Fix a bug in matching notifications.
[binutils-gdb.git] / gdb / stap-probe.c
1 /* SystemTap probe support for GDB.
2
3 Copyright (C) 2012-2013 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "stap-probe.h"
22 #include "probe.h"
23 #include "vec.h"
24 #include "ui-out.h"
25 #include "objfiles.h"
26 #include "arch-utils.h"
27 #include "command.h"
28 #include "gdbcmd.h"
29 #include "filenames.h"
30 #include "value.h"
31 #include "exceptions.h"
32 #include "ax.h"
33 #include "ax-gdb.h"
34 #include "complaints.h"
35 #include "cli/cli-utils.h"
36 #include "linespec.h"
37 #include "user-regs.h"
38 #include "parser-defs.h"
39 #include "language.h"
40 #include "elf-bfd.h"
41
42 #include <ctype.h>
43
44 /* The name of the SystemTap section where we will find information about
45 the probes. */
46
47 #define STAP_BASE_SECTION_NAME ".stapsdt.base"
48
49 /* Forward declaration. */
50
51 static const struct probe_ops stap_probe_ops;
52
53 /* Should we display debug information for the probe's argument expression
54 parsing? */
55
56 static unsigned int stap_expression_debug = 0;
57
58 /* The various possibilities of bitness defined for a probe's argument.
59
60 The relationship is:
61
62 - STAP_ARG_BITNESS_UNDEFINED: The user hasn't specified the bitness.
63 - STAP_ARG_BITNESS_32BIT_UNSIGNED: argument string starts with `4@'.
64 - STAP_ARG_BITNESS_32BIT_SIGNED: argument string starts with `-4@'.
65 - STAP_ARG_BITNESS_64BIT_UNSIGNED: argument string starts with `8@'.
66 - STAP_ARG_BITNESS_64BIT_SIGNED: argument string starts with `-8@'. */
67
68 enum stap_arg_bitness
69 {
70 STAP_ARG_BITNESS_UNDEFINED,
71 STAP_ARG_BITNESS_32BIT_UNSIGNED,
72 STAP_ARG_BITNESS_32BIT_SIGNED,
73 STAP_ARG_BITNESS_64BIT_UNSIGNED,
74 STAP_ARG_BITNESS_64BIT_SIGNED,
75 };
76
77 /* The following structure represents a single argument for the probe. */
78
79 struct stap_probe_arg
80 {
81 /* The bitness of this argument. */
82 enum stap_arg_bitness bitness;
83
84 /* The corresponding `struct type *' to the bitness. */
85 struct type *atype;
86
87 /* The argument converted to an internal GDB expression. */
88 struct expression *aexpr;
89 };
90
91 typedef struct stap_probe_arg stap_probe_arg_s;
92 DEF_VEC_O (stap_probe_arg_s);
93
94 struct stap_probe
95 {
96 /* Generic information about the probe. This shall be the first element
97 of this struct, in order to maintain binary compatibility with the
98 `struct probe' and be able to fully abstract it. */
99 struct probe p;
100
101 /* If the probe has a semaphore associated, then this is the value of
102 it. */
103 CORE_ADDR sem_addr;
104
105 unsigned int args_parsed : 1;
106 union
107 {
108 const char *text;
109
110 /* Information about each argument. This is an array of `stap_probe_arg',
111 with each entry representing one argument. */
112 VEC (stap_probe_arg_s) *vec;
113 }
114 args_u;
115 };
116
117 /* When parsing the arguments, we have to establish different precedences
118 for the various kinds of asm operators. This enumeration represents those
119 precedences.
120
121 This logic behind this is available at
122 <http://sourceware.org/binutils/docs/as/Infix-Ops.html#Infix-Ops>, or using
123 the command "info '(as)Infix Ops'". */
124
125 enum stap_operand_prec
126 {
127 /* Lowest precedence, used for non-recognized operands or for the beginning
128 of the parsing process. */
129 STAP_OPERAND_PREC_NONE = 0,
130
131 /* Precedence of logical OR. */
132 STAP_OPERAND_PREC_LOGICAL_OR,
133
134 /* Precedence of logical AND. */
135 STAP_OPERAND_PREC_LOGICAL_AND,
136
137 /* Precedence of additive (plus, minus) and comparative (equal, less,
138 greater-than, etc) operands. */
139 STAP_OPERAND_PREC_ADD_CMP,
140
141 /* Precedence of bitwise operands (bitwise OR, XOR, bitwise AND,
142 logical NOT). */
143 STAP_OPERAND_PREC_BITWISE,
144
145 /* Precedence of multiplicative operands (multiplication, division,
146 remainder, left shift and right shift). */
147 STAP_OPERAND_PREC_MUL
148 };
149
150 static void stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
151 enum stap_operand_prec prec);
152
153 static void stap_parse_argument_conditionally (struct stap_parse_info *p);
154
155 /* Returns 1 if *S is an operator, zero otherwise. */
156
157 static int stap_is_operator (const char *op);
158
159 static void
160 show_stapexpressiondebug (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("SystemTap Probe expression debugging is %s.\n"),
164 value);
165 }
166
167 /* Returns the operator precedence level of OP, or STAP_OPERAND_PREC_NONE
168 if the operator code was not recognized. */
169
170 static enum stap_operand_prec
171 stap_get_operator_prec (enum exp_opcode op)
172 {
173 switch (op)
174 {
175 case BINOP_LOGICAL_OR:
176 return STAP_OPERAND_PREC_LOGICAL_OR;
177
178 case BINOP_LOGICAL_AND:
179 return STAP_OPERAND_PREC_LOGICAL_AND;
180
181 case BINOP_ADD:
182 case BINOP_SUB:
183 case BINOP_EQUAL:
184 case BINOP_NOTEQUAL:
185 case BINOP_LESS:
186 case BINOP_LEQ:
187 case BINOP_GTR:
188 case BINOP_GEQ:
189 return STAP_OPERAND_PREC_ADD_CMP;
190
191 case BINOP_BITWISE_IOR:
192 case BINOP_BITWISE_AND:
193 case BINOP_BITWISE_XOR:
194 case UNOP_LOGICAL_NOT:
195 return STAP_OPERAND_PREC_BITWISE;
196
197 case BINOP_MUL:
198 case BINOP_DIV:
199 case BINOP_REM:
200 case BINOP_LSH:
201 case BINOP_RSH:
202 return STAP_OPERAND_PREC_MUL;
203
204 default:
205 return STAP_OPERAND_PREC_NONE;
206 }
207 }
208
209 /* Given S, read the operator in it and fills the OP pointer with its code.
