Set section indices when symbols are made
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2023 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct stabs_nextfield
65 {
66 struct stabs_nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct stabs_nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static int read_type_number (const char **, int *);
111
112 static struct type *read_type (const char **, struct objfile *);
113
114 static struct type *read_range_type (const char **, int[2],
115 int, struct objfile *);
116
117 static struct type *read_sun_builtin_type (const char **,
118 int[2], struct objfile *);
119
120 static struct type *read_sun_floating_type (const char **, int[2],
121 struct objfile *);
122
123 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
124
125 static struct type *rs6000_builtin_type (int, struct objfile *);
126
127 static int
128 read_member_functions (struct stab_field_info *, const char **, struct type *,
129 struct objfile *);
130
131 static int
132 read_struct_fields (struct stab_field_info *, const char **, struct type *,
133 struct objfile *);
134
135 static int
136 read_baseclasses (struct stab_field_info *, const char **, struct type *,
137 struct objfile *);
138
139 static int
140 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
141 struct objfile *);
142
143 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
144
145 static int attach_fields_to_type (struct stab_field_info *, struct type *,
146 struct objfile *);
147
148 static struct type *read_struct_type (const char **, struct type *,
149 enum type_code,
150 struct objfile *);
151
152 static struct type *read_array_type (const char **, struct type *,
153 struct objfile *);
154
155 static struct field *read_args (const char **, int, struct objfile *,
156 int *, int *);
157
158 static void add_undefined_type (struct type *, int[2]);
159
160 static int
161 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
162 struct objfile *);
163
164 static const char *find_name_end (const char *name);
165
166 static int process_reference (const char **string);
167
168 void stabsread_clear_cache (void);
169
170 static const char vptr_name[] = "_vptr$";
171 static const char vb_name[] = "_vb$";
172
173 static void
174 invalid_cpp_abbrev_complaint (const char *arg1)
175 {
176 complaint (_("invalid C++ abbreviation `%s'"), arg1);
177 }
178
179 static void
180 reg_value_complaint (int regnum, int num_regs, const char *sym)
181 {
182 complaint (_("bad register number %d (max %d) in symbol %s"),
183 regnum, num_regs - 1, sym);
184 }
185
186 static void
187 stabs_general_complaint (const char *arg1)
188 {
189 complaint ("%s", arg1);
190 }
191
192 /* Make a list of forward references which haven't been defined. */
193
194 static struct type **undef_types;
195 static int undef_types_allocated;
196 static int undef_types_length;
197 static struct symbol *current_symbol = NULL;
198
199 /* Make a list of nameless types that are undefined.
200 This happens when another type is referenced by its number
201 before this type is actually defined. For instance "t(0,1)=k(0,2)"
202 and type (0,2) is defined only later. */
203
204 struct nat
205 {
206 int typenums[2];
207 struct type *type;
208 };
209 static struct nat *noname_undefs;
210 static int noname_undefs_allocated;
211 static int noname_undefs_length;
212
213 /* Check for and handle cretinous stabs symbol name continuation! */
214 #define STABS_CONTINUE(pp,objfile) \
215 do { \
216 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
217 *(pp) = next_symbol_text (objfile); \
218 } while (0)
219
220 /* Vector of types defined so far, indexed by their type numbers.
221 (In newer sun systems, dbx uses a pair of numbers in parens,
222 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
223 Then these numbers must be translated through the type_translations
224 hash table to get the index into the type vector.) */
225
226 static struct type **type_vector;
227
228 /* Number of elements allocated for type_vector currently. */
229
230 static int type_vector_length;
231
232 /* Initial size of type vector. Is realloc'd larger if needed, and
233 realloc'd down to the size actually used, when completed. */
234
235 #define INITIAL_TYPE_VECTOR_LENGTH 160
236 \f
237
238 /* Look up a dbx type-number pair. Return the address of the slot
239 where the type for that number-pair is stored.
240 The number-pair is in TYPENUMS.
241
242 This can be used for finding the type associated with that pair
243 or for associating a new type with the pair. */
244
245 static struct type **
246 dbx_lookup_type (int typenums[2], struct objfile *objfile)
247 {
248 int filenum = typenums[0];
249 int index = typenums[1];
250 unsigned old_len;
251 int real_filenum;
252 struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 {
260 complaint (_("Invalid symbol data: type number "
261 "(%d,%d) out of range at symtab pos %d."),
262 filenum, index, symnum);
263 goto error_return;
264 }
265
266 if (filenum == 0)
267 {
268 if (index < 0)
269 {
270 /* Caller wants address of address of type. We think
271 that negative (rs6k builtin) types will never appear as
272 "lvalues", (nor should they), so we stuff the real type
273 pointer into a temp, and return its address. If referenced,
274 this will do the right thing. */
275 static struct type *temp_type;
276
277 temp_type = rs6000_builtin_type (index, objfile);
278 return &temp_type;
279 }
280
281 /* Type is defined outside of header files.
282 Find it in this object file's type vector. */
283 if (index >= type_vector_length)
284 {
285 old_len = type_vector_length;
286 if (old_len == 0)
287 {
288 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
289 type_vector = XNEWVEC (struct type *, type_vector_length);
290 }
291 while (index >= type_vector_length)
292 {
293 type_vector_length *= 2;
294 }
295 type_vector = (struct type **)
296 xrealloc ((char *) type_vector,
297 (type_vector_length * sizeof (struct type *)));
298 memset (&type_vector[old_len], 0,
299 (type_vector_length - old_len) * sizeof (struct type *));
300 }
301 return (&type_vector[index]);
302 }
303 else
304 {
305 real_filenum = this_object_header_files[filenum];
306
307 if (real_filenum >= N_HEADER_FILES (objfile))
308 {
309 static struct type *temp_type;
310
311 warning (_("GDB internal error: bad real_filenum"));
312
313 error_return:
314 temp_type = objfile_type (objfile)->builtin_error;
315 return &temp_type;
316 }
317
318 f = HEADER_FILES (objfile) + real_filenum;
319
320 f_orig_length = f->length;
321 if (index >= f_orig_length)
322 {
323 while (index >= f->length)
324 {
325 f->length *= 2;
326 }
327 f->vector = (struct type **)
328 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
329 memset (&f->vector[f_orig_length], 0,
330 (f->length - f_orig_length) * sizeof (struct type *));
331 }
332 return (&f->vector[index]);
333 }
334 }
335
336 /* Make sure there is a type allocated for type numbers TYPENUMS
337 and return the type object.
338 This can create an empty (zeroed) type object.
339 TYPENUMS may be (-1, -1) to return a new type object that is not
340 put into the type vector, and so may not be referred to by number. */
341
342 static struct type *
343 dbx_alloc_type (int typenums[2], struct objfile *objfile)
344 {
345 struct type **type_addr;
346
347 if (typenums[0] == -1)
348 {
349 return (alloc_type (objfile));
350 }
351
352 type_addr = dbx_lookup_type (typenums, objfile);
353
354 /* If we are referring to a type not known at all yet,
355 allocate an empty type for it.
356 We will fill it in later if we find out how. */
357 if (*type_addr == 0)
358 {
359 *type_addr = alloc_type (objfile);
360 }
361
362 return (*type_addr);
363 }
364
365 /* Allocate a floating-point type of size BITS. */
366
367 static struct type *
368 dbx_init_float_type (struct objfile *objfile, int bits)
369 {
370 struct gdbarch *gdbarch = objfile->arch ();
371 const struct floatformat **format;
372 struct type *type;
373
374 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
375 if (format)
376 type = init_float_type (objfile, bits, NULL, format);
377 else
378 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
379
380 return type;
381 }
382
383 /* for all the stabs in a given stab vector, build appropriate types
384 and fix their symbols in given symbol vector. */
385
386 static void
387 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
388 struct objfile *objfile)
389 {
390 int ii;
391 char *name;
392 const char *pp;
393 struct symbol *sym;
394
395 if (stabs)
396 {
397 /* for all the stab entries, find their corresponding symbols and
398 patch their types! */
399
400 for (ii = 0; ii < stabs->count; ++ii)
401 {
402 name = stabs->stab[ii];
403 pp = (char *) strchr (name, ':');
404 gdb_assert (pp); /* Must find a ':' or game's over. */
405 while (pp[1] == ':')
406 {
407 pp += 2;
408 pp = (char *) strchr (pp, ':');
409 }
410 sym = find_symbol_in_list (symbols, name, pp - name);
411 if (!sym)
412 {
413 /* FIXME-maybe: it would be nice if we noticed whether
414 the variable was defined *anywhere*, not just whether
415 it is defined in this compilation unit. But neither
416 xlc or GCC seem to need such a definition, and until
417 we do psymtabs (so that the minimal symbols from all
418 compilation units are available now), I'm not sure
419 how to get the information. */
420
421 /* On xcoff, if a global is defined and never referenced,
422 ld will remove it from the executable. There is then
423 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
424 sym = new (&objfile->objfile_obstack) symbol;
425 sym->set_domain (VAR_DOMAIN);
426 sym->set_aclass_index (LOC_OPTIMIZED_OUT);
427 sym->set_linkage_name
428 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
429 pp += 2;
430 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
431 {
432 /* I don't think the linker does this with functions,
433 so as far as I know this is never executed.
434 But it doesn't hurt to check. */
435 sym->set_type
436 (lookup_function_type (read_type (&pp, objfile)));
437 }
438 else
439 {
440 sym->set_type (read_type (&pp, objfile));
441 }
442 add_symbol_to_list (sym, get_global_symbols ());
443 }
444 else
445 {
446 pp += 2;
447 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
448 {
449 sym->set_type
450 (lookup_function_type (read_type (&pp, objfile)));
451 }
452 else
453 {
454 sym->set_type (read_type (&pp, objfile));
455 }
456 }
457 }
458 }
459 }
460 \f
461
462 /* Read a number by which a type is referred to in dbx data,
463 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
464 Just a single number N is equivalent to (0,N).
465 Return the two numbers by storing them in the vector TYPENUMS.
466 TYPENUMS will then be used as an argument to dbx_lookup_type.
467
468 Returns 0 for success, -1 for error. */
469
470 static int
471 read_type_number (const char **pp, int *typenums)
472 {
473 int nbits;
474
475 if (**pp == '(')
476 {
477 (*pp)++;
478 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
479 if (nbits != 0)
480 return -1;
481 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
482 if (nbits != 0)
483 return -1;
484 }
485 else
486 {
487 typenums[0] = 0;
488 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
489 if (nbits != 0)
490 return -1;
491 }
492 return 0;
493 }
494 \f
495
496 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
497 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
498 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
499 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
500
501 /* Structure for storing pointers to reference definitions for fast lookup
502 during "process_later". */
503
504 struct ref_map
505 {
506 const char *stabs;
507 CORE_ADDR value;
508 struct symbol *sym;
509 };
510
511 #define MAX_CHUNK_REFS 100
512 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
513 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
514
515 static struct ref_map *ref_map;
516
517 /* Ptr to free cell in chunk's linked list. */
518 static int ref_count = 0;
519
520 /* Number of chunks malloced. */
521 static int ref_chunk = 0;
522
523 /* This file maintains a cache of stabs aliases found in the symbol
524 table. If the symbol table changes, this cache must be cleared
525 or we are left holding onto data in invalid obstacks. */
526 void
527 stabsread_clear_cache (void)
528 {
529 ref_count = 0;
530 ref_chunk = 0;
531 }
532
533 /* Create array of pointers mapping refids to symbols and stab strings.
534 Add pointers to reference definition symbols and/or their values as we
535 find them, using their reference numbers as our index.
536 These will be used later when we resolve references. */
537 void
538 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
539 {
540 if (ref_count == 0)
541 ref_chunk = 0;
542 if (refnum >= ref_count)
543 ref_count = refnum + 1;
544 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
545 {
546 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
547 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
548
549 ref_map = (struct ref_map *)
550 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
551 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
552 new_chunks * REF_CHUNK_SIZE);
553 ref_chunk += new_chunks;
554 }
555 ref_map[refnum].stabs = stabs;
556 ref_map[refnum].sym = sym;
557 ref_map[refnum].value = value;
558 }
559
560 /* Return defined sym for the reference REFNUM. */
561 struct symbol *
562 ref_search (int refnum)
563 {
564 if (refnum < 0 || refnum > ref_count)
565 return 0;
566 return ref_map[refnum].sym;
567 }
568
569 /* Parse a reference id in STRING and return the resulting
570 reference number. Move STRING beyond the reference id. */
571
572 static int
573 process_reference (const char **string)
574 {
575 const char *p;
576 int refnum = 0;
577
578 if (**string != '#')
579 return 0;
580
581 /* Advance beyond the initial '#'. */
582 p = *string + 1;
583
584 /* Read number as reference id. */
585 while (*p && isdigit (*p))
586 {
587 refnum = refnum * 10 + *p - '0';
588 p++;
589 }
590 *string = p;
591 return refnum;
592 }
593
594 /* If STRING defines a reference, store away a pointer to the reference
595 definition for later use. Return the reference number. */
596
597 int
598 symbol_reference_defined (const char **string)
599 {
600 const char *p = *string;
601 int refnum = 0;
602
603 refnum = process_reference (&p);
604
605 /* Defining symbols end in '='. */
606 if (*p == '=')
607 {
608 /* Symbol is being defined here. */
609 *string = p + 1;
610 return refnum;
611 }
612 else
613 {
614 /* Must be a reference. Either the symbol has already been defined,
615 or this is a forward reference to it. */
616 *string = p;
617 return -1;
618 }
619 }
620
621 static int
622 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
623 {
624 int regno = gdbarch_stab_reg_to_regnum (gdbarch, sym->value_longest ());
625
626 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
627 {
628 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
629 sym->print_name ());
630
631 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
632 }
633
634 return regno;
635 }
636
637 static const struct symbol_register_ops stab_register_funcs = {
638 stab_reg_to_regnum
639 };
640
641 /* The "aclass" indices for computed symbols. */
642
643 static int stab_register_index;
644 static int stab_regparm_index;
645
646 struct symbol *
647 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
648 struct objfile *objfile)
649 {
650 struct gdbarch *gdbarch = objfile->arch ();
651 struct symbol *sym;
652 const char *p = find_name_end (string);
653 int deftype;
654 int synonym = 0;
655 int i;
656
657 /* We would like to eliminate nameless symbols, but keep their types.
658 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
659 to type 2, but, should not create a symbol to address that type. Since
660 the symbol will be nameless, there is no way any user can refer to it. */
661
662 int nameless;
663
664 /* Ignore syms with empty names. */
665 if (string[0] == 0)
666 return 0;
667
668 /* Ignore old-style symbols from cc -go. */
669 if (p == 0)
670 return 0;
671
672 while (p[1] == ':')
673 {
674 p += 2;
675 p = strchr (p, ':');
676 if (p == NULL)
677 {
678 complaint (
679 _("Bad stabs string '%s'"), string);
680 return NULL;
681 }
682 }
683
684 /* If a nameless stab entry, all we need is the type, not the symbol.
685 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
686 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
687
688 current_symbol = sym = new (&objfile->objfile_obstack) symbol;
689
690 if (processing_gcc_compilation)
691 {
692 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
693 number of bytes occupied by a type or object, which we ignore. */
694 sym->set_line (desc);
695 }
696 else
697 {
698 sym->set_line (0); /* unknown */
699 }
700
701 sym->set_language (get_current_subfile ()->language,
702 &objfile->objfile_obstack);
703
704 if (is_cplus_marker (string[0]))
705 {
706 /* Special GNU C++ names. */
707 switch (string[1])
708 {
709 case 't':
710 sym->set_linkage_name ("this");
711 break;
712
713 case 'v': /* $vtbl_ptr_type */
714 goto normal;
715
716 case 'e':
717 sym->set_linkage_name ("eh_throw");
718 break;
719
720 case '_':
721 /* This was an anonymous type that was never fixed up. */
722 goto normal;
723
724 default:
725 complaint (_("Unknown C++ symbol name `%s'"),
726 string);
727 goto normal; /* Do *something* with it. */
728 }
729 }
730 else
731 {
732 normal:
733 gdb::unique_xmalloc_ptr<char> new_name;
734
735 if (sym->language () == language_cplus)
736 {
737 std::string name (string, p - string);
738 new_name = cp_canonicalize_string (name.c_str ());
739 }
740 else if (sym->language () == language_c)
741 {
742 std::string name (string, p - string);
743 new_name = c_canonicalize_name (name.c_str ());
744 }
745 if (new_name != nullptr)
746 sym->compute_and_set_names (new_name.get (), true, objfile->per_bfd);
747 else
748 sym->compute_and_set_names (gdb::string_view (string, p - string), true,
749 objfile->per_bfd);
750
751 if (sym->language () == language_cplus)
752 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
753 objfile);
754
755 }
756 p++;
757
758 /* Determine the type of name being defined. */
759 #if 0
760 /* Getting GDB to correctly skip the symbol on an undefined symbol
761 descriptor and not ever dump core is a very dodgy proposition if
762 we do things this way. I say the acorn RISC machine can just
763 fix their compiler. */
764 /* The Acorn RISC machine's compiler can put out locals that don't
765 start with "234=" or "(3,4)=", so assume anything other than the
766 deftypes we know how to handle is a local. */
767 if (!strchr ("cfFGpPrStTvVXCR", *p))
768 #else
769 if (isdigit (*p) || *p == '(' || *p == '-')
770 #endif
771 deftype = 'l';
772 else
773 deftype = *p++;
774
775 switch (deftype)
776 {
777 case 'c':
778 /* c is a special case, not followed by a type-number.
