* stabsread.c (read_type): Don't fall through 'S' case (the case it
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 #include <ctype.h>
40
41 /* Ask stabsread.h to define the vars it normally declares `extern'. */
42 #define EXTERN /**/
43 #include "stabsread.h" /* Our own declarations */
44 #undef EXTERN
45
46 /* The routines that read and process a complete stabs for a C struct or
47 C++ class pass lists of data member fields and lists of member function
48 fields in an instance of a field_info structure, as defined below.
49 This is part of some reorganization of low level C++ support and is
50 expected to eventually go away... (FIXME) */
51
52 struct field_info
53 {
54 struct nextfield
55 {
56 struct nextfield *next;
57
58 /* This is the raw visibility from the stab. It is not checked
59 for being one of the visibilities we recognize, so code which
60 examines this field better be able to deal. */
61 int visibility;
62
63 struct field field;
64 } *list;
65 struct next_fnfieldlist
66 {
67 struct next_fnfieldlist *next;
68 struct fn_fieldlist fn_fieldlist;
69 } *fnlist;
70 };
71
72 static struct type *
73 dbx_alloc_type PARAMS ((int [2], struct objfile *));
74
75 static long read_huge_number PARAMS ((char **, int, int *));
76
77 static struct type *error_type PARAMS ((char **));
78
79 static void
80 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
81 struct objfile *));
82
83 static void
84 fix_common_block PARAMS ((struct symbol *, int));
85
86 static int
87 read_type_number PARAMS ((char **, int *));
88
89 static struct type *
90 read_range_type PARAMS ((char **, int [2], struct objfile *));
91
92 static struct type *
93 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
94
95 static struct type *
96 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
97
98 static struct type *
99 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
100
101 static struct type *
102 rs6000_builtin_type PARAMS ((int));
103
104 static int
105 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
106 struct objfile *));
107
108 static int
109 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
110 struct objfile *));
111
112 static int
113 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
114 struct objfile *));
115
116 static int
117 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
118 struct objfile *));
119
120 static int
121 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
122
123 static int
124 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
125 struct objfile *));
126
127 static struct type *
128 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
129
130 static struct type *
131 read_array_type PARAMS ((char **, struct type *, struct objfile *));
132
133 static struct type **
134 read_args PARAMS ((char **, int, struct objfile *));
135
136 static int
137 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
138 struct objfile *));
139
140 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
141 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
142
143 /* Define this as 1 if a pcc declaration of a char or short argument
144 gives the correct address. Otherwise assume pcc gives the
145 address of the corresponding int, which is not the same on a
146 big-endian machine. */
147
148 #ifndef BELIEVE_PCC_PROMOTION
149 #define BELIEVE_PCC_PROMOTION 0
150 #endif
151
152 struct complaint invalid_cpp_abbrev_complaint =
153 {"invalid C++ abbreviation `%s'", 0, 0};
154
155 struct complaint invalid_cpp_type_complaint =
156 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
157
158 struct complaint member_fn_complaint =
159 {"member function type missing, got '%c'", 0, 0};
160
161 struct complaint const_vol_complaint =
162 {"const/volatile indicator missing, got '%c'", 0, 0};
163
164 struct complaint error_type_complaint =
165 {"debug info mismatch between compiler and debugger", 0, 0};
166
167 struct complaint invalid_member_complaint =
168 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
169
170 struct complaint range_type_base_complaint =
171 {"base type %d of range type is not defined", 0, 0};
172
173 struct complaint reg_value_complaint =
174 {"register number too large in symbol %s", 0, 0};
175
176 struct complaint vtbl_notfound_complaint =
177 {"virtual function table pointer not found when defining class `%s'", 0, 0};
178
179 struct complaint unrecognized_cplus_name_complaint =
180 {"Unknown C++ symbol name `%s'", 0, 0};
181
182 struct complaint rs6000_builtin_complaint =
183 {"Unknown builtin type %d", 0, 0};
184
185 struct complaint stabs_general_complaint =
186 {"%s", 0, 0};
187
188 /* Make a list of forward references which haven't been defined. */
189
190 static struct type **undef_types;
191 static int undef_types_allocated;
192 static int undef_types_length;
193
194 /* Check for and handle cretinous stabs symbol name continuation! */
195 #define STABS_CONTINUE(pp) \
196 do { \
197 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
198 } while (0)
199
200 \f
201 /* Look up a dbx type-number pair. Return the address of the slot
202 where the type for that number-pair is stored.
203 The number-pair is in TYPENUMS.
204
205 This can be used for finding the type associated with that pair
206 or for associating a new type with the pair. */
207
208 struct type **
209 dbx_lookup_type (typenums)
210 int typenums[2];
211 {
212 register int filenum = typenums[0];
213 register int index = typenums[1];
214 unsigned old_len;
215 register int real_filenum;
216 register struct header_file *f;
217 int f_orig_length;
218
219 if (filenum == -1) /* -1,-1 is for temporary types. */
220 return 0;
221
222 if (filenum < 0 || filenum >= n_this_object_header_files)
223 {
224 static struct complaint msg = {"\
225 Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
226 0, 0};
227 complain (&msg, filenum, index, symnum);
228 goto error_return;
229 }
230
231 if (filenum == 0)
232 {
233 if (index < 0)
234 {
235 /* Caller wants address of address of type. We think
236 that negative (rs6k builtin) types will never appear as
237 "lvalues", (nor should they), so we stuff the real type
238 pointer into a temp, and return its address. If referenced,
239 this will do the right thing. */
240 static struct type *temp_type;
241
242 temp_type = rs6000_builtin_type(index);
243 return &temp_type;
244 }
245
246 /* Type is defined outside of header files.
247 Find it in this object file's type vector. */
248 if (index >= type_vector_length)
249 {
250 old_len = type_vector_length;
251 if (old_len == 0)
252 {
253 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
254 type_vector = (struct type **)
255 malloc (type_vector_length * sizeof (struct type *));
256 }
257 while (index >= type_vector_length)
258 {
259 type_vector_length *= 2;
260 }
261 type_vector = (struct type **)
262 xrealloc ((char *) type_vector,
263 (type_vector_length * sizeof (struct type *)));
264 memset (&type_vector[old_len], 0,
265 (type_vector_length - old_len) * sizeof (struct type *));
266 }
267 return (&type_vector[index]);
268 }
269 else
270 {
271 real_filenum = this_object_header_files[filenum];
272
273 if (real_filenum >= n_header_files)
274 {
275 struct type *temp_type;
276 struct type **temp_type_p;
277
278 warning ("GDB internal error: bad real_filenum");
279
280 error_return:
281 temp_type = init_type (TYPE_CODE_ERROR, 0, 0, NULL, NULL);
282 temp_type_p = (struct type **) xmalloc (sizeof (struct type *));
283 *temp_type_p = temp_type;
284 return temp_type_p;
285 }
286
287 f = &header_files[real_filenum];
288
289 f_orig_length = f->length;
290 if (index >= f_orig_length)
291 {
292 while (index >= f->length)
293 {
294 f->length *= 2;
295 }
296 f->vector = (struct type **)
297 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
298 memset (&f->vector[f_orig_length], 0,
299 (f->length - f_orig_length) * sizeof (struct type *));
300 }
301 return (&f->vector[index]);
302 }
303 }
304
305 /* Make sure there is a type allocated for type numbers TYPENUMS
306 and return the type object.
307 This can create an empty (zeroed) type object.
308 TYPENUMS may be (-1, -1) to return a new type object that is not
309 put into the type vector, and so may not be referred to by number. */
310
311 static struct type *
312 dbx_alloc_type (typenums, objfile)
313 int typenums[2];
314 struct objfile *objfile;
315 {
316 register struct type **type_addr;
317
318 if (typenums[0] == -1)
319 {
320 return (alloc_type (objfile));
321 }
322
323 type_addr = dbx_lookup_type (typenums);
324
325 /* If we are referring to a type not known at all yet,
326 allocate an empty type for it.
327 We will fill it in later if we find out how. */
328 if (*type_addr == 0)
329 {
330 *type_addr = alloc_type (objfile);
331 }
332
333 return (*type_addr);
334 }
335
336 /* for all the stabs in a given stab vector, build appropriate types
337 and fix their symbols in given symbol vector. */
338
339 static void
340 patch_block_stabs (symbols, stabs, objfile)
341 struct pending *symbols;
342 struct pending_stabs *stabs;
343 struct objfile *objfile;
344 {
345 int ii;
346 char *name;
347 char *pp;
348 struct symbol *sym;
349
350 if (stabs)
351 {
352
353 /* for all the stab entries, find their corresponding symbols and
354 patch their types! */
355
356 for (ii = 0; ii < stabs->count; ++ii)
357 {
358 name = stabs->stab[ii];
359 pp = (char*) strchr (name, ':');
360 while (pp[1] == ':')
361 {
362 pp += 2;
363 pp = (char *)strchr(pp, ':');
364 }
365 sym = find_symbol_in_list (symbols, name, pp-name);
366 if (!sym)
367 {
368 /* On xcoff, if a global is defined and never referenced,
369 ld will remove it from the executable. There is then
370 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
371 sym = (struct symbol *)
372 obstack_alloc (&objfile->symbol_obstack,
373 sizeof (struct symbol));
374
375 memset (sym, 0, sizeof (struct symbol));
376 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
377 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
378 SYMBOL_NAME (sym) =
379 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
380 pp += 2;
381 if (*(pp-1) == 'F' || *(pp-1) == 'f')
382 {
383 /* I don't think the linker does this with functions,
384 so as far as I know this is never executed.
385 But it doesn't hurt to check. */
386 SYMBOL_TYPE (sym) =
387 lookup_function_type (read_type (&pp, objfile));
388 }
389 else
390 {
391 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
392 }
393 add_symbol_to_list (sym, &global_symbols);
394 }
395 else
396 {
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 SYMBOL_TYPE (sym) =
401 lookup_function_type (read_type (&pp, objfile));
402 }
403 else
404 {
405 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
406 }
407 }
408 }
409 }
410 }
411
412 \f
413 /* Read a number by which a type is referred to in dbx data,
414 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
415 Just a single number N is equivalent to (0,N).
416 Return the two numbers by storing them in the vector TYPENUMS.
417 TYPENUMS will then be used as an argument to dbx_lookup_type.
418
419 Returns 0 for success, -1 for error. */
420
421 static int
422 read_type_number (pp, typenums)
423 register char **pp;
424 register int *typenums;
425 {
426 int nbits;
427 if (**pp == '(')
428 {
429 (*pp)++;
430 typenums[0] = read_huge_number (pp, ',', &nbits);
431 if (nbits != 0) return -1;
432 typenums[1] = read_huge_number (pp, ')', &nbits);
433 if (nbits != 0) return -1;
434 }
435 else
436 {
437 typenums[0] = 0;
438 typenums[1] = read_huge_number (pp, 0, &nbits);
439 if (nbits != 0) return -1;
440 }
441 return 0;
442 }
443
444 \f
445 /* To handle GNU C++ typename abbreviation, we need to be able to
446 fill in a type's name as soon as space for that type is allocated.
447 `type_synonym_name' is the name of the type being allocated.
448 It is cleared as soon as it is used (lest all allocated types
449 get this name). */
450
451 static char *type_synonym_name;
452
453 /* ARGSUSED */
454 struct symbol *
455 define_symbol (valu, string, desc, type, objfile)
456 CORE_ADDR valu;
457 char *string;
458 int desc;
459 int type;
460 struct objfile *objfile;
461 {
462 register struct symbol *sym;
463 char *p = (char *) strchr (string, ':');
464 int deftype;
465 int synonym = 0;
466 register int i;
467
468 /* We would like to eliminate nameless symbols, but keep their types.
469 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
470 to type 2, but, should not create a symbol to address that type. Since
471 the symbol will be nameless, there is no way any user can refer to it. */
472
473 int nameless;
474
475 /* Ignore syms with empty names. */
476 if (string[0] == 0)
477 return 0;
478
479 /* Ignore old-style symbols from cc -go */
480 if (p == 0)
481 return 0;
482
483 while (p[1] == ':')
484 {
485 p += 2;
486 p = strchr(p, ':');
487 }
488
489 /* If a nameless stab entry, all we need is the type, not the symbol.
490 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
491 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
492
493 sym = (struct symbol *)
494 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
495 memset (sym, 0, sizeof (struct symbol));
496
497 if (processing_gcc_compilation)
498 {
499 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
500 number of bytes occupied by a type or object, which we ignore. */
501 SYMBOL_LINE(sym) = desc;
502 }
503 else
504 {
505 SYMBOL_LINE(sym) = 0; /* unknown */
506 }
507
508 if (string[0] == CPLUS_MARKER)
509 {
510 /* Special GNU C++ names. */
511 switch (string[1])
512 {
513 case 't':
514 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
515 &objfile -> symbol_obstack);
516 break;
517
518 case 'v': /* $vtbl_ptr_type */
519 /* Was: SYMBOL_NAME (sym) = "vptr"; */
520 goto normal;
521
522 case 'e':
523 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
524 &objfile -> symbol_obstack);
525 break;
526
527 case '_':
528 /* This was an anonymous type that was never fixed up. */
529 goto normal;
530
531 default:
532 complain (&unrecognized_cplus_name_complaint, string);
533 goto normal; /* Do *something* with it */
534 }
535 }
536 else
537 {
538 normal:
539 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
540 SYMBOL_NAME (sym) = (char *)
541 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
542 /* Open-coded memcpy--saves function call time. */
543 /* FIXME: Does it really? Try replacing with simple strcpy and
544 try it on an executable with a large symbol table. */
545 /* FIXME: considering that gcc can open code memcpy anyway, I
546 doubt it. xoxorich. */
547 {
548 register char *p1 = string;
549 register char *p2 = SYMBOL_NAME (sym);
550 while (p1 != p)
551 {
552 *p2++ = *p1++;
553 }
554 *p2++ = '\0';
555 }
556
557 /* If this symbol is from a C++ compilation, then attempt to cache the
558 demangled form for future reference. This is a typical time versus
559 space tradeoff, that was decided in favor of time because it sped up
560 C++ symbol lookups by a factor of about 20. */
561
562 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
563 }
564 p++;
565
566 /* Determine the type of name being defined. */
567 #if 0
568 /* Getting GDB to correctly skip the symbol on an undefined symbol
569 descriptor and not ever dump core is a very dodgy proposition if
570 we do things this way. I say the acorn RISC machine can just
571 fix their compiler. */
572 /* The Acorn RISC machine's compiler can put out locals that don't
573 start with "234=" or "(3,4)=", so assume anything other than the
574 deftypes we know how to handle is a local. */
575 if (!strchr ("cfFGpPrStTvVXCR", *p))
576 #else
577 if (isdigit (*p) || *p == '(' || *p == '-')
578 #endif
579 deftype = 'l';
580 else
581 deftype = *p++;
582
583 switch (deftype)
584 {
585 case 'c':
586 /* c is a special case, not followed by a type-number.