210 Return 1 on success, zero if the operator was not recognized. */
211
212 static enum exp_opcode
213 stap_get_opcode (const char **s)
214 {
215 const char c = **s;
216 enum exp_opcode op;
217
218 *s += 1;
219
220 switch (c)
221 {
222 case '*':
223 op = BINOP_MUL;
224 break;
225
226 case '/':
227 op = BINOP_DIV;
228 break;
229
230 case '%':
231 op = BINOP_REM;
232 break;
233
234 case '<':
235 op = BINOP_LESS;
236 if (**s == '<')
237 {
238 *s += 1;
239 op = BINOP_LSH;
240 }
241 else if (**s == '=')
242 {
243 *s += 1;
244 op = BINOP_LEQ;
245 }
246 else if (**s == '>')
247 {
248 *s += 1;
249 op = BINOP_NOTEQUAL;
250 }
251 break;
252
253 case '>':
254 op = BINOP_GTR;
255 if (**s == '>')
256 {
257 *s += 1;
258 op = BINOP_RSH;
259 }
260 else if (**s == '=')
261 {
262 *s += 1;
263 op = BINOP_GEQ;
264 }
265 break;
266
267 case '|':
268 op = BINOP_BITWISE_IOR;
269 if (**s == '|')
270 {
271 *s += 1;
272 op = BINOP_LOGICAL_OR;
273 }
274 break;
275
276 case '&':
277 op = BINOP_BITWISE_AND;
278 if (**s == '&')
279 {
280 *s += 1;
281 op = BINOP_LOGICAL_AND;
282 }
283 break;
284
285 case '^':
286 op = BINOP_BITWISE_XOR;
287 break;
288
289 case '!':
290 op = UNOP_LOGICAL_NOT;
291 break;
292
293 case '+':
294 op = BINOP_ADD;
295 break;
296
297 case '-':
298 op = BINOP_SUB;
299 break;
300
301 case '=':
302 gdb_assert (**s == '=');
303 op = BINOP_EQUAL;
304 break;
305
306 default:
307 internal_error (__FILE__, __LINE__,
308 _("Invalid opcode in expression `%s' for SystemTap"
309 "probe"), *s);
310 }
311
312 return op;
313 }
314
315 /* Given the bitness of the argument, represented by B, return the
316 corresponding `struct type *'. */
317
318 static struct type *
319 stap_get_expected_argument_type (struct gdbarch *gdbarch,
320 enum stap_arg_bitness b)
321 {
322 switch (b)
323 {
324 case STAP_ARG_BITNESS_UNDEFINED:
325 if (gdbarch_addr_bit (gdbarch) == 32)
326 return builtin_type (gdbarch)->builtin_uint32;
327 else
328 return builtin_type (gdbarch)->builtin_uint64;
329
330 case STAP_ARG_BITNESS_32BIT_SIGNED:
331 return builtin_type (gdbarch)->builtin_int32;
332
333 case STAP_ARG_BITNESS_32BIT_UNSIGNED:
334 return builtin_type (gdbarch)->builtin_uint32;
335
336 case STAP_ARG_BITNESS_64BIT_SIGNED:
337 return builtin_type (gdbarch)->builtin_int64;
338
339 case STAP_ARG_BITNESS_64BIT_UNSIGNED:
340 return builtin_type (gdbarch)->builtin_uint64;
341
342 default:
343 internal_error (__FILE__, __LINE__,
344 _("Undefined bitness for probe."));
345 break;
346 }
347 }
348
349 /* Function responsible for parsing a register operand according to
350 SystemTap parlance. Assuming:
351
352 RP = register prefix
353 RS = register suffix
354 RIP = register indirection prefix
355 RIS = register indirection suffix
356
357 Then a register operand can be:
358
359 [RIP] [RP] REGISTER [RS] [RIS]
360
361 This function takes care of a register's indirection, displacement and
362 direct access. It also takes into consideration the fact that some
363 registers are named differently inside and outside GDB, e.g., PPC's
364 general-purpose registers are represented by integers in the assembly
365 language (e.g., `15' is the 15th general-purpose register), but inside
366 GDB they have a prefix (the letter `r') appended. */
367
368 static void
369 stap_parse_register_operand (struct stap_parse_info *p)
370 {
371 /* Simple flag to indicate whether we have seen a minus signal before
372 certain number. */
373 int got_minus = 0;
374
375 /* Flags to indicate whether this register access is being displaced and/or
376 indirected. */
377 int disp_p = 0, indirect_p = 0;
378 struct gdbarch *gdbarch = p->gdbarch;
379
380 /* Needed to generate the register name as a part of an expression. */
381 struct stoken str;
382
383 /* Variables used to extract the register name from the probe's
384 argument. */
385 const char *start;
386 char *regname;
387 int len;
388
389 /* Prefixes for the parser. */
390 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
391 const char *reg_ind_prefix
392 = gdbarch_stap_register_indirection_prefix (gdbarch);
393 const char *gdb_reg_prefix = gdbarch_stap_gdb_register_prefix (gdbarch);
394 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
395 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
396 int gdb_reg_prefix_len = gdb_reg_prefix ? strlen (gdb_reg_prefix) : 0;
397
398 /* Suffixes for the parser. */
399 const char *reg_suffix = gdbarch_stap_register_suffix (gdbarch);
400 const char *reg_ind_suffix
401 = gdbarch_stap_register_indirection_suffix (gdbarch);
402 const char *gdb_reg_suffix = gdbarch_stap_gdb_register_suffix (gdbarch);
403 int reg_suffix_len = reg_suffix ? strlen (reg_suffix) : 0;
404 int reg_ind_suffix_len = reg_ind_suffix ? strlen (reg_ind_suffix) : 0;
405 int gdb_reg_suffix_len = gdb_reg_suffix ? strlen (gdb_reg_suffix) : 0;
406
407 /* Checking for a displacement argument. */
408 if (*p->arg == '+')
409 {
410 /* If it's a plus sign, we don't need to do anything, just advance the
411 pointer. */
412 ++p->arg;
413 }
414
415 if (*p->arg == '-')
416 {
417 got_minus = 1;
418 ++p->arg;
419 }
420
421 if (isdigit (*p->arg))
422 {
423 /* The value of the displacement. */
424 long displacement;
425 char *endp;
426
427 disp_p = 1;
428 displacement = strtol (p->arg, &endp, 10);
429 p->arg = endp;
430
431 /* Generating the expression for the displacement. */
432 write_exp_elt_opcode (OP_LONG);
433 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
434 write_exp_elt_longcst (displacement);
435 write_exp_elt_opcode (OP_LONG);
436 if (got_minus)
437 write_exp_elt_opcode (UNOP_NEG);
438 }
439
440 /* Getting rid of register indirection prefix. */
441 if (reg_ind_prefix
442 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0)
443 {
444 indirect_p = 1;
445 p->arg += reg_ind_prefix_len;
446 }
447
448 if (disp_p && !indirect_p)
449 error (_("Invalid register displacement syntax on expression `%s'."),
450 p->saved_arg);
451
452 /* Getting rid of register prefix. */
453 if (reg_prefix && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
