Remove TYPE_NOSIGN "char" hack
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("bad register number %d (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = XNEWVEC (struct type *, type_vector_length);
281 }
282 while (index >= type_vector_length)
283 {
284 type_vector_length *= 2;
285 }
286 type_vector = (struct type **)
287 xrealloc ((char *) type_vector,
288 (type_vector_length * sizeof (struct type *)));
289 memset (&type_vector[old_len], 0,
290 (type_vector_length - old_len) * sizeof (struct type *));
291 }
292 return (&type_vector[index]);
293 }
294 else
295 {
296 real_filenum = this_object_header_files[filenum];
297
298 if (real_filenum >= N_HEADER_FILES (objfile))
299 {
300 static struct type *temp_type;
301
302 warning (_("GDB internal error: bad real_filenum"));
303
304 error_return:
305 temp_type = objfile_type (objfile)->builtin_error;
306 return &temp_type;
307 }
308
309 f = HEADER_FILES (objfile) + real_filenum;
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (int typenums[2], struct objfile *objfile)
335 {
336 struct type **type_addr;
337
338 if (typenums[0] == -1)
339 {
340 return (alloc_type (objfile));
341 }
342
343 type_addr = dbx_lookup_type (typenums, objfile);
344
345 /* If we are referring to a type not known at all yet,
346 allocate an empty type for it.
347 We will fill it in later if we find out how. */
348 if (*type_addr == 0)
349 {
350 *type_addr = alloc_type (objfile);
351 }
352
353 return (*type_addr);
354 }
355
356 /* for all the stabs in a given stab vector, build appropriate types
357 and fix their symbols in given symbol vector. */
358
359 static void
360 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
361 struct objfile *objfile)
362 {
363 int ii;
364 char *name;
365 char *pp;
366 struct symbol *sym;
367
368 if (stabs)
369 {
370 /* for all the stab entries, find their corresponding symbols and
371 patch their types! */
372
373 for (ii = 0; ii < stabs->count; ++ii)
374 {
375 name = stabs->stab[ii];
376 pp = (char *) strchr (name, ':');
377 gdb_assert (pp); /* Must find a ':' or game's over. */
378 while (pp[1] == ':')
379 {
380 pp += 2;
381 pp = (char *) strchr (pp, ':');
382 }
383 sym = find_symbol_in_list (symbols, name, pp - name);
384 if (!sym)
385 {
386 /* FIXME-maybe: it would be nice if we noticed whether
387 the variable was defined *anywhere*, not just whether
388 it is defined in this compilation unit. But neither
389 xlc or GCC seem to need such a definition, and until
390 we do psymtabs (so that the minimal symbols from all
391 compilation units are available now), I'm not sure
392 how to get the information. */
393
394 /* On xcoff, if a global is defined and never referenced,
395 ld will remove it from the executable. There is then
396 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
397 sym = allocate_symbol (objfile);
398 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
399 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
400 SYMBOL_SET_LINKAGE_NAME
401 (sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
402 name, pp - name));
403 pp += 2;
404 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
405 {
406 /* I don't think the linker does this with functions,
407 so as far as I know this is never executed.
408 But it doesn't hurt to check. */
409 SYMBOL_TYPE (sym) =
410 lookup_function_type (read_type (&pp, objfile));
411 }
412 else
413 {
414 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
415 }
416 add_symbol_to_list (sym, &global_symbols);
417 }
418 else
419 {
420 pp += 2;
421 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
422 {
423 SYMBOL_TYPE (sym) =
424 lookup_function_type (read_type (&pp, objfile));
425 }
426 else
427 {
428 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
429 }
430 }
431 }
432 }
433 }
434 \f
435
436 /* Read a number by which a type is referred to in dbx data,
437 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
438 Just a single number N is equivalent to (0,N).
439 Return the two numbers by storing them in the vector TYPENUMS.
440 TYPENUMS will then be used as an argument to dbx_lookup_type.
441
442 Returns 0 for success, -1 for error. */
443
444 static int
445 read_type_number (char **pp, int *typenums)
446 {
447 int nbits;
448
449 if (**pp == '(')
450 {
451 (*pp)++;
452 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
453 if (nbits != 0)
454 return -1;
455 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
456 if (nbits != 0)
457 return -1;
458 }
459 else
460 {
461 typenums[0] = 0;
462 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
463 if (nbits != 0)
464 return -1;
465 }
466 return 0;
467 }
468 \f
469
470 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
471 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
472 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
473 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
474
475 /* Structure for storing pointers to reference definitions for fast lookup
476 during "process_later". */
477
478 struct ref_map
479 {
480 char *stabs;
481 CORE_ADDR value;
482 struct symbol *sym;
483 };
484
485 #define MAX_CHUNK_REFS 100
486 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
487 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
488
489 static struct ref_map *ref_map;
490
491 /* Ptr to free cell in chunk's linked list. */
492 static int ref_count = 0;
493
494 /* Number of chunks malloced. */
495 static int ref_chunk = 0;
496
497 /* This file maintains a cache of stabs aliases found in the symbol
498 table. If the symbol table changes, this cache must be cleared
499 or we are left holding onto data in invalid obstacks. */
500 void
501 stabsread_clear_cache (void)
502 {
503 ref_count = 0;
504 ref_chunk = 0;
505 }
506
507 /* Create array of pointers mapping refids to symbols and stab strings.
508 Add pointers to reference definition symbols and/or their values as we
509 find them, using their reference numbers as our index.
510 These will be used later when we resolve references. */
511 void
512 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
513 {
514 if (ref_count == 0)
515 ref_chunk = 0;
516 if (refnum >= ref_count)
517 ref_count = refnum + 1;
518 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
519 {
520 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
521 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
522
523 ref_map = (struct ref_map *)
524 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
525 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
526 new_chunks * REF_CHUNK_SIZE);
527 ref_chunk += new_chunks;
528 }
529 ref_map[refnum].stabs = stabs;
530 ref_map[refnum].sym = sym;
531 ref_map[refnum].value = value;
532 }
533
534 /* Return defined sym for the reference REFNUM. */
535 struct symbol *
536 ref_search (int refnum)
537 {
538 if (refnum < 0 || refnum > ref_count)
539 return 0;
540 return ref_map[refnum].sym;
541 }
542
543 /* Parse a reference id in STRING and return the resulting
544 reference number. Move STRING beyond the reference id. */
545
546 static int
547 process_reference (char **string)
548 {
549 char *p;
550 int refnum = 0;
551
552 if (**string != '#')
553 return 0;
554
555 /* Advance beyond the initial '#'. */
556 p = *string + 1;
557
558 /* Read number as reference id. */
559 while (*p && isdigit (*p))
560 {
561 refnum = refnum * 10 + *p - '0';
562 p++;
563 }
564 *string = p;
565 return refnum;
566 }
567
568 /* If STRING defines a reference, store away a pointer to the reference
569 definition for later use. Return the reference number. */
570
571 int
572 symbol_reference_defined (char **string)
573 {
574 char *p = *string;
575 int refnum = 0;
576
577 refnum = process_reference (&p);
578
579 /* Defining symbols end in '='. */
580 if (*p == '=')
581 {
582 /* Symbol is being defined here. */
583 *string = p + 1;
584 return refnum;
585 }
586 else
587 {
588 /* Must be a reference. Either the symbol has already been defined,
589 or this is a forward reference to it. */
590 *string = p;
591 return -1;
592 }
593 }
594
595 static int
596 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
597 {
598 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
599
600 if (regno < 0
601 || regno >= (gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch)))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
610 }
611
612 return regno;
613 }
614
615 static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617 };
618
619 /* The "aclass" indices for computed symbols. */
620
621 static int stab_register_index;
622 static int stab_regparm_index;
623
624 struct symbol *
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
627 {
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
629 struct symbol *sym;
630 char *p = (char *) find_name_end (string);
631 int deftype;
632 int synonym = 0;
633 int i;
634 char *new_name = NULL;
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
647 /* Ignore old-style symbols from cc -go. */
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
653 p += 2;
654 p = strchr (p, ':');
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
667 current_symbol = sym = allocate_symbol (objfile);
668
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
674 }
675 else
676 {
677 SYMBOL_LINE (sym) = 0; /* unknown */
678 }
679
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = (char *) alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu
789 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value
873 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
874 memcpy (string_value, string_local, ind + 1);
875 p++;
876
877 SYMBOL_VALUE_BYTES (sym) = string_value;
878 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
879 }
880 break;
881
882 case 'e':
883 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
884 can be represented as integral.
885 e.g. "b:c=e6,0" for "const b = blob1"
886 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
887 {
888 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
889 SYMBOL_TYPE (sym) = read_type (&p, objfile);
890
891 if (*p != ',')
892 {
893 SYMBOL_TYPE (sym) = error_type (&p, objfile);
894 break;
895 }
896 ++p;
897
898 /* If the value is too big to fit in an int (perhaps because
899 it is unsigned), or something like that, we silently get
900 a bogus value. The type and everything else about it is
901 correct. Ideally, we should be using whatever we have
902 available for parsing unsigned and long long values,
903 however. */
904 SYMBOL_VALUE (sym) = atoi (p);
905 }
906 break;
907 default:
908 {
909 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
910 SYMBOL_TYPE (sym) = error_type (&p, objfile);
911 }
912 }
913 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
914 add_symbol_to_list (sym, &file_symbols);
915 return sym;
916
917 case 'C':
918 /* The name of a caught exception. */
919 SYMBOL_TYPE (sym) = read_type (&p, objfile);
920 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
922 SYMBOL_VALUE_ADDRESS (sym) = valu;
923 add_symbol_to_list (sym, &local_symbols);
924 break;
925
926 case 'f':
927 /* A static function definition. */
928 SYMBOL_TYPE (sym) = read_type (&p, objfile);
929 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
930 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
931 add_symbol_to_list (sym, &file_symbols);
932 /* fall into process_function_types. */
933
934 process_function_types:
935 /* Function result types are described as the result type in stabs.
936 We need to convert this to the function-returning-type-X type
937 in GDB. E.g. "int" is converted to "function returning int". */
938 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
939 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
940
941 /* All functions in C++ have prototypes. Stabs does not offer an
942 explicit way to identify prototyped or unprototyped functions,
943 but both GCC and Sun CC emit stabs for the "call-as" type rather
944 than the "declared-as" type for unprototyped functions, so
945 we treat all functions as if they were prototyped. This is used
946 primarily for promotion when calling the function from GDB. */
947 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
948
949 /* fall into process_prototype_types. */
950
951 process_prototype_types:
952 /* Sun acc puts declared types of arguments here. */
953 if (*p == ';')
954 {
955 struct type *ftype = SYMBOL_TYPE (sym);
956 int nsemi = 0;
957 int nparams = 0;
958 char *p1 = p;
959
960 /* Obtain a worst case guess for the number of arguments
961 by counting the semicolons. */
962 while (*p1)
963 {
964 if (*p1++ == ';')
965 nsemi++;
966 }
967
968 /* Allocate parameter information fields and fill them in. */
969 TYPE_FIELDS (ftype) = (struct field *)
970 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
971 while (*p++ == ';')
972 {
973 struct type *ptype;
974
975 /* A type number of zero indicates the start of varargs.
976 FIXME: GDB currently ignores vararg functions. */
977 if (p[0] == '0' && p[1] == '\0')
978 break;
979 ptype = read_type (&p, objfile);
980
981 /* The Sun compilers mark integer arguments, which should
982 be promoted to the width of the calling conventions, with
983 a type which references itself. This type is turned into
984 a TYPE_CODE_VOID type by read_type, and we have to turn
985 it back into builtin_int here.
986 FIXME: Do we need a new builtin_promoted_int_arg ? */
987 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
988 ptype = objfile_type (objfile)->builtin_int;
989 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
990 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
991 }
992 TYPE_NFIELDS (ftype) = nparams;
993 TYPE_PROTOTYPED (ftype) = 1;
994 }
995 break;
996
997 case 'F':
998 /* A global function definition. */
999 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1000 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1001 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1002 add_symbol_to_list (sym, &global_symbols);
1003 goto process_function_types;
1004
1005 case 'G':
1006 /* For a class G (global) symbol, it appears that the
1007 value is not correct. It is necessary to search for the
1008 corresponding linker definition to find the value.
1009 These definitions appear at the end of the namelist. */
1010 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1011 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1012 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1013 /* Don't add symbol references to global_sym_chain.
1014 Symbol references don't have valid names and wont't match up with
1015 minimal symbols when the global_sym_chain is relocated.
1016 We'll fixup symbol references when we fixup the defining symbol. */
1017 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1018 {
1019 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1020 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1021 global_sym_chain[i] = sym;
1022 }
1023 add_symbol_to_list (sym, &global_symbols);
1024 break;
1025
1026 /* This case is faked by a conditional above,
1027 when there is no code letter in the dbx data.
1028 Dbx data never actually contains 'l'. */
1029 case 's':
1030 case 'l':
1031 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1032 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1033 SYMBOL_VALUE (sym) = valu;
1034 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1035 add_symbol_to_list (sym, &local_symbols);
1036 break;
1037
1038 case 'p':
1039 if (*p == 'F')
1040 /* pF is a two-letter code that means a function parameter in Fortran.
1041 The type-number specifies the type of the return value.
1042 Translate it into a pointer-to-function type. */
1043 {
1044 p++;
1045 SYMBOL_TYPE (sym)
1046 = lookup_pointer_type
1047 (lookup_function_type (read_type (&p, objfile)));
1048 }
1049 else
1050 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1051
1052 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1053 SYMBOL_VALUE (sym) = valu;
1054 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1055 SYMBOL_IS_ARGUMENT (sym) = 1;
1056 add_symbol_to_list (sym, &local_symbols);
1057
1058 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1059 {
1060 /* On little-endian machines, this crud is never necessary,
1061 and, if the extra bytes contain garbage, is harmful. */
1062 break;
1063 }
1064
1065 /* If it's gcc-compiled, if it says `short', believe it. */
1066 if (processing_gcc_compilation
1067 || gdbarch_believe_pcc_promotion (gdbarch))
1068 break;
1069
1070 if (!gdbarch_believe_pcc_promotion (gdbarch))
1071 {
1072 /* If PCC says a parameter is a short or a char, it is
1073 really an int. */
1074 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1075 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1076 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1077 {
1078 SYMBOL_TYPE (sym) =
1079 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1080 ? objfile_type (objfile)->builtin_unsigned_int
1081 : objfile_type (objfile)->builtin_int;
1082 }
1083 break;
1084 }
1085
1086 case 'P':
1087 /* acc seems to use P to declare the prototypes of functions that
1088 are referenced by this file. gdb is not prepared to deal
1089 with this extra information. FIXME, it ought to. */
1090 if (type == N_FUN)
1091 {
1092 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1093 goto process_prototype_types;
1094 }
1095 /*FALLTHROUGH */
1096
1097 case 'R':
1098 /* Parameter which is in a register. */
1099 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1100 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1101 SYMBOL_IS_ARGUMENT (sym) = 1;
1102 SYMBOL_VALUE (sym) = valu;
1103 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1104 add_symbol_to_list (sym, &local_symbols);
1105 break;
1106
1107 case 'r':
1108 /* Register variable (either global or local). */
1109 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1110 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1111 SYMBOL_VALUE (sym) = valu;
1112 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1113 if (within_function)
1114 {
1115 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1116 the same name to represent an argument passed in a
1117 register. GCC uses 'P' for the same case. So if we find
1118 such a symbol pair we combine it into one 'P' symbol.
1119 For Sun cc we need to do this regardless of
1120 stabs_argument_has_addr, because the compiler puts out
1121 the 'p' symbol even if it never saves the argument onto
1122 the stack.
