix up a common block. */
4673 /* Note: this code might be executed several times for
4674 the same symbol if there are multiple references. */
4675 if (sym)
4676 {
4677 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4678 {
4679 fix_common_block (sym,
4680 SYMBOL_VALUE_ADDRESS (msymbol));
4681 }
4682 else
4683 {
4684 SYMBOL_VALUE_ADDRESS (sym)
4685 = SYMBOL_VALUE_ADDRESS (msymbol);
4686 }
4687 SYMBOL_SECTION (sym) = SYMBOL_SECTION (msymbol);
4688 }
4689
4690 if (prev)
4691 {
4692 sym = SYMBOL_VALUE_CHAIN (prev);
4693 }
4694 else
4695 {
4696 sym = global_sym_chain[hash];
4697 }
4698 }
4699 else
4700 {
4701 prev = sym;
4702 sym = SYMBOL_VALUE_CHAIN (sym);
4703 }
4704 }
4705 }
4706 if (resolve_objfile == objfile)
4707 break;
4708 resolve_objfile = objfile;
4709 }
4710
4711 /* Change the storage class of any remaining unresolved globals to
4712 LOC_UNRESOLVED and remove them from the chain. */
4713 for (hash = 0; hash < HASHSIZE; hash++)
4714 {
4715 sym = global_sym_chain[hash];
4716 while (sym)
4717 {
4718 prev = sym;
4719 sym = SYMBOL_VALUE_CHAIN (sym);
4720
4721 /* Change the symbol address from the misleading chain value
4722 to address zero. */
4723 SYMBOL_VALUE_ADDRESS (prev) = 0;
4724
4725 /* Complain about unresolved common block symbols. */
4726 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4727 SYMBOL_CLASS (prev) = LOC_UNRESOLVED;
4728 else
4729 complaint (&symfile_complaints,
4730 _("%s: common block `%s' from "
4731 "global_sym_chain unresolved"),
4732 objfile->name, SYMBOL_PRINT_NAME (prev));
4733 }
4734 }
4735 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4736 }
4737
4738 /* Initialize anything that needs initializing when starting to read
4739 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4740 to a psymtab. */
4741
4742 void
4743 stabsread_init (void)
4744 {
4745 }
4746
4747 /* Initialize anything that needs initializing when a completely new
4748 symbol file is specified (not just adding some symbols from another
4749 file, e.g. a shared library). */
4750
4751 void
4752 stabsread_new_init (void)
4753 {
4754 /* Empty the hash table of global syms looking for values. */
4755 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4756 }
4757
4758 /* Initialize anything that needs initializing at the same time as
4759 start_symtab() is called. */
4760
4761 void
4762 start_stabs (void)
4763 {
4764 global_stabs = NULL; /* AIX COFF */
4765 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4766 n_this_object_header_files = 1;
4767 type_vector_length = 0;
4768 type_vector = (struct type **) 0;
4769
4770 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4771 common_block_name = NULL;
4772 }
4773
4774 /* Call after end_symtab(). */
4775
4776 void
4777 end_stabs (void)
4778 {
4779 if (type_vector)
4780 {
4781 xfree (type_vector);
4782 }
4783 type_vector = 0;
4784 type_vector_length = 0;
4785 previous_stab_code = 0;
4786 }
4787
4788 void
4789 finish_global_stabs (struct objfile *objfile)
4790 {
4791 if (global_stabs)
4792 {
4793 patch_block_stabs (global_symbols, global_stabs, objfile);
4794 xfree (global_stabs);
4795 global_stabs = NULL;
4796 }
4797 }
4798
4799 /* Find the end of the name, delimited by a ':', but don't match
4800 ObjC symbols which look like -[Foo bar::]:bla. */
4801 static char *
4802 find_name_end (char *name)
4803 {
4804 char *s = name;
4805
4806 if (s[0] == '-' || *s == '+')
4807 {
4808 /* Must be an ObjC method symbol. */
4809 if (s[1] != '[')
4810 {
4811 error (_("invalid symbol name \"%s\""), name);
4812 }
4813 s = strchr (s, ']');
4814 if (s == NULL)
4815 {
4816 error (_("invalid symbol name \"%s\""), name);
4817 }
4818 return strchr (s, ':');
4819 }
4820 else
4821 {
4822 return strchr (s, ':');
4823 }
4824 }
4825
4826 /* Initializer for this module. */
4827
4828 void
4829 _initialize_stabsread (void)
4830 {
4831 rs6000_builtin_type_data = register_objfile_data ();
4832
4833 undef_types_allocated = 20;
4834 undef_types_length = 0;
4835 undef_types = (struct type **)
4836 xmalloc (undef_types_allocated * sizeof (struct type *));
4837
4838 noname_undefs_allocated = 20;
4839 noname_undefs_length = 0;
4840 noname_undefs = (struct nat *)
4841 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4842 }