03184663961e6f37b3a2a25747d5c26b4e569efc
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 static const struct sym_fns *find_sym_fns (bfd *);
95
96 static void decrement_reading_symtab (void *);
97
98 static void overlay_invalidate_all (void);
99
100 static void overlay_auto_command (char *, int);
101
102 static void overlay_manual_command (char *, int);
103
104 static void overlay_off_command (char *, int);
105
106 static void overlay_load_command (char *, int);
107
108 static void overlay_command (char *, int);
109
110 static void simple_free_overlay_table (void);
111
112 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
113 enum bfd_endian);
114
115 static int simple_read_overlay_table (void);
116
117 static int simple_overlay_update_1 (struct obj_section *);
118
119 static void add_filename_language (char *ext, enum language lang);
120
121 static void info_ext_lang_command (char *args, int from_tty);
122
123 static void init_filename_language_table (void);
124
125 static void symfile_find_segment_sections (struct objfile *objfile);
126
127 void _initialize_symfile (void);
128
129 /* List of all available sym_fns. On gdb startup, each object file reader
130 calls add_symtab_fns() to register information on each format it is
131 prepared to read. */
132
133 typedef struct
134 {
135 /* BFD flavour that we handle. */
136 enum bfd_flavour sym_flavour;
137
138 /* The "vtable" of symbol functions. */
139 const struct sym_fns *sym_fns;
140 } registered_sym_fns;
141
142 DEF_VEC_O (registered_sym_fns);
143
144 static VEC (registered_sym_fns) *symtab_fns = NULL;
145
146 /* If non-zero, shared library symbols will be added automatically
147 when the inferior is created, new libraries are loaded, or when
148 attaching to the inferior. This is almost always what users will
149 want to have happen; but for very large programs, the startup time
150 will be excessive, and so if this is a problem, the user can clear
151 this flag and then add the shared library symbols as needed. Note
152 that there is a potential for confusion, since if the shared
153 library symbols are not loaded, commands like "info fun" will *not*
154 report all the functions that are actually present. */
155
156 int auto_solib_add = 1;
157 \f
158
159 /* True if we are reading a symbol table. */
160
161 int currently_reading_symtab = 0;
162
163 static void
164 decrement_reading_symtab (void *dummy)
165 {
166 currently_reading_symtab--;
167 gdb_assert (currently_reading_symtab >= 0);
168 }
169
170 /* Increment currently_reading_symtab and return a cleanup that can be
171 used to decrement it. */
172
173 struct cleanup *
174 increment_reading_symtab (void)
175 {
176 ++currently_reading_symtab;
177 gdb_assert (currently_reading_symtab > 0);
178 return make_cleanup (decrement_reading_symtab, NULL);
179 }
180
181 /* Remember the lowest-addressed loadable section we've seen.
182 This function is called via bfd_map_over_sections.
183
184 In case of equal vmas, the section with the largest size becomes the
185 lowest-addressed loadable section.
186
187 If the vmas and sizes are equal, the last section is considered the
188 lowest-addressed loadable section. */
189
190 void
191 find_lowest_section (bfd *abfd, asection *sect, void *obj)
192 {
193 asection **lowest = (asection **) obj;
194
195 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
196 return;
197 if (!*lowest)
198 *lowest = sect; /* First loadable section */
199 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
200 *lowest = sect; /* A lower loadable section */
201 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
202 && (bfd_section_size (abfd, (*lowest))
203 <= bfd_section_size (abfd, sect)))
204 *lowest = sect;
205 }
206
207 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
208 new object's 'num_sections' field is set to 0; it must be updated
209 by the caller. */
210
211 struct section_addr_info *
212 alloc_section_addr_info (size_t num_sections)
213 {
214 struct section_addr_info *sap;
215 size_t size;
216
217 size = (sizeof (struct section_addr_info)
218 + sizeof (struct other_sections) * (num_sections - 1));
219 sap = (struct section_addr_info *) xmalloc (size);
220 memset (sap, 0, size);
221
222 return sap;
223 }
224
225 /* Build (allocate and populate) a section_addr_info struct from
226 an existing section table. */
227
228 extern struct section_addr_info *
229 build_section_addr_info_from_section_table (const struct target_section *start,
230 const struct target_section *end)
231 {
232 struct section_addr_info *sap;
233 const struct target_section *stp;
234 int oidx;
235
236 sap = alloc_section_addr_info (end - start);
237
238 for (stp = start, oidx = 0; stp != end; stp++)
239 {
240 struct bfd_section *asect = stp->the_bfd_section;
241 bfd *abfd = asect->owner;
242
243 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
244 && oidx < end - start)
245 {
246 sap->other[oidx].addr = stp->addr;
247 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
248 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
249 oidx++;
250 }
251 }
252
253 sap->num_sections = oidx;
254
255 return sap;
256 }
257
258 /* Create a section_addr_info from section offsets in ABFD. */
259
260 static struct section_addr_info *
261 build_section_addr_info_from_bfd (bfd *abfd)
262 {
263 struct section_addr_info *sap;
264 int i;
265 struct bfd_section *sec;
266
267 sap = alloc_section_addr_info (bfd_count_sections (abfd));
268 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
269 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
270 {
271 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
272 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
273 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
274 i++;
275 }
276
277 sap->num_sections = i;
278
279 return sap;
280 }
281
282 /* Create a section_addr_info from section offsets in OBJFILE. */
283
284 struct section_addr_info *
285 build_section_addr_info_from_objfile (const struct objfile *objfile)
286 {
287 struct section_addr_info *sap;
288 int i;
289
290 /* Before reread_symbols gets rewritten it is not safe to call:
291 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
292 */
293 sap = build_section_addr_info_from_bfd (objfile->obfd);
294 for (i = 0; i < sap->num_sections; i++)
295 {
296 int sectindex = sap->other[i].sectindex;
297
298 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
299 }
300 return sap;
301 }
302
303 /* Free all memory allocated by build_section_addr_info_from_section_table. */
304
305 extern void
306 free_section_addr_info (struct section_addr_info *sap)
307 {
308 int idx;
309
310 for (idx = 0; idx < sap->num_sections; idx++)
311 xfree (sap->other[idx].name);
312 xfree (sap);
313 }
314
315 /* Initialize OBJFILE's sect_index_* members. */
316
317 static void
318 init_objfile_sect_indices (struct objfile *objfile)
319 {
320 asection *sect;
321 int i;
322
323 sect = bfd_get_section_by_name (objfile->obfd, ".text");
324 if (sect)
325 objfile->sect_index_text = sect->index;
326
327 sect = bfd_get_section_by_name (objfile->obfd, ".data");
328 if (sect)
329 objfile->sect_index_data = sect->index;
330
331 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
332 if (sect)
333 objfile->sect_index_bss = sect->index;
334
335 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
336 if (sect)
337 objfile->sect_index_rodata = sect->index;
338
339 /* This is where things get really weird... We MUST have valid
340 indices for the various sect_index_* members or gdb will abort.
341 So if for example, there is no ".text" section, we have to
342 accomodate that. First, check for a file with the standard
343 one or two segments. */
344
345 symfile_find_segment_sections (objfile);
346
347 /* Except when explicitly adding symbol files at some address,
348 section_offsets contains nothing but zeros, so it doesn't matter
349 which slot in section_offsets the individual sect_index_* members
350 index into. So if they are all zero, it is safe to just point
351 all the currently uninitialized indices to the first slot. But
352 beware: if this is the main executable, it may be relocated
353 later, e.g. by the remote qOffsets packet, and then this will
354 be wrong! That's why we try segments first. */
355
356 for (i = 0; i < objfile->num_sections; i++)
357 {
358 if (ANOFFSET (objfile->section_offsets, i) != 0)
359 {
360 break;
361 }
362 }
363 if (i == objfile->num_sections)
364 {
365 if (objfile->sect_index_text == -1)
366 objfile->sect_index_text = 0;
367 if (objfile->sect_index_data == -1)
368 objfile->sect_index_data = 0;
369 if (objfile->sect_index_bss == -1)
370 objfile->sect_index_bss = 0;
371 if (objfile->sect_index_rodata == -1)
372 objfile->sect_index_rodata = 0;
373 }
374 }
375
376 /* The arguments to place_section. */
377
378 struct place_section_arg
379 {
380 struct section_offsets *offsets;
381 CORE_ADDR lowest;
382 };
383
384 /* Find a unique offset to use for loadable section SECT if
385 the user did not provide an offset. */
386
387 static void
388 place_section (bfd *abfd, asection *sect, void *obj)
389 {
390 struct place_section_arg *arg = obj;
391 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
392 int done;
393 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
394
395 /* We are only interested in allocated sections. */
396 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
397 return;
398
399 /* If the user specified an offset, honor it. */
400 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
401 return;
402
403 /* Otherwise, let's try to find a place for the section. */
404 start_addr = (arg->lowest + align - 1) & -align;
405
406 do {
407 asection *cur_sec;
408
409 done = 1;
410
411 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
412 {
413 int indx = cur_sec->index;
414
415 /* We don't need to compare against ourself. */
416 if (cur_sec == sect)
417 continue;
418
419 /* We can only conflict with allocated sections. */
420 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
421 continue;
422
423 /* If the section offset is 0, either the section has not been placed
424 yet, or it was the lowest section placed (in which case LOWEST
425 will be past its end). */
426 if (offsets[indx] == 0)
427 continue;
428
429 /* If this section would overlap us, then we must move up. */
430 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
431 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
432 {
433 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
434 start_addr = (start_addr + align - 1) & -align;
435 done = 0;
436 break;
437 }
438
439 /* Otherwise, we appear to be OK. So far. */
440 }
441 }
442 while (!done);
443
444 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
445 arg->lowest = start_addr + bfd_get_section_size (sect);
446 }
447
448 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
449 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
450 entries. */
451
452 void
453 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
454 int num_sections,
455 const struct section_addr_info *addrs)
456 {
457 int i;
458
459 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
460
461 /* Now calculate offsets for section that were specified by the caller. */
462 for (i = 0; i < addrs->num_sections; i++)
463 {
464 const struct other_sections *osp;
465
466 osp = &addrs->other[i];
467 if (osp->sectindex == -1)
468 continue;
469
470 /* Record all sections in offsets. */
471 /* The section_offsets in the objfile are here filled in using
472 the BFD index. */
473 section_offsets->offsets[osp->sectindex] = osp->addr;
474 }
475 }
476
477 /* Transform section name S for a name comparison. prelink can split section
478 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
479 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
480 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
481 (`.sbss') section has invalid (increased) virtual address. */
482
483 static const char *
484 addr_section_name (const char *s)
485 {
486 if (strcmp (s, ".dynbss") == 0)
487 return ".bss";
488 if (strcmp (s, ".sdynbss") == 0)
489 return ".sbss";
490
491 return s;
492 }
493
494 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
495 their (name, sectindex) pair. sectindex makes the sort by name stable. */
496
497 static int
498 addrs_section_compar (const void *ap, const void *bp)
499 {
500 const struct other_sections *a = *((struct other_sections **) ap);
501 const struct other_sections *b = *((struct other_sections **) bp);
502 int retval;
503
504 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
505 if (retval)
506 return retval;
507
508 return a->sectindex - b->sectindex;
509 }
510
511 /* Provide sorted array of pointers to sections of ADDRS. The array is
512 terminated by NULL. Caller is responsible to call xfree for it. */
513
514 static struct other_sections **
515 addrs_section_sort (struct section_addr_info *addrs)
516 {
517 struct other_sections **array;
518 int i;
519
520 /* `+ 1' for the NULL terminator. */
521 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
522 for (i = 0; i < addrs->num_sections; i++)
523 array[i] = &addrs->other[i];
524 array[i] = NULL;
525
526 qsort (array, i, sizeof (*array), addrs_section_compar);
527
528 return array;
529 }
530
531 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
532 also SECTINDEXes specific to ABFD there. This function can be used to
533 rebase ADDRS to start referencing different BFD than before. */
534
535 void
536 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
537 {
538 asection *lower_sect;
539 CORE_ADDR lower_offset;
540 int i;
541 struct cleanup *my_cleanup;
542 struct section_addr_info *abfd_addrs;
543 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
544 struct other_sections **addrs_to_abfd_addrs;
545
546 /* Find lowest loadable section to be used as starting point for
547 continguous sections. */
548 lower_sect = NULL;
549 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
550 if (lower_sect == NULL)
551 {
552 warning (_("no loadable sections found in added symbol-file %s"),
553 bfd_get_filename (abfd));
554 lower_offset = 0;
555 }
556 else
557 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
558
559 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
560 in ABFD. Section names are not unique - there can be multiple sections of
561 the same name. Also the sections of the same name do not have to be
562 adjacent to each other. Some sections may be present only in one of the
563 files. Even sections present in both files do not have to be in the same
564 order.