779 SYMBOL:c=iVALUE for an integer constant symbol.
780 SYMBOL:c=rVALUE for a floating constant symbol.
781 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
782 e.g. "b:c=e6,0" for "const b = blob1"
783 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
784 if (*p != '=')
785 {
786 sym->set_aclass_index (LOC_CONST);
787 sym->set_type (error_type (&p, objfile));
788 sym->set_domain (VAR_DOMAIN);
789 add_symbol_to_list (sym, get_file_symbols ());
790 return sym;
791 }
792 ++p;
793 switch (*p++)
794 {
795 case 'r':
796 {
797 gdb_byte *dbl_valu;
798 struct type *dbl_type;
799
800 dbl_type = objfile_type (objfile)->builtin_double;
801 dbl_valu
802 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
803 dbl_type->length ());
804
805 target_float_from_string (dbl_valu, dbl_type, std::string (p));
806
807 sym->set_type (dbl_type);
808 sym->set_value_bytes (dbl_valu);
809 sym->set_aclass_index (LOC_CONST_BYTES);
810 }
811 break;
812 case 'i':
813 {
814 /* Defining integer constants this way is kind of silly,
815 since 'e' constants allows the compiler to give not
816 only the value, but the type as well. C has at least
817 int, long, unsigned int, and long long as constant
818 types; other languages probably should have at least
819 unsigned as well as signed constants. */
820
821 sym->set_type (objfile_type (objfile)->builtin_long);
822 sym->set_value_longest (atoi (p));
823 sym->set_aclass_index (LOC_CONST);
824 }
825 break;
826
827 case 'c':
828 {
829 sym->set_type (objfile_type (objfile)->builtin_char);
830 sym->set_value_longest (atoi (p));
831 sym->set_aclass_index (LOC_CONST);
832 }
833 break;
834
835 case 's':
836 {
837 struct type *range_type;
838 int ind = 0;
839 char quote = *p++;
840 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
841 gdb_byte *string_value;
842
843 if (quote != '\'' && quote != '"')
844 {
845 sym->set_aclass_index (LOC_CONST);
846 sym->set_type (error_type (&p, objfile));
847 sym->set_domain (VAR_DOMAIN);
848 add_symbol_to_list (sym, get_file_symbols ());
849 return sym;
850 }
851
852 /* Find matching quote, rejecting escaped quotes. */
853 while (*p && *p != quote)
854 {
855 if (*p == '\\' && p[1] == quote)
856 {
857 string_local[ind] = (gdb_byte) quote;
858 ind++;
859 p += 2;
860 }
861 else if (*p)
862 {
863 string_local[ind] = (gdb_byte) (*p);
864 ind++;
865 p++;
866 }
867 }
868 if (*p != quote)
869 {
870 sym->set_aclass_index (LOC_CONST);
871 sym->set_type (error_type (&p, objfile));
872 sym->set_domain (VAR_DOMAIN);
873 add_symbol_to_list (sym, get_file_symbols ());
874 return sym;
875 }
876
877 /* NULL terminate the string. */
878 string_local[ind] = 0;
879 range_type
880 = create_static_range_type (NULL,
881 objfile_type (objfile)->builtin_int,
882 0, ind);
883 sym->set_type
884 (create_array_type (NULL, objfile_type (objfile)->builtin_char,
885 range_type));
886 string_value
887 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
888 memcpy (string_value, string_local, ind + 1);
889 p++;
890
891 sym->set_value_bytes (string_value);
892 sym->set_aclass_index (LOC_CONST_BYTES);
893 }
894 break;
895
896 case 'e':
897 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
898 can be represented as integral.
899 e.g. "b:c=e6,0" for "const b = blob1"
900 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
901 {
902 sym->set_aclass_index (LOC_CONST);
903 sym->set_type (read_type (&p, objfile));
904
905 if (*p != ',')
906 {
907 sym->set_type (error_type (&p, objfile));
908 break;
909 }
910 ++p;
911
912 /* If the value is too big to fit in an int (perhaps because
913 it is unsigned), or something like that, we silently get
914 a bogus value. The type and everything else about it is
915 correct. Ideally, we should be using whatever we have
916 available for parsing unsigned and long long values,
917 however. */
918 sym->set_value_longest (atoi (p));
919 }
920 break;
921 default:
922 {
923 sym->set_aclass_index (LOC_CONST);
924 sym->set_type (error_type (&p, objfile));
925 }
926 }
927 sym->set_domain (VAR_DOMAIN);
928 add_symbol_to_list (sym, get_file_symbols ());
929 return sym;
930
931 case 'C':
932 /* The name of a caught exception. */
933 sym->set_type (read_type (&p, objfile));
934 sym->set_aclass_index (LOC_LABEL);
935 sym->set_domain (VAR_DOMAIN);
936 sym->set_value_address (valu);
937 add_symbol_to_list (sym, get_local_symbols ());
938 break;
939
940 case 'f':
941 /* A static function definition. */
942 sym->set_type (read_type (&p, objfile));
943 sym->set_aclass_index (LOC_BLOCK);
944 sym->set_domain (VAR_DOMAIN);
945 add_symbol_to_list (sym, get_file_symbols ());
946 /* fall into process_function_types. */
947
948 process_function_types:
949 /* Function result types are described as the result type in stabs.
950 We need to convert this to the function-returning-type-X type
951 in GDB. E.g. "int" is converted to "function returning int". */
952 if (sym->type ()->code () != TYPE_CODE_FUNC)
953 sym->set_type (lookup_function_type (sym->type ()));
954
955 /* All functions in C++ have prototypes. Stabs does not offer an
956 explicit way to identify prototyped or unprototyped functions,
957 but both GCC and Sun CC emit stabs for the "call-as" type rather
958 than the "declared-as" type for unprototyped functions, so
959 we treat all functions as if they were prototyped. This is used
960 primarily for promotion when calling the function from GDB. */
961 sym->type ()->set_is_prototyped (true);
962
963 /* fall into process_prototype_types. */
964
965 process_prototype_types:
966 /* Sun acc puts declared types of arguments here. */
967 if (*p == ';')
968 {
969 struct type *ftype = sym->type ();
970 int nsemi = 0;
971 int nparams = 0;
972 const char *p1 = p;
973
974 /* Obtain a worst case guess for the number of arguments
975 by counting the semicolons. */
976 while (*p1)
977 {
978 if (*p1++ == ';')
979 nsemi++;
980 }
981
982 /* Allocate parameter information fields and fill them in. */
983 ftype->set_fields
984 ((struct field *)
985 TYPE_ALLOC (ftype, nsemi * sizeof (struct field)));
986 while (*p++ == ';')
987 {
988 struct type *ptype;
989
990 /* A type number of zero indicates the start of varargs.
991 FIXME: GDB currently ignores vararg functions. */
992 if (p[0] == '0' && p[1] == '\0')
993 break;
994 ptype = read_type (&p, objfile);
995
996 /* The Sun compilers mark integer arguments, which should
997 be promoted to the width of the calling conventions, with
998 a type which references itself. This type is turned into
999 a TYPE_CODE_VOID type by read_type, and we have to turn
1000 it back into builtin_int here.
1001 FIXME: Do we need a new builtin_promoted_int_arg ? */
1002 if (ptype->code () == TYPE_CODE_VOID)
1003 ptype = objfile_type (objfile)->builtin_int;
1004 ftype->field (nparams).set_type (ptype);
1005 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1006 }
1007 ftype->set_num_fields (nparams);
1008 ftype->set_is_prototyped (true);
1009 }
1010 break;
1011
1012 case 'F':
1013 /* A global function definition. */
1014 sym->set_type (read_type (&p, objfile));
1015 sym->set_aclass_index (LOC_BLOCK);
1016 sym->set_domain (VAR_DOMAIN);
1017 add_symbol_to_list (sym, get_global_symbols ());
1018 goto process_function_types;
1019
1020 case 'G':
1021 /* For a class G (global) symbol, it appears that the
1022 value is not correct. It is necessary to search for the
1023 corresponding linker definition to find the value.
1024 These definitions appear at the end of the namelist. */
1025 sym->set_type (read_type (&p, objfile));
1026 sym->set_aclass_index (LOC_STATIC);
1027 sym->set_domain (VAR_DOMAIN);
1028 /* Don't add symbol references to global_sym_chain.
1029 Symbol references don't have valid names and wont't match up with
1030 minimal symbols when the global_sym_chain is relocated.
1031 We'll fixup symbol references when we fixup the defining symbol. */
1032 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1033 {
1034 i = hashname (sym->linkage_name ());
1035 sym->set_value_chain (global_sym_chain[i]);
1036 global_sym_chain[i] = sym;
1037 }
1038 add_symbol_to_list (sym, get_global_symbols ());
1039 break;
1040
1041 /* This case is faked by a conditional above,
1042 when there is no code letter in the dbx data.
1043 Dbx data never actually contains 'l'. */
1044 case 's':
1045 case 'l':
1046 sym->set_type (read_type (&p, objfile));
1047 sym->set_aclass_index (LOC_LOCAL);
1048 sym->set_value_longest (valu);
1049 sym->set_domain (VAR_DOMAIN);
1050 add_symbol_to_list (sym, get_local_symbols ());
1051 break;
1052
1053 case 'p':
1054 if (*p == 'F')
1055 /* pF is a two-letter code that means a function parameter in Fortran.
1056 The type-number specifies the type of the return value.
1057 Translate it into a pointer-to-function type. */
1058 {
1059 p++;
1060 sym->set_type
1061 (lookup_pointer_type
1062 (lookup_function_type (read_type (&p, objfile))));
1063 }
1064 else
1065 sym->set_type (read_type (&p, objfile));
1066
1067 sym->set_aclass_index (LOC_ARG);
1068 sym->set_value_longest (valu);
1069 sym->set_domain (VAR_DOMAIN);
1070 sym->set_is_argument (1);
1071 add_symbol_to_list (sym, get_local_symbols ());
1072
1073 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1074 {
1075 /* On little-endian machines, this crud is never necessary,
1076 and, if the extra bytes contain garbage, is harmful. */
1077 break;
1078 }
1079
1080 /* If it's gcc-compiled, if it says `short', believe it. */
1081 if (processing_gcc_compilation
1082 || gdbarch_believe_pcc_promotion (gdbarch))
1083 break;
1084
1085 if (!gdbarch_believe_pcc_promotion (gdbarch))
1086 {
1087 /* If PCC says a parameter is a short or a char, it is
1088 really an int. */
1089 if (sym->type ()->length ()
1090 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1091 && sym->type ()->code () == TYPE_CODE_INT)
1092 {
1093 sym->set_type
1094 (sym->type ()->is_unsigned ()
1095 ? objfile_type (objfile)->builtin_unsigned_int
1096 : objfile_type (objfile)->builtin_int);
1097 }
1098 break;
1099 }
1100 /* Fall through. */
1101
1102 case 'P':
1103 /* acc seems to use P to declare the prototypes of functions that
1104 are referenced by this file. gdb is not prepared to deal
1105 with this extra information. FIXME, it ought to. */
1106 if (type == N_FUN)
1107 {
1108 sym->set_type (read_type (&p, objfile));
1109 goto process_prototype_types;
1110 }
1111 /*FALLTHROUGH */
1112
1113 case 'R':
1114 /* Parameter which is in a register. */
1115 sym->set_type (read_type (&p, objfile));
1116 sym->set_aclass_index (stab_register_index);
1117 sym->set_is_argument (1);
1118 sym->set_value_longest (valu);
1119 sym->set_domain (VAR_DOMAIN);
1120 add_symbol_to_list (sym, get_local_symbols ());
1121 break;
1122
1123 case 'r':
1124 /* Register variable (either global or local). */
1125 sym->set_type (read_type (&p, objfile));
1126 sym->set_aclass_index (stab_register_index);
1127 sym->set_value_longest (valu);
1128 sym->set_domain (VAR_DOMAIN);
1129 if (within_function)
1130 {
1131 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1132 the same name to represent an argument passed in a
1133 register. GCC uses 'P' for the same case. So if we find
1134 such a symbol pair we combine it into one 'P' symbol.
1135 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1136 the 'p' symbol even if it never saves the argument onto
1137 the stack.
1138
1139 On most machines, we want to preserve both symbols, so
1140 that we can still get information about what is going on
1141 with the stack (VAX for computing args_printed, using
1142 stack slots instead of saved registers in backtraces,
1143 etc.).
1144
1145 Note that this code illegally combines
1146 main(argc) struct foo argc; { register struct foo argc; }
1147 but this case is considered pathological and causes a warning
1148 from a decent compiler. */
1149
1150 struct pending *local_symbols = *get_local_symbols ();
1151 if (local_symbols
1152 && local_symbols->nsyms > 0
1153 && gdbarch_stabs_argument_has_addr (gdbarch, sym->type ()))
1154 {
1155 struct symbol *prev_sym;
1156
1157 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1158 if ((prev_sym->aclass () == LOC_REF_ARG
1159 || prev_sym->aclass () == LOC_ARG)
1160 && strcmp (prev_sym->linkage_name (),
1161 sym->linkage_name ()) == 0)
1162 {
1163 prev_sym->set_aclass_index (stab_register_index);
1164 /* Use the type from the LOC_REGISTER; that is the type
1165 that is actually in that register. */
1166 prev_sym->set_type (sym->type ());
1167 prev_sym->set_value_longest (sym->value_longest ());
1168 sym = prev_sym;
1169 break;
1170 }
1171 }
1172 add_symbol_to_list (sym, get_local_symbols ());
1173 }
1174 else
1175 add_symbol_to_list (sym, get_file_symbols ());
1176 break;
1177
1178 case 'S':
1179 /* Static symbol at top level of file. */
1180 sym->set_type (read_type (&p, objfile));
1181 sym->set_aclass_index (LOC_STATIC);
1182 sym->set_value_address (valu);
1183 sym->set_domain (VAR_DOMAIN);
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 't':
1188 /* In Ada, there is no distinction between typedef and non-typedef;
1189 any type declaration implicitly has the equivalent of a typedef,
1190 and thus 't' is in fact equivalent to 'Tt'.
1191
1192 Therefore, for Ada units, we check the character immediately
1193 before the 't', and if we do not find a 'T', then make sure to
1194 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1195 will be stored in the VAR_DOMAIN). If the symbol was indeed
1196 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1197 elsewhere, so we don't need to take care of that.
1198
1199 This is important to do, because of forward references:
1200 The cleanup of undefined types stored in undef_types only uses
1201 STRUCT_DOMAIN symbols to perform the replacement. */
1202 synonym = (sym->language () == language_ada && p[-2] != 'T');
1203
1204 /* Typedef */
1205 sym->set_type (read_type (&p, objfile));
1206
1207 /* For a nameless type, we don't want a create a symbol, thus we
1208 did not use `sym'. Return without further processing. */
1209 if (nameless)
1210 return NULL;
1211
1212 sym->set_aclass_index (LOC_TYPEDEF);
1213 sym->set_value_longest (valu);
1214 sym->set_domain (VAR_DOMAIN);
1215 /* C++ vagaries: we may have a type which is derived from
1216 a base type which did not have its name defined when the
1217 derived class was output. We fill in the derived class's
1218 base part member's name here in that case. */
1219 if (sym->type ()->name () != NULL)
1220 if ((sym->type ()->code () == TYPE_CODE_STRUCT
1221 || sym->type ()->code () == TYPE_CODE_UNION)
1222 && TYPE_N_BASECLASSES (sym->type ()))
1223 {
1224 int j;
1225
1226 for (j = TYPE_N_BASECLASSES (sym->type ()) - 1; j >= 0; j--)
1227 if (TYPE_BASECLASS_NAME (sym->type (), j) == 0)
1228 sym->type ()->field (j).set_name
1229 (TYPE_BASECLASS (sym->type (), j)->name ());
1230 }
1231
1232 if (sym->type ()->name () == NULL)
1233 {
1234 if ((sym->type ()->code () == TYPE_CODE_PTR
1235 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1236 || sym->type ()->code () == TYPE_CODE_FUNC)
1237 {
1238 /* If we are giving a name to a type such as "pointer to
1239 foo" or "function returning foo", we better not set
1240 the TYPE_NAME. If the program contains "typedef char
1241 *caddr_t;", we don't want all variables of type char
1242 * to print as caddr_t. This is not just a
1243 consequence of GDB's type management; PCC and GCC (at
1244 least through version 2.4) both output variables of
1245 either type char * or caddr_t with the type number
1246 defined in the 't' symbol for caddr_t. If a future
1247 compiler cleans this up it GDB is not ready for it
1248 yet, but if it becomes ready we somehow need to
1249 disable this check (without breaking the PCC/GCC2.4
1250 case).
1251
1252 Sigh.
1253
1254 Fortunately, this check seems not to be necessary
1255 for anything except pointers or functions. */
1256 /* ezannoni: 2000-10-26. This seems to apply for
1257 versions of gcc older than 2.8. This was the original
1258 problem: with the following code gdb would tell that
1259 the type for name1 is caddr_t, and func is char().