1123
1124 On most machines, we want to preserve both symbols, so
1125 that we can still get information about what is going on
1126 with the stack (VAX for computing args_printed, using
1127 stack slots instead of saved registers in backtraces,
1128 etc.).
1129
1130 Note that this code illegally combines
1131 main(argc) struct foo argc; { register struct foo argc; }
1132 but this case is considered pathological and causes a warning
1133 from a decent compiler. */
1134
1135 if (local_symbols
1136 && local_symbols->nsyms > 0
1137 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1138 {
1139 struct symbol *prev_sym;
1140
1141 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1142 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1143 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1144 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1145 SYMBOL_LINKAGE_NAME (sym)) == 0)
1146 {
1147 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1148 /* Use the type from the LOC_REGISTER; that is the type
1149 that is actually in that register. */
1150 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1151 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1152 sym = prev_sym;
1153 break;
1154 }
1155 }
1156 add_symbol_to_list (sym, &local_symbols);
1157 }
1158 else
1159 add_symbol_to_list (sym, &file_symbols);
1160 break;
1161
1162 case 'S':
1163 /* Static symbol at top level of file. */
1164 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1165 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1166 SYMBOL_VALUE_ADDRESS (sym) = valu;
1167 if (gdbarch_static_transform_name_p (gdbarch)
1168 && gdbarch_static_transform_name (gdbarch,
1169 SYMBOL_LINKAGE_NAME (sym))
1170 != SYMBOL_LINKAGE_NAME (sym))
1171 {
1172 struct bound_minimal_symbol msym;
1173
1174 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1175 NULL, objfile);
1176 if (msym.minsym != NULL)
1177 {
1178 const char *new_name = gdbarch_static_transform_name
1179 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1180
1181 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1182 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1183 }
1184 }
1185 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1186 add_symbol_to_list (sym, &file_symbols);
1187 break;
1188
1189 case 't':
1190 /* In Ada, there is no distinction between typedef and non-typedef;
1191 any type declaration implicitly has the equivalent of a typedef,
1192 and thus 't' is in fact equivalent to 'Tt'.
1193
1194 Therefore, for Ada units, we check the character immediately
1195 before the 't', and if we do not find a 'T', then make sure to
1196 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1197 will be stored in the VAR_DOMAIN). If the symbol was indeed
1198 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1199 elsewhere, so we don't need to take care of that.
1200
1201 This is important to do, because of forward references:
1202 The cleanup of undefined types stored in undef_types only uses
1203 STRUCT_DOMAIN symbols to perform the replacement. */
1204 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1205
1206 /* Typedef */
1207 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1208
1209 /* For a nameless type, we don't want a create a symbol, thus we
1210 did not use `sym'. Return without further processing. */
1211 if (nameless)
1212 return NULL;
1213
1214 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1215 SYMBOL_VALUE (sym) = valu;
1216 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1217 /* C++ vagaries: we may have a type which is derived from
1218 a base type which did not have its name defined when the
1219 derived class was output. We fill in the derived class's
1220 base part member's name here in that case. */
1221 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1222 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1223 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1224 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1225 {
1226 int j;
1227
1228 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1229 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1230 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1231 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1232 }
1233
1234 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1235 {
1236 /* gcc-2.6 or later (when using -fvtable-thunks)
1237 emits a unique named type for a vtable entry.
1238 Some gdb code depends on that specific name. */
1239 extern const char vtbl_ptr_name[];
1240
1241 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1242 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1243 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1244 {
1245 /* If we are giving a name to a type such as "pointer to
1246 foo" or "function returning foo", we better not set
1247 the TYPE_NAME. If the program contains "typedef char
1248 *caddr_t;", we don't want all variables of type char
1249 * to print as caddr_t. This is not just a
1250 consequence of GDB's type management; PCC and GCC (at
1251 least through version 2.4) both output variables of
1252 either type char * or caddr_t with the type number
1253 defined in the 't' symbol for caddr_t. If a future
1254 compiler cleans this up it GDB is not ready for it
1255 yet, but if it becomes ready we somehow need to
1256 disable this check (without breaking the PCC/GCC2.4
1257 case).
1258
1259 Sigh.
1260
1261 Fortunately, this check seems not to be necessary
1262 for anything except pointers or functions. */
1263 /* ezannoni: 2000-10-26. This seems to apply for
1264 versions of gcc older than 2.8. This was the original
1265 problem: with the following code gdb would tell that
1266 the type for name1 is caddr_t, and func is char().
1267
1268 typedef char *caddr_t;
1269 char *name2;
1270 struct x
1271 {
1272 char *name1;
1273 } xx;
1274 char *func()
1275 {
1276 }
1277 main () {}
1278 */
1279
1280 /* Pascal accepts names for pointer types. */
1281 if (current_subfile->language == language_pascal)
1282 {
1283 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1284 }
1285 }
1286 else
1287 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1288 }
1289
1290 add_symbol_to_list (sym, &file_symbols);
1291
1292 if (synonym)
1293 {
1294 /* Create the STRUCT_DOMAIN clone. */
1295 struct symbol *struct_sym = allocate_symbol (objfile);
1296
1297 *struct_sym = *sym;
1298 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1299 SYMBOL_VALUE (struct_sym) = valu;
1300 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1301 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1302 TYPE_NAME (SYMBOL_TYPE (sym))
1303 = obconcat (&objfile->objfile_obstack,
1304 SYMBOL_LINKAGE_NAME (sym),
1305 (char *) NULL);
1306 add_symbol_to_list (struct_sym, &file_symbols);
1307 }
1308
1309 break;
1310
1311 case 'T':
1312 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1313 by 't' which means we are typedef'ing it as well. */
1314 synonym = *p == 't';
1315
1316 if (synonym)
1317 p++;
1318
1319 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1320
1321 /* For a nameless type, we don't want a create a symbol, thus we
1322 did not use `sym'. Return without further processing. */
1323 if (nameless)
1324 return NULL;
1325
1326 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1327 SYMBOL_VALUE (sym) = valu;
1328 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1329 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1330 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1331 = obconcat (&objfile->objfile_obstack,
1332 SYMBOL_LINKAGE_NAME (sym),
1333 (char *) NULL);
1334 add_symbol_to_list (sym, &file_symbols);
1335
1336 if (synonym)
1337 {
1338 /* Clone the sym and then modify it. */
1339 struct symbol *typedef_sym = allocate_symbol (objfile);
1340
1341 *typedef_sym = *sym;
1342 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1343 SYMBOL_VALUE (typedef_sym) = valu;
1344 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1345 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1346 TYPE_NAME (SYMBOL_TYPE (sym))
1347 = obconcat (&objfile->objfile_obstack,
1348 SYMBOL_LINKAGE_NAME (sym),
1349 (char *) NULL);
1350 add_symbol_to_list (typedef_sym, &file_symbols);
1351 }
1352 break;
1353
1354 case 'V':
1355 /* Static symbol of local scope. */
1356 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1357 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1358 SYMBOL_VALUE_ADDRESS (sym) = valu;
1359 if (gdbarch_static_transform_name_p (gdbarch)
1360 && gdbarch_static_transform_name (gdbarch,
1361 SYMBOL_LINKAGE_NAME (sym))
1362 != SYMBOL_LINKAGE_NAME (sym))
1363 {
1364 struct bound_minimal_symbol msym;
1365
1366 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1367 NULL, objfile);
1368 if (msym.minsym != NULL)
1369 {
1370 const char *new_name = gdbarch_static_transform_name
1371 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1372
1373 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1374 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1375 }
1376 }
1377 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1378 add_symbol_to_list (sym, &local_symbols);
1379 break;
1380
1381 case 'v':
1382 /* Reference parameter */
1383 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1384 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1385 SYMBOL_IS_ARGUMENT (sym) = 1;
1386 SYMBOL_VALUE (sym) = valu;
1387 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1388 add_symbol_to_list (sym, &local_symbols);
1389 break;
1390
1391 case 'a':
1392 /* Reference parameter which is in a register. */
1393 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1394 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1395 SYMBOL_IS_ARGUMENT (sym) = 1;
1396 SYMBOL_VALUE (sym) = valu;
1397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1398 add_symbol_to_list (sym, &local_symbols);
1399 break;
1400
1401 case 'X':
1402 /* This is used by Sun FORTRAN for "function result value".
1403 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1404 that Pascal uses it too, but when I tried it Pascal used
1405 "x:3" (local symbol) instead. */
1406 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1407 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1408 SYMBOL_VALUE (sym) = valu;
1409 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1410 add_symbol_to_list (sym, &local_symbols);
1411 break;
1412
1413 default:
1414 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1415 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1416 SYMBOL_VALUE (sym) = 0;
1417 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1418 add_symbol_to_list (sym, &file_symbols);
1419 break;
1420 }
1421
1422 /* Some systems pass variables of certain types by reference instead
1423 of by value, i.e. they will pass the address of a structure (in a
1424 register or on the stack) instead of the structure itself. */
1425
1426 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1427 && SYMBOL_IS_ARGUMENT (sym))
1428 {
1429 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1430 variables passed in a register). */
1431 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1432 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1433 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1434 and subsequent arguments on SPARC, for example). */
1435 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1436 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1437 }
1438
1439 return sym;
1440 }
1441
1442 /* Skip rest of this symbol and return an error type.
1443
1444 General notes on error recovery: error_type always skips to the
1445 end of the symbol (modulo cretinous dbx symbol name continuation).
1446 Thus code like this:
1447
1448 if (*(*pp)++ != ';')
1449 return error_type (pp, objfile);
1450
1451 is wrong because if *pp starts out pointing at '\0' (typically as the
1452 result of an earlier error), it will be incremented to point to the
1453 start of the next symbol, which might produce strange results, at least
1454 if you run off the end of the string table. Instead use
1455
1456 if (**pp != ';')
1457 return error_type (pp, objfile);
1458 ++*pp;
1459
1460 or
1461
1462 if (**pp != ';')
1463 foo = error_type (pp, objfile);
1464 else
1465 ++*pp;
1466
1467 And in case it isn't obvious, the point of all this hair is so the compiler
1468 can define new types and new syntaxes, and old versions of the
1469 debugger will be able to read the new symbol tables. */
1470
1471 static struct type *
1472 error_type (char **pp, struct objfile *objfile)
1473 {
1474 complaint (&symfile_complaints,
1475 _("couldn't parse type; debugger out of date?"));
1476 while (1)
1477 {
1478 /* Skip to end of symbol. */
1479 while (**pp != '\0')
1480 {
1481 (*pp)++;
1482 }
1483
1484 /* Check for and handle cretinous dbx symbol name continuation! */
1485 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1486 {
1487 *pp = next_symbol_text (objfile);
1488 }
1489 else
1490 {
1491 break;
1492 }
1493 }
1494 return objfile_type (objfile)->builtin_error;
1495 }
1496 \f
1497
1498 /* Read type information or a type definition; return the type. Even
1499 though this routine accepts either type information or a type
1500 definition, the distinction is relevant--some parts of stabsread.c
1501 assume that type information starts with a digit, '-', or '(' in
1502 deciding whether to call read_type. */
1503
1504 static struct type *
1505 read_type (char **pp, struct objfile *objfile)
1506 {
1507 struct type *type = 0;
1508 struct type *type1;
1509 int typenums[2];
1510 char type_descriptor;
1511
1512 /* Size in bits of type if specified by a type attribute, or -1 if
1513 there is no size attribute. */
1514 int type_size = -1;
1515
1516 /* Used to distinguish string and bitstring from char-array and set. */
1517 int is_string = 0;
1518
1519 /* Used to distinguish vector from array. */
1520 int is_vector = 0;
1521
1522 /* Read type number if present. The type number may be omitted.
1523 for instance in a two-dimensional array declared with type
1524 "ar1;1;10;ar1;1;10;4". */
1525 if ((**pp >= '0' && **pp <= '9')
1526 || **pp == '('
1527 || **pp == '-')
1528 {
1529 if (read_type_number (pp, typenums) != 0)
1530 return error_type (pp, objfile);
1531
1532 if (**pp != '=')
1533 {
1534 /* Type is not being defined here. Either it already
1535 exists, or this is a forward reference to it.
1536 dbx_alloc_type handles both cases. */
1537 type = dbx_alloc_type (typenums, objfile);
1538
1539 /* If this is a forward reference, arrange to complain if it
1540 doesn't get patched up by the time we're done
1541 reading. */
1542 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1543 add_undefined_type (type, typenums);
1544
1545 return type;
1546 }
1547
1548 /* Type is being defined here. */
1549 /* Skip the '='.
1550 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1551 (*pp) += 2;
1552 }
1553 else
1554 {
1555 /* 'typenums=' not present, type is anonymous. Read and return
1556 the definition, but don't put it in the type vector. */
1557 typenums[0] = typenums[1] = -1;
1558 (*pp)++;
1559 }
1560
1561 again:
1562 type_descriptor = (*pp)[-1];
1563 switch (type_descriptor)
1564 {
1565 case 'x':
1566 {
1567 enum type_code code;
1568
1569 /* Used to index through file_symbols. */
1570 struct pending *ppt;
1571 int i;
1572
1573 /* Name including "struct", etc. */
1574 char *type_name;
1575
1576 {
1577 char *from, *to, *p, *q1, *q2;
1578
1579 /* Set the type code according to the following letter. */
1580 switch ((*pp)[0])
1581 {
1582 case 's':
1583 code = TYPE_CODE_STRUCT;
1584 break;
1585 case 'u':
1586 code = TYPE_CODE_UNION;
1587 break;
1588 case 'e':
1589 code = TYPE_CODE_ENUM;
1590 break;
1591 default:
1592 {
1593 /* Complain and keep going, so compilers can invent new
1594 cross-reference types. */
1595 complaint (&symfile_complaints,
1596 _("Unrecognized cross-reference type `%c'"),
1597 (*pp)[0]);
1598 code = TYPE_CODE_STRUCT;
1599 break;
1600 }
1601 }
1602
1603 q1 = strchr (*pp, '<');
1604 p = strchr (*pp, ':');
1605 if (p == NULL)
1606 return error_type (pp, objfile);
1607 if (q1 && p > q1 && p[1] == ':')
1608 {
1609 int nesting_level = 0;
1610
1611 for (q2 = q1; *q2; q2++)
1612 {
1613 if (*q2 == '<')
1614 nesting_level++;
1615 else if (*q2 == '>')
1616 nesting_level--;
1617 else if (*q2 == ':' && nesting_level == 0)
1618 break;
1619 }
1620 p = q2;
1621 if (*p != ':')
1622 return error_type (pp, objfile);
1623 }
1624 type_name = NULL;
1625 if (current_subfile->language == language_cplus)
1626 {
1627 char *new_name, *name = (char *) alloca (p - *pp + 1);
1628
1629 memcpy (name, *pp, p - *pp);
1630 name[p - *pp] = '\0';
1631 new_name = cp_canonicalize_string (name);
1632 if (new_name != NULL)
1633 {
1634 type_name
1635 = (char *) obstack_copy0 (&objfile->objfile_obstack,
1636 new_name, strlen (new_name));
1637 xfree (new_name);
1638 }
1639 }
1640 if (type_name == NULL)
1641 {
1642 to = type_name = (char *)
1643 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1644
1645 /* Copy the name. */
1646 from = *pp + 1;
1647 while (from < p)
1648 *to++ = *from++;
1649 *to = '\0';
1650 }
1651
1652 /* Set the pointer ahead of the name which we just read, and
1653 the colon. */
1654 *pp = p + 1;
1655 }
1656
1657 /* If this type has already been declared, then reuse the same
1658 type, rather than allocating a new one. This saves some
1659 memory. */
1660
1661 for (ppt = file_symbols; ppt; ppt = ppt->next)
1662 for (i = 0; i < ppt->nsyms; i++)
1663 {
1664 struct symbol *sym = ppt->symbol[i];
1665
1666 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1667 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1668 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1669 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1670 {
1671 obstack_free (&objfile->objfile_obstack, type_name);
1672 type = SYMBOL_TYPE (sym);
1673 if (typenums[0] != -1)
1674 *dbx_lookup_type (typenums, objfile) = type;
1675 return type;
1676 }
1677 }
1678
1679 /* Didn't find the type to which this refers, so we must
1680 be dealing with a forward reference. Allocate a type
1681 structure for it, and keep track of it so we can
1682 fill in the rest of the fields when we get the full
1683 type. */
1684 type = dbx_alloc_type (typenums, objfile);
1685 TYPE_CODE (type) = code;
1686 TYPE_TAG_NAME (type) = type_name;
1687 INIT_CPLUS_SPECIFIC (type);
1688 TYPE_STUB (type) = 1;
1689
1690 add_undefined_type (type, typenums);
1691 return type;
1692 }
1693
1694 case '-': /* RS/6000 built-in type */
1695 case '0':
1696 case '1':
1697 case '2':
1698 case '3':
1699 case '4':
1700 case '5':
1701 case '6':
1702 case '7':
1703 case '8':
1704 case '9':
1705 case '(':
1706 (*pp)--;
1707
1708 /* We deal with something like t(1,2)=(3,4)=... which
1709 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1710
1711 /* Allocate and enter the typedef type first.