565
566 Use stable sort by name for the sections in both files. Then linearly
567 scan both lists matching as most of the entries as possible. */
568
569 addrs_sorted = addrs_section_sort (addrs);
570 my_cleanup = make_cleanup (xfree, addrs_sorted);
571
572 abfd_addrs = build_section_addr_info_from_bfd (abfd);
573 make_cleanup_free_section_addr_info (abfd_addrs);
574 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
575 make_cleanup (xfree, abfd_addrs_sorted);
576
577 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
578 ABFD_ADDRS_SORTED. */
579
580 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
581 * addrs->num_sections);
582 make_cleanup (xfree, addrs_to_abfd_addrs);
583
584 while (*addrs_sorted)
585 {
586 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
587
588 while (*abfd_addrs_sorted
589 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
590 sect_name) < 0)
591 abfd_addrs_sorted++;
592
593 if (*abfd_addrs_sorted
594 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
595 sect_name) == 0)
596 {
597 int index_in_addrs;
598
599 /* Make the found item directly addressable from ADDRS. */
600 index_in_addrs = *addrs_sorted - addrs->other;
601 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
602 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
603
604 /* Never use the same ABFD entry twice. */
605 abfd_addrs_sorted++;
606 }
607
608 addrs_sorted++;
609 }
610
611 /* Calculate offsets for the loadable sections.
612 FIXME! Sections must be in order of increasing loadable section
613 so that contiguous sections can use the lower-offset!!!
614
615 Adjust offsets if the segments are not contiguous.
616 If the section is contiguous, its offset should be set to
617 the offset of the highest loadable section lower than it
618 (the loadable section directly below it in memory).
619 this_offset = lower_offset = lower_addr - lower_orig_addr */
620
621 for (i = 0; i < addrs->num_sections; i++)
622 {
623 struct other_sections *sect = addrs_to_abfd_addrs[i];
624
625 if (sect)
626 {
627 /* This is the index used by BFD. */
628 addrs->other[i].sectindex = sect->sectindex;
629
630 if (addrs->other[i].addr != 0)
631 {
632 addrs->other[i].addr -= sect->addr;
633 lower_offset = addrs->other[i].addr;
634 }
635 else
636 addrs->other[i].addr = lower_offset;
637 }
638 else
639 {
640 /* addr_section_name transformation is not used for SECT_NAME. */
641 const char *sect_name = addrs->other[i].name;
642
643 /* This section does not exist in ABFD, which is normally
644 unexpected and we want to issue a warning.
645
646 However, the ELF prelinker does create a few sections which are
647 marked in the main executable as loadable (they are loaded in
648 memory from the DYNAMIC segment) and yet are not present in
649 separate debug info files. This is fine, and should not cause
650 a warning. Shared libraries contain just the section
651 ".gnu.liblist" but it is not marked as loadable there. There is
652 no other way to identify them than by their name as the sections
653 created by prelink have no special flags.
654
655 For the sections `.bss' and `.sbss' see addr_section_name. */
656
657 if (!(strcmp (sect_name, ".gnu.liblist") == 0
658 || strcmp (sect_name, ".gnu.conflict") == 0
659 || (strcmp (sect_name, ".bss") == 0
660 && i > 0
661 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
662 && addrs_to_abfd_addrs[i - 1] != NULL)
663 || (strcmp (sect_name, ".sbss") == 0
664 && i > 0
665 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
666 && addrs_to_abfd_addrs[i - 1] != NULL)))
667 warning (_("section %s not found in %s"), sect_name,
668 bfd_get_filename (abfd));
669
670 addrs->other[i].addr = 0;
671 addrs->other[i].sectindex = -1;
672 }
673 }
674
675 do_cleanups (my_cleanup);
676 }
677
678 /* Parse the user's idea of an offset for dynamic linking, into our idea
679 of how to represent it for fast symbol reading. This is the default
680 version of the sym_fns.sym_offsets function for symbol readers that
681 don't need to do anything special. It allocates a section_offsets table
682 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
683
684 void
685 default_symfile_offsets (struct objfile *objfile,
686 const struct section_addr_info *addrs)
687 {
688 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
689 objfile->section_offsets = (struct section_offsets *)
690 obstack_alloc (&objfile->objfile_obstack,
691 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
692 relative_addr_info_to_section_offsets (objfile->section_offsets,
693 objfile->num_sections, addrs);
694
695 /* For relocatable files, all loadable sections will start at zero.
696 The zero is meaningless, so try to pick arbitrary addresses such
697 that no loadable sections overlap. This algorithm is quadratic,
698 but the number of sections in a single object file is generally
699 small. */
700 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
701 {
702 struct place_section_arg arg;
703 bfd *abfd = objfile->obfd;
704 asection *cur_sec;
705
706 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
707 /* We do not expect this to happen; just skip this step if the
708 relocatable file has a section with an assigned VMA. */
709 if (bfd_section_vma (abfd, cur_sec) != 0)
710 break;
711
712 if (cur_sec == NULL)
713 {
714 CORE_ADDR *offsets = objfile->section_offsets->offsets;
715
716 /* Pick non-overlapping offsets for sections the user did not
717 place explicitly. */
718 arg.offsets = objfile->section_offsets;
719 arg.lowest = 0;
720 bfd_map_over_sections (objfile->obfd, place_section, &arg);
721
722 /* Correctly filling in the section offsets is not quite
723 enough. Relocatable files have two properties that
724 (most) shared objects do not:
725
726 - Their debug information will contain relocations. Some
727 shared libraries do also, but many do not, so this can not
728 be assumed.
729
730 - If there are multiple code sections they will be loaded
731 at different relative addresses in memory than they are
732 in the objfile, since all sections in the file will start
733 at address zero.
734
735 Because GDB has very limited ability to map from an
736 address in debug info to the correct code section,
737 it relies on adding SECT_OFF_TEXT to things which might be
738 code. If we clear all the section offsets, and set the
739 section VMAs instead, then symfile_relocate_debug_section
740 will return meaningful debug information pointing at the
741 correct sections.
742
743 GDB has too many different data structures for section
744 addresses - a bfd, objfile, and so_list all have section
745 tables, as does exec_ops. Some of these could probably
746 be eliminated. */
747
748 for (cur_sec = abfd->sections; cur_sec != NULL;
749 cur_sec = cur_sec->next)
750 {
751 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
752 continue;
753
754 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
755 exec_set_section_address (bfd_get_filename (abfd),
756 cur_sec->index,
757 offsets[cur_sec->index]);
758 offsets[cur_sec->index] = 0;
759 }
760 }
761 }
762
763 /* Remember the bfd indexes for the .text, .data, .bss and
764 .rodata sections. */
765 init_objfile_sect_indices (objfile);
766 }
767
768 /* Divide the file into segments, which are individual relocatable units.
769 This is the default version of the sym_fns.sym_segments function for
770 symbol readers that do not have an explicit representation of segments.
771 It assumes that object files do not have segments, and fully linked
772 files have a single segment. */
773
774 struct symfile_segment_data *
775 default_symfile_segments (bfd *abfd)
776 {
777 int num_sections, i;
778 asection *sect;
779 struct symfile_segment_data *data;
780 CORE_ADDR low, high;
781
782 /* Relocatable files contain enough information to position each
783 loadable section independently; they should not be relocated
784 in segments. */
785 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
786 return NULL;
787
788 /* Make sure there is at least one loadable section in the file. */
789 for (sect = abfd->sections; sect != NULL; sect = sect->next)
790 {
791 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
792 continue;
793
794 break;
795 }
796 if (sect == NULL)
797 return NULL;
798
799 low = bfd_get_section_vma (abfd, sect);
800 high = low + bfd_get_section_size (sect);
801
802 data = XZALLOC (struct symfile_segment_data);
803 data->num_segments = 1;
804 data->segment_bases = XCALLOC (1, CORE_ADDR);
805 data->segment_sizes = XCALLOC (1, CORE_ADDR);
806
807 num_sections = bfd_count_sections (abfd);
808 data->segment_info = XCALLOC (num_sections, int);
809
810 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
811 {
812 CORE_ADDR vma;
813
814 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
815 continue;
816
817 vma = bfd_get_section_vma (abfd, sect);
818 if (vma < low)
819 low = vma;
820 if (vma + bfd_get_section_size (sect) > high)
821 high = vma + bfd_get_section_size (sect);
822
823 data->segment_info[i] = 1;
824 }
825
826 data->segment_bases[0] = low;
827 data->segment_sizes[0] = high - low;
828
829 return data;
830 }
831
832 /* This is a convenience function to call sym_read for OBJFILE and
833 possibly force the partial symbols to be read. */
834
835 static void
836 read_symbols (struct objfile *objfile, int add_flags)
837 {
838 (*objfile->sf->sym_read) (objfile, add_flags);
839
840 /* find_separate_debug_file_in_section should be called only if there is
841 single binary with no existing separate debug info file. */
842 if (!objfile_has_partial_symbols (objfile)
843 && objfile->separate_debug_objfile == NULL
844 && objfile->separate_debug_objfile_backlink == NULL)
845 {
846 bfd *abfd = find_separate_debug_file_in_section (objfile);
847 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
848
849 if (abfd != NULL)
850 {
851 /* find_separate_debug_file_in_section uses the same filename for the
852 virtual section-as-bfd like the bfd filename containing the
853 section. Therefore use also non-canonical name form for the same
854 file containing the section. */
855 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
856 objfile);
857 }
858
859 do_cleanups (cleanup);
860 }
861 if ((add_flags & SYMFILE_NO_READ) == 0)
862 require_partial_symbols (objfile, 0);
863 }
864
865 /* Initialize entry point information for this objfile. */
866
867 static void
868 init_entry_point_info (struct objfile *objfile)
869 {
870 /* Save startup file's range of PC addresses to help blockframe.c
871 decide where the bottom of the stack is. */
872
873 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
874 {
875 /* Executable file -- record its entry point so we'll recognize
876 the startup file because it contains the entry point. */
877 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
878 objfile->ei.entry_point_p = 1;
879 }
880 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
881 && bfd_get_start_address (objfile->obfd) != 0)
882 {
883 /* Some shared libraries may have entry points set and be
884 runnable. There's no clear way to indicate this, so just check
885 for values other than zero. */
886 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
887 objfile->ei.entry_point_p = 1;
888 }
889 else
890 {
891 /* Examination of non-executable.o files. Short-circuit this stuff. */
892 objfile->ei.entry_point_p = 0;
893 }
894
895 if (objfile->ei.entry_point_p)
896 {
897 CORE_ADDR entry_point = objfile->ei.entry_point;
898
899 /* Make certain that the address points at real code, and not a
900 function descriptor. */
901 entry_point
902 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
903 entry_point,
904 &current_target);
905
906 /* Remove any ISA markers, so that this matches entries in the
907 symbol table. */
908 objfile->ei.entry_point
909 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
910 }
911 }
912
913 /* Process a symbol file, as either the main file or as a dynamically
914 loaded file.
915
916 This function does not set the OBJFILE's entry-point info.
917
918 OBJFILE is where the symbols are to be read from.
919
920 ADDRS is the list of section load addresses. If the user has given
921 an 'add-symbol-file' command, then this is the list of offsets and
922 addresses he or she provided as arguments to the command; or, if
923 we're handling a shared library, these are the actual addresses the
924 sections are loaded at, according to the inferior's dynamic linker
925 (as gleaned by GDB's shared library code). We convert each address
926 into an offset from the section VMA's as it appears in the object
927 file, and then call the file's sym_offsets function to convert this
928 into a format-specific offset table --- a `struct section_offsets'.