587 SYMBOL:c=iVALUE for an integer constant symbol.
588 SYMBOL:c=rVALUE for a floating constant symbol.
589 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
590 e.g. "b:c=e6,0" for "const b = blob1"
591 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
592 if (*p != '=')
593 {
594 SYMBOL_CLASS (sym) = LOC_CONST;
595 SYMBOL_TYPE (sym) = error_type (&p);
596 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
597 add_symbol_to_list (sym, &file_symbols);
598 return sym;
599 }
600 ++p;
601 switch (*p++)
602 {
603 case 'r':
604 {
605 double d = atof (p);
606 char *dbl_valu;
607
608 /* FIXME-if-picky-about-floating-accuracy: Should be using
609 target arithmetic to get the value. real.c in GCC
610 probably has the necessary code. */
611
612 /* FIXME: lookup_fundamental_type is a hack. We should be
613 creating a type especially for the type of float constants.
614 Problem is, what type should it be?
615
616 Also, what should the name of this type be? Should we
617 be using 'S' constants (see stabs.texinfo) instead? */
618
619 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
620 FT_DBL_PREC_FLOAT);
621 dbl_valu = (char *)
622 obstack_alloc (&objfile -> symbol_obstack,
623 TYPE_LENGTH (SYMBOL_TYPE (sym)));
624 store_floating (dbl_valu, TYPE_LENGTH (SYMBOL_TYPE (sym)), d);
625 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
626 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
627 }
628 break;
629 case 'i':
630 {
631 /* Defining integer constants this way is kind of silly,
632 since 'e' constants allows the compiler to give not
633 only the value, but the type as well. C has at least
634 int, long, unsigned int, and long long as constant
635 types; other languages probably should have at least
636 unsigned as well as signed constants. */
637
638 /* We just need one int constant type for all objfiles.
639 It doesn't depend on languages or anything (arguably its
640 name should be a language-specific name for a type of
641 that size, but I'm inclined to say that if the compiler
642 wants a nice name for the type, it can use 'e'). */
643 static struct type *int_const_type;
644
645 /* Yes, this is as long as a *host* int. That is because we
646 use atoi. */
647 if (int_const_type == NULL)
648 int_const_type =
649 init_type (TYPE_CODE_INT,
650 sizeof (int) * HOST_CHAR_BIT / TARGET_CHAR_BIT, 0,
651 "integer constant",
652 (struct objfile *)NULL);
653 SYMBOL_TYPE (sym) = int_const_type;
654 SYMBOL_VALUE (sym) = atoi (p);
655 SYMBOL_CLASS (sym) = LOC_CONST;
656 }
657 break;
658 case 'e':
659 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
660 can be represented as integral.
661 e.g. "b:c=e6,0" for "const b = blob1"
662 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
663 {
664 SYMBOL_CLASS (sym) = LOC_CONST;
665 SYMBOL_TYPE (sym) = read_type (&p, objfile);
666
667 if (*p != ',')
668 {
669 SYMBOL_TYPE (sym) = error_type (&p);
670 break;
671 }
672 ++p;
673
674 /* If the value is too big to fit in an int (perhaps because
675 it is unsigned), or something like that, we silently get
676 a bogus value. The type and everything else about it is
677 correct. Ideally, we should be using whatever we have
678 available for parsing unsigned and long long values,
679 however. */
680 SYMBOL_VALUE (sym) = atoi (p);
681 }
682 break;
683 default:
684 {
685 SYMBOL_CLASS (sym) = LOC_CONST;
686 SYMBOL_TYPE (sym) = error_type (&p);
687 }
688 }
689 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
690 add_symbol_to_list (sym, &file_symbols);
691 return sym;
692
693 case 'C':
694 /* The name of a caught exception. */
695 SYMBOL_TYPE (sym) = read_type (&p, objfile);
696 SYMBOL_CLASS (sym) = LOC_LABEL;
697 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
698 SYMBOL_VALUE_ADDRESS (sym) = valu;
699 add_symbol_to_list (sym, &local_symbols);
700 break;
701
702 case 'f':
703 /* A static function definition. */
704 SYMBOL_TYPE (sym) = read_type (&p, objfile);
705 SYMBOL_CLASS (sym) = LOC_BLOCK;
706 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
707 add_symbol_to_list (sym, &file_symbols);
708 /* fall into process_function_types. */
709
710 process_function_types:
711 /* Function result types are described as the result type in stabs.
712 We need to convert this to the function-returning-type-X type
713 in GDB. E.g. "int" is converted to "function returning int". */
714 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
715 {
716 #if 0
717 /* This code doesn't work -- it needs to realloc and can't. */
718 /* Attempt to set up to record a function prototype... */
719 struct type *new = alloc_type (objfile);
720
721 /* Generate a template for the type of this function. The
722 types of the arguments will be added as we read the symbol
723 table. */
724 *new = *lookup_function_type (SYMBOL_TYPE(sym));
725 SYMBOL_TYPE(sym) = new;
726 TYPE_OBJFILE (new) = objfile;
727 in_function_type = new;
728 #else
729 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
730 #endif
731 }
732 /* fall into process_prototype_types */
733
734 process_prototype_types:
735 /* Sun acc puts declared types of arguments here. We don't care
736 about their actual types (FIXME -- we should remember the whole
737 function prototype), but the list may define some new types
738 that we have to remember, so we must scan it now. */
739 while (*p == ';') {
740 p++;
741 read_type (&p, objfile);
742 }
743 break;
744
745 case 'F':
746 /* A global function definition. */
747 SYMBOL_TYPE (sym) = read_type (&p, objfile);
748 SYMBOL_CLASS (sym) = LOC_BLOCK;
749 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
750 add_symbol_to_list (sym, &global_symbols);
751 goto process_function_types;
752
753 case 'G':
754 /* For a class G (global) symbol, it appears that the
755 value is not correct. It is necessary to search for the
756 corresponding linker definition to find the value.
757 These definitions appear at the end of the namelist. */
758 SYMBOL_TYPE (sym) = read_type (&p, objfile);
759 i = hashname (SYMBOL_NAME (sym));
760 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
761 global_sym_chain[i] = sym;
762 SYMBOL_CLASS (sym) = LOC_STATIC;
763 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
764 add_symbol_to_list (sym, &global_symbols);
765 break;
766
767 /* This case is faked by a conditional above,
768 when there is no code letter in the dbx data.
769 Dbx data never actually contains 'l'. */
770 case 'l':
771 SYMBOL_TYPE (sym) = read_type (&p, objfile);
772 SYMBOL_CLASS (sym) = LOC_LOCAL;
773 SYMBOL_VALUE (sym) = valu;
774 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
775 add_symbol_to_list (sym, &local_symbols);
776 break;
777
778 case 'p':
779 if (*p == 'F')
780 /* pF is a two-letter code that means a function parameter in Fortran.
781 The type-number specifies the type of the return value.
782 Translate it into a pointer-to-function type. */
783 {
784 p++;
785 SYMBOL_TYPE (sym)
786 = lookup_pointer_type
787 (lookup_function_type (read_type (&p, objfile)));
788 }
789 else
790 SYMBOL_TYPE (sym) = read_type (&p, objfile);
791
792 /* Normally this is a parameter, a LOC_ARG. On the i960, it
793 can also be a LOC_LOCAL_ARG depending on symbol type. */
794 #ifndef DBX_PARM_SYMBOL_CLASS
795 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
796 #endif
797
798 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
799 SYMBOL_VALUE (sym) = valu;
800 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
801 #if 0
802 /* This doesn't work yet. */
803 add_param_to_type (&in_function_type, sym);
804 #endif
805 add_symbol_to_list (sym, &local_symbols);
806
807 #if TARGET_BYTE_ORDER == LITTLE_ENDIAN
808 /* On little-endian machines, this crud is never necessary, and,
809 if the extra bytes contain garbage, is harmful. */
810 break;
811 #else /* Big endian. */
812 /* If it's gcc-compiled, if it says `short', believe it. */
813 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
814 break;
815
816 #if !BELIEVE_PCC_PROMOTION
817 {
818 /* This is the signed type which arguments get promoted to. */
819 static struct type *pcc_promotion_type;
820 /* This is the unsigned type which arguments get promoted to. */
821 static struct type *pcc_unsigned_promotion_type;
822
823 /* Call it "int" because this is mainly C lossage. */
824 if (pcc_promotion_type == NULL)
825 pcc_promotion_type =
826 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
827 0, "int", NULL);
828
829 if (pcc_unsigned_promotion_type == NULL)
830 pcc_unsigned_promotion_type =
831 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
832 TYPE_FLAG_UNSIGNED, "unsigned int", NULL);
833
834 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
835 /* This macro is defined on machines (e.g. sparc) where
836 we should believe the type of a PCC 'short' argument,
837 but shouldn't believe the address (the address is
838 the address of the corresponding int).
839
840 My guess is that this correction, as opposed to changing
841 the parameter to an 'int' (as done below, for PCC
842 on most machines), is the right thing to do
843 on all machines, but I don't want to risk breaking
844 something that already works. On most PCC machines,
845 the sparc problem doesn't come up because the calling
846 function has to zero the top bytes (not knowing whether
847 the called function wants an int or a short), so there
848 is little practical difference between an int and a short
849 (except perhaps what happens when the GDB user types
850 "print short_arg = 0x10000;").
851
852 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
853 actually produces the correct address (we don't need to fix it
854 up). I made this code adapt so that it will offset the symbol
855 if it was pointing at an int-aligned location and not
856 otherwise. This way you can use the same gdb for 4.0.x and
857 4.1 systems.
858
859 If the parameter is shorter than an int, and is integral
860 (e.g. char, short, or unsigned equivalent), and is claimed to
861 be passed on an integer boundary, don't believe it! Offset the
862 parameter's address to the tail-end of that integer. */
863
864 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
865 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
866 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (pcc_promotion_type))
867 {
868 SYMBOL_VALUE (sym) += TYPE_LENGTH (pcc_promotion_type)
869 - TYPE_LENGTH (SYMBOL_TYPE (sym));
870 }
871 break;
872
873 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
874
875 /* If PCC says a parameter is a short or a char,
876 it is really an int. */
877 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (pcc_promotion_type)
878 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
879 {
880 SYMBOL_TYPE (sym) =
881 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
882 ? pcc_unsigned_promotion_type
883 : pcc_promotion_type;
884 }
885 break;
886
887 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
888 }
889 #endif /* !BELIEVE_PCC_PROMOTION. */
890 #endif /* Big endian. */
891
892 case 'P':
893 /* acc seems to use P to delare the prototypes of functions that
894 are referenced by this file. gdb is not prepared to deal
895 with this extra information. FIXME, it ought to. */
896 if (type == N_FUN)
897 {
898 read_type (&p, objfile);
899 goto process_prototype_types;
900 }
901 /*FALLTHROUGH*/
902
903 case 'R':
904 /* Parameter which is in a register. */
905 SYMBOL_TYPE (sym) = read_type (&p, objfile);
906 SYMBOL_CLASS (sym) = LOC_REGPARM;
907 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
908 if (SYMBOL_VALUE (sym) >= NUM_REGS)
909 {
910 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
911 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
912 }
913 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
914 add_symbol_to_list (sym, &local_symbols);
915 break;
916
917 case 'r':
918 /* Register variable (either global or local). */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_CLASS (sym) = LOC_REGISTER;
921 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
922 if (SYMBOL_VALUE (sym) >= NUM_REGS)
923 {
924 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
925 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
926 }
927 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
928 if (within_function)
929 {
930 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
931 name to represent an argument passed in a register.
932 GCC uses 'P' for the same case. So if we find such a symbol pair
933 we combine it into one 'P' symbol.
934 Note that this code illegally combines
935 main(argc) int argc; { register int argc = 1; }
936 but this case is considered pathological and causes a warning
937 from a decent compiler. */
938 if (local_symbols
939 && local_symbols->nsyms > 0)
940 {
941 struct symbol *prev_sym;
942 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
943 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
944 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
945 {
946 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
947 /* Use the type from the LOC_REGISTER; that is the type
948 that is actually in that register. */
949 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
950 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
951 sym = prev_sym;
952 break;
953 }
954 }
955 add_symbol_to_list (sym, &local_symbols);
956 }
957 else
958 add_symbol_to_list (sym, &file_symbols);
959 break;
960
961 case 'S':
962 /* Static symbol at top level of file */
963 SYMBOL_TYPE (sym) = read_type (&p, objfile);
964 SYMBOL_CLASS (sym) = LOC_STATIC;
965 SYMBOL_VALUE_ADDRESS (sym) = valu;
966 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
967 add_symbol_to_list (sym, &file_symbols);
968 break;
969
970 case 't':
971 SYMBOL_TYPE (sym) = read_type (&p, objfile);
972
973 /* For a nameless type, we don't want a create a symbol, thus we
974 did not use `sym'. Return without further processing. */
975 if (nameless) return NULL;
976
977 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
978 SYMBOL_VALUE (sym) = valu;
979 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
980 /* C++ vagaries: we may have a type which is derived from
981 a base type which did not have its name defined when the
982 derived class was output. We fill in the derived class's
983 base part member's name here in that case. */
984 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
985 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
986 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
987 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
988 {
989 int j;
990 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
991 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
992 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
993 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
994 }
995
996 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
997 {
998 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
999 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1000 {
1001 /* If we are giving a name to a type such as "pointer to
1002 foo" or "function returning foo", we better not set
1003 the TYPE_NAME. If the program contains "typedef char
1004 *caddr_t;", we don't want all variables of type char
1005 * to print as caddr_t. This is not just a
1006 consequence of GDB's type management; PCC and GCC (at
1007 least through version 2.4) both output variables of
1008 either type char * or caddr_t with the type number
1009 defined in the 't' symbol for caddr_t. If a future
1010 compiler cleans this up it GDB is not ready for it
1011 yet, but if it becomes ready we somehow need to
1012 disable this check (without breaking the PCC/GCC2.4
1013 case).