1260
1261 typedef char *caddr_t;
1262 char *name2;
1263 struct x
1264 {
1265 char *name1;
1266 } xx;
1267 char *func()
1268 {
1269 }
1270 main () {}
1271 */
1272
1273 /* Pascal accepts names for pointer types. */
1274 if (get_current_subfile ()->language == language_pascal)
1275 sym->type ()->set_name (sym->linkage_name ());
1276 }
1277 else
1278 sym->type ()->set_name (sym->linkage_name ());
1279 }
1280
1281 add_symbol_to_list (sym, get_file_symbols ());
1282
1283 if (synonym)
1284 {
1285 /* Create the STRUCT_DOMAIN clone. */
1286 struct symbol *struct_sym = new (&objfile->objfile_obstack) symbol;
1287
1288 *struct_sym = *sym;
1289 struct_sym->set_aclass_index (LOC_TYPEDEF);
1290 struct_sym->set_value_longest (valu);
1291 struct_sym->set_domain (STRUCT_DOMAIN);
1292 if (sym->type ()->name () == 0)
1293 sym->type ()->set_name
1294 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1295 (char *) NULL));
1296 add_symbol_to_list (struct_sym, get_file_symbols ());
1297 }
1298
1299 break;
1300
1301 case 'T':
1302 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1303 by 't' which means we are typedef'ing it as well. */
1304 synonym = *p == 't';
1305
1306 if (synonym)
1307 p++;
1308
1309 sym->set_type (read_type (&p, objfile));
1310
1311 /* For a nameless type, we don't want a create a symbol, thus we
1312 did not use `sym'. Return without further processing. */
1313 if (nameless)
1314 return NULL;
1315
1316 sym->set_aclass_index (LOC_TYPEDEF);
1317 sym->set_value_longest (valu);
1318 sym->set_domain (STRUCT_DOMAIN);
1319 if (sym->type ()->name () == 0)
1320 sym->type ()->set_name
1321 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1322 (char *) NULL));
1323 add_symbol_to_list (sym, get_file_symbols ());
1324
1325 if (synonym)
1326 {
1327 /* Clone the sym and then modify it. */
1328 struct symbol *typedef_sym = new (&objfile->objfile_obstack) symbol;
1329
1330 *typedef_sym = *sym;
1331 typedef_sym->set_aclass_index (LOC_TYPEDEF);
1332 typedef_sym->set_value_longest (valu);
1333 typedef_sym->set_domain (VAR_DOMAIN);
1334 if (sym->type ()->name () == 0)
1335 sym->type ()->set_name
1336 (obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1337 (char *) NULL));
1338 add_symbol_to_list (typedef_sym, get_file_symbols ());
1339 }
1340 break;
1341
1342 case 'V':
1343 /* Static symbol of local scope. */
1344 sym->set_type (read_type (&p, objfile));
1345 sym->set_aclass_index (LOC_STATIC);
1346 sym->set_value_address (valu);
1347 sym->set_domain (VAR_DOMAIN);
1348 add_symbol_to_list (sym, get_local_symbols ());
1349 break;
1350
1351 case 'v':
1352 /* Reference parameter */
1353 sym->set_type (read_type (&p, objfile));
1354 sym->set_aclass_index (LOC_REF_ARG);
1355 sym->set_is_argument (1);
1356 sym->set_value_longest (valu);
1357 sym->set_domain (VAR_DOMAIN);
1358 add_symbol_to_list (sym, get_local_symbols ());
1359 break;
1360
1361 case 'a':
1362 /* Reference parameter which is in a register. */
1363 sym->set_type (read_type (&p, objfile));
1364 sym->set_aclass_index (stab_regparm_index);
1365 sym->set_is_argument (1);
1366 sym->set_value_longest (valu);
1367 sym->set_domain (VAR_DOMAIN);
1368 add_symbol_to_list (sym, get_local_symbols ());
1369 break;
1370
1371 case 'X':
1372 /* This is used by Sun FORTRAN for "function result value".
1373 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1374 that Pascal uses it too, but when I tried it Pascal used
1375 "x:3" (local symbol) instead. */
1376 sym->set_type (read_type (&p, objfile));
1377 sym->set_aclass_index (LOC_LOCAL);
1378 sym->set_value_longest (valu);
1379 sym->set_domain (VAR_DOMAIN);
1380 add_symbol_to_list (sym, get_local_symbols ());
1381 break;
1382
1383 default:
1384 sym->set_type (error_type (&p, objfile));
1385 sym->set_aclass_index (LOC_CONST);
1386 sym->set_value_longest (0);
1387 sym->set_domain (VAR_DOMAIN);
1388 add_symbol_to_list (sym, get_file_symbols ());
1389 break;
1390 }
1391
1392 /* Some systems pass variables of certain types by reference instead
1393 of by value, i.e. they will pass the address of a structure (in a
1394 register or on the stack) instead of the structure itself. */
1395
1396 if (gdbarch_stabs_argument_has_addr (gdbarch, sym->type ())
1397 && sym->is_argument ())
1398 {
1399 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1400 variables passed in a register). */
1401 if (sym->aclass () == LOC_REGISTER)
1402 sym->set_aclass_index (LOC_REGPARM_ADDR);
1403 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1404 and subsequent arguments on SPARC, for example). */
1405 else if (sym->aclass () == LOC_ARG)
1406 sym->set_aclass_index (LOC_REF_ARG);
1407 }
1408
1409 return sym;
1410 }
1411
1412 /* Skip rest of this symbol and return an error type.
1413
1414 General notes on error recovery: error_type always skips to the
1415 end of the symbol (modulo cretinous dbx symbol name continuation).
1416 Thus code like this:
1417
1418 if (*(*pp)++ != ';')
1419 return error_type (pp, objfile);
1420
1421 is wrong because if *pp starts out pointing at '\0' (typically as the
1422 result of an earlier error), it will be incremented to point to the
1423 start of the next symbol, which might produce strange results, at least
1424 if you run off the end of the string table. Instead use
1425
1426 if (**pp != ';')
1427 return error_type (pp, objfile);
1428 ++*pp;
1429
1430 or
1431
1432 if (**pp != ';')
1433 foo = error_type (pp, objfile);
1434 else
1435 ++*pp;
1436
1437 And in case it isn't obvious, the point of all this hair is so the compiler
1438 can define new types and new syntaxes, and old versions of the
1439 debugger will be able to read the new symbol tables. */
1440
1441 static struct type *
1442 error_type (const char **pp, struct objfile *objfile)
1443 {
1444 complaint (_("couldn't parse type; debugger out of date?"));
1445 while (1)
1446 {
1447 /* Skip to end of symbol. */
1448 while (**pp != '\0')
1449 {
1450 (*pp)++;
1451 }
1452
1453 /* Check for and handle cretinous dbx symbol name continuation! */
1454 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1455 {
1456 *pp = next_symbol_text (objfile);
1457 }
1458 else
1459 {
1460 break;
1461 }
1462 }
1463 return objfile_type (objfile)->builtin_error;
1464 }
1465 \f
1466
1467 /* Read type information or a type definition; return the type. Even
1468 though this routine accepts either type information or a type
1469 definition, the distinction is relevant--some parts of stabsread.c
1470 assume that type information starts with a digit, '-', or '(' in
1471 deciding whether to call read_type. */
1472
1473 static struct type *
1474 read_type (const char **pp, struct objfile *objfile)
1475 {
1476 struct type *type = 0;
1477 struct type *type1;
1478 int typenums[2];
1479 char type_descriptor;
1480
1481 /* Size in bits of type if specified by a type attribute, or -1 if
1482 there is no size attribute. */
1483 int type_size = -1;
1484
1485 /* Used to distinguish string and bitstring from char-array and set. */
1486 int is_string = 0;
1487
1488 /* Used to distinguish vector from array. */
1489 int is_vector = 0;
1490
1491 /* Read type number if present. The type number may be omitted.
1492 for instance in a two-dimensional array declared with type
1493 "ar1;1;10;ar1;1;10;4". */
1494 if ((**pp >= '0' && **pp <= '9')
1495 || **pp == '('
1496 || **pp == '-')
1497 {
1498 if (read_type_number (pp, typenums) != 0)
1499 return error_type (pp, objfile);
1500
1501 if (**pp != '=')
1502 {
1503 /* Type is not being defined here. Either it already
1504 exists, or this is a forward reference to it.
1505 dbx_alloc_type handles both cases. */
1506 type = dbx_alloc_type (typenums, objfile);
1507
1508 /* If this is a forward reference, arrange to complain if it
1509 doesn't get patched up by the time we're done
1510 reading. */
1511 if (type->code () == TYPE_CODE_UNDEF)
1512 add_undefined_type (type, typenums);
1513
1514 return type;
1515 }
1516
1517 /* Type is being defined here. */
1518 /* Skip the '='.
1519 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1520 (*pp) += 2;
1521 }
1522 else
1523 {
1524 /* 'typenums=' not present, type is anonymous. Read and return
1525 the definition, but don't put it in the type vector. */
1526 typenums[0] = typenums[1] = -1;
1527 (*pp)++;
1528 }
1529
1530 again:
1531 type_descriptor = (*pp)[-1];
1532 switch (type_descriptor)
1533 {
1534 case 'x':
1535 {
1536 enum type_code code;
1537
1538 /* Used to index through file_symbols. */
1539 struct pending *ppt;
1540 int i;
1541
1542 /* Name including "struct", etc. */
1543 char *type_name;
1544
1545 {
1546 const char *from, *p, *q1, *q2;
1547
1548 /* Set the type code according to the following letter. */
1549 switch ((*pp)[0])
1550 {
1551 case 's':
1552 code = TYPE_CODE_STRUCT;
1553 break;
1554 case 'u':
1555 code = TYPE_CODE_UNION;
1556 break;
1557 case 'e':
1558 code = TYPE_CODE_ENUM;
1559 break;
1560 default:
1561 {
1562 /* Complain and keep going, so compilers can invent new
1563 cross-reference types. */
1564 complaint (_("Unrecognized cross-reference type `%c'"),
1565 (*pp)[0]);
1566 code = TYPE_CODE_STRUCT;
1567 break;
1568 }
1569 }
1570
1571 q1 = strchr (*pp, '<');
1572 p = strchr (*pp, ':');
1573 if (p == NULL)
1574 return error_type (pp, objfile);
1575 if (q1 && p > q1 && p[1] == ':')
1576 {
1577 int nesting_level = 0;
1578
1579 for (q2 = q1; *q2; q2++)
1580 {
1581 if (*q2 == '<')
1582 nesting_level++;
1583 else if (*q2 == '>')
1584 nesting_level--;
1585 else if (*q2 == ':' && nesting_level == 0)
1586 break;
1587 }
1588 p = q2;
1589 if (*p != ':')
1590 return error_type (pp, objfile);
1591 }
1592 type_name = NULL;
1593 if (get_current_subfile ()->language == language_cplus)
1594 {
1595 std::string name (*pp, p - *pp);
1596 gdb::unique_xmalloc_ptr<char> new_name
1597 = cp_canonicalize_string (name.c_str ());
1598 if (new_name != nullptr)
1599 type_name = obstack_strdup (&objfile->objfile_obstack,
1600 new_name.get ());
1601 }
1602 else if (get_current_subfile ()->language == language_c)
1603 {
1604 std::string name (*pp, p - *pp);
1605 gdb::unique_xmalloc_ptr<char> new_name
1606 = c_canonicalize_name (name.c_str ());
1607 if (new_name != nullptr)
1608 type_name = obstack_strdup (&objfile->objfile_obstack,
1609 new_name.get ());
1610 }
1611 if (type_name == NULL)
1612 {
1613 char *to = type_name = (char *)
1614 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1615
1616 /* Copy the name. */
1617 from = *pp + 1;
1618 while (from < p)
1619 *to++ = *from++;
1620 *to = '\0';
1621 }
1622
1623 /* Set the pointer ahead of the name which we just read, and
1624 the colon. */
1625 *pp = p + 1;
1626 }
1627
1628 /* If this type has already been declared, then reuse the same
1629 type, rather than allocating a new one. This saves some
1630 memory. */
1631
1632 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1633 for (i = 0; i < ppt->nsyms; i++)
1634 {
1635 struct symbol *sym = ppt->symbol[i];
1636
1637 if (sym->aclass () == LOC_TYPEDEF
1638 && sym->domain () == STRUCT_DOMAIN
1639 && (sym->type ()->code () == code)
1640 && strcmp (sym->linkage_name (), type_name) == 0)
1641 {
1642 obstack_free (&objfile->objfile_obstack, type_name);
1643 type = sym->type ();
1644 if (typenums[0] != -1)
1645 *dbx_lookup_type (typenums, objfile) = type;
1646 return type;
1647 }
1648 }
1649
1650 /* Didn't find the type to which this refers, so we must
1651 be dealing with a forward reference. Allocate a type
1652 structure for it, and keep track of it so we can
1653 fill in the rest of the fields when we get the full
1654 type. */
1655 type = dbx_alloc_type (typenums, objfile);
1656 type->set_code (code);
1657 type->set_name (type_name);
1658 INIT_CPLUS_SPECIFIC (type);
1659 type->set_is_stub (true);
1660
1661 add_undefined_type (type, typenums);
1662 return type;
1663 }
1664
1665 case '-': /* RS/6000 built-in type */
1666 case '0':
1667 case '1':
1668 case '2':
1669 case '3':
1670 case '4':
1671 case '5':
1672 case '6':
1673 case '7':
1674 case '8':
1675 case '9':
1676 case '(':
1677 (*pp)--;
1678
1679 /* We deal with something like t(1,2)=(3,4)=... which
1680 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1681
1682 /* Allocate and enter the typedef type first.
1683 This handles recursive types. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 type->set_code (TYPE_CODE_TYPEDEF);
1686 {
1687 struct type *xtype = read_type (pp, objfile);
1688
1689 if (type == xtype)
1690 {
1691 /* It's being defined as itself. That means it is "void". */
1692 type->set_code (TYPE_CODE_VOID);
1693 type->set_length (1);
1694 }
1695 else if (type_size >= 0 || is_string)
1696 {
1697 /* This is the absolute wrong way to construct types. Every
1698 other debug format has found a way around this problem and
1699 the related problems with unnecessarily stubbed types;
1700 someone motivated should attempt to clean up the issue
1701 here as well. Once a type pointed to has been created it
1702 should not be modified.
1703
1704 Well, it's not *absolutely* wrong. Constructing recursive
1705 types (trees, linked lists) necessarily entails modifying
1706 types after creating them. Constructing any loop structure
1707 entails side effects. The Dwarf 2 reader does handle this
1708 more gracefully (it never constructs more than once
1709 instance of a type object, so it doesn't have to copy type
1710 objects wholesale), but it still mutates type objects after
1711 other folks have references to them.
1712
1713 Keep in mind that this circularity/mutation issue shows up
1714 at the source language level, too: C's "incomplete types",
1715 for example. So the proper cleanup, I think, would be to
1716 limit GDB's type smashing to match exactly those required
1717 by the source language. So GDB could have a
1718 "complete_this_type" function, but never create unnecessary
1719 copies of a type otherwise. */
1720 replace_type (type, xtype);
1721 type->set_name (NULL);
1722 }
1723 else
1724 {
1725 type->set_target_is_stub (true);
1726 type->set_target_type (xtype);
1727 }
1728 }
1729 break;
1730
1731 /* In the following types, we must be sure to overwrite any existing
1732 type that the typenums refer to, rather than allocating a new one
1733 and making the typenums point to the new one. This is because there
1734 may already be pointers to the existing type (if it had been
1735 forward-referenced), and we must change it to a pointer, function,
1736 reference, or whatever, *in-place*. */
1737
1738 case '*': /* Pointer to another type */
1739 type1 = read_type (pp, objfile);
1740 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1741 break;
1742
1743 case '&': /* Reference to another type */
1744 type1 = read_type (pp, objfile);
1745 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1746 TYPE_CODE_REF);
1747 break;
1748
1749 case 'f': /* Function returning another type */
1750 type1 = read_type (pp, objfile);
1751 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1752 break;
1753
1754 case 'g': /* Prototyped function. (Sun) */
1755 {
1756 /* Unresolved questions:
1757
1758 - According to Sun's ``STABS Interface Manual'', for 'f'
1759 and 'F' symbol descriptors, a `0' in the argument type list
1760 indicates a varargs function. But it doesn't say how 'g'
1761 type descriptors represent that info. Someone with access
1762 to Sun's toolchain should try it out.