929
930 ADD_FLAGS encodes verbosity level, whether this is main symbol or
931 an extra symbol file such as dynamically loaded code, and wether
932 breakpoint reset should be deferred. */
933
934 static void
935 syms_from_objfile_1 (struct objfile *objfile,
936 struct section_addr_info *addrs,
937 int add_flags)
938 {
939 struct section_addr_info *local_addr = NULL;
940 struct cleanup *old_chain;
941 const int mainline = add_flags & SYMFILE_MAINLINE;
942
943 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
944
945 if (objfile->sf == NULL)
946 {
947 /* No symbols to load, but we still need to make sure
948 that the section_offsets table is allocated. */
949 int num_sections = gdb_bfd_count_sections (objfile->obfd);
950 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
951
952 objfile->num_sections = num_sections;
953 objfile->section_offsets
954 = obstack_alloc (&objfile->objfile_obstack, size);
955 memset (objfile->section_offsets, 0, size);
956 return;
957 }
958
959 /* Make sure that partially constructed symbol tables will be cleaned up
960 if an error occurs during symbol reading. */
961 old_chain = make_cleanup_free_objfile (objfile);
962
963 /* If ADDRS is NULL, put together a dummy address list.
964 We now establish the convention that an addr of zero means
965 no load address was specified. */
966 if (! addrs)
967 {
968 local_addr = alloc_section_addr_info (1);
969 make_cleanup (xfree, local_addr);
970 addrs = local_addr;
971 }
972
973 if (mainline)
974 {
975 /* We will modify the main symbol table, make sure that all its users
976 will be cleaned up if an error occurs during symbol reading. */
977 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
978
979 /* Since no error yet, throw away the old symbol table. */
980
981 if (symfile_objfile != NULL)
982 {
983 free_objfile (symfile_objfile);
984 gdb_assert (symfile_objfile == NULL);
985 }
986
987 /* Currently we keep symbols from the add-symbol-file command.
988 If the user wants to get rid of them, they should do "symbol-file"
989 without arguments first. Not sure this is the best behavior
990 (PR 2207). */
991
992 (*objfile->sf->sym_new_init) (objfile);
993 }
994
995 /* Convert addr into an offset rather than an absolute address.
996 We find the lowest address of a loaded segment in the objfile,
997 and assume that <addr> is where that got loaded.
998
999 We no longer warn if the lowest section is not a text segment (as
1000 happens for the PA64 port. */
1001 if (addrs->num_sections > 0)
1002 addr_info_make_relative (addrs, objfile->obfd);
1003
1004 /* Initialize symbol reading routines for this objfile, allow complaints to
1005 appear for this new file, and record how verbose to be, then do the
1006 initial symbol reading for this file. */
1007
1008 (*objfile->sf->sym_init) (objfile);
1009 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1010
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012
1013 read_symbols (objfile, add_flags);
1014
1015 /* Discard cleanups as symbol reading was successful. */
1016
1017 discard_cleanups (old_chain);
1018 xfree (local_addr);
1019 }
1020
1021 /* Same as syms_from_objfile_1, but also initializes the objfile
1022 entry-point info. */
1023
1024 static void
1025 syms_from_objfile (struct objfile *objfile,
1026 struct section_addr_info *addrs,
1027 int add_flags)
1028 {
1029 syms_from_objfile_1 (objfile, addrs, add_flags);
1030 init_entry_point_info (objfile);
1031 }
1032
1033 /* Perform required actions after either reading in the initial
1034 symbols for a new objfile, or mapping in the symbols from a reusable
1035 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1036
1037 void
1038 new_symfile_objfile (struct objfile *objfile, int add_flags)
1039 {
1040 /* If this is the main symbol file we have to clean up all users of the
1041 old main symbol file. Otherwise it is sufficient to fixup all the
1042 breakpoints that may have been redefined by this symbol file. */
1043 if (add_flags & SYMFILE_MAINLINE)
1044 {
1045 /* OK, make it the "real" symbol file. */
1046 symfile_objfile = objfile;
1047
1048 clear_symtab_users (add_flags);
1049 }
1050 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1051 {
1052 breakpoint_re_set ();
1053 }
1054
1055 /* We're done reading the symbol file; finish off complaints. */
1056 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1057 }
1058
1059 /* Process a symbol file, as either the main file or as a dynamically
1060 loaded file.
1061
1062 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1063 A new reference is acquired by this function.
1064
1065 For NAME description see allocate_objfile's definition.
1066
1067 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1068 extra, such as dynamically loaded code, and what to do with breakpoins.
1069
1070 ADDRS is as described for syms_from_objfile_1, above.
1071 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1072
1073 PARENT is the original objfile if ABFD is a separate debug info file.
1074 Otherwise PARENT is NULL.
1075
1076 Upon success, returns a pointer to the objfile that was added.
1077 Upon failure, jumps back to command level (never returns). */
1078
1079 static struct objfile *
1080 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1081 struct section_addr_info *addrs,
1082 int flags, struct objfile *parent)
1083 {
1084 struct objfile *objfile;
1085 const int from_tty = add_flags & SYMFILE_VERBOSE;
1086 const int mainline = add_flags & SYMFILE_MAINLINE;
1087 const int should_print = ((from_tty || info_verbose)
1088 && (readnow_symbol_files
1089 || (add_flags & SYMFILE_NO_READ) == 0));
1090
1091 if (readnow_symbol_files)
1092 {
1093 flags |= OBJF_READNOW;
1094 add_flags &= ~SYMFILE_NO_READ;
1095 }
1096
1097 /* Give user a chance to burp if we'd be
1098 interactively wiping out any existing symbols. */
1099
1100 if ((have_full_symbols () || have_partial_symbols ())
1101 && mainline
1102 && from_tty
1103 && !query (_("Load new symbol table from \"%s\"? "), name))
1104 error (_("Not confirmed."));
1105
1106 objfile = allocate_objfile (abfd, name,
1107 flags | (mainline ? OBJF_MAINLINE : 0));
1108
1109 if (parent)
1110 add_separate_debug_objfile (objfile, parent);
1111
1112 /* We either created a new mapped symbol table, mapped an existing
1113 symbol table file which has not had initial symbol reading
1114 performed, or need to read an unmapped symbol table. */
1115 if (should_print)
1116 {
1117 if (deprecated_pre_add_symbol_hook)
1118 deprecated_pre_add_symbol_hook (name);
1119 else
1120 {
1121 printf_unfiltered (_("Reading symbols from %s..."), name);
1122 wrap_here ("");
1123 gdb_flush (gdb_stdout);
1124 }
1125 }
1126 syms_from_objfile (objfile, addrs, add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (should_print)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if (should_print && !objfile_has_symbols (objfile))
1147 {
1148 wrap_here ("");
1149 printf_unfiltered (_("(no debugging symbols found)..."));
1150 wrap_here ("");
1151 }
1152
1153 if (should_print)
1154 {
1155 if (deprecated_post_add_symbol_hook)
1156 deprecated_post_add_symbol_hook ();
1157 else
1158 printf_unfiltered (_("done.\n"));
1159 }
1160
1161 /* We print some messages regardless of whether 'from_tty ||
1162 info_verbose' is true, so make sure they go out at the right
1163 time. */
1164 gdb_flush (gdb_stdout);
1165
1166 if (objfile->sf == NULL)
1167 {
1168 observer_notify_new_objfile (objfile);
1169 return objfile; /* No symbols. */
1170 }
1171
1172 new_symfile_objfile (objfile, add_flags);
1173
1174 observer_notify_new_objfile (objfile);
1175
1176 bfd_cache_close_all ();
1177 return (objfile);
1178 }
1179
1180 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1181 see allocate_objfile's definition. */
1182
1183 void
1184 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1185 struct objfile *objfile)
1186 {
1187 struct objfile *new_objfile;
1188 struct section_addr_info *sap;
1189 struct cleanup *my_cleanup;
1190
1191 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1192 because sections of BFD may not match sections of OBJFILE and because
1193 vma may have been modified by tools such as prelink. */
1194 sap = build_section_addr_info_from_objfile (objfile);
1195 my_cleanup = make_cleanup_free_section_addr_info (sap);
1196
1197 new_objfile = symbol_file_add_with_addrs
1198 (bfd, name, symfile_flags, sap,
1199 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1200 | OBJF_USERLOADED),
1201 objfile);
1202
1203 do_cleanups (my_cleanup);
1204 }
1205
1206 /* Process the symbol file ABFD, as either the main file or as a
1207 dynamically loaded file.
1208 See symbol_file_add_with_addrs's comments for details. */
1209
1210 struct objfile *
1211 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1212 struct section_addr_info *addrs,
1213 int flags, struct objfile *parent)
1214 {
1215 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1216 parent);
1217 }
1218
1219 /* Process a symbol file, as either the main file or as a dynamically
1220 loaded file. See symbol_file_add_with_addrs's comments for details. */
1221
1222 struct objfile *
1223 symbol_file_add (const char *name, int add_flags,
1224 struct section_addr_info *addrs, int flags)
1225 {
1226 bfd *bfd = symfile_bfd_open (name);
1227 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1228 struct objfile *objf;
1229
1230 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1231 do_cleanups (cleanup);
1232 return objf;
1233 }
1234
1235 /* Call symbol_file_add() with default values and update whatever is
1236 affected by the loading of a new main().
1237 Used when the file is supplied in the gdb command line
1238 and by some targets with special loading requirements.
1239 The auxiliary function, symbol_file_add_main_1(), has the flags
1240 argument for the switches that can only be specified in the symbol_file
1241 command itself. */
1242
1243 void
1244 symbol_file_add_main (const char *args, int from_tty)
1245 {
1246 symbol_file_add_main_1 (args, from_tty, 0);
1247 }
1248
1249 static void
1250 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1251 {
1252 const int add_flags = (current_inferior ()->symfile_flags
1253 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1254
1255 symbol_file_add (args, add_flags, NULL, flags);
1256
1257 /* Getting new symbols may change our opinion about
1258 what is frameless. */
1259 reinit_frame_cache ();
1260
1261 if ((flags & SYMFILE_NO_READ) == 0)
1262 set_initial_language ();
1263 }
1264
1265 void
1266 symbol_file_clear (int from_tty)
1267 {
1268 if ((have_full_symbols () || have_partial_symbols ())
1269 && from_tty
1270 && (symfile_objfile
1271 ? !query (_("Discard symbol table from `%s'? "),
1272 objfile_name (symfile_objfile))
1273 : !query (_("Discard symbol table? "))))
1274 error (_("Not confirmed."));
1275
1276 /* solib descriptors may have handles to objfiles. Wipe them before their
1277 objfiles get stale by free_all_objfiles. */
1278 no_shared_libraries (NULL, from_tty);
1279
1280 free_all_objfiles ();
1281
1282 gdb_assert (symfile_objfile == NULL);
1283 if (from_tty)
1284 printf_unfiltered (_("No symbol file now.\n"));
1285 }
1286
1287 static int
1288 separate_debug_file_exists (const char *name, unsigned long crc,
1289 struct objfile *parent_objfile)
1290 {
1291 unsigned long file_crc;
1292 int file_crc_p;
1293 bfd *abfd;
1294 struct stat parent_stat, abfd_stat;
1295 int verified_as_different;
1296
1297 /* Find a separate debug info file as if symbols would be present in
1298 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1299 section can contain just the basename of PARENT_OBJFILE without any
1300 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1301 the separate debug infos with the same basename can exist. */
1302
1303 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1304 return 0;
1305
1306 abfd = gdb_bfd_open_maybe_remote (name);
1307
1308 if (!abfd)
1309 return 0;
1310
1311 /* Verify symlinks were not the cause of filename_cmp name difference above.