1712 This handles recursive types. */
1713 type = dbx_alloc_type (typenums, objfile);
1714 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1715 {
1716 struct type *xtype = read_type (pp, objfile);
1717
1718 if (type == xtype)
1719 {
1720 /* It's being defined as itself. That means it is "void". */
1721 TYPE_CODE (type) = TYPE_CODE_VOID;
1722 TYPE_LENGTH (type) = 1;
1723 }
1724 else if (type_size >= 0 || is_string)
1725 {
1726 /* This is the absolute wrong way to construct types. Every
1727 other debug format has found a way around this problem and
1728 the related problems with unnecessarily stubbed types;
1729 someone motivated should attempt to clean up the issue
1730 here as well. Once a type pointed to has been created it
1731 should not be modified.
1732
1733 Well, it's not *absolutely* wrong. Constructing recursive
1734 types (trees, linked lists) necessarily entails modifying
1735 types after creating them. Constructing any loop structure
1736 entails side effects. The Dwarf 2 reader does handle this
1737 more gracefully (it never constructs more than once
1738 instance of a type object, so it doesn't have to copy type
1739 objects wholesale), but it still mutates type objects after
1740 other folks have references to them.
1741
1742 Keep in mind that this circularity/mutation issue shows up
1743 at the source language level, too: C's "incomplete types",
1744 for example. So the proper cleanup, I think, would be to
1745 limit GDB's type smashing to match exactly those required
1746 by the source language. So GDB could have a
1747 "complete_this_type" function, but never create unnecessary
1748 copies of a type otherwise. */
1749 replace_type (type, xtype);
1750 TYPE_NAME (type) = NULL;
1751 TYPE_TAG_NAME (type) = NULL;
1752 }
1753 else
1754 {
1755 TYPE_TARGET_STUB (type) = 1;
1756 TYPE_TARGET_TYPE (type) = xtype;
1757 }
1758 }
1759 break;
1760
1761 /* In the following types, we must be sure to overwrite any existing
1762 type that the typenums refer to, rather than allocating a new one
1763 and making the typenums point to the new one. This is because there
1764 may already be pointers to the existing type (if it had been
1765 forward-referenced), and we must change it to a pointer, function,
1766 reference, or whatever, *in-place*. */
1767
1768 case '*': /* Pointer to another type */
1769 type1 = read_type (pp, objfile);
1770 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1771 break;
1772
1773 case '&': /* Reference to another type */
1774 type1 = read_type (pp, objfile);
1775 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1776 break;
1777
1778 case 'f': /* Function returning another type */
1779 type1 = read_type (pp, objfile);
1780 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1781 break;
1782
1783 case 'g': /* Prototyped function. (Sun) */
1784 {
1785 /* Unresolved questions:
1786
1787 - According to Sun's ``STABS Interface Manual'', for 'f'
1788 and 'F' symbol descriptors, a `0' in the argument type list
1789 indicates a varargs function. But it doesn't say how 'g'
1790 type descriptors represent that info. Someone with access
1791 to Sun's toolchain should try it out.
1792
1793 - According to the comment in define_symbol (search for
1794 `process_prototype_types:'), Sun emits integer arguments as
1795 types which ref themselves --- like `void' types. Do we
1796 have to deal with that here, too? Again, someone with
1797 access to Sun's toolchain should try it out and let us
1798 know. */
1799
1800 const char *type_start = (*pp) - 1;
1801 struct type *return_type = read_type (pp, objfile);
1802 struct type *func_type
1803 = make_function_type (return_type,
1804 dbx_lookup_type (typenums, objfile));
1805 struct type_list {
1806 struct type *type;
1807 struct type_list *next;
1808 } *arg_types = 0;
1809 int num_args = 0;
1810
1811 while (**pp && **pp != '#')
1812 {
1813 struct type *arg_type = read_type (pp, objfile);
1814 struct type_list *newobj = XALLOCA (struct type_list);
1815 newobj->type = arg_type;
1816 newobj->next = arg_types;
1817 arg_types = newobj;
1818 num_args++;
1819 }
1820 if (**pp == '#')
1821 ++*pp;
1822 else
1823 {
1824 complaint (&symfile_complaints,
1825 _("Prototyped function type didn't "
1826 "end arguments with `#':\n%s"),
1827 type_start);
1828 }
1829
1830 /* If there is just one argument whose type is `void', then
1831 that's just an empty argument list. */
1832 if (arg_types
1833 && ! arg_types->next
1834 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1835 num_args = 0;
1836
1837 TYPE_FIELDS (func_type)
1838 = (struct field *) TYPE_ALLOC (func_type,
1839 num_args * sizeof (struct field));
1840 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1841 {
1842 int i;
1843 struct type_list *t;
1844
1845 /* We stuck each argument type onto the front of the list
1846 when we read it, so the list is reversed. Build the
1847 fields array right-to-left. */
1848 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1849 TYPE_FIELD_TYPE (func_type, i) = t->type;
1850 }
1851 TYPE_NFIELDS (func_type) = num_args;
1852 TYPE_PROTOTYPED (func_type) = 1;
1853
1854 type = func_type;
1855 break;
1856 }
1857
1858 case 'k': /* Const qualifier on some type (Sun) */
1859 type = read_type (pp, objfile);
1860 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1861 dbx_lookup_type (typenums, objfile));
1862 break;
1863
1864 case 'B': /* Volatile qual on some type (Sun) */
1865 type = read_type (pp, objfile);
1866 type = make_cv_type (TYPE_CONST (type), 1, type,
1867 dbx_lookup_type (typenums, objfile));
1868 break;
1869
1870 case '@':
1871 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1872 { /* Member (class & variable) type */
1873 /* FIXME -- we should be doing smash_to_XXX types here. */
1874
1875 struct type *domain = read_type (pp, objfile);
1876 struct type *memtype;
1877
1878 if (**pp != ',')
1879 /* Invalid member type data format. */
1880 return error_type (pp, objfile);
1881 ++*pp;
1882
1883 memtype = read_type (pp, objfile);
1884 type = dbx_alloc_type (typenums, objfile);
1885 smash_to_memberptr_type (type, domain, memtype);
1886 }
1887 else
1888 /* type attribute */
1889 {
1890 char *attr = *pp;
1891
1892 /* Skip to the semicolon. */
1893 while (**pp != ';' && **pp != '\0')
1894 ++(*pp);
1895 if (**pp == '\0')
1896 return error_type (pp, objfile);
1897 else
1898 ++ * pp; /* Skip the semicolon. */
1899
1900 switch (*attr)
1901 {
1902 case 's': /* Size attribute */
1903 type_size = atoi (attr + 1);
1904 if (type_size <= 0)
1905 type_size = -1;
1906 break;
1907
1908 case 'S': /* String attribute */
1909 /* FIXME: check to see if following type is array? */
1910 is_string = 1;
1911 break;
1912
1913 case 'V': /* Vector attribute */
1914 /* FIXME: check to see if following type is array? */
1915 is_vector = 1;
1916 break;
1917
1918 default:
1919 /* Ignore unrecognized type attributes, so future compilers
1920 can invent new ones. */
1921 break;
1922 }
1923 ++*pp;
1924 goto again;
1925 }
1926 break;
1927
1928 case '#': /* Method (class & fn) type */
1929 if ((*pp)[0] == '#')
1930 {
1931 /* We'll get the parameter types from the name. */
1932 struct type *return_type;
1933
1934 (*pp)++;
1935 return_type = read_type (pp, objfile);
1936 if (*(*pp)++ != ';')
1937 complaint (&symfile_complaints,
1938 _("invalid (minimal) member type "
1939 "data format at symtab pos %d."),
1940 symnum);
1941 type = allocate_stub_method (return_type);
1942 if (typenums[0] != -1)
1943 *dbx_lookup_type (typenums, objfile) = type;
1944 }
1945 else
1946 {
1947 struct type *domain = read_type (pp, objfile);
1948 struct type *return_type;
1949 struct field *args;
1950 int nargs, varargs;
1951
1952 if (**pp != ',')
1953 /* Invalid member type data format. */
1954 return error_type (pp, objfile);
1955 else
1956 ++(*pp);
1957
1958 return_type = read_type (pp, objfile);
1959 args = read_args (pp, ';', objfile, &nargs, &varargs);
1960 if (args == NULL)
1961 return error_type (pp, objfile);
1962 type = dbx_alloc_type (typenums, objfile);
1963 smash_to_method_type (type, domain, return_type, args,
1964 nargs, varargs);
1965 }
1966 break;
1967
1968 case 'r': /* Range type */
1969 type = read_range_type (pp, typenums, type_size, objfile);
1970 if (typenums[0] != -1)
1971 *dbx_lookup_type (typenums, objfile) = type;
1972 break;
1973
1974 case 'b':
1975 {
1976 /* Sun ACC builtin int type */
1977 type = read_sun_builtin_type (pp, typenums, objfile);
1978 if (typenums[0] != -1)
1979 *dbx_lookup_type (typenums, objfile) = type;
1980 }
1981 break;
1982
1983 case 'R': /* Sun ACC builtin float type */
1984 type = read_sun_floating_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 break;
1988
1989 case 'e': /* Enumeration type */
1990 type = dbx_alloc_type (typenums, objfile);
1991 type = read_enum_type (pp, type, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 's': /* Struct type */
1997 case 'u': /* Union type */
1998 {
1999 enum type_code type_code = TYPE_CODE_UNDEF;
2000 type = dbx_alloc_type (typenums, objfile);
2001 switch (type_descriptor)
2002 {
2003 case 's':
2004 type_code = TYPE_CODE_STRUCT;
2005 break;
2006 case 'u':
2007 type_code = TYPE_CODE_UNION;
2008 break;
2009 }
2010 type = read_struct_type (pp, type, type_code, objfile);
2011 break;
2012 }
2013
2014 case 'a': /* Array type */
2015 if (**pp != 'r')
2016 return error_type (pp, objfile);
2017 ++*pp;
2018
2019 type = dbx_alloc_type (typenums, objfile);
2020 type = read_array_type (pp, type, objfile);
2021 if (is_string)
2022 TYPE_CODE (type) = TYPE_CODE_STRING;
2023 if (is_vector)
2024 make_vector_type (type);
2025 break;
2026
2027 case 'S': /* Set type */
2028 type1 = read_type (pp, objfile);
2029 type = create_set_type ((struct type *) NULL, type1);
2030 if (typenums[0] != -1)
2031 *dbx_lookup_type (typenums, objfile) = type;
2032 break;
2033
2034 default:
2035 --*pp; /* Go back to the symbol in error. */
2036 /* Particularly important if it was \0! */
2037 return error_type (pp, objfile);
2038 }
2039
2040 if (type == 0)
2041 {
2042 warning (_("GDB internal error, type is NULL in stabsread.c."));
2043 return error_type (pp, objfile);
2044 }
2045
2046 /* Size specified in a type attribute overrides any other size. */
2047 if (type_size != -1)
2048 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2049
2050 return type;
2051 }
2052 \f
2053 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2054 Return the proper type node for a given builtin type number. */
2055
2056 static const struct objfile_data *rs6000_builtin_type_data;
2057
2058 static struct type *
2059 rs6000_builtin_type (int typenum, struct objfile *objfile)
2060 {
2061 struct type **negative_types
2062 = (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
2063
2064 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2065 #define NUMBER_RECOGNIZED 34
2066 struct type *rettype = NULL;
2067
2068 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2069 {
2070 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2071 return objfile_type (objfile)->builtin_error;
2072 }
2073
2074 if (!negative_types)
2075 {
2076 /* This includes an empty slot for type number -0. */
2077 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2078 NUMBER_RECOGNIZED + 1, struct type *);
2079 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2080 }
2081
2082 if (negative_types[-typenum] != NULL)
2083 return negative_types[-typenum];
2084
2085 #if TARGET_CHAR_BIT != 8
2086 #error This code wrong for TARGET_CHAR_BIT not 8
2087 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2088 that if that ever becomes not true, the correct fix will be to
2089 make the size in the struct type to be in bits, not in units of
2090 TARGET_CHAR_BIT. */
2091 #endif
2092
2093 switch (-typenum)
2094 {
2095 case 1:
2096 /* The size of this and all the other types are fixed, defined
2097 by the debugging format. If there is a type called "int" which
2098 is other than 32 bits, then it should use a new negative type
2099 number (or avoid negative type numbers for that case).