1763
1764 - According to the comment in define_symbol (search for
1765 `process_prototype_types:'), Sun emits integer arguments as
1766 types which ref themselves --- like `void' types. Do we
1767 have to deal with that here, too? Again, someone with
1768 access to Sun's toolchain should try it out and let us
1769 know. */
1770
1771 const char *type_start = (*pp) - 1;
1772 struct type *return_type = read_type (pp, objfile);
1773 struct type *func_type
1774 = make_function_type (return_type,
1775 dbx_lookup_type (typenums, objfile));
1776 struct type_list {
1777 struct type *type;
1778 struct type_list *next;
1779 } *arg_types = 0;
1780 int num_args = 0;
1781
1782 while (**pp && **pp != '#')
1783 {
1784 struct type *arg_type = read_type (pp, objfile);
1785 struct type_list *newobj = XALLOCA (struct type_list);
1786 newobj->type = arg_type;
1787 newobj->next = arg_types;
1788 arg_types = newobj;
1789 num_args++;
1790 }
1791 if (**pp == '#')
1792 ++*pp;
1793 else
1794 {
1795 complaint (_("Prototyped function type didn't "
1796 "end arguments with `#':\n%s"),
1797 type_start);
1798 }
1799
1800 /* If there is just one argument whose type is `void', then
1801 that's just an empty argument list. */
1802 if (arg_types
1803 && ! arg_types->next
1804 && arg_types->type->code () == TYPE_CODE_VOID)
1805 num_args = 0;
1806
1807 func_type->set_fields
1808 ((struct field *) TYPE_ALLOC (func_type,
1809 num_args * sizeof (struct field)));
1810 memset (func_type->fields (), 0, num_args * sizeof (struct field));
1811 {
1812 int i;
1813 struct type_list *t;
1814
1815 /* We stuck each argument type onto the front of the list
1816 when we read it, so the list is reversed. Build the
1817 fields array right-to-left. */
1818 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1819 func_type->field (i).set_type (t->type);
1820 }
1821 func_type->set_num_fields (num_args);
1822 func_type->set_is_prototyped (true);
1823
1824 type = func_type;
1825 break;
1826 }
1827
1828 case 'k': /* Const qualifier on some type (Sun) */
1829 type = read_type (pp, objfile);
1830 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1831 dbx_lookup_type (typenums, objfile));
1832 break;
1833
1834 case 'B': /* Volatile qual on some type (Sun) */
1835 type = read_type (pp, objfile);
1836 type = make_cv_type (TYPE_CONST (type), 1, type,
1837 dbx_lookup_type (typenums, objfile));
1838 break;
1839
1840 case '@':
1841 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1842 { /* Member (class & variable) type */
1843 /* FIXME -- we should be doing smash_to_XXX types here. */
1844
1845 struct type *domain = read_type (pp, objfile);
1846 struct type *memtype;
1847
1848 if (**pp != ',')
1849 /* Invalid member type data format. */
1850 return error_type (pp, objfile);
1851 ++*pp;
1852
1853 memtype = read_type (pp, objfile);
1854 type = dbx_alloc_type (typenums, objfile);
1855 smash_to_memberptr_type (type, domain, memtype);
1856 }
1857 else
1858 /* type attribute */
1859 {
1860 const char *attr = *pp;
1861
1862 /* Skip to the semicolon. */
1863 while (**pp != ';' && **pp != '\0')
1864 ++(*pp);
1865 if (**pp == '\0')
1866 return error_type (pp, objfile);
1867 else
1868 ++ * pp; /* Skip the semicolon. */
1869
1870 switch (*attr)
1871 {
1872 case 's': /* Size attribute */
1873 type_size = atoi (attr + 1);
1874 if (type_size <= 0)
1875 type_size = -1;
1876 break;
1877
1878 case 'S': /* String attribute */
1879 /* FIXME: check to see if following type is array? */
1880 is_string = 1;
1881 break;
1882
1883 case 'V': /* Vector attribute */
1884 /* FIXME: check to see if following type is array? */
1885 is_vector = 1;
1886 break;
1887
1888 default:
1889 /* Ignore unrecognized type attributes, so future compilers
1890 can invent new ones. */
1891 break;
1892 }
1893 ++*pp;
1894 goto again;
1895 }
1896 break;
1897
1898 case '#': /* Method (class & fn) type */
1899 if ((*pp)[0] == '#')
1900 {
1901 /* We'll get the parameter types from the name. */
1902 struct type *return_type;
1903
1904 (*pp)++;
1905 return_type = read_type (pp, objfile);
1906 if (*(*pp)++ != ';')
1907 complaint (_("invalid (minimal) member type "
1908 "data format at symtab pos %d."),
1909 symnum);
1910 type = allocate_stub_method (return_type);
1911 if (typenums[0] != -1)
1912 *dbx_lookup_type (typenums, objfile) = type;
1913 }
1914 else
1915 {
1916 struct type *domain = read_type (pp, objfile);
1917 struct type *return_type;
1918 struct field *args;
1919 int nargs, varargs;
1920
1921 if (**pp != ',')
1922 /* Invalid member type data format. */
1923 return error_type (pp, objfile);
1924 else
1925 ++(*pp);
1926
1927 return_type = read_type (pp, objfile);
1928 args = read_args (pp, ';', objfile, &nargs, &varargs);
1929 if (args == NULL)
1930 return error_type (pp, objfile);
1931 type = dbx_alloc_type (typenums, objfile);
1932 smash_to_method_type (type, domain, return_type, args,
1933 nargs, varargs);
1934 }
1935 break;
1936
1937 case 'r': /* Range type */
1938 type = read_range_type (pp, typenums, type_size, objfile);
1939 if (typenums[0] != -1)
1940 *dbx_lookup_type (typenums, objfile) = type;
1941 break;
1942
1943 case 'b':
1944 {
1945 /* Sun ACC builtin int type */
1946 type = read_sun_builtin_type (pp, typenums, objfile);
1947 if (typenums[0] != -1)
1948 *dbx_lookup_type (typenums, objfile) = type;
1949 }
1950 break;
1951
1952 case 'R': /* Sun ACC builtin float type */
1953 type = read_sun_floating_type (pp, typenums, objfile);
1954 if (typenums[0] != -1)
1955 *dbx_lookup_type (typenums, objfile) = type;
1956 break;
1957
1958 case 'e': /* Enumeration type */
1959 type = dbx_alloc_type (typenums, objfile);
1960 type = read_enum_type (pp, type, objfile);
1961 if (typenums[0] != -1)
1962 *dbx_lookup_type (typenums, objfile) = type;
1963 break;
1964
1965 case 's': /* Struct type */
1966 case 'u': /* Union type */
1967 {
1968 enum type_code type_code = TYPE_CODE_UNDEF;
1969 type = dbx_alloc_type (typenums, objfile);
1970 switch (type_descriptor)
1971 {
1972 case 's':
1973 type_code = TYPE_CODE_STRUCT;
1974 break;
1975 case 'u':
1976 type_code = TYPE_CODE_UNION;
1977 break;
1978 }
1979 type = read_struct_type (pp, type, type_code, objfile);
1980 break;
1981 }
1982
1983 case 'a': /* Array type */
1984 if (**pp != 'r')
1985 return error_type (pp, objfile);
1986 ++*pp;
1987
1988 type = dbx_alloc_type (typenums, objfile);
1989 type = read_array_type (pp, type, objfile);
1990 if (is_string)
1991 type->set_code (TYPE_CODE_STRING);
1992 if (is_vector)
1993 make_vector_type (type);
1994 break;
1995
1996 case 'S': /* Set type */
1997 type1 = read_type (pp, objfile);
1998 type = create_set_type (NULL, type1);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 break;
2002
2003 default:
2004 --*pp; /* Go back to the symbol in error. */
2005 /* Particularly important if it was \0! */
2006 return error_type (pp, objfile);
2007 }
2008
2009 if (type == 0)
2010 {
2011 warning (_("GDB internal error, type is NULL in stabsread.c."));
2012 return error_type (pp, objfile);
2013 }
2014
2015 /* Size specified in a type attribute overrides any other size. */
2016 if (type_size != -1)
2017 type->set_length ((type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT);
2018
2019 return type;
2020 }
2021 \f
2022 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2023 Return the proper type node for a given builtin type number. */
2024
2025 static const registry<objfile>::key<struct type *,
2026 gdb::noop_deleter<struct type *>>
2027 rs6000_builtin_type_data;
2028
2029 static struct type *
2030 rs6000_builtin_type (int typenum, struct objfile *objfile)
2031 {
2032 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2033
2034 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2035 #define NUMBER_RECOGNIZED 34
2036 struct type *rettype = NULL;
2037
2038 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2039 {
2040 complaint (_("Unknown builtin type %d"), typenum);
2041 return objfile_type (objfile)->builtin_error;
2042 }
2043
2044 if (!negative_types)
2045 {
2046 /* This includes an empty slot for type number -0. */
2047 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2048 NUMBER_RECOGNIZED + 1, struct type *);
2049 rs6000_builtin_type_data.set (objfile, negative_types);
2050 }
2051
2052 if (negative_types[-typenum] != NULL)
2053 return negative_types[-typenum];
2054
2055 #if TARGET_CHAR_BIT != 8
2056 #error This code wrong for TARGET_CHAR_BIT not 8
2057 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2058 that if that ever becomes not true, the correct fix will be to
2059 make the size in the struct type to be in bits, not in units of
2060 TARGET_CHAR_BIT. */
2061 #endif
2062
2063 switch (-typenum)
2064 {
2065 case 1:
2066 /* The size of this and all the other types are fixed, defined
2067 by the debugging format. If there is a type called "int" which
2068 is other than 32 bits, then it should use a new negative type
2069 number (or avoid negative type numbers for that case).
2070 See stabs.texinfo. */
2071 rettype = init_integer_type (objfile, 32, 0, "int");
2072 break;
2073 case 2:
2074 rettype = init_integer_type (objfile, 8, 0, "char");
2075 rettype->set_has_no_signedness (true);
2076 break;
2077 case 3:
2078 rettype = init_integer_type (objfile, 16, 0, "short");
2079 break;
2080 case 4:
2081 rettype = init_integer_type (objfile, 32, 0, "long");
2082 break;
2083 case 5:
2084 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2085 break;
2086 case 6:
2087 rettype = init_integer_type (objfile, 8, 0, "signed char");
2088 break;
2089 case 7:
2090 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2091 break;
2092 case 8:
2093 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2094 break;
2095 case 9:
2096 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2097 break;
2098 case 10:
2099 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2100 break;
2101 case 11:
2102 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2103 break;
2104 case 12:
2105 /* IEEE single precision (32 bit). */
2106 rettype = init_float_type (objfile, 32, "float",
2107 floatformats_ieee_single);
2108 break;
2109 case 13:
2110 /* IEEE double precision (64 bit). */
2111 rettype = init_float_type (objfile, 64, "double",
2112 floatformats_ieee_double);
2113 break;
2114 case 14:
2115 /* This is an IEEE double on the RS/6000, and different machines with
2116 different sizes for "long double" should use different negative
2117 type numbers. See stabs.texinfo. */
2118 rettype = init_float_type (objfile, 64, "long double",
2119 floatformats_ieee_double);
2120 break;
2121 case 15:
2122 rettype = init_integer_type (objfile, 32, 0, "integer");
2123 break;
2124 case 16:
2125 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2126 break;
2127 case 17:
2128 rettype = init_float_type (objfile, 32, "short real",
2129 floatformats_ieee_single);
2130 break;
2131 case 18:
2132 rettype = init_float_type (objfile, 64, "real",
2133 floatformats_ieee_double);
2134 break;
2135 case 19:
2136 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2137 break;
2138 case 20:
2139 rettype = init_character_type (objfile, 8, 1, "character");
2140 break;
2141 case 21:
2142 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2143 break;
2144 case 22:
2145 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2146 break;
2147 case 23:
2148 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2149 break;
2150 case 24:
2151 rettype = init_boolean_type (objfile, 32, 1, "logical");
2152 break;
2153 case 25:
2154 /* Complex type consisting of two IEEE single precision values. */
2155 rettype = init_complex_type ("complex",
2156 rs6000_builtin_type (12, objfile));
2157 break;
2158 case 26:
2159 /* Complex type consisting of two IEEE double precision values. */
2160 rettype = init_complex_type ("double complex",
2161 rs6000_builtin_type (13, objfile));
2162 break;
2163 case 27:
2164 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2165 break;
2166 case 28:
2167 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2168 break;
2169 case 29:
2170 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2171 break;
2172 case 30:
2173 rettype = init_character_type (objfile, 16, 0, "wchar");
2174 break;
2175 case 31:
2176 rettype = init_integer_type (objfile, 64, 0, "long long");
2177 break;
2178 case 32:
2179 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2180 break;
2181 case 33:
2182 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2183 break;
2184 case 34:
2185 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2186 break;
2187 }
2188 negative_types[-typenum] = rettype;
2189 return rettype;
2190 }
2191 \f
2192 /* This page contains subroutines of read_type. */
2193
2194 /* Wrapper around method_name_from_physname to flag a complaint
2195 if there is an error. */
2196
2197 static char *
2198 stabs_method_name_from_physname (const char *physname)
2199 {
2200 char *method_name;
2201
2202 method_name = method_name_from_physname (physname);
2203
2204 if (method_name == NULL)
2205 {
2206 complaint (_("Method has bad physname %s\n"), physname);
2207 return NULL;
2208 }
2209
2210 return method_name;
2211 }
2212
2213 /* Read member function stabs info for C++ classes. The form of each member
2214 function data is:
2215
2216 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2217
2218 An example with two member functions is:
2219
2220 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2221
2222 For the case of overloaded operators, the format is op$::*.funcs, where
2223 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2224 name (such as `+=') and `.' marks the end of the operator name.
2225
2226 Returns 1 for success, 0 for failure. */
2227
2228 static int
2229 read_member_functions (struct stab_field_info *fip, const char **pp,
2230 struct type *type, struct objfile *objfile)
2231 {
2232 int nfn_fields = 0;
2233 int length = 0;
2234 int i;
2235 struct next_fnfield
2236 {
2237 struct next_fnfield *next;
2238 struct fn_field fn_field;
2239 }
2240 *sublist;
2241 struct type *look_ahead_type;
2242 struct next_fnfieldlist *new_fnlist;
2243 struct next_fnfield *new_sublist;
2244 char *main_fn_name;
2245 const char *p;
2246
2247 /* Process each list until we find something that is not a member function
2248 or find the end of the functions. */
2249
2250 while (**pp != ';')
2251 {
2252 /* We should be positioned at the start of the function name.
2253 Scan forward to find the first ':' and if it is not the
2254 first of a "::" delimiter, then this is not a member function. */
2255 p = *pp;
2256 while (*p != ':')
2257 {
2258 p++;
2259 }
2260 if (p[1] != ':')
2261 {
2262 break;
2263 }
2264
2265 sublist = NULL;
2266 look_ahead_type = NULL;
2267 length = 0;
2268
2269 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2270
2271 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2272 {
2273 /* This is a completely wierd case. In order to stuff in the
2274 names that might contain colons (the usual name delimiter),
2275 Mike Tiemann defined a different name format which is
2276 signalled if the identifier is "op$". In that case, the
2277 format is "op$::XXXX." where XXXX is the name. This is
2278 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2279 /* This lets the user type "break operator+".
2280 We could just put in "+" as the name, but that wouldn't
2281 work for "*". */
2282 static char opname[32] = "op$";
2283 char *o = opname + 3;
2284
2285 /* Skip past '::'. */
2286 *pp = p + 2;
2287
2288 STABS_CONTINUE (pp, objfile);
2289 p = *pp;
2290 while (*p != '.')
2291 {
2292 *o++ = *p++;
2293 }
2294 main_fn_name = savestring (opname, o - opname);
2295 /* Skip past '.' */
2296 *pp = p + 1;
2297 }
2298 else
2299 {
2300 main_fn_name = savestring (*pp, p - *pp);
2301 /* Skip past '::'. */
2302 *pp = p + 2;
2303 }
2304 new_fnlist->fn_fieldlist.name = main_fn_name;
2305
2306 do
2307 {
2308 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2309
2310 /* Check for and handle cretinous dbx symbol name continuation! */
2311 if (look_ahead_type == NULL)
2312 {
2313 /* Normal case. */
2314 STABS_CONTINUE (pp, objfile);
2315
2316 new_sublist->fn_field.type = read_type (pp, objfile);
2317 if (**pp != ':')
2318 {
2319 /* Invalid symtab info for member function. */
2320 return 0;
2321 }
2322 }
2323 else
2324 {
2325 /* g++ version 1 kludge */
2326 new_sublist->fn_field.type = look_ahead_type;
2327 look_ahead_type = NULL;
2328 }
2329
2330 (*pp)++;
2331 p = *pp;
2332 while (*p != ';')
2333 {
2334 p++;
2335 }
2336
2337 /* These are methods, not functions. */
2338 if (new_sublist->fn_field.type->code () == TYPE_CODE_FUNC)
2339 new_sublist->fn_field.type->set_code (TYPE_CODE_METHOD);
2340
2341 /* If this is just a stub, then we don't have the real name here. */
2342 if (new_sublist->fn_field.type->is_stub ())
2343 {
2344 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2345 set_type_self_type (new_sublist->fn_field.type, type);
2346 new_sublist->fn_field.is_stub = 1;
2347 }
2348
2349 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2350 *pp = p + 1;
2351
2352 /* Set this member function's visibility fields. */
2353 switch (*(*pp)++)
2354 {
2355 case VISIBILITY_PRIVATE:
2356 new_sublist->fn_field.is_private = 1;
2357 break;
2358 case VISIBILITY_PROTECTED:
2359 new_sublist->fn_field.is_protected = 1;
2360 break;
2361 }
2362
2363 STABS_CONTINUE (pp, objfile);
2364 switch (**pp)
2365 {
2366 case 'A': /* Normal functions. */
2367 new_sublist->fn_field.is_const = 0;
2368 new_sublist->fn_field.is_volatile = 0;
2369 (*pp)++;
2370 break;
2371 case 'B': /* `const' member functions. */
2372 new_sublist->fn_field.is_const = 1;
2373 new_sublist->fn_field.is_volatile = 0;
2374 (*pp)++;
2375 break;
2376 case 'C': /* `volatile' member function. */
2377 new_sublist->fn_field.is_const = 0;
2378 new_sublist->fn_field.is_volatile = 1;
2379 (*pp)++;
2380 break;
2381 case 'D': /* `const volatile' member function. */
2382 new_sublist->fn_field.is_const = 1;
2383 new_sublist->fn_field.is_volatile = 1;
2384 (*pp)++;
2385 break;
2386 case '*': /* File compiled with g++ version 1 --
2387 no info. */
2388 case '?':
2389 case '.':
2390 break;
2391 default:
2392 complaint (_("const/volatile indicator missing, got '%c'"),
2393 **pp);
2394 break;
2395 }
2396
2397 switch (*(*pp)++)
2398 {
2399 case '*':
2400 {
2401 int nbits;
2402 /* virtual member function, followed by index.
2403 The sign bit is set to distinguish pointers-to-methods
2404 from virtual function indicies. Since the array is
2405 in words, the quantity must be shifted left by 1
2406 on 16 bit machine, and by 2 on 32 bit machine, forcing
2407 the sign bit out, and usable as a valid index into
2408 the array. Remove the sign bit here. */
2409 new_sublist->fn_field.voffset =
2410 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2411 if (nbits != 0)
2412 return 0;
2413
2414 STABS_CONTINUE (pp, objfile);
2415 if (**pp == ';' || **pp == '\0')
2416 {
2417 /* Must be g++ version 1. */
2418 new_sublist->fn_field.fcontext = 0;
2419 }
2420 else
2421 {
2422 /* Figure out from whence this virtual function came.