1312
1313 Some operating systems, e.g. Windows, do not provide a meaningful
1314 st_ino; they always set it to zero. (Windows does provide a
1315 meaningful st_dev.) Do not indicate a duplicate library in that
1316 case. While there is no guarantee that a system that provides
1317 meaningful inode numbers will never set st_ino to zero, this is
1318 merely an optimization, so we do not need to worry about false
1319 negatives. */
1320
1321 if (bfd_stat (abfd, &abfd_stat) == 0
1322 && abfd_stat.st_ino != 0
1323 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1324 {
1325 if (abfd_stat.st_dev == parent_stat.st_dev
1326 && abfd_stat.st_ino == parent_stat.st_ino)
1327 {
1328 gdb_bfd_unref (abfd);
1329 return 0;
1330 }
1331 verified_as_different = 1;
1332 }
1333 else
1334 verified_as_different = 0;
1335
1336 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1337
1338 gdb_bfd_unref (abfd);
1339
1340 if (!file_crc_p)
1341 return 0;
1342
1343 if (crc != file_crc)
1344 {
1345 unsigned long parent_crc;
1346
1347 /* If one (or both) the files are accessed for example the via "remote:"
1348 gdbserver way it does not support the bfd_stat operation. Verify
1349 whether those two files are not the same manually. */
1350
1351 if (!verified_as_different)
1352 {
1353 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1354 return 0;
1355 }
1356
1357 if (verified_as_different || parent_crc != file_crc)
1358 warning (_("the debug information found in \"%s\""
1359 " does not match \"%s\" (CRC mismatch).\n"),
1360 name, objfile_name (parent_objfile));
1361
1362 return 0;
1363 }
1364
1365 return 1;
1366 }
1367
1368 char *debug_file_directory = NULL;
1369 static void
1370 show_debug_file_directory (struct ui_file *file, int from_tty,
1371 struct cmd_list_element *c, const char *value)
1372 {
1373 fprintf_filtered (file,
1374 _("The directory where separate debug "
1375 "symbols are searched for is \"%s\".\n"),
1376 value);
1377 }
1378
1379 #if ! defined (DEBUG_SUBDIRECTORY)
1380 #define DEBUG_SUBDIRECTORY ".debug"
1381 #endif
1382
1383 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1384 where the original file resides (may not be the same as
1385 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1386 looking for. CANON_DIR is the "realpath" form of DIR.
1387 DIR must contain a trailing '/'.
1388 Returns the path of the file with separate debug info, of NULL. */
1389
1390 static char *
1391 find_separate_debug_file (const char *dir,
1392 const char *canon_dir,
1393 const char *debuglink,
1394 unsigned long crc32, struct objfile *objfile)
1395 {
1396 char *debugdir;
1397 char *debugfile;
1398 int i;
1399 VEC (char_ptr) *debugdir_vec;
1400 struct cleanup *back_to;
1401 int ix;
1402
1403 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1404 i = strlen (dir);
1405 if (canon_dir != NULL && strlen (canon_dir) > i)
1406 i = strlen (canon_dir);
1407
1408 debugfile = xmalloc (strlen (debug_file_directory) + 1
1409 + i
1410 + strlen (DEBUG_SUBDIRECTORY)
1411 + strlen ("/")
1412 + strlen (debuglink)
1413 + 1);
1414
1415 /* First try in the same directory as the original file. */
1416 strcpy (debugfile, dir);
1417 strcat (debugfile, debuglink);
1418
1419 if (separate_debug_file_exists (debugfile, crc32, objfile))
1420 return debugfile;
1421
1422 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1423 strcpy (debugfile, dir);
1424 strcat (debugfile, DEBUG_SUBDIRECTORY);
1425 strcat (debugfile, "/");
1426 strcat (debugfile, debuglink);
1427
1428 if (separate_debug_file_exists (debugfile, crc32, objfile))
1429 return debugfile;
1430
1431 /* Then try in the global debugfile directories.
1432
1433 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1434 cause "/..." lookups. */
1435
1436 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1437 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1438
1439 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1440 {
1441 strcpy (debugfile, debugdir);
1442 strcat (debugfile, "/");
1443 strcat (debugfile, dir);
1444 strcat (debugfile, debuglink);
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 {
1448 do_cleanups (back_to);
1449 return debugfile;
1450 }
1451
1452 /* If the file is in the sysroot, try using its base path in the
1453 global debugfile directory. */
1454 if (canon_dir != NULL
1455 && filename_ncmp (canon_dir, gdb_sysroot,
1456 strlen (gdb_sysroot)) == 0
1457 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1458 {
1459 strcpy (debugfile, debugdir);
1460 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1461 strcat (debugfile, "/");
1462 strcat (debugfile, debuglink);
1463
1464 if (separate_debug_file_exists (debugfile, crc32, objfile))
1465 {
1466 do_cleanups (back_to);
1467 return debugfile;
1468 }
1469 }
1470 }
1471
1472 do_cleanups (back_to);
1473 xfree (debugfile);
1474 return NULL;
1475 }
1476
1477 /* Modify PATH to contain only "[/]directory/" part of PATH.
1478 If there were no directory separators in PATH, PATH will be empty
1479 string on return. */
1480
1481 static void
1482 terminate_after_last_dir_separator (char *path)
1483 {
1484 int i;
1485
1486 /* Strip off the final filename part, leaving the directory name,
1487 followed by a slash. The directory can be relative or absolute. */
1488 for (i = strlen(path) - 1; i >= 0; i--)
1489 if (IS_DIR_SEPARATOR (path[i]))
1490 break;
1491
1492 /* If I is -1 then no directory is present there and DIR will be "". */
1493 path[i + 1] = '\0';
1494 }
1495
1496 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1497 Returns pathname, or NULL. */
1498
1499 char *
1500 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1501 {
1502 char *debuglink;
1503 char *dir, *canon_dir;
1504 char *debugfile;
1505 unsigned long crc32;
1506 struct cleanup *cleanups;
1507
1508 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1509
1510 if (debuglink == NULL)
1511 {
1512 /* There's no separate debug info, hence there's no way we could
1513 load it => no warning. */
1514 return NULL;
1515 }
1516
1517 cleanups = make_cleanup (xfree, debuglink);
1518 dir = xstrdup (objfile_name (objfile));
1519 make_cleanup (xfree, dir);
1520 terminate_after_last_dir_separator (dir);
1521 canon_dir = lrealpath (dir);
1522
1523 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1524 crc32, objfile);
1525 xfree (canon_dir);
1526
1527 if (debugfile == NULL)
1528 {
1529 #ifdef HAVE_LSTAT
1530 /* For PR gdb/9538, try again with realpath (if different from the
1531 original). */
1532
1533 struct stat st_buf;
1534
1535 if (lstat (objfile_name (objfile), &st_buf) == 0
1536 && S_ISLNK (st_buf.st_mode))
1537 {
1538 char *symlink_dir;
1539
1540 symlink_dir = lrealpath (objfile_name (objfile));
1541 if (symlink_dir != NULL)
1542 {
1543 make_cleanup (xfree, symlink_dir);
1544 terminate_after_last_dir_separator (symlink_dir);
1545 if (strcmp (dir, symlink_dir) != 0)
1546 {
1547 /* Different directory, so try using it. */
1548 debugfile = find_separate_debug_file (symlink_dir,
1549 symlink_dir,
1550 debuglink,
1551 crc32,
1552 objfile);
1553 }
1554 }
1555 }
1556 #endif /* HAVE_LSTAT */
1557 }
1558
1559 do_cleanups (cleanups);
1560 return debugfile;
1561 }
1562
1563 /* This is the symbol-file command. Read the file, analyze its
1564 symbols, and add a struct symtab to a symtab list. The syntax of
1565 the command is rather bizarre:
1566
1567 1. The function buildargv implements various quoting conventions
1568 which are undocumented and have little or nothing in common with
1569 the way things are quoted (or not quoted) elsewhere in GDB.
1570
1571 2. Options are used, which are not generally used in GDB (perhaps
1572 "set mapped on", "set readnow on" would be better)
1573
1574 3. The order of options matters, which is contrary to GNU
1575 conventions (because it is confusing and inconvenient). */
1576
1577 void
1578 symbol_file_command (char *args, int from_tty)
1579 {
1580 dont_repeat ();
1581
1582 if (args == NULL)
1583 {
1584 symbol_file_clear (from_tty);
1585 }
1586 else
1587 {
1588 char **argv = gdb_buildargv (args);
1589 int flags = OBJF_USERLOADED;
1590 struct cleanup *cleanups;
1591 char *name = NULL;
1592
1593 cleanups = make_cleanup_freeargv (argv);
1594 while (*argv != NULL)
1595 {
1596 if (strcmp (*argv, "-readnow") == 0)
1597 flags |= OBJF_READNOW;
1598 else if (**argv == '-')
1599 error (_("unknown option `%s'"), *argv);
1600 else
1601 {
1602 symbol_file_add_main_1 (*argv, from_tty, flags);
1603 name = *argv;
1604 }
1605
1606 argv++;
1607 }
1608
1609 if (name == NULL)
1610 error (_("no symbol file name was specified"));
1611
1612 do_cleanups (cleanups);
1613 }
1614 }
1615
1616 /* Set the initial language.
