* stabsread.c (define_symbol): If unrecognized constant type,
[binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Support routines for reading and decoding debugging information in
22 the "stabs" format. This format is used with many systems that use
23 the a.out object file format, as well as some systems that use
24 COFF or ELF where the stabs data is placed in a special section.
25 Avoid placing any object file format specific code in this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native */
35 #include "buildsym.h"
36 #include "complaints.h"
37 #include "demangle.h"
38
39 /* Ask stabsread.h to define the vars it normally declares `extern'. */
40 #define EXTERN /**/
41 #include "stabsread.h" /* Our own declarations */
42 #undef EXTERN
43
44 /* The routines that read and process a complete stabs for a C struct or
45 C++ class pass lists of data member fields and lists of member function
46 fields in an instance of a field_info structure, as defined below.
47 This is part of some reorganization of low level C++ support and is
48 expected to eventually go away... (FIXME) */
49
50 struct field_info
51 {
52 struct nextfield
53 {
54 struct nextfield *next;
55 int visibility;
56 struct field field;
57 } *list;
58 struct next_fnfieldlist
59 {
60 struct next_fnfieldlist *next;
61 struct fn_fieldlist fn_fieldlist;
62 } *fnlist;
63 };
64
65 static struct type *
66 dbx_alloc_type PARAMS ((int [2], struct objfile *));
67
68 static void
69 read_huge_number PARAMS ((char **, int, long *, int *));
70
71 static void
72 patch_block_stabs PARAMS ((struct pending *, struct pending_stabs *,
73 struct objfile *));
74
75 static void
76 fix_common_block PARAMS ((struct symbol *, int));
77
78 static struct type *
79 read_range_type PARAMS ((char **, int [2], struct objfile *));
80
81 static struct type *
82 read_sun_builtin_type PARAMS ((char **, int [2], struct objfile *));
83
84 static struct type *
85 read_sun_floating_type PARAMS ((char **, int [2], struct objfile *));
86
87 static struct type *
88 read_enum_type PARAMS ((char **, struct type *, struct objfile *));
89
90 static struct type *
91 rs6000_builtin_type PARAMS ((int));
92
93 static int
94 read_member_functions PARAMS ((struct field_info *, char **, struct type *,
95 struct objfile *));
96
97 static int
98 read_struct_fields PARAMS ((struct field_info *, char **, struct type *,
99 struct objfile *));
100
101 static int
102 read_baseclasses PARAMS ((struct field_info *, char **, struct type *,
103 struct objfile *));
104
105 static int
106 read_tilde_fields PARAMS ((struct field_info *, char **, struct type *,
107 struct objfile *));
108
109 static int
110 attach_fn_fields_to_type PARAMS ((struct field_info *, struct type *));
111
112 static int
113 attach_fields_to_type PARAMS ((struct field_info *, struct type *,
114 struct objfile *));
115
116 static struct type *
117 read_struct_type PARAMS ((char **, struct type *, struct objfile *));
118
119 static struct type *
120 read_array_type PARAMS ((char **, struct type *, struct objfile *));
121
122 static struct type **
123 read_args PARAMS ((char **, int, struct objfile *));
124
125 static void
126 read_cpp_abbrev PARAMS ((struct field_info *, char **, struct type *,
127 struct objfile *));
128
129 static const char vptr_name[] = { '_','v','p','t','r',CPLUS_MARKER,'\0' };
130 static const char vb_name[] = { '_','v','b',CPLUS_MARKER,'\0' };
131
132 /* Define this as 1 if a pcc declaration of a char or short argument
133 gives the correct address. Otherwise assume pcc gives the
134 address of the corresponding int, which is not the same on a
135 big-endian machine. */
136
137 #ifndef BELIEVE_PCC_PROMOTION
138 #define BELIEVE_PCC_PROMOTION 0
139 #endif
140
141 /* During some calls to read_type (and thus to read_range_type), this
142 contains the name of the type being defined. Range types are only
143 used in C as basic types. We use the name to distinguish the otherwise
144 identical basic types "int" and "long" and their unsigned versions.
145 FIXME, this should disappear with better type management. */
146
147 static char *long_kludge_name;
148
149 #if 0
150 struct complaint dbx_class_complaint =
151 {
152 "encountered DBX-style class variable debugging information.\n\
153 You seem to have compiled your program with \
154 \"g++ -g0\" instead of \"g++ -g\".\n\
155 Therefore GDB will not know about your class variables", 0, 0
156 };
157 #endif
158
159 struct complaint invalid_cpp_abbrev_complaint =
160 {"invalid C++ abbreviation `%s'", 0, 0};
161
162 struct complaint invalid_cpp_type_complaint =
163 {"C++ abbreviated type name unknown at symtab pos %d", 0, 0};
164
165 struct complaint member_fn_complaint =
166 {"member function type missing, got '%c'", 0, 0};
167
168 struct complaint const_vol_complaint =
169 {"const/volatile indicator missing, got '%c'", 0, 0};
170
171 struct complaint error_type_complaint =
172 {"debug info mismatch between compiler and debugger", 0, 0};
173
174 struct complaint invalid_member_complaint =
175 {"invalid (minimal) member type data format at symtab pos %d.", 0, 0};
176
177 struct complaint range_type_base_complaint =
178 {"base type %d of range type is not defined", 0, 0};
179
180 struct complaint reg_value_complaint =
181 {"register number too large in symbol %s", 0, 0};
182
183 struct complaint vtbl_notfound_complaint =
184 {"virtual function table pointer not found when defining class `%s'", 0, 0};
185
186 struct complaint unrecognized_cplus_name_complaint =
187 {"Unknown C++ symbol name `%s'", 0, 0};
188
189 struct complaint rs6000_builtin_complaint =
190 {"Unknown builtin type %d", 0, 0};
191
192 struct complaint stabs_general_complaint =
193 {"%s", 0, 0};
194
195 /* Make a list of forward references which haven't been defined. */
196
197 static struct type **undef_types;
198 static int undef_types_allocated;
199 static int undef_types_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp) \
203 do { \
204 if (**(pp) == '\\') *(pp) = next_symbol_text (); \
205 } while (0)
206
207 \f
208 int
209 hashname (name)
210 char *name;
211 {
212 register char *p = name;
213 register int total = p[0];
214 register int c;
215
216 c = p[1];
217 total += c << 2;
218 if (c)
219 {
220 c = p[2];
221 total += c << 4;
222 if (c)
223 {
224 total += p[3] << 6;
225 }
226 }
227
228 /* Ensure result is positive. */
229 if (total < 0)
230 {
231 total += (1000 << 6);
232 }
233 return (total % HASHSIZE);
234 }
235
236 \f
237 /* Look up a dbx type-number pair. Return the address of the slot
238 where the type for that number-pair is stored.
239 The number-pair is in TYPENUMS.
240
241 This can be used for finding the type associated with that pair
242 or for associating a new type with the pair. */
243
244 struct type **
245 dbx_lookup_type (typenums)
246 int typenums[2];
247 {
248 register int filenum = typenums[0];
249 register int index = typenums[1];
250 unsigned old_len;
251 register int real_filenum;
252 register struct header_file *f;
253 int f_orig_length;
254
255 if (filenum == -1) /* -1,-1 is for temporary types. */
256 return 0;
257
258 if (filenum < 0 || filenum >= n_this_object_header_files)
259 error ("Invalid symbol data: type number (%d,%d) out of range at symtab pos %d.",
260 filenum, index, symnum);
261
262 if (filenum == 0)
263 {
264 if (index < 0)
265 {
266 /* Caller wants address of address of type. We think
267 that negative (rs6k builtin) types will never appear as
268 "lvalues", (nor should they), so we stuff the real type
269 pointer into a temp, and return its address. If referenced,
270 this will do the right thing. */
271 static struct type *temp_type;
272
273 temp_type = rs6000_builtin_type(index);
274 return &temp_type;
275 }
276
277 /* Type is defined outside of header files.
278 Find it in this object file's type vector. */
279 if (index >= type_vector_length)
280 {
281 old_len = type_vector_length;
282 if (old_len == 0)
283 {
284 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
285 type_vector = (struct type **)
286 malloc (type_vector_length * sizeof (struct type *));
287 }
288 while (index >= type_vector_length)
289 {
290 type_vector_length *= 2;
291 }
292 type_vector = (struct type **)
293 xrealloc ((char *) type_vector,
294 (type_vector_length * sizeof (struct type *)));
295 memset (&type_vector[old_len], 0,
296 (type_vector_length - old_len) * sizeof (struct type *));
297 }
298 return (&type_vector[index]);
299 }
300 else
301 {
302 real_filenum = this_object_header_files[filenum];
303
304 if (real_filenum >= n_header_files)
305 {
306 abort ();
307 }
308
309 f = &header_files[real_filenum];
310
311 f_orig_length = f->length;
312 if (index >= f_orig_length)
313 {
314 while (index >= f->length)
315 {
316 f->length *= 2;
317 }
318 f->vector = (struct type **)
319 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
320 memset (&f->vector[f_orig_length], 0,
321 (f->length - f_orig_length) * sizeof (struct type *));
322 }
323 return (&f->vector[index]);
324 }
325 }
326
327 /* Make sure there is a type allocated for type numbers TYPENUMS
328 and return the type object.
329 This can create an empty (zeroed) type object.
330 TYPENUMS may be (-1, -1) to return a new type object that is not
331 put into the type vector, and so may not be referred to by number. */
332
333 static struct type *
334 dbx_alloc_type (typenums, objfile)
335 int typenums[2];
336 struct objfile *objfile;
337 {
338 register struct type **type_addr;
339
340 if (typenums[0] == -1)
341 {
342 return (alloc_type (objfile));
343 }
344
345 type_addr = dbx_lookup_type (typenums);
346
347 /* If we are referring to a type not known at all yet,
348 allocate an empty type for it.
349 We will fill it in later if we find out how. */
350 if (*type_addr == 0)
351 {
352 *type_addr = alloc_type (objfile);
353 }
354
355 return (*type_addr);
356 }
357
358 /* for all the stabs in a given stab vector, build appropriate types
359 and fix their symbols in given symbol vector. */
360
361 static void
362 patch_block_stabs (symbols, stabs, objfile)
363 struct pending *symbols;
364 struct pending_stabs *stabs;
365 struct objfile *objfile;
366 {
367 int ii;
368 char *name;
369 char *pp;
370 struct symbol *sym;
371
372 if (stabs)
373 {
374
375 /* for all the stab entries, find their corresponding symbols and
376 patch their types! */
377
378 for (ii = 0; ii < stabs->count; ++ii)
379 {
380 name = stabs->stab[ii];
381 pp = (char*) strchr (name, ':');
382 sym = find_symbol_in_list (symbols, name, pp-name);
383 if (!sym)
384 {
385 /* On xcoff, if a global is defined and never referenced,
386 ld will remove it from the executable. There is then
387 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
388 sym = (struct symbol *)
389 obstack_alloc (&objfile->symbol_obstack,
390 sizeof (struct symbol));
391
392 memset (sym, 0, sizeof (struct symbol));
393 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
394 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
395 SYMBOL_NAME (sym) =
396 obstack_copy0 (&objfile->symbol_obstack, name, pp - name);
397 pp += 2;
398 if (*(pp-1) == 'F' || *(pp-1) == 'f')
399 {
400 /* I don't think the linker does this with functions,
401 so as far as I know this is never executed.
402 But it doesn't hurt to check. */
403 SYMBOL_TYPE (sym) =
404 lookup_function_type (read_type (&pp, objfile));
405 }
406 else
407 {
408 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
409 }
410 add_symbol_to_list (sym, &global_symbols);
411 }
412 else
413 {
414 pp += 2;
415 if (*(pp-1) == 'F' || *(pp-1) == 'f')
416 {
417 SYMBOL_TYPE (sym) =
418 lookup_function_type (read_type (&pp, objfile));
419 }
420 else
421 {
422 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
423 }
424 }
425 }
426 }
427 }
428
429 \f
430 /* Read a number by which a type is referred to in dbx data,
431 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
432 Just a single number N is equivalent to (0,N).
433 Return the two numbers by storing them in the vector TYPENUMS.
434 TYPENUMS will then be used as an argument to dbx_lookup_type. */
435
436 void
437 read_type_number (pp, typenums)
438 register char **pp;
439 register int *typenums;
440 {
441 if (**pp == '(')
442 {
443 (*pp)++;
444 typenums[0] = read_number (pp, ',');
445 typenums[1] = read_number (pp, ')');
446 }
447 else
448 {
449 typenums[0] = 0;
450 typenums[1] = read_number (pp, 0);
451 }
452 }
453
454 \f
455 /* To handle GNU C++ typename abbreviation, we need to be able to
456 fill in a type's name as soon as space for that type is allocated.
457 `type_synonym_name' is the name of the type being allocated.
458 It is cleared as soon as it is used (lest all allocated types
459 get this name). */
460
461 static char *type_synonym_name;
462
463 /* ARGSUSED */
464 struct symbol *
465 define_symbol (valu, string, desc, type, objfile)
466 unsigned int valu;
467 char *string;
468 int desc;
469 int type;
470 struct objfile *objfile;
471 {
472 register struct symbol *sym;
473 char *p = (char *) strchr (string, ':');
474 int deftype;
475 int synonym = 0;
476 register int i;
477 struct type *temptype;
478
479 /* We would like to eliminate nameless symbols, but keep their types.
480 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
481 to type 2, but, should not create a symbol to address that type. Since
482 the symbol will be nameless, there is no way any user can refer to it. */
483
484 int nameless;
485
486 /* Ignore syms with empty names. */
487 if (string[0] == 0)
488 return 0;
489
490 /* Ignore old-style symbols from cc -go */
491 if (p == 0)
492 return 0;
493
494 /* If a nameless stab entry, all we need is the type, not the symbol.