454 p->arg += reg_prefix_len;
455
456 /* Now we should have only the register name. Let's extract it and get
457 the associated number. */
458 start = p->arg;
459
460 /* We assume the register name is composed by letters and numbers. */
461 while (isalnum (*p->arg))
462 ++p->arg;
463
464 len = p->arg - start;
465
466 regname = alloca (len + gdb_reg_prefix_len + gdb_reg_suffix_len + 1);
467 regname[0] = '\0';
468
469 /* We only add the GDB's register prefix/suffix if we are dealing with
470 a numeric register. */
471 if (gdb_reg_prefix && isdigit (*start))
472 {
473 strncpy (regname, gdb_reg_prefix, gdb_reg_prefix_len);
474 strncpy (regname + gdb_reg_prefix_len, start, len);
475
476 if (gdb_reg_suffix)
477 strncpy (regname + gdb_reg_prefix_len + len,
478 gdb_reg_suffix, gdb_reg_suffix_len);
479
480 len += gdb_reg_prefix_len + gdb_reg_suffix_len;
481 }
482 else
483 strncpy (regname, start, len);
484
485 regname[len] = '\0';
486
487 /* Is this a valid register name? */
488 if (user_reg_map_name_to_regnum (gdbarch, regname, len) == -1)
489 error (_("Invalid register name `%s' on expression `%s'."),
490 regname, p->saved_arg);
491
492 write_exp_elt_opcode (OP_REGISTER);
493 str.ptr = regname;
494 str.length = len;
495 write_exp_string (str);
496 write_exp_elt_opcode (OP_REGISTER);
497
498 if (indirect_p)
499 {
500 if (disp_p)
501 write_exp_elt_opcode (BINOP_ADD);
502
503 /* Casting to the expected type. */
504 write_exp_elt_opcode (UNOP_CAST);
505 write_exp_elt_type (lookup_pointer_type (p->arg_type));
506 write_exp_elt_opcode (UNOP_CAST);
507
508 write_exp_elt_opcode (UNOP_IND);
509 }
510
511 /* Getting rid of the register name suffix. */
512 if (reg_suffix)
513 {
514 if (strncmp (p->arg, reg_suffix, reg_suffix_len) != 0)
515 error (_("Missing register name suffix `%s' on expression `%s'."),
516 reg_suffix, p->saved_arg);
517
518 p->arg += reg_suffix_len;
519 }
520
521 /* Getting rid of the register indirection suffix. */
522 if (indirect_p && reg_ind_suffix)
523 {
524 if (strncmp (p->arg, reg_ind_suffix, reg_ind_suffix_len) != 0)
525 error (_("Missing indirection suffix `%s' on expression `%s'."),
526 reg_ind_suffix, p->saved_arg);
527
528 p->arg += reg_ind_suffix_len;
529 }
530 }
531
532 /* This function is responsible for parsing a single operand.
533
534 A single operand can be:
535
536 - an unary operation (e.g., `-5', `~2', or even with subexpressions
537 like `-(2 + 1)')
538 - a register displacement, which will be treated as a register
539 operand (e.g., `-4(%eax)' on x86)
540 - a numeric constant, or
541 - a register operand (see function `stap_parse_register_operand')
542
543 The function also calls special-handling functions to deal with
544 unrecognized operands, allowing arch-specific parsers to be
545 created. */
546
547 static void
548 stap_parse_single_operand (struct stap_parse_info *p)
549 {
550 struct gdbarch *gdbarch = p->gdbarch;
551
552 /* Prefixes for the parser. */
553 const char *const_prefix = gdbarch_stap_integer_prefix (gdbarch);
554 const char *reg_prefix = gdbarch_stap_register_prefix (gdbarch);
555 const char *reg_ind_prefix
556 = gdbarch_stap_register_indirection_prefix (gdbarch);
557 int const_prefix_len = const_prefix ? strlen (const_prefix) : 0;
558 int reg_prefix_len = reg_prefix ? strlen (reg_prefix) : 0;
559 int reg_ind_prefix_len = reg_ind_prefix ? strlen (reg_ind_prefix) : 0;
560
561 /* Suffixes for the parser. */
562 const char *const_suffix = gdbarch_stap_integer_suffix (gdbarch);
563 int const_suffix_len = const_suffix ? strlen (const_suffix) : 0;
564
565 /* We first try to parse this token as a "special token". */
566 if (gdbarch_stap_parse_special_token_p (gdbarch))
567 {
568 int ret = gdbarch_stap_parse_special_token (gdbarch, p);
569
570 if (ret)
571 {
572 /* If the return value of the above function is not zero,
573 it means it successfully parsed the special token.
574
575 If it is NULL, we try to parse it using our method. */
576 return;
577 }
578 }
579
580 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+')
581 {
582 char c = *p->arg;
583 int number;
584
585 /* We use this variable to do a lookahead. */
586 const char *tmp = p->arg;
587
588 ++tmp;
589
590 /* This is an unary operation. Here is a list of allowed tokens
591 here:
592
593 - numeric literal;
594 - number (from register displacement)
595 - subexpression (beginning with `(')
596
597 We handle the register displacement here, and the other cases
598 recursively. */
599 if (p->inside_paren_p)
600 tmp = skip_spaces_const (tmp);
601
602 if (isdigit (*tmp))
603 {
604 char *endp;
605
606 number = strtol (tmp, &endp, 10);
607 tmp = endp;
608 }
609
610 if (!reg_ind_prefix
611 || strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
612 {
613 /* This is not a displacement. We skip the operator, and deal
614 with it later. */
615 ++p->arg;
616 stap_parse_argument_conditionally (p);
617 if (c == '-')
618 write_exp_elt_opcode (UNOP_NEG);
619 else if (c == '~')
620 write_exp_elt_opcode (UNOP_COMPLEMENT);
621 }
622 else
623 {
624 /* If we are here, it means it is a displacement. The only
625 operations allowed here are `-' and `+'. */
626 if (c == '~')
627 error (_("Invalid operator `%c' for register displacement "
628 "on expression `%s'."), c, p->saved_arg);
629
630 stap_parse_register_operand (p);
631 }
632 }
633 else if (isdigit (*p->arg))
634 {
635 /* A temporary variable, needed for lookahead. */
636 const char *tmp = p->arg;
637 char *endp;
638 long number;
639
640 /* We can be dealing with a numeric constant (if `const_prefix' is
641 NULL), or with a register displacement. */
642 number = strtol (tmp, &endp, 10);
643 tmp = endp;
644
645 if (p->inside_paren_p)
646 tmp = skip_spaces_const (tmp);
647 if (!const_prefix && reg_ind_prefix
648 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) != 0)
649 {
650 /* We are dealing with a numeric constant. */
651 write_exp_elt_opcode (OP_LONG);
652 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
653 write_exp_elt_longcst (number);
654 write_exp_elt_opcode (OP_LONG);