1617
1618 FIXME: A better solution would be to record the language in the
1619 psymtab when reading partial symbols, and then use it (if known) to
1620 set the language. This would be a win for formats that encode the
1621 language in an easily discoverable place, such as DWARF. For
1622 stabs, we can jump through hoops looking for specially named
1623 symbols or try to intuit the language from the specific type of
1624 stabs we find, but we can't do that until later when we read in
1625 full symbols. */
1626
1627 void
1628 set_initial_language (void)
1629 {
1630 enum language lang = language_unknown;
1631
1632 if (language_of_main != language_unknown)
1633 lang = language_of_main;
1634 else
1635 {
1636 char *name = main_name ();
1637 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1638
1639 if (sym != NULL)
1640 lang = SYMBOL_LANGUAGE (sym);
1641 }
1642
1643 if (lang == language_unknown)
1644 {
1645 /* Make C the default language */
1646 lang = language_c;
1647 }
1648
1649 set_language (lang);
1650 expected_language = current_language; /* Don't warn the user. */
1651 }
1652
1653 /* If NAME is a remote name open the file using remote protocol, otherwise
1654 open it normally. Returns a new reference to the BFD. On error,
1655 returns NULL with the BFD error set. */
1656
1657 bfd *
1658 gdb_bfd_open_maybe_remote (const char *name)
1659 {
1660 bfd *result;
1661
1662 if (remote_filename_p (name))
1663 result = remote_bfd_open (name, gnutarget);
1664 else
1665 result = gdb_bfd_open (name, gnutarget, -1);
1666
1667 return result;
1668 }
1669
1670 /* Open the file specified by NAME and hand it off to BFD for
1671 preliminary analysis. Return a newly initialized bfd *, which
1672 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1673 absolute). In case of trouble, error() is called. */
1674
1675 bfd *
1676 symfile_bfd_open (const char *cname)
1677 {
1678 bfd *sym_bfd;
1679 int desc;
1680 char *name, *absolute_name;
1681 struct cleanup *back_to;
1682
1683 if (remote_filename_p (cname))
1684 {
1685 sym_bfd = remote_bfd_open (cname, gnutarget);
1686 if (!sym_bfd)
1687 error (_("`%s': can't open to read symbols: %s."), cname,
1688 bfd_errmsg (bfd_get_error ()));
1689
1690 if (!bfd_check_format (sym_bfd, bfd_object))
1691 {
1692 make_cleanup_bfd_unref (sym_bfd);
1693 error (_("`%s': can't read symbols: %s."), cname,
1694 bfd_errmsg (bfd_get_error ()));
1695 }
1696
1697 return sym_bfd;
1698 }
1699
1700 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1701
1702 /* Look down path for it, allocate 2nd new malloc'd copy. */
1703 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1704 O_RDONLY | O_BINARY, &absolute_name);
1705 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1706 if (desc < 0)
1707 {
1708 char *exename = alloca (strlen (name) + 5);
1709
1710 strcat (strcpy (exename, name), ".exe");
1711 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1712 exename, O_RDONLY | O_BINARY, &absolute_name);
1713 }
1714 #endif
1715 if (desc < 0)
1716 {
1717 make_cleanup (xfree, name);
1718 perror_with_name (name);
1719 }
1720
1721 xfree (name);
1722 name = absolute_name;
1723 back_to = make_cleanup (xfree, name);
1724
1725 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1726 if (!sym_bfd)
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
1729 bfd_set_cacheable (sym_bfd, 1);
1730
1731 if (!bfd_check_format (sym_bfd, bfd_object))
1732 {
1733 make_cleanup_bfd_unref (sym_bfd);
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736 }
1737
1738 do_cleanups (back_to);
1739
1740 return sym_bfd;
1741 }
1742
1743 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
1746 int
1747 get_section_index (struct objfile *objfile, char *section_name)
1748 {
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1750
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755 }
1756
1757 /* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
1762
1763 void
1764 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1765 {
1766 registered_sym_fns fns = { flavour, sf };
1767
1768 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1769 }
1770
1771 /* Initialize OBJFILE to read symbols from its associated BFD. It
1772 either returns or calls error(). The result is an initialized
1773 struct sym_fns in the objfile structure, that contains cached
1774 information about the symbol file. */
1775
1776 static const struct sym_fns *
1777 find_sym_fns (bfd *abfd)
1778 {
1779 registered_sym_fns *rsf;
1780 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1781 int i;
1782
1783 if (our_flavour == bfd_target_srec_flavour
1784 || our_flavour == bfd_target_ihex_flavour
1785 || our_flavour == bfd_target_tekhex_flavour)
1786 return NULL; /* No symbols. */
1787
1788 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1789 if (our_flavour == rsf->sym_flavour)
1790 return rsf->sym_fns;
1791
1792 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1793 bfd_get_target (abfd));
1794 }
1795 \f
1796
1797 /* This function runs the load command of our current target. */
1798
1799 static void
1800 load_command (char *arg, int from_tty)
1801 {
1802 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1803
1804 dont_repeat ();
1805
1806 /* The user might be reloading because the binary has changed. Take
1807 this opportunity to check. */
1808 reopen_exec_file ();
1809 reread_symbols ();
1810
1811 if (arg == NULL)
1812 {
1813 char *parg;
1814 int count = 0;
1815
1816 parg = arg = get_exec_file (1);
1817
1818 /* Count how many \ " ' tab space there are in the name. */
1819 while ((parg = strpbrk (parg, "\\\"'\t ")))
1820 {
1821 parg++;
1822 count++;
1823 }
1824
1825 if (count)
1826 {
1827 /* We need to quote this string so buildargv can pull it apart. */
1828 char *temp = xmalloc (strlen (arg) + count + 1 );
1829 char *ptemp = temp;
1830 char *prev;
1831
1832 make_cleanup (xfree, temp);
1833
1834 prev = parg = arg;
1835 while ((parg = strpbrk (parg, "\\\"'\t ")))
1836 {
1837 strncpy (ptemp, prev, parg - prev);
1838 ptemp += parg - prev;
1839 prev = parg++;
1840 *ptemp++ = '\\';
1841 }
1842 strcpy (ptemp, prev);
1843
1844 arg = temp;
1845 }
1846 }
1847
1848 target_load (arg, from_tty);
1849
1850 /* After re-loading the executable, we don't really know which
1851 overlays are mapped any more. */
1852 overlay_cache_invalid = 1;
1853
1854 do_cleanups (cleanup);
1855 }
1856
1857 /* This version of "load" should be usable for any target. Currently
1858 it is just used for remote targets, not inftarg.c or core files,
1859 on the theory that only in that case is it useful.
1860
1861 Avoiding xmodem and the like seems like a win (a) because we don't have
1862 to worry about finding it, and (b) On VMS, fork() is very slow and so
1863 we don't want to run a subprocess. On the other hand, I'm not sure how
1864 performance compares. */
1865
1866 static int validate_download = 0;
1867
1868 /* Callback service function for generic_load (bfd_map_over_sections). */
1869
1870 static void
1871 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1872 {
1873 bfd_size_type *sum = data;
1874
1875 *sum += bfd_get_section_size (asec);
1876 }
1877
1878 /* Opaque data for load_section_callback. */
1879 struct load_section_data {
1880 CORE_ADDR load_offset;
1881 struct load_progress_data *progress_data;
1882 VEC(memory_write_request_s) *requests;
1883 };
1884
1885 /* Opaque data for load_progress. */
1886 struct load_progress_data {
1887 /* Cumulative data. */
1888 unsigned long write_count;
1889 unsigned long data_count;
1890 bfd_size_type total_size;
1891 };
1892
1893 /* Opaque data for load_progress for a single section. */
1894 struct load_progress_section_data {
1895 struct load_progress_data *cumulative;
1896
1897 /* Per-section data. */
1898 const char *section_name;
1899 ULONGEST section_sent;
1900 ULONGEST section_size;
1901 CORE_ADDR lma;
1902 gdb_byte *buffer;
1903 };
1904
1905 /* Target write callback routine for progress reporting. */
1906
1907 static void
1908 load_progress (ULONGEST bytes, void *untyped_arg)
1909 {
1910 struct load_progress_section_data *args = untyped_arg;
1911 struct load_progress_data *totals;
1912
1913 if (args == NULL)
1914 /* Writing padding data. No easy way to get at the cumulative
1915 stats, so just ignore this. */
1916 return;
1917
1918 totals = args->cumulative;
1919
1920 if (bytes == 0 && args->section_sent == 0)
1921 {
1922 /* The write is just starting. Let the user know we've started
1923 this section. */
1924 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1925 args->section_name, hex_string (args->section_size),
1926 paddress (target_gdbarch (), args->lma));
1927 return;
1928 }
1929
1930 if (validate_download)
1931 {
1932 /* Broken memories and broken monitors manifest themselves here
1933 when bring new computers to life. This doubles already slow
1934 downloads. */
1935 /* NOTE: cagney/1999-10-18: A more efficient implementation
1936 might add a verify_memory() method to the target vector and
1937 then use that. remote.c could implement that method using
1938 the ``qCRC'' packet. */
1939 gdb_byte *check = xmalloc (bytes);
1940 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1941
1942 if (target_read_memory (args->lma, check, bytes) != 0)
1943 error (_("Download verify read failed at %s"),
1944 paddress (target_gdbarch (), args->lma));
1945 if (memcmp (args->buffer, check, bytes) != 0)
1946 error (_("Download verify compare failed at %s"),
1947 paddress (target_gdbarch (), args->lma));
1948 do_cleanups (verify_cleanups);
1949 }
1950 totals->data_count += bytes;
1951 args->lma += bytes;
1952 args->buffer += bytes;
1953 totals->write_count += 1;
1954 args->section_sent += bytes;
1955 if (check_quit_flag ()
1956 || (deprecated_ui_load_progress_hook != NULL
1957 && deprecated_ui_load_progress_hook (args->section_name,
1958 args->section_sent)))
1959 error (_("Canceled the download"));
1960
1961 if (deprecated_show_load_progress != NULL)
1962 deprecated_show_load_progress (args->section_name,
1963 args->section_sent,
1964 args->section_size,
1965 totals->data_count,
1966 totals->total_size);
1967 }
1968
1969 /* Callback service function for generic_load (bfd_map_over_sections). */
1970
1971 static void
1972 load_section_callback (bfd *abfd, asection *asec, void *data)
1973 {
1974 struct memory_write_request *new_request;
1975 struct load_section_data *args = data;
1976 struct load_progress_section_data *section_data;
1977 bfd_size_type size = bfd_get_section_size (asec);
1978 gdb_byte *buffer;
1979 const char *sect_name = bfd_get_section_name (abfd, asec);
1980
1981 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1982 return;
1983
1984 if (size == 0)
1985 return;
1986
1987 new_request = VEC_safe_push (memory_write_request_s,
1988 args->requests, NULL);
1989 memset (new_request, 0, sizeof (struct memory_write_request));
1990 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1991 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1992 new_request->end = new_request->begin + size; /* FIXME Should size
1993 be in instead? */
1994 new_request->data = xmalloc (size);
1995 new_request->baton = section_data;
1996
1997 buffer = new_request->data;
1998
1999 section_data->cumulative = args->progress_data;
2000 section_data->section_name = sect_name;
2001 section_data->section_size = size;
2002 section_data->lma = new_request->begin;
2003 section_data->buffer = buffer;
2004
2005 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2006 }
2007
2008 /* Clean up an entire memory request vector, including load
2009 data and progress records. */
2010
2011 static void
2012 clear_memory_write_data (void *arg)
2013 {
2014 VEC(memory_write_request_s) **vec_p = arg;
2015 VEC(memory_write_request_s) *vec = *vec_p;
2016 int i;
2017 struct memory_write_request *mr;
2018
2019 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2020 {
2021 xfree (mr->data);
2022 xfree (mr->baton);
2023 }
2024 VEC_free (memory_write_request_s, vec);
2025 }
2026
2027 void
2028 generic_load (char *args, int from_tty)
2029 {
2030 bfd *loadfile_bfd;
2031 struct timeval start_time, end_time;
2032 char *filename;
2033 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2034 struct load_section_data cbdata;
2035 struct load_progress_data total_progress;
2036 struct ui_out *uiout = current_uiout;
2037
2038 CORE_ADDR entry;
2039 char **argv;
2040
2041 memset (&cbdata, 0, sizeof (cbdata));
2042 memset (&total_progress, 0, sizeof (total_progress));
2043 cbdata.progress_data = &total_progress;
2044
2045 make_cleanup (clear_memory_write_data, &cbdata.requests);
2046
2047 if (args == NULL)
2048 error_no_arg (_("file to load"));
2049
2050 argv = gdb_buildargv (args);
2051 make_cleanup_freeargv (argv);
2052
2053 filename = tilde_expand (argv[0]);
2054 make_cleanup (xfree, filename);
2055
2056 if (argv[1] != NULL)
2057 {
2058 const char *endptr;
2059
2060 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2061
2062 /* If the last word was not a valid number then
2063 treat it as a file name with spaces in. */
2064 if (argv[1] == endptr)
2065 error (_("Invalid download offset:%s."), argv[1]);
2066
2067 if (argv[2] != NULL)
2068 error (_("Too many parameters."));
2069 }
2070
2071 /* Open the file for loading. */
2072 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2073 if (loadfile_bfd == NULL)
2074 {
2075 perror_with_name (filename);
2076 return;
2077 }
2078
2079 make_cleanup_bfd_unref (loadfile_bfd);
2080
2081 if (!bfd_check_format (loadfile_bfd, bfd_object))
2082 {
2083 error (_("\"%s\" is not an object file: %s"), filename,
2084 bfd_errmsg (bfd_get_error ()));
2085 }
2086
2087 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2088 (void *) &total_progress.total_size);
2089
2090 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2091
2092 gettimeofday (&start_time, NULL);
2093
2094 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2095 load_progress) != 0)
2096 error (_("Load failed"));
2097
2098 gettimeofday (&end_time, NULL);
2099
2100 entry = bfd_get_start_address (loadfile_bfd);
2101 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2102 ui_out_text (uiout, "Start address ");
2103 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2104 ui_out_text (uiout, ", load size ");
2105 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2106 ui_out_text (uiout, "\n");
2107 /* We were doing this in remote-mips.c, I suspect it is right
2108 for other targets too. */
2109 regcache_write_pc (get_current_regcache (), entry);
2110
2111 /* Reset breakpoints, now that we have changed the load image. For
2112 instance, breakpoints may have been set (or reset, by
2113 post_create_inferior) while connected to the target but before we
2114 loaded the program. In that case, the prologue analyzer could
2115 have read instructions from the target to find the right
2116 breakpoint locations. Loading has changed the contents of that
2117 memory. */
2118
2119 breakpoint_re_set ();
2120
2121 /* FIXME: are we supposed to call symbol_file_add or not? According
2122 to a comment from remote-mips.c (where a call to symbol_file_add
2123 was commented out), making the call confuses GDB if more than one
2124 file is loaded in. Some targets do (e.g., remote-vx.c) but
2125 others don't (or didn't - perhaps they have all been deleted). */
2126
2127 print_transfer_performance (gdb_stdout, total_progress.data_count,
2128 total_progress.write_count,
2129 &start_time, &end_time);
2130
2131 do_cleanups (old_cleanups);
2132 }
2133
2134 /* Report how fast the transfer went. */
2135
2136 void
2137 print_transfer_performance (struct ui_file *stream,
2138 unsigned long data_count,
2139 unsigned long write_count,
2140 const struct timeval *start_time,
2141 const struct timeval *end_time)
2142 {
2143 ULONGEST time_count;
2144 struct ui_out *uiout = current_uiout;
2145
2146 /* Compute the elapsed time in milliseconds, as a tradeoff between
2147 accuracy and overflow. */
2148 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2149 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2150
2151 ui_out_text (uiout, "Transfer rate: ");
2152 if (time_count > 0)
2153 {
2154 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2155
2156 if (ui_out_is_mi_like_p (uiout))
2157 {
2158 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2159 ui_out_text (uiout, " bits/sec");
2160 }
2161 else if (rate < 1024)
2162 {
2163 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2164 ui_out_text (uiout, " bytes/sec");
2165 }
2166 else
2167 {
2168 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2169 ui_out_text (uiout, " KB/sec");
2170 }
2171 }
2172 else
2173 {
2174 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2175 ui_out_text (uiout, " bits in <1 sec");
2176 }
2177 if (write_count > 0)
2178 {
2179 ui_out_text (uiout, ", ");
2180 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2181 ui_out_text (uiout, " bytes/write");
2182 }
2183 ui_out_text (uiout, ".\n");
2184 }
2185
2186 /* This function allows the addition of incrementally linked object files.