495 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
496 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
497
498 sym = (struct symbol *)
499 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
500 memset (sym, 0, sizeof (struct symbol));
501
502 if (processing_gcc_compilation)
503 {
504 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
505 number of bytes occupied by a type or object, which we ignore. */
506 SYMBOL_LINE(sym) = desc;
507 }
508 else
509 {
510 SYMBOL_LINE(sym) = 0; /* unknown */
511 }
512
513 if (string[0] == CPLUS_MARKER)
514 {
515 /* Special GNU C++ names. */
516 switch (string[1])
517 {
518 case 't':
519 SYMBOL_NAME (sym) = obsavestring ("this", strlen ("this"),
520 &objfile -> symbol_obstack);
521 break;
522
523 case 'v': /* $vtbl_ptr_type */
524 /* Was: SYMBOL_NAME (sym) = "vptr"; */
525 goto normal;
526
527 case 'e':
528 SYMBOL_NAME (sym) = obsavestring ("eh_throw", strlen ("eh_throw"),
529 &objfile -> symbol_obstack);
530 break;
531
532 case '_':
533 /* This was an anonymous type that was never fixed up. */
534 goto normal;
535
536 default:
537 complain (unrecognized_cplus_name_complaint, string);
538 goto normal; /* Do *something* with it */
539 }
540 }
541 else
542 {
543 normal:
544 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
545 SYMBOL_NAME (sym) = (char *)
546 obstack_alloc (&objfile -> symbol_obstack, ((p - string) + 1));
547 /* Open-coded bcopy--saves function call time. */
548 /* FIXME: Does it really? Try replacing with simple strcpy and
549 try it on an executable with a large symbol table. */
550 {
551 register char *p1 = string;
552 register char *p2 = SYMBOL_NAME (sym);
553 while (p1 != p)
554 {
555 *p2++ = *p1++;
556 }
557 *p2++ = '\0';
558 }
559
560 /* If this symbol is from a C++ compilation, then attempt to cache the
561 demangled form for future reference. This is a typical time versus
562 space tradeoff, that was decided in favor of time because it sped up
563 C++ symbol lookups by a factor of about 20. */
564
565 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile->symbol_obstack);
566 }
567 p++;
568
569 /* Determine the type of name being defined. */
570 /* The Acorn RISC machine's compiler can put out locals that don't
571 start with "234=" or "(3,4)=", so assume anything other than the
572 deftypes we know how to handle is a local. */
573 if (!strchr ("cfFGpPrStTvVXCR", *p))
574 deftype = 'l';
575 else
576 deftype = *p++;
577
578 /* c is a special case, not followed by a type-number.
579 SYMBOL:c=iVALUE for an integer constant symbol.
580 SYMBOL:c=rVALUE for a floating constant symbol.
581 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
582 e.g. "b:c=e6,0" for "const b = blob1"
583 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
584 if (deftype == 'c')
585 {
586 if (*p++ != '=')
587 error ("Invalid symbol data at symtab pos %d.", symnum);
588 switch (*p++)
589 {
590 case 'r':
591 {
592 double d = atof (p);
593 char *dbl_valu;
594
595 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
596 FT_DBL_PREC_FLOAT);
597 dbl_valu = (char *)
598 obstack_alloc (&objfile -> symbol_obstack, sizeof (double));
599 memcpy (dbl_valu, &d, sizeof (double));
600 /* Put it in target byte order, but it's still in host
601 floating point format. */
602 SWAP_TARGET_AND_HOST (dbl_valu, sizeof (double));
603 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
604 SYMBOL_CLASS (sym) = LOC_CONST_BYTES;
605 }
606 break;
607 case 'i':
608 {
609 SYMBOL_TYPE (sym) = lookup_fundamental_type (objfile,
610 FT_INTEGER);
611 SYMBOL_VALUE (sym) = atoi (p);
612 SYMBOL_CLASS (sym) = LOC_CONST;
613 }
614 break;
615 case 'e':
616 /* SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
617 e.g. "b:c=e6,0" for "const b = blob1"
618 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
619 {
620 int typenums[2];
621
622 read_type_number (&p, typenums);
623 if (*p++ != ',')
624 error ("Invalid symbol data: no comma in enum const symbol");
625
626 SYMBOL_TYPE (sym) = *dbx_lookup_type (typenums);
627 SYMBOL_VALUE (sym) = atoi (p);
628 SYMBOL_CLASS (sym) = LOC_CONST;
629 }
630 break;
631 default:
632 {
633 static struct complaint msg =
634 {"Unrecognized constant type", 0, 0};
635 complain (&msg);
636 SYMBOL_CLASS (sym) = LOC_CONST;
637 /* This gives a second complaint, which is probably OK.
638 We do want the skip to the end of symbol behavior (to
639 deal with continuation). */
640 SYMBOL_TYPE (sym) = error_type (&p);
641 }
642 }
643 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
644 add_symbol_to_list (sym, &file_symbols);
645 return sym;
646 }
647
648 /* Now usually comes a number that says which data type,
649 and possibly more stuff to define the type
650 (all of which is handled by read_type) */
651
652 if (deftype == 'p' && *p == 'F')
653 /* pF is a two-letter code that means a function parameter in Fortran.
654 The type-number specifies the type of the return value.
655 Translate it into a pointer-to-function type. */
656 {
657 p++;
658 SYMBOL_TYPE (sym)
659 = lookup_pointer_type (lookup_function_type (read_type (&p, objfile)));
660 }
661 else
662 {
663 /* The symbol class letter is followed by a type (typically the
664 type of the symbol, or its return-type, or etc). Read it. */
665
666 synonym = *p == 't';
667
668 if (synonym)
669 {
670 p++;
671 type_synonym_name = obsavestring (SYMBOL_NAME (sym),
672 strlen (SYMBOL_NAME (sym)),
673 &objfile -> symbol_obstack);
674 }
675
676 /* Here we save the name of the symbol for read_range_type, which
677 ends up reading in the basic types. In stabs, unfortunately there
678 is no distinction between "int" and "long" types except their
679 names. Until we work out a saner type policy (eliminating most
680 builtin types and using the names specified in the files), we
681 save away the name so that far away from here in read_range_type,
682 we can examine it to decide between "int" and "long". FIXME. */
683 long_kludge_name = SYMBOL_NAME (sym);
684
685 SYMBOL_TYPE (sym) = read_type (&p, objfile);
686 }
687
688 switch (deftype)
689 {
690 case 'C':
691 /* The name of a caught exception. */
692 SYMBOL_CLASS (sym) = LOC_LABEL;
693 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
694 SYMBOL_VALUE_ADDRESS (sym) = valu;
695 add_symbol_to_list (sym, &local_symbols);
696 break;
697
698 case 'f':
699 /* A static function definition. */
700 SYMBOL_CLASS (sym) = LOC_BLOCK;
701 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
702 add_symbol_to_list (sym, &file_symbols);
703 /* fall into process_function_types. */
704
705 process_function_types:
706 /* Function result types are described as the result type in stabs.
707 We need to convert this to the function-returning-type-X type
708 in GDB. E.g. "int" is converted to "function returning int". */
709 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
710 {
711 #if 0
712 /* This code doesn't work -- it needs to realloc and can't. */
713 /* Attempt to set up to record a function prototype... */
714 struct type *new = alloc_type (objfile);
715
716 /* Generate a template for the type of this function. The
717 types of the arguments will be added as we read the symbol
718 table. */
719 *new = *lookup_function_type (SYMBOL_TYPE(sym));
720 SYMBOL_TYPE(sym) = new;
721 TYPE_OBJFILE (new) = objfile;
722 in_function_type = new;
723 #else
724 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
725 #endif
726 }
727 /* fall into process_prototype_types */
728
729 process_prototype_types:
730 /* Sun acc puts declared types of arguments here. We don't care
731 about their actual types (FIXME -- we should remember the whole
732 function prototype), but the list may define some new types
733 that we have to remember, so we must scan it now. */
734 while (*p == ';') {
735 p++;
736 read_type (&p, objfile);
737 }
738 break;
739
740 case 'F':
741 /* A global function definition. */
742 SYMBOL_CLASS (sym) = LOC_BLOCK;
743 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
744 add_symbol_to_list (sym, &global_symbols);
745 goto process_function_types;
746
747 case 'G':
748 /* For a class G (global) symbol, it appears that the
749 value is not correct. It is necessary to search for the
750 corresponding linker definition to find the value.
751 These definitions appear at the end of the namelist. */
752 i = hashname (SYMBOL_NAME (sym));
753 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
754 global_sym_chain[i] = sym;
755 SYMBOL_CLASS (sym) = LOC_STATIC;
756 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
757 add_symbol_to_list (sym, &global_symbols);
758 break;
759
760 /* This case is faked by a conditional above,
761 when there is no code letter in the dbx data.
762 Dbx data never actually contains 'l'. */
763 case 'l':
764 SYMBOL_CLASS (sym) = LOC_LOCAL;
765 SYMBOL_VALUE (sym) = valu;
766 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
767 add_symbol_to_list (sym, &local_symbols);
768 break;
769
770 case 'p':
771 /* Normally this is a parameter, a LOC_ARG. On the i960, it
772 can also be a LOC_LOCAL_ARG depending on symbol type. */
773 #ifndef DBX_PARM_SYMBOL_CLASS
774 #define DBX_PARM_SYMBOL_CLASS(type) LOC_ARG
775 #endif
776 SYMBOL_CLASS (sym) = DBX_PARM_SYMBOL_CLASS (type);
777 SYMBOL_VALUE (sym) = valu;
778 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
779 #if 0
780 /* This doesn't work yet. */
781 add_param_to_type (&in_function_type, sym);
782 #endif
783 add_symbol_to_list (sym, &local_symbols);
784
785 /* If it's gcc-compiled, if it says `short', believe it. */
786 if (processing_gcc_compilation || BELIEVE_PCC_PROMOTION)
787 break;
788
789 #if defined(BELIEVE_PCC_PROMOTION_TYPE)
790 /* This macro is defined on machines (e.g. sparc) where
791 we should believe the type of a PCC 'short' argument,
792 but shouldn't believe the address (the address is
793 the address of the corresponding int). Note that
794 this is only different from the BELIEVE_PCC_PROMOTION
795 case on big-endian machines.
796
797 My guess is that this correction, as opposed to changing
798 the parameter to an 'int' (as done below, for PCC
799 on most machines), is the right thing to do
800 on all machines, but I don't want to risk breaking
801 something that already works. On most PCC machines,
802 the sparc problem doesn't come up because the calling
803 function has to zero the top bytes (not knowing whether
804 the called function wants an int or a short), so there
805 is no practical difference between an int and a short
806 (except perhaps what happens when the GDB user types
807 "print short_arg = 0x10000;").
808
809 Hacked for SunOS 4.1 by gnu@cygnus.com. In 4.1, the compiler
810 actually produces the correct address (we don't need to fix it
811 up). I made this code adapt so that it will offset the symbol
812 if it was pointing at an int-aligned location and not
813 otherwise. This way you can use the same gdb for 4.0.x and
814 4.1 systems.
815
816 If the parameter is shorter than an int, and is integral
817 (e.g. char, short, or unsigned equivalent), and is claimed to
818 be passed on an integer boundary, don't believe it! Offset the
819 parameter's address to the tail-end of that integer. */
820
821 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
822 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
823 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT
824 && 0 == SYMBOL_VALUE (sym) % TYPE_LENGTH (temptype))
825 {
826 SYMBOL_VALUE (sym) += TYPE_LENGTH (temptype)
827 - TYPE_LENGTH (SYMBOL_TYPE (sym));
828 }
829 break;
830
831 #else /* no BELIEVE_PCC_PROMOTION_TYPE. */
832
833 /* If PCC says a parameter is a short or a char,
834 it is really an int. */
835 temptype = lookup_fundamental_type (objfile, FT_INTEGER);
836 if (TYPE_LENGTH (SYMBOL_TYPE (sym)) < TYPE_LENGTH (temptype)
837 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
838 {
839 SYMBOL_TYPE (sym) = TYPE_UNSIGNED (SYMBOL_TYPE (sym))
840 ? lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER)
841 : temptype;
842 }
843 break;
844
845 #endif /* no BELIEVE_PCC_PROMOTION_TYPE. */
846
847 case 'R':
848 case 'P':
849 /* acc seems to use P to delare the prototypes of functions that
850 are referenced by this file. gdb is not prepared to deal
851 with this extra information. FIXME, it ought to. */
852 if (type == N_FUN)
853 goto process_prototype_types;
854
855 /* Parameter which is in a register. */
856 SYMBOL_CLASS (sym) = LOC_REGPARM;
857 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
858 if (SYMBOL_VALUE (sym) >= NUM_REGS)
859 {
860 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
861 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
862 }
863 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
864 add_symbol_to_list (sym, &local_symbols);
865 break;
866
867 case 'r':
868 /* Register variable (either global or local). */
869 SYMBOL_CLASS (sym) = LOC_REGISTER;
870 SYMBOL_VALUE (sym) = STAB_REG_TO_REGNUM (valu);
871 if (SYMBOL_VALUE (sym) >= NUM_REGS)
872 {
873 complain (&reg_value_complaint, SYMBOL_SOURCE_NAME (sym));
874 SYMBOL_VALUE (sym) = SP_REGNUM; /* Known safe, though useless */
875 }
876 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
877 if (within_function)
878 {
879 /* Sun cc uses a pair of symbols, one 'p' and one 'r' with the same
880 name to represent an argument passed in a register.