2423 It may belong to virtual function table of
2424 one of its baseclasses. */
2425 look_ahead_type = read_type (pp, objfile);
2426 if (**pp == ':')
2427 {
2428 /* g++ version 1 overloaded methods. */
2429 }
2430 else
2431 {
2432 new_sublist->fn_field.fcontext = look_ahead_type;
2433 if (**pp != ';')
2434 {
2435 return 0;
2436 }
2437 else
2438 {
2439 ++*pp;
2440 }
2441 look_ahead_type = NULL;
2442 }
2443 }
2444 break;
2445 }
2446 case '?':
2447 /* static member function. */
2448 {
2449 int slen = strlen (main_fn_name);
2450
2451 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2452
2453 /* For static member functions, we can't tell if they
2454 are stubbed, as they are put out as functions, and not as
2455 methods.
2456 GCC v2 emits the fully mangled name if
2457 dbxout.c:flag_minimal_debug is not set, so we have to
2458 detect a fully mangled physname here and set is_stub
2459 accordingly. Fully mangled physnames in v2 start with
2460 the member function name, followed by two underscores.
2461 GCC v3 currently always emits stubbed member functions,
2462 but with fully mangled physnames, which start with _Z. */
2463 if (!(strncmp (new_sublist->fn_field.physname,
2464 main_fn_name, slen) == 0
2465 && new_sublist->fn_field.physname[slen] == '_'
2466 && new_sublist->fn_field.physname[slen + 1] == '_'))
2467 {
2468 new_sublist->fn_field.is_stub = 1;
2469 }
2470 break;
2471 }
2472
2473 default:
2474 /* error */
2475 complaint (_("member function type missing, got '%c'"),
2476 (*pp)[-1]);
2477 /* Normal member function. */
2478 /* Fall through. */
2479
2480 case '.':
2481 /* normal member function. */
2482 new_sublist->fn_field.voffset = 0;
2483 new_sublist->fn_field.fcontext = 0;
2484 break;
2485 }
2486
2487 new_sublist->next = sublist;
2488 sublist = new_sublist;
2489 length++;
2490 STABS_CONTINUE (pp, objfile);
2491 }
2492 while (**pp != ';' && **pp != '\0');
2493
2494 (*pp)++;
2495 STABS_CONTINUE (pp, objfile);
2496
2497 /* Skip GCC 3.X member functions which are duplicates of the callable
2498 constructor/destructor. */
2499 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2500 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2501 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2502 {
2503 xfree (main_fn_name);
2504 }
2505 else
2506 {
2507 int has_destructor = 0, has_other = 0;
2508 int is_v3 = 0;
2509 struct next_fnfield *tmp_sublist;
2510
2511 /* Various versions of GCC emit various mostly-useless
2512 strings in the name field for special member functions.
2513
2514 For stub methods, we need to defer correcting the name
2515 until we are ready to unstub the method, because the current
2516 name string is used by gdb_mangle_name. The only stub methods
2517 of concern here are GNU v2 operators; other methods have their
2518 names correct (see caveat below).
2519
2520 For non-stub methods, in GNU v3, we have a complete physname.
2521 Therefore we can safely correct the name now. This primarily
2522 affects constructors and destructors, whose name will be
2523 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2524 operators will also have incorrect names; for instance,
2525 "operator int" will be named "operator i" (i.e. the type is
2526 mangled).
2527
2528 For non-stub methods in GNU v2, we have no easy way to
2529 know if we have a complete physname or not. For most
2530 methods the result depends on the platform (if CPLUS_MARKER
2531 can be `$' or `.', it will use minimal debug information, or
2532 otherwise the full physname will be included).
2533
2534 Rather than dealing with this, we take a different approach.
2535 For v3 mangled names, we can use the full physname; for v2,
2536 we use cplus_demangle_opname (which is actually v2 specific),
2537 because the only interesting names are all operators - once again
2538 barring the caveat below. Skip this process if any method in the
2539 group is a stub, to prevent our fouling up the workings of
2540 gdb_mangle_name.
2541
2542 The caveat: GCC 2.95.x (and earlier?) put constructors and
2543 destructors in the same method group. We need to split this
2544 into two groups, because they should have different names.
2545 So for each method group we check whether it contains both
2546 routines whose physname appears to be a destructor (the physnames
2547 for and destructors are always provided, due to quirks in v2
2548 mangling) and routines whose physname does not appear to be a
2549 destructor. If so then we break up the list into two halves.
2550 Even if the constructors and destructors aren't in the same group
2551 the destructor will still lack the leading tilde, so that also
2552 needs to be fixed.
2553
2554 So, to summarize what we expect and handle here:
2555
2556 Given Given Real Real Action
2557 method name physname physname method name
2558
2559 __opi [none] __opi__3Foo operator int opname
2560 [now or later]
2561 Foo _._3Foo _._3Foo ~Foo separate and
2562 rename
2563 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2564 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2565 */
2566
2567 tmp_sublist = sublist;
2568 while (tmp_sublist != NULL)
2569 {
2570 if (tmp_sublist->fn_field.physname[0] == '_'
2571 && tmp_sublist->fn_field.physname[1] == 'Z')
2572 is_v3 = 1;
2573
2574 if (is_destructor_name (tmp_sublist->fn_field.physname))
2575 has_destructor++;
2576 else
2577 has_other++;
2578
2579 tmp_sublist = tmp_sublist->next;
2580 }
2581
2582 if (has_destructor && has_other)
2583 {
2584 struct next_fnfieldlist *destr_fnlist;
2585 struct next_fnfield *last_sublist;
2586
2587 /* Create a new fn_fieldlist for the destructors. */
2588
2589 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2590 struct next_fnfieldlist);
2591
2592 destr_fnlist->fn_fieldlist.name
2593 = obconcat (&objfile->objfile_obstack, "~",
2594 new_fnlist->fn_fieldlist.name, (char *) NULL);
2595
2596 destr_fnlist->fn_fieldlist.fn_fields =
2597 XOBNEWVEC (&objfile->objfile_obstack,
2598 struct fn_field, has_destructor);
2599 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2600 sizeof (struct fn_field) * has_destructor);
2601 tmp_sublist = sublist;
2602 last_sublist = NULL;
2603 i = 0;
2604 while (tmp_sublist != NULL)
2605 {
2606 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2607 {
2608 tmp_sublist = tmp_sublist->next;
2609 continue;
2610 }
2611
2612 destr_fnlist->fn_fieldlist.fn_fields[i++]
2613 = tmp_sublist->fn_field;
2614 if (last_sublist)
2615 last_sublist->next = tmp_sublist->next;
2616 else
2617 sublist = tmp_sublist->next;
2618 last_sublist = tmp_sublist;
2619 tmp_sublist = tmp_sublist->next;
2620 }
2621
2622 destr_fnlist->fn_fieldlist.length = has_destructor;
2623 destr_fnlist->next = fip->fnlist;
2624 fip->fnlist = destr_fnlist;
2625 nfn_fields++;
2626 length -= has_destructor;
2627 }
2628 else if (is_v3)
2629 {
2630 /* v3 mangling prevents the use of abbreviated physnames,
2631 so we can do this here. There are stubbed methods in v3
2632 only:
2633 - in -gstabs instead of -gstabs+
2634 - or for static methods, which are output as a function type
2635 instead of a method type. */
2636 char *new_method_name =
2637 stabs_method_name_from_physname (sublist->fn_field.physname);
2638
2639 if (new_method_name != NULL
2640 && strcmp (new_method_name,
2641 new_fnlist->fn_fieldlist.name) != 0)
2642 {
2643 new_fnlist->fn_fieldlist.name = new_method_name;
2644 xfree (main_fn_name);
2645 }
2646 else
2647 xfree (new_method_name);
2648 }
2649 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2650 {
2651 new_fnlist->fn_fieldlist.name =
2652 obconcat (&objfile->objfile_obstack,
2653 "~", main_fn_name, (char *)NULL);
2654 xfree (main_fn_name);
2655 }
2656
2657 new_fnlist->fn_fieldlist.fn_fields
2658 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2659 for (i = length; (i--, sublist); sublist = sublist->next)
2660 {
2661 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2662 }
2663
2664 new_fnlist->fn_fieldlist.length = length;
2665 new_fnlist->next = fip->fnlist;
2666 fip->fnlist = new_fnlist;
2667 nfn_fields++;
2668 }
2669 }
2670
2671 if (nfn_fields)
2672 {
2673 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2674 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2675 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2676 memset (TYPE_FN_FIELDLISTS (type), 0,
2677 sizeof (struct fn_fieldlist) * nfn_fields);
2678 TYPE_NFN_FIELDS (type) = nfn_fields;
2679 }
2680
2681 return 1;
2682 }
2683
2684 /* Special GNU C++ name.
2685
2686 Returns 1 for success, 0 for failure. "failure" means that we can't
2687 keep parsing and it's time for error_type(). */
2688
2689 static int
2690 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2691 struct type *type, struct objfile *objfile)
2692 {
2693 const char *p;
2694 const char *name;
2695 char cpp_abbrev;
2696 struct type *context;
2697
2698 p = *pp;
2699 if (*++p == 'v')
2700 {
2701 name = NULL;
2702 cpp_abbrev = *++p;
2703
2704 *pp = p + 1;
2705
2706 /* At this point, *pp points to something like "22:23=*22...",
2707 where the type number before the ':' is the "context" and
2708 everything after is a regular type definition. Lookup the
2709 type, find it's name, and construct the field name. */
2710
2711 context = read_type (pp, objfile);
2712
2713 switch (cpp_abbrev)
2714 {
2715 case 'f': /* $vf -- a virtual function table pointer */
2716 name = context->name ();
2717 if (name == NULL)
2718 {
2719 name = "";
2720 }
2721 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2722 vptr_name, name, (char *) NULL));
2723 break;
2724
2725 case 'b': /* $vb -- a virtual bsomethingorother */
2726 name = context->name ();
2727 if (name == NULL)
2728 {
2729 complaint (_("C++ abbreviated type name "
2730 "unknown at symtab pos %d"),
2731 symnum);
2732 name = "FOO";
2733 }
2734 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2735 vb_name, name, (char *) NULL));
2736 break;
2737
2738 default:
2739 invalid_cpp_abbrev_complaint (*pp);
2740 fip->list->field.set_name (obconcat (&objfile->objfile_obstack,
2741 "INVALID_CPLUSPLUS_ABBREV",
2742 (char *) NULL));
2743 break;
2744 }
2745
2746 /* At this point, *pp points to the ':'. Skip it and read the
2747 field type. */
2748
2749 p = ++(*pp);
2750 if (p[-1] != ':')
2751 {
2752 invalid_cpp_abbrev_complaint (*pp);
2753 return 0;
2754 }
2755 fip->list->field.set_type (read_type (pp, objfile));
2756 if (**pp == ',')
2757 (*pp)++; /* Skip the comma. */
2758 else
2759 return 0;
2760
2761 {
2762 int nbits;
2763
2764 fip->list->field.set_loc_bitpos (read_huge_number (pp, ';', &nbits, 0));
2765 if (nbits != 0)
2766 return 0;
2767 }
2768 /* This field is unpacked. */
2769 FIELD_BITSIZE (fip->list->field) = 0;
2770 fip->list->visibility = VISIBILITY_PRIVATE;
2771 }
2772 else
2773 {
2774 invalid_cpp_abbrev_complaint (*pp);
2775 /* We have no idea what syntax an unrecognized abbrev would have, so
2776 better return 0. If we returned 1, we would need to at least advance
2777 *pp to avoid an infinite loop. */
2778 return 0;
2779 }
2780 return 1;
2781 }
2782
2783 static void
2784 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2785 const char *p, struct type *type,
2786 struct objfile *objfile)
2787 {
2788 struct gdbarch *gdbarch = objfile->arch ();
2789
2790 fip->list->field.set_name
2791 (obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp));
2792 *pp = p + 1;
2793
2794 /* This means we have a visibility for a field coming. */
2795 if (**pp == '/')
2796 {
2797 (*pp)++;
2798 fip->list->visibility = *(*pp)++;
2799 }
2800 else
2801 {
2802 /* normal dbx-style format, no explicit visibility */
2803 fip->list->visibility = VISIBILITY_PUBLIC;
2804 }
2805
2806 fip->list->field.set_type (read_type (pp, objfile));
2807 if (**pp == ':')
2808 {
2809 p = ++(*pp);
2810 #if 0
2811 /* Possible future hook for nested types. */
2812 if (**pp == '!')
2813 {
2814 fip->list->field.bitpos = (long) -2; /* nested type */
2815 p = ++(*pp);
2816 }
2817 else
2818 ...;
2819 #endif
2820 while (*p != ';')
2821 {
2822 p++;
2823 }
2824 /* Static class member. */
2825 fip->list->field.set_loc_physname (savestring (*pp, p - *pp));
2826 *pp = p + 1;
2827 return;
2828 }
2829 else if (**pp != ',')
2830 {
2831 /* Bad structure-type format. */
2832 stabs_general_complaint ("bad structure-type format");
2833 return;
2834 }
2835
2836 (*pp)++; /* Skip the comma. */
2837
2838 {
2839 int nbits;
2840
2841 fip->list->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
2842 if (nbits != 0)
2843 {
2844 stabs_general_complaint ("bad structure-type format");
2845 return;
2846 }
2847 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2848 if (nbits != 0)
2849 {
2850 stabs_general_complaint ("bad structure-type format");
2851 return;
2852 }
2853 }
2854
2855 if (fip->list->field.loc_bitpos () == 0
2856 && FIELD_BITSIZE (fip->list->field) == 0)
2857 {
2858 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2859 it is a field which has been optimized out. The correct stab for
2860 this case is to use VISIBILITY_IGNORE, but that is a recent
2861 invention. (2) It is a 0-size array. For example
2862 union { int num; char str[0]; } foo. Printing _("<no value>" for
2863 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2864 will continue to work, and a 0-size array as a whole doesn't
2865 have any contents to print.
2866
2867 I suspect this probably could also happen with gcc -gstabs (not
2868 -gstabs+) for static fields, and perhaps other C++ extensions.
2869 Hopefully few people use -gstabs with gdb, since it is intended
2870 for dbx compatibility. */
2871
2872 /* Ignore this field. */
2873 fip->list->visibility = VISIBILITY_IGNORE;
2874 }
2875 else
2876 {
2877 /* Detect an unpacked field and mark it as such.
2878 dbx gives a bit size for all fields.
2879 Note that forward refs cannot be packed,
2880 and treat enums as if they had the width of ints. */
2881
2882 struct type *field_type = check_typedef (fip->list->field.type ());
2883
2884 if (field_type->code () != TYPE_CODE_INT
2885 && field_type->code () != TYPE_CODE_RANGE
2886 && field_type->code () != TYPE_CODE_BOOL
2887 && field_type->code () != TYPE_CODE_ENUM)
2888 {
2889 FIELD_BITSIZE (fip->list->field) = 0;
2890 }
2891 if ((FIELD_BITSIZE (fip->list->field)
2892 == TARGET_CHAR_BIT * field_type->length ()
2893 || (field_type->code () == TYPE_CODE_ENUM
2894 && FIELD_BITSIZE (fip->list->field)
2895 == gdbarch_int_bit (gdbarch))
2896 )
2897 &&
2898 fip->list->field.loc_bitpos () % 8 == 0)
2899 {
2900 FIELD_BITSIZE (fip->list->field) = 0;
2901 }
2902 }
2903 }
2904
2905
2906 /* Read struct or class data fields. They have the form:
2907
2908 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2909
2910 At the end, we see a semicolon instead of a field.
2911
2912 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2913 a static field.
2914
2915 The optional VISIBILITY is one of:
2916
2917 '/0' (VISIBILITY_PRIVATE)
2918 '/1' (VISIBILITY_PROTECTED)
2919 '/2' (VISIBILITY_PUBLIC)
2920 '/9' (VISIBILITY_IGNORE)
2921
2922 or nothing, for C style fields with public visibility.
2923
2924 Returns 1 for success, 0 for failure. */
2925
2926 static int
2927 read_struct_fields (struct stab_field_info *fip, const char **pp,
2928 struct type *type, struct objfile *objfile)
2929 {
2930 const char *p;
2931 struct stabs_nextfield *newobj;
2932
2933 /* We better set p right now, in case there are no fields at all... */
2934
2935 p = *pp;
2936
2937 /* Read each data member type until we find the terminating ';' at the end of
2938 the data member list, or break for some other reason such as finding the
2939 start of the member function list. */
2940 /* Stab string for structure/union does not end with two ';' in
2941 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2942
2943 while (**pp != ';' && **pp != '\0')
2944 {
2945 STABS_CONTINUE (pp, objfile);
2946 /* Get space to record the next field's data. */
2947 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
2948
2949 newobj->next = fip->list;
2950 fip->list = newobj;
2951
2952 /* Get the field name. */
2953 p = *pp;
2954
2955 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2956 unless the CPLUS_MARKER is followed by an underscore, in
2957 which case it is just the name of an anonymous type, which we
2958 should handle like any other type name. */
2959
2960 if (is_cplus_marker (p[0]) && p[1] != '_')
2961 {
2962 if (!read_cpp_abbrev (fip, pp, type, objfile))
2963 return 0;
2964 continue;
2965 }
2966
2967 /* Look for the ':' that separates the field name from the field
2968 values. Data members are delimited by a single ':', while member
2969 functions are delimited by a pair of ':'s. When we hit the member
2970 functions (if any), terminate scan loop and return. */
2971
2972 while (*p != ':' && *p != '\0')
2973 {
2974 p++;
2975 }
2976 if (*p == '\0')
2977 return 0;
2978
2979 /* Check to see if we have hit the member functions yet. */
2980 if (p[1] == ':')
2981 {
2982 break;
2983 }
2984 read_one_struct_field (fip, pp, p, type, objfile);
2985 }
2986 if (p[0] == ':' && p[1] == ':')
2987 {
2988 /* (the deleted) chill the list of fields: the last entry (at
2989 the head) is a partially constructed entry which we now
2990 scrub. */
2991 fip->list = fip->list->next;
2992 }
2993 return 1;
2994 }
2995 /* *INDENT-OFF* */
2996 /* The stabs for C++ derived classes contain baseclass information which
2997 is marked by a '!' character after the total size. This function is
2998 called when we encounter the baseclass marker, and slurps up all the
2999 baseclass information.