2187 It does not modify any state in the target, only in the debugger. */
2188 /* Note: ezannoni 2000-04-13 This function/command used to have a
2189 special case syntax for the rombug target (Rombug is the boot
2190 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2191 rombug case, the user doesn't need to supply a text address,
2192 instead a call to target_link() (in target.c) would supply the
2193 value to use. We are now discontinuing this type of ad hoc syntax. */
2194
2195 static void
2196 add_symbol_file_command (char *args, int from_tty)
2197 {
2198 struct gdbarch *gdbarch = get_current_arch ();
2199 char *filename = NULL;
2200 int flags = OBJF_USERLOADED;
2201 char *arg;
2202 int section_index = 0;
2203 int argcnt = 0;
2204 int sec_num = 0;
2205 int i;
2206 int expecting_sec_name = 0;
2207 int expecting_sec_addr = 0;
2208 char **argv;
2209
2210 struct sect_opt
2211 {
2212 char *name;
2213 char *value;
2214 };
2215
2216 struct section_addr_info *section_addrs;
2217 struct sect_opt *sect_opts = NULL;
2218 size_t num_sect_opts = 0;
2219 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2220
2221 num_sect_opts = 16;
2222 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2223 * sizeof (struct sect_opt));
2224
2225 dont_repeat ();
2226
2227 if (args == NULL)
2228 error (_("add-symbol-file takes a file name and an address"));
2229
2230 argv = gdb_buildargv (args);
2231 make_cleanup_freeargv (argv);
2232
2233 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2234 {
2235 /* Process the argument. */
2236 if (argcnt == 0)
2237 {
2238 /* The first argument is the file name. */
2239 filename = tilde_expand (arg);
2240 make_cleanup (xfree, filename);
2241 }
2242 else if (argcnt == 1)
2243 {
2244 /* The second argument is always the text address at which
2245 to load the program. */
2246 sect_opts[section_index].name = ".text";
2247 sect_opts[section_index].value = arg;
2248 if (++section_index >= num_sect_opts)
2249 {
2250 num_sect_opts *= 2;
2251 sect_opts = ((struct sect_opt *)
2252 xrealloc (sect_opts,
2253 num_sect_opts
2254 * sizeof (struct sect_opt)));
2255 }
2256 }
2257 else
2258 {
2259 /* It's an option (starting with '-') or it's an argument
2260 to an option. */
2261 if (expecting_sec_name)
2262 {
2263 sect_opts[section_index].name = arg;
2264 expecting_sec_name = 0;
2265 }
2266 else if (expecting_sec_addr)
2267 {
2268 sect_opts[section_index].value = arg;
2269 expecting_sec_addr = 0;
2270 if (++section_index >= num_sect_opts)
2271 {
2272 num_sect_opts *= 2;
2273 sect_opts = ((struct sect_opt *)
2274 xrealloc (sect_opts,
2275 num_sect_opts
2276 * sizeof (struct sect_opt)));
2277 }
2278 }
2279 else if (strcmp (arg, "-readnow") == 0)
2280 flags |= OBJF_READNOW;
2281 else if (strcmp (arg, "-s") == 0)
2282 {
2283 expecting_sec_name = 1;
2284 expecting_sec_addr = 1;
2285 }
2286 else
2287 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2288 " [-readnow] [-s <secname> <addr>]*"));
2289 }
2290 }
2291
2292 /* This command takes at least two arguments. The first one is a
2293 filename, and the second is the address where this file has been
2294 loaded. Abort now if this address hasn't been provided by the
2295 user. */
2296 if (section_index < 1)
2297 error (_("The address where %s has been loaded is missing"), filename);
2298
2299 /* Print the prompt for the query below. And save the arguments into
2300 a sect_addr_info structure to be passed around to other
2301 functions. We have to split this up into separate print
2302 statements because hex_string returns a local static
2303 string. */
2304
2305 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2306 section_addrs = alloc_section_addr_info (section_index);
2307 make_cleanup (xfree, section_addrs);
2308 for (i = 0; i < section_index; i++)
2309 {
2310 CORE_ADDR addr;
2311 char *val = sect_opts[i].value;
2312 char *sec = sect_opts[i].name;
2313
2314 addr = parse_and_eval_address (val);
2315
2316 /* Here we store the section offsets in the order they were
2317 entered on the command line. */
2318 section_addrs->other[sec_num].name = sec;
2319 section_addrs->other[sec_num].addr = addr;
2320 printf_unfiltered ("\t%s_addr = %s\n", sec,
2321 paddress (gdbarch, addr));
2322 sec_num++;
2323
2324 /* The object's sections are initialized when a
2325 call is made to build_objfile_section_table (objfile).
2326 This happens in reread_symbols.
2327 At this point, we don't know what file type this is,
2328 so we can't determine what section names are valid. */
2329 }
2330 section_addrs->num_sections = sec_num;
2331
2332 if (from_tty && (!query ("%s", "")))
2333 error (_("Not confirmed."));
2334
2335 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2336 section_addrs, flags);
2337
2338 /* Getting new symbols may change our opinion about what is
2339 frameless. */
2340 reinit_frame_cache ();
2341 do_cleanups (my_cleanups);
2342 }
2343 \f
2344
2345 /* This function removes a symbol file that was added via add-symbol-file. */
2346
2347 static void
2348 remove_symbol_file_command (char *args, int from_tty)
2349 {
2350 char **argv;
2351 struct objfile *objf = NULL;
2352 struct cleanup *my_cleanups;
2353 struct program_space *pspace = current_program_space;
2354 struct gdbarch *gdbarch = get_current_arch ();
2355
2356 dont_repeat ();
2357
2358 if (args == NULL)
2359 error (_("remove-symbol-file: no symbol file provided"));
2360
2361 my_cleanups = make_cleanup (null_cleanup, NULL);
2362
2363 argv = gdb_buildargv (args);
2364
2365 if (strcmp (argv[0], "-a") == 0)
2366 {
2367 /* Interpret the next argument as an address. */
2368 CORE_ADDR addr;
2369
2370 if (argv[1] == NULL)
2371 error (_("Missing address argument"));
2372
2373 if (argv[2] != NULL)
2374 error (_("Junk after %s"), argv[1]);
2375
2376 addr = parse_and_eval_address (argv[1]);
2377
2378 ALL_OBJFILES (objf)
2379 {
2380 if (objf != 0
2381 && objf->flags & OBJF_USERLOADED
2382 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2383 break;
2384 }
2385 }
2386 else if (argv[0] != NULL)
2387 {
2388 /* Interpret the current argument as a file name. */
2389 char *filename;
2390
2391 if (argv[1] != NULL)
2392 error (_("Junk after %s"), argv[0]);
2393
2394 filename = tilde_expand (argv[0]);
2395 make_cleanup (xfree, filename);
2396
2397 ALL_OBJFILES (objf)
2398 {
2399 if (objf != 0
2400 && objf->flags & OBJF_USERLOADED
2401 && objf->pspace == pspace
2402 && filename_cmp (filename, objfile_name (objf)) == 0)
2403 break;
2404 }
2405 }
2406
2407 if (objf == NULL)
2408 error (_("No symbol file found"));
2409
2410 if (from_tty
2411 && !query (_("Remove symbol table from file \"%s\"? "),
2412 objfile_name (objf)))
2413 error (_("Not confirmed."));
2414
2415 free_objfile (objf);
2416 clear_symtab_users (0);
2417
2418 do_cleanups (my_cleanups);
2419 }
2420
2421 typedef struct objfile *objfilep;
2422
2423 DEF_VEC_P (objfilep);
2424
2425 /* Re-read symbols if a symbol-file has changed. */
2426
2427 void
2428 reread_symbols (void)
2429 {
2430 struct objfile *objfile;
2431 long new_modtime;
2432 struct stat new_statbuf;
2433 int res;
2434 VEC (objfilep) *new_objfiles = NULL;
2435 struct cleanup *all_cleanups;
2436
2437 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2438
2439 /* With the addition of shared libraries, this should be modified,
2440 the load time should be saved in the partial symbol tables, since
2441 different tables may come from different source files. FIXME.
2442 This routine should then walk down each partial symbol table
2443 and see if the symbol table that it originates from has been changed. */
2444
2445 for (objfile = object_files; objfile; objfile = objfile->next)
2446 {
2447 if (objfile->obfd == NULL)
2448 continue;
2449
2450 /* Separate debug objfiles are handled in the main objfile. */
2451 if (objfile->separate_debug_objfile_backlink)
2452 continue;
2453
2454 /* If this object is from an archive (what you usually create with
2455 `ar', often called a `static library' on most systems, though
2456 a `shared library' on AIX is also an archive), then you should
2457 stat on the archive name, not member name. */
2458 if (objfile->obfd->my_archive)
2459 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2460 else
2461 res = stat (objfile_name (objfile), &new_statbuf);
2462 if (res != 0)
2463 {
2464 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2465 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2466 objfile_name (objfile));
2467 continue;
2468 }
2469 new_modtime = new_statbuf.st_mtime;
2470 if (new_modtime != objfile->mtime)
2471 {
2472 struct cleanup *old_cleanups;
2473 struct section_offsets *offsets;
2474 int num_offsets;
2475 char *original_name;
2476
2477 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2478 objfile_name (objfile));
2479
2480 /* There are various functions like symbol_file_add,
2481 symfile_bfd_open, syms_from_objfile, etc., which might
2482 appear to do what we want. But they have various other
2483 effects which we *don't* want. So we just do stuff
2484 ourselves. We don't worry about mapped files (for one thing,
2485 any mapped file will be out of date). */
2486
2487 /* If we get an error, blow away this objfile (not sure if
2488 that is the correct response for things like shared
2489 libraries). */
2490 old_cleanups = make_cleanup_free_objfile (objfile);
2491 /* We need to do this whenever any symbols go away. */
2492 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2493
2494 if (exec_bfd != NULL
2495 && filename_cmp (bfd_get_filename (objfile->obfd),
2496 bfd_get_filename (exec_bfd)) == 0)
2497 {
2498 /* Reload EXEC_BFD without asking anything. */
2499
2500 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2501 }
2502
2503 /* Keep the calls order approx. the same as in free_objfile. */
2504
2505 /* Free the separate debug objfiles. It will be
2506 automatically recreated by sym_read. */
2507 free_objfile_separate_debug (objfile);
2508
2509 /* Remove any references to this objfile in the global
2510 value lists. */
2511 preserve_values (objfile);
2512
2513 /* Nuke all the state that we will re-read. Much of the following
2514 code which sets things to NULL really is necessary to tell
2515 other parts of GDB that there is nothing currently there.