881 GCC uses 'P' for the same case. So if we find such a symbol pair
882 we combine it into one 'P' symbol.
883 Note that this code illegally combines
884 main(argc) int argc; { register int argc = 1; }
885 but this case is considered pathological and causes a warning
886 from a decent compiler. */
887 if (local_symbols
888 && local_symbols->nsyms > 0)
889 {
890 struct symbol *prev_sym;
891 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
892 if (SYMBOL_CLASS (prev_sym) == LOC_ARG
893 && STREQ (SYMBOL_NAME (prev_sym), SYMBOL_NAME(sym)))
894 {
895 SYMBOL_CLASS (prev_sym) = LOC_REGPARM;
896 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
897 sym = prev_sym;
898 break;
899 }
900 }
901 add_symbol_to_list (sym, &local_symbols);
902 }
903 else
904 add_symbol_to_list (sym, &file_symbols);
905 break;
906
907 case 'S':
908 /* Static symbol at top level of file */
909 SYMBOL_CLASS (sym) = LOC_STATIC;
910 SYMBOL_VALUE_ADDRESS (sym) = valu;
911 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
912 add_symbol_to_list (sym, &file_symbols);
913 break;
914
915 case 't':
916 /* For a nameless type, we don't want a create a symbol, thus we
917 did not use `sym'. Return without further processing. */
918 if (nameless) return NULL;
919
920 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
921 SYMBOL_VALUE (sym) = valu;
922 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
923 /* C++ vagaries: we may have a type which is derived from
924 a base type which did not have its name defined when the
925 derived class was output. We fill in the derived class's
926 base part member's name here in that case. */
927 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
928 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
929 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
930 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
931 {
932 int j;
933 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
934 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
935 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
936 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
937 }
938
939 add_symbol_to_list (sym, &file_symbols);
940 break;
941
942 case 'T':
943 /* For a nameless type, we don't want a create a symbol, thus we
944 did not use `sym'. Return without further processing. */
945 if (nameless) return NULL;
946
947 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
948 SYMBOL_VALUE (sym) = valu;
949 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
950 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
951 TYPE_NAME (SYMBOL_TYPE (sym))
952 = obconcat (&objfile -> type_obstack, "",
953 (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_ENUM
954 ? "enum "
955 : (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
956 ? "struct " : "union ")),
957 SYMBOL_NAME (sym));
958 add_symbol_to_list (sym, &file_symbols);
959
960 if (synonym)
961 {
962 /* Clone the sym and then modify it. */
963 register struct symbol *typedef_sym = (struct symbol *)
964 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
965 *typedef_sym = *sym;
966 SYMBOL_CLASS (typedef_sym) = LOC_TYPEDEF;
967 SYMBOL_VALUE (typedef_sym) = valu;
968 SYMBOL_NAMESPACE (typedef_sym) = VAR_NAMESPACE;
969 add_symbol_to_list (typedef_sym, &file_symbols);
970 }
971 break;
972
973 case 'V':
974 /* Static symbol of local scope */
975 SYMBOL_CLASS (sym) = LOC_STATIC;
976 SYMBOL_VALUE_ADDRESS (sym) = valu;
977 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
978 add_symbol_to_list (sym, &local_symbols);
979 break;
980
981 case 'v':
982 /* Reference parameter */
983 SYMBOL_CLASS (sym) = LOC_REF_ARG;
984 SYMBOL_VALUE (sym) = valu;
985 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
986 add_symbol_to_list (sym, &local_symbols);
987 break;
988
989 case 'X':
990 /* This is used by Sun FORTRAN for "function result value".
991 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
992 that Pascal uses it too, but when I tried it Pascal used
993 "x:3" (local symbol) instead. */
994 SYMBOL_CLASS (sym) = LOC_LOCAL;
995 SYMBOL_VALUE (sym) = valu;
996 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
997 add_symbol_to_list (sym, &local_symbols);
998 break;
999
1000 default:
1001 error ("Invalid symbol data: unknown symbol-type code `%c' at symtab pos %d.", deftype, symnum);
1002 }
1003
1004 /* When passing structures to a function, some systems sometimes pass
1005 the address in a register, not the structure itself.
1006
1007 If REG_STRUCT_HAS_ADDR yields non-zero we have to convert LOC_REGPARM
1008 to LOC_REGPARM_ADDR for structures and unions. */
1009
1010 #if !defined (REG_STRUCT_HAS_ADDR)
1011 #define REG_STRUCT_HAS_ADDR(gcc_p) 0
1012 #endif
1013
1014 if (SYMBOL_CLASS (sym) == LOC_REGPARM
1015 && REG_STRUCT_HAS_ADDR (processing_gcc_compilation)
1016 && ( (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT)
1017 || (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)))
1018 SYMBOL_CLASS (sym) = LOC_REGPARM_ADDR;
1019
1020 return sym;
1021 }
1022
1023 \f
1024 /* Skip rest of this symbol and return an error type.
1025
1026 General notes on error recovery: error_type always skips to the
1027 end of the symbol (modulo cretinous dbx symbol name continuation).
1028 Thus code like this:
1029
1030 if (*(*pp)++ != ';')
1031 return error_type (pp);
1032
1033 is wrong because if *pp starts out pointing at '\0' (typically as the
1034 result of an earlier error), it will be incremented to point to the
1035 start of the next symbol, which might produce strange results, at least
1036 if you run off the end of the string table. Instead use
1037
1038 if (**pp != ';')
1039 return error_type (pp);
1040 ++*pp;
1041
1042 or
1043
1044 if (**pp != ';')
1045 foo = error_type (pp);
1046 else
1047 ++*pp;
1048
1049 And in case it isn't obvious, the point of all this hair is so the compiler
1050 can define new types and new syntaxes, and old versions of the
1051 debugger will be able to read the new symbol tables. */
1052
1053 struct type *
1054 error_type (pp)
1055 char **pp;
1056 {
1057 complain (&error_type_complaint);
1058 while (1)
1059 {
1060 /* Skip to end of symbol. */
1061 while (**pp != '\0')
1062 {
1063 (*pp)++;
1064 }
1065
1066 /* Check for and handle cretinous dbx symbol name continuation! */
1067 if ((*pp)[-1] == '\\')
1068 {
1069 *pp = next_symbol_text ();
1070 }
1071 else
1072 {
1073 break;
1074 }
1075 }
1076 return (builtin_type_error);
1077 }
1078
1079 \f
1080 /* Read a dbx type reference or definition;
1081 return the type that is meant.
1082 This can be just a number, in which case it references
1083 a type already defined and placed in type_vector.
1084 Or the number can be followed by an =, in which case
1085 it means to define a new type according to the text that
1086 follows the =. */
1087
1088 struct type *
1089 read_type (pp, objfile)
1090 register char **pp;
1091 struct objfile *objfile;
1092 {
1093 register struct type *type = 0;
1094 struct type *type1;
1095 int typenums[2];
1096 int xtypenums[2];
1097 char type_descriptor;
1098
1099 /* Read type number if present. The type number may be omitted.
1100 for instance in a two-dimensional array declared with type
1101 "ar1;1;10;ar1;1;10;4". */
1102 if ((**pp >= '0' && **pp <= '9')
1103 || **pp == '(')
1104 {
1105 read_type_number (pp, typenums);
1106
1107 /* Type is not being defined here. Either it already exists,
1108 or this is a forward reference to it. dbx_alloc_type handles
1109 both cases. */
1110 if (**pp != '=')
1111 return dbx_alloc_type (typenums, objfile);
1112
1113 /* Type is being defined here. */
1114 #if 0 /* Callers aren't prepared for a NULL result! FIXME -- metin! */
1115 {
1116 struct type *tt;
1117
1118 /* if such a type already exists, this is an unnecessary duplication
1119 of the stab string, which is common in (RS/6000) xlc generated
1120 objects. In that case, simply return NULL and let the caller take
1121 care of it. */
1122
1123 tt = *dbx_lookup_type (typenums);
1124 if (tt && tt->length && tt->code)
1125 return NULL;
1126 }
1127 #endif
1128
1129 *pp += 2;
1130 }
1131 else
1132 {
1133 /* 'typenums=' not present, type is anonymous. Read and return
1134 the definition, but don't put it in the type vector. */
1135 typenums[0] = typenums[1] = -1;
1136 (*pp)++;
1137 }
1138
1139 type_descriptor = (*pp)[-1];
1140 switch (type_descriptor)
1141 {
1142 case 'x':
1143 {
1144 enum type_code code;
1145
1146 /* Used to index through file_symbols. */
1147 struct pending *ppt;
1148 int i;
1149
1150 /* Name including "struct", etc. */
1151 char *type_name;
1152
1153 /* Name without "struct", etc. */
1154 char *type_name_only;
1155
1156 {
1157 char *prefix;
1158 char *from, *to;
1159
1160 /* Set the type code according to the following letter. */
1161 switch ((*pp)[0])
1162 {
1163 case 's':
1164 code = TYPE_CODE_STRUCT;
1165 prefix = "struct ";
1166 break;
1167 case 'u':
1168 code = TYPE_CODE_UNION;
1169 prefix = "union ";
1170 break;
1171 case 'e':
1172 code = TYPE_CODE_ENUM;
1173 prefix = "enum ";
1174 break;
1175 default:
1176 return error_type (pp);
1177 }
1178
1179 to = type_name = (char *)
1180 obstack_alloc (&objfile -> type_obstack,
1181 (strlen (prefix) +
1182 ((char *) strchr (*pp, ':') - (*pp)) + 1));
1183
1184 /* Copy the prefix. */
1185 from = prefix;
1186 while ((*to++ = *from++) != '\0')
1187 ;
1188 to--;
1189
1190 type_name_only = to;
1191
1192 /* Copy the name. */
1193 from = *pp + 1;
1194 while ((*to++ = *from++) != ':')
1195 ;
1196 *--to = '\0';
1197
1198 /* Set the pointer ahead of the name which we just read. */
1199 *pp = from;
1200
1201 #if 0
1202 /* The following hack is clearly wrong, because it doesn't
1203 check whether we are in a baseclass. I tried to reproduce
1204 the case that it is trying to fix, but I couldn't get
1205 g++ to put out a cross reference to a basetype. Perhaps
1206 it doesn't do it anymore. */
1207 /* Note: for C++, the cross reference may be to a base type which
1208 has not yet been seen. In this case, we skip to the comma,
1209 which will mark the end of the base class name. (The ':'
1210 at the end of the base class name will be skipped as well.)