655
656 p->arg = tmp;
657
658 if (const_suffix)
659 {
660 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
661 p->arg += const_suffix_len;
662 else
663 error (_("Invalid constant suffix on expression `%s'."),
664 p->saved_arg);
665 }
666 }
667 else if (reg_ind_prefix
668 && strncmp (tmp, reg_ind_prefix, reg_ind_prefix_len) == 0)
669 stap_parse_register_operand (p);
670 else
671 error (_("Unknown numeric token on expression `%s'."),
672 p->saved_arg);
673 }
674 else if (const_prefix
675 && strncmp (p->arg, const_prefix, const_prefix_len) == 0)
676 {
677 /* We are dealing with a numeric constant. */
678 long number;
679 char *endp;
680
681 p->arg += const_prefix_len;
682 number = strtol (p->arg, &endp, 10);
683 p->arg = endp;
684
685 write_exp_elt_opcode (OP_LONG);
686 write_exp_elt_type (builtin_type (gdbarch)->builtin_long);
687 write_exp_elt_longcst (number);
688 write_exp_elt_opcode (OP_LONG);
689
690 if (const_suffix)
691 {
692 if (strncmp (p->arg, const_suffix, const_suffix_len) == 0)
693 p->arg += const_suffix_len;
694 else
695 error (_("Invalid constant suffix on expression `%s'."),
696 p->saved_arg);
697 }
698 }
699 else if ((reg_prefix
700 && strncmp (p->arg, reg_prefix, reg_prefix_len) == 0)
701 || (reg_ind_prefix
702 && strncmp (p->arg, reg_ind_prefix, reg_ind_prefix_len) == 0))
703 stap_parse_register_operand (p);
704 else
705 error (_("Operator `%c' not recognized on expression `%s'."),
706 *p->arg, p->saved_arg);
707 }
708
709 /* This function parses an argument conditionally, based on single or
710 non-single operands. A non-single operand would be a parenthesized
711 expression (e.g., `(2 + 1)'), and a single operand is anything that
712 starts with `-', `~', `+' (i.e., unary operators), a digit, or
713 something recognized by `gdbarch_stap_is_single_operand'. */
714
715 static void
716 stap_parse_argument_conditionally (struct stap_parse_info *p)
717 {
718 if (*p->arg == '-' || *p->arg == '~' || *p->arg == '+' /* Unary. */
719 || isdigit (*p->arg)
720 || gdbarch_stap_is_single_operand (p->gdbarch, p->arg))
721 stap_parse_single_operand (p);
722 else if (*p->arg == '(')
723 {
724 /* We are dealing with a parenthesized operand. It means we
725 have to parse it as it was a separate expression, without
726 left-side or precedence. */
727 ++p->arg;
728 p->arg = skip_spaces_const (p->arg);
729 ++p->inside_paren_p;
730
731 stap_parse_argument_1 (p, 0, STAP_OPERAND_PREC_NONE);
732
733 --p->inside_paren_p;
734 if (*p->arg != ')')
735 error (_("Missign close-paren on expression `%s'."),
736 p->saved_arg);
737
738 ++p->arg;
739 if (p->inside_paren_p)
740 p->arg = skip_spaces_const (p->arg);
741 }
742 else
743 error (_("Cannot parse expression `%s'."), p->saved_arg);
744 }
745
746 /* Helper function for `stap_parse_argument'. Please, see its comments to
747 better understand what this function does. */
748
749 static void
750 stap_parse_argument_1 (struct stap_parse_info *p, int has_lhs,
751 enum stap_operand_prec prec)
752 {
753 /* This is an operator-precedence parser.
754
755 We work with left- and right-sides of expressions, and
756 parse them depending on the precedence of the operators
757 we find. */
758
759 if (p->inside_paren_p)
760 p->arg = skip_spaces_const (p->arg);
761
762 if (!has_lhs)
763 {
764 /* We were called without a left-side, either because this is the
765 first call, or because we were called to parse a parenthesized
766 expression. It doesn't really matter; we have to parse the
767 left-side in order to continue the process. */
768 stap_parse_argument_conditionally (p);
769 }
770
771 /* Start to parse the right-side, and to "join" left and right sides
772 depending on the operation specified.
773
774 This loop shall continue until we run out of characters in the input,
775 or until we find a close-parenthesis, which means that we've reached
776 the end of a sub-expression. */
777 while (p->arg && *p->arg && *p->arg != ')' && !isspace (*p->arg))
778 {
779 const char *tmp_exp_buf;
780 enum exp_opcode opcode;
781 enum stap_operand_prec cur_prec;
782
783 if (!stap_is_operator (p->arg))
784 error (_("Invalid operator `%c' on expression `%s'."), *p->arg,
785 p->saved_arg);
786
787 /* We have to save the current value of the expression buffer because
788 the `stap_get_opcode' modifies it in order to get the current
789 operator. If this operator's precedence is lower than PREC, we
790 should return and not advance the expression buffer pointer. */
791 tmp_exp_buf = p->arg;
792 opcode = stap_get_opcode (&tmp_exp_buf);
793
794 cur_prec = stap_get_operator_prec (opcode);
795 if (cur_prec < prec)
796 {
797 /* If the precedence of the operator that we are seeing now is
798 lower than the precedence of the first operator seen before
799 this parsing process began, it means we should stop parsing
800 and return. */
801 break;
802 }
803
804 p->arg = tmp_exp_buf;
805 if (p->inside_paren_p)
806 p->arg = skip_spaces_const (p->arg);
807
808 /* Parse the right-side of the expression. */
809 stap_parse_argument_conditionally (p);
810
811 /* While we still have operators, try to parse another
812 right-side, but using the current right-side as a left-side. */
813 while (*p->arg && stap_is_operator (p->arg))
814 {
815 enum exp_opcode lookahead_opcode;
816 enum stap_operand_prec lookahead_prec;
817
818 /* Saving the current expression buffer position. The explanation
819 is the same as above. */
820 tmp_exp_buf = p->arg;
821 lookahead_opcode = stap_get_opcode (&tmp_exp_buf);
822 lookahead_prec = stap_get_operator_prec (lookahead_opcode);
823
824 if (lookahead_prec <= prec)
825 {
826 /* If we are dealing with an operator whose precedence is lower
827 than the first one, just abandon the attempt. */
828 break;
829 }
830
831 /* Parse the right-side of the expression, but since we already
832 have a left-side at this point, set `has_lhs' to 1. */
833 stap_parse_argument_1 (p, 1, lookahead_prec);
834 }
835
836 write_exp_elt_opcode (opcode);
837 }
838 }
839
840 /* Parse a probe's argument.