2516
2517 Try to keep the freeing order compatible with free_objfile. */
2518
2519 if (objfile->sf != NULL)
2520 {
2521 (*objfile->sf->sym_finish) (objfile);
2522 }
2523
2524 clear_objfile_data (objfile);
2525
2526 /* Clean up any state BFD has sitting around. */
2527 {
2528 struct bfd *obfd = objfile->obfd;
2529 char *obfd_filename;
2530
2531 obfd_filename = bfd_get_filename (objfile->obfd);
2532 /* Open the new BFD before freeing the old one, so that
2533 the filename remains live. */
2534 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2535 if (objfile->obfd == NULL)
2536 {
2537 /* We have to make a cleanup and error here, rather
2538 than erroring later, because once we unref OBFD,
2539 OBFD_FILENAME will be freed. */
2540 make_cleanup_bfd_unref (obfd);
2541 error (_("Can't open %s to read symbols."), obfd_filename);
2542 }
2543 gdb_bfd_unref (obfd);
2544 }
2545
2546 original_name = xstrdup (objfile->original_name);
2547 make_cleanup (xfree, original_name);
2548
2549 /* bfd_openr sets cacheable to true, which is what we want. */
2550 if (!bfd_check_format (objfile->obfd, bfd_object))
2551 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2552 bfd_errmsg (bfd_get_error ()));
2553
2554 /* Save the offsets, we will nuke them with the rest of the
2555 objfile_obstack. */
2556 num_offsets = objfile->num_sections;
2557 offsets = ((struct section_offsets *)
2558 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2559 memcpy (offsets, objfile->section_offsets,
2560 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2561
2562 /* FIXME: Do we have to free a whole linked list, or is this
2563 enough? */
2564 if (objfile->global_psymbols.list)
2565 xfree (objfile->global_psymbols.list);
2566 memset (&objfile->global_psymbols, 0,
2567 sizeof (objfile->global_psymbols));
2568 if (objfile->static_psymbols.list)
2569 xfree (objfile->static_psymbols.list);
2570 memset (&objfile->static_psymbols, 0,
2571 sizeof (objfile->static_psymbols));
2572
2573 /* Free the obstacks for non-reusable objfiles. */
2574 psymbol_bcache_free (objfile->psymbol_cache);
2575 objfile->psymbol_cache = psymbol_bcache_init ();
2576 obstack_free (&objfile->objfile_obstack, 0);
2577 objfile->sections = NULL;
2578 objfile->symtabs = NULL;
2579 objfile->psymtabs = NULL;
2580 objfile->psymtabs_addrmap = NULL;
2581 objfile->free_psymtabs = NULL;
2582 objfile->template_symbols = NULL;
2583 objfile->msymbols = NULL;
2584 objfile->minimal_symbol_count = 0;
2585 memset (&objfile->msymbol_hash, 0,
2586 sizeof (objfile->msymbol_hash));
2587 memset (&objfile->msymbol_demangled_hash, 0,
2588 sizeof (objfile->msymbol_demangled_hash));
2589
2590 set_objfile_per_bfd (objfile);
2591
2592 /* obstack_init also initializes the obstack so it is
2593 empty. We could use obstack_specify_allocation but
2594 gdb_obstack.h specifies the alloc/dealloc functions. */
2595 obstack_init (&objfile->objfile_obstack);
2596
2597 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2598 original_name,
2599 strlen (original_name));
2600
2601 /* Reset the sym_fns pointer. The ELF reader can change it
2602 based on whether .gdb_index is present, and we need it to
2603 start over. PR symtab/15885 */
2604 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2605
2606 build_objfile_section_table (objfile);
2607 terminate_minimal_symbol_table (objfile);
2608
2609 /* We use the same section offsets as from last time. I'm not
2610 sure whether that is always correct for shared libraries. */
2611 objfile->section_offsets = (struct section_offsets *)
2612 obstack_alloc (&objfile->objfile_obstack,
2613 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2614 memcpy (objfile->section_offsets, offsets,
2615 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2616 objfile->num_sections = num_offsets;
2617
2618 /* What the hell is sym_new_init for, anyway? The concept of
2619 distinguishing between the main file and additional files
2620 in this way seems rather dubious. */
2621 if (objfile == symfile_objfile)
2622 {
2623 (*objfile->sf->sym_new_init) (objfile);
2624 }
2625
2626 (*objfile->sf->sym_init) (objfile);
2627 clear_complaints (&symfile_complaints, 1, 1);
2628
2629 objfile->flags &= ~OBJF_PSYMTABS_READ;
2630 read_symbols (objfile, 0);
2631
2632 if (!objfile_has_symbols (objfile))
2633 {
2634 wrap_here ("");
2635 printf_unfiltered (_("(no debugging symbols found)\n"));
2636 wrap_here ("");
2637 }
2638
2639 /* We're done reading the symbol file; finish off complaints. */
2640 clear_complaints (&symfile_complaints, 0, 1);
2641
2642 /* Getting new symbols may change our opinion about what is
2643 frameless. */
2644
2645 reinit_frame_cache ();
2646
2647 /* Discard cleanups as symbol reading was successful. */
2648 discard_cleanups (old_cleanups);
2649
2650 /* If the mtime has changed between the time we set new_modtime
2651 and now, we *want* this to be out of date, so don't call stat
2652 again now. */
2653 objfile->mtime = new_modtime;
2654 init_entry_point_info (objfile);
2655
2656 VEC_safe_push (objfilep, new_objfiles, objfile);
2657 }
2658 }
2659
2660 if (new_objfiles)
2661 {
2662 int ix;
2663
2664 /* Notify objfiles that we've modified objfile sections. */
2665 objfiles_changed ();
2666
2667 clear_symtab_users (0);
2668
2669 /* clear_objfile_data for each objfile was called before freeing it and
2670 observer_notify_new_objfile (NULL) has been called by
2671 clear_symtab_users above. Notify the new files now. */
2672 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2673 observer_notify_new_objfile (objfile);
2674
2675 /* At least one objfile has changed, so we can consider that
2676 the executable we're debugging has changed too. */
2677 observer_notify_executable_changed ();
2678 }
2679
2680 do_cleanups (all_cleanups);
2681 }
2682 \f
2683
2684 typedef struct
2685 {
2686 char *ext;
2687 enum language lang;
2688 }
2689 filename_language;
2690
2691 static filename_language *filename_language_table;
2692 static int fl_table_size, fl_table_next;
2693
2694 static void
2695 add_filename_language (char *ext, enum language lang)
2696 {
2697 if (fl_table_next >= fl_table_size)
2698 {
2699 fl_table_size += 10;
2700 filename_language_table =
2701 xrealloc (filename_language_table,
2702 fl_table_size * sizeof (*filename_language_table));
2703 }
2704
2705 filename_language_table[fl_table_next].ext = xstrdup (ext);
2706 filename_language_table[fl_table_next].lang = lang;
2707 fl_table_next++;
2708 }
2709
2710 static char *ext_args;
2711 static void
2712 show_ext_args (struct ui_file *file, int from_tty,
2713 struct cmd_list_element *c, const char *value)
2714 {
2715 fprintf_filtered (file,
2716 _("Mapping between filename extension "
2717 "and source language is \"%s\".\n"),
2718 value);
2719 }
2720
2721 static void
2722 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2723 {
2724 int i;
2725 char *cp = ext_args;
2726 enum language lang;
2727
2728 /* First arg is filename extension, starting with '.' */
2729 if (*cp != '.')
2730 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2731
2732 /* Find end of first arg. */
2733 while (*cp && !isspace (*cp))
2734 cp++;
2735
2736 if (*cp == '\0')
2737 error (_("'%s': two arguments required -- "
2738 "filename extension and language"),
2739 ext_args);
2740
2741 /* Null-terminate first arg. */
2742 *cp++ = '\0';
2743
2744 /* Find beginning of second arg, which should be a source language. */
2745 cp = skip_spaces (cp);
2746
2747 if (*cp == '\0')
2748 error (_("'%s': two arguments required -- "
2749 "filename extension and language"),
2750 ext_args);
2751
2752 /* Lookup the language from among those we know. */
2753 lang = language_enum (cp);
2754
2755 /* Now lookup the filename extension: do we already know it? */
2756 for (i = 0; i < fl_table_next; i++)
2757 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2758 break;
2759
2760 if (i >= fl_table_next)
2761 {
2762 /* New file extension. */
2763 add_filename_language (ext_args, lang);
2764 }
2765 else
2766 {
2767 /* Redefining a previously known filename extension. */
2768
2769 /* if (from_tty) */
2770 /* query ("Really make files of type %s '%s'?", */
2771 /* ext_args, language_str (lang)); */
2772
2773 xfree (filename_language_table[i].ext);
2774 filename_language_table[i].ext = xstrdup (ext_args);
2775 filename_language_table[i].lang = lang;
2776 }
2777 }
2778
2779 static void
2780 info_ext_lang_command (char *args, int from_tty)
2781 {
2782 int i;
2783
2784 printf_filtered (_("Filename extensions and the languages they represent:"));
2785 printf_filtered ("\n\n");
2786 for (i = 0; i < fl_table_next; i++)
2787 printf_filtered ("\t%s\t- %s\n",
2788 filename_language_table[i].ext,
2789 language_str (filename_language_table[i].lang));
2790 }
2791
2792 static void
2793 init_filename_language_table (void)
2794 {
2795 if (fl_table_size == 0) /* Protect against repetition. */
2796 {
2797 fl_table_size = 20;
2798 fl_table_next = 0;
2799 filename_language_table =
2800 xmalloc (fl_table_size * sizeof (*filename_language_table));
2801 add_filename_language (".c", language_c);
2802 add_filename_language (".d", language_d);
2803 add_filename_language (".C", language_cplus);
2804 add_filename_language (".cc", language_cplus);
2805 add_filename_language (".cp", language_cplus);
2806 add_filename_language (".cpp", language_cplus);
2807 add_filename_language (".cxx", language_cplus);
2808 add_filename_language (".c++", language_cplus);
2809 add_filename_language (".java", language_java);
2810 add_filename_language (".class", language_java);
2811 add_filename_language (".m", language_objc);
2812 add_filename_language (".f", language_fortran);
2813 add_filename_language (".F", language_fortran);
2814 add_filename_language (".for", language_fortran);
2815 add_filename_language (".FOR", language_fortran);
2816 add_filename_language (".ftn", language_fortran);
2817 add_filename_language (".FTN", language_fortran);
2818 add_filename_language (".fpp", language_fortran);
2819 add_filename_language (".FPP", language_fortran);
2820 add_filename_language (".f90", language_fortran);
2821 add_filename_language (".F90", language_fortran);
2822 add_filename_language (".f95", language_fortran);
2823 add_filename_language (".F95", language_fortran);
2824 add_filename_language (".f03", language_fortran);
2825 add_filename_language (".F03", language_fortran);
2826 add_filename_language (".f08", language_fortran);
2827 add_filename_language (".F08", language_fortran);
2828 add_filename_language (".s", language_asm);
2829 add_filename_language (".sx", language_asm);
2830 add_filename_language (".S", language_asm);
2831 add_filename_language (".pas", language_pascal);
2832 add_filename_language (".p", language_pascal);
2833 add_filename_language (".pp", language_pascal);
2834 add_filename_language (".adb", language_ada);
2835 add_filename_language (".ads", language_ada);
2836 add_filename_language (".a", language_ada);
2837 add_filename_language (".ada", language_ada);
2838 add_filename_language (".dg", language_ada);
2839 }
2840 }
2841
2842 enum language
2843 deduce_language_from_filename (const char *filename)
2844 {
2845 int i;
2846 char *cp;
2847
2848 if (filename != NULL)
2849 if ((cp = strrchr (filename, '.')) != NULL)
2850 for (i = 0; i < fl_table_next; i++)
2851 if (strcmp (cp, filename_language_table[i].ext) == 0)
2852 return filename_language_table[i].lang;
2853
2854 return language_unknown;
2855 }
2856 \f
2857 /* allocate_symtab:
2858
2859 Allocate and partly initialize a new symbol table. Return a pointer
2860 to it. error() if no space.