1211 But sometimes (ie. when the cross ref is the last thing on
1212 the line) there will be no ','. */
1213 from = (char *) strchr (*pp, ',');
1214 if (from)
1215 *pp = from;
1216 #endif /* 0 */
1217 }
1218
1219 /* Now check to see whether the type has already been declared. */
1220 /* This is necessary at least in the case where the
1221 program says something like
1222 struct foo bar[5];
1223 The compiler puts out a cross-reference; we better find
1224 set the length of the structure correctly so we can
1225 set the length of the array. */
1226 for (ppt = file_symbols; ppt; ppt = ppt->next)
1227 for (i = 0; i < ppt->nsyms; i++)
1228 {
1229 struct symbol *sym = ppt->symbol[i];
1230
1231 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1232 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
1233 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1234 && STREQ (SYMBOL_NAME (sym), type_name_only))
1235 {
1236 obstack_free (&objfile -> type_obstack, type_name);
1237 type = SYMBOL_TYPE (sym);
1238 return type;
1239 }
1240 }
1241
1242 /* Didn't find the type to which this refers, so we must
1243 be dealing with a forward reference. Allocate a type
1244 structure for it, and keep track of it so we can
1245 fill in the rest of the fields when we get the full
1246 type. */
1247 type = dbx_alloc_type (typenums, objfile);
1248 TYPE_CODE (type) = code;
1249 TYPE_NAME (type) = type_name;
1250 INIT_CPLUS_SPECIFIC(type);
1251 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1252
1253 add_undefined_type (type);
1254 return type;
1255 }
1256
1257 case '-': /* RS/6000 built-in type */
1258 case '0':
1259 case '1':
1260 case '2':
1261 case '3':
1262 case '4':
1263 case '5':
1264 case '6':
1265 case '7':
1266 case '8':
1267 case '9':
1268 case '(':
1269 (*pp)--;
1270 read_type_number (pp, xtypenums);
1271 type = *dbx_lookup_type (xtypenums);
1272 if (type == 0)
1273 type = lookup_fundamental_type (objfile, FT_VOID);
1274 if (typenums[0] != -1)
1275 *dbx_lookup_type (typenums) = type;
1276 break;
1277
1278 /* In the following types, we must be sure to overwrite any existing
1279 type that the typenums refer to, rather than allocating a new one
1280 and making the typenums point to the new one. This is because there
1281 may already be pointers to the existing type (if it had been
1282 forward-referenced), and we must change it to a pointer, function,
1283 reference, or whatever, *in-place*. */
1284
1285 case '*':
1286 type1 = read_type (pp, objfile);
1287 type = make_pointer_type (type1, dbx_lookup_type (typenums));
1288 break;
1289
1290 case '&': /* Reference to another type */
1291 type1 = read_type (pp, objfile);
1292 type = make_reference_type (type1, dbx_lookup_type (typenums));
1293 break;
1294
1295 case 'f': /* Function returning another type */
1296 type1 = read_type (pp, objfile);
1297 type = make_function_type (type1, dbx_lookup_type (typenums));
1298 break;
1299
1300 case 'k': /* Const qualifier on some type (Sun) */
1301 type = read_type (pp, objfile);
1302 /* FIXME! For now, we ignore const and volatile qualifiers. */
1303 break;
1304
1305 case 'B': /* Volatile qual on some type (Sun) */
1306 type = read_type (pp, objfile);
1307 /* FIXME! For now, we ignore const and volatile qualifiers. */
1308 break;
1309
1310 /* FIXME -- we should be doing smash_to_XXX types here. */
1311 case '@': /* Member (class & variable) type */
1312 {
1313 struct type *domain = read_type (pp, objfile);
1314 struct type *memtype;
1315
1316 if (**pp != ',')
1317 /* Invalid member type data format. */
1318 return error_type (pp);
1319 ++*pp;
1320
1321 memtype = read_type (pp, objfile);
1322 type = dbx_alloc_type (typenums, objfile);
1323 smash_to_member_type (type, domain, memtype);
1324 }
1325 break;
1326
1327 case '#': /* Method (class & fn) type */
1328 if ((*pp)[0] == '#')
1329 {
1330 /* We'll get the parameter types from the name. */
1331 struct type *return_type;
1332
1333 (*pp)++;
1334 return_type = read_type (pp, objfile);
1335 if (*(*pp)++ != ';')
1336 complain (&invalid_member_complaint, symnum);
1337 type = allocate_stub_method (return_type);
1338 if (typenums[0] != -1)
1339 *dbx_lookup_type (typenums) = type;
1340 }
1341 else
1342 {
1343 struct type *domain = read_type (pp, objfile);
1344 struct type *return_type;
1345 struct type **args;
1346
1347 if (*(*pp)++ != ',')
1348 error ("invalid member type data format, at symtab pos %d.",
1349 symnum);
1350
1351 return_type = read_type (pp, objfile);
1352 args = read_args (pp, ';', objfile);
1353 type = dbx_alloc_type (typenums, objfile);
1354 smash_to_method_type (type, domain, return_type, args);
1355 }
1356 break;
1357
1358 case 'r': /* Range type */
1359 type = read_range_type (pp, typenums, objfile);
1360 if (typenums[0] != -1)
1361 *dbx_lookup_type (typenums) = type;
1362 break;
1363
1364 case 'b': /* Sun ACC builtin int type */
1365 type = read_sun_builtin_type (pp, typenums, objfile);
1366 if (typenums[0] != -1)
1367 *dbx_lookup_type (typenums) = type;
1368 break;
1369
1370 case 'R': /* Sun ACC builtin float type */
1371 type = read_sun_floating_type (pp, typenums, objfile);
1372 if (typenums[0] != -1)
1373 *dbx_lookup_type (typenums) = type;
1374 break;
1375
1376 case 'e': /* Enumeration type */
1377 type = dbx_alloc_type (typenums, objfile);
1378 type = read_enum_type (pp, type, objfile);
1379 *dbx_lookup_type (typenums) = type;
1380 break;
1381
1382 case 's': /* Struct type */
1383 case 'u': /* Union type */
1384 type = dbx_alloc_type (typenums, objfile);
1385 if (!TYPE_NAME (type))
1386 {
1387 TYPE_NAME (type) = type_synonym_name;
1388 }
1389 type_synonym_name = NULL;
1390 switch (type_descriptor)
1391 {
1392 case 's':
1393 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1394 break;
1395 case 'u':
1396 TYPE_CODE (type) = TYPE_CODE_UNION;
1397 break;
1398 }
1399 type = read_struct_type (pp, type, objfile);
1400 break;
1401
1402 case 'a': /* Array type */
1403 if (**pp != 'r')
1404 return error_type (pp);
1405 ++*pp;
1406
1407 type = dbx_alloc_type (typenums, objfile);
1408 type = read_array_type (pp, type, objfile);
1409 break;
1410
1411 default:
1412 --*pp; /* Go back to the symbol in error */
1413 /* Particularly important if it was \0! */
1414 return error_type (pp);
1415 }
1416
1417 if (type == 0)
1418 abort ();
1419
1420 return type;
1421 }
1422 \f
1423 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
1424 Return the proper type node for a given builtin type number. */
1425
1426 static struct type *
1427 rs6000_builtin_type (typenum)
1428 int typenum;
1429 {
1430 /* default types are defined in dbxstclass.h. */
1431 switch (-typenum) {
1432 case 1:
1433 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1434 case 2:
1435 return lookup_fundamental_type (current_objfile, FT_CHAR);
1436 case 3:
1437 return lookup_fundamental_type (current_objfile, FT_SHORT);
1438 case 4:
1439 return lookup_fundamental_type (current_objfile, FT_LONG);
1440 case 5:
1441 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
1442 case 6:
1443 return lookup_fundamental_type (current_objfile, FT_SIGNED_CHAR);
1444 case 7:
1445 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
1446 case 8:
1447 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1448 case 9:
1449 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
1450 case 10:
1451 return lookup_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
1452 case 11:
1453 return lookup_fundamental_type (current_objfile, FT_VOID);
1454 case 12:
1455 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1456 case 13:
1457 return lookup_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
1458 case 14:
1459 return lookup_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
1460 case 15:
1461 /* requires a builtin `integer' */
1462 return lookup_fundamental_type (current_objfile, FT_INTEGER);
1463 case 16:
1464 return lookup_fundamental_type (current_objfile, FT_BOOLEAN);
1465 case 17:
1466 /* requires builtin `short real' */
1467 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1468 case 18:
1469 /* requires builtin `real' */
1470 return lookup_fundamental_type (current_objfile, FT_FLOAT);
1471 default:
1472 complain (rs6000_builtin_complaint, typenum);
1473 return NULL;
1474 }
1475 }
1476 \f
1477 /* This page contains subroutines of read_type. */
1478
1479 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
1480 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
1481 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
1482
1483 /* Read member function stabs info for C++ classes. The form of each member
1484 function data is:
1485
1486 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
1487
1488 An example with two member functions is:
1489
1490 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
1491
1492 For the case of overloaded operators, the format is op$::*.funcs, where
1493 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
1494 name (such as `+=') and `.' marks the end of the operator name. */
1495
1496 static int
1497 read_member_functions (fip, pp, type, objfile)
1498 struct field_info *fip;
1499 char **pp;
1500 struct type *type;
1501 struct objfile *objfile;
1502 {
1503 int nfn_fields = 0;
1504 int length = 0;
1505 /* Total number of member functions defined in this class. If the class
1506 defines two `f' functions, and one `g' function, then this will have
1507 the value 3. */
1508 int total_length = 0;
1509 int i;
1510 struct next_fnfield
1511 {
1512 struct next_fnfield *next;
1513 struct fn_field fn_field;
1514 } *sublist;
1515 struct type *look_ahead_type;
1516 struct next_fnfieldlist *new_fnlist;
1517 struct next_fnfield *new_sublist;
1518 char *main_fn_name;
1519 register char *p;
1520
1521 /* Process each list until we find something that is not a member function
1522 or find the end of the functions. */
1523
1524 while (**pp != ';')
1525 {
1526 /* We should be positioned at the start of the function name.
1527 Scan forward to find the first ':' and if it is not the
1528 first of a "::" delimiter, then this is not a member function. */
1529 p = *pp;
1530 while (*p != ':')
1531 {
1532 p++;
1533 }
1534 if (p[1] != ':')
1535 {
1536 break;
1537 }
1538
1539 sublist = NULL;
1540 look_ahead_type = NULL;
1541 length = 0;
1542
1543 new_fnlist = (struct next_fnfieldlist *)
1544 xmalloc (sizeof (struct next_fnfieldlist));
1545 make_cleanup (free, new_fnlist);
1546 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
1547
1548 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && (*pp)[2] == CPLUS_MARKER)
1549 {
1550 /* This is a completely wierd case. In order to stuff in the
1551 names that might contain colons (the usual name delimiter),
1552 Mike Tiemann defined a different name format which is
1553 signalled if the identifier is "op$". In that case, the
1554 format is "op$::XXXX." where XXXX is the name. This is
1555 used for names like "+" or "=". YUUUUUUUK! FIXME! */
1556 /* This lets the user type "break operator+".
1557 We could just put in "+" as the name, but that wouldn't
1558 work for "*". */
1559 static char opname[32] = {'o', 'p', CPLUS_MARKER};
1560 char *o = opname + 3;
1561
1562 /* Skip past '::'. */
1563 *pp = p + 2;
1564
1565 STABS_CONTINUE (pp);
1566 p = *pp;
1567 while (*p != '.')
1568 {
1569 *o++ = *p++;
1570 }
1571 main_fn_name = savestring (opname, o - opname);
1572 /* Skip past '.' */
1573 *pp = p + 1;
1574 }
1575 else
1576 {
1577 main_fn_name = savestring (*pp, p - *pp);
1578 /* Skip past '::'. */
1579 *pp = p + 2;
1580 }
1581 new_fnlist -> fn_fieldlist.name = main_fn_name;
1582
1583 do
1584 {
1585 new_sublist =
1586 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
1587 make_cleanup (free, new_sublist);
1588 memset (new_sublist, 0, sizeof (struct next_fnfield));
1589
1590 /* Check for and handle cretinous dbx symbol name continuation! */
1591 if (look_ahead_type == NULL)
1592 {
1593 /* Normal case. */
1594 STABS_CONTINUE (pp);
1595
1596 new_sublist -> fn_field.type = read_type (pp, objfile);
1597 if (**pp != ':')
1598 {
1599 /* Invalid symtab info for member function. */
1600 return 0;
1601 }
1602 }
1603 else
1604 {
1605 /* g++ version 1 kludge */
1606 new_sublist -> fn_field.type = look_ahead_type;
1607 look_ahead_type = NULL;
1608 }
1609
1610 (*pp)++;
1611 p = *pp;
1612 while (*p != ';')
1613 {
1614 p++;
1615 }
1616
1617 /* If this is just a stub, then we don't have the real name here. */
1618
1619 if (TYPE_FLAGS (new_sublist -> fn_field.type) & TYPE_FLAG_STUB)
1620 {
1621 if (!TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type))
1622 TYPE_DOMAIN_TYPE (new_sublist -> fn_field.type) = type;
1623 new_sublist -> fn_field.is_stub = 1;
1624 }
1625 new_sublist -> fn_field.physname = savestring (*pp, p - *pp);
1626 *pp = p + 1;
1627
1628 /* Set this member function's visibility fields. */
1629 switch (*(*pp)++)
1630 {
1631 case VISIBILITY_PRIVATE:
1632 new_sublist -> fn_field.is_private = 1;
1633 break;
1634 case VISIBILITY_PROTECTED:
1635 new_sublist -> fn_field.is_protected = 1;
1636 break;
1637 }
1638
1639 STABS_CONTINUE (pp);
1640 switch (**pp)
1641 {
1642 case 'A': /* Normal functions. */
1643 new_sublist -> fn_field.is_const = 0;
1644 new_sublist -> fn_field.is_volatile = 0;
1645 (*pp)++;
1646 break;
1647 case 'B': /* `const' member functions. */
1648 new_sublist -> fn_field.is_const = 1;
1649 new_sublist -> fn_field.is_volatile = 0;
1650 (*pp)++;
1651 break;
1652 case 'C': /* `volatile' member function. */
1653 new_sublist -> fn_field.is_const = 0;
1654 new_sublist -> fn_field.is_volatile = 1;
1655 (*pp)++;
1656 break;
1657 case 'D': /* `const volatile' member function. */
1658 new_sublist -> fn_field.is_const = 1;
1659 new_sublist -> fn_field.is_volatile = 1;
1660 (*pp)++;
1661 break;
1662 case '*': /* File compiled with g++ version 1 -- no info */
1663 case '?':
1664 case '.':
1665 break;
1666 default:
1667 complain (&const_vol_complaint, **pp);
1668 break;
1669 }
1670
1671 switch (*(*pp)++)
1672 {
1673 case '*':
1674 /* virtual member function, followed by index.
1675 The sign bit is set to distinguish pointers-to-methods
1676 from virtual function indicies. Since the array is
1677 in words, the quantity must be shifted left by 1
1678 on 16 bit machine, and by 2 on 32 bit machine, forcing
1679 the sign bit out, and usable as a valid index into
1680 the array. Remove the sign bit here. */
1681 new_sublist -> fn_field.voffset =
1682 (0x7fffffff & read_number (pp, ';')) + 2;
1683
1684 STABS_CONTINUE (pp);
1685 if (**pp == ';' || **pp == '\0')
1686 {
1687 /* Must be g++ version 1. */
1688 new_sublist -> fn_field.fcontext = 0;
1689 }
1690 else
1691 {
1692 /* Figure out from whence this virtual function came.