841
842 Assuming that:
843
844 LP = literal integer prefix
845 LS = literal integer suffix
846
847 RP = register prefix
848 RS = register suffix
849
850 RIP = register indirection prefix
851 RIS = register indirection suffix
852
853 This routine assumes that arguments' tokens are of the form:
854
855 - [LP] NUMBER [LS]
856 - [RP] REGISTER [RS]
857 - [RIP] [RP] REGISTER [RS] [RIS]
858 - If we find a number without LP, we try to parse it as a literal integer
859 constant (if LP == NULL), or as a register displacement.
860 - We count parenthesis, and only skip whitespaces if we are inside them.
861 - If we find an operator, we skip it.
862
863 This function can also call a special function that will try to match
864 unknown tokens. It will return 1 if the argument has been parsed
865 successfully, or zero otherwise. */
866
867 static struct expression *
868 stap_parse_argument (const char **arg, struct type *atype,
869 struct gdbarch *gdbarch)
870 {
871 struct stap_parse_info p;
872 struct cleanup *back_to;
873
874 /* We need to initialize the expression buffer, in order to begin
875 our parsing efforts. The language here does not matter, since we
876 are using our own parser. */
877 initialize_expout (10, current_language, gdbarch);
878 back_to = make_cleanup (free_current_contents, &expout);
879
880 p.saved_arg = *arg;
881 p.arg = *arg;
882 p.arg_type = atype;
883 p.gdbarch = gdbarch;
884 p.inside_paren_p = 0;
885
886 stap_parse_argument_1 (&p, 0, STAP_OPERAND_PREC_NONE);
887
888 discard_cleanups (back_to);
889
890 gdb_assert (p.inside_paren_p == 0);
891
892 /* Casting the final expression to the appropriate type. */
893 write_exp_elt_opcode (UNOP_CAST);
894 write_exp_elt_type (atype);
895 write_exp_elt_opcode (UNOP_CAST);
896
897 reallocate_expout ();
898
899 p.arg = skip_spaces_const (p.arg);
900 *arg = p.arg;
901
902 return expout;
903 }
904
905 /* Function which parses an argument string from PROBE, correctly splitting
906 the arguments and storing their information in properly ways.
907
908 Consider the following argument string (x86 syntax):
909
910 `4@%eax 4@$10'
911
912 We have two arguments, `%eax' and `$10', both with 32-bit unsigned bitness.
913 This function basically handles them, properly filling some structures with
914 this information. */
915
916 static void
917 stap_parse_probe_arguments (struct stap_probe *probe)
918 {
919 const char *cur;
920 struct gdbarch *gdbarch = get_objfile_arch (probe->p.objfile);
921
922 gdb_assert (!probe->args_parsed);
923 cur = probe->args_u.text;
924 probe->args_parsed = 1;
925 probe->args_u.vec = NULL;
926
927 if (!cur || !*cur || *cur == ':')
928 return;
929
930 while (*cur)
931 {
932 struct stap_probe_arg arg;
933 enum stap_arg_bitness b;
934 int got_minus = 0;
935 struct expression *expr;
936
937 memset (&arg, 0, sizeof (arg));
938
939 /* We expect to find something like:
940
941 N@OP
942
943 Where `N' can be [+,-][4,8]. This is not mandatory, so
944 we check it here. If we don't find it, go to the next
945 state. */
946 if ((*cur == '-' && cur[1] && cur[2] != '@')
947 && cur[1] != '@')
948 arg.bitness = STAP_ARG_BITNESS_UNDEFINED;
949 else
950 {
951 if (*cur == '-')
952 {
953 /* Discard the `-'. */
954 ++cur;
955 got_minus = 1;
956 }
957
958 if (*cur == '4')
959 b = (got_minus ? STAP_ARG_BITNESS_32BIT_SIGNED
960 : STAP_ARG_BITNESS_32BIT_UNSIGNED);
961 else if (*cur == '8')
962 b = (got_minus ? STAP_ARG_BITNESS_64BIT_SIGNED
963 : STAP_ARG_BITNESS_64BIT_UNSIGNED);
964 else
965 {
966 /* We have an error, because we don't expect anything
967 except 4 and 8. */
968 complaint (&symfile_complaints,
969 _("unrecognized bitness `%c' for probe `%s'"),
970 *cur, probe->p.name);
971 return;
972 }
973
974 arg.bitness = b;
975 arg.atype = stap_get_expected_argument_type (gdbarch, b);
976
977 /* Discard the number and the `@' sign. */
978 cur += 2;
979 }
980
981 expr = stap_parse_argument (&cur, arg.atype, gdbarch);
982
983 if (stap_expression_debug)
984 dump_raw_expression (expr, gdb_stdlog,
985 "before conversion to prefix form");
986
987 prefixify_expression (expr);
988
989 if (stap_expression_debug)
990 dump_prefix_expression (expr, gdb_stdlog);
991
992 arg.aexpr = expr;
993
994 /* Start it over again. */
995 cur = skip_spaces_const (cur);
996
997 VEC_safe_push (stap_probe_arg_s, probe->args_u.vec, &arg);
998 }
999 }
1000
1001 /* Given PROBE, returns the number of arguments present in that probe's
1002 argument string. */
1003
1004 static unsigned
1005 stap_get_probe_argument_count (struct probe *probe_generic)
1006 {
1007 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1008
1009 gdb_assert (probe_generic->pops == &stap_probe_ops);
1010
1011 if (!probe->args_parsed)
1012 {
1013 if (probe_generic->pops->can_evaluate_probe_arguments (probe_generic))
1014 stap_parse_probe_arguments (probe);
1015 else
1016 {
1017 static int have_warned_stap_incomplete = 0;
1018
1019 if (!have_warned_stap_incomplete)
1020 {
1021 warning (_(
1022 "The SystemTap SDT probe support is not fully implemented on this target;\n"
1023 "you will not be able to inspect the arguments of the probes.\n"
1024 "Please report a bug against GDB requesting a port to this target."));
1025 have_warned_stap_incomplete = 1;
1026 }
1027
1028 /* Marking the arguments as "already parsed". */
1029 probe->args_u.vec = NULL;
1030 probe->args_parsed = 1;
1031 }
1032 }
1033
1034 gdb_assert (probe->args_parsed);
1035 return VEC_length (stap_probe_arg_s, probe->args_u.vec);
1036 }
1037
1038 /* Return 1 if OP is a valid operator inside a probe argument, or zero
1039 otherwise. */
1040
1041 static int
1042 stap_is_operator (const char *op)
1043 {
1044 int ret = 1;
1045
1046 switch (*op)
1047 {
1048 case '*':
1049 case '/':
1050 case '%':
1051 case '^':
1052 case '!':
1053 case '+':
1054 case '-':
1055 case '<':
1056 case '>':
1057 case '|':
1058 case '&':
1059 break;
1060
1061 case '=':
1062 if (op[1] != '=')
1063 ret = 0;
1064 break;
1065
1066 default:
1067 /* We didn't find any operator. */
1068 ret = 0;
1069 }
1070
1071 return ret;
1072 }
1073
1074 static struct stap_probe_arg *
1075 stap_get_arg (struct stap_probe *probe, unsigned n)
1076 {
1077 if (!probe->args_parsed)
1078 stap_parse_probe_arguments (probe);
1079
1080 return VEC_index (stap_probe_arg_s, probe->args_u.vec, n);
1081 }
1082
1083 /* Implement the `can_evaluate_probe_arguments' method of probe_ops. */
1084
1085 static int
1086 stap_can_evaluate_probe_arguments (struct probe *probe_generic)
1087 {
1088 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1089 struct gdbarch *gdbarch = get_objfile_arch (stap_probe->p.objfile);
1090
1091 /* For SystemTap probes, we have to guarantee that the method
1092 stap_is_single_operand is defined on gdbarch. If it is not, then it
1093 means that argument evaluation is not implemented on this target. */
1094 return gdbarch_stap_is_single_operand_p (gdbarch);
1095 }
1096
1097 /* Evaluate the probe's argument N (indexed from 0), returning a value
1098 corresponding to it. Assertion is thrown if N does not exist. */
1099
1100 static struct value *
1101 stap_evaluate_probe_argument (struct probe *probe_generic, unsigned n)
1102 {
1103 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1104 struct stap_probe_arg *arg;
1105 int pos = 0;
1106
1107 gdb_assert (probe_generic->pops == &stap_probe_ops);
1108
1109 arg = stap_get_arg (stap_probe, n);
1110 return evaluate_subexp_standard (arg->atype, arg->aexpr, &pos, EVAL_NORMAL);
1111 }
1112
1113 /* Compile the probe's argument N (indexed from 0) to agent expression.