3000
3001 Immediately following the '!' marker is the number of base classes that
3002 the class is derived from, followed by information for each base class.
3003 For each base class, there are two visibility specifiers, a bit offset
3004 to the base class information within the derived class, a reference to
3005 the type for the base class, and a terminating semicolon.
3006
3007 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3008 ^^ ^ ^ ^ ^ ^ ^
3009 Baseclass information marker __________________|| | | | | | |
3010 Number of baseclasses __________________________| | | | | | |
3011 Visibility specifiers (2) ________________________| | | | | |
3012 Offset in bits from start of class _________________| | | | |
3013 Type number for base class ___________________________| | | |
3014 Visibility specifiers (2) _______________________________| | |
3015 Offset in bits from start of class ________________________| |
3016 Type number of base class ____________________________________|
3017
3018 Return 1 for success, 0 for (error-type-inducing) failure. */
3019 /* *INDENT-ON* */
3020
3021
3022
3023 static int
3024 read_baseclasses (struct stab_field_info *fip, const char **pp,
3025 struct type *type, struct objfile *objfile)
3026 {
3027 int i;
3028 struct stabs_nextfield *newobj;
3029
3030 if (**pp != '!')
3031 {
3032 return 1;
3033 }
3034 else
3035 {
3036 /* Skip the '!' baseclass information marker. */
3037 (*pp)++;
3038 }
3039
3040 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3041 {
3042 int nbits;
3043
3044 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3045 if (nbits != 0)
3046 return 0;
3047 }
3048
3049 #if 0
3050 /* Some stupid compilers have trouble with the following, so break
3051 it up into simpler expressions. */
3052 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3053 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3054 #else
3055 {
3056 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3057 char *pointer;
3058
3059 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3060 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3061 }
3062 #endif /* 0 */
3063
3064 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3065
3066 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3067 {
3068 newobj = OBSTACK_ZALLOC (&fip->obstack, struct stabs_nextfield);
3069
3070 newobj->next = fip->list;
3071 fip->list = newobj;
3072 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3073 field! */
3074
3075 STABS_CONTINUE (pp, objfile);
3076 switch (**pp)
3077 {
3078 case '0':
3079 /* Nothing to do. */
3080 break;
3081 case '1':
3082 SET_TYPE_FIELD_VIRTUAL (type, i);
3083 break;
3084 default:
3085 /* Unknown character. Complain and treat it as non-virtual. */
3086 {
3087 complaint (_("Unknown virtual character `%c' for baseclass"),
3088 **pp);
3089 }
3090 }
3091 ++(*pp);
3092
3093 newobj->visibility = *(*pp)++;
3094 switch (newobj->visibility)
3095 {
3096 case VISIBILITY_PRIVATE:
3097 case VISIBILITY_PROTECTED:
3098 case VISIBILITY_PUBLIC:
3099 break;
3100 default:
3101 /* Bad visibility format. Complain and treat it as
3102 public. */
3103 {
3104 complaint (_("Unknown visibility `%c' for baseclass"),
3105 newobj->visibility);
3106 newobj->visibility = VISIBILITY_PUBLIC;
3107 }
3108 }
3109
3110 {
3111 int nbits;
3112
3113 /* The remaining value is the bit offset of the portion of the object
3114 corresponding to this baseclass. Always zero in the absence of
3115 multiple inheritance. */
3116
3117 newobj->field.set_loc_bitpos (read_huge_number (pp, ',', &nbits, 0));
3118 if (nbits != 0)
3119 return 0;
3120 }
3121
3122 /* The last piece of baseclass information is the type of the
3123 base class. Read it, and remember it's type name as this
3124 field's name. */
3125
3126 newobj->field.set_type (read_type (pp, objfile));
3127 newobj->field.set_name (newobj->field.type ()->name ());
3128
3129 /* Skip trailing ';' and bump count of number of fields seen. */
3130 if (**pp == ';')
3131 (*pp)++;
3132 else
3133 return 0;
3134 }
3135 return 1;
3136 }
3137
3138 /* The tail end of stabs for C++ classes that contain a virtual function
3139 pointer contains a tilde, a %, and a type number.
3140 The type number refers to the base class (possibly this class itself) which
3141 contains the vtable pointer for the current class.
3142
3143 This function is called when we have parsed all the method declarations,
3144 so we can look for the vptr base class info. */
3145
3146 static int
3147 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3148 struct type *type, struct objfile *objfile)
3149 {
3150 const char *p;
3151
3152 STABS_CONTINUE (pp, objfile);
3153
3154 /* If we are positioned at a ';', then skip it. */
3155 if (**pp == ';')
3156 {
3157 (*pp)++;
3158 }
3159
3160 if (**pp == '~')
3161 {
3162 (*pp)++;
3163
3164 if (**pp == '=' || **pp == '+' || **pp == '-')
3165 {
3166 /* Obsolete flags that used to indicate the presence
3167 of constructors and/or destructors. */
3168 (*pp)++;
3169 }
3170
3171 /* Read either a '%' or the final ';'. */
3172 if (*(*pp)++ == '%')
3173 {
3174 /* The next number is the type number of the base class
3175 (possibly our own class) which supplies the vtable for
3176 this class. Parse it out, and search that class to find
3177 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3178 and TYPE_VPTR_FIELDNO. */
3179
3180 struct type *t;
3181 int i;
3182
3183 t = read_type (pp, objfile);
3184 p = (*pp)++;
3185 while (*p != '\0' && *p != ';')
3186 {
3187 p++;
3188 }
3189 if (*p == '\0')
3190 {
3191 /* Premature end of symbol. */
3192 return 0;
3193 }
3194
3195 set_type_vptr_basetype (type, t);
3196 if (type == t) /* Our own class provides vtbl ptr. */
3197 {
3198 for (i = t->num_fields () - 1;
3199 i >= TYPE_N_BASECLASSES (t);
3200 --i)
3201 {
3202 const char *name = t->field (i).name ();
3203
3204 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3205 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3206 {
3207 set_type_vptr_fieldno (type, i);
3208 goto gotit;
3209 }
3210 }
3211 /* Virtual function table field not found. */
3212 complaint (_("virtual function table pointer "
3213 "not found when defining class `%s'"),
3214 type->name ());
3215 return 0;
3216 }
3217 else
3218 {
3219 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3220 }
3221
3222 gotit:
3223 *pp = p + 1;
3224 }
3225 }
3226 return 1;
3227 }
3228
3229 static int
3230 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3231 {
3232 int n;
3233
3234 for (n = TYPE_NFN_FIELDS (type);
3235 fip->fnlist != NULL;
3236 fip->fnlist = fip->fnlist->next)
3237 {
3238 --n; /* Circumvent Sun3 compiler bug. */
3239 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3240 }
3241 return 1;
3242 }
3243
3244 /* Create the vector of fields, and record how big it is.
3245 We need this info to record proper virtual function table information
3246 for this class's virtual functions. */
3247
3248 static int
3249 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3250 struct objfile *objfile)
3251 {
3252 int nfields = 0;
3253 int non_public_fields = 0;
3254 struct stabs_nextfield *scan;
3255
3256 /* Count up the number of fields that we have, as well as taking note of
3257 whether or not there are any non-public fields, which requires us to
3258 allocate and build the private_field_bits and protected_field_bits
3259 bitfields. */
3260
3261 for (scan = fip->list; scan != NULL; scan = scan->next)
3262 {
3263 nfields++;
3264 if (scan->visibility != VISIBILITY_PUBLIC)
3265 {
3266 non_public_fields++;
3267 }
3268 }
3269
3270 /* Now we know how many fields there are, and whether or not there are any
3271 non-public fields. Record the field count, allocate space for the
3272 array of fields, and create blank visibility bitfields if necessary. */
3273
3274 type->set_num_fields (nfields);
3275 type->set_fields
3276 ((struct field *)
3277 TYPE_ALLOC (type, sizeof (struct field) * nfields));
3278 memset (type->fields (), 0, sizeof (struct field) * nfields);
3279
3280 if (non_public_fields)
3281 {
3282 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3283
3284 TYPE_FIELD_PRIVATE_BITS (type) =
3285 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3286 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3287
3288 TYPE_FIELD_PROTECTED_BITS (type) =
3289 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3290 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3291
3292 TYPE_FIELD_IGNORE_BITS (type) =
3293 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3294 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3295 }
3296
3297 /* Copy the saved-up fields into the field vector. Start from the
3298 head of the list, adding to the tail of the field array, so that
3299 they end up in the same order in the array in which they were
3300 added to the list. */
3301
3302 while (nfields-- > 0)
3303 {
3304 type->field (nfields) = fip->list->field;
3305 switch (fip->list->visibility)
3306 {
3307 case VISIBILITY_PRIVATE:
3308 SET_TYPE_FIELD_PRIVATE (type, nfields);
3309 break;
3310
3311 case VISIBILITY_PROTECTED:
3312 SET_TYPE_FIELD_PROTECTED (type, nfields);
3313 break;
3314
3315 case VISIBILITY_IGNORE:
3316 SET_TYPE_FIELD_IGNORE (type, nfields);
3317 break;
3318
3319 case VISIBILITY_PUBLIC:
3320 break;
3321
3322 default:
3323 /* Unknown visibility. Complain and treat it as public. */
3324 {
3325 complaint (_("Unknown visibility `%c' for field"),
3326 fip->list->visibility);
3327 }
3328 break;
3329 }
3330 fip->list = fip->list->next;
3331 }
3332 return 1;
3333 }
3334
3335
3336 /* Complain that the compiler has emitted more than one definition for the
3337 structure type TYPE. */
3338 static void
3339 complain_about_struct_wipeout (struct type *type)
3340 {
3341 const char *name = "";
3342 const char *kind = "";
3343
3344 if (type->name ())
3345 {
3346 name = type->name ();
3347 switch (type->code ())
3348 {
3349 case TYPE_CODE_STRUCT: kind = "struct "; break;
3350 case TYPE_CODE_UNION: kind = "union "; break;
3351 case TYPE_CODE_ENUM: kind = "enum "; break;
3352 default: kind = "";
3353 }
3354 }
3355 else
3356 {
3357 name = "<unknown>";
3358 kind = "";
3359 }
3360
3361 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3362 }
3363
3364 /* Set the length for all variants of a same main_type, which are
3365 connected in the closed chain.
3366
3367 This is something that needs to be done when a type is defined *after*
3368 some cross references to this type have already been read. Consider
3369 for instance the following scenario where we have the following two
3370 stabs entries:
3371
3372 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3373 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3374
3375 A stubbed version of type dummy is created while processing the first
3376 stabs entry. The length of that type is initially set to zero, since
3377 it is unknown at this point. Also, a "constant" variation of type
3378 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3379 the stabs line).
3380
3381 The second stabs entry allows us to replace the stubbed definition
3382 with the real definition. However, we still need to adjust the length
3383 of the "constant" variation of that type, as its length was left
3384 untouched during the main type replacement... */
3385
3386 static void
3387 set_length_in_type_chain (struct type *type)
3388 {
3389 struct type *ntype = TYPE_CHAIN (type);
3390
3391 while (ntype != type)
3392 {
3393 if (ntype->length () == 0)
3394 ntype->set_length (type->length ());
3395 else
3396 complain_about_struct_wipeout (ntype);
3397 ntype = TYPE_CHAIN (ntype);
3398 }
3399 }
3400
3401 /* Read the description of a structure (or union type) and return an object
3402 describing the type.
3403
3404 PP points to a character pointer that points to the next unconsumed token
3405 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3406 *PP will point to "4a:1,0,32;;".
3407
3408 TYPE points to an incomplete type that needs to be filled in.
3409
3410 OBJFILE points to the current objfile from which the stabs information is
3411 being read. (Note that it is redundant in that TYPE also contains a pointer
3412 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3413 */
3414
3415 static struct type *
3416 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3417 struct objfile *objfile)
3418 {
3419 struct stab_field_info fi;
3420
3421 /* When describing struct/union/class types in stabs, G++ always drops
3422 all qualifications from the name. So if you've got:
3423 struct A { ... struct B { ... }; ... };
3424 then G++ will emit stabs for `struct A::B' that call it simply
3425 `struct B'. Obviously, if you've got a real top-level definition for
3426 `struct B', or other nested definitions, this is going to cause
3427 problems.
3428
3429 Obviously, GDB can't fix this by itself, but it can at least avoid
3430 scribbling on existing structure type objects when new definitions
3431 appear. */
3432 if (! (type->code () == TYPE_CODE_UNDEF
3433 || type->is_stub ()))
3434 {
3435 complain_about_struct_wipeout (type);
3436
3437 /* It's probably best to return the type unchanged. */
3438 return type;
3439 }
3440
3441 INIT_CPLUS_SPECIFIC (type);
3442 type->set_code (type_code);
3443 type->set_is_stub (false);
3444
3445 /* First comes the total size in bytes. */
3446
3447 {
3448 int nbits;
3449
3450 type->set_length (read_huge_number (pp, 0, &nbits, 0));
3451 if (nbits != 0)
3452 return error_type (pp, objfile);
3453 set_length_in_type_chain (type);
3454 }
3455
3456 /* Now read the baseclasses, if any, read the regular C struct or C++
3457 class member fields, attach the fields to the type, read the C++
3458 member functions, attach them to the type, and then read any tilde
3459 field (baseclass specifier for the class holding the main vtable). */
3460
3461 if (!read_baseclasses (&fi, pp, type, objfile)
3462 || !read_struct_fields (&fi, pp, type, objfile)
3463 || !attach_fields_to_type (&fi, type, objfile)
3464 || !read_member_functions (&fi, pp, type, objfile)
3465 || !attach_fn_fields_to_type (&fi, type)
3466 || !read_tilde_fields (&fi, pp, type, objfile))
3467 {
3468 type = error_type (pp, objfile);
3469 }
3470
3471 return (type);
3472 }
3473
3474 /* Read a definition of an array type,
3475 and create and return a suitable type object.
3476 Also creates a range type which represents the bounds of that
3477 array. */
3478
3479 static struct type *
3480 read_array_type (const char **pp, struct type *type,
3481 struct objfile *objfile)
3482 {
3483 struct type *index_type, *element_type, *range_type;
3484 int lower, upper;
3485 int adjustable = 0;
3486 int nbits;
3487
3488 /* Format of an array type:
3489 "ar<index type>;lower;upper;<array_contents_type>".
3490 OS9000: "arlower,upper;<array_contents_type>".
3491
3492 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3493 for these, produce a type like float[][]. */
3494
3495 {
3496 index_type = read_type (pp, objfile);
3497 if (**pp != ';')
3498 /* Improper format of array type decl. */
3499 return error_type (pp, objfile);
3500 ++*pp;
3501 }
3502
3503 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3504 {
3505 (*pp)++;
3506 adjustable = 1;
3507 }
3508 lower = read_huge_number (pp, ';', &nbits, 0);
3509
3510 if (nbits != 0)
3511 return error_type (pp, objfile);
3512
3513 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3514 {
3515 (*pp)++;
3516 adjustable = 1;
3517 }
3518 upper = read_huge_number (pp, ';', &nbits, 0);
3519 if (nbits != 0)
3520 return error_type (pp, objfile);
3521
3522 element_type = read_type (pp, objfile);
3523
3524 if (adjustable)
3525 {
3526 lower = 0;
3527 upper = -1;
3528 }
3529
3530 range_type =
3531 create_static_range_type (NULL, index_type, lower, upper);
3532 type = create_array_type (type, element_type, range_type);
3533
3534 return type;
3535 }
3536
3537
3538 /* Read a definition of an enumeration type,
3539 and create and return a suitable type object.
3540 Also defines the symbols that represent the values of the type. */
3541
3542 static struct type *
3543 read_enum_type (const char **pp, struct type *type,
3544 struct objfile *objfile)
3545 {
3546 struct gdbarch *gdbarch = objfile->arch ();
3547 const char *p;
3548 char *name;
3549 long n;
3550 struct symbol *sym;
3551 int nsyms = 0;
3552 struct pending **symlist;
3553 struct pending *osyms, *syms;
3554 int o_nsyms;
3555 int nbits;
3556 int unsigned_enum = 1;
3557
3558 #if 0
3559 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3560 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3561 to do? For now, force all enum values to file scope. */
3562 if (within_function)
3563 symlist = get_local_symbols ();
3564 else
3565 #endif
3566 symlist = get_file_symbols ();
3567 osyms = *symlist;
3568 o_nsyms = osyms ? osyms->nsyms : 0;
3569
3570 /* The aix4 compiler emits an extra field before the enum members;
3571 my guess is it's a type of some sort. Just ignore it. */
3572 if (**pp == '-')
3573 {
3574 /* Skip over the type. */
3575 while (**pp != ':')
3576 (*pp)++;
3577
3578 /* Skip over the colon. */
3579 (*pp)++;
3580 }
3581
3582 /* Read the value-names and their values.