1693 It may belong to virtual function table of
1694 one of its baseclasses. */
1695 look_ahead_type = read_type (pp, objfile);
1696 if (**pp == ':')
1697 {
1698 /* g++ version 1 overloaded methods. */
1699 }
1700 else
1701 {
1702 new_sublist -> fn_field.fcontext = look_ahead_type;
1703 if (**pp != ';')
1704 {
1705 return 0;
1706 }
1707 else
1708 {
1709 ++*pp;
1710 }
1711 look_ahead_type = NULL;
1712 }
1713 }
1714 break;
1715
1716 case '?':
1717 /* static member function. */
1718 new_sublist -> fn_field.voffset = VOFFSET_STATIC;
1719 if (strncmp (new_sublist -> fn_field.physname,
1720 main_fn_name, strlen (main_fn_name)))
1721 {
1722 new_sublist -> fn_field.is_stub = 1;
1723 }
1724 break;
1725
1726 default:
1727 /* error */
1728 complain (&member_fn_complaint, (*pp)[-1]);
1729 /* Fall through into normal member function. */
1730
1731 case '.':
1732 /* normal member function. */
1733 new_sublist -> fn_field.voffset = 0;
1734 new_sublist -> fn_field.fcontext = 0;
1735 break;
1736 }
1737
1738 new_sublist -> next = sublist;
1739 sublist = new_sublist;
1740 length++;
1741 STABS_CONTINUE (pp);
1742 }
1743 while (**pp != ';' && **pp != '\0');
1744
1745 (*pp)++;
1746
1747 new_fnlist -> fn_fieldlist.fn_fields = (struct fn_field *)
1748 obstack_alloc (&objfile -> type_obstack,
1749 sizeof (struct fn_field) * length);
1750 memset (new_fnlist -> fn_fieldlist.fn_fields, 0,
1751 sizeof (struct fn_field) * length);
1752 for (i = length; (i--, sublist); sublist = sublist -> next)
1753 {
1754 new_fnlist -> fn_fieldlist.fn_fields[i] = sublist -> fn_field;
1755 }
1756
1757 new_fnlist -> fn_fieldlist.length = length;
1758 new_fnlist -> next = fip -> fnlist;
1759 fip -> fnlist = new_fnlist;
1760 nfn_fields++;
1761 total_length += length;
1762 STABS_CONTINUE (pp);
1763 }
1764
1765 if (nfn_fields)
1766 {
1767 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1768 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
1769 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
1770 memset (TYPE_FN_FIELDLISTS (type), 0,
1771 sizeof (struct fn_fieldlist) * nfn_fields);
1772 TYPE_NFN_FIELDS (type) = nfn_fields;
1773 TYPE_NFN_FIELDS_TOTAL (type) = total_length;
1774 }
1775
1776 return 1;
1777 }
1778
1779 /* Special GNU C++ name.
1780 FIXME: Still need to properly handle parse error conditions. */
1781
1782 static void
1783 read_cpp_abbrev (fip, pp, type, objfile)
1784 struct field_info *fip;
1785 char **pp;
1786 struct type *type;
1787 struct objfile *objfile;
1788 {
1789 register char *p;
1790 const char *prefix;
1791 char *name;
1792 char cpp_abbrev;
1793 struct type *context;
1794
1795 p = *pp;
1796 if (*++p == 'v')
1797 {
1798 name = NULL;
1799 cpp_abbrev = *++p;
1800
1801 *pp = p + 1;
1802
1803 /* At this point, *pp points to something like "22:23=*22...",
1804 where the type number before the ':' is the "context" and
1805 everything after is a regular type definition. Lookup the
1806 type, find it's name, and construct the field name. */
1807
1808 context = read_type (pp, objfile);
1809
1810 switch (cpp_abbrev)
1811 {
1812 case 'f': /* $vf -- a virtual function table pointer */
1813 fip->list->field.name =
1814 obconcat (&objfile->type_obstack, vptr_name, "", "");
1815 break;
1816
1817 case 'b': /* $vb -- a virtual bsomethingorother */
1818 name = type_name_no_tag (context);
1819 if (name == NULL)
1820 {
1821 complain (&invalid_cpp_type_complaint, symnum);
1822 name = "FOO";
1823 }
1824 fip->list->field.name =
1825 obconcat (&objfile->type_obstack, vb_name, name, "");
1826 break;
1827
1828 default:
1829 complain (&invalid_cpp_abbrev_complaint, *pp);
1830 fip->list->field.name =
1831 obconcat (&objfile->type_obstack,
1832 "INVALID_CPLUSPLUS_ABBREV", "", "");
1833 break;
1834 }
1835
1836 /* At this point, *pp points to the ':'. Skip it and read the
1837 field type. */
1838
1839 p = ++(*pp);
1840 if (p[-1] != ':')
1841 {
1842 complain (&invalid_cpp_abbrev_complaint, *pp);
1843 }
1844 fip->list->field.type = read_type (pp, objfile);
1845 (*pp)++; /* Skip the comma. */
1846 fip->list->field.bitpos = read_number (pp, ';');
1847 /* This field is unpacked. */
1848 fip->list->field.bitsize = 0;
1849 fip->list->visibility = VISIBILITY_PRIVATE;
1850 }
1851 else if (*p == '_')
1852 {
1853 /* GNU C++ anonymous type. */
1854 complain (&stabs_general_complaint, "g++ anonymous type $_ not handled");
1855 }
1856 else
1857 {
1858 complain (&invalid_cpp_abbrev_complaint, *pp);
1859 }
1860 }
1861
1862 static void
1863 read_one_struct_field (fip, pp, p, type, objfile)
1864 struct field_info *fip;
1865 char **pp;
1866 char *p;
1867 struct type *type;
1868 struct objfile *objfile;
1869 {
1870 fip -> list -> field.name =
1871 obsavestring (*pp, p - *pp, &objfile -> type_obstack);
1872 *pp = p + 1;
1873
1874 /* This means we have a visibility for a field coming. */
1875 if (**pp == '/')
1876 {
1877 (*pp)++;
1878 fip -> list -> visibility = *(*pp)++;
1879 switch (fip -> list -> visibility)
1880 {
1881 case VISIBILITY_PRIVATE:
1882 case VISIBILITY_PROTECTED:
1883 break;
1884
1885 case VISIBILITY_PUBLIC:
1886 /* Nothing to do */
1887 break;
1888
1889 default:
1890 /* Unknown visibility specifier. */
1891 complain (&stabs_general_complaint,
1892 "unknown visibility specifier");
1893 return;
1894 break;
1895 }
1896 }
1897 else
1898 {
1899 /* normal dbx-style format, no explicit visibility */
1900 fip -> list -> visibility = VISIBILITY_PUBLIC;
1901 }
1902
1903 fip -> list -> field.type = read_type (pp, objfile);
1904 if (**pp == ':')
1905 {
1906 p = ++(*pp);
1907 #if 0
1908 /* Possible future hook for nested types. */
1909 if (**pp == '!')
1910 {
1911 fip -> list -> field.bitpos = (long)-2; /* nested type */
1912 p = ++(*pp);
1913 }
1914 else
1915 #endif
1916 {
1917 /* Static class member. */
1918 fip -> list -> field.bitpos = (long) -1;
1919 }
1920 while (*p != ';')
1921 {
1922 p++;
1923 }
1924 fip -> list -> field.bitsize = (long) savestring (*pp, p - *pp);
1925 *pp = p + 1;
1926 return;
1927 }
1928 else if (**pp != ',')
1929 {
1930 /* Bad structure-type format. */
1931 complain (&stabs_general_complaint, "bad structure-type format");
1932 return;
1933 }
1934
1935 (*pp)++; /* Skip the comma. */
1936 fip -> list -> field.bitpos = read_number (pp, ',');
1937 fip -> list -> field.bitsize = read_number (pp, ';');
1938
1939 #if 0
1940 /* FIXME-tiemann: Can't the compiler put out something which
1941 lets us distinguish these? (or maybe just not put out anything
1942 for the field). What is the story here? What does the compiler
1943 really do? Also, patch gdb.texinfo for this case; I document
1944 it as a possible problem there. Search for "DBX-style". */
1945
1946 /* This is wrong because this is identical to the symbols
1947 produced for GCC 0-size arrays. For example:
1948 typedef union {
1949 int num;
1950 char str[0];
1951 } foo;
1952 The code which dumped core in such circumstances should be
1953 fixed not to dump core. */
1954
1955 /* g++ -g0 can put out bitpos & bitsize zero for a static
1956 field. This does not give us any way of getting its
1957 class, so we can't know its name. But we can just
1958 ignore the field so we don't dump core and other nasty
1959 stuff. */
1960 if (fip -> list -> field.bitpos == 0 && fip -> list -> field.bitsize == 0)
1961 {
1962 complain (&dbx_class_complaint);
1963 /* Ignore this field. */
1964 fip -> list = fip -> list -> next;
1965 }
1966 else
1967 #endif /* 0 */
1968 {
1969 /* Detect an unpacked field and mark it as such.
1970 dbx gives a bit size for all fields.
1971 Note that forward refs cannot be packed,
1972 and treat enums as if they had the width of ints. */
1973
1974 if (TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_INT
1975 && TYPE_CODE (fip -> list -> field.type) != TYPE_CODE_ENUM)
1976 {
1977 fip -> list -> field.bitsize = 0;
1978 }
1979 if ((fip -> list -> field.bitsize
1980 == 8 * TYPE_LENGTH (fip -> list -> field.type)
1981 || (TYPE_CODE (fip -> list -> field.type) == TYPE_CODE_ENUM
1982 && (fip -> list -> field.bitsize
1983 == 8 * TYPE_LENGTH (lookup_fundamental_type (objfile, FT_INTEGER)))
1984 )
1985 )
1986 &&
1987 fip -> list -> field.bitpos % 8 == 0)
1988 {
1989 fip -> list -> field.bitsize = 0;
1990 }
1991 }
1992 }
1993
1994
1995 /* Read struct or class data fields. They have the form:
1996
1997 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
1998
1999 At the end, we see a semicolon instead of a field.
2000
2001 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2002 a static field.
2003
2004 The optional VISIBILITY is one of:
2005
2006 '/0' (VISIBILITY_PRIVATE)
2007 '/1' (VISIBILITY_PROTECTED)
2008 '/2' (VISIBILITY_PUBLIC)
2009
2010 or nothing, for C style fields with public visibility. */
2011
2012 static int
2013 read_struct_fields (fip, pp, type, objfile)
2014 struct field_info *fip;
2015 char **pp;
2016 struct type *type;
2017 struct objfile *objfile;
2018 {
2019 register char *p;
2020 struct nextfield *new;
2021
2022 /* We better set p right now, in case there are no fields at all... */
2023
2024 p = *pp;
2025
2026 /* Read each data member type until we find the terminating ';' at the end of
2027 the data member list, or break for some other reason such as finding the
2028 start of the member function list. */
2029
2030 while (**pp != ';')
2031 {
2032 STABS_CONTINUE (pp);
2033 /* Get space to record the next field's data. */
2034 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2035 make_cleanup (free, new);
2036 memset (new, 0, sizeof (struct nextfield));
2037 new -> next = fip -> list;
2038 fip -> list = new;
2039
2040 /* Get the field name. */
2041 p = *pp;
2042 if (*p == CPLUS_MARKER)
2043 {
2044 read_cpp_abbrev (fip, pp, type, objfile);
2045 continue;
2046 }
2047
2048 /* Look for the ':' that separates the field name from the field
2049 values. Data members are delimited by a single ':', while member
2050 functions are delimited by a pair of ':'s. When we hit the member
2051 functions (if any), terminate scan loop and return. */
2052
2053 while (*p != ':')
2054 {
2055 p++;
2056 }
2057
2058 /* Check to see if we have hit the member functions yet. */
2059 if (p[1] == ':')
2060 {
2061 break;
2062 }
2063 read_one_struct_field (fip, pp, p, type, objfile);
2064 }
2065 if (p[1] == ':')
2066 {
2067 /* chill the list of fields: the last entry (at the head) is a
2068 partially constructed entry which we now scrub. */
2069 fip -> list = fip -> list -> next;
2070 }
2071 return 1;
2072 }
2073
2074 /* The stabs for C++ derived classes contain baseclass information which
2075 is marked by a '!' character after the total size. This function is
2076 called when we encounter the baseclass marker, and slurps up all the
2077 baseclass information.
2078
2079 Immediately following the '!' marker is the number of base classes that
2080 the class is derived from, followed by information for each base class.
2081 For each base class, there are two visibility specifiers, a bit offset
2082 to the base class information within the derived class, a reference to
2083 the type for the base class, and a terminating semicolon.
2084
2085 A typical example, with two base classes, would be "!2,020,19;0264,21;".
2086 ^^ ^ ^ ^ ^ ^ ^
2087 Baseclass information marker __________________|| | | | | | |
2088 Number of baseclasses __________________________| | | | | | |
2089 Visibility specifiers (2) ________________________| | | | | |
2090 Offset in bits from start of class _________________| | | | |
2091 Type number for base class ___________________________| | | |
2092 Visibility specifiers (2) _______________________________| | |
2093 Offset in bits from start of class ________________________| |
2094 Type number of base class ____________________________________|
2095 */
2096
2097 static int
2098 read_baseclasses (fip, pp, type, objfile)
2099 struct field_info *fip;
2100 char **pp;
2101 struct type *type;
2102 struct objfile *objfile;
2103 {
2104 int i;
2105 struct nextfield *new;
2106
2107 if (**pp != '!')
2108 {
2109 return 1;
2110 }
2111 else
2112 {
2113 /* Skip the '!' baseclass information marker. */
2114 (*pp)++;
2115 }
2116
2117 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2118 TYPE_N_BASECLASSES (type) = read_number (pp, ',');
2119
2120 #if 0
2121 /* Some stupid compilers have trouble with the following, so break
2122 it up into simpler expressions. */
2123 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
2124 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
2125 #else
2126 {
2127 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
2128 char *pointer;
2129
2130 pointer = (char *) TYPE_ALLOC (type, num_bytes);
2131 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
2132 }
2133 #endif /* 0 */
2134
2135 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
2136
2137 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
2138 {
2139 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
2140 make_cleanup (free, new);
2141 memset (new, 0, sizeof (struct nextfield));
2142 new -> next = fip -> list;
2143 fip -> list = new;
2144 new -> field.bitsize = 0; /* this should be an unpacked field! */
2145
2146 STABS_CONTINUE (pp);
2147 switch (*(*pp)++)
2148 {
2149 case '0':
2150 /* Nothing to do. */
2151 break;
2152 case '1':
2153 SET_TYPE_FIELD_VIRTUAL (type, i);
2154 break;
2155 default:
2156 /* Bad visibility format. */
2157 return 0;
2158 }
2159
2160 new -> visibility = *(*pp)++;
2161 switch (new -> visibility)
2162 {
2163 case VISIBILITY_PRIVATE:
2164 case VISIBILITY_PROTECTED:
2165 case VISIBILITY_PUBLIC:
2166 break;
2167 default:
2168 /* Bad visibility format. */
2169 return 0;
2170 }
2171
2172 /* The remaining value is the bit offset of the portion of the object
2173 corresponding to this baseclass. Always zero in the absence of
2174 multiple inheritance. */
2175
2176 new -> field.bitpos = read_number (pp, ',');
2177
2178 /* The last piece of baseclass information is the type of the base
2179 class. Read it, and remember it's type name as this field's name. */
2180
2181 new -> field.type = read_type (pp, objfile);
2182 new -> field.name = type_name_no_tag (new -> field.type);
2183
2184 /* skip trailing ';' and bump count of number of fields seen */
2185 (*pp)++;
2186 }
2187 return 1;
2188 }
2189
2190 /* The tail end of stabs for C++ classes that contain a virtual function
2191 pointer contains a tilde, a %, and a type number.