1014
1015 Sigh.
1016
1017 Fortunately, this check seems not to be necessary
1018 for anything except pointers or functions. */
1019 }
1020 else
1021 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_NAME (sym);
1022 }
1023
1024 add_symbol_to_list (sym, &file_symbols);
1025 break;
1026
1027 case 'T':
1028 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1029 by 't' which means we are typedef'ing it as well. */
1030 synonym = *p == 't';
1031
1032 if (synonym)
1033 {
1034 p++;
1035 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1036 strlen (SYMBOL_NAME (sym)),
1037 &objfile -> symbol_obstack);
1038 }
1039 /* The semantics of C++ state that "struct foo { ... }" also defines
1040 a typedef for "foo". Unfortunately, cfront never makes the typedef
1041 when translating C++ into C. We make the typedef here so that
1042 "ptype foo" works as expected for cfront translated code. */
1043 else if (current_subfile->language == language_cplus)
1044 {
1045 synonym = 1;
1046 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
1047 strlen (SYMBOL_NAME (sym)),
1048 &objfile -> symbol_obstack);
1049 }
1050
1051 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1052
1053 /* For a nameless type, we don't want a create a symbol, thus we
1054 did not use `sym'. Return without further processing. */
1055 if (nameless) return NULL;
1056
1057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
1058 SYMBOL_VALUE (sym) = valu;
1059 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
1060 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1061 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1062 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1063 add_symbol_to_list (sym, &file_symbols);
1064
1065 if (synonym)
1066 {
1067 /* Clone the sym and then modify it. */
1068 register struct symbol *typedef_sym = (struct symbol *)
1069 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
1070 *typedef_sym = *sym;
1071 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
1072 SYMBOL_VALUE (typedef_sym) = valu;
1073 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
1074 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1075 TYPE_NAME (SYMBOL_TYPE (sym))
1076 = obconcat (&objfile -> type_obstack, "", "", SYMBOL_NAME (sym));
1077 add_symbol_to_list (typedef_sym, &file_symbols);
1078 }
1079 break;
1080
1081 case 'V':
1082 /* Static symbol of local scope */
1083 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1084 SYMBOL_CLASS (sym) = LOC_STATIC;
1085 SYMBOL_VALUE_ADDRESS (sym) = valu;
1086 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1087 add_symbol_to_list (sym, &local_symbols);
1088 break;
1089
1090 case 'v':
1091 /* Reference parameter */
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 SYMBOL_CLASS (sym) = LOC_REF_ARG;
1094 SYMBOL_VALUE (sym) = valu;
1095 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1096 add_symbol_to_list (sym, &local_symbols);
1097 break;
1098
1099 case 'X':
1100 /* This is used by Sun FORTRAN for "function result value".
1101 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1102 that Pascal uses it too, but when I tried it Pascal used
1103 "x:3" (local symbol) instead. */
1104 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1105 SYMBOL_CLASS (sym) = LOC_LOCAL;
1106 SYMBOL_VALUE (sym) = valu;
1107 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1108 add_symbol_to_list (sym, &local_symbols);
1109 break;
1110
1111 default:
1112 SYMBOL_TYPE (sym) = error_type (&p);
1113 SYMBOL_CLASS (sym) = LOC_CONST;
1114 SYMBOL_VALUE (sym) = 0;
1115 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1116 add_symbol_to_list (sym, &file_symbols);
1117 break;
1118 }
1119
1120 /* When passing structures to a function, some systems sometimes pass
1121 the address in a register, not the structure itself.
1122
1123 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1124 to LOC_REGPARM_ADDR for structures and unions. */
1125
1126 #if !defined (REG_STRUCT_HAS_ADDR)
1127 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1128 #endif
1129
1130 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1131 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1132 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1133 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1134 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1135
1136 return sym;
1137 }
1138
1139 \f
1140 /* Skip rest of this symbol and return an error type.
1141
1142 General notes on error recovery: error_type always skips to the
1143 end of the symbol (modulo cretinous dbx symbol name continuation).
1144 Thus code like this:
1145
1146 if (*(*pp)++ != ';')
1147 return error_type (pp);
1148
1149 is wrong because if *pp starts out pointing at '\0' (typically as the
1150 result of an earlier error), it will be incremented to point to the
1151 start of the next symbol, which might produce strange results, at least
1152 if you run off the end of the string table. Instead use
1153
1154 if (**pp != ';')
1155 return error_type (pp);
1156 ++*pp;
1157
1158 or
1159
1160 if (**pp != ';')
1161 foo = error_type (pp);
1162 else
1163 ++*pp;
1164
1165 And in case it isn't obvious, the point of all this hair is so the compiler
1166 can define new types and new syntaxes, and old versions of the
1167 debugger will be able to read the new symbol tables. */
1168
1169 static struct type *
1170 error_type (pp)
1171 char **pp;
1172 {
1173 complain (&error_type_complaint);
1174 while (1)
1175 {
1176 /* Skip to end of symbol. */
1177 while (**pp != '\0')
1178 {
1179 (*pp)++;
1180 }
1181
1182 /* Check for and handle cretinous dbx symbol name continuation! */
1183 if ((*pp)[-1] == '\\')
1184 {
1185 *pp = next_symbol_text ();
1186 }
1187 else
1188 {
1189 break;
1190 }
1191 }
1192 return (builtin_type_error);
1193 }
1194
1195 \f
1196 /* Read type information or a type definition; return the type. Even
1197 though this routine accepts either type information or a type
1198 definition, the distinction is relevant--some parts of stabsread.c
1199 assume that type information starts with a digit, '-', or '(' in
1200 deciding whether to call read_type. */
1201
1202 struct type *
1203 read_type (pp, objfile)
1204 register char **pp;
1205 struct objfile *objfile;
1206 {
1207 register struct type *type = 0;
1208 struct type *type1;
1209 int typenums[2];
1210 int xtypenums[2];
1211 char type_descriptor;
1212
1213 /* Size in bits of type if specified by a type attribute, or -1 if
1214 there is no size attribute. */
1215 int type_size = -1;
1216
1217 /* Used to distinguish string and bitstring from char-array and set. */
1218 int is_string = 0;
1219
1220 /* Read type number if present. The type number may be omitted.
1221 for instance in a two-dimensional array declared with type
1222 "ar1;1;10;ar1;1;10;4". */
1223 if ((**pp >= '0' && **pp <= '9')
1224 || **pp == '('
1225 || **pp == '-')
1226 {
1227 if (read_type_number (pp, typenums) != 0)
1228 return error_type (pp);
1229
1230 /* Type is not being defined here. Either it already exists,
1231 or this is a forward reference to it. dbx_alloc_type handles
1232 both cases. */
1233 if (**pp != '=')
1234 return dbx_alloc_type (typenums, objfile);
1235
1236 /* Type is being defined here. */
1237 /* Skip the '='. */
1238 ++(*pp);
1239
1240 while (**pp == '@')
1241 {
1242 char *p = *pp + 1;
1243 /* It might be a type attribute or a member type. */
1244 if (isdigit (*p) || *p == '(' || *p == '-')
1245 /* Member type. */
1246 break;
1247 else
1248 {
1249 /* Type attributes. */
1250 char *attr = p;
1251
1252 /* Skip to the semicolon. */
1253 while (*p != ';' && *p != '\0')
1254 ++p;
1255 *pp = p;
1256 if (*p == '\0')
1257 return error_type (pp);
1258 else
1259 /* Skip the semicolon. */
1260 ++*pp;
1261
1262 switch (*attr)
1263 {
1264 case 's':
1265 type_size = atoi (attr + 1);
1266 if (type_size <= 0)
1267 type_size = -1;
1268 break;
1269
1270 case 'S':
1271 is_string = 1;
1272 break;
1273
1274 default:
1275 /* Ignore unrecognized type attributes, so future compilers
1276 can invent new ones. */
1277 break;
1278 }
1279 }
1280 }
1281 /* Skip the type descriptor, we get it below with (*pp)[-1]. */
1282 ++(*pp);
1283 }
1284 else
1285 {
1286 /* 'typenums=' not present, type is anonymous. Read and return
1287 the definition, but don't put it in the type vector. */
1288 typenums[0] = typenums[1] = -1;
1289 (*pp)++;
1290 }
1291
1292 type_descriptor = (*pp)[-1];
1293 switch (type_descriptor)
1294 {
1295 case 'x':
1296 {
1297 enum type_code code;
1298
1299 /* Used to index through file_symbols. */
1300 struct pending *ppt;
1301 int i;
1302
1303 /* Name including "struct", etc. */
1304 char *type_name;
1305
1306 {
1307 char *from, *to, *p;
1308
1309 /* Set the type code according to the following letter. */
1310 switch ((*pp)[0])
1311 {
1312 case 's':
1313 code = TYPE_CODE_STRUCT;
1314 break;
1315 case 'u':
1316 code = TYPE_CODE_UNION;
1317 break;
1318 case 'e':
1319 code = TYPE_CODE_ENUM;
1320 break;
1321 default:
1322 {
1323 /* Complain and keep going, so compilers can invent new
1324 cross-reference types. */
1325 static struct complaint msg =
1326 {"Unrecognized cross-reference type `%c'", 0, 0};
1327 complain (&msg, (*pp)[0]);
1328 code = TYPE_CODE_STRUCT;
1329 break;
1330 }
1331 }
1332
1333 p = strchr(*pp, ':');
1334 if (p == NULL)
1335 return error_type (pp);
1336 while (p[1] == ':')
1337 {
1338 p += 2;
1339 p = strchr(p, ':');
1340 if (p == NULL)
1341 return error_type (pp);
1342 }
1343 to = type_name =
1344 (char *)obstack_alloc (&objfile->type_obstack, p - *pp + 1);
1345
1346 /* Copy the name. */
1347 from = *pp + 1;
1348 while (from < p)
1349 *to++ = *from++;
1350 *to = '\0';
1351
1352 /* Set the pointer ahead of the name which we just read, and
1353 the colon. */
1354 *pp = from + 1;
1355 }
1356
1357 /* Now check to see whether the type has already been
1358 declared. This was written for arrays of cross-referenced
1359 types before we had TYPE_CODE_TARGET_STUBBED, so I'm pretty
1360 sure it is not necessary anymore. But it might be a good
1361 idea, to save a little memory. */
1362
1363 for (ppt = file_symbols; ppt; ppt = ppt->next)
1364 for (i = 0; i < ppt->nsyms; i++)
1365 {
1366 struct symbol *sym = ppt->symbol[i];
1367
1368 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1369 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1370 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1371 && STREQ (SYMBOL_NAME (sym), type_name))
1372 {
1373 obstack_free (&objfile -> type_obstack, type_name);
1374 type = SYMBOL_TYPE (sym);
1375 return type;
1376 }
1377 }
1378
1379 /* Didn't find the type to which this refers, so we must
1380 be dealing with a forward reference. Allocate a type
1381 structure for it, and keep track of it so we can
1382 fill in the rest of the fields when we get the full
1383 type. */
1384 type = dbx_alloc_type (typenums, objfile);
1385 TYPE_CODE (type) = code;
1386 TYPE_TAG_NAME (type) = type_name;
1387 INIT_CPLUS_SPECIFIC(type);
1388 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1389
1390 add_undefined_type (type);
1391 return type;
1392 }
1393
1394 case '-': /* RS/6000 built-in type */
1395 case '0':
1396 case '1':
1397 case '2':
1398 case '3':
1399 case '4':
1400 case '5':
1401 case '6':
1402 case '7':
1403 case '8':
1404 case '9':
1405 case '(':
1406
1407 (*pp)--;
1408 if (read_type_number (pp, xtypenums) != 0)
1409 return error_type (pp);
1410
1411 if (typenums[0] == xtypenums[0] && typenums[1] == xtypenums[1])
1412 /* It's being defined as itself. That means it is "void". */
1413 type = init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
1414 else
1415 {
1416 struct type *xtype = *dbx_lookup_type (xtypenums);
1417
1418 /* This can happen if we had '-' followed by a garbage character,
1419 for example. */
1420 if (xtype == NULL)
1421 return error_type (pp);
1422
1423 /* The type is being defined to another type. So we copy the type.