2100 See stabs.texinfo. */
2101 rettype = init_integer_type (objfile, 32, 0, "int");
2102 break;
2103 case 2:
2104 rettype = init_integer_type (objfile, 8, 0, "char");
2105 TYPE_NOSIGN (rettype) = 1;
2106 break;
2107 case 3:
2108 rettype = init_integer_type (objfile, 16, 0, "short");
2109 break;
2110 case 4:
2111 rettype = init_integer_type (objfile, 32, 0, "long");
2112 break;
2113 case 5:
2114 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2115 break;
2116 case 6:
2117 rettype = init_integer_type (objfile, 8, 0, "signed char");
2118 break;
2119 case 7:
2120 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2121 break;
2122 case 8:
2123 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2124 break;
2125 case 9:
2126 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2127 break;
2128 case 10:
2129 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2130 break;
2131 case 11:
2132 rettype = init_type (objfile, TYPE_CODE_VOID, 1, "void");
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
2136 rettype = init_float_type (objfile, 32, "float", NULL);
2137 break;
2138 case 13:
2139 /* IEEE double precision (64 bit). */
2140 rettype = init_float_type (objfile, 64, "double", NULL);
2141 break;
2142 case 14:
2143 /* This is an IEEE double on the RS/6000, and different machines with
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
2146 rettype = init_float_type (objfile, 64, "long double", NULL);
2147 break;
2148 case 15:
2149 rettype = init_integer_type (objfile, 32, 0, "integer");
2150 break;
2151 case 16:
2152 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2153 break;
2154 case 17:
2155 rettype = init_float_type (objfile, 32, "short real", NULL);
2156 break;
2157 case 18:
2158 rettype = init_float_type (objfile, 64, "real", NULL);
2159 break;
2160 case 19:
2161 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2162 break;
2163 case 20:
2164 rettype = init_character_type (objfile, 8, 1, "character");
2165 break;
2166 case 21:
2167 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2168 break;
2169 case 22:
2170 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2171 break;
2172 case 23:
2173 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2174 break;
2175 case 24:
2176 rettype = init_boolean_type (objfile, 32, 1, "logical");
2177 break;
2178 case 25:
2179 /* Complex type consisting of two IEEE single precision values. */
2180 rettype = init_complex_type (objfile, "complex",
2181 rs6000_builtin_type (12, objfile));
2182 break;
2183 case 26:
2184 /* Complex type consisting of two IEEE double precision values. */
2185 rettype = init_complex_type (objfile, "double complex",
2186 rs6000_builtin_type (13, objfile));
2187 break;
2188 case 27:
2189 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2190 break;
2191 case 28:
2192 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2193 break;
2194 case 29:
2195 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2196 break;
2197 case 30:
2198 rettype = init_character_type (objfile, 16, 0, "wchar");
2199 break;
2200 case 31:
2201 rettype = init_integer_type (objfile, 64, 0, "long long");
2202 break;
2203 case 32:
2204 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2205 break;
2206 case 33:
2207 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2208 break;
2209 case 34:
2210 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2211 break;
2212 }
2213 negative_types[-typenum] = rettype;
2214 return rettype;
2215 }
2216 \f
2217 /* This page contains subroutines of read_type. */
2218
2219 /* Wrapper around method_name_from_physname to flag a complaint
2220 if there is an error. */
2221
2222 static char *
2223 stabs_method_name_from_physname (const char *physname)
2224 {
2225 char *method_name;
2226
2227 method_name = method_name_from_physname (physname);
2228
2229 if (method_name == NULL)
2230 {
2231 complaint (&symfile_complaints,
2232 _("Method has bad physname %s\n"), physname);
2233 return NULL;
2234 }
2235
2236 return method_name;
2237 }
2238
2239 /* Read member function stabs info for C++ classes. The form of each member
2240 function data is:
2241
2242 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2243
2244 An example with two member functions is:
2245
2246 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2247
2248 For the case of overloaded operators, the format is op$::*.funcs, where
2249 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2250 name (such as `+=') and `.' marks the end of the operator name.
2251
2252 Returns 1 for success, 0 for failure. */
2253
2254 static int
2255 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2256 struct objfile *objfile)
2257 {
2258 int nfn_fields = 0;
2259 int length = 0;
2260 int i;
2261 struct next_fnfield
2262 {
2263 struct next_fnfield *next;
2264 struct fn_field fn_field;
2265 }
2266 *sublist;
2267 struct type *look_ahead_type;
2268 struct next_fnfieldlist *new_fnlist;
2269 struct next_fnfield *new_sublist;
2270 char *main_fn_name;
2271 char *p;
2272
2273 /* Process each list until we find something that is not a member function
2274 or find the end of the functions. */
2275
2276 while (**pp != ';')
2277 {
2278 /* We should be positioned at the start of the function name.
2279 Scan forward to find the first ':' and if it is not the
2280 first of a "::" delimiter, then this is not a member function. */
2281 p = *pp;
2282 while (*p != ':')
2283 {
2284 p++;
2285 }
2286 if (p[1] != ':')
2287 {
2288 break;
2289 }
2290
2291 sublist = NULL;
2292 look_ahead_type = NULL;
2293 length = 0;
2294
2295 new_fnlist = XCNEW (struct next_fnfieldlist);
2296 make_cleanup (xfree, new_fnlist);
2297
2298 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2299 {
2300 /* This is a completely wierd case. In order to stuff in the
2301 names that might contain colons (the usual name delimiter),
2302 Mike Tiemann defined a different name format which is
2303 signalled if the identifier is "op$". In that case, the
2304 format is "op$::XXXX." where XXXX is the name. This is
2305 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2306 /* This lets the user type "break operator+".
2307 We could just put in "+" as the name, but that wouldn't
2308 work for "*". */
2309 static char opname[32] = "op$";
2310 char *o = opname + 3;
2311
2312 /* Skip past '::'. */
2313 *pp = p + 2;
2314
2315 STABS_CONTINUE (pp, objfile);
2316 p = *pp;
2317 while (*p != '.')
2318 {
2319 *o++ = *p++;
2320 }
2321 main_fn_name = savestring (opname, o - opname);
2322 /* Skip past '.' */
2323 *pp = p + 1;
2324 }
2325 else
2326 {
2327 main_fn_name = savestring (*pp, p - *pp);
2328 /* Skip past '::'. */
2329 *pp = p + 2;
2330 }
2331 new_fnlist->fn_fieldlist.name = main_fn_name;
2332
2333 do
2334 {
2335 new_sublist = XCNEW (struct next_fnfield);
2336 make_cleanup (xfree, new_sublist);
2337
2338 /* Check for and handle cretinous dbx symbol name continuation! */
2339 if (look_ahead_type == NULL)
2340 {
2341 /* Normal case. */
2342 STABS_CONTINUE (pp, objfile);
2343
2344 new_sublist->fn_field.type = read_type (pp, objfile);
2345 if (**pp != ':')
2346 {
2347 /* Invalid symtab info for member function. */
2348 return 0;
2349 }
2350 }
2351 else
2352 {
2353 /* g++ version 1 kludge */
2354 new_sublist->fn_field.type = look_ahead_type;
2355 look_ahead_type = NULL;
2356 }
2357
2358 (*pp)++;
2359 p = *pp;
2360 while (*p != ';')
2361 {
2362 p++;
2363 }
2364
2365 /* These are methods, not functions. */
2366 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2367 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2368 else
2369 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2370 == TYPE_CODE_METHOD);
2371
2372 /* If this is just a stub, then we don't have the real name here. */
2373 if (TYPE_STUB (new_sublist->fn_field.type))
2374 {
2375 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2376 set_type_self_type (new_sublist->fn_field.type, type);
2377 new_sublist->fn_field.is_stub = 1;
2378 }
2379
2380 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2381 *pp = p + 1;
2382
2383 /* Set this member function's visibility fields. */
2384 switch (*(*pp)++)
2385 {
2386 case VISIBILITY_PRIVATE:
2387 new_sublist->fn_field.is_private = 1;
2388 break;
2389 case VISIBILITY_PROTECTED:
2390 new_sublist->fn_field.is_protected = 1;
2391 break;
2392 }
2393
2394 STABS_CONTINUE (pp, objfile);
2395 switch (**pp)
2396 {
2397 case 'A': /* Normal functions. */
2398 new_sublist->fn_field.is_const = 0;
2399 new_sublist->fn_field.is_volatile = 0;
2400 (*pp)++;
2401 break;
2402 case 'B': /* `const' member functions. */
2403 new_sublist->fn_field.is_const = 1;
2404 new_sublist->fn_field.is_volatile = 0;
2405 (*pp)++;
2406 break;
2407 case 'C': /* `volatile' member function. */
2408 new_sublist->fn_field.is_const = 0;
2409 new_sublist->fn_field.is_volatile = 1;
2410 (*pp)++;
2411 break;
2412 case 'D': /* `const volatile' member function. */
2413 new_sublist->fn_field.is_const = 1;
2414 new_sublist->fn_field.is_volatile = 1;
2415 (*pp)++;
2416 break;
2417 case '*': /* File compiled with g++ version 1 --
2418 no info. */
2419 case '?':
2420 case '.':
2421 break;
2422 default:
2423 complaint (&symfile_complaints,
2424 _("const/volatile indicator missing, got '%c'"),
2425 **pp);
2426 break;
2427 }
2428
2429 switch (*(*pp)++)
2430 {
2431 case '*':
2432 {
2433 int nbits;
2434 /* virtual member function, followed by index.
2435 The sign bit is set to distinguish pointers-to-methods
2436 from virtual function indicies. Since the array is
2437 in words, the quantity must be shifted left by 1
2438 on 16 bit machine, and by 2 on 32 bit machine, forcing
2439 the sign bit out, and usable as a valid index into
2440 the array. Remove the sign bit here. */
2441 new_sublist->fn_field.voffset =
2442 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2443 if (nbits != 0)
2444 return 0;
2445
2446 STABS_CONTINUE (pp, objfile);
2447 if (**pp == ';' || **pp == '\0')
2448 {
2449 /* Must be g++ version 1. */
2450 new_sublist->fn_field.fcontext = 0;
2451 }
2452 else
2453 {
2454 /* Figure out from whence this virtual function came.
2455 It may belong to virtual function table of
2456 one of its baseclasses. */
2457 look_ahead_type = read_type (pp, objfile);
2458 if (**pp == ':')
2459 {
2460 /* g++ version 1 overloaded methods. */
2461 }
2462 else
2463 {
2464 new_sublist->fn_field.fcontext = look_ahead_type;
2465 if (**pp != ';')
2466 {
2467 return 0;
2468 }
2469 else
2470 {
2471 ++*pp;
2472 }
2473 look_ahead_type = NULL;
2474 }
2475 }
2476 break;
2477 }
2478 case '?':
2479 /* static member function. */
2480 {
2481 int slen = strlen (main_fn_name);
2482
2483 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2484
2485 /* For static member functions, we can't tell if they
2486 are stubbed, as they are put out as functions, and not as
2487 methods.
2488 GCC v2 emits the fully mangled name if
2489 dbxout.c:flag_minimal_debug is not set, so we have to
2490 detect a fully mangled physname here and set is_stub
2491 accordingly. Fully mangled physnames in v2 start with
2492 the member function name, followed by two underscores.
2493 GCC v3 currently always emits stubbed member functions,
2494 but with fully mangled physnames, which start with _Z. */
2495 if (!(strncmp (new_sublist->fn_field.physname,
2496 main_fn_name, slen) == 0
2497 && new_sublist->fn_field.physname[slen] == '_'
2498 && new_sublist->fn_field.physname[slen + 1] == '_'))
2499 {
2500 new_sublist->fn_field.is_stub = 1;
2501 }
2502 break;
2503 }
2504
2505 default:
2506 /* error */
2507 complaint (&symfile_complaints,
2508 _("member function type missing, got '%c'"),
2509 (*pp)[-1]);
2510 /* Fall through into normal member function. */
2511
2512 case '.':
2513 /* normal member function. */
2514 new_sublist->fn_field.voffset = 0;
2515 new_sublist->fn_field.fcontext = 0;
2516 break;
2517 }
2518
2519 new_sublist->next = sublist;
2520 sublist = new_sublist;
2521 length++;
2522 STABS_CONTINUE (pp, objfile);
2523 }
2524 while (**pp != ';' && **pp != '\0');
2525
2526 (*pp)++;
2527 STABS_CONTINUE (pp, objfile);
2528
2529 /* Skip GCC 3.X member functions which are duplicates of the callable
2530 constructor/destructor. */
2531 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2532 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2533 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2534 {
2535 xfree (main_fn_name);
2536 }
2537 else
2538 {
2539 int has_stub = 0;
2540 int has_destructor = 0, has_other = 0;
2541 int is_v3 = 0;
2542 struct next_fnfield *tmp_sublist;
2543
2544 /* Various versions of GCC emit various mostly-useless
2545 strings in the name field for special member functions.
2546
2547 For stub methods, we need to defer correcting the name
2548 until we are ready to unstub the method, because the current
2549 name string is used by gdb_mangle_name. The only stub methods
2550 of concern here are GNU v2 operators; other methods have their
2551 names correct (see caveat below).
2552
2553 For non-stub methods, in GNU v3, we have a complete physname.
2554 Therefore we can safely correct the name now. This primarily
2555 affects constructors and destructors, whose name will be
2556 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2557 operators will also have incorrect names; for instance,
2558 "operator int" will be named "operator i" (i.e. the type is
2559 mangled).
2560
2561 For non-stub methods in GNU v2, we have no easy way to
2562 know if we have a complete physname or not. For most
2563 methods the result depends on the platform (if CPLUS_MARKER
2564 can be `$' or `.', it will use minimal debug information, or
2565 otherwise the full physname will be included).
2566
2567 Rather than dealing with this, we take a different approach.
2568 For v3 mangled names, we can use the full physname; for v2,
2569 we use cplus_demangle_opname (which is actually v2 specific),
2570 because the only interesting names are all operators - once again
2571 barring the caveat below. Skip this process if any method in the
2572 group is a stub, to prevent our fouling up the workings of
2573 gdb_mangle_name.
2574
2575 The caveat: GCC 2.95.x (and earlier?) put constructors and
2576 destructors in the same method group. We need to split this
2577 into two groups, because they should have different names.
2578 So for each method group we check whether it contains both
2579 routines whose physname appears to be a destructor (the physnames
2580 for and destructors are always provided, due to quirks in v2
2581 mangling) and routines whose physname does not appear to be a
2582 destructor. If so then we break up the list into two halves.
2583 Even if the constructors and destructors aren't in the same group
2584 the destructor will still lack the leading tilde, so that also
2585 needs to be fixed.
2586
2587 So, to summarize what we expect and handle here:
2588
2589 Given Given Real Real Action
2590 method name physname physname method name
2591
2592 __opi [none] __opi__3Foo operator int opname
2593 [now or later]
2594 Foo _._3Foo _._3Foo ~Foo separate and
2595 rename
2596 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2597 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2598 */
2599
2600 tmp_sublist = sublist;
2601 while (tmp_sublist != NULL)
2602 {
2603 if (tmp_sublist->fn_field.is_stub)
2604 has_stub = 1;
2605 if (tmp_sublist->fn_field.physname[0] == '_'
2606 && tmp_sublist->fn_field.physname[1] == 'Z')
2607 is_v3 = 1;
2608
2609 if (is_destructor_name (tmp_sublist->fn_field.physname))
2610 has_destructor++;
2611 else
2612 has_other++;
2613
2614 tmp_sublist = tmp_sublist->next;
2615 }
2616
2617 if (has_destructor && has_other)
2618 {
2619 struct next_fnfieldlist *destr_fnlist;
2620 struct next_fnfield *last_sublist;
2621
2622 /* Create a new fn_fieldlist for the destructors. */
2623
2624 destr_fnlist = XCNEW (struct next_fnfieldlist);
2625 make_cleanup (xfree, destr_fnlist);
2626
2627 destr_fnlist->fn_fieldlist.name
2628 = obconcat (&objfile->objfile_obstack, "~",
2629 new_fnlist->fn_fieldlist.name, (char *) NULL);
2630
2631 destr_fnlist->fn_fieldlist.fn_fields =
2632 XOBNEWVEC (&objfile->objfile_obstack,
2633 struct fn_field, has_destructor);
2634 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2635 sizeof (struct fn_field) * has_destructor);
2636 tmp_sublist = sublist;
2637 last_sublist = NULL;
2638 i = 0;
2639 while (tmp_sublist != NULL)
2640 {
2641 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2642 {
2643 tmp_sublist = tmp_sublist->next;
2644 continue;
2645 }
2646
2647 destr_fnlist->fn_fieldlist.fn_fields[i++]
2648 = tmp_sublist->fn_field;
2649 if (last_sublist)
2650 last_sublist->next = tmp_sublist->next;
2651 else
2652 sublist = tmp_sublist->next;
2653 last_sublist = tmp_sublist;
2654 tmp_sublist = tmp_sublist->next;
2655 }
2656
2657 destr_fnlist->fn_fieldlist.length = has_destructor;
2658 destr_fnlist->next = fip->fnlist;
2659 fip->fnlist = destr_fnlist;
2660 nfn_fields++;
2661 length -= has_destructor;
2662 }
2663 else if (is_v3)
2664 {
2665 /* v3 mangling prevents the use of abbreviated physnames,
2666 so we can do this here. There are stubbed methods in v3
2667 only:
2668 - in -gstabs instead of -gstabs+
2669 - or for static methods, which are output as a function type
2670 instead of a method type. */
2671 char *new_method_name =
2672 stabs_method_name_from_physname (sublist->fn_field.physname);
2673
2674 if (new_method_name != NULL
2675 && strcmp (new_method_name,
2676 new_fnlist->fn_fieldlist.name) != 0)
2677 {
2678 new_fnlist->fn_fieldlist.name = new_method_name;
2679 xfree (main_fn_name);
2680 }
2681 else
2682 xfree (new_method_name);
2683 }
2684 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2685 {
2686 new_fnlist->fn_fieldlist.name =
2687 obconcat (&objfile->objfile_obstack,
2688 "~", main_fn_name, (char *)NULL);
2689 xfree (main_fn_name);
2690 }
2691 else if (!has_stub)
2692 {
2693 char dem_opname[256];
2694 int ret;
2695
2696 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2697 dem_opname, DMGL_ANSI);
2698 if (!ret)
2699 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2700 dem_opname, 0);
2701 if (ret)
2702 new_fnlist->fn_fieldlist.name
2703 = ((const char *)
2704 obstack_copy0 (&objfile->objfile_obstack, dem_opname,
2705 strlen (dem_opname)));
2706 xfree (main_fn_name);
2707 }
2708
2709 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2710 obstack_alloc (&objfile->objfile_obstack,
2711 sizeof (struct fn_field) * length);
2712 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2713 sizeof (struct fn_field) * length);
2714 for (i = length; (i--, sublist); sublist = sublist->next)
2715 {
2716 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2717 }
2718
2719 new_fnlist->fn_fieldlist.length = length;
2720 new_fnlist->next = fip->fnlist;
2721 fip->fnlist = new_fnlist;
2722 nfn_fields++;
2723 }
2724 }
2725
2726 if (nfn_fields)
2727 {
2728 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2729 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2730 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2731 memset (TYPE_FN_FIELDLISTS (type), 0,
2732 sizeof (struct fn_fieldlist) * nfn_fields);
2733 TYPE_NFN_FIELDS (type) = nfn_fields;
2734 }
2735
2736 return 1;
2737 }
2738
2739 /* Special GNU C++ name.