1114 Assertion is thrown if N does not exist. */
1115
1116 static void
1117 stap_compile_to_ax (struct probe *probe_generic, struct agent_expr *expr,
1118 struct axs_value *value, unsigned n)
1119 {
1120 struct stap_probe *stap_probe = (struct stap_probe *) probe_generic;
1121 struct stap_probe_arg *arg;
1122 union exp_element *pc;
1123
1124 gdb_assert (probe_generic->pops == &stap_probe_ops);
1125
1126 arg = stap_get_arg (stap_probe, n);
1127
1128 pc = arg->aexpr->elts;
1129 gen_expr (arg->aexpr, &pc, expr, value);
1130
1131 require_rvalue (expr, value);
1132 value->type = arg->atype;
1133 }
1134
1135 /* Destroy (free) the data related to PROBE. PROBE memory itself is not feed
1136 as it is allocated from OBJFILE_OBSTACK. */
1137
1138 static void
1139 stap_probe_destroy (struct probe *probe_generic)
1140 {
1141 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1142
1143 gdb_assert (probe_generic->pops == &stap_probe_ops);
1144
1145 if (probe->args_parsed)
1146 {
1147 struct stap_probe_arg *arg;
1148 int ix;
1149
1150 for (ix = 0; VEC_iterate (stap_probe_arg_s, probe->args_u.vec, ix, arg);
1151 ++ix)
1152 xfree (arg->aexpr);
1153 VEC_free (stap_probe_arg_s, probe->args_u.vec);
1154 }
1155 }
1156
1157 \f
1158
1159 /* This is called to compute the value of one of the $_probe_arg*
1160 convenience variables. */
1161
1162 static struct value *
1163 compute_probe_arg (struct gdbarch *arch, struct internalvar *ivar,
1164 void *data)
1165 {
1166 struct frame_info *frame = get_selected_frame (_("No frame selected"));
1167 CORE_ADDR pc = get_frame_pc (frame);
1168 int sel = (int) (uintptr_t) data;
1169 struct probe *pc_probe;
1170 const struct sym_probe_fns *pc_probe_fns;
1171 unsigned n_args;
1172
1173 /* SEL == -1 means "_probe_argc". */
1174 gdb_assert (sel >= -1);
1175
1176 pc_probe = find_probe_by_pc (pc);
1177 if (pc_probe == NULL)
1178 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1179
1180 n_args = get_probe_argument_count (pc_probe);
1181 if (sel == -1)
1182 return value_from_longest (builtin_type (arch)->builtin_int, n_args);
1183
1184 if (sel >= n_args)
1185 error (_("Invalid probe argument %d -- probe has %u arguments available"),
1186 sel, n_args);
1187
1188 return evaluate_probe_argument (pc_probe, sel);
1189 }
1190
1191 /* This is called to compile one of the $_probe_arg* convenience
1192 variables into an agent expression. */
1193
1194 static void
1195 compile_probe_arg (struct internalvar *ivar, struct agent_expr *expr,
1196 struct axs_value *value, void *data)
1197 {
1198 CORE_ADDR pc = expr->scope;
1199 int sel = (int) (uintptr_t) data;
1200 struct probe *pc_probe;
1201 const struct sym_probe_fns *pc_probe_fns;
1202 int n_args;
1203
1204 /* SEL == -1 means "_probe_argc". */
1205 gdb_assert (sel >= -1);
1206
1207 pc_probe = find_probe_by_pc (pc);
1208 if (pc_probe == NULL)
1209 error (_("No SystemTap probe at PC %s"), core_addr_to_string (pc));
1210
1211 n_args = get_probe_argument_count (pc_probe);
1212
1213 if (sel == -1)
1214 {
1215 value->kind = axs_rvalue;
1216 value->type = builtin_type (expr->gdbarch)->builtin_int;
1217 ax_const_l (expr, n_args);
1218 return;
1219 }
1220
1221 gdb_assert (sel >= 0);
1222 if (sel >= n_args)
1223 error (_("Invalid probe argument %d -- probe has %d arguments available"),
1224 sel, n_args);
1225
1226 pc_probe->pops->compile_to_ax (pc_probe, expr, value, sel);
1227 }
1228
1229 \f
1230
1231 /* Set or clear a SystemTap semaphore. ADDRESS is the semaphore's
1232 address. SET is zero if the semaphore should be cleared, or one
1233 if it should be set. This is a helper function for `stap_semaphore_down'
1234 and `stap_semaphore_up'. */
1235
1236 static void
1237 stap_modify_semaphore (CORE_ADDR address, int set, struct gdbarch *gdbarch)
1238 {
1239 gdb_byte bytes[sizeof (LONGEST)];
1240 /* The ABI specifies "unsigned short". */
1241 struct type *type = builtin_type (gdbarch)->builtin_unsigned_short;
1242 ULONGEST value;
1243
1244 if (address == 0)
1245 return;
1246
1247 /* Swallow errors. */
1248 if (target_read_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1249 {
1250 warning (_("Could not read the value of a SystemTap semaphore."));
1251 return;
1252 }
1253
1254 value = extract_unsigned_integer (bytes, TYPE_LENGTH (type),
1255 gdbarch_byte_order (gdbarch));
1256 /* Note that we explicitly don't worry about overflow or
1257 underflow. */
1258 if (set)
1259 ++value;
1260 else
1261 --value;
1262
1263 store_unsigned_integer (bytes, TYPE_LENGTH (type),
1264 gdbarch_byte_order (gdbarch), value);
1265
1266 if (target_write_memory (address, bytes, TYPE_LENGTH (type)) != 0)
1267 warning (_("Could not write the value of a SystemTap semaphore."));
1268 }
1269
1270 /* Set a SystemTap semaphore. SEM is the semaphore's address. Semaphores
1271 act as reference counters, so calls to this function must be paired with
1272 calls to `stap_semaphore_down'.