1424 This loses if we copy a C++ class and so we lose track of how
1425 the names are mangled (but g++ doesn't output stabs like this
1426 now anyway). */
1427
1428 type = alloc_type (objfile);
1429 memcpy (type, xtype, sizeof (struct type));
1430
1431 /* The idea behind clearing the names is that the only purpose
1432 for defining a type to another type is so that the name of
1433 one can be different. So we probably don't need to worry much
1434 about the case where the compiler doesn't give a name to the
1435 new type. */
1436 TYPE_NAME (type) = NULL;
1437 TYPE_TAG_NAME (type) = NULL;
1438 }
1439 if (typenums[0] != -1)
1440 *dbx_lookup_type (typenums) = type;
1441 break;
1442
1443 /* In the following types, we must be sure to overwrite any existing
1444 type that the typenums refer to, rather than allocating a new one
1445 and making the typenums point to the new one. This is because there
1446 may already be pointers to the existing type (if it had been
1447 forward-referenced), and we must change it to a pointer, function,
1448 reference, or whatever, *in-place*. */
1449
1450 case '*':
1451 type1 = read_type (pp, objfile);
1452 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1453 break;
1454
1455 case '&': /* Reference to another type */
1456 type1 = read_type (pp, objfile);
1457 type = make_reference_type (type1, dbx_lookup_type (typenums));
1458 break;
1459
1460 case 'f': /* Function returning another type */
1461 type1 = read_type (pp, objfile);
1462 type = make_function_type (type1, dbx_lookup_type (typenums));
1463 break;
1464
1465 case 'k': /* Const qualifier on some type (Sun) */
1466 type = read_type (pp, objfile);
1467 /* FIXME! For now, we ignore const and volatile qualifiers. */
1468 break;
1469
1470 case 'B': /* Volatile qual on some type (Sun) */
1471 type = read_type (pp, objfile);
1472 /* FIXME! For now, we ignore const and volatile qualifiers. */
1473 break;
1474
1475 /* FIXME -- we should be doing smash_to_XXX types here. */
1476 case '@': /* Member (class & variable) type */
1477 {
1478 struct type *domain = read_type (pp, objfile);
1479 struct type *memtype;
1480
1481 if (**pp != ',')
1482 /* Invalid member type data format. */
1483 return error_type (pp);
1484 ++*pp;
1485
1486 memtype = read_type (pp, objfile);
1487 type = dbx_alloc_type (typenums, objfile);
1488 smash_to_member_type (type, domain, memtype);
1489 }
1490 break;
1491
1492 case '#': /* Method (class & fn) type */
1493 if ((*pp)[0] == '#')
1494 {
1495 /* We'll get the parameter types from the name. */
1496 struct type *return_type;
1497
1498 (*pp)++;
1499 return_type = read_type (pp, objfile);
1500 if (*(*pp)++ != ';')
1501 complain (&invalid_member_complaint, symnum);
1502 type = allocate_stub_method (return_type);
1503 if (typenums[0] != -1)
1504 *dbx_lookup_type (typenums) = type;
1505 }
1506 else
1507 {
1508 struct type *domain = read_type (pp, objfile);
1509 struct type *return_type;
1510 struct type **args;
1511
1512 if (**pp != ',')
1513 /* Invalid member type data format. */
1514 return error_type (pp);
1515 else
1516 ++(*pp);
1517
1518 return_type = read_type (pp, objfile);
1519 args = read_args (pp, ';', objfile);
1520 type = dbx_alloc_type (typenums, objfile);
1521 smash_to_method_type (type, domain, return_type, args);
1522 }
1523 break;
1524
1525 case 'r': /* Range type */
1526 type = read_range_type (pp, typenums, objfile);
1527 if (typenums[0] != -1)
1528 *dbx_lookup_type (typenums) = type;
1529 break;
1530
1531 case 'b': /* Sun ACC builtin int type */
1532 type = read_sun_builtin_type (pp, typenums, objfile);
1533 if (typenums[0] != -1)
1534 *dbx_lookup_type (typenums) = type;
1535 break;
1536
1537 case 'R': /* Sun ACC builtin float type */
1538 type = read_sun_floating_type (pp, typenums, objfile);
1539 if (typenums[0] != -1)
1540 *dbx_lookup_type (typenums) = type;
1541 break;
1542
1543 case 'e': /* Enumeration type */
1544 type = dbx_alloc_type (typenums, objfile);
1545 type = read_enum_type (pp, type, objfile);
1546 if (typenums[0] != -1)
1547 *dbx_lookup_type (typenums) = type;
1548 break;
1549
1550 case 's': /* Struct type */
1551 case 'u': /* Union type */
1552 type = dbx_alloc_type (typenums, objfile);
1553 if (!TYPE_NAME (type))
1554 {
1555 TYPE_NAME (type) = type_synonym_name;
1556 }
1557 type_synonym_name = NULL;
1558 switch (type_descriptor)
1559 {
1560 case 's':
1561 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1562 break;
1563 case 'u':
1564 TYPE_CODE (type) = TYPE_CODE_UNION;
1565 break;
1566 }
1567 type = read_struct_type (pp, type, objfile);
1568 break;
1569
1570 case 'a': /* Array type */
1571 if (**pp != 'r')
1572 return error_type (pp);
1573 ++*pp;
1574
1575 type = dbx_alloc_type (typenums, objfile);
1576 type = read_array_type (pp, type, objfile);
1577 if (is_string)
1578 TYPE_CODE (type) = TYPE_CODE_STRING;
1579 break;
1580
1581 case 'S':
1582 type1 = read_type (pp, objfile);
1583 type = create_set_type ((struct type*) NULL, type1);
1584 if (is_string)
1585 TYPE_CODE (type) = TYPE_CODE_BITSTRING;
1586 if (typenums[0] != -1)
1587 *dbx_lookup_type (typenums) = type;
1588 break;
1589
1590 default:
1591 --*pp; /* Go back to the symbol in error */
1592 /* Particularly important if it was \0! */
1593 return error_type (pp);
1594 }
1595
1596 if (type == 0)
1597 {
1598 warning ("GDB internal error, type is NULL in stabsread.c\n");
1599 return error_type (pp);
1600 }
1601
1602 /* Size specified in a type attribute overrides any other size. */
1603 if (type_size != -1)
1604 TYPE_LENGTH (type) = type_size / TARGET_CHAR_BIT;
1605
1606 return type;
1607 }
1608 \f
1609 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1610 Return the proper type node for a given builtin type number. */
1611
1612 static struct type *
1613 rs6000_builtin_type (typenum)
1614 int typenum;
1615 {
1616 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
1617 #define NUMBER_RECOGNIZED 30
1618 /* This includes an empty slot for type number -0. */
1619 static struct type *negative_types[NUMBER_RECOGNIZED + 1];
1620 struct type *rettype = NULL;
1621
1622 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
1623 {
1624 complain (&rs6000_builtin_complaint, typenum);
1625 return builtin_type_error;
1626 }
1627 if (negative_types[-typenum] != NULL)
1628 return negative_types[-typenum];
1629
1630 #if TARGET_CHAR_BIT != 8
1631 #error This code wrong for TARGET_CHAR_BIT not 8
1632 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
1633 that if that ever becomes not true, the correct fix will be to
1634 make the size in the struct type to be in bits, not in units of
1635 TARGET_CHAR_BIT. */
1636 #endif
1637
1638 switch (-typenum)
1639 {
1640 case 1:
1641 /* The size of this and all the other types are fixed, defined
1642 by the debugging format. If there is a type called "int" which
1643 is other than 32 bits, then it should use a new negative type
1644 number (or avoid negative type numbers for that case).
1645 See stabs.texinfo. */
1646 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", NULL);
1647 break;
1648 case 2:
1649 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", NULL);
1650 break;
1651 case 3:
1652 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", NULL);
1653 break;
1654 case 4:
1655 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", NULL);
1656 break;
1657 case 5:
1658 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
1659 "unsigned char", NULL);
1660 break;
1661 case 6:
1662 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", NULL);
1663 break;
1664 case 7:
1665 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
1666 "unsigned short", NULL);
1667 break;
1668 case 8:
1669 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1670 "unsigned int", NULL);
1671 break;
1672 case 9:
1673 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1674 "unsigned", NULL);
1675 case 10:
1676 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
1677 "unsigned long", NULL);
1678 break;
1679 case 11:
1680 rettype = init_type (TYPE_CODE_VOID, 0, 0, "void", NULL);
1681 break;
1682 case 12:
1683 /* IEEE single precision (32 bit). */
1684 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", NULL);
1685 break;
1686 case 13:
1687 /* IEEE double precision (64 bit). */
1688 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", NULL);
1689 break;
1690 case 14:
1691 /* This is an IEEE double on the RS/6000, and different machines with
1692 different sizes for "long double" should use different negative
1693 type numbers. See stabs.texinfo. */
1694 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", NULL);
1695 break;
1696 case 15:
1697 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", NULL);
1698 break;
1699 case 16:
1700 rettype = init_type (TYPE_CODE_BOOL, 4, 0, "boolean", NULL);
1701 break;
1702 case 17:
1703 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", NULL);
1704 break;
1705 case 18:
1706 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", NULL);
1707 break;
1708 case 19:
1709 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", NULL);
1710 break;
1711 case 20:
1712 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
1713 "character", NULL);
1714 break;
1715 case 21:
1716 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
1717 "logical*1", NULL);
1718 break;
1719 case 22:
1720 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
1721 "logical*2", NULL);
1722 break;
1723 case 23:
1724 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1725 "logical*4", NULL);
1726 break;
1727 case 24:
1728 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
1729 "logical", NULL);
1730 break;
1731 case 25:
1732 /* Complex type consisting of two IEEE single precision values. */
1733 rettype = init_type (TYPE_CODE_ERROR, 8, 0, "complex", NULL);
1734 break;
1735 case 26:
1736 /* Complex type consisting of two IEEE double precision values. */
1737 rettype = init_type (TYPE_CODE_ERROR, 16, 0, "double complex", NULL);
1738 break;
1739 case 27:
1740 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", NULL);
1741 break;
1742 case 28:
1743 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", NULL);
1744 break;
1745 case 29:
1746 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", NULL);
1747 break;
1748 case 30:
1749 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", NULL);
1750 break;
1751 }
1752 negative_types[-typenum] = rettype;
1753 return rettype;
1754 }
1755 \f
1756 /* This page contains subroutines of read_type. */
1757
1758 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1759 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1760 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1761 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
1762
1763 /* Read member function stabs info for C++ classes. The form of each member
1764 function data is:
1765
1766 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1767
1768 An example with two member functions is:
1769
1770 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1771
1772 For the case of overloaded operators, the format is op$::*.funcs, where
1773 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1774 name (such as `+=') and `.' marks the end of the operator name.
1775
1776 Returns 1 for success, 0 for failure. */
1777
1778 static int
1779 read_member_functions (fip, pp, type, objfile)
1780 struct field_info *fip;
1781 char **pp;
1782 struct type *type;
1783 struct objfile *objfile;
1784 {
1785 int nfn_fields = 0;
1786 int length = 0;
1787 /* Total number of member functions defined in this class. If the class
1788 defines two `f' functions, and one `g' function, then this will have
1789 the value 3. */
1790 int total_length = 0;
1791 int i;
1792 struct next_fnfield
1793 {
1794 struct next_fnfield *next;
1795 struct fn_field fn_field;
1796 } *sublist;
1797 struct type *look_ahead_type;
1798 struct next_fnfieldlist *new_fnlist;
1799 struct next_fnfield *new_sublist;
1800 char *main_fn_name;
1801 register char *p;
1802
1803 /* Process each list until we find something that is not a member function
1804 or find the end of the functions. */
1805
1806 while (**pp != ';')
1807 {
1808 /* We should be positioned at the start of the function name.
1809 Scan forward to find the first ':' and if it is not the
1810 first of a "::" delimiter, then this is not a member function. */
1811 p = *pp;
1812 while (*p != ':')
1813 {
1814 p++;
1815 }
1816 if (p[1] != ':')
1817 {
1818 break;
1819 }
1820
1821 sublist = NULL;
1822 look_ahead_type = NULL;
1823 length = 0;
1824
1825 new_fnlist = (struct next_fnfieldlist *)
1826 xmalloc (sizeof (struct next_fnfieldlist));
1827 make_cleanup (free, new_fnlist);
1828 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1829
1830 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1831 {
1832 /* This is a completely wierd case. In order to stuff in the
1833 names that might contain colons (the usual name delimiter),
1834 Mike Tiemann defined a different name format which is
1835 signalled if the identifier is "op$". In that case, the
1836 format is "op$::XXXX." where XXXX is the name. This is
1837 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1838 /* This lets the user type "break operator+".
1839 We could just put in "+" as the name, but that wouldn't
1840 work for "*". */
1841 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1842 char *o = opname + 3;
1843
1844 /* Skip past '::'. */
1845 *pp = p + 2;
1846
1847 STABS_CONTINUE (pp);
1848 p = *pp;
1849 while (*p != '.')
1850 {
1851 *o++ = *p++;
1852 }
1853 main_fn_name = savestring (opname, o - opname);
1854 /* Skip past '.' */
1855 *pp = p + 1;
1856 }
1857 else
1858 {
1859 main_fn_name = savestring (*pp, p - *pp);
1860 /* Skip past '::'. */
1861 *pp = p + 2;
1862 }
1863 new_fnlist -> fn_fieldlist.name = main_fn_name;
1864
1865 do
1866 {
1867 new_sublist =
1868 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1869 make_cleanup (free, new_sublist);
1870 memset (new_sublist, 0, sizeof (struct next_fnfield));
1871
1872 /* Check for and handle cretinous dbx symbol name continuation! */
1873 if (look_ahead_type == NULL)
1874 {
1875 /* Normal case. */
1876 STABS_CONTINUE (pp);
1877
1878 new_sublist -> fn_field.type = read_type (pp, objfile);
1879 if (**pp != ':')
1880 {
1881 /* Invalid symtab info for member function. */
1882 return 0;
1883 }
1884 }
1885 else
1886 {
1887 /* g++ version 1 kludge */
1888 new_sublist -> fn_field.type = look_ahead_type;
1889 look_ahead_type = NULL;
1890 }
1891
1892 (*pp)++;
1893 p = *pp;
1894 while (*p != ';')
1895 {
1896 p++;
1897 }
1898
1899 /* If this is just a stub, then we don't have the real name here. */
1900
1901 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1902 {
1903 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1904 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1905 new_sublist -> fn_field.is_stub = 1;
1906 }
1907 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1908 *pp = p + 1;
1909
1910 /* Set this member function's visibility fields. */
1911 switch (*(*pp)++)
1912 {
1913 case VISIBILITY_PRIVATE:
1914 new_sublist -> fn_field.is_private = 1;
1915 break;
1916 case VISIBILITY_PROTECTED:
1917 new_sublist -> fn_field.is_protected = 1;
1918 break;
1919 }
1920
1921 STABS_CONTINUE (pp);
1922 switch (**pp)
1923 {
1924 case 'A': /* Normal functions. */
1925 new_sublist -> fn_field.is_const = 0;
1926 new_sublist -> fn_field.is_volatile = 0;
1927 (*pp)++;
1928 break;
1929 case 'B': /* `const' member functions. */
1930 new_sublist -> fn_field.is_const = 1;
1931 new_sublist -> fn_field.is_volatile = 0;
1932 (*pp)++;
1933 break;
1934 case 'C': /* `volatile' member function. */
1935 new_sublist -> fn_field.is_const = 0;
1936 new_sublist -> fn_field.is_volatile = 1;
1937 (*pp)++;
1938 break;
1939 case 'D': /* `const volatile' member function. */
1940 new_sublist -> fn_field.is_const = 1;
1941 new_sublist -> fn_field.is_volatile = 1;
1942 (*pp)++;
1943 break;
1944 case '*': /* File compiled with g++ version 1 -- no info */
1945 case '?':
1946 case '.':
1947 break;
1948 default:
1949 complain (&const_vol_complaint, **pp);
1950 break;
1951 }
1952
1953 switch (*(*pp)++)
1954 {
1955 case '*':
1956 {
1957 int nbits;
1958 /* virtual member function, followed by index.