2740
2741 Returns 1 for success, 0 for failure. "failure" means that we can't
2742 keep parsing and it's time for error_type(). */
2743
2744 static int
2745 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2746 struct objfile *objfile)
2747 {
2748 char *p;
2749 const char *name;
2750 char cpp_abbrev;
2751 struct type *context;
2752
2753 p = *pp;
2754 if (*++p == 'v')
2755 {
2756 name = NULL;
2757 cpp_abbrev = *++p;
2758
2759 *pp = p + 1;
2760
2761 /* At this point, *pp points to something like "22:23=*22...",
2762 where the type number before the ':' is the "context" and
2763 everything after is a regular type definition. Lookup the
2764 type, find it's name, and construct the field name. */
2765
2766 context = read_type (pp, objfile);
2767
2768 switch (cpp_abbrev)
2769 {
2770 case 'f': /* $vf -- a virtual function table pointer */
2771 name = type_name_no_tag (context);
2772 if (name == NULL)
2773 {
2774 name = "";
2775 }
2776 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2777 vptr_name, name, (char *) NULL);
2778 break;
2779
2780 case 'b': /* $vb -- a virtual bsomethingorother */
2781 name = type_name_no_tag (context);
2782 if (name == NULL)
2783 {
2784 complaint (&symfile_complaints,
2785 _("C++ abbreviated type name "
2786 "unknown at symtab pos %d"),
2787 symnum);
2788 name = "FOO";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2791 name, (char *) NULL);
2792 break;
2793
2794 default:
2795 invalid_cpp_abbrev_complaint (*pp);
2796 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2797 "INVALID_CPLUSPLUS_ABBREV",
2798 (char *) NULL);
2799 break;
2800 }
2801
2802 /* At this point, *pp points to the ':'. Skip it and read the
2803 field type. */
2804
2805 p = ++(*pp);
2806 if (p[-1] != ':')
2807 {
2808 invalid_cpp_abbrev_complaint (*pp);
2809 return 0;
2810 }
2811 fip->list->field.type = read_type (pp, objfile);
2812 if (**pp == ',')
2813 (*pp)++; /* Skip the comma. */
2814 else
2815 return 0;
2816
2817 {
2818 int nbits;
2819
2820 SET_FIELD_BITPOS (fip->list->field,
2821 read_huge_number (pp, ';', &nbits, 0));
2822 if (nbits != 0)
2823 return 0;
2824 }
2825 /* This field is unpacked. */
2826 FIELD_BITSIZE (fip->list->field) = 0;
2827 fip->list->visibility = VISIBILITY_PRIVATE;
2828 }
2829 else
2830 {
2831 invalid_cpp_abbrev_complaint (*pp);
2832 /* We have no idea what syntax an unrecognized abbrev would have, so
2833 better return 0. If we returned 1, we would need to at least advance
2834 *pp to avoid an infinite loop. */
2835 return 0;
2836 }
2837 return 1;
2838 }
2839
2840 static void
2841 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2842 struct type *type, struct objfile *objfile)
2843 {
2844 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2845
2846 fip->list->field.name
2847 = (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2848 *pp = p + 1;
2849
2850 /* This means we have a visibility for a field coming. */
2851 if (**pp == '/')
2852 {
2853 (*pp)++;
2854 fip->list->visibility = *(*pp)++;
2855 }
2856 else
2857 {
2858 /* normal dbx-style format, no explicit visibility */
2859 fip->list->visibility = VISIBILITY_PUBLIC;
2860 }
2861
2862 fip->list->field.type = read_type (pp, objfile);
2863 if (**pp == ':')
2864 {
2865 p = ++(*pp);
2866 #if 0
2867 /* Possible future hook for nested types. */
2868 if (**pp == '!')
2869 {
2870 fip->list->field.bitpos = (long) -2; /* nested type */
2871 p = ++(*pp);
2872 }
2873 else
2874 ...;
2875 #endif
2876 while (*p != ';')
2877 {
2878 p++;
2879 }
2880 /* Static class member. */
2881 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2882 *pp = p + 1;
2883 return;
2884 }
2885 else if (**pp != ',')
2886 {
2887 /* Bad structure-type format. */
2888 stabs_general_complaint ("bad structure-type format");
2889 return;
2890 }
2891
2892 (*pp)++; /* Skip the comma. */
2893
2894 {
2895 int nbits;
2896
2897 SET_FIELD_BITPOS (fip->list->field,
2898 read_huge_number (pp, ',', &nbits, 0));
2899 if (nbits != 0)
2900 {
2901 stabs_general_complaint ("bad structure-type format");
2902 return;
2903 }
2904 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2905 if (nbits != 0)
2906 {
2907 stabs_general_complaint ("bad structure-type format");
2908 return;
2909 }
2910 }
2911
2912 if (FIELD_BITPOS (fip->list->field) == 0
2913 && FIELD_BITSIZE (fip->list->field) == 0)
2914 {
2915 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2916 it is a field which has been optimized out. The correct stab for
2917 this case is to use VISIBILITY_IGNORE, but that is a recent
2918 invention. (2) It is a 0-size array. For example
2919 union { int num; char str[0]; } foo. Printing _("<no value>" for
2920 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2921 will continue to work, and a 0-size array as a whole doesn't
2922 have any contents to print.
2923
2924 I suspect this probably could also happen with gcc -gstabs (not
2925 -gstabs+) for static fields, and perhaps other C++ extensions.
2926 Hopefully few people use -gstabs with gdb, since it is intended
2927 for dbx compatibility. */
2928
2929 /* Ignore this field. */
2930 fip->list->visibility = VISIBILITY_IGNORE;
2931 }
2932 else
2933 {
2934 /* Detect an unpacked field and mark it as such.
2935 dbx gives a bit size for all fields.
2936 Note that forward refs cannot be packed,
2937 and treat enums as if they had the width of ints. */
2938
2939 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2940
2941 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2942 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2943 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2944 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2945 {
2946 FIELD_BITSIZE (fip->list->field) = 0;
2947 }
2948 if ((FIELD_BITSIZE (fip->list->field)
2949 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2950 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2951 && FIELD_BITSIZE (fip->list->field)
2952 == gdbarch_int_bit (gdbarch))
2953 )
2954 &&
2955 FIELD_BITPOS (fip->list->field) % 8 == 0)
2956 {
2957 FIELD_BITSIZE (fip->list->field) = 0;
2958 }
2959 }
2960 }
2961
2962
2963 /* Read struct or class data fields. They have the form:
2964
2965 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2966
2967 At the end, we see a semicolon instead of a field.
2968
2969 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2970 a static field.
2971
2972 The optional VISIBILITY is one of:
2973
2974 '/0' (VISIBILITY_PRIVATE)
2975 '/1' (VISIBILITY_PROTECTED)
2976 '/2' (VISIBILITY_PUBLIC)
2977 '/9' (VISIBILITY_IGNORE)
2978
2979 or nothing, for C style fields with public visibility.
2980
2981 Returns 1 for success, 0 for failure. */
2982
2983 static int
2984 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2985 struct objfile *objfile)
2986 {
2987 char *p;
2988 struct nextfield *newobj;
2989
2990 /* We better set p right now, in case there are no fields at all... */
2991
2992 p = *pp;
2993
2994 /* Read each data member type until we find the terminating ';' at the end of
2995 the data member list, or break for some other reason such as finding the
2996 start of the member function list. */
2997 /* Stab string for structure/union does not end with two ';' in
2998 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2999
3000 while (**pp != ';' && **pp != '\0')
3001 {
3002 STABS_CONTINUE (pp, objfile);
3003 /* Get space to record the next field's data. */
3004 newobj = XCNEW (struct nextfield);
3005 make_cleanup (xfree, newobj);
3006
3007 newobj->next = fip->list;
3008 fip->list = newobj;
3009
3010 /* Get the field name. */
3011 p = *pp;
3012
3013 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3014 unless the CPLUS_MARKER is followed by an underscore, in
3015 which case it is just the name of an anonymous type, which we
3016 should handle like any other type name. */
3017
3018 if (is_cplus_marker (p[0]) && p[1] != '_')
3019 {
3020 if (!read_cpp_abbrev (fip, pp, type, objfile))
3021 return 0;
3022 continue;
3023 }
3024
3025 /* Look for the ':' that separates the field name from the field
3026 values. Data members are delimited by a single ':', while member
3027 functions are delimited by a pair of ':'s. When we hit the member
3028 functions (if any), terminate scan loop and return. */
3029
3030 while (*p != ':' && *p != '\0')
3031 {
3032 p++;
3033 }
3034 if (*p == '\0')
3035 return 0;
3036
3037 /* Check to see if we have hit the member functions yet. */
3038 if (p[1] == ':')
3039 {
3040 break;
3041 }
3042 read_one_struct_field (fip, pp, p, type, objfile);
3043 }
3044 if (p[0] == ':' && p[1] == ':')
3045 {
3046 /* (the deleted) chill the list of fields: the last entry (at
3047 the head) is a partially constructed entry which we now
3048 scrub. */
3049 fip->list = fip->list->next;
3050 }
3051 return 1;
3052 }
3053 /* *INDENT-OFF* */
3054 /* The stabs for C++ derived classes contain baseclass information which
3055 is marked by a '!' character after the total size. This function is
3056 called when we encounter the baseclass marker, and slurps up all the
3057 baseclass information.
3058
3059 Immediately following the '!' marker is the number of base classes that
3060 the class is derived from, followed by information for each base class.
3061 For each base class, there are two visibility specifiers, a bit offset
3062 to the base class information within the derived class, a reference to
3063 the type for the base class, and a terminating semicolon.
3064
3065 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3066 ^^ ^ ^ ^ ^ ^ ^
3067 Baseclass information marker __________________|| | | | | | |
3068 Number of baseclasses __________________________| | | | | | |
3069 Visibility specifiers (2) ________________________| | | | | |
3070 Offset in bits from start of class _________________| | | | |
3071 Type number for base class ___________________________| | | |
3072 Visibility specifiers (2) _______________________________| | |
3073 Offset in bits from start of class ________________________| |
3074 Type number of base class ____________________________________|
3075
3076 Return 1 for success, 0 for (error-type-inducing) failure. */
3077 /* *INDENT-ON* */
3078
3079
3080
3081 static int
3082 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3083 struct objfile *objfile)
3084 {
3085 int i;
3086 struct nextfield *newobj;
3087
3088 if (**pp != '!')
3089 {
3090 return 1;
3091 }
3092 else
3093 {
3094 /* Skip the '!' baseclass information marker. */
3095 (*pp)++;
3096 }
3097
3098 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3099 {
3100 int nbits;
3101
3102 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3103 if (nbits != 0)
3104 return 0;
3105 }
3106
3107 #if 0
3108 /* Some stupid compilers have trouble with the following, so break
3109 it up into simpler expressions. */
3110 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3111 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3112 #else
3113 {
3114 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3115 char *pointer;
3116
3117 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3118 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3119 }
3120 #endif /* 0 */
3121
3122 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3123
3124 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3125 {
3126 newobj = XCNEW (struct nextfield);
3127 make_cleanup (xfree, newobj);
3128
3129 newobj->next = fip->list;
3130 fip->list = newobj;
3131 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3132 field! */
3133
3134 STABS_CONTINUE (pp, objfile);
3135 switch (**pp)
3136 {
3137 case '0':
3138 /* Nothing to do. */
3139 break;
3140 case '1':
3141 SET_TYPE_FIELD_VIRTUAL (type, i);
3142 break;
3143 default:
3144 /* Unknown character. Complain and treat it as non-virtual. */
3145 {
3146 complaint (&symfile_complaints,
3147 _("Unknown virtual character `%c' for baseclass"),
3148 **pp);
3149 }
3150 }
3151 ++(*pp);
3152
3153 newobj->visibility = *(*pp)++;
3154 switch (newobj->visibility)
3155 {
3156 case VISIBILITY_PRIVATE:
3157 case VISIBILITY_PROTECTED:
3158 case VISIBILITY_PUBLIC:
3159 break;
3160 default:
3161 /* Bad visibility format. Complain and treat it as
3162 public. */
3163 {
3164 complaint (&symfile_complaints,
3165 _("Unknown visibility `%c' for baseclass"),
3166 newobj->visibility);
3167 newobj->visibility = VISIBILITY_PUBLIC;
3168 }
3169 }
3170
3171 {
3172 int nbits;
3173
3174 /* The remaining value is the bit offset of the portion of the object
3175 corresponding to this baseclass. Always zero in the absence of
3176 multiple inheritance. */
3177
3178 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3179 if (nbits != 0)
3180 return 0;
3181 }
3182
3183 /* The last piece of baseclass information is the type of the
3184 base class. Read it, and remember it's type name as this
3185 field's name. */
3186
3187 newobj->field.type = read_type (pp, objfile);
3188 newobj->field.name = type_name_no_tag (newobj->field.type);
3189
3190 /* Skip trailing ';' and bump count of number of fields seen. */
3191 if (**pp == ';')
3192 (*pp)++;
3193 else
3194 return 0;
3195 }
3196 return 1;
3197 }
3198
3199 /* The tail end of stabs for C++ classes that contain a virtual function
3200 pointer contains a tilde, a %, and a type number.
3201 The type number refers to the base class (possibly this class itself) which
3202 contains the vtable pointer for the current class.