3583 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3584 A semicolon or comma instead of a NAME means the end. */
3585 while (**pp && **pp != ';' && **pp != ',')
3586 {
3587 STABS_CONTINUE (pp, objfile);
3588 p = *pp;
3589 while (*p != ':')
3590 p++;
3591 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3592 *pp = p + 1;
3593 n = read_huge_number (pp, ',', &nbits, 0);
3594 if (nbits != 0)
3595 return error_type (pp, objfile);
3596
3597 sym = new (&objfile->objfile_obstack) symbol;
3598 sym->set_linkage_name (name);
3599 sym->set_language (get_current_subfile ()->language,
3600 &objfile->objfile_obstack);
3601 sym->set_aclass_index (LOC_CONST);
3602 sym->set_domain (VAR_DOMAIN);
3603 sym->set_value_longest (n);
3604 if (n < 0)
3605 unsigned_enum = 0;
3606 add_symbol_to_list (sym, symlist);
3607 nsyms++;
3608 }
3609
3610 if (**pp == ';')
3611 (*pp)++; /* Skip the semicolon. */
3612
3613 /* Now fill in the fields of the type-structure. */
3614
3615 type->set_length (gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT);
3616 set_length_in_type_chain (type);
3617 type->set_code (TYPE_CODE_ENUM);
3618 type->set_is_stub (false);
3619 if (unsigned_enum)
3620 type->set_is_unsigned (true);
3621 type->set_num_fields (nsyms);
3622 type->set_fields
3623 ((struct field *)
3624 TYPE_ALLOC (type, sizeof (struct field) * nsyms));
3625 memset (type->fields (), 0, sizeof (struct field) * nsyms);
3626
3627 /* Find the symbols for the values and put them into the type.
3628 The symbols can be found in the symlist that we put them on
3629 to cause them to be defined. osyms contains the old value
3630 of that symlist; everything up to there was defined by us. */
3631 /* Note that we preserve the order of the enum constants, so
3632 that in something like "enum {FOO, LAST_THING=FOO}" we print
3633 FOO, not LAST_THING. */
3634
3635 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3636 {
3637 int last = syms == osyms ? o_nsyms : 0;
3638 int j = syms->nsyms;
3639
3640 for (; --j >= last; --n)
3641 {
3642 struct symbol *xsym = syms->symbol[j];
3643
3644 xsym->set_type (type);
3645 type->field (n).set_name (xsym->linkage_name ());
3646 type->field (n).set_loc_enumval (xsym->value_longest ());
3647 TYPE_FIELD_BITSIZE (type, n) = 0;
3648 }
3649 if (syms == osyms)
3650 break;
3651 }
3652
3653 return type;
3654 }
3655
3656 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3657 typedefs in every file (for int, long, etc):
3658
3659 type = b <signed> <width> <format type>; <offset>; <nbits>
3660 signed = u or s.
3661 optional format type = c or b for char or boolean.
3662 offset = offset from high order bit to start bit of type.
3663 width is # bytes in object of this type, nbits is # bits in type.
3664
3665 The width/offset stuff appears to be for small objects stored in
3666 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3667 FIXME. */
3668
3669 static struct type *
3670 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3671 {
3672 int type_bits;
3673 int nbits;
3674 int unsigned_type;
3675 int boolean_type = 0;
3676
3677 switch (**pp)
3678 {
3679 case 's':
3680 unsigned_type = 0;
3681 break;
3682 case 'u':
3683 unsigned_type = 1;
3684 break;
3685 default:
3686 return error_type (pp, objfile);
3687 }
3688 (*pp)++;
3689
3690 /* For some odd reason, all forms of char put a c here. This is strange
3691 because no other type has this honor. We can safely ignore this because
3692 we actually determine 'char'acterness by the number of bits specified in
3693 the descriptor.
3694 Boolean forms, e.g Fortran logical*X, put a b here. */
3695
3696 if (**pp == 'c')
3697 (*pp)++;
3698 else if (**pp == 'b')
3699 {
3700 boolean_type = 1;
3701 (*pp)++;
3702 }
3703
3704 /* The first number appears to be the number of bytes occupied
3705 by this type, except that unsigned short is 4 instead of 2.
3706 Since this information is redundant with the third number,
3707 we will ignore it. */
3708 read_huge_number (pp, ';', &nbits, 0);
3709 if (nbits != 0)
3710 return error_type (pp, objfile);
3711
3712 /* The second number is always 0, so ignore it too. */
3713 read_huge_number (pp, ';', &nbits, 0);
3714 if (nbits != 0)
3715 return error_type (pp, objfile);
3716
3717 /* The third number is the number of bits for this type. */
3718 type_bits = read_huge_number (pp, 0, &nbits, 0);
3719 if (nbits != 0)
3720 return error_type (pp, objfile);
3721 /* The type *should* end with a semicolon. If it are embedded
3722 in a larger type the semicolon may be the only way to know where
3723 the type ends. If this type is at the end of the stabstring we
3724 can deal with the omitted semicolon (but we don't have to like
3725 it). Don't bother to complain(), Sun's compiler omits the semicolon
3726 for "void". */
3727 if (**pp == ';')
3728 ++(*pp);
3729
3730 if (type_bits == 0)
3731 {
3732 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3733 TARGET_CHAR_BIT, NULL);
3734 if (unsigned_type)
3735 type->set_is_unsigned (true);
3736
3737 return type;
3738 }
3739
3740 if (boolean_type)
3741 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3742 else
3743 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3744 }
3745
3746 static struct type *
3747 read_sun_floating_type (const char **pp, int typenums[2],
3748 struct objfile *objfile)
3749 {
3750 int nbits;
3751 int details;
3752 int nbytes;
3753 struct type *rettype;
3754
3755 /* The first number has more details about the type, for example
3756 FN_COMPLEX. */
3757 details = read_huge_number (pp, ';', &nbits, 0);
3758 if (nbits != 0)
3759 return error_type (pp, objfile);
3760
3761 /* The second number is the number of bytes occupied by this type. */
3762 nbytes = read_huge_number (pp, ';', &nbits, 0);
3763 if (nbits != 0)
3764 return error_type (pp, objfile);
3765
3766 nbits = nbytes * TARGET_CHAR_BIT;
3767
3768 if (details == NF_COMPLEX || details == NF_COMPLEX16
3769 || details == NF_COMPLEX32)
3770 {
3771 rettype = dbx_init_float_type (objfile, nbits / 2);
3772 return init_complex_type (NULL, rettype);
3773 }
3774
3775 return dbx_init_float_type (objfile, nbits);
3776 }
3777
3778 /* Read a number from the string pointed to by *PP.
3779 The value of *PP is advanced over the number.
3780 If END is nonzero, the character that ends the
3781 number must match END, or an error happens;
3782 and that character is skipped if it does match.
3783 If END is zero, *PP is left pointing to that character.
3784
3785 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3786 the number is represented in an octal representation, assume that
3787 it is represented in a 2's complement representation with a size of
3788 TWOS_COMPLEMENT_BITS.
3789
3790 If the number fits in a long, set *BITS to 0 and return the value.
3791 If not, set *BITS to be the number of bits in the number and return 0.
3792
3793 If encounter garbage, set *BITS to -1 and return 0. */
3794
3795 static long
3796 read_huge_number (const char **pp, int end, int *bits,
3797 int twos_complement_bits)
3798 {
3799 const char *p = *pp;
3800 int sign = 1;
3801 int sign_bit = 0;
3802 long n = 0;
3803 int radix = 10;
3804 char overflow = 0;
3805 int nbits = 0;
3806 int c;
3807 long upper_limit;
3808 int twos_complement_representation = 0;
3809
3810 if (*p == '-')
3811 {
3812 sign = -1;
3813 p++;
3814 }
3815
3816 /* Leading zero means octal. GCC uses this to output values larger
3817 than an int (because that would be hard in decimal). */
3818 if (*p == '0')
3819 {
3820 radix = 8;
3821 p++;
3822 }
3823
3824 /* Skip extra zeros. */
3825 while (*p == '0')
3826 p++;
3827
3828 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3829 {
3830 /* Octal, possibly signed. Check if we have enough chars for a
3831 negative number. */
3832
3833 size_t len;
3834 const char *p1 = p;
3835
3836 while ((c = *p1) >= '0' && c < '8')
3837 p1++;
3838
3839 len = p1 - p;
3840 if (len > twos_complement_bits / 3
3841 || (twos_complement_bits % 3 == 0
3842 && len == twos_complement_bits / 3))
3843 {
3844 /* Ok, we have enough characters for a signed value, check
3845 for signedness by testing if the sign bit is set. */
3846 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3847 c = *p - '0';
3848 if (c & (1 << sign_bit))
3849 {
3850 /* Definitely signed. */
3851 twos_complement_representation = 1;
3852 sign = -1;
3853 }
3854 }
3855 }
3856
3857 upper_limit = LONG_MAX / radix;
3858
3859 while ((c = *p++) >= '0' && c < ('0' + radix))
3860 {
3861 if (n <= upper_limit)
3862 {
3863 if (twos_complement_representation)
3864 {
3865 /* Octal, signed, twos complement representation. In
3866 this case, n is the corresponding absolute value. */
3867 if (n == 0)
3868 {
3869 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3870
3871 n = -sn;
3872 }
3873 else
3874 {
3875 n *= radix;
3876 n -= c - '0';
3877 }
3878 }
3879 else
3880 {
3881 /* unsigned representation */
3882 n *= radix;
3883 n += c - '0'; /* FIXME this overflows anyway. */
3884 }
3885 }
3886 else
3887 overflow = 1;
3888
3889 /* This depends on large values being output in octal, which is
3890 what GCC does. */
3891 if (radix == 8)
3892 {
3893 if (nbits == 0)
3894 {
3895 if (c == '0')
3896 /* Ignore leading zeroes. */
3897 ;
3898 else if (c == '1')
3899 nbits = 1;
3900 else if (c == '2' || c == '3')
3901 nbits = 2;
3902 else
3903 nbits = 3;
3904 }
3905 else
3906 nbits += 3;
3907 }
3908 }
3909 if (end)
3910 {
3911 if (c && c != end)
3912 {
3913 if (bits != NULL)
3914 *bits = -1;
3915 return 0;
3916 }
3917 }
3918 else
3919 --p;
3920
3921 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3922 {
3923 /* We were supposed to parse a number with maximum
3924 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3925 if (bits != NULL)
3926 *bits = -1;
3927 return 0;
3928 }
3929
3930 *pp = p;
3931 if (overflow)
3932 {
3933 if (nbits == 0)
3934 {
3935 /* Large decimal constants are an error (because it is hard to
3936 count how many bits are in them). */
3937 if (bits != NULL)
3938 *bits = -1;
3939 return 0;
3940 }
3941
3942 /* -0x7f is the same as 0x80. So deal with it by adding one to
3943 the number of bits. Two's complement represention octals
3944 can't have a '-' in front. */
3945 if (sign == -1 && !twos_complement_representation)
3946 ++nbits;
3947 if (bits)
3948 *bits = nbits;
3949 }
3950 else
3951 {
3952 if (bits)
3953 *bits = 0;
3954 return n * sign;
3955 }
3956 /* It's *BITS which has the interesting information. */
3957 return 0;
3958 }
3959
3960 static struct type *
3961 read_range_type (const char **pp, int typenums[2], int type_size,
3962 struct objfile *objfile)
3963 {
3964 struct gdbarch *gdbarch = objfile->arch ();
3965 const char *orig_pp = *pp;
3966 int rangenums[2];
3967 long n2, n3;
3968 int n2bits, n3bits;
3969 int self_subrange;
3970 struct type *result_type;
3971 struct type *index_type = NULL;
3972
3973 /* First comes a type we are a subrange of.
3974 In C it is usually 0, 1 or the type being defined. */
3975 if (read_type_number (pp, rangenums) != 0)
3976 return error_type (pp, objfile);
3977 self_subrange = (rangenums[0] == typenums[0] &&
3978 rangenums[1] == typenums[1]);
3979
3980 if (**pp == '=')
3981 {
3982 *pp = orig_pp;
3983 index_type = read_type (pp, objfile);
3984 }
3985
3986 /* A semicolon should now follow; skip it. */
3987 if (**pp == ';')
3988 (*pp)++;
3989
3990 /* The remaining two operands are usually lower and upper bounds
3991 of the range. But in some special cases they mean something else. */
3992 n2 = read_huge_number (pp, ';', &n2bits, type_size);
3993 n3 = read_huge_number (pp, ';', &n3bits, type_size);
3994
3995 if (n2bits == -1 || n3bits == -1)
3996 return error_type (pp, objfile);
3997
3998 if (index_type)
3999 goto handle_true_range;
4000
4001 /* If limits are huge, must be large integral type. */
4002 if (n2bits != 0 || n3bits != 0)
4003 {
4004 char got_signed = 0;
4005 char got_unsigned = 0;
4006 /* Number of bits in the type. */
4007 int nbits = 0;
4008
4009 /* If a type size attribute has been specified, the bounds of
4010 the range should fit in this size. If the lower bounds needs
4011 more bits than the upper bound, then the type is signed. */
4012 if (n2bits <= type_size && n3bits <= type_size)
4013 {
4014 if (n2bits == type_size && n2bits > n3bits)
4015 got_signed = 1;
4016 else
4017 got_unsigned = 1;
4018 nbits = type_size;
4019 }
4020 /* Range from 0 to <large number> is an unsigned large integral type. */
4021 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4022 {
4023 got_unsigned = 1;
4024 nbits = n3bits;
4025 }
4026 /* Range from <large number> to <large number>-1 is a large signed
4027 integral type. Take care of the case where <large number> doesn't
4028 fit in a long but <large number>-1 does. */
4029 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4030 || (n2bits != 0 && n3bits == 0
4031 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4032 && n3 == LONG_MAX))
4033 {
4034 got_signed = 1;
4035 nbits = n2bits;
4036 }
4037
4038 if (got_signed || got_unsigned)
4039 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4040 else
4041 return error_type (pp, objfile);
4042 }
4043
4044 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4045 if (self_subrange && n2 == 0 && n3 == 0)
4046 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4047
4048 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4049 is the width in bytes.
4050
4051 Fortran programs appear to use this for complex types also. To
4052 distinguish between floats and complex, g77 (and others?) seem
4053 to use self-subranges for the complexes, and subranges of int for
4054 the floats.