1959 The sign bit is set to distinguish pointers-to-methods
1960 from virtual function indicies. Since the array is
1961 in words, the quantity must be shifted left by 1
1962 on 16 bit machine, and by 2 on 32 bit machine, forcing
1963 the sign bit out, and usable as a valid index into
1964 the array. Remove the sign bit here. */
1965 new_sublist -> fn_field.voffset =
1966 (0x7fffffff & read_huge_number (pp, ';', &nbits)) + 2;
1967 if (nbits != 0)
1968 return 0;
1969
1970 STABS_CONTINUE (pp);
1971 if (**pp == ';' || **pp == '\0')
1972 {
1973 /* Must be g++ version 1. */
1974 new_sublist -> fn_field.fcontext = 0;
1975 }
1976 else
1977 {
1978 /* Figure out from whence this virtual function came.
1979 It may belong to virtual function table of
1980 one of its baseclasses. */
1981 look_ahead_type = read_type (pp, objfile);
1982 if (**pp == ':')
1983 {
1984 /* g++ version 1 overloaded methods. */
1985 }
1986 else
1987 {
1988 new_sublist -> fn_field.fcontext = look_ahead_type;
1989 if (**pp != ';')
1990 {
1991 return 0;
1992 }
1993 else
1994 {
1995 ++*pp;
1996 }
1997 look_ahead_type = NULL;
1998 }
1999 }
2000 break;
2001 }
2002 case '?':
2003 /* static member function. */
2004 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
2005 if (strncmp (new_sublist -> fn_field.physname,
2006 main_fn_name, strlen (main_fn_name)))
2007 {
2008 new_sublist -> fn_field.is_stub = 1;
2009 }
2010 break;
2011
2012 default:
2013 /* error */
2014 complain (&member_fn_complaint, (*pp)[-1]);
2015 /* Fall through into normal member function. */
2016
2017 case '.':
2018 /* normal member function. */
2019 new_sublist -> fn_field.voffset = 0;
2020 new_sublist -> fn_field.fcontext = 0;
2021 break;
2022 }
2023
2024 new_sublist -> next = sublist;
2025 sublist = new_sublist;
2026 length++;
2027 STABS_CONTINUE (pp);
2028 }
2029 while (**pp != ';' && **pp != '\0');
2030
2031 (*pp)++;
2032
2033 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
2034 obstack_alloc (&objfile -> type_obstack,
2035 sizeof (struct fn_field) * length);
2036 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
2037 sizeof (struct fn_field) * length);
2038 for (i = length; (i--, sublist); sublist = sublist -> next)
2039 {
2040 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
2041 }
2042
2043 new_fnlist -> fn_fieldlist.length = length;
2044 new_fnlist -> next = fip -> fnlist;
2045 fip -> fnlist = new_fnlist;
2046 nfn_fields++;
2047 total_length += length;
2048 STABS_CONTINUE (pp);
2049 }
2050
2051 if (nfn_fields)
2052 {
2053 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2054 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2055 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2056 memset (TYPE_FN_FIELDLISTS (type), 0,
2057 sizeof (struct fn_fieldlist) * nfn_fields);
2058 TYPE_NFN_FIELDS (type) = nfn_fields;
2059 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
2060 }
2061
2062 return 1;
2063 }
2064
2065 /* Special GNU C++ name.
2066
2067 Returns 1 for success, 0 for failure. "failure" means that we can't
2068 keep parsing and it's time for error_type(). */
2069
2070 static int
2071 read_cpp_abbrev (fip, pp, type, objfile)
2072 struct field_info *fip;
2073 char **pp;
2074 struct type *type;
2075 struct objfile *objfile;
2076 {
2077 register char *p;
2078 char *name;
2079 char cpp_abbrev;
2080 struct type *context;
2081
2082 p = *pp;
2083 if (*++p == 'v')
2084 {
2085 name = NULL;
2086 cpp_abbrev = *++p;
2087
2088 *pp = p + 1;
2089
2090 /* At this point, *pp points to something like "22:23=*22...",
2091 where the type number before the ':' is the "context" and
2092 everything after is a regular type definition. Lookup the
2093 type, find it's name, and construct the field name. */
2094
2095 context = read_type (pp, objfile);
2096
2097 switch (cpp_abbrev)
2098 {
2099 case 'f': /* $vf -- a virtual function table pointer */
2100 fip->list->field.name =
2101 obconcat (&objfile->type_obstack, vptr_name, "", "");
2102 break;
2103
2104 case 'b': /* $vb -- a virtual bsomethingorother */
2105 name = type_name_no_tag (context);
2106 if (name == NULL)
2107 {
2108 complain (&invalid_cpp_type_complaint, symnum);
2109 name = "FOO";
2110 }
2111 fip->list->field.name =
2112 obconcat (&objfile->type_obstack, vb_name, name, "");
2113 break;
2114
2115 default:
2116 complain (&invalid_cpp_abbrev_complaint, *pp);
2117 fip->list->field.name =
2118 obconcat (&objfile->type_obstack,
2119 "INVALID_CPLUSPLUS_ABBREV", "", "");
2120 break;
2121 }
2122
2123 /* At this point, *pp points to the ':'. Skip it and read the
2124 field type. */
2125
2126 p = ++(*pp);
2127 if (p[-1] != ':')
2128 {
2129 complain (&invalid_cpp_abbrev_complaint, *pp);
2130 return 0;
2131 }
2132 fip->list->field.type = read_type (pp, objfile);
2133 if (**pp == ',')
2134 (*pp)++; /* Skip the comma. */
2135 else
2136 return 0;
2137
2138 {
2139 int nbits;
2140 fip->list->field.bitpos = read_huge_number (pp, ';', &nbits);
2141 if (nbits != 0)
2142 return 0;
2143 }
2144 /* This field is unpacked. */
2145 fip->list->field.bitsize = 0;
2146 fip->list->visibility = VISIBILITY_PRIVATE;
2147 }
2148 else
2149 {
2150 complain (&invalid_cpp_abbrev_complaint, *pp);
2151 /* We have no idea what syntax an unrecognized abbrev would have, so
2152 better return 0. If we returned 1, we would need to at least advance
2153 *pp to avoid an infinite loop. */
2154 return 0;
2155 }
2156 return 1;
2157 }
2158
2159 static void
2160 read_one_struct_field (fip, pp, p, type, objfile)
2161 struct field_info *fip;
2162 char **pp;
2163 char *p;
2164 struct type *type;
2165 struct objfile *objfile;
2166 {
2167 fip -> list -> field.name =
2168 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
2169 *pp = p + 1;
2170
2171 /* This means we have a visibility for a field coming. */
2172 if (**pp == '/')
2173 {
2174 (*pp)++;
2175 fip -> list -> visibility = *(*pp)++;
2176 }
2177 else
2178 {
2179 /* normal dbx-style format, no explicit visibility */
2180 fip -> list -> visibility = VISIBILITY_PUBLIC;
2181 }
2182
2183 fip -> list -> field.type = read_type (pp, objfile);
2184 if (**pp == ':')
2185 {
2186 p = ++(*pp);
2187 #if 0
2188 /* Possible future hook for nested types. */
2189 if (**pp == '!')
2190 {
2191 fip -> list -> field.bitpos = (long)-2; /* nested type */
2192 p = ++(*pp);
2193 }
2194 else
2195 #endif
2196 {
2197 /* Static class member. */
2198 fip -> list -> field.bitpos = (long) -1;
2199 }
2200 while (*p != ';')
2201 {
2202 p++;
2203 }
2204 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
2205 *pp = p + 1;
2206 return;
2207 }
2208 else if (**pp != ',')
2209 {
2210 /* Bad structure-type format. */
2211 complain (&stabs_general_complaint, "bad structure-type format");
2212 return;
2213 }
2214
2215 (*pp)++; /* Skip the comma. */
2216
2217 {
2218 int nbits;
2219 fip -> list -> field.bitpos = read_huge_number (pp, ',', &nbits);
2220 if (nbits != 0)
2221 {
2222 complain (&stabs_general_complaint, "bad structure-type format");
2223 return;
2224 }
2225 fip -> list -> field.bitsize = read_huge_number (pp, ';', &nbits);
2226 if (nbits != 0)
2227 {
2228 complain (&stabs_general_complaint, "bad structure-type format");
2229 return;
2230 }
2231 }
2232
2233 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
2234 {
2235 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2236 it is a field which has been optimized out. The correct stab for
2237 this case is to use VISIBILITY_IGNORE, but that is a recent
2238 invention. (2) It is a 0-size array. For example
2239 union { int num; char str[0]; } foo. Printing "<no value>" for
2240 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2241 will continue to work, and a 0-size array as a whole doesn't
2242 have any contents to print.
2243
2244 I suspect this probably could also happen with gcc -gstabs (not
2245 -gstabs+) for static fields, and perhaps other C++ extensions.
2246 Hopefully few people use -gstabs with gdb, since it is intended
2247 for dbx compatibility. */
2248
2249 /* Ignore this field. */
2250 fip -> list-> visibility = VISIBILITY_IGNORE;
2251 }
2252 else
2253 {
2254 /* Detect an unpacked field and mark it as such.
2255 dbx gives a bit size for all fields.
2256 Note that forward refs cannot be packed,
2257 and treat enums as if they had the width of ints. */
2258
2259 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
2260 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
2261 {
2262 fip -> list -> field.bitsize = 0;
2263 }
2264 if ((fip -> list -> field.bitsize
2265 == TARGET_CHAR_BIT * TYPE_LENGTH (fip -> list -> field.type)
2266 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
2267 && (fip -> list -> field.bitsize
2268 == TARGET_INT_BIT)
2269 )
2270 )
2271 &&
2272 fip -> list -> field.bitpos % 8 == 0)
2273 {
2274 fip -> list -> field.bitsize = 0;
2275 }
2276 }
2277 }
2278
2279
2280 /* Read struct or class data fields. They have the form:
2281
2282 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2283
2284 At the end, we see a semicolon instead of a field.
2285
2286 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2287 a static field.
2288
2289 The optional VISIBILITY is one of:
2290
2291 '/0' (VISIBILITY_PRIVATE)
2292 '/1' (VISIBILITY_PROTECTED)
2293 '/2' (VISIBILITY_PUBLIC)
2294 '/9' (VISIBILITY_IGNORE)
2295
2296 or nothing, for C style fields with public visibility.
2297
2298 Returns 1 for success, 0 for failure. */
2299
2300 static int
2301 read_struct_fields (fip, pp, type, objfile)
2302 struct field_info *fip;
2303 char **pp;
2304 struct type *type;
2305 struct objfile *objfile;
2306 {
2307 register char *p;
2308 struct nextfield *new;
2309
2310 /* We better set p right now, in case there are no fields at all... */
2311
2312 p = *pp;
2313
2314 /* Read each data member type until we find the terminating ';' at the end of
2315 the data member list, or break for some other reason such as finding the
2316 start of the member function list. */
2317
2318 while (**pp != ';')
2319 {
2320 STABS_CONTINUE (pp);
2321 /* Get space to record the next field's data. */
2322 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2323 make_cleanup (free, new);
2324 memset (new, 0, sizeof (struct nextfield));
2325 new -> next = fip -> list;
2326 fip -> list = new;
2327
2328 /* Get the field name. */
2329 p = *pp;
2330
2331 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2332 unless the CPLUS_MARKER is followed by an underscore, in
2333 which case it is just the name of an anonymous type, which we
2334 should handle like any other type name. We accept either '$'
2335 or '.', because a field name can never contain one of these
2336 characters except as a CPLUS_MARKER (we probably should be
2337 doing that in most parts of GDB). */
2338
2339 if ((*p == '$' || *p == '.') && p[1] != '_')
2340 {
2341 if (!read_cpp_abbrev (fip, pp, type, objfile))
2342 return 0;
2343 continue;
2344 }
2345
2346 /* Look for the ':' that separates the field name from the field
2347 values. Data members are delimited by a single ':', while member
2348 functions are delimited by a pair of ':'s. When we hit the member
2349 functions (if any), terminate scan loop and return. */
2350
2351 while (*p != ':' && *p != '\0')
2352 {
2353 p++;
2354 }
2355 if (*p == '\0')
2356 return 0;
2357
2358 /* Check to see if we have hit the member functions yet. */
2359 if (p[1] == ':')
2360 {
2361 break;
2362 }
2363 read_one_struct_field (fip, pp, p, type, objfile);
2364 }
2365 if (p[0] == ':' && p[1] == ':')
2366 {
2367 /* chill the list of fields: the last entry (at the head) is a
2368 partially constructed entry which we now scrub. */
2369 fip -> list = fip -> list -> next;
2370 }
2371 return 1;
2372 }
2373
2374 /* The stabs for C++ derived classes contain baseclass information which
2375 is marked by a '!' character after the total size. This function is
2376 called when we encounter the baseclass marker, and slurps up all the
2377 baseclass information.