3203
3204 This function is called when we have parsed all the method declarations,
3205 so we can look for the vptr base class info. */
3206
3207 static int
3208 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3209 struct objfile *objfile)
3210 {
3211 char *p;
3212
3213 STABS_CONTINUE (pp, objfile);
3214
3215 /* If we are positioned at a ';', then skip it. */
3216 if (**pp == ';')
3217 {
3218 (*pp)++;
3219 }
3220
3221 if (**pp == '~')
3222 {
3223 (*pp)++;
3224
3225 if (**pp == '=' || **pp == '+' || **pp == '-')
3226 {
3227 /* Obsolete flags that used to indicate the presence
3228 of constructors and/or destructors. */
3229 (*pp)++;
3230 }
3231
3232 /* Read either a '%' or the final ';'. */
3233 if (*(*pp)++ == '%')
3234 {
3235 /* The next number is the type number of the base class
3236 (possibly our own class) which supplies the vtable for
3237 this class. Parse it out, and search that class to find
3238 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3239 and TYPE_VPTR_FIELDNO. */
3240
3241 struct type *t;
3242 int i;
3243
3244 t = read_type (pp, objfile);
3245 p = (*pp)++;
3246 while (*p != '\0' && *p != ';')
3247 {
3248 p++;
3249 }
3250 if (*p == '\0')
3251 {
3252 /* Premature end of symbol. */
3253 return 0;
3254 }
3255
3256 set_type_vptr_basetype (type, t);
3257 if (type == t) /* Our own class provides vtbl ptr. */
3258 {
3259 for (i = TYPE_NFIELDS (t) - 1;
3260 i >= TYPE_N_BASECLASSES (t);
3261 --i)
3262 {
3263 const char *name = TYPE_FIELD_NAME (t, i);
3264
3265 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3266 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3267 {
3268 set_type_vptr_fieldno (type, i);
3269 goto gotit;
3270 }
3271 }
3272 /* Virtual function table field not found. */
3273 complaint (&symfile_complaints,
3274 _("virtual function table pointer "
3275 "not found when defining class `%s'"),
3276 TYPE_NAME (type));
3277 return 0;
3278 }
3279 else
3280 {
3281 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3282 }
3283
3284 gotit:
3285 *pp = p + 1;
3286 }
3287 }
3288 return 1;
3289 }
3290
3291 static int
3292 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3293 {
3294 int n;
3295
3296 for (n = TYPE_NFN_FIELDS (type);
3297 fip->fnlist != NULL;
3298 fip->fnlist = fip->fnlist->next)
3299 {
3300 --n; /* Circumvent Sun3 compiler bug. */
3301 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3302 }
3303 return 1;
3304 }
3305
3306 /* Create the vector of fields, and record how big it is.
3307 We need this info to record proper virtual function table information
3308 for this class's virtual functions. */
3309
3310 static int
3311 attach_fields_to_type (struct field_info *fip, struct type *type,
3312 struct objfile *objfile)
3313 {
3314 int nfields = 0;
3315 int non_public_fields = 0;
3316 struct nextfield *scan;
3317
3318 /* Count up the number of fields that we have, as well as taking note of
3319 whether or not there are any non-public fields, which requires us to
3320 allocate and build the private_field_bits and protected_field_bits
3321 bitfields. */
3322
3323 for (scan = fip->list; scan != NULL; scan = scan->next)
3324 {
3325 nfields++;
3326 if (scan->visibility != VISIBILITY_PUBLIC)
3327 {
3328 non_public_fields++;
3329 }
3330 }
3331
3332 /* Now we know how many fields there are, and whether or not there are any
3333 non-public fields. Record the field count, allocate space for the
3334 array of fields, and create blank visibility bitfields if necessary. */
3335
3336 TYPE_NFIELDS (type) = nfields;
3337 TYPE_FIELDS (type) = (struct field *)
3338 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3339 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3340
3341 if (non_public_fields)
3342 {
3343 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3344
3345 TYPE_FIELD_PRIVATE_BITS (type) =
3346 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3347 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3348
3349 TYPE_FIELD_PROTECTED_BITS (type) =
3350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3351 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3352
3353 TYPE_FIELD_IGNORE_BITS (type) =
3354 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3355 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3356 }
3357
3358 /* Copy the saved-up fields into the field vector. Start from the
3359 head of the list, adding to the tail of the field array, so that
3360 they end up in the same order in the array in which they were
3361 added to the list. */
3362
3363 while (nfields-- > 0)
3364 {
3365 TYPE_FIELD (type, nfields) = fip->list->field;
3366 switch (fip->list->visibility)
3367 {
3368 case VISIBILITY_PRIVATE:
3369 SET_TYPE_FIELD_PRIVATE (type, nfields);
3370 break;
3371
3372 case VISIBILITY_PROTECTED:
3373 SET_TYPE_FIELD_PROTECTED (type, nfields);
3374 break;
3375
3376 case VISIBILITY_IGNORE:
3377 SET_TYPE_FIELD_IGNORE (type, nfields);
3378 break;
3379
3380 case VISIBILITY_PUBLIC:
3381 break;
3382
3383 default:
3384 /* Unknown visibility. Complain and treat it as public. */
3385 {
3386 complaint (&symfile_complaints,
3387 _("Unknown visibility `%c' for field"),
3388 fip->list->visibility);
3389 }
3390 break;
3391 }
3392 fip->list = fip->list->next;
3393 }
3394 return 1;
3395 }
3396
3397
3398 /* Complain that the compiler has emitted more than one definition for the
3399 structure type TYPE. */
3400 static void
3401 complain_about_struct_wipeout (struct type *type)
3402 {
3403 const char *name = "";
3404 const char *kind = "";
3405
3406 if (TYPE_TAG_NAME (type))
3407 {
3408 name = TYPE_TAG_NAME (type);
3409 switch (TYPE_CODE (type))
3410 {
3411 case TYPE_CODE_STRUCT: kind = "struct "; break;
3412 case TYPE_CODE_UNION: kind = "union "; break;
3413 case TYPE_CODE_ENUM: kind = "enum "; break;
3414 default: kind = "";
3415 }
3416 }
3417 else if (TYPE_NAME (type))
3418 {
3419 name = TYPE_NAME (type);
3420 kind = "";
3421 }
3422 else
3423 {
3424 name = "<unknown>";
3425 kind = "";
3426 }
3427
3428 complaint (&symfile_complaints,
3429 _("struct/union type gets multiply defined: %s%s"), kind, name);
3430 }
3431
3432 /* Set the length for all variants of a same main_type, which are
3433 connected in the closed chain.
3434
3435 This is something that needs to be done when a type is defined *after*
3436 some cross references to this type have already been read. Consider
3437 for instance the following scenario where we have the following two
3438 stabs entries:
3439
3440 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3441 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3442
3443 A stubbed version of type dummy is created while processing the first
3444 stabs entry. The length of that type is initially set to zero, since
3445 it is unknown at this point. Also, a "constant" variation of type
3446 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3447 the stabs line).
3448
3449 The second stabs entry allows us to replace the stubbed definition
3450 with the real definition. However, we still need to adjust the length
3451 of the "constant" variation of that type, as its length was left
3452 untouched during the main type replacement... */
3453
3454 static void
3455 set_length_in_type_chain (struct type *type)
3456 {
3457 struct type *ntype = TYPE_CHAIN (type);
3458
3459 while (ntype != type)
3460 {
3461 if (TYPE_LENGTH(ntype) == 0)
3462 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3463 else
3464 complain_about_struct_wipeout (ntype);
3465 ntype = TYPE_CHAIN (ntype);
3466 }
3467 }
3468
3469 /* Read the description of a structure (or union type) and return an object
3470 describing the type.
3471
3472 PP points to a character pointer that points to the next unconsumed token
3473 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3474 *PP will point to "4a:1,0,32;;".
3475
3476 TYPE points to an incomplete type that needs to be filled in.
3477
3478 OBJFILE points to the current objfile from which the stabs information is
3479 being read. (Note that it is redundant in that TYPE also contains a pointer
3480 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3481 */
3482
3483 static struct type *
3484 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3485 struct objfile *objfile)
3486 {
3487 struct cleanup *back_to;
3488 struct field_info fi;
3489
3490 fi.list = NULL;
3491 fi.fnlist = NULL;
3492
3493 /* When describing struct/union/class types in stabs, G++ always drops
3494 all qualifications from the name. So if you've got:
3495 struct A { ... struct B { ... }; ... };
3496 then G++ will emit stabs for `struct A::B' that call it simply
3497 `struct B'. Obviously, if you've got a real top-level definition for
3498 `struct B', or other nested definitions, this is going to cause
3499 problems.
3500
3501 Obviously, GDB can't fix this by itself, but it can at least avoid
3502 scribbling on existing structure type objects when new definitions
3503 appear. */
3504 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3505 || TYPE_STUB (type)))
3506 {
3507 complain_about_struct_wipeout (type);
3508
3509 /* It's probably best to return the type unchanged. */
3510 return type;
3511 }
3512
3513 back_to = make_cleanup (null_cleanup, 0);
3514
3515 INIT_CPLUS_SPECIFIC (type);
3516 TYPE_CODE (type) = type_code;
3517 TYPE_STUB (type) = 0;
3518
3519 /* First comes the total size in bytes. */
3520
3521 {
3522 int nbits;
3523
3524 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3525 if (nbits != 0)
3526 {
3527 do_cleanups (back_to);
3528 return error_type (pp, objfile);
3529 }
3530 set_length_in_type_chain (type);
3531 }
3532
3533 /* Now read the baseclasses, if any, read the regular C struct or C++
3534 class member fields, attach the fields to the type, read the C++
3535 member functions, attach them to the type, and then read any tilde
3536 field (baseclass specifier for the class holding the main vtable). */
3537
3538 if (!read_baseclasses (&fi, pp, type, objfile)
3539 || !read_struct_fields (&fi, pp, type, objfile)
3540 || !attach_fields_to_type (&fi, type, objfile)
3541 || !read_member_functions (&fi, pp, type, objfile)
3542 || !attach_fn_fields_to_type (&fi, type)
3543 || !read_tilde_fields (&fi, pp, type, objfile))
3544 {
3545 type = error_type (pp, objfile);
3546 }
3547
3548 do_cleanups (back_to);
3549 return (type);
3550 }
3551
3552 /* Read a definition of an array type,
3553 and create and return a suitable type object.
3554 Also creates a range type which represents the bounds of that
3555 array. */
3556
3557 static struct type *
3558 read_array_type (char **pp, struct type *type,
3559 struct objfile *objfile)
3560 {
3561 struct type *index_type, *element_type, *range_type;
3562 int lower, upper;
3563 int adjustable = 0;
3564 int nbits;
3565
3566 /* Format of an array type:
3567 "ar<index type>;lower;upper;<array_contents_type>".
3568 OS9000: "arlower,upper;<array_contents_type>".
3569
3570 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3571 for these, produce a type like float[][]. */
3572
3573 {
3574 index_type = read_type (pp, objfile);
3575 if (**pp != ';')
3576 /* Improper format of array type decl. */
3577 return error_type (pp, objfile);
3578 ++*pp;
3579 }
3580
3581 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3582 {
3583 (*pp)++;
3584 adjustable = 1;
3585 }
3586 lower = read_huge_number (pp, ';', &nbits, 0);
3587
3588 if (nbits != 0)
3589 return error_type (pp, objfile);
3590
3591 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3592 {
3593 (*pp)++;
3594 adjustable = 1;
3595 }
3596 upper = read_huge_number (pp, ';', &nbits, 0);
3597 if (nbits != 0)
3598 return error_type (pp, objfile);
3599
3600 element_type = read_type (pp, objfile);
3601
3602 if (adjustable)
3603 {
3604 lower = 0;
3605 upper = -1;
3606 }
3607
3608 range_type =
3609 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3610 type = create_array_type (type, element_type, range_type);
3611
3612 return type;
3613 }
3614
3615
3616 /* Read a definition of an enumeration type,
3617 and create and return a suitable type object.
3618 Also defines the symbols that represent the values of the type. */
3619
3620 static struct type *
3621 read_enum_type (char **pp, struct type *type,
3622 struct objfile *objfile)
3623 {
3624 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3625 char *p;
3626 char *name;
3627 long n;
3628 struct symbol *sym;
3629 int nsyms = 0;
3630 struct pending **symlist;
3631 struct pending *osyms, *syms;
3632 int o_nsyms;
3633 int nbits;
3634 int unsigned_enum = 1;
3635
3636 #if 0
3637 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3638 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3639 to do? For now, force all enum values to file scope. */
3640 if (within_function)
3641 symlist = &local_symbols;
3642 else
3643 #endif
3644 symlist = &file_symbols;
3645 osyms = *symlist;
3646 o_nsyms = osyms ? osyms->nsyms : 0;
3647
3648 /* The aix4 compiler emits an extra field before the enum members;
3649 my guess is it's a type of some sort. Just ignore it. */
3650 if (**pp == '-')
3651 {
3652 /* Skip over the type. */
3653 while (**pp != ':')
3654 (*pp)++;
3655
3656 /* Skip over the colon. */
3657 (*pp)++;
3658 }
3659
3660 /* Read the value-names and their values.
3661 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3662 A semicolon or comma instead of a NAME means the end. */
3663 while (**pp && **pp != ';' && **pp != ',')
3664 {
3665 STABS_CONTINUE (pp, objfile);
3666 p = *pp;
3667 while (*p != ':')
3668 p++;
3669 name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3670 *pp = p + 1;
3671 n = read_huge_number (pp, ',', &nbits, 0);
3672 if (nbits != 0)
3673 return error_type (pp, objfile);
3674
3675 sym = allocate_symbol (objfile);
3676 SYMBOL_SET_LINKAGE_NAME (sym, name);
3677 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3678 &objfile->objfile_obstack);
3679 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3680 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3681 SYMBOL_VALUE (sym) = n;
3682 if (n < 0)
3683 unsigned_enum = 0;
3684 add_symbol_to_list (sym, symlist);
3685 nsyms++;
3686 }
3687
3688 if (**pp == ';')
3689 (*pp)++; /* Skip the semicolon. */
3690
3691 /* Now fill in the fields of the type-structure. */
3692
3693 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3694 set_length_in_type_chain (type);
3695 TYPE_CODE (type) = TYPE_CODE_ENUM;
3696 TYPE_STUB (type) = 0;
3697 if (unsigned_enum)
3698 TYPE_UNSIGNED (type) = 1;
3699 TYPE_NFIELDS (type) = nsyms;
3700 TYPE_FIELDS (type) = (struct field *)
3701 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3702 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3703
3704 /* Find the symbols for the values and put them into the type.
3705 The symbols can be found in the symlist that we put them on
3706 to cause them to be defined. osyms contains the old value
3707 of that symlist; everything up to there was defined by us. */
3708 /* Note that we preserve the order of the enum constants, so
3709 that in something like "enum {FOO, LAST_THING=FOO}" we print
3710 FOO, not LAST_THING. */
3711
3712 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3713 {
3714 int last = syms == osyms ? o_nsyms : 0;
3715 int j = syms->nsyms;
3716
3717 for (; --j >= last; --n)
3718 {
3719 struct symbol *xsym = syms->symbol[j];
3720
3721 SYMBOL_TYPE (xsym) = type;
3722 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3723 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3724 TYPE_FIELD_BITSIZE (type, n) = 0;
3725 }
3726 if (syms == osyms)
3727 break;
3728 }
3729
3730 return type;
3731 }
3732
3733 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3734 typedefs in every file (for int, long, etc):
3735
3736 type = b <signed> <width> <format type>; <offset>; <nbits>
3737 signed = u or s.
3738 optional format type = c or b for char or boolean.
3739 offset = offset from high order bit to start bit of type.
3740 width is # bytes in object of this type, nbits is # bits in type.