4055
4056 Also note that for complexes, g77 sets n2 to the size of one of
4057 the member floats, not the whole complex beast. My guess is that
4058 this was to work well with pre-COMPLEX versions of gdb. */
4059
4060 if (n3 == 0 && n2 > 0)
4061 {
4062 struct type *float_type
4063 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4064
4065 if (self_subrange)
4066 return init_complex_type (NULL, float_type);
4067 else
4068 return float_type;
4069 }
4070
4071 /* If the upper bound is -1, it must really be an unsigned integral. */
4072
4073 else if (n2 == 0 && n3 == -1)
4074 {
4075 int bits = type_size;
4076
4077 if (bits <= 0)
4078 {
4079 /* We don't know its size. It is unsigned int or unsigned
4080 long. GCC 2.3.3 uses this for long long too, but that is
4081 just a GDB 3.5 compatibility hack. */
4082 bits = gdbarch_int_bit (gdbarch);
4083 }
4084
4085 return init_integer_type (objfile, bits, 1, NULL);
4086 }
4087
4088 /* Special case: char is defined (Who knows why) as a subrange of
4089 itself with range 0-127. */
4090 else if (self_subrange && n2 == 0 && n3 == 127)
4091 {
4092 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4093 0, NULL);
4094 type->set_has_no_signedness (true);
4095 return type;
4096 }
4097 /* We used to do this only for subrange of self or subrange of int. */
4098 else if (n2 == 0)
4099 {
4100 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4101 "unsigned long", and we already checked for that,
4102 so don't need to test for it here. */
4103
4104 if (n3 < 0)
4105 /* n3 actually gives the size. */
4106 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4107
4108 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4109 unsigned n-byte integer. But do require n to be a power of
4110 two; we don't want 3- and 5-byte integers flying around. */
4111 {
4112 int bytes;
4113 unsigned long bits;
4114
4115 bits = n3;
4116 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4117 bits >>= 8;
4118 if (bits == 0
4119 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4120 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4121 }
4122 }
4123 /* I think this is for Convex "long long". Since I don't know whether
4124 Convex sets self_subrange, I also accept that particular size regardless
4125 of self_subrange. */
4126 else if (n3 == 0 && n2 < 0
4127 && (self_subrange
4128 || n2 == -gdbarch_long_long_bit
4129 (gdbarch) / TARGET_CHAR_BIT))
4130 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4131 else if (n2 == -n3 - 1)
4132 {
4133 if (n3 == 0x7f)
4134 return init_integer_type (objfile, 8, 0, NULL);
4135 if (n3 == 0x7fff)
4136 return init_integer_type (objfile, 16, 0, NULL);
4137 if (n3 == 0x7fffffff)
4138 return init_integer_type (objfile, 32, 0, NULL);
4139 }
4140
4141 /* We have a real range type on our hands. Allocate space and
4142 return a real pointer. */
4143 handle_true_range:
4144
4145 if (self_subrange)
4146 index_type = objfile_type (objfile)->builtin_int;
4147 else
4148 index_type = *dbx_lookup_type (rangenums, objfile);
4149 if (index_type == NULL)
4150 {
4151 /* Does this actually ever happen? Is that why we are worrying
4152 about dealing with it rather than just calling error_type? */
4153
4154 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4155
4156 index_type = objfile_type (objfile)->builtin_int;
4157 }
4158
4159 result_type
4160 = create_static_range_type (NULL, index_type, n2, n3);
4161 return (result_type);
4162 }
4163
4164 /* Read in an argument list. This is a list of types, separated by commas
4165 and terminated with END. Return the list of types read in, or NULL
4166 if there is an error. */
4167
4168 static struct field *
4169 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4170 int *varargsp)
4171 {
4172 /* FIXME! Remove this arbitrary limit! */
4173 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4174 int n = 0, i;
4175 struct field *rval;
4176
4177 while (**pp != end)
4178 {
4179 if (**pp != ',')
4180 /* Invalid argument list: no ','. */
4181 return NULL;
4182 (*pp)++;
4183 STABS_CONTINUE (pp, objfile);
4184 types[n++] = read_type (pp, objfile);
4185 }
4186 (*pp)++; /* get past `end' (the ':' character). */
4187
4188 if (n == 0)
4189 {
4190 /* We should read at least the THIS parameter here. Some broken stabs
4191 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4192 have been present ";-16,(0,43)" reference instead. This way the
4193 excessive ";" marker prematurely stops the parameters parsing. */
4194
4195 complaint (_("Invalid (empty) method arguments"));
4196 *varargsp = 0;
4197 }
4198 else if (types[n - 1]->code () != TYPE_CODE_VOID)
4199 *varargsp = 1;
4200 else
4201 {
4202 n--;
4203 *varargsp = 0;
4204 }
4205
4206 rval = XCNEWVEC (struct field, n);
4207 for (i = 0; i < n; i++)
4208 rval[i].set_type (types[i]);
4209 *nargsp = n;
4210 return rval;
4211 }
4212 \f
4213 /* Common block handling. */
4214
4215 /* List of symbols declared since the last BCOMM. This list is a tail
4216 of local_symbols. When ECOMM is seen, the symbols on the list
4217 are noted so their proper addresses can be filled in later,
4218 using the common block base address gotten from the assembler
4219 stabs. */
4220
4221 static struct pending *common_block;
4222 static int common_block_i;
4223
4224 /* Name of the current common block. We get it from the BCOMM instead of the
4225 ECOMM to match IBM documentation (even though IBM puts the name both places
4226 like everyone else). */
4227 static char *common_block_name;
4228
4229 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4230 to remain after this function returns. */
4231
4232 void
4233 common_block_start (const char *name, struct objfile *objfile)
4234 {
4235 if (common_block_name != NULL)
4236 {
4237 complaint (_("Invalid symbol data: common block within common block"));
4238 }
4239 common_block = *get_local_symbols ();
4240 common_block_i = common_block ? common_block->nsyms : 0;
4241 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4242 }
4243
4244 /* Process a N_ECOMM symbol. */
4245
4246 void
4247 common_block_end (struct objfile *objfile)
4248 {
4249 /* Symbols declared since the BCOMM are to have the common block
4250 start address added in when we know it. common_block and
4251 common_block_i point to the first symbol after the BCOMM in
4252 the local_symbols list; copy the list and hang it off the
4253 symbol for the common block name for later fixup. */
4254 int i;
4255 struct symbol *sym;
4256 struct pending *newobj = 0;
4257 struct pending *next;
4258 int j;
4259
4260 if (common_block_name == NULL)
4261 {
4262 complaint (_("ECOMM symbol unmatched by BCOMM"));
4263 return;
4264 }
4265
4266 sym = new (&objfile->objfile_obstack) symbol;
4267 /* Note: common_block_name already saved on objfile_obstack. */
4268 sym->set_linkage_name (common_block_name);
4269 sym->set_aclass_index (LOC_BLOCK);
4270
4271 /* Now we copy all the symbols which have been defined since the BCOMM. */
4272
4273 /* Copy all the struct pendings before common_block. */
4274 for (next = *get_local_symbols ();
4275 next != NULL && next != common_block;
4276 next = next->next)
4277 {
4278 for (j = 0; j < next->nsyms; j++)
4279 add_symbol_to_list (next->symbol[j], &newobj);
4280 }
4281
4282 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4283 NULL, it means copy all the local symbols (which we already did
4284 above). */
4285
4286 if (common_block != NULL)
4287 for (j = common_block_i; j < common_block->nsyms; j++)
4288 add_symbol_to_list (common_block->symbol[j], &newobj);
4289
4290 sym->set_type ((struct type *) newobj);
4291
4292 /* Should we be putting local_symbols back to what it was?
4293 Does it matter? */
4294
4295 i = hashname (sym->linkage_name ());
4296 sym->set_value_chain (global_sym_chain[i]);
4297 global_sym_chain[i] = sym;
4298 common_block_name = NULL;
4299 }
4300
4301 /* Add a common block's start address to the offset of each symbol
4302 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4303 the common block name). */
4304
4305 static void
4306 fix_common_block (struct symbol *sym, CORE_ADDR valu, int section_index)
4307 {
4308 struct pending *next = (struct pending *) sym->type ();
4309
4310 for (; next; next = next->next)
4311 {
4312 int j;
4313
4314 for (j = next->nsyms - 1; j >= 0; j--)
4315 {
4316 next->symbol[j]->set_value_address
4317 (next->symbol[j]->value_address () + valu);
4318 next->symbol[j]->set_section_index (section_index);
4319 }
4320 }
4321 }
4322 \f
4323
4324
4325 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4326 See add_undefined_type for more details. */
4327
4328 static void
4329 add_undefined_type_noname (struct type *type, int typenums[2])
4330 {
4331 struct nat nat;
4332
4333 nat.typenums[0] = typenums [0];
4334 nat.typenums[1] = typenums [1];
4335 nat.type = type;
4336
4337 if (noname_undefs_length == noname_undefs_allocated)
4338 {
4339 noname_undefs_allocated *= 2;
4340 noname_undefs = (struct nat *)
4341 xrealloc ((char *) noname_undefs,
4342 noname_undefs_allocated * sizeof (struct nat));
4343 }
4344 noname_undefs[noname_undefs_length++] = nat;
4345 }
4346
4347 /* Add TYPE to the UNDEF_TYPES vector.
4348 See add_undefined_type for more details. */
4349
4350 static void
4351 add_undefined_type_1 (struct type *type)
4352 {
4353 if (undef_types_length == undef_types_allocated)
4354 {
4355 undef_types_allocated *= 2;
4356 undef_types = (struct type **)
4357 xrealloc ((char *) undef_types,
4358 undef_types_allocated * sizeof (struct type *));
4359 }
4360 undef_types[undef_types_length++] = type;
4361 }
4362
4363 /* What about types defined as forward references inside of a small lexical
4364 scope? */
4365 /* Add a type to the list of undefined types to be checked through
4366 once this file has been read in.
4367
4368 In practice, we actually maintain two such lists: The first list
4369 (UNDEF_TYPES) is used for types whose name has been provided, and
4370 concerns forward references (eg 'xs' or 'xu' forward references);
4371 the second list (NONAME_UNDEFS) is used for types whose name is
4372 unknown at creation time, because they were referenced through
4373 their type number before the actual type was declared.
4374 This function actually adds the given type to the proper list. */
4375
4376 static void
4377 add_undefined_type (struct type *type, int typenums[2])
4378 {
4379 if (type->name () == NULL)
4380 add_undefined_type_noname (type, typenums);
4381 else
4382 add_undefined_type_1 (type);
4383 }
4384
4385 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4386
4387 static void
4388 cleanup_undefined_types_noname (struct objfile *objfile)
4389 {
4390 int i;
4391
4392 for (i = 0; i < noname_undefs_length; i++)
4393 {
4394 struct nat nat = noname_undefs[i];
4395 struct type **type;
4396
4397 type = dbx_lookup_type (nat.typenums, objfile);
4398 if (nat.type != *type && (*type)->code () != TYPE_CODE_UNDEF)
4399 {
4400 /* The instance flags of the undefined type are still unset,
4401 and needs to be copied over from the reference type.
4402 Since replace_type expects them to be identical, we need
4403 to set these flags manually before hand. */
4404 nat.type->set_instance_flags ((*type)->instance_flags ());
4405 replace_type (nat.type, *type);
4406 }
4407 }
4408
4409 noname_undefs_length = 0;
4410 }
4411
4412 /* Go through each undefined type, see if it's still undefined, and fix it
4413 up if possible. We have two kinds of undefined types:
4414
4415 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4416 Fix: update array length using the element bounds
4417 and the target type's length.
4418 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4419 yet defined at the time a pointer to it was made.
4420 Fix: Do a full lookup on the struct/union tag. */
4421
4422 static void
4423 cleanup_undefined_types_1 (void)
4424 {
4425 struct type **type;
4426
4427 /* Iterate over every undefined type, and look for a symbol whose type
4428 matches our undefined type. The symbol matches if:
4429 1. It is a typedef in the STRUCT domain;
4430 2. It has the same name, and same type code;
4431 3. The instance flags are identical.
4432
4433 It is important to check the instance flags, because we have seen
4434 examples where the debug info contained definitions such as:
4435
4436 "foo_t:t30=B31=xefoo_t:"
4437
4438 In this case, we have created an undefined type named "foo_t" whose
4439 instance flags is null (when processing "xefoo_t"), and then created
4440 another type with the same name, but with different instance flags
4441 ('B' means volatile). I think that the definition above is wrong,
4442 since the same type cannot be volatile and non-volatile at the same
4443 time, but we need to be able to cope with it when it happens. The
4444 approach taken here is to treat these two types as different. */
4445
4446 for (type = undef_types; type < undef_types + undef_types_length; type++)
4447 {
4448 switch ((*type)->code ())
4449 {
4450
4451 case TYPE_CODE_STRUCT:
4452 case TYPE_CODE_UNION:
4453 case TYPE_CODE_ENUM:
4454 {
4455 /* Check if it has been defined since. Need to do this here
4456 as well as in check_typedef to deal with the (legitimate in
4457 C though not C++) case of several types with the same name
4458 in different source files. */
4459 if ((*type)->is_stub ())
4460 {
4461 struct pending *ppt;
4462 int i;
4463 /* Name of the type, without "struct" or "union". */
4464 const char *type_name = (*type)->name ();
4465
4466 if (type_name == NULL)
4467 {
4468 complaint (_("need a type name"));
4469 break;
4470 }
4471 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4472 {
4473 for (i = 0; i < ppt->nsyms; i++)
4474 {
4475 struct symbol *sym = ppt->symbol[i];
4476
4477 if (sym->aclass () == LOC_TYPEDEF
4478 && sym->domain () == STRUCT_DOMAIN
4479 && (sym->type ()->code () == (*type)->code ())
4480 && ((*type)->instance_flags ()
4481 == sym->type ()->instance_flags ())
4482 && strcmp (sym->linkage_name (), type_name) == 0)
4483 replace_type (*type, sym->type ());
4484 }
4485 }
4486 }
4487 }
4488 break;
4489
4490 default:
4491 {
4492 complaint (_("forward-referenced types left unresolved, "
4493 "type code %d."),
4494 (*type)->code ());
4495 }
4496 break;
4497 }
4498 }
4499
4500 undef_types_length = 0;
4501 }
4502
4503 /* Try to fix all the undefined types we encountered while processing
4504 this unit. */
4505
4506 void
4507 cleanup_undefined_stabs_types (struct objfile *objfile)
4508 {
4509 cleanup_undefined_types_1 ();
4510 cleanup_undefined_types_noname (objfile);
4511 }
4512
4513 /* See stabsread.h. */
4514
4515 void
4516 scan_file_globals (struct objfile *objfile)
4517 {
4518 int hash;
4519 struct symbol *sym, *prev;
4520 struct objfile *resolve_objfile;
4521
4522 /* SVR4 based linkers copy referenced global symbols from shared
4523 libraries to the main executable.
4524 If we are scanning the symbols for a shared library, try to resolve
4525 them from the minimal symbols of the main executable first. */
4526
4527 if (current_program_space->symfile_object_file
4528 && objfile != current_program_space->symfile_object_file)
4529 resolve_objfile = current_program_space->symfile_object_file;
4530 else
4531 resolve_objfile = objfile;
4532
4533 while (1)
4534 {
4535 /* Avoid expensive loop through all minimal symbols if there are
4536 no unresolved symbols. */
4537 for (hash = 0; hash < HASHSIZE; hash++)
4538 {
4539 if (global_sym_chain[hash])
4540 break;
4541 }
4542 if (hash >= HASHSIZE)
4543 return;
4544
4545 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4546 {
4547 QUIT;
4548
4549 /* Skip static symbols. */
4550 switch (msymbol->type ())
4551 {
4552 case mst_file_text:
4553 case mst_file_data:
4554 case mst_file_bss:
4555 continue;
4556 default:
4557 break;
4558 }
4559
4560 prev = NULL;
4561
4562 /* Get the hash index and check all the symbols
4563 under that hash index. */
4564
4565 hash = hashname (msymbol->linkage_name ());
4566
4567 for (sym = global_sym_chain[hash]; sym;)
4568 {
4569 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4570 {
4571 /* Splice this symbol out of the hash chain and
4572 assign the value we have to it. */
4573 if (prev)
4574 {
4575 prev->set_value_chain (sym->value_chain ());
4576 }
4577 else
4578 {
4579 global_sym_chain[hash] = sym->value_chain ();
4580 }
4581
4582 /* Check to see whether we need to fix up a common block. */
4583 /* Note: this code might be executed several times for
4584 the same symbol if there are multiple references. */
4585 if (sym)
4586 {
4587 if (sym->aclass () == LOC_BLOCK)
4588 fix_common_block
4589 (sym, msymbol->value_address (resolve_objfile),
4590 msymbol->section_index ());
4591 else
4592 sym->set_value_address
4593 (msymbol->value_address (resolve_objfile));
4594 sym->set_section_index (msymbol->section_index ());
4595 }
4596
4597 if (prev)
4598 {
4599 sym = prev->value_chain ();
4600 }
4601 else
4602 {
4603 sym = global_sym_chain[hash];
4604 }
4605 }
4606 else
4607 {
4608 prev = sym;
4609 sym = sym->value_chain ();
4610 }
4611 }
4612 }
4613 if (resolve_objfile == objfile)
4614 break;
4615 resolve_objfile = objfile;
4616 }
4617
4618 /* Change the storage class of any remaining unresolved globals to
4619 LOC_UNRESOLVED and remove them from the chain. */
4620 for (hash = 0; hash < HASHSIZE; hash++)
4621 {
4622 sym = global_sym_chain[hash];
4623 while (sym)
4624 {
4625 prev = sym;
4626 sym = sym->value_chain ();
4627
4628 /* Change the symbol address from the misleading chain value
4629 to address zero. */
4630 prev->set_value_address (0);
4631
4632 /* Complain about unresolved common block symbols. */
4633 if (prev->aclass () == LOC_STATIC)
4634 prev->set_aclass_index (LOC_UNRESOLVED);
4635 else
4636 complaint (_("%s: common block `%s' from "
4637 "global_sym_chain unresolved"),
4638 objfile_name (objfile), prev->print_name ());
4639 }
4640 }
4641 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4642 }
4643
4644 /* Initialize anything that needs initializing when starting to read
4645 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4646 to a psymtab. */
4647
4648 void
4649 stabsread_init (void)
4650 {
4651 }
4652
4653 /* Initialize anything that needs initializing when a completely new
4654 symbol file is specified (not just adding some symbols from another
4655 file, e.g. a shared library). */
4656
4657 void
4658 stabsread_new_init (void)
4659 {
4660 /* Empty the hash table of global syms looking for values. */
4661 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4662 }
4663
4664 /* Initialize anything that needs initializing at the same time as
4665 start_compunit_symtab() is called. */
4666
4667 void
4668 start_stabs (void)
4669 {
4670 global_stabs = NULL; /* AIX COFF */
4671 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4672 n_this_object_header_files = 1;
4673 type_vector_length = 0;
4674 type_vector = (struct type **) 0;
4675 within_function = 0;
4676
4677 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4678 common_block_name = NULL;
4679 }
4680
4681 /* Call after end_compunit_symtab(). */
4682
4683 void
4684 end_stabs (void)
4685 {
4686 if (type_vector)
4687 {
4688 xfree (type_vector);
4689 }
4690 type_vector = 0;
4691 type_vector_length = 0;
4692 previous_stab_code = 0;
4693 }
4694
4695 void
4696 finish_global_stabs (struct objfile *objfile)
4697 {
4698 if (global_stabs)
4699 {
4700 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4701 xfree (global_stabs);
4702 global_stabs = NULL;
4703 }
4704 }
4705
4706 /* Find the end of the name, delimited by a ':', but don't match
4707 ObjC symbols which look like -[Foo bar::]:bla. */
4708 static const char *
4709 find_name_end (const char *name)
4710 {
4711 const char *s = name;
4712
4713 if (s[0] == '-' || *s == '+')
4714 {
4715 /* Must be an ObjC method symbol. */
4716 if (s[1] != '[')
4717 {
4718 error (_("invalid symbol name \"%s\""), name);
4719 }
4720 s = strchr (s, ']');
4721 if (s == NULL)
4722 {
4723 error (_("invalid symbol name \"%s\""), name);
4724 }
4725 return strchr (s, ':');
4726 }
4727 else
4728 {
4729 return strchr (s, ':');
4730 }
4731 }
4732
4733 /* See stabsread.h. */
4734
4735 int
4736 hashname (const char *name)
4737 {
4738 return fast_hash (name, strlen (name)) % HASHSIZE;
4739 }
4740
4741 /* Initializer for this module. */
4742
4743 void _initialize_stabsread ();
4744 void
4745 _initialize_stabsread ()
4746 {
4747 undef_types_allocated = 20;
4748 undef_types_length = 0;
4749 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4750
4751 noname_undefs_allocated = 20;
4752 noname_undefs_length = 0;
4753 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4754
4755 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4756 &stab_register_funcs);
4757 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4758 &stab_register_funcs);
4759 }