2378
2379 Immediately following the '!' marker is the number of base classes that
2380 the class is derived from, followed by information for each base class.
2381 For each base class, there are two visibility specifiers, a bit offset
2382 to the base class information within the derived class, a reference to
2383 the type for the base class, and a terminating semicolon.
2384
2385 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2386 ^^ ^ ^ ^ ^ ^ ^
2387 Baseclass information marker __________________|| | | | | | |
2388 Number of baseclasses __________________________| | | | | | |
2389 Visibility specifiers (2) ________________________| | | | | |
2390 Offset in bits from start of class _________________| | | | |
2391 Type number for base class ___________________________| | | |
2392 Visibility specifiers (2) _______________________________| | |
2393 Offset in bits from start of class ________________________| |
2394 Type number of base class ____________________________________|
2395
2396 Return 1 for success, 0 for (error-type-inducing) failure. */
2397
2398 static int
2399 read_baseclasses (fip, pp, type, objfile)
2400 struct field_info *fip;
2401 char **pp;
2402 struct type *type;
2403 struct objfile *objfile;
2404 {
2405 int i;
2406 struct nextfield *new;
2407
2408 if (**pp != '!')
2409 {
2410 return 1;
2411 }
2412 else
2413 {
2414 /* Skip the '!' baseclass information marker. */
2415 (*pp)++;
2416 }
2417
2418 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2419 {
2420 int nbits;
2421 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits);
2422 if (nbits != 0)
2423 return 0;
2424 }
2425
2426 #if 0
2427 /* Some stupid compilers have trouble with the following, so break
2428 it up into simpler expressions. */
2429 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2430 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2431 #else
2432 {
2433 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2434 char *pointer;
2435
2436 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2437 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2438 }
2439 #endif /* 0 */
2440
2441 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2442
2443 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2444 {
2445 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2446 make_cleanup (free, new);
2447 memset (new, 0, sizeof (struct nextfield));
2448 new -> next = fip -> list;
2449 fip -> list = new;
2450 new -> field.bitsize = 0; /* this should be an unpacked field! */
2451
2452 STABS_CONTINUE (pp);
2453 switch (**pp)
2454 {
2455 case '0':
2456 /* Nothing to do. */
2457 break;
2458 case '1':
2459 SET_TYPE_FIELD_VIRTUAL (type, i);
2460 break;
2461 default:
2462 /* Unknown character. Complain and treat it as non-virtual. */
2463 {
2464 static struct complaint msg = {
2465 "Unknown virtual character `%c' for baseclass", 0, 0};
2466 complain (&msg, **pp);
2467 }
2468 }
2469 ++(*pp);
2470
2471 new -> visibility = *(*pp)++;
2472 switch (new -> visibility)
2473 {
2474 case VISIBILITY_PRIVATE:
2475 case VISIBILITY_PROTECTED:
2476 case VISIBILITY_PUBLIC:
2477 break;
2478 default:
2479 /* Bad visibility format. Complain and treat it as
2480 public. */
2481 {
2482 static struct complaint msg = {
2483 "Unknown visibility `%c' for baseclass", 0, 0};
2484 complain (&msg, new -> visibility);
2485 new -> visibility = VISIBILITY_PUBLIC;
2486 }
2487 }
2488
2489 {
2490 int nbits;
2491
2492 /* The remaining value is the bit offset of the portion of the object
2493 corresponding to this baseclass. Always zero in the absence of
2494 multiple inheritance. */
2495
2496 new -> field.bitpos = read_huge_number (pp, ',', &nbits);
2497 if (nbits != 0)
2498 return 0;
2499 }
2500
2501 /* The last piece of baseclass information is the type of the
2502 base class. Read it, and remember it's type name as this
2503 field's name. */
2504
2505 new -> field.type = read_type (pp, objfile);
2506 new -> field.name = type_name_no_tag (new -> field.type);
2507
2508 /* skip trailing ';' and bump count of number of fields seen */
2509 if (**pp == ';')
2510 (*pp)++;
2511 else
2512 return 0;
2513 }
2514 return 1;
2515 }
2516
2517 /* The tail end of stabs for C++ classes that contain a virtual function
2518 pointer contains a tilde, a %, and a type number.
2519 The type number refers to the base class (possibly this class itself) which
2520 contains the vtable pointer for the current class.
2521
2522 This function is called when we have parsed all the method declarations,
2523 so we can look for the vptr base class info. */
2524
2525 static int
2526 read_tilde_fields (fip, pp, type, objfile)
2527 struct field_info *fip;
2528 char **pp;
2529 struct type *type;
2530 struct objfile *objfile;
2531 {
2532 register char *p;
2533
2534 STABS_CONTINUE (pp);
2535
2536 /* If we are positioned at a ';', then skip it. */
2537 if (**pp == ';')
2538 {
2539 (*pp)++;
2540 }
2541
2542 if (**pp == '~')
2543 {
2544 (*pp)++;
2545
2546 if (**pp == '=' || **pp == '+' || **pp == '-')
2547 {
2548 /* Obsolete flags that used to indicate the presence
2549 of constructors and/or destructors. */
2550 (*pp)++;
2551 }
2552
2553 /* Read either a '%' or the final ';'. */
2554 if (*(*pp)++ == '%')
2555 {
2556 /* The next number is the type number of the base class
2557 (possibly our own class) which supplies the vtable for
2558 this class. Parse it out, and search that class to find
2559 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2560 and TYPE_VPTR_FIELDNO. */
2561
2562 struct type *t;
2563 int i;
2564
2565 t = read_type (pp, objfile);
2566 p = (*pp)++;
2567 while (*p != '\0' && *p != ';')
2568 {
2569 p++;
2570 }
2571 if (*p == '\0')
2572 {
2573 /* Premature end of symbol. */
2574 return 0;
2575 }
2576
2577 TYPE_VPTR_BASETYPE (type) = t;
2578 if (type == t) /* Our own class provides vtbl ptr */
2579 {
2580 for (i = TYPE_NFIELDS (t) - 1;
2581 i >= TYPE_N_BASECLASSES (t);
2582 --i)
2583 {
2584 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2585 sizeof (vptr_name) - 1))
2586 {
2587 TYPE_VPTR_FIELDNO (type) = i;
2588 goto gotit;
2589 }
2590 }
2591 /* Virtual function table field not found. */
2592 complain (&vtbl_notfound_complaint, TYPE_NAME (type));
2593 return 0;
2594 }
2595 else
2596 {
2597 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2598 }
2599
2600 gotit:
2601 *pp = p + 1;
2602 }
2603 }
2604 return 1;
2605 }
2606
2607 static int
2608 attach_fn_fields_to_type (fip, type)
2609 struct field_info *fip;
2610 register struct type *type;
2611 {
2612 register int n;
2613
2614 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2615 {
2616 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2617 {
2618 /* @@ Memory leak on objfile -> type_obstack? */
2619 return 0;
2620 }
2621 TYPE_NFN_FIELDS_TOTAL (type) +=
2622 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2623 }
2624
2625 for (n = TYPE_NFN_FIELDS (type);
2626 fip -> fnlist != NULL;
2627 fip -> fnlist = fip -> fnlist -> next)
2628 {
2629 --n; /* Circumvent Sun3 compiler bug */
2630 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2631 }
2632 return 1;
2633 }
2634
2635 /* Create the vector of fields, and record how big it is.
2636 We need this info to record proper virtual function table information
2637 for this class's virtual functions. */
2638
2639 static int
2640 attach_fields_to_type (fip, type, objfile)
2641 struct field_info *fip;
2642 register struct type *type;
2643 struct objfile *objfile;
2644 {
2645 register int nfields = 0;
2646 register int non_public_fields = 0;
2647 register struct nextfield *scan;
2648
2649 /* Count up the number of fields that we have, as well as taking note of
2650 whether or not there are any non-public fields, which requires us to
2651 allocate and build the private_field_bits and protected_field_bits
2652 bitfields. */
2653
2654 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2655 {
2656 nfields++;
2657 if (scan -> visibility != VISIBILITY_PUBLIC)
2658 {
2659 non_public_fields++;
2660 }
2661 }
2662
2663 /* Now we know how many fields there are, and whether or not there are any
2664 non-public fields. Record the field count, allocate space for the
2665 array of fields, and create blank visibility bitfields if necessary. */
2666
2667 TYPE_NFIELDS (type) = nfields;
2668 TYPE_FIELDS (type) = (struct field *)
2669 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2670 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2671
2672 if (non_public_fields)
2673 {
2674 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2675
2676 TYPE_FIELD_PRIVATE_BITS (type) =
2677 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2678 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2679
2680 TYPE_FIELD_PROTECTED_BITS (type) =
2681 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2682 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2683
2684 TYPE_FIELD_IGNORE_BITS (type) =
2685 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2686 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
2687 }
2688
2689 /* Copy the saved-up fields into the field vector. Start from the head
2690 of the list, adding to the tail of the field array, so that they end
2691 up in the same order in the array in which they were added to the list. */
2692
2693 while (nfields-- > 0)
2694 {
2695 TYPE_FIELD (type, nfields) = fip -> list -> field;
2696 switch (fip -> list -> visibility)
2697 {
2698 case VISIBILITY_PRIVATE:
2699 SET_TYPE_FIELD_PRIVATE (type, nfields);
2700 break;
2701
2702 case VISIBILITY_PROTECTED:
2703 SET_TYPE_FIELD_PROTECTED (type, nfields);
2704 break;
2705
2706 case VISIBILITY_IGNORE:
2707 SET_TYPE_FIELD_IGNORE (type, nfields);
2708 break;
2709
2710 case VISIBILITY_PUBLIC:
2711 break;
2712
2713 default:
2714 /* Unknown visibility. Complain and treat it as public. */
2715 {
2716 static struct complaint msg = {
2717 "Unknown visibility `%c' for field", 0, 0};
2718 complain (&msg, fip -> list -> visibility);
2719 }
2720 break;
2721 }
2722 fip -> list = fip -> list -> next;
2723 }
2724 return 1;
2725 }
2726
2727 /* Read the description of a structure (or union type) and return an object
2728 describing the type.
2729
2730 PP points to a character pointer that points to the next unconsumed token
2731 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2732 *PP will point to "4a:1,0,32;;".
2733
2734 TYPE points to an incomplete type that needs to be filled in.
2735
2736 OBJFILE points to the current objfile from which the stabs information is
2737 being read. (Note that it is redundant in that TYPE also contains a pointer
2738 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2739 */
2740
2741 static struct type *
2742 read_struct_type (pp, type, objfile)
2743 char **pp;
2744 struct type *type;
2745 struct objfile *objfile;
2746 {
2747 struct cleanup *back_to;
2748 struct field_info fi;
2749
2750 fi.list = NULL;
2751 fi.fnlist = NULL;
2752
2753 back_to = make_cleanup (null_cleanup, 0);
2754
2755 INIT_CPLUS_SPECIFIC (type);
2756 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2757
2758 /* First comes the total size in bytes. */
2759
2760 {
2761 int nbits;
2762 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits);
2763 if (nbits != 0)
2764 return error_type (pp);
2765 }
2766
2767 /* Now read the baseclasses, if any, read the regular C struct or C++
2768 class member fields, attach the fields to the type, read the C++
2769 member functions, attach them to the type, and then read any tilde
2770 field (baseclass specifier for the class holding the main vtable). */
2771
2772 if (!read_baseclasses (&fi, pp, type, objfile)
2773 || !read_struct_fields (&fi, pp, type, objfile)
2774 || !attach_fields_to_type (&fi, type, objfile)
2775 || !read_member_functions (&fi, pp, type, objfile)
2776 || !attach_fn_fields_to_type (&fi, type)
2777 || !read_tilde_fields (&fi, pp, type, objfile))
2778 {
2779 do_cleanups (back_to);
2780 return (error_type (pp));
2781 }
2782
2783 do_cleanups (back_to);
2784 return (type);
2785 }
2786
2787 /* Read a definition of an array type,
2788 and create and return a suitable type object.
2789 Also creates a range type which represents the bounds of that
2790 array. */
2791
2792 static struct type *
2793 read_array_type (pp, type, objfile)
2794 register char **pp;
2795 register struct type *type;
2796 struct objfile *objfile;
2797 {
2798 struct type *index_type, *element_type, *range_type;
2799 int lower, upper;
2800 int adjustable = 0;
2801 int nbits;
2802
2803 /* Format of an array type:
2804 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2805 to handle this.
2806
2807 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2808 for these, produce a type like float[][]. */
2809
2810 index_type = read_type (pp, objfile);
2811 if (**pp != ';')
2812 /* Improper format of array type decl. */
2813 return error_type (pp);
2814 ++*pp;
2815
2816 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2817 {
2818 (*pp)++;
2819 adjustable = 1;
2820 }
2821 lower = read_huge_number (pp, ';', &nbits);
2822 if (nbits != 0)
2823 return error_type (pp);
2824
2825 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
2826 {
2827 (*pp)++;
2828 adjustable = 1;
2829 }
2830 upper = read_huge_number (pp, ';', &nbits);
2831 if (nbits != 0)
2832 return error_type (pp);
2833
2834 element_type = read_type (pp, objfile);
2835
2836 if (adjustable)
2837 {
2838 lower = 0;
2839 upper = -1;
2840 }
2841
2842 range_type =
2843 create_range_type ((struct type *) NULL, index_type, lower, upper);
2844 type = create_array_type (type, element_type, range_type);
2845
2846 /* If we have an array whose element type is not yet known, but whose
2847 bounds *are* known, record it to be adjusted at the end of the file. */
2848 /* FIXME: Why check for zero length rather than TYPE_FLAG_STUB? I think
2849 the two have the same effect except that the latter is cleaner and the
2850 former would be wrong for types which really are zero-length (if we
2851 have any). */
2852
2853 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2854 {
2855 TYPE_FLAGS (type) |= TYPE_FLAG_TARGET_STUB;
2856 add_undefined_type (type);
2857 }
2858
2859 return type;
2860 }
2861
2862
2863 /* Read a definition of an enumeration type,
2864 and create and return a suitable type object.