3741
3742 The width/offset stuff appears to be for small objects stored in
3743 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3744 FIXME. */
3745
3746 static struct type *
3747 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3748 {
3749 int type_bits;
3750 int nbits;
3751 int unsigned_type;
3752 int boolean_type = 0;
3753
3754 switch (**pp)
3755 {
3756 case 's':
3757 unsigned_type = 0;
3758 break;
3759 case 'u':
3760 unsigned_type = 1;
3761 break;
3762 default:
3763 return error_type (pp, objfile);
3764 }
3765 (*pp)++;
3766
3767 /* For some odd reason, all forms of char put a c here. This is strange
3768 because no other type has this honor. We can safely ignore this because
3769 we actually determine 'char'acterness by the number of bits specified in
3770 the descriptor.
3771 Boolean forms, e.g Fortran logical*X, put a b here. */
3772
3773 if (**pp == 'c')
3774 (*pp)++;
3775 else if (**pp == 'b')
3776 {
3777 boolean_type = 1;
3778 (*pp)++;
3779 }
3780
3781 /* The first number appears to be the number of bytes occupied
3782 by this type, except that unsigned short is 4 instead of 2.
3783 Since this information is redundant with the third number,
3784 we will ignore it. */
3785 read_huge_number (pp, ';', &nbits, 0);
3786 if (nbits != 0)
3787 return error_type (pp, objfile);
3788
3789 /* The second number is always 0, so ignore it too. */
3790 read_huge_number (pp, ';', &nbits, 0);
3791 if (nbits != 0)
3792 return error_type (pp, objfile);
3793
3794 /* The third number is the number of bits for this type. */
3795 type_bits = read_huge_number (pp, 0, &nbits, 0);
3796 if (nbits != 0)
3797 return error_type (pp, objfile);
3798 /* The type *should* end with a semicolon. If it are embedded
3799 in a larger type the semicolon may be the only way to know where
3800 the type ends. If this type is at the end of the stabstring we
3801 can deal with the omitted semicolon (but we don't have to like
3802 it). Don't bother to complain(), Sun's compiler omits the semicolon
3803 for "void". */
3804 if (**pp == ';')
3805 ++(*pp);
3806
3807 if (type_bits == 0)
3808 {
3809 struct type *type = init_type (objfile, TYPE_CODE_VOID, 1, NULL);
3810 if (unsigned_type)
3811 TYPE_UNSIGNED (type) = 1;
3812 return type;
3813 }
3814
3815 if (boolean_type)
3816 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3817 else
3818 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3819 }
3820
3821 static struct type *
3822 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3823 {
3824 int nbits;
3825 int details;
3826 int nbytes;
3827 struct type *rettype;
3828
3829 /* The first number has more details about the type, for example
3830 FN_COMPLEX. */
3831 details = read_huge_number (pp, ';', &nbits, 0);
3832 if (nbits != 0)
3833 return error_type (pp, objfile);
3834
3835 /* The second number is the number of bytes occupied by this type. */
3836 nbytes = read_huge_number (pp, ';', &nbits, 0);
3837 if (nbits != 0)
3838 return error_type (pp, objfile);
3839
3840 nbits = nbytes * TARGET_CHAR_BIT;
3841
3842 if (details == NF_COMPLEX || details == NF_COMPLEX16
3843 || details == NF_COMPLEX32)
3844 {
3845 rettype = init_float_type (objfile, nbits / 2, NULL, NULL);
3846 return init_complex_type (objfile, NULL, rettype);
3847 }
3848
3849 return init_float_type (objfile, nbits, NULL, NULL);
3850 }
3851
3852 /* Read a number from the string pointed to by *PP.
3853 The value of *PP is advanced over the number.
3854 If END is nonzero, the character that ends the
3855 number must match END, or an error happens;
3856 and that character is skipped if it does match.
3857 If END is zero, *PP is left pointing to that character.
3858
3859 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3860 the number is represented in an octal representation, assume that
3861 it is represented in a 2's complement representation with a size of
3862 TWOS_COMPLEMENT_BITS.
3863
3864 If the number fits in a long, set *BITS to 0 and return the value.
3865 If not, set *BITS to be the number of bits in the number and return 0.
3866
3867 If encounter garbage, set *BITS to -1 and return 0. */
3868
3869 static long
3870 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3871 {
3872 char *p = *pp;
3873 int sign = 1;
3874 int sign_bit = 0;
3875 long n = 0;
3876 int radix = 10;
3877 char overflow = 0;
3878 int nbits = 0;
3879 int c;
3880 long upper_limit;
3881 int twos_complement_representation = 0;
3882
3883 if (*p == '-')
3884 {
3885 sign = -1;
3886 p++;
3887 }
3888
3889 /* Leading zero means octal. GCC uses this to output values larger
3890 than an int (because that would be hard in decimal). */
3891 if (*p == '0')
3892 {
3893 radix = 8;
3894 p++;
3895 }
3896
3897 /* Skip extra zeros. */
3898 while (*p == '0')
3899 p++;
3900
3901 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3902 {
3903 /* Octal, possibly signed. Check if we have enough chars for a
3904 negative number. */
3905
3906 size_t len;
3907 char *p1 = p;
3908
3909 while ((c = *p1) >= '0' && c < '8')
3910 p1++;
3911
3912 len = p1 - p;
3913 if (len > twos_complement_bits / 3
3914 || (twos_complement_bits % 3 == 0
3915 && len == twos_complement_bits / 3))
3916 {
3917 /* Ok, we have enough characters for a signed value, check
3918 for signness by testing if the sign bit is set. */
3919 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3920 c = *p - '0';
3921 if (c & (1 << sign_bit))
3922 {
3923 /* Definitely signed. */
3924 twos_complement_representation = 1;
3925 sign = -1;
3926 }
3927 }
3928 }
3929
3930 upper_limit = LONG_MAX / radix;
3931
3932 while ((c = *p++) >= '0' && c < ('0' + radix))
3933 {
3934 if (n <= upper_limit)
3935 {
3936 if (twos_complement_representation)
3937 {
3938 /* Octal, signed, twos complement representation. In
3939 this case, n is the corresponding absolute value. */
3940 if (n == 0)
3941 {
3942 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3943
3944 n = -sn;
3945 }
3946 else
3947 {
3948 n *= radix;
3949 n -= c - '0';
3950 }
3951 }
3952 else
3953 {
3954 /* unsigned representation */
3955 n *= radix;
3956 n += c - '0'; /* FIXME this overflows anyway. */
3957 }
3958 }
3959 else
3960 overflow = 1;
3961
3962 /* This depends on large values being output in octal, which is
3963 what GCC does. */
3964 if (radix == 8)
3965 {
3966 if (nbits == 0)
3967 {
3968 if (c == '0')
3969 /* Ignore leading zeroes. */
3970 ;
3971 else if (c == '1')
3972 nbits = 1;
3973 else if (c == '2' || c == '3')
3974 nbits = 2;
3975 else
3976 nbits = 3;
3977 }
3978 else
3979 nbits += 3;
3980 }
3981 }
3982 if (end)
3983 {
3984 if (c && c != end)
3985 {
3986 if (bits != NULL)
3987 *bits = -1;
3988 return 0;
3989 }
3990 }
3991 else
3992 --p;
3993
3994 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3995 {
3996 /* We were supposed to parse a number with maximum
3997 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3998 if (bits != NULL)
3999 *bits = -1;
4000 return 0;
4001 }
4002
4003 *pp = p;
4004 if (overflow)
4005 {
4006 if (nbits == 0)
4007 {
4008 /* Large decimal constants are an error (because it is hard to
4009 count how many bits are in them). */
4010 if (bits != NULL)
4011 *bits = -1;
4012 return 0;
4013 }
4014
4015 /* -0x7f is the same as 0x80. So deal with it by adding one to
4016 the number of bits. Two's complement represention octals
4017 can't have a '-' in front. */
4018 if (sign == -1 && !twos_complement_representation)
4019 ++nbits;
4020 if (bits)
4021 *bits = nbits;
4022 }
4023 else
4024 {
4025 if (bits)
4026 *bits = 0;
4027 return n * sign;
4028 }
4029 /* It's *BITS which has the interesting information. */
4030 return 0;
4031 }
4032
4033 static struct type *
4034 read_range_type (char **pp, int typenums[2], int type_size,
4035 struct objfile *objfile)
4036 {
4037 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4038 char *orig_pp = *pp;
4039 int rangenums[2];
4040 long n2, n3;
4041 int n2bits, n3bits;
4042 int self_subrange;
4043 struct type *result_type;
4044 struct type *index_type = NULL;
4045
4046 /* First comes a type we are a subrange of.
4047 In C it is usually 0, 1 or the type being defined. */
4048 if (read_type_number (pp, rangenums) != 0)
4049 return error_type (pp, objfile);
4050 self_subrange = (rangenums[0] == typenums[0] &&
4051 rangenums[1] == typenums[1]);
4052
4053 if (**pp == '=')
4054 {
4055 *pp = orig_pp;
4056 index_type = read_type (pp, objfile);
4057 }
4058
4059 /* A semicolon should now follow; skip it. */
4060 if (**pp == ';')
4061 (*pp)++;
4062
4063 /* The remaining two operands are usually lower and upper bounds
4064 of the range. But in some special cases they mean something else. */
4065 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4066 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4067
4068 if (n2bits == -1 || n3bits == -1)
4069 return error_type (pp, objfile);
4070
4071 if (index_type)
4072 goto handle_true_range;
4073
4074 /* If limits are huge, must be large integral type. */
4075 if (n2bits != 0 || n3bits != 0)
4076 {
4077 char got_signed = 0;
4078 char got_unsigned = 0;
4079 /* Number of bits in the type. */
4080 int nbits = 0;
4081
4082 /* If a type size attribute has been specified, the bounds of
4083 the range should fit in this size. If the lower bounds needs
4084 more bits than the upper bound, then the type is signed. */
4085 if (n2bits <= type_size && n3bits <= type_size)
4086 {
4087 if (n2bits == type_size && n2bits > n3bits)
4088 got_signed = 1;
4089 else
4090 got_unsigned = 1;
4091 nbits = type_size;
4092 }
4093 /* Range from 0 to <large number> is an unsigned large integral type. */
4094 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4095 {
4096 got_unsigned = 1;
4097 nbits = n3bits;
4098 }
4099 /* Range from <large number> to <large number>-1 is a large signed
4100 integral type. Take care of the case where <large number> doesn't
4101 fit in a long but <large number>-1 does. */
4102 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4103 || (n2bits != 0 && n3bits == 0
4104 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4105 && n3 == LONG_MAX))
4106 {
4107 got_signed = 1;
4108 nbits = n2bits;
4109 }
4110
4111 if (got_signed || got_unsigned)
4112 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4113 else
4114 return error_type (pp, objfile);
4115 }
4116
4117 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4118 if (self_subrange && n2 == 0 && n3 == 0)
4119 return init_type (objfile, TYPE_CODE_VOID, 1, NULL);
4120
4121 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4122 is the width in bytes.
4123
4124 Fortran programs appear to use this for complex types also. To
4125 distinguish between floats and complex, g77 (and others?) seem
4126 to use self-subranges for the complexes, and subranges of int for
4127 the floats.
4128
4129 Also note that for complexes, g77 sets n2 to the size of one of
4130 the member floats, not the whole complex beast. My guess is that
4131 this was to work well with pre-COMPLEX versions of gdb. */
4132
4133 if (n3 == 0 && n2 > 0)
4134 {
4135 struct type *float_type
4136 = init_float_type (objfile, n2 * TARGET_CHAR_BIT, NULL, NULL);
4137
4138 if (self_subrange)
4139 return init_complex_type (objfile, NULL, float_type);
4140 else
4141 return float_type;
4142 }
4143
4144 /* If the upper bound is -1, it must really be an unsigned integral. */
4145
4146 else if (n2 == 0 && n3 == -1)
4147 {
4148 int bits = type_size;
4149
4150 if (bits <= 0)
4151 {
4152 /* We don't know its size. It is unsigned int or unsigned
4153 long. GCC 2.3.3 uses this for long long too, but that is
4154 just a GDB 3.5 compatibility hack. */
4155 bits = gdbarch_int_bit (gdbarch);
4156 }
4157
4158 return init_integer_type (objfile, bits, 1, NULL);
4159 }
4160
4161 /* Special case: char is defined (Who knows why) as a subrange of
4162 itself with range 0-127. */
4163 else if (self_subrange && n2 == 0 && n3 == 127)
4164 {
4165 struct type *type = init_integer_type (objfile, 1, 0, NULL);
4166 TYPE_NOSIGN (type) = 1;
4167 return type;
4168 }
4169 /* We used to do this only for subrange of self or subrange of int. */
4170 else if (n2 == 0)
4171 {
4172 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4173 "unsigned long", and we already checked for that,
4174 so don't need to test for it here. */
4175
4176 if (n3 < 0)
4177 /* n3 actually gives the size. */
4178 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4179
4180 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4181 unsigned n-byte integer. But do require n to be a power of
4182 two; we don't want 3- and 5-byte integers flying around. */
4183 {
4184 int bytes;
4185 unsigned long bits;
4186
4187 bits = n3;
4188 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4189 bits >>= 8;
4190 if (bits == 0
4191 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4192 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4193 }
4194 }
4195 /* I think this is for Convex "long long". Since I don't know whether
4196 Convex sets self_subrange, I also accept that particular size regardless
4197 of self_subrange. */
4198 else if (n3 == 0 && n2 < 0
4199 && (self_subrange
4200 || n2 == -gdbarch_long_long_bit
4201 (gdbarch) / TARGET_CHAR_BIT))
4202 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4203 else if (n2 == -n3 - 1)
4204 {
4205 if (n3 == 0x7f)
4206 return init_integer_type (objfile, 8, 0, NULL);
4207 if (n3 == 0x7fff)
4208 return init_integer_type (objfile, 16, 0, NULL);
4209 if (n3 == 0x7fffffff)
4210 return init_integer_type (objfile, 32, 0, NULL);
4211 }
4212
4213 /* We have a real range type on our hands. Allocate space and
4214 return a real pointer. */
4215 handle_true_range:
4216
4217 if (self_subrange)
4218 index_type = objfile_type (objfile)->builtin_int;
4219 else
4220 index_type = *dbx_lookup_type (rangenums, objfile);
4221 if (index_type == NULL)
4222 {
4223 /* Does this actually ever happen? Is that why we are worrying
4224 about dealing with it rather than just calling error_type? */
4225
4226 complaint (&symfile_complaints,
4227 _("base type %d of range type is not defined"), rangenums[1]);
4228
4229 index_type = objfile_type (objfile)->builtin_int;
4230 }
4231
4232 result_type
4233 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4234 return (result_type);
4235 }
4236
4237 /* Read in an argument list. This is a list of types, separated by commas
4238 and terminated with END. Return the list of types read in, or NULL
4239 if there is an error. */
4240
4241 static struct field *
4242 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4243 int *varargsp)
4244 {
4245 /* FIXME! Remove this arbitrary limit! */
4246 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4247 int n = 0, i;
4248 struct field *rval;
4249
4250 while (**pp != end)
4251 {
4252 if (**pp != ',')
4253 /* Invalid argument list: no ','. */
4254 return NULL;
4255 (*pp)++;
4256 STABS_CONTINUE (pp, objfile);
4257 types[n++] = read_type (pp, objfile);
4258 }
4259 (*pp)++; /* get past `end' (the ':' character). */
4260
4261 if (n == 0)
4262 {
4263 /* We should read at least the THIS parameter here. Some broken stabs
4264 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4265 have been present ";-16,(0,43)" reference instead. This way the
4266 excessive ";" marker prematurely stops the parameters parsing. */
4267
4268 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4269 *varargsp = 0;
4270 }
4271 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4272 *varargsp = 1;
4273 else
4274 {
4275 n--;
4276 *varargsp = 0;
4277 }
4278
4279 rval = XCNEWVEC (struct field, n);
4280 for (i = 0; i < n; i++)
4281 rval[i].type = types[i];
4282 *nargsp = n;
4283 return rval;
4284 }
4285 \f
4286 /* Common block handling. */
4287
4288 /* List of symbols declared since the last BCOMM. This list is a tail
4289 of local_symbols. When ECOMM is seen, the symbols on the list
4290 are noted so their proper addresses can be filled in later,
4291 using the common block base address gotten from the assembler
4292 stabs. */
4293
4294 static struct pending *common_block;
4295 static int common_block_i;
4296
4297 /* Name of the current common block. We get it from the BCOMM instead of the
4298 ECOMM to match IBM documentation (even though IBM puts the name both places
4299 like everyone else). */
4300 static char *common_block_name;
4301
4302 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4303 to remain after this function returns. */
4304
4305 void
4306 common_block_start (char *name, struct objfile *objfile)
4307 {
4308 if (common_block_name != NULL)
4309 {
4310 complaint (&symfile_complaints,
4311 _("Invalid symbol data: common block within common block"));
4312 }
4313 common_block = local_symbols;
4314 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4315 common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
4316 strlen (name));
4317 }
4318
4319 /* Process a N_ECOMM symbol. */
4320
4321 void
4322 common_block_end (struct objfile *objfile)
4323 {
4324 /* Symbols declared since the BCOMM are to have the common block
4325 start address added in when we know it. common_block and
4326 common_block_i point to the first symbol after the BCOMM in
4327 the local_symbols list; copy the list and hang it off the
4328 symbol for the common block name for later fixup. */
4329 int i;
4330 struct symbol *sym;
4331 struct pending *newobj = 0;
4332 struct pending *next;
4333 int j;
4334
4335 if (common_block_name == NULL)
4336 {
4337 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4338 return;
4339 }
4340
4341 sym = allocate_symbol (objfile);
4342 /* Note: common_block_name already saved on objfile_obstack. */
4343 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4344 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4345
4346 /* Now we copy all the symbols which have been defined since the BCOMM. */
4347
4348 /* Copy all the struct pendings before common_block. */
4349 for (next = local_symbols;
4350 next != NULL && next != common_block;
4351 next = next->next)
4352 {
4353 for (j = 0; j < next->nsyms; j++)
4354 add_symbol_to_list (next->symbol[j], &newobj);
4355 }
4356
4357 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4358 NULL, it means copy all the local symbols (which we already did
4359 above). */
4360
4361 if (common_block != NULL)
4362 for (j = common_block_i; j < common_block->nsyms; j++)
4363 add_symbol_to_list (common_block->symbol[j], &newobj);
4364
4365 SYMBOL_TYPE (sym) = (struct type *) newobj;
4366
4367 /* Should we be putting local_symbols back to what it was?