1273
1274 This function and `stap_semaphore_down' race with another tool changing
1275 the probes, but that is too rare to care. */
1276
1277 static void
1278 stap_set_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1279 {
1280 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1281
1282 gdb_assert (probe_generic->pops == &stap_probe_ops);
1283
1284 stap_modify_semaphore (probe->sem_addr, 1, gdbarch);
1285 }
1286
1287 /* Clear a SystemTap semaphore. SEM is the semaphore's address. */
1288
1289 static void
1290 stap_clear_semaphore (struct probe *probe_generic, struct gdbarch *gdbarch)
1291 {
1292 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1293
1294 gdb_assert (probe_generic->pops == &stap_probe_ops);
1295
1296 stap_modify_semaphore (probe->sem_addr, 0, gdbarch);
1297 }
1298
1299 /* Implementation of `$_probe_arg*' set of variables. */
1300
1301 static const struct internalvar_funcs probe_funcs =
1302 {
1303 compute_probe_arg,
1304 compile_probe_arg,
1305 NULL
1306 };
1307
1308 /* Helper function that parses the information contained in a
1309 SystemTap's probe. Basically, the information consists in:
1310
1311 - Probe's PC address;
1312 - Link-time section address of `.stapsdt.base' section;
1313 - Link-time address of the semaphore variable, or ZERO if the
1314 probe doesn't have an associated semaphore;
1315 - Probe's provider name;
1316 - Probe's name;
1317 - Probe's argument format
1318
1319 This function returns 1 if the handling was successful, and zero
1320 otherwise. */
1321
1322 static void
1323 handle_stap_probe (struct objfile *objfile, struct sdt_note *el,
1324 VEC (probe_p) **probesp, CORE_ADDR base)
1325 {
1326 bfd *abfd = objfile->obfd;
1327 int size = bfd_get_arch_size (abfd) / 8;
1328 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1329 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
1330 CORE_ADDR base_ref;
1331 const char *probe_args = NULL;
1332 struct stap_probe *ret;
1333
1334 ret = obstack_alloc (&objfile->objfile_obstack, sizeof (*ret));
1335 ret->p.pops = &stap_probe_ops;
1336 ret->p.objfile = objfile;
1337
1338 /* Provider and the name of the probe. */
1339 ret->p.provider = (char *) &el->data[3 * size];
1340 ret->p.name = memchr (ret->p.provider, '\0',
1341 (char *) el->data + el->size - ret->p.provider);
1342 /* Making sure there is a name. */
1343 if (!ret->p.name)
1344 {
1345 complaint (&symfile_complaints, _("corrupt probe name when "
1346 "reading `%s'"),
1347 objfile_name (objfile));
1348
1349 /* There is no way to use a probe without a name or a provider, so
1350 returning zero here makes sense. */
1351 return;
1352 }
1353 else
1354 ++ret->p.name;
1355
1356 /* Retrieving the probe's address. */
1357 ret->p.address = extract_typed_address (&el->data[0], ptr_type);
1358
1359 /* Link-time sh_addr of `.stapsdt.base' section. */
1360 base_ref = extract_typed_address (&el->data[size], ptr_type);
1361
1362 /* Semaphore address. */
1363 ret->sem_addr = extract_typed_address (&el->data[2 * size], ptr_type);
1364
1365 ret->p.address += (ANOFFSET (objfile->section_offsets,
1366 SECT_OFF_TEXT (objfile))
1367 + base - base_ref);
1368 if (ret->sem_addr)
1369 ret->sem_addr += (ANOFFSET (objfile->section_offsets,
1370 SECT_OFF_DATA (objfile))
1371 + base - base_ref);
1372
1373 /* Arguments. We can only extract the argument format if there is a valid
1374 name for this probe. */
1375 probe_args = memchr (ret->p.name, '\0',
1376 (char *) el->data + el->size - ret->p.name);
1377
1378 if (probe_args != NULL)
1379 ++probe_args;
1380
1381 if (probe_args == NULL || (memchr (probe_args, '\0',
1382 (char *) el->data + el->size - ret->p.name)
1383 != el->data + el->size - 1))
1384 {
1385 complaint (&symfile_complaints, _("corrupt probe argument when "
1386 "reading `%s'"),
1387 objfile_name (objfile));
1388 /* If the argument string is NULL, it means some problem happened with
1389 it. So we return 0. */
1390 return;
1391 }
1392
1393 ret->args_parsed = 0;
1394 ret->args_u.text = (void *) probe_args;
1395
1396 /* Successfully created probe. */
1397 VEC_safe_push (probe_p, *probesp, (struct probe *) ret);
1398 }
1399
1400 /* Helper function which tries to find the base address of the SystemTap
1401 base section named STAP_BASE_SECTION_NAME. */
1402
1403 static void
1404 get_stap_base_address_1 (bfd *abfd, asection *sect, void *obj)
1405 {
1406 asection **ret = obj;
1407
1408 if ((sect->flags & (SEC_DATA | SEC_ALLOC | SEC_HAS_CONTENTS))
1409 && sect->name && !strcmp (sect->name, STAP_BASE_SECTION_NAME))
1410 *ret = sect;
1411 }
1412
1413 /* Helper function which iterates over every section in the BFD file,
1414 trying to find the base address of the SystemTap base section.
1415 Returns 1 if found (setting BASE to the proper value), zero otherwise. */
1416
1417 static int
1418 get_stap_base_address (bfd *obfd, bfd_vma *base)
1419 {
1420 asection *ret = NULL;
1421
1422 bfd_map_over_sections (obfd, get_stap_base_address_1, (void *) &ret);
1423
1424 if (!ret)
1425 {
1426 complaint (&symfile_complaints, _("could not obtain base address for "
1427 "SystemTap section on objfile `%s'."),
1428 obfd->filename);
1429 return 0;
1430 }
1431
1432 if (base)
1433 *base = ret->vma;
1434
1435 return 1;
1436 }
1437
1438 /* Helper function for `elf_get_probes', which gathers information about all
1439 SystemTap probes from OBJFILE. */
1440
1441 static void
1442 stap_get_probes (VEC (probe_p) **probesp, struct objfile *objfile)
1443 {
1444 /* If we are here, then this is the first time we are parsing the
1445 SystemTap probe's information. We basically have to count how many
1446 probes the objfile has, and then fill in the necessary information
1447 for each one. */
1448 bfd *obfd = objfile->obfd;
1449 bfd_vma base;
1450 struct sdt_note *iter;
1451 unsigned save_probesp_len = VEC_length (probe_p, *probesp);
1452
1453 if (objfile->separate_debug_objfile_backlink != NULL)
1454 {
1455 /* This is a .debug file, not the objfile itself. */
1456 return;
1457 }
1458
1459 if (!elf_tdata (obfd)->sdt_note_head)
1460 {
1461 /* There isn't any probe here. */
1462 return;
1463 }
1464
1465 if (!get_stap_base_address (obfd, &base))
1466 {
1467 /* There was an error finding the base address for the section.