2865 Also defines the symbols that represent the values of the type. */
2866
2867 static struct type *
2868 read_enum_type (pp, type, objfile)
2869 register char **pp;
2870 register struct type *type;
2871 struct objfile *objfile;
2872 {
2873 register char *p;
2874 char *name;
2875 register long n;
2876 register struct symbol *sym;
2877 int nsyms = 0;
2878 struct pending **symlist;
2879 struct pending *osyms, *syms;
2880 int o_nsyms;
2881
2882 #if 0
2883 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2884 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2885 to do? For now, force all enum values to file scope. */
2886 if (within_function)
2887 symlist = &local_symbols;
2888 else
2889 #endif
2890 symlist = &file_symbols;
2891 osyms = *symlist;
2892 o_nsyms = osyms ? osyms->nsyms : 0;
2893
2894 /* Read the value-names and their values.
2895 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2896 A semicolon or comma instead of a NAME means the end. */
2897 while (**pp && **pp != ';' && **pp != ',')
2898 {
2899 int nbits;
2900 STABS_CONTINUE (pp);
2901 p = *pp;
2902 while (*p != ':') p++;
2903 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2904 *pp = p + 1;
2905 n = read_huge_number (pp, ',', &nbits);
2906 if (nbits != 0)
2907 return error_type (pp);
2908
2909 sym = (struct symbol *)
2910 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2911 memset (sym, 0, sizeof (struct symbol));
2912 SYMBOL_NAME (sym) = name;
2913 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2914 SYMBOL_CLASS (sym) = LOC_CONST;
2915 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2916 SYMBOL_VALUE (sym) = n;
2917 add_symbol_to_list (sym, symlist);
2918 nsyms++;
2919 }
2920
2921 if (**pp == ';')
2922 (*pp)++; /* Skip the semicolon. */
2923
2924 /* Now fill in the fields of the type-structure. */
2925
2926 TYPE_LENGTH (type) = sizeof (int);
2927 TYPE_CODE (type) = TYPE_CODE_ENUM;
2928 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2929 TYPE_NFIELDS (type) = nsyms;
2930 TYPE_FIELDS (type) = (struct field *)
2931 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2932 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2933
2934 /* Find the symbols for the values and put them into the type.
2935 The symbols can be found in the symlist that we put them on
2936 to cause them to be defined. osyms contains the old value
2937 of that symlist; everything up to there was defined by us. */
2938 /* Note that we preserve the order of the enum constants, so
2939 that in something like "enum {FOO, LAST_THING=FOO}" we print
2940 FOO, not LAST_THING. */
2941
2942 for (syms = *symlist, n = 0; syms; syms = syms->next)
2943 {
2944 int j = 0;
2945 if (syms == osyms)
2946 j = o_nsyms;
2947 for (; j < syms->nsyms; j++,n++)
2948 {
2949 struct symbol *xsym = syms->symbol[j];
2950 SYMBOL_TYPE (xsym) = type;
2951 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2952 TYPE_FIELD_VALUE (type, n) = 0;
2953 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2954 TYPE_FIELD_BITSIZE (type, n) = 0;
2955 }
2956 if (syms == osyms)
2957 break;
2958 }
2959
2960 #if 0
2961 /* This screws up perfectly good C programs with enums. FIXME. */
2962 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2963 if(TYPE_NFIELDS(type) == 2 &&
2964 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2965 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2966 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2967 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2968 TYPE_CODE(type) = TYPE_CODE_BOOL;
2969 #endif
2970
2971 return type;
2972 }
2973
2974 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2975 typedefs in every file (for int, long, etc):
2976
2977 type = b <signed> <width>; <offset>; <nbits>
2978 signed = u or s. Possible c in addition to u or s (for char?).
2979 offset = offset from high order bit to start bit of type.
2980 width is # bytes in object of this type, nbits is # bits in type.
2981
2982 The width/offset stuff appears to be for small objects stored in
2983 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2984 FIXME. */
2985
2986 static struct type *
2987 read_sun_builtin_type (pp, typenums, objfile)
2988 char **pp;
2989 int typenums[2];
2990 struct objfile *objfile;
2991 {
2992 int type_bits;
2993 int nbits;
2994 int signed_type;
2995
2996 switch (**pp)
2997 {
2998 case 's':
2999 signed_type = 1;
3000 break;
3001 case 'u':
3002 signed_type = 0;
3003 break;
3004 default:
3005 return error_type (pp);
3006 }
3007 (*pp)++;
3008
3009 /* For some odd reason, all forms of char put a c here. This is strange
3010 because no other type has this honor. We can safely ignore this because
3011 we actually determine 'char'acterness by the number of bits specified in
3012 the descriptor. */
3013
3014 if (**pp == 'c')
3015 (*pp)++;
3016
3017 /* The first number appears to be the number of bytes occupied
3018 by this type, except that unsigned short is 4 instead of 2.
3019 Since this information is redundant with the third number,
3020 we will ignore it. */
3021 read_huge_number (pp, ';', &nbits);
3022 if (nbits != 0)
3023 return error_type (pp);
3024
3025 /* The second number is always 0, so ignore it too. */
3026 read_huge_number (pp, ';', &nbits);
3027 if (nbits != 0)
3028 return error_type (pp);
3029
3030 /* The third number is the number of bits for this type. */
3031 type_bits = read_huge_number (pp, 0, &nbits);
3032 if (nbits != 0)
3033 return error_type (pp);
3034
3035 return init_type (type_bits == 0 ? TYPE_CODE_VOID : TYPE_CODE_INT,
3036 type_bits / TARGET_CHAR_BIT,
3037 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *)NULL,
3038 objfile);
3039 }
3040
3041 static struct type *
3042 read_sun_floating_type (pp, typenums, objfile)
3043 char **pp;
3044 int typenums[2];
3045 struct objfile *objfile;
3046 {
3047 int nbits;
3048 int details;
3049 int nbytes;
3050
3051 /* The first number has more details about the type, for example
3052 FN_COMPLEX. */
3053 details = read_huge_number (pp, ';', &nbits);
3054 if (nbits != 0)
3055 return error_type (pp);
3056
3057 /* The second number is the number of bytes occupied by this type */
3058 nbytes = read_huge_number (pp, ';', &nbits);
3059 if (nbits != 0)
3060 return error_type (pp);
3061
3062 if (details == NF_COMPLEX || details == NF_COMPLEX16
3063 || details == NF_COMPLEX32)
3064 /* This is a type we can't handle, but we do know the size.
3065 We also will be able to give it a name. */
3066 return init_type (TYPE_CODE_ERROR, nbytes, 0, NULL, objfile);
3067
3068 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3069 }
3070
3071 /* Read a number from the string pointed to by *PP.
3072 The value of *PP is advanced over the number.
3073 If END is nonzero, the character that ends the
3074 number must match END, or an error happens;
3075 and that character is skipped if it does match.
3076 If END is zero, *PP is left pointing to that character.
3077
3078 If the number fits in a long, set *BITS to 0 and return the value.
3079 If not, set *BITS to be the number of bits in the number and return 0.
3080
3081 If encounter garbage, set *BITS to -1 and return 0. */
3082
3083 static long
3084 read_huge_number (pp, end, bits)
3085 char **pp;
3086 int end;
3087 int *bits;
3088 {
3089 char *p = *pp;
3090 int sign = 1;
3091 long n = 0;
3092 int radix = 10;
3093 char overflow = 0;
3094 int nbits = 0;
3095 int c;
3096 long upper_limit;
3097
3098 if (*p == '-')
3099 {
3100 sign = -1;
3101 p++;
3102 }
3103
3104 /* Leading zero means octal. GCC uses this to output values larger
3105 than an int (because that would be hard in decimal). */
3106 if (*p == '0')
3107 {
3108 radix = 8;
3109 p++;
3110 }
3111
3112 upper_limit = LONG_MAX / radix;
3113 while ((c = *p++) >= '0' && c < ('0' + radix))
3114 {
3115 if (n <= upper_limit)
3116 {
3117 n *= radix;
3118 n += c - '0'; /* FIXME this overflows anyway */
3119 }
3120 else
3121 overflow = 1;
3122
3123 /* This depends on large values being output in octal, which is
3124 what GCC does. */
3125 if (radix == 8)
3126 {
3127 if (nbits == 0)
3128 {
3129 if (c == '0')
3130 /* Ignore leading zeroes. */
3131 ;
3132 else if (c == '1')
3133 nbits = 1;
3134 else if (c == '2' || c == '3')
3135 nbits = 2;
3136 else
3137 nbits = 3;
3138 }
3139 else
3140 nbits += 3;
3141 }
3142 }
3143 if (end)
3144 {
3145 if (c && c != end)
3146 {
3147 if (bits != NULL)
3148 *bits = -1;
3149 return 0;
3150 }
3151 }
3152 else
3153 --p;
3154
3155 *pp = p;
3156 if (overflow)
3157 {
3158 if (nbits == 0)
3159 {
3160 /* Large decimal constants are an error (because it is hard to
3161 count how many bits are in them). */
3162 if (bits != NULL)
3163 *bits = -1;
3164 return 0;
3165 }
3166
3167 /* -0x7f is the same as 0x80. So deal with it by adding one to
3168 the number of bits. */
3169 if (sign == -1)
3170 ++nbits;
3171 if (bits)
3172 *bits = nbits;
3173 }
3174 else
3175 {
3176 if (bits)
3177 *bits = 0;
3178 return n * sign;
3179 }
3180 /* It's *BITS which has the interesting information. */
3181 return 0;
3182 }
3183
3184 static struct type *
3185 read_range_type (pp, typenums, objfile)
3186 char **pp;
3187 int typenums[2];
3188 struct objfile *objfile;
3189 {
3190 int rangenums[2];
3191 long n2, n3;
3192 int n2bits, n3bits;
3193 int self_subrange;
3194 struct type *result_type;
3195 struct type *index_type;
3196
3197 /* First comes a type we are a subrange of.
3198 In C it is usually 0, 1 or the type being defined. */
3199 /* FIXME: according to stabs.texinfo and AIX doc, this can be a type-id
3200 not just a type number. */
3201 if (read_type_number (pp, rangenums) != 0)
3202 return error_type (pp);
3203 self_subrange = (rangenums[0] == typenums[0] &&
3204 rangenums[1] == typenums[1]);
3205
3206 /* A semicolon should now follow; skip it. */
3207 if (**pp == ';')
3208 (*pp)++;
3209
3210 /* The remaining two operands are usually lower and upper bounds
3211 of the range. But in some special cases they mean something else. */
3212 n2 = read_huge_number (pp, ';', &n2bits);
3213 n3 = read_huge_number (pp, ';', &n3bits);
3214
3215 if (n2bits == -1 || n3bits == -1)
3216 return error_type (pp);
3217
3218 /* If limits are huge, must be large integral type. */
3219 if (n2bits != 0 || n3bits != 0)
3220 {
3221 char got_signed = 0;
3222 char got_unsigned = 0;
3223 /* Number of bits in the type. */
3224 int nbits = 0;
3225
3226 /* Range from 0 to <large number> is an unsigned large integral type. */
3227 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
3228 {
3229 got_unsigned = 1;
3230 nbits = n3bits;
3231 }
3232 /* Range from <large number> to <large number>-1 is a large signed
3233 integral type. Take care of the case where <large number> doesn't
3234 fit in a long but <large number>-1 does. */
3235 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
3236 || (n2bits != 0 && n3bits == 0
3237 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
3238 && n3 == LONG_MAX))
3239 {
3240 got_signed = 1;
3241 nbits = n2bits;
3242 }
3243
3244 if (got_signed || got_unsigned)
3245 {
3246 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
3247 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
3248 objfile);
3249 }
3250 else
3251 return error_type (pp);
3252 }
3253
3254 /* A type defined as a subrange of itself, with bounds both 0, is void. */
3255 if (self_subrange && n2 == 0 && n3 == 0)
3256 return init_type (TYPE_CODE_VOID, 0, 0, NULL, objfile);
3257
3258 /* If n3 is zero and n2 is not, we want a floating type,
3259 and n2 is the width in bytes.
3260
3261 Fortran programs appear to use this for complex types also,
3262 and they give no way to distinguish between double and single-complex!