2192 The type number refers to the base class (possibly this class itself) which
2193 contains the vtable pointer for the current class.
2194
2195 This function is called when we have parsed all the method declarations,
2196 so we can look for the vptr base class info. */
2197
2198 static int
2199 read_tilde_fields (fip, pp, type, objfile)
2200 struct field_info *fip;
2201 char **pp;
2202 struct type *type;
2203 struct objfile *objfile;
2204 {
2205 register char *p;
2206
2207 STABS_CONTINUE (pp);
2208
2209 /* If we are positioned at a ';', then skip it. */
2210 if (**pp == ';')
2211 {
2212 (*pp)++;
2213 }
2214
2215 if (**pp == '~')
2216 {
2217 (*pp)++;
2218
2219 if (**pp == '=' || **pp == '+' || **pp == '-')
2220 {
2221 /* Obsolete flags that used to indicate the presence
2222 of constructors and/or destructors. */
2223 (*pp)++;
2224 }
2225
2226 /* Read either a '%' or the final ';'. */
2227 if (*(*pp)++ == '%')
2228 {
2229 /* The next number is the type number of the base class
2230 (possibly our own class) which supplies the vtable for
2231 this class. Parse it out, and search that class to find
2232 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
2233 and TYPE_VPTR_FIELDNO. */
2234
2235 struct type *t;
2236 int i;
2237
2238 t = read_type (pp, objfile);
2239 p = (*pp)++;
2240 while (*p != '\0' && *p != ';')
2241 {
2242 p++;
2243 }
2244 if (*p == '\0')
2245 {
2246 /* Premature end of symbol. */
2247 return 0;
2248 }
2249
2250 TYPE_VPTR_BASETYPE (type) = t;
2251 if (type == t) /* Our own class provides vtbl ptr */
2252 {
2253 for (i = TYPE_NFIELDS (t) - 1;
2254 i >= TYPE_N_BASECLASSES (t);
2255 --i)
2256 {
2257 if (! strncmp (TYPE_FIELD_NAME (t, i), vptr_name,
2258 sizeof (vptr_name) - 1))
2259 {
2260 TYPE_VPTR_FIELDNO (type) = i;
2261 goto gotit;
2262 }
2263 }
2264 /* Virtual function table field not found. */
2265 complain (vtbl_notfound_complaint, TYPE_NAME (type));
2266 return 0;
2267 }
2268 else
2269 {
2270 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (t);
2271 }
2272
2273 gotit:
2274 *pp = p + 1;
2275 }
2276 }
2277 return 1;
2278 }
2279
2280 static int
2281 attach_fn_fields_to_type (fip, type)
2282 struct field_info *fip;
2283 register struct type *type;
2284 {
2285 register int n;
2286
2287 for (n = 0; n < TYPE_N_BASECLASSES (type); n++)
2288 {
2289 if (TYPE_CODE (TYPE_BASECLASS (type, n)) == TYPE_CODE_UNDEF)
2290 {
2291 /* @@ Memory leak on objfile -> type_obstack? */
2292 return 0;
2293 }
2294 TYPE_NFN_FIELDS_TOTAL (type) +=
2295 TYPE_NFN_FIELDS_TOTAL (TYPE_BASECLASS (type, n));
2296 }
2297
2298 for (n = TYPE_NFN_FIELDS (type);
2299 fip -> fnlist != NULL;
2300 fip -> fnlist = fip -> fnlist -> next)
2301 {
2302 --n; /* Circumvent Sun3 compiler bug */
2303 TYPE_FN_FIELDLISTS (type)[n] = fip -> fnlist -> fn_fieldlist;
2304 }
2305 return 1;
2306 }
2307
2308 /* Create the vector of fields, and record how big it is.
2309 We need this info to record proper virtual function table information
2310 for this class's virtual functions. */
2311
2312 static int
2313 attach_fields_to_type (fip, type, objfile)
2314 struct field_info *fip;
2315 register struct type *type;
2316 struct objfile *objfile;
2317 {
2318 register int nfields = 0;
2319 register int non_public_fields = 0;
2320 register struct nextfield *scan;
2321
2322 /* Count up the number of fields that we have, as well as taking note of
2323 whether or not there are any non-public fields, which requires us to
2324 allocate and build the private_field_bits and protected_field_bits
2325 bitfields. */
2326
2327 for (scan = fip -> list; scan != NULL; scan = scan -> next)
2328 {
2329 nfields++;
2330 if (scan -> visibility != VISIBILITY_PUBLIC)
2331 {
2332 non_public_fields++;
2333 }
2334 }
2335
2336 /* Now we know how many fields there are, and whether or not there are any
2337 non-public fields. Record the field count, allocate space for the
2338 array of fields, and create blank visibility bitfields if necessary. */
2339
2340 TYPE_NFIELDS (type) = nfields;
2341 TYPE_FIELDS (type) = (struct field *)
2342 TYPE_ALLOC (type, sizeof (struct field) * nfields);
2343 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
2344
2345 if (non_public_fields)
2346 {
2347 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2348
2349 TYPE_FIELD_PRIVATE_BITS (type) =
2350 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2351 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
2352
2353 TYPE_FIELD_PROTECTED_BITS (type) =
2354 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
2355 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
2356 }
2357
2358 /* Copy the saved-up fields into the field vector. Start from the head
2359 of the list, adding to the tail of the field array, so that they end
2360 up in the same order in the array in which they were added to the list. */
2361
2362 while (nfields-- > 0)
2363 {
2364 TYPE_FIELD (type, nfields) = fip -> list -> field;
2365 switch (fip -> list -> visibility)
2366 {
2367 case VISIBILITY_PRIVATE:
2368 SET_TYPE_FIELD_PRIVATE (type, nfields);
2369 break;
2370
2371 case VISIBILITY_PROTECTED:
2372 SET_TYPE_FIELD_PROTECTED (type, nfields);
2373 break;
2374
2375 case VISIBILITY_PUBLIC:
2376 break;
2377
2378 default:
2379 /* Should warn about this unknown visibility? */
2380 break;
2381 }
2382 fip -> list = fip -> list -> next;
2383 }
2384 return 1;
2385 }
2386
2387 /* Read the description of a structure (or union type) and return an object
2388 describing the type.
2389
2390 PP points to a character pointer that points to the next unconsumed token
2391 in the the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
2392 *PP will point to "4a:1,0,32;;".
2393
2394 TYPE points to an incomplete type that needs to be filled in.
2395
2396 OBJFILE points to the current objfile from which the stabs information is
2397 being read. (Note that it is redundant in that TYPE also contains a pointer
2398 to this same objfile, so it might be a good idea to eliminate it. FIXME).
2399 */
2400
2401 static struct type *
2402 read_struct_type (pp, type, objfile)
2403 char **pp;
2404 struct type *type;
2405 struct objfile *objfile;
2406 {
2407 struct cleanup *back_to;
2408 struct field_info fi;
2409
2410 fi.list = NULL;
2411 fi.fnlist = NULL;
2412
2413 back_to = make_cleanup (null_cleanup, 0);
2414
2415 INIT_CPLUS_SPECIFIC (type);
2416 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2417
2418 /* First comes the total size in bytes. */
2419
2420 TYPE_LENGTH (type) = read_number (pp, 0);
2421
2422 /* Now read the baseclasses, if any, read the regular C struct or C++
2423 class member fields, attach the fields to the type, read the C++
2424 member functions, attach them to the type, and then read any tilde
2425 field (baseclass specifier for the class holding the main vtable). */
2426
2427 if (!read_baseclasses (&fi, pp, type, objfile)
2428 || !read_struct_fields (&fi, pp, type, objfile)
2429 || !attach_fields_to_type (&fi, type, objfile)
2430 || !read_member_functions (&fi, pp, type, objfile)
2431 || !attach_fn_fields_to_type (&fi, type)
2432 || !read_tilde_fields (&fi, pp, type, objfile))
2433 {
2434 do_cleanups (back_to);
2435 return (error_type (pp));
2436 }
2437
2438 do_cleanups (back_to);
2439 return (type);
2440 }
2441
2442 /* Read a definition of an array type,
2443 and create and return a suitable type object.
2444 Also creates a range type which represents the bounds of that
2445 array. */
2446
2447 static struct type *
2448 read_array_type (pp, type, objfile)
2449 register char **pp;
2450 register struct type *type;
2451 struct objfile *objfile;
2452 {
2453 struct type *index_type, *element_type, *range_type;
2454 int lower, upper;
2455 int adjustable = 0;
2456
2457 /* Format of an array type:
2458 "ar<index type>;lower;upper;<array_contents_type>". Put code in
2459 to handle this.
2460
2461 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
2462 for these, produce a type like float[][]. */
2463
2464 index_type = read_type (pp, objfile);
2465 if (**pp != ';')
2466 /* Improper format of array type decl. */
2467 return error_type (pp);
2468 ++*pp;
2469
2470 if (!(**pp >= '0' && **pp <= '9'))
2471 {
2472 (*pp)++;
2473 adjustable = 1;
2474 }
2475 lower = read_number (pp, ';');
2476
2477 if (!(**pp >= '0' && **pp <= '9'))
2478 {
2479 (*pp)++;
2480 adjustable = 1;
2481 }
2482 upper = read_number (pp, ';');
2483
2484 element_type = read_type (pp, objfile);
2485
2486 if (adjustable)
2487 {
2488 lower = 0;
2489 upper = -1;
2490 }
2491
2492 range_type =
2493 create_range_type ((struct type *) NULL, index_type, lower, upper);
2494 type = create_array_type (type, element_type, range_type);
2495
2496 /* If we have an array whose element type is not yet known, but whose
2497 bounds *are* known, record it to be adjusted at the end of the file. */
2498
2499 if (TYPE_LENGTH (element_type) == 0 && !adjustable)
2500 {
2501 add_undefined_type (type);
2502 }
2503
2504 return type;
2505 }
2506
2507
2508 /* Read a definition of an enumeration type,
2509 and create and return a suitable type object.
2510 Also defines the symbols that represent the values of the type. */
2511
2512 static struct type *
2513 read_enum_type (pp, type, objfile)
2514 register char **pp;
2515 register struct type *type;
2516 struct objfile *objfile;
2517 {
2518 register char *p;
2519 char *name;
2520 register long n;
2521 register struct symbol *sym;
2522 int nsyms = 0;
2523 struct pending **symlist;
2524 struct pending *osyms, *syms;
2525 int o_nsyms;
2526
2527 #if 0
2528 /* FIXME! The stabs produced by Sun CC merrily define things that ought
2529 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
2530 to do? For now, force all enum values to file scope. */
2531 if (within_function)
2532 symlist = &local_symbols;
2533 else
2534 #endif
2535 symlist = &file_symbols;
2536 osyms = *symlist;
2537 o_nsyms = osyms ? osyms->nsyms : 0;
2538
2539 /* Read the value-names and their values.
2540 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
2541 A semicolon or comma instead of a NAME means the end. */
2542 while (**pp && **pp != ';' && **pp != ',')
2543 {
2544 STABS_CONTINUE (pp);
2545 p = *pp;
2546 while (*p != ':') p++;
2547 name = obsavestring (*pp, p - *pp, &objfile -> symbol_obstack);
2548 *pp = p + 1;
2549 n = read_number (pp, ',');
2550
2551 sym = (struct symbol *)
2552 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
2553 memset (sym, 0, sizeof (struct symbol));
2554 SYMBOL_NAME (sym) = name;
2555 SYMBOL_LANGUAGE (sym) = current_subfile -> language;
2556 SYMBOL_CLASS (sym) = LOC_CONST;
2557 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2558 SYMBOL_VALUE (sym) = n;
2559 add_symbol_to_list (sym, symlist);
2560 nsyms++;
2561 }
2562
2563 if (**pp == ';')
2564 (*pp)++; /* Skip the semicolon. */
2565
2566 /* Now fill in the fields of the type-structure. */
2567
2568 TYPE_LENGTH (type) = sizeof (int);
2569 TYPE_CODE (type) = TYPE_CODE_ENUM;
2570 TYPE_FLAGS (type) &= ~TYPE_FLAG_STUB;
2571 TYPE_NFIELDS (type) = nsyms;
2572 TYPE_FIELDS (type) = (struct field *)
2573 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
2574 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
2575
2576 /* Find the symbols for the values and put them into the type.