4368 Does it matter? */
4369
4370 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4371 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4372 global_sym_chain[i] = sym;
4373 common_block_name = NULL;
4374 }
4375
4376 /* Add a common block's start address to the offset of each symbol
4377 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4378 the common block name). */
4379
4380 static void
4381 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4382 {
4383 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4384
4385 for (; next; next = next->next)
4386 {
4387 int j;
4388
4389 for (j = next->nsyms - 1; j >= 0; j--)
4390 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4391 }
4392 }
4393 \f
4394
4395
4396 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4397 See add_undefined_type for more details. */
4398
4399 static void
4400 add_undefined_type_noname (struct type *type, int typenums[2])
4401 {
4402 struct nat nat;
4403
4404 nat.typenums[0] = typenums [0];
4405 nat.typenums[1] = typenums [1];
4406 nat.type = type;
4407
4408 if (noname_undefs_length == noname_undefs_allocated)
4409 {
4410 noname_undefs_allocated *= 2;
4411 noname_undefs = (struct nat *)
4412 xrealloc ((char *) noname_undefs,
4413 noname_undefs_allocated * sizeof (struct nat));
4414 }
4415 noname_undefs[noname_undefs_length++] = nat;
4416 }
4417
4418 /* Add TYPE to the UNDEF_TYPES vector.
4419 See add_undefined_type for more details. */
4420
4421 static void
4422 add_undefined_type_1 (struct type *type)
4423 {
4424 if (undef_types_length == undef_types_allocated)
4425 {
4426 undef_types_allocated *= 2;
4427 undef_types = (struct type **)
4428 xrealloc ((char *) undef_types,
4429 undef_types_allocated * sizeof (struct type *));
4430 }
4431 undef_types[undef_types_length++] = type;
4432 }
4433
4434 /* What about types defined as forward references inside of a small lexical
4435 scope? */
4436 /* Add a type to the list of undefined types to be checked through
4437 once this file has been read in.
4438
4439 In practice, we actually maintain two such lists: The first list
4440 (UNDEF_TYPES) is used for types whose name has been provided, and
4441 concerns forward references (eg 'xs' or 'xu' forward references);
4442 the second list (NONAME_UNDEFS) is used for types whose name is
4443 unknown at creation time, because they were referenced through
4444 their type number before the actual type was declared.
4445 This function actually adds the given type to the proper list. */
4446
4447 static void
4448 add_undefined_type (struct type *type, int typenums[2])
4449 {
4450 if (TYPE_TAG_NAME (type) == NULL)
4451 add_undefined_type_noname (type, typenums);
4452 else
4453 add_undefined_type_1 (type);
4454 }
4455
4456 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4457
4458 static void
4459 cleanup_undefined_types_noname (struct objfile *objfile)
4460 {
4461 int i;
4462
4463 for (i = 0; i < noname_undefs_length; i++)
4464 {
4465 struct nat nat = noname_undefs[i];
4466 struct type **type;
4467
4468 type = dbx_lookup_type (nat.typenums, objfile);
4469 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4470 {
4471 /* The instance flags of the undefined type are still unset,
4472 and needs to be copied over from the reference type.
4473 Since replace_type expects them to be identical, we need
4474 to set these flags manually before hand. */
4475 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4476 replace_type (nat.type, *type);
4477 }
4478 }
4479
4480 noname_undefs_length = 0;
4481 }
4482
4483 /* Go through each undefined type, see if it's still undefined, and fix it
4484 up if possible. We have two kinds of undefined types:
4485
4486 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4487 Fix: update array length using the element bounds
4488 and the target type's length.
4489 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4490 yet defined at the time a pointer to it was made.
4491 Fix: Do a full lookup on the struct/union tag. */
4492
4493 static void
4494 cleanup_undefined_types_1 (void)
4495 {
4496 struct type **type;
4497
4498 /* Iterate over every undefined type, and look for a symbol whose type
4499 matches our undefined type. The symbol matches if:
4500 1. It is a typedef in the STRUCT domain;
4501 2. It has the same name, and same type code;
4502 3. The instance flags are identical.
4503
4504 It is important to check the instance flags, because we have seen
4505 examples where the debug info contained definitions such as:
4506
4507 "foo_t:t30=B31=xefoo_t:"
4508
4509 In this case, we have created an undefined type named "foo_t" whose
4510 instance flags is null (when processing "xefoo_t"), and then created
4511 another type with the same name, but with different instance flags
4512 ('B' means volatile). I think that the definition above is wrong,
4513 since the same type cannot be volatile and non-volatile at the same
4514 time, but we need to be able to cope with it when it happens. The
4515 approach taken here is to treat these two types as different. */
4516
4517 for (type = undef_types; type < undef_types + undef_types_length; type++)
4518 {
4519 switch (TYPE_CODE (*type))
4520 {
4521
4522 case TYPE_CODE_STRUCT:
4523 case TYPE_CODE_UNION:
4524 case TYPE_CODE_ENUM:
4525 {
4526 /* Check if it has been defined since. Need to do this here
4527 as well as in check_typedef to deal with the (legitimate in
4528 C though not C++) case of several types with the same name
4529 in different source files. */
4530 if (TYPE_STUB (*type))
4531 {
4532 struct pending *ppt;
4533 int i;
4534 /* Name of the type, without "struct" or "union". */
4535 const char *type_name = TYPE_TAG_NAME (*type);
4536
4537 if (type_name == NULL)
4538 {
4539 complaint (&symfile_complaints, _("need a type name"));
4540 break;
4541 }
4542 for (ppt = file_symbols; ppt; ppt = ppt->next)
4543 {
4544 for (i = 0; i < ppt->nsyms; i++)
4545 {
4546 struct symbol *sym = ppt->symbol[i];
4547
4548 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4549 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4550 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4551 TYPE_CODE (*type))
4552 && (TYPE_INSTANCE_FLAGS (*type) ==
4553 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4554 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4555 type_name) == 0)
4556 replace_type (*type, SYMBOL_TYPE (sym));
4557 }
4558 }
4559 }
4560 }
4561 break;
4562
4563 default:
4564 {
4565 complaint (&symfile_complaints,
4566 _("forward-referenced types left unresolved, "
4567 "type code %d."),
4568 TYPE_CODE (*type));
4569 }
4570 break;
4571 }
4572 }
4573
4574 undef_types_length = 0;
4575 }
4576
4577 /* Try to fix all the undefined types we ecountered while processing
4578 this unit. */
4579
4580 void
4581 cleanup_undefined_stabs_types (struct objfile *objfile)
4582 {
4583 cleanup_undefined_types_1 ();
4584 cleanup_undefined_types_noname (objfile);
4585 }
4586
4587 /* Scan through all of the global symbols defined in the object file,
4588 assigning values to the debugging symbols that need to be assigned
4589 to. Get these symbols from the minimal symbol table. */
4590
4591 void
4592 scan_file_globals (struct objfile *objfile)
4593 {
4594 int hash;
4595 struct minimal_symbol *msymbol;
4596 struct symbol *sym, *prev;
4597 struct objfile *resolve_objfile;
4598
4599 /* SVR4 based linkers copy referenced global symbols from shared
4600 libraries to the main executable.
4601 If we are scanning the symbols for a shared library, try to resolve
4602 them from the minimal symbols of the main executable first. */
4603
4604 if (symfile_objfile && objfile != symfile_objfile)
4605 resolve_objfile = symfile_objfile;
4606 else
4607 resolve_objfile = objfile;
4608
4609 while (1)
4610 {
4611 /* Avoid expensive loop through all minimal symbols if there are
4612 no unresolved symbols. */
4613 for (hash = 0; hash < HASHSIZE; hash++)
4614 {
4615 if (global_sym_chain[hash])
4616 break;
4617 }
4618 if (hash >= HASHSIZE)
4619 return;
4620
4621 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4622 {
4623 QUIT;
4624
4625 /* Skip static symbols. */
4626 switch (MSYMBOL_TYPE (msymbol))
4627 {
4628 case mst_file_text:
4629 case mst_file_data:
4630 case mst_file_bss:
4631 continue;
4632 default:
4633 break;
4634 }
4635
4636 prev = NULL;
4637
4638 /* Get the hash index and check all the symbols
4639 under that hash index. */
4640
4641 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4642
4643 for (sym = global_sym_chain[hash]; sym;)
4644 {
4645 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4646 SYMBOL_LINKAGE_NAME (sym)) == 0)
4647 {
4648 /* Splice this symbol out of the hash chain and
4649 assign the value we have to it. */
4650 if (prev)
4651 {
4652 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4653 }
4654 else
4655 {
4656 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4657 }
4658
4659 /* Check to see whether we need to fix up a common block. */
4660 /* Note: this code might be executed several times for
4661 the same symbol if there are multiple references. */
4662 if (sym)
4663 {
4664 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4665 {
4666 fix_common_block (sym,
4667 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4668 msymbol));
4669 }
4670 else
4671 {
4672 SYMBOL_VALUE_ADDRESS (sym)
4673 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4674 }
4675 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4676 }
4677
4678 if (prev)
4679 {
4680 sym = SYMBOL_VALUE_CHAIN (prev);
4681 }
4682 else
4683 {
4684 sym = global_sym_chain[hash];
4685 }
4686 }
4687 else
4688 {
4689 prev = sym;
4690 sym = SYMBOL_VALUE_CHAIN (sym);
4691 }
4692 }
4693 }
4694 if (resolve_objfile == objfile)
4695 break;
4696 resolve_objfile = objfile;
4697 }
4698
4699 /* Change the storage class of any remaining unresolved globals to
4700 LOC_UNRESOLVED and remove them from the chain. */
4701 for (hash = 0; hash < HASHSIZE; hash++)
4702 {
4703 sym = global_sym_chain[hash];
4704 while (sym)
4705 {
4706 prev = sym;
4707 sym = SYMBOL_VALUE_CHAIN (sym);
4708
4709 /* Change the symbol address from the misleading chain value
4710 to address zero. */
4711 SYMBOL_VALUE_ADDRESS (prev) = 0;
4712
4713 /* Complain about unresolved common block symbols. */
4714 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4715 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4716 else
4717 complaint (&symfile_complaints,
4718 _("%s: common block `%s' from "
4719 "global_sym_chain unresolved"),
4720 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4721 }
4722 }
4723 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4724 }
4725
4726 /* Initialize anything that needs initializing when starting to read
4727 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4728 to a psymtab. */
4729
4730 void
4731 stabsread_init (void)
4732 {
4733 }
4734
4735 /* Initialize anything that needs initializing when a completely new
4736 symbol file is specified (not just adding some symbols from another
4737 file, e.g. a shared library). */
4738
4739 void
4740 stabsread_new_init (void)
4741 {
4742 /* Empty the hash table of global syms looking for values. */
4743 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4744 }
4745
4746 /* Initialize anything that needs initializing at the same time as
4747 start_symtab() is called. */
4748
4749 void
4750 start_stabs (void)
4751 {
4752 global_stabs = NULL; /* AIX COFF */
4753 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4754 n_this_object_header_files = 1;
4755 type_vector_length = 0;
4756 type_vector = (struct type **) 0;
4757
4758 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4759 common_block_name = NULL;
4760 }
4761
4762 /* Call after end_symtab(). */
4763
4764 void
4765 end_stabs (void)
4766 {
4767 if (type_vector)
4768 {
4769 xfree (type_vector);
4770 }
4771 type_vector = 0;
4772 type_vector_length = 0;
4773 previous_stab_code = 0;
4774 }
4775
4776 void
4777 finish_global_stabs (struct objfile *objfile)
4778 {
4779 if (global_stabs)
4780 {
4781 patch_block_stabs (global_symbols, global_stabs, objfile);
4782 xfree (global_stabs);
4783 global_stabs = NULL;
4784 }
4785 }
4786
4787 /* Find the end of the name, delimited by a ':', but don't match
4788 ObjC symbols which look like -[Foo bar::]:bla. */
4789 static char *
4790 find_name_end (char *name)
4791 {
4792 char *s = name;
4793
4794 if (s[0] == '-' || *s == '+')
4795 {
4796 /* Must be an ObjC method symbol. */
4797 if (s[1] != '[')
4798 {
4799 error (_("invalid symbol name \"%s\""), name);
4800 }
4801 s = strchr (s, ']');
4802 if (s == NULL)
4803 {
4804 error (_("invalid symbol name \"%s\""), name);
4805 }
4806 return strchr (s, ':');
4807 }
4808 else
4809 {
4810 return strchr (s, ':');
4811 }
4812 }
4813
4814 /* Initializer for this module. */
4815
4816 void
4817 _initialize_stabsread (void)
4818 {
4819 rs6000_builtin_type_data = register_objfile_data ();
4820
4821 undef_types_allocated = 20;
4822 undef_types_length = 0;
4823 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4824
4825 noname_undefs_allocated = 20;
4826 noname_undefs_length = 0;
4827 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4828
4829 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4830 &stab_register_funcs);
4831 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4832 &stab_register_funcs);
4833 }