3263
3264 GDB does not have complex types.
3265
3266 Just return the complex as a float of that size. It won't work right
3267 for the complex values, but at least it makes the file loadable. */
3268
3269 if (n3 == 0 && n2 > 0)
3270 {
3271 return init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
3272 }
3273
3274 /* If the upper bound is -1, it must really be an unsigned int. */
3275
3276 else if (n2 == 0 && n3 == -1)
3277 {
3278 /* It is unsigned int or unsigned long. */
3279 /* GCC 2.3.3 uses this for long long too, but that is just a GDB 3.5
3280 compatibility hack. */
3281 return init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3282 TYPE_FLAG_UNSIGNED, NULL, objfile);
3283 }
3284
3285 /* Special case: char is defined (Who knows why) as a subrange of
3286 itself with range 0-127. */
3287 else if (self_subrange && n2 == 0 && n3 == 127)
3288 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3289
3290 /* We used to do this only for subrange of self or subrange of int. */
3291 else if (n2 == 0)
3292 {
3293 if (n3 < 0)
3294 /* n3 actually gives the size. */
3295 return init_type (TYPE_CODE_INT, - n3, TYPE_FLAG_UNSIGNED,
3296 NULL, objfile);
3297 if (n3 == 0xff)
3298 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED, NULL, objfile);
3299 if (n3 == 0xffff)
3300 return init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED, NULL, objfile);
3301
3302 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
3303 "unsigned long", and we already checked for that,
3304 so don't need to test for it here. */
3305 }
3306 /* I think this is for Convex "long long". Since I don't know whether
3307 Convex sets self_subrange, I also accept that particular size regardless
3308 of self_subrange. */
3309 else if (n3 == 0 && n2 < 0
3310 && (self_subrange
3311 || n2 == - TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT))
3312 return init_type (TYPE_CODE_INT, - n2, 0, NULL, objfile);
3313 else if (n2 == -n3 -1)
3314 {
3315 if (n3 == 0x7f)
3316 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
3317 if (n3 == 0x7fff)
3318 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
3319 if (n3 == 0x7fffffff)
3320 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
3321 }
3322
3323 /* We have a real range type on our hands. Allocate space and
3324 return a real pointer. */
3325
3326 /* At this point I don't have the faintest idea how to deal with
3327 a self_subrange type; I'm going to assume that this is used
3328 as an idiom, and that all of them are special cases. So . . . */
3329 if (self_subrange)
3330 return error_type (pp);
3331
3332 index_type = *dbx_lookup_type (rangenums);
3333 if (index_type == NULL)
3334 {
3335 /* Does this actually ever happen? Is that why we are worrying
3336 about dealing with it rather than just calling error_type? */
3337
3338 static struct type *range_type_index;
3339
3340 complain (&range_type_base_complaint, rangenums[1]);
3341 if (range_type_index == NULL)
3342 range_type_index =
3343 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3344 0, "range type index type", NULL);
3345 index_type = range_type_index;
3346 }
3347
3348 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3349 return (result_type);
3350 }
3351
3352 /* Read in an argument list. This is a list of types, separated by commas
3353 and terminated with END. Return the list of types read in, or (struct type
3354 **)-1 if there is an error. */
3355
3356 static struct type **
3357 read_args (pp, end, objfile)
3358 char **pp;
3359 int end;
3360 struct objfile *objfile;
3361 {
3362 /* FIXME! Remove this arbitrary limit! */
3363 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3364 int n = 0;
3365
3366 while (**pp != end)
3367 {
3368 if (**pp != ',')
3369 /* Invalid argument list: no ','. */
3370 return (struct type **)-1;
3371 (*pp)++;
3372 STABS_CONTINUE (pp);
3373 types[n++] = read_type (pp, objfile);
3374 }
3375 (*pp)++; /* get past `end' (the ':' character) */
3376
3377 if (n == 1)
3378 {
3379 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3380 }
3381 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3382 {
3383 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3384 memset (rval + n, 0, sizeof (struct type *));
3385 }
3386 else
3387 {
3388 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3389 }
3390 memcpy (rval, types, n * sizeof (struct type *));
3391 return rval;
3392 }
3393 \f
3394 /* Common block handling. */
3395
3396 /* List of symbols declared since the last BCOMM. This list is a tail
3397 of local_symbols. When ECOMM is seen, the symbols on the list
3398 are noted so their proper addresses can be filled in later,
3399 using the common block base address gotten from the assembler
3400 stabs. */
3401
3402 static struct pending *common_block;
3403 static int common_block_i;
3404
3405 /* Name of the current common block. We get it from the BCOMM instead of the
3406 ECOMM to match IBM documentation (even though IBM puts the name both places
3407 like everyone else). */
3408 static char *common_block_name;
3409
3410 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
3411 to remain after this function returns. */
3412
3413 void
3414 common_block_start (name, objfile)
3415 char *name;
3416 struct objfile *objfile;
3417 {
3418 if (common_block_name != NULL)
3419 {
3420 static struct complaint msg = {
3421 "Invalid symbol data: common block within common block",
3422 0, 0};
3423 complain (&msg);
3424 }
3425 common_block = local_symbols;
3426 common_block_i = local_symbols ? local_symbols->nsyms : 0;
3427 common_block_name = obsavestring (name, strlen (name),
3428 &objfile -> symbol_obstack);
3429 }
3430
3431 /* Process a N_ECOMM symbol. */
3432
3433 void
3434 common_block_end (objfile)
3435 struct objfile *objfile;
3436 {
3437 /* Symbols declared since the BCOMM are to have the common block
3438 start address added in when we know it. common_block and
3439 common_block_i point to the first symbol after the BCOMM in
3440 the local_symbols list; copy the list and hang it off the
3441 symbol for the common block name for later fixup. */
3442 int i;
3443 struct symbol *sym;
3444 struct pending *new = 0;
3445 struct pending *next;
3446 int j;
3447
3448 if (common_block_name == NULL)
3449 {
3450 static struct complaint msg = {"ECOMM symbol unmatched by BCOMM", 0, 0};
3451 complain (&msg);
3452 return;
3453 }
3454
3455 sym = (struct symbol *)
3456 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3457 memset (sym, 0, sizeof (struct symbol));
3458 SYMBOL_NAME (sym) = common_block_name;
3459 SYMBOL_CLASS (sym) = LOC_BLOCK;
3460
3461 /* Now we copy all the symbols which have been defined since the BCOMM. */
3462
3463 /* Copy all the struct pendings before common_block. */
3464 for (next = local_symbols;
3465 next != NULL && next != common_block;
3466 next = next->next)
3467 {
3468 for (j = 0; j < next->nsyms; j++)
3469 add_symbol_to_list (next->symbol[j], &new);
3470 }
3471
3472 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
3473 NULL, it means copy all the local symbols (which we already did
3474 above). */
3475
3476 if (common_block != NULL)
3477 for (j = common_block_i; j < common_block->nsyms; j++)
3478 add_symbol_to_list (common_block->symbol[j], &new);
3479
3480 SYMBOL_NAMESPACE (sym) = (enum namespace)((long) new);
3481
3482 /* Should we be putting local_symbols back to what it was?
3483 Does it matter? */
3484
3485 i = hashname (SYMBOL_NAME (sym));
3486 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
3487 global_sym_chain[i] = sym;
3488 common_block_name = NULL;
3489 }
3490
3491 /* Add a common block's start address to the offset of each symbol
3492 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3493 the common block name). */
3494
3495 static void
3496 fix_common_block (sym, valu)
3497 struct symbol *sym;
3498 int valu;
3499 {
3500 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3501 for ( ; next; next = next->next)
3502 {
3503 register int j;
3504 for (j = next->nsyms - 1; j >= 0; j--)
3505 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3506 }
3507 }
3508
3509
3510 \f
3511 /* What about types defined as forward references inside of a small lexical
3512 scope? */
3513 /* Add a type to the list of undefined types to be checked through
3514 once this file has been read in. */
3515
3516 void
3517 add_undefined_type (type)
3518 struct type *type;
3519 {
3520 if (undef_types_length == undef_types_allocated)
3521 {
3522 undef_types_allocated *= 2;
3523 undef_types = (struct type **)
3524 xrealloc ((char *) undef_types,
3525 undef_types_allocated * sizeof (struct type *));
3526 }
3527 undef_types[undef_types_length++] = type;
3528 }
3529
3530 /* Go through each undefined type, see if it's still undefined, and fix it
3531 up if possible. We have two kinds of undefined types:
3532
3533 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3534 Fix: update array length using the element bounds
3535 and the target type's length.
3536 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3537 yet defined at the time a pointer to it was made.
3538 Fix: Do a full lookup on the struct/union tag. */
3539 void
3540 cleanup_undefined_types ()
3541 {
3542 struct type **type;
3543
3544 for (type = undef_types; type < undef_types + undef_types_length; type++)
3545 {
3546 switch (TYPE_CODE (*type))
3547 {
3548
3549 case TYPE_CODE_STRUCT:
3550 case TYPE_CODE_UNION:
3551 case TYPE_CODE_ENUM:
3552 {
3553 /* Check if it has been defined since. Need to do this here
3554 as well as in check_stub_type to deal with the (legitimate in
3555 C though not C++) case of several types with the same name
3556 in different source files. */
3557 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3558 {
3559 struct pending *ppt;
3560 int i;
3561 /* Name of the type, without "struct" or "union" */
3562 char *typename = TYPE_TAG_NAME (*type);
3563
3564 if (typename == NULL)
3565 {
3566 static struct complaint msg = {"need a type name", 0, 0};
3567 complain (&msg);
3568 break;
3569 }
3570 for (ppt = file_symbols; ppt; ppt = ppt->next)
3571 {
3572 for (i = 0; i < ppt->nsyms; i++)
3573 {
3574 struct symbol *sym = ppt->symbol[i];
3575
3576 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3577 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3578 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3579 TYPE_CODE (*type))
3580 && STREQ (SYMBOL_NAME (sym), typename))
3581 {
3582 memcpy (*type, SYMBOL_TYPE (sym),
3583 sizeof (struct type));
3584 }
3585 }
3586 }
3587 }
3588 }
3589 break;
3590
3591 case TYPE_CODE_ARRAY:
3592 {
3593 /* This is a kludge which is here for historical reasons
3594 because I suspect that check_stub_type does not get
3595 called everywhere it needs to be called for arrays. Even
3596 with this kludge, those places are broken for the case
3597 where the stub type is defined in another compilation
3598 unit, but this kludge at least deals with it for the case
3599 in which it is the same compilation unit.
3600
3601 Don't try to do this by calling check_stub_type; it might
3602 cause symbols to be read in lookup_symbol, and the symbol
3603 reader is not reentrant. */
3604
3605 struct type *range_type;
3606 int lower, upper;
3607
3608 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3609 goto badtype;
3610 if (TYPE_NFIELDS (*type) != 1)
3611 goto badtype;
3612 range_type = TYPE_FIELD_TYPE (*type, 0);
3613 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3614 goto badtype;
3615
3616 /* Now recompute the length of the array type, based on its
3617 number of elements and the target type's length. */
3618 lower = TYPE_FIELD_BITPOS (range_type, 0);
3619 upper = TYPE_FIELD_BITPOS (range_type, 1);
3620 TYPE_LENGTH (*type) = (upper - lower + 1)
3621 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3622
3623 /* If the target type is not a stub, we could be clearing
3624 TYPE_FLAG_TARGET_STUB for *type. */
3625 }
3626 break;
3627
3628 default:
3629 badtype:
3630 {
3631 static struct complaint msg = {"\
3632 GDB internal error. cleanup_undefined_types with bad type %d.", 0, 0};
3633 complain (&msg, TYPE_CODE (*type));
3634 }
3635 break;
3636 }
3637 }
3638
3639 undef_types_length = 0;
3640 }
3641
3642 /* Scan through all of the global symbols defined in the object file,
3643 assigning values to the debugging symbols that need to be assigned
3644 to. Get these symbols from the minimal symbol table. */
3645
3646 void
3647 scan_file_globals (objfile)
3648 struct objfile *objfile;
3649 {
3650 int hash;
3651 struct minimal_symbol *msymbol;
3652 struct symbol *sym, *prev;
3653
3654 if (objfile->msymbols == 0) /* Beware the null file. */
3655 return;
3656
3657 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3658 {
3659 QUIT;
3660
3661 prev = NULL;
3662
3663 /* Get the hash index and check all the symbols
3664 under that hash index. */
3665
3666 hash = hashname (SYMBOL_NAME (msymbol));
3667
3668 for (sym = global_sym_chain[hash]; sym;)
3669 {
3670 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3671 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3672 {
3673 /* Splice this symbol out of the hash chain and
3674 assign the value we have to it. */
3675 if (prev)
3676 {
3677 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3678 }
3679 else
3680 {
3681 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3682 }
3683
3684 /* Check to see whether we need to fix up a common block. */
3685 /* Note: this code might be executed several times for
3686 the same symbol if there are multiple references. */
3687
3688 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3689 {
3690 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3691 }
3692 else
3693 {
3694 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3695 }
3696
3697 if (prev)
3698 {
3699 sym = SYMBOL_VALUE_CHAIN (prev);
3700 }
3701 else
3702 {
3703 sym = global_sym_chain[hash];
3704 }
3705 }
3706 else
3707 {
3708 prev = sym;
3709 sym = SYMBOL_VALUE_CHAIN (sym);
3710 }
3711 }
3712 }
3713 }
3714
3715 /* Initialize anything that needs initializing when starting to read
3716 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3717 to a psymtab. */
3718
3719 void
3720 stabsread_init ()
3721 {
3722 }
3723
3724 /* Initialize anything that needs initializing when a completely new
3725 symbol file is specified (not just adding some symbols from another
3726 file, e.g. a shared library). */
3727
3728 void
3729 stabsread_new_init ()
3730 {
3731 /* Empty the hash table of global syms looking for values. */
3732 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3733 }
3734
3735 /* Initialize anything that needs initializing at the same time as
3736 start_symtab() is called. */
3737
3738 void start_stabs ()
3739 {
3740 global_stabs = NULL; /* AIX COFF */
3741 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3742 n_this_object_header_files = 1;
3743 type_vector_length = 0;
3744 type_vector = (struct type **) 0;
3745
3746 /* FIXME: If common_block_name is not already NULL, we should complain(). */
3747 common_block_name = NULL;
3748 }
3749
3750 /* Call after end_symtab() */
3751
3752 void end_stabs ()
3753 {
3754 if (type_vector)
3755 {
3756 free ((char *) type_vector);
3757 }
3758 type_vector = 0;
3759 type_vector_length = 0;
3760 previous_stab_code = 0;
3761 }
3762
3763 void
3764 finish_global_stabs (objfile)
3765 struct objfile *objfile;
3766 {
3767 if (global_stabs)
3768 {
3769 patch_block_stabs (global_symbols, global_stabs, objfile);
3770 free ((PTR) global_stabs);
3771 global_stabs = NULL;
3772 }
3773 }
3774
3775 /* Initializer for this module */
3776
3777 void
3778 _initialize_stabsread ()
3779 {
3780 undef_types_allocated = 20;
3781 undef_types_length = 0;
3782 undef_types = (struct type **)
3783 xmalloc (undef_types_allocated * sizeof (struct type *));
3784 }