2577 The symbols can be found in the symlist that we put them on
2578 to cause them to be defined. osyms contains the old value
2579 of that symlist; everything up to there was defined by us. */
2580 /* Note that we preserve the order of the enum constants, so
2581 that in something like "enum {FOO, LAST_THING=FOO}" we print
2582 FOO, not LAST_THING. */
2583
2584 for (syms = *symlist, n = 0; syms; syms = syms->next)
2585 {
2586 int j = 0;
2587 if (syms == osyms)
2588 j = o_nsyms;
2589 for (; j < syms->nsyms; j++,n++)
2590 {
2591 struct symbol *xsym = syms->symbol[j];
2592 SYMBOL_TYPE (xsym) = type;
2593 TYPE_FIELD_NAME (type, n) = SYMBOL_NAME (xsym);
2594 TYPE_FIELD_VALUE (type, n) = 0;
2595 TYPE_FIELD_BITPOS (type, n) = SYMBOL_VALUE (xsym);
2596 TYPE_FIELD_BITSIZE (type, n) = 0;
2597 }
2598 if (syms == osyms)
2599 break;
2600 }
2601
2602 #if 0
2603 /* This screws up perfectly good C programs with enums. FIXME. */
2604 /* Is this Modula-2's BOOLEAN type? Flag it as such if so. */
2605 if(TYPE_NFIELDS(type) == 2 &&
2606 ((STREQ(TYPE_FIELD_NAME(type,0),"TRUE") &&
2607 STREQ(TYPE_FIELD_NAME(type,1),"FALSE")) ||
2608 (STREQ(TYPE_FIELD_NAME(type,1),"TRUE") &&
2609 STREQ(TYPE_FIELD_NAME(type,0),"FALSE"))))
2610 TYPE_CODE(type) = TYPE_CODE_BOOL;
2611 #endif
2612
2613 return type;
2614 }
2615
2616 /* Sun's ACC uses a somewhat saner method for specifying the builtin
2617 typedefs in every file (for int, long, etc):
2618
2619 type = b <signed> <width>; <offset>; <nbits>
2620 signed = u or s. Possible c in addition to u or s (for char?).
2621 offset = offset from high order bit to start bit of type.
2622 width is # bytes in object of this type, nbits is # bits in type.
2623
2624 The width/offset stuff appears to be for small objects stored in
2625 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
2626 FIXME. */
2627
2628 static struct type *
2629 read_sun_builtin_type (pp, typenums, objfile)
2630 char **pp;
2631 int typenums[2];
2632 struct objfile *objfile;
2633 {
2634 int nbits;
2635 int signed_type;
2636
2637 switch (**pp)
2638 {
2639 case 's':
2640 signed_type = 1;
2641 break;
2642 case 'u':
2643 signed_type = 0;
2644 break;
2645 default:
2646 return error_type (pp);
2647 }
2648 (*pp)++;
2649
2650 /* For some odd reason, all forms of char put a c here. This is strange
2651 because no other type has this honor. We can safely ignore this because
2652 we actually determine 'char'acterness by the number of bits specified in
2653 the descriptor. */
2654
2655 if (**pp == 'c')
2656 (*pp)++;
2657
2658 /* The first number appears to be the number of bytes occupied
2659 by this type, except that unsigned short is 4 instead of 2.
2660 Since this information is redundant with the third number,
2661 we will ignore it. */
2662 read_number (pp, ';');
2663
2664 /* The second number is always 0, so ignore it too. */
2665 read_number (pp, ';');
2666
2667 /* The third number is the number of bits for this type. */
2668 nbits = read_number (pp, 0);
2669
2670 /* FIXME. Here we should just be able to make a type of the right
2671 number of bits and signedness. FIXME. */
2672
2673 if (nbits == TARGET_LONG_LONG_BIT)
2674 return (lookup_fundamental_type (objfile,
2675 signed_type? FT_LONG_LONG: FT_UNSIGNED_LONG_LONG));
2676
2677 if (nbits == TARGET_INT_BIT)
2678 {
2679 /* FIXME -- the only way to distinguish `int' from `long'
2680 is to look at its name! */
2681 if (signed_type)
2682 {
2683 if (long_kludge_name && long_kludge_name[0] == 'l' /* long */)
2684 return lookup_fundamental_type (objfile, FT_LONG);
2685 else
2686 return lookup_fundamental_type (objfile, FT_INTEGER);
2687 }
2688 else
2689 {
2690 if (long_kludge_name
2691 && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2692 long_kludge_name[9] == 'l' /* long */)
2693 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2694 return lookup_fundamental_type (objfile, FT_UNSIGNED_LONG);
2695 else
2696 return lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER);
2697 }
2698 }
2699
2700 if (nbits == TARGET_SHORT_BIT)
2701 return (lookup_fundamental_type (objfile,
2702 signed_type? FT_SHORT: FT_UNSIGNED_SHORT));
2703
2704 if (nbits == TARGET_CHAR_BIT)
2705 return (lookup_fundamental_type (objfile,
2706 signed_type? FT_CHAR: FT_UNSIGNED_CHAR));
2707
2708 if (nbits == 0)
2709 return lookup_fundamental_type (objfile, FT_VOID);
2710
2711 return error_type (pp);
2712 }
2713
2714 static struct type *
2715 read_sun_floating_type (pp, typenums, objfile)
2716 char **pp;
2717 int typenums[2];
2718 struct objfile *objfile;
2719 {
2720 int nbytes;
2721
2722 /* The first number has more details about the type, for example
2723 FN_COMPLEX. See the sun stab.h. */
2724 read_number (pp, ';');
2725
2726 /* The second number is the number of bytes occupied by this type */
2727 nbytes = read_number (pp, ';');
2728
2729 if (**pp != 0)
2730 return error_type (pp);
2731
2732 if (nbytes == TARGET_FLOAT_BIT / TARGET_CHAR_BIT)
2733 return lookup_fundamental_type (objfile, FT_FLOAT);
2734
2735 if (nbytes == TARGET_DOUBLE_BIT / TARGET_CHAR_BIT)
2736 return lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT);
2737
2738 if (nbytes == TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT)
2739 return lookup_fundamental_type (objfile, FT_EXT_PREC_FLOAT);
2740
2741 return error_type (pp);
2742 }
2743
2744 /* Read a number from the string pointed to by *PP.
2745 The value of *PP is advanced over the number.
2746 If END is nonzero, the character that ends the
2747 number must match END, or an error happens;
2748 and that character is skipped if it does match.
2749 If END is zero, *PP is left pointing to that character.
2750
2751 If the number fits in a long, set *VALUE and set *BITS to 0.
2752 If not, set *BITS to be the number of bits in the number.
2753
2754 If encounter garbage, set *BITS to -1. */
2755
2756 static void
2757 read_huge_number (pp, end, valu, bits)
2758 char **pp;
2759 int end;
2760 long *valu;
2761 int *bits;
2762 {
2763 char *p = *pp;
2764 int sign = 1;
2765 long n = 0;
2766 int radix = 10;
2767 char overflow = 0;
2768 int nbits = 0;
2769 int c;
2770 long upper_limit;
2771
2772 if (*p == '-')
2773 {
2774 sign = -1;
2775 p++;
2776 }
2777
2778 /* Leading zero means octal. GCC uses this to output values larger
2779 than an int (because that would be hard in decimal). */
2780 if (*p == '0')
2781 {
2782 radix = 8;
2783 p++;
2784 }
2785
2786 upper_limit = LONG_MAX / radix;
2787 while ((c = *p++) >= '0' && c <= ('0' + radix))
2788 {
2789 if (n <= upper_limit)
2790 {
2791 n *= radix;
2792 n += c - '0'; /* FIXME this overflows anyway */
2793 }
2794 else
2795 overflow = 1;
2796
2797 /* This depends on large values being output in octal, which is
2798 what GCC does. */
2799 if (radix == 8)
2800 {
2801 if (nbits == 0)
2802 {
2803 if (c == '0')
2804 /* Ignore leading zeroes. */
2805 ;
2806 else if (c == '1')
2807 nbits = 1;
2808 else if (c == '2' || c == '3')
2809 nbits = 2;
2810 else
2811 nbits = 3;
2812 }
2813 else
2814 nbits += 3;
2815 }
2816 }
2817 if (end)
2818 {
2819 if (c && c != end)
2820 {
2821 if (bits != NULL)
2822 *bits = -1;
2823 return;
2824 }
2825 }
2826 else
2827 --p;
2828
2829 *pp = p;
2830 if (overflow)
2831 {
2832 if (nbits == 0)
2833 {
2834 /* Large decimal constants are an error (because it is hard to
2835 count how many bits are in them). */
2836 if (bits != NULL)
2837 *bits = -1;
2838 return;
2839 }
2840
2841 /* -0x7f is the same as 0x80. So deal with it by adding one to
2842 the number of bits. */
2843 if (sign == -1)
2844 ++nbits;
2845 if (bits)
2846 *bits = nbits;
2847 }
2848 else
2849 {
2850 if (valu)
2851 *valu = n * sign;
2852 if (bits)
2853 *bits = 0;
2854 }
2855 }
2856
2857 static struct type *
2858 read_range_type (pp, typenums, objfile)
2859 char **pp;
2860 int typenums[2];
2861 struct objfile *objfile;
2862 {
2863 int rangenums[2];
2864 long n2, n3;
2865 int n2bits, n3bits;
2866 int self_subrange;
2867 struct type *result_type;
2868 struct type *index_type;
2869
2870 /* First comes a type we are a subrange of.
2871 In C it is usually 0, 1 or the type being defined. */
2872 read_type_number (pp, rangenums);
2873 self_subrange = (rangenums[0] == typenums[0] &&
2874 rangenums[1] == typenums[1]);
2875
2876 /* A semicolon should now follow; skip it. */
2877 if (**pp == ';')
2878 (*pp)++;
2879
2880 /* The remaining two operands are usually lower and upper bounds
2881 of the range. But in some special cases they mean something else. */
2882 read_huge_number (pp, ';', &n2, &n2bits);
2883 read_huge_number (pp, ';', &n3, &n3bits);
2884
2885 if (n2bits == -1 || n3bits == -1)
2886 return error_type (pp);
2887
2888 /* If limits are huge, must be large integral type. */
2889 if (n2bits != 0 || n3bits != 0)
2890 {
2891 char got_signed = 0;
2892 char got_unsigned = 0;
2893 /* Number of bits in the type. */
2894 int nbits;
2895
2896 /* Range from 0 to <large number> is an unsigned large integral type. */
2897 if ((n2bits == 0 && n2 == 0) && n3bits != 0)
2898 {
2899 got_unsigned = 1;
2900 nbits = n3bits;
2901 }
2902 /* Range from <large number> to <large number>-1 is a large signed
2903 integral type. */
2904 else if (n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
2905 {
2906 got_signed = 1;
2907 nbits = n2bits;
2908 }
2909
2910 /* Check for "long long". */
2911 if (got_signed && nbits == TARGET_LONG_LONG_BIT)
2912 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
2913 if (got_unsigned && nbits == TARGET_LONG_LONG_BIT)
2914 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2915
2916 if (got_signed || got_unsigned)
2917 {
2918 result_type = alloc_type (objfile);
2919 TYPE_LENGTH (result_type) = nbits / TARGET_CHAR_BIT;
2920 TYPE_CODE (result_type) = TYPE_CODE_INT;
2921 if (got_unsigned)
2922 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
2923 return result_type;
2924 }
2925 else
2926 return error_type (pp);
2927 }
2928
2929 /* A type defined as a subrange of itself, with bounds both 0, is void. */
2930 if (self_subrange && n2 == 0 && n3 == 0)
2931 return (lookup_fundamental_type (objfile, FT_VOID));
2932
2933 /* If n3 is zero and n2 is not, we want a floating type,
2934 and n2 is the width in bytes.
2935
2936 Fortran programs appear to use this for complex types also,
2937 and they give no way to distinguish between double and single-complex!
2938 We don't have complex types, so we would lose on all fortran files!
2939 So return type `double' for all of those. It won't work right
2940 for the complex values, but at least it makes the file loadable.