1468 Just return NULL. */
1469 return;
1470 }
1471
1472 /* Parsing each probe's information. */
1473 for (iter = elf_tdata (obfd)->sdt_note_head; iter; iter = iter->next)
1474 {
1475 /* We first have to handle all the information about the
1476 probe which is present in the section. */
1477 handle_stap_probe (objfile, iter, probesp, base);
1478 }
1479
1480 if (save_probesp_len == VEC_length (probe_p, *probesp))
1481 {
1482 /* If we are here, it means we have failed to parse every known
1483 probe. */
1484 complaint (&symfile_complaints, _("could not parse SystemTap probe(s) "
1485 "from inferior"));
1486 return;
1487 }
1488 }
1489
1490 static void
1491 stap_relocate (struct probe *probe_generic, CORE_ADDR delta)
1492 {
1493 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1494
1495 gdb_assert (probe_generic->pops == &stap_probe_ops);
1496
1497 probe->p.address += delta;
1498 if (probe->sem_addr)
1499 probe->sem_addr += delta;
1500 }
1501
1502 static int
1503 stap_probe_is_linespec (const char **linespecp)
1504 {
1505 static const char *const keywords[] = { "-pstap", "-probe-stap", NULL };
1506
1507 return probe_is_linespec_by_keyword (linespecp, keywords);
1508 }
1509
1510 static void
1511 stap_gen_info_probes_table_header (VEC (info_probe_column_s) **heads)
1512 {
1513 info_probe_column_s stap_probe_column;
1514
1515 stap_probe_column.field_name = "semaphore";
1516 stap_probe_column.print_name = _("Semaphore");
1517
1518 VEC_safe_push (info_probe_column_s, *heads, &stap_probe_column);
1519 }
1520
1521 static void
1522 stap_gen_info_probes_table_values (struct probe *probe_generic,
1523 VEC (const_char_ptr) **ret)
1524 {
1525 struct stap_probe *probe = (struct stap_probe *) probe_generic;
1526 struct gdbarch *gdbarch;
1527 const char *val = NULL;
1528
1529 gdb_assert (probe_generic->pops == &stap_probe_ops);
1530
1531 gdbarch = get_objfile_arch (probe->p.objfile);
1532
1533 if (probe->sem_addr)
1534 val = print_core_address (gdbarch, probe->sem_addr);
1535
1536 VEC_safe_push (const_char_ptr, *ret, val);
1537 }
1538
1539 /* SystemTap probe_ops. */
1540
1541 static const struct probe_ops stap_probe_ops =
1542 {
1543 stap_probe_is_linespec,
1544 stap_get_probes,
1545 stap_relocate,
1546 stap_get_probe_argument_count,
1547 stap_can_evaluate_probe_arguments,
1548 stap_evaluate_probe_argument,
1549 stap_compile_to_ax,
1550 stap_set_semaphore,
1551 stap_clear_semaphore,
1552 stap_probe_destroy,
1553 stap_gen_info_probes_table_header,
1554 stap_gen_info_probes_table_values,
1555 };
1556
1557 /* Implementation of the `info probes stap' command. */
1558
1559 static void
1560 info_probes_stap_command (char *arg, int from_tty)
1561 {
1562 info_probes_for_ops (arg, from_tty, &stap_probe_ops);
1563 }
1564
1565 void _initialize_stap_probe (void);
1566
1567 void
1568 _initialize_stap_probe (void)
1569 {
1570 VEC_safe_push (probe_ops_cp, all_probe_ops, &stap_probe_ops);
1571
1572 add_setshow_zuinteger_cmd ("stap-expression", class_maintenance,
1573 &stap_expression_debug,
1574 _("Set SystemTap expression debugging."),
1575 _("Show SystemTap expression debugging."),
1576 _("When non-zero, the internal representation "
1577 "of SystemTap expressions will be printed."),
1578 NULL,
1579 show_stapexpressiondebug,
1580 &setdebuglist, &showdebuglist);
1581
1582 create_internalvar_type_lazy ("_probe_argc", &probe_funcs,
1583 (void *) (uintptr_t) -1);
1584 create_internalvar_type_lazy ("_probe_arg0", &probe_funcs,
1585 (void *) (uintptr_t) 0);
1586 create_internalvar_type_lazy ("_probe_arg1", &probe_funcs,
1587 (void *) (uintptr_t) 1);
1588 create_internalvar_type_lazy ("_probe_arg2", &probe_funcs,
1589 (void *) (uintptr_t) 2);
1590 create_internalvar_type_lazy ("_probe_arg3", &probe_funcs,
1591 (void *) (uintptr_t) 3);
1592 create_internalvar_type_lazy ("_probe_arg4", &probe_funcs,
1593 (void *) (uintptr_t) 4);
1594 create_internalvar_type_lazy ("_probe_arg5", &probe_funcs,
1595 (void *) (uintptr_t) 5);
1596 create_internalvar_type_lazy ("_probe_arg6", &probe_funcs,
1597 (void *) (uintptr_t) 6);
1598 create_internalvar_type_lazy ("_probe_arg7", &probe_funcs,
1599 (void *) (uintptr_t) 7);
1600 create_internalvar_type_lazy ("_probe_arg8", &probe_funcs,
1601 (void *) (uintptr_t) 8);
1602 create_internalvar_type_lazy ("_probe_arg9", &probe_funcs,
1603 (void *) (uintptr_t) 9);
1604 create_internalvar_type_lazy ("_probe_arg10", &probe_funcs,
1605 (void *) (uintptr_t) 10);
1606 create_internalvar_type_lazy ("_probe_arg11", &probe_funcs,
1607 (void *) (uintptr_t) 11);
1608
1609 add_cmd ("stap", class_info, info_probes_stap_command,
1610 _("\
1611 Show information about SystemTap static probes.\n\
1612 Usage: info probes stap [PROVIDER [NAME [OBJECT]]]\n\
1613 Each argument is a regular expression, used to select probes.\n\
1614 PROVIDER matches probe provider names.\n\
1615 NAME matches the probe names.\n\
1616 OBJECT matches the executable or shared library name."),
1617 info_probes_cmdlist_get ());
1618
1619 }