2941
2942 FIXME, we may be able to distinguish these by their names. FIXME. */
2943
2944 if (n3 == 0 && n2 > 0)
2945 {
2946 if (n2 == sizeof (float))
2947 return (lookup_fundamental_type (objfile, FT_FLOAT));
2948 return (lookup_fundamental_type (objfile, FT_DBL_PREC_FLOAT));
2949 }
2950
2951 /* If the upper bound is -1, it must really be an unsigned int. */
2952
2953 else if (n2 == 0 && n3 == -1)
2954 {
2955 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2956 long' is to look at its name! */
2957 if (
2958 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2959 long_kludge_name[9] == 'l' /* long */)
2960 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2961 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2962 else
2963 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2964 }
2965
2966 /* Special case: char is defined (Who knows why) as a subrange of
2967 itself with range 0-127. */
2968 else if (self_subrange && n2 == 0 && n3 == 127)
2969 return (lookup_fundamental_type (objfile, FT_CHAR));
2970
2971 /* Assumptions made here: Subrange of self is equivalent to subrange
2972 of int. FIXME: Host and target type-sizes assumed the same. */
2973 /* FIXME: This is the *only* place in GDB that depends on comparing
2974 some type to a builtin type with ==. Fix it! */
2975 else if (n2 == 0
2976 && (self_subrange ||
2977 *dbx_lookup_type (rangenums) == lookup_fundamental_type (objfile, FT_INTEGER)))
2978 {
2979 /* an unsigned type */
2980 #ifdef CC_HAS_LONG_LONG
2981 if (n3 == - sizeof (long long))
2982 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG_LONG));
2983 #endif
2984 /* FIXME -- the only way to distinguish `unsigned int' from `unsigned
2985 long' is to look at its name! */
2986 if (n3 == (unsigned long)~0L &&
2987 long_kludge_name && ((long_kludge_name[0] == 'u' /* unsigned */ &&
2988 long_kludge_name[9] == 'l' /* long */)
2989 || (long_kludge_name[0] == 'l' /* long unsigned */)))
2990 return (lookup_fundamental_type (objfile, FT_UNSIGNED_LONG));
2991 if (n3 == (unsigned int)~0L)
2992 return (lookup_fundamental_type (objfile, FT_UNSIGNED_INTEGER));
2993 if (n3 == (unsigned short)~0L)
2994 return (lookup_fundamental_type (objfile, FT_UNSIGNED_SHORT));
2995 if (n3 == (unsigned char)~0L)
2996 return (lookup_fundamental_type (objfile, FT_UNSIGNED_CHAR));
2997 }
2998 #ifdef CC_HAS_LONG_LONG
2999 else if (n3 == 0 && n2 == -sizeof (long long))
3000 return (lookup_fundamental_type (objfile, FT_LONG_LONG));
3001 #endif
3002 else if (n2 == -n3 -1)
3003 {
3004 /* a signed type */
3005 /* FIXME -- the only way to distinguish `int' from `long' is to look
3006 at its name! */
3007 if ((n3 ==(long)(((unsigned long)1 << (8 * sizeof (long) - 1)) - 1)) &&
3008 long_kludge_name && long_kludge_name[0] == 'l' /* long */)
3009 return (lookup_fundamental_type (objfile, FT_LONG));
3010 if (n3 == (long)(((unsigned long)1 << (8 * sizeof (int) - 1)) - 1))
3011 return (lookup_fundamental_type (objfile, FT_INTEGER));
3012 if (n3 == ( 1 << (8 * sizeof (short) - 1)) - 1)
3013 return (lookup_fundamental_type (objfile, FT_SHORT));
3014 if (n3 == ( 1 << (8 * sizeof (char) - 1)) - 1)
3015 return (lookup_fundamental_type (objfile, FT_SIGNED_CHAR));
3016 }
3017
3018 /* We have a real range type on our hands. Allocate space and
3019 return a real pointer. */
3020
3021 /* At this point I don't have the faintest idea how to deal with
3022 a self_subrange type; I'm going to assume that this is used
3023 as an idiom, and that all of them are special cases. So . . . */
3024 if (self_subrange)
3025 return error_type (pp);
3026
3027 index_type = *dbx_lookup_type (rangenums);
3028 if (index_type == NULL)
3029 {
3030 complain (&range_type_base_complaint, rangenums[1]);
3031 index_type = lookup_fundamental_type (objfile, FT_INTEGER);
3032 }
3033
3034 result_type = create_range_type ((struct type *) NULL, index_type, n2, n3);
3035 return (result_type);
3036 }
3037
3038 /* Read a number from the string pointed to by *PP.
3039 The value of *PP is advanced over the number.
3040 If END is nonzero, the character that ends the
3041 number must match END, or an error happens;
3042 and that character is skipped if it does match.
3043 If END is zero, *PP is left pointing to that character. */
3044
3045 long
3046 read_number (pp, end)
3047 char **pp;
3048 int end;
3049 {
3050 register char *p = *pp;
3051 register long n = 0;
3052 register int c;
3053 int sign = 1;
3054
3055 /* Handle an optional leading minus sign. */
3056
3057 if (*p == '-')
3058 {
3059 sign = -1;
3060 p++;
3061 }
3062
3063 /* Read the digits, as far as they go. */
3064
3065 while ((c = *p++) >= '0' && c <= '9')
3066 {
3067 n *= 10;
3068 n += c - '0';
3069 }
3070 if (end)
3071 {
3072 if (c && c != end)
3073 error ("Invalid symbol data: invalid character \\%03o at symbol pos %d.", c, symnum);
3074 }
3075 else
3076 --p;
3077
3078 *pp = p;
3079 return n * sign;
3080 }
3081
3082 /* Read in an argument list. This is a list of types, separated by commas
3083 and terminated with END. Return the list of types read in, or (struct type
3084 **)-1 if there is an error. */
3085
3086 static struct type **
3087 read_args (pp, end, objfile)
3088 char **pp;
3089 int end;
3090 struct objfile *objfile;
3091 {
3092 /* FIXME! Remove this arbitrary limit! */
3093 struct type *types[1024], **rval; /* allow for fns of 1023 parameters */
3094 int n = 0;
3095
3096 while (**pp != end)
3097 {
3098 if (**pp != ',')
3099 /* Invalid argument list: no ','. */
3100 return (struct type **)-1;
3101 (*pp)++;
3102 STABS_CONTINUE (pp);
3103 types[n++] = read_type (pp, objfile);
3104 }
3105 (*pp)++; /* get past `end' (the ':' character) */
3106
3107 if (n == 1)
3108 {
3109 rval = (struct type **) xmalloc (2 * sizeof (struct type *));
3110 }
3111 else if (TYPE_CODE (types[n-1]) != TYPE_CODE_VOID)
3112 {
3113 rval = (struct type **) xmalloc ((n + 1) * sizeof (struct type *));
3114 memset (rval + n, 0, sizeof (struct type *));
3115 }
3116 else
3117 {
3118 rval = (struct type **) xmalloc (n * sizeof (struct type *));
3119 }
3120 memcpy (rval, types, n * sizeof (struct type *));
3121 return rval;
3122 }
3123
3124 /* Add a common block's start address to the offset of each symbol
3125 declared to be in it (by being between a BCOMM/ECOMM pair that uses
3126 the common block name). */
3127
3128 static void
3129 fix_common_block (sym, valu)
3130 struct symbol *sym;
3131 int valu;
3132 {
3133 struct pending *next = (struct pending *) SYMBOL_NAMESPACE (sym);
3134 for ( ; next; next = next->next)
3135 {
3136 register int j;
3137 for (j = next->nsyms - 1; j >= 0; j--)
3138 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
3139 }
3140 }
3141
3142
3143 \f
3144 /* What about types defined as forward references inside of a small lexical
3145 scope? */
3146 /* Add a type to the list of undefined types to be checked through
3147 once this file has been read in. */
3148
3149 void
3150 add_undefined_type (type)
3151 struct type *type;
3152 {
3153 if (undef_types_length == undef_types_allocated)
3154 {
3155 undef_types_allocated *= 2;
3156 undef_types = (struct type **)
3157 xrealloc ((char *) undef_types,
3158 undef_types_allocated * sizeof (struct type *));
3159 }
3160 undef_types[undef_types_length++] = type;
3161 }
3162
3163 /* Go through each undefined type, see if it's still undefined, and fix it
3164 up if possible. We have two kinds of undefined types:
3165
3166 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
3167 Fix: update array length using the element bounds
3168 and the target type's length.
3169 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
3170 yet defined at the time a pointer to it was made.
3171 Fix: Do a full lookup on the struct/union tag. */
3172 void
3173 cleanup_undefined_types ()
3174 {
3175 struct type **type;
3176
3177 for (type = undef_types; type < undef_types + undef_types_length; type++)
3178 {
3179 switch (TYPE_CODE (*type))
3180 {
3181
3182 case TYPE_CODE_STRUCT:
3183 case TYPE_CODE_UNION:
3184 case TYPE_CODE_ENUM:
3185 {
3186 /* Check if it has been defined since. */
3187 if (TYPE_FLAGS (*type) & TYPE_FLAG_STUB)
3188 {
3189 struct pending *ppt;
3190 int i;
3191 /* Name of the type, without "struct" or "union" */
3192 char *typename = TYPE_NAME (*type);
3193
3194 if (!strncmp (typename, "struct ", 7))
3195 typename += 7;
3196 if (!strncmp (typename, "union ", 6))
3197 typename += 6;
3198 if (!strncmp (typename, "enum ", 5))
3199 typename += 5;
3200
3201 for (ppt = file_symbols; ppt; ppt = ppt->next)
3202 {
3203 for (i = 0; i < ppt->nsyms; i++)
3204 {
3205 struct symbol *sym = ppt->symbol[i];
3206
3207 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3208 && SYMBOL_NAMESPACE (sym) == STRUCT_NAMESPACE
3209 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
3210 TYPE_CODE (*type))
3211 && STREQ (SYMBOL_NAME (sym), typename))
3212 {
3213 memcpy (*type, SYMBOL_TYPE (sym),
3214 sizeof (struct type));
3215 }
3216 }
3217 }
3218 }
3219 }
3220 break;
3221
3222 case TYPE_CODE_ARRAY:
3223 {
3224 struct type *range_type;
3225 int lower, upper;
3226
3227 if (TYPE_LENGTH (*type) != 0) /* Better be unknown */
3228 goto badtype;
3229 if (TYPE_NFIELDS (*type) != 1)
3230 goto badtype;
3231 range_type = TYPE_FIELD_TYPE (*type, 0);
3232 if (TYPE_CODE (range_type) != TYPE_CODE_RANGE)
3233 goto badtype;
3234
3235 /* Now recompute the length of the array type, based on its
3236 number of elements and the target type's length. */
3237 lower = TYPE_FIELD_BITPOS (range_type, 0);
3238 upper = TYPE_FIELD_BITPOS (range_type, 1);
3239 TYPE_LENGTH (*type) = (upper - lower + 1)
3240 * TYPE_LENGTH (TYPE_TARGET_TYPE (*type));
3241 }
3242 break;
3243
3244 default:
3245 badtype:
3246 error ("GDB internal error. cleanup_undefined_types with bad type %d.", TYPE_CODE (*type));
3247 break;
3248 }
3249 }
3250 undef_types_length = 0;
3251 }
3252
3253 /* Scan through all of the global symbols defined in the object file,
3254 assigning values to the debugging symbols that need to be assigned
3255 to. Get these symbols from the minimal symbol table. */
3256
3257 void
3258 scan_file_globals (objfile)
3259 struct objfile *objfile;
3260 {
3261 int hash;
3262 struct minimal_symbol *msymbol;
3263 struct symbol *sym, *prev;
3264
3265 if (objfile->msymbols == 0) /* Beware the null file. */
3266 return;
3267
3268 for (msymbol = objfile -> msymbols; SYMBOL_NAME (msymbol) != NULL; msymbol++)
3269 {
3270 QUIT;
3271
3272 prev = NULL;
3273
3274 /* Get the hash index and check all the symbols
3275 under that hash index. */
3276
3277 hash = hashname (SYMBOL_NAME (msymbol));
3278
3279 for (sym = global_sym_chain[hash]; sym;)
3280 {
3281 if (SYMBOL_NAME (msymbol)[0] == SYMBOL_NAME (sym)[0] &&
3282 STREQ(SYMBOL_NAME (msymbol) + 1, SYMBOL_NAME (sym) + 1))
3283 {
3284 /* Splice this symbol out of the hash chain and
3285 assign the value we have to it. */
3286 if (prev)
3287 {
3288 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
3289 }
3290 else
3291 {
3292 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
3293 }
3294
3295 /* Check to see whether we need to fix up a common block. */
3296 /* Note: this code might be executed several times for
3297 the same symbol if there are multiple references. */
3298
3299 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
3300 {
3301 fix_common_block (sym, SYMBOL_VALUE_ADDRESS (msymbol));
3302 }
3303 else
3304 {
3305 SYMBOL_VALUE_ADDRESS (sym) = SYMBOL_VALUE_ADDRESS (msymbol);
3306 }
3307
3308 if (prev)
3309 {
3310 sym = SYMBOL_VALUE_CHAIN (prev);
3311 }
3312 else
3313 {
3314 sym = global_sym_chain[hash];
3315 }
3316 }
3317 else
3318 {
3319 prev = sym;
3320 sym = SYMBOL_VALUE_CHAIN (sym);
3321 }
3322 }
3323 }
3324 }
3325
3326 /* Initialize anything that needs initializing when starting to read
3327 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
3328 to a psymtab. */
3329
3330 void
3331 stabsread_init ()
3332 {
3333 }
3334
3335 /* Initialize anything that needs initializing when a completely new
3336 symbol file is specified (not just adding some symbols from another
3337 file, e.g. a shared library). */
3338
3339 void
3340 stabsread_new_init ()
3341 {
3342 /* Empty the hash table of global syms looking for values. */
3343 memset (global_sym_chain, 0, sizeof (global_sym_chain));
3344 }
3345
3346 /* Initialize anything that needs initializing at the same time as
3347 start_symtab() is called. */
3348
3349 void start_stabs ()
3350 {
3351 global_stabs = NULL; /* AIX COFF */
3352 /* Leave FILENUM of 0 free for builtin types and this file's types. */
3353 n_this_object_header_files = 1;
3354 type_vector_length = 0;
3355 type_vector = (struct type **) 0;
3356 }
3357
3358 /* Call after end_symtab() */
3359
3360 void end_stabs ()
3361 {
3362 if (type_vector)
3363 {
3364 free ((char *) type_vector);
3365 }
3366 type_vector = 0;
3367 type_vector_length = 0;
3368 previous_stab_code = 0;
3369 }
3370
3371 void
3372 finish_global_stabs (objfile)
3373 struct objfile *objfile;
3374 {
3375 if (global_stabs)
3376 {
3377 patch_block_stabs (global_symbols, global_stabs, objfile);
3378 free ((PTR) global_stabs);
3379 global_stabs = NULL;
3380 }
3381 }
3382
3383 /* Initializer for this module */
3384
3385 void
3386 _initialize_stabsread ()
3387 {
3388 undef_types_allocated = 20;
3389 undef_types_length = 0;
3390 undef_types = (struct type **)
3391 xmalloc (undef_types_allocated * sizeof (struct type *));
3392 }