2861
2862 Caller must set these fields:
2863 LINETABLE(symtab)
2864 symtab->blockvector
2865 symtab->dirname
2866 symtab->free_code
2867 symtab->free_ptr
2868 */
2869
2870 struct symtab *
2871 allocate_symtab (const char *filename, struct objfile *objfile)
2872 {
2873 struct symtab *symtab;
2874
2875 symtab = (struct symtab *)
2876 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2877 memset (symtab, 0, sizeof (*symtab));
2878 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2879 objfile->per_bfd->filename_cache);
2880 symtab->fullname = NULL;
2881 symtab->language = deduce_language_from_filename (filename);
2882 symtab->debugformat = "unknown";
2883
2884 /* Hook it to the objfile it comes from. */
2885
2886 symtab->objfile = objfile;
2887 symtab->next = objfile->symtabs;
2888 objfile->symtabs = symtab;
2889
2890 if (symtab_create_debug)
2891 {
2892 /* Be a bit clever with debugging messages, and don't print objfile
2893 every time, only when it changes. */
2894 static char *last_objfile_name = NULL;
2895
2896 if (last_objfile_name == NULL
2897 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2898 {
2899 xfree (last_objfile_name);
2900 last_objfile_name = xstrdup (objfile_name (objfile));
2901 fprintf_unfiltered (gdb_stdlog,
2902 "Creating one or more symtabs for objfile %s ...\n",
2903 last_objfile_name);
2904 }
2905 fprintf_unfiltered (gdb_stdlog,
2906 "Created symtab %s for module %s.\n",
2907 host_address_to_string (symtab), filename);
2908 }
2909
2910 return (symtab);
2911 }
2912 \f
2913
2914 /* Reset all data structures in gdb which may contain references to symbol
2915 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2916
2917 void
2918 clear_symtab_users (int add_flags)
2919 {
2920 /* Someday, we should do better than this, by only blowing away
2921 the things that really need to be blown. */
2922
2923 /* Clear the "current" symtab first, because it is no longer valid.
2924 breakpoint_re_set may try to access the current symtab. */
2925 clear_current_source_symtab_and_line ();
2926
2927 clear_displays ();
2928 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2929 breakpoint_re_set ();
2930 clear_last_displayed_sal ();
2931 clear_pc_function_cache ();
2932 observer_notify_new_objfile (NULL);
2933
2934 /* Clear globals which might have pointed into a removed objfile.
2935 FIXME: It's not clear which of these are supposed to persist
2936 between expressions and which ought to be reset each time. */
2937 expression_context_block = NULL;
2938 innermost_block = NULL;
2939
2940 /* Varobj may refer to old symbols, perform a cleanup. */
2941 varobj_invalidate ();
2942
2943 }
2944
2945 static void
2946 clear_symtab_users_cleanup (void *ignore)
2947 {
2948 clear_symtab_users (0);
2949 }
2950 \f
2951 /* OVERLAYS:
2952 The following code implements an abstraction for debugging overlay sections.
2953
2954 The target model is as follows:
2955 1) The gnu linker will permit multiple sections to be mapped into the
2956 same VMA, each with its own unique LMA (or load address).
2957 2) It is assumed that some runtime mechanism exists for mapping the
2958 sections, one by one, from the load address into the VMA address.
2959 3) This code provides a mechanism for gdb to keep track of which
2960 sections should be considered to be mapped from the VMA to the LMA.
2961 This information is used for symbol lookup, and memory read/write.
2962 For instance, if a section has been mapped then its contents
2963 should be read from the VMA, otherwise from the LMA.
2964
2965 Two levels of debugger support for overlays are available. One is
2966 "manual", in which the debugger relies on the user to tell it which
2967 overlays are currently mapped. This level of support is
2968 implemented entirely in the core debugger, and the information about
2969 whether a section is mapped is kept in the objfile->obj_section table.
2970
2971 The second level of support is "automatic", and is only available if
2972 the target-specific code provides functionality to read the target's
2973 overlay mapping table, and translate its contents for the debugger
2974 (by updating the mapped state information in the obj_section tables).
2975
2976 The interface is as follows:
2977 User commands:
2978 overlay map <name> -- tell gdb to consider this section mapped
2979 overlay unmap <name> -- tell gdb to consider this section unmapped
2980 overlay list -- list the sections that GDB thinks are mapped
2981 overlay read-target -- get the target's state of what's mapped
2982 overlay off/manual/auto -- set overlay debugging state
2983 Functional interface:
2984 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2985 section, return that section.
2986 find_pc_overlay(pc): find any overlay section that contains
2987 the pc, either in its VMA or its LMA
2988 section_is_mapped(sect): true if overlay is marked as mapped
2989 section_is_overlay(sect): true if section's VMA != LMA
2990 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2991 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2992 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2993 overlay_mapped_address(...): map an address from section's LMA to VMA
2994 overlay_unmapped_address(...): map an address from section's VMA to LMA
2995 symbol_overlayed_address(...): Return a "current" address for symbol:
2996 either in VMA or LMA depending on whether
2997 the symbol's section is currently mapped. */
2998
2999 /* Overlay debugging state: */
3000
3001 enum overlay_debugging_state overlay_debugging = ovly_off;
3002 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3003
3004 /* Function: section_is_overlay (SECTION)
3005 Returns true if SECTION has VMA not equal to LMA, ie.
3006 SECTION is loaded at an address different from where it will "run". */
3007
3008 int
3009 section_is_overlay (struct obj_section *section)
3010 {
3011 if (overlay_debugging && section)
3012 {
3013 bfd *abfd = section->objfile->obfd;
3014 asection *bfd_section = section->the_bfd_section;
3015
3016 if (bfd_section_lma (abfd, bfd_section) != 0
3017 && bfd_section_lma (abfd, bfd_section)
3018 != bfd_section_vma (abfd, bfd_section))
3019 return 1;
3020 }
3021
3022 return 0;
3023 }
3024
3025 /* Function: overlay_invalidate_all (void)
3026 Invalidate the mapped state of all overlay sections (mark it as stale). */
3027
3028 static void
3029 overlay_invalidate_all (void)
3030 {
3031 struct objfile *objfile;
3032 struct obj_section *sect;
3033
3034 ALL_OBJSECTIONS (objfile, sect)
3035 if (section_is_overlay (sect))
3036 sect->ovly_mapped = -1;
3037 }
3038
3039 /* Function: section_is_mapped (SECTION)
3040 Returns true if section is an overlay, and is currently mapped.
3041
3042 Access to the ovly_mapped flag is restricted to this function, so
3043 that we can do automatic update. If the global flag
3044 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3045 overlay_invalidate_all. If the mapped state of the particular
3046 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3047
3048 int
3049 section_is_mapped (struct obj_section *osect)
3050 {
3051 struct gdbarch *gdbarch;
3052
3053 if (osect == 0 || !section_is_overlay (osect))
3054 return 0;
3055
3056 switch (overlay_debugging)
3057 {
3058 default:
3059 case ovly_off:
3060 return 0; /* overlay debugging off */
3061 case ovly_auto: /* overlay debugging automatic */
3062 /* Unles there is a gdbarch_overlay_update function,
3063 there's really nothing useful to do here (can't really go auto). */
3064 gdbarch = get_objfile_arch (osect->objfile);
3065 if (gdbarch_overlay_update_p (gdbarch))
3066 {
3067 if (overlay_cache_invalid)
3068 {
3069 overlay_invalidate_all ();
3070 overlay_cache_invalid = 0;
3071 }
3072 if (osect->ovly_mapped == -1)
3073 gdbarch_overlay_update (gdbarch, osect);
3074 }
3075 /* fall thru to manual case */
3076 case ovly_on: /* overlay debugging manual */
3077 return osect->ovly_mapped == 1;
3078 }
3079 }
3080
3081 /* Function: pc_in_unmapped_range
3082 If PC falls into the lma range of SECTION, return true, else false. */
3083
3084 CORE_ADDR
3085 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3086 {
3087 if (section_is_overlay (section))
3088 {
3089 bfd *abfd = section->objfile->obfd;
3090 asection *bfd_section = section->the_bfd_section;
3091
3092 /* We assume the LMA is relocated by the same offset as the VMA. */
3093 bfd_vma size = bfd_get_section_size (bfd_section);
3094 CORE_ADDR offset = obj_section_offset (section);
3095
3096 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3097 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3098 return 1;
3099 }
3100
3101 return 0;
3102 }
3103
3104 /* Function: pc_in_mapped_range
3105 If PC falls into the vma range of SECTION, return true, else false. */
3106
3107 CORE_ADDR
3108 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3109 {
3110 if (section_is_overlay (section))
3111 {
3112 if (obj_section_addr (section) <= pc
3113 && pc < obj_section_endaddr (section))
3114 return 1;
3115 }
3116
3117 return 0;
3118 }
3119
3120 /* Return true if the mapped ranges of sections A and B overlap, false
3121 otherwise. */
3122
3123 static int
3124 sections_overlap (struct obj_section *a, struct obj_section *b)
3125 {
3126 CORE_ADDR a_start = obj_section_addr (a);
3127 CORE_ADDR a_end = obj_section_endaddr (a);
3128 CORE_ADDR b_start = obj_section_addr (b);
3129 CORE_ADDR b_end = obj_section_endaddr (b);
3130
3131 return (a_start < b_end && b_start < a_end);
3132 }
3133
3134 /* Function: overlay_unmapped_address (PC, SECTION)
3135 Returns the address corresponding to PC in the unmapped (load) range.
3136 May be the same as PC. */
3137
3138 CORE_ADDR
3139 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3140 {
3141 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3142 {
3143 bfd *abfd = section->objfile->obfd;
3144 asection *bfd_section = section->the_bfd_section;
3145
3146 return pc + bfd_section_lma (abfd, bfd_section)
3147 - bfd_section_vma (abfd, bfd_section);
3148 }
3149
3150 return pc;
3151 }
3152
3153 /* Function: overlay_mapped_address (PC, SECTION)
3154 Returns the address corresponding to PC in the mapped (runtime) range.
3155 May be the same as PC. */
3156
3157 CORE_ADDR
3158 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3159 {
3160 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3161 {
3162 bfd *abfd = section->objfile->obfd;
3163 asection *bfd_section = section->the_bfd_section;
3164
3165 return pc + bfd_section_vma (abfd, bfd_section)
3166 - bfd_section_lma (abfd, bfd_section);
3167 }
3168
3169 return pc;
3170 }
3171
3172 /* Function: symbol_overlayed_address
3173 Return one of two addresses (relative to the VMA or to the LMA),
3174 depending on whether the section is mapped or not. */
3175
3176 CORE_ADDR
3177 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3178 {
3179 if (overlay_debugging)
3180 {
3181 /* If the symbol has no section, just return its regular address. */
3182 if (section == 0)
3183 return address;
3184 /* If the symbol's section is not an overlay, just return its
3185 address. */
3186 if (!section_is_overlay (section))
3187 return address;
3188 /* If the symbol's section is mapped, just return its address. */
3189 if (section_is_mapped (section))
3190 return address;
3191 /*
3192 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3193 * then return its LOADED address rather than its vma address!!
3194 */
3195 return overlay_unmapped_address (address, section);
3196 }
3197 return address;
3198 }
3199
3200 /* Function: find_pc_overlay (PC)
3201 Return the best-match overlay section for PC:
3202 If PC matches a mapped overlay section's VMA, return that section.
3203 Else if PC matches an unmapped section's VMA, return that section.
3204 Else if PC matches an unmapped section's LMA, return that section. */
3205
3206 struct obj_section *
3207 find_pc_overlay (CORE_ADDR pc)
3208 {
3209 struct objfile *objfile;
3210 struct obj_section *osect, *best_match = NULL;
3211
3212 if (overlay_debugging)
3213 ALL_OBJSECTIONS (objfile, osect)
3214 if (section_is_overlay (osect))
3215 {
3216 if (pc_in_mapped_range (pc, osect))
3217 {
3218 if (section_is_mapped (osect))
3219 return osect;
3220 else
3221 best_match = osect;
3222 }
3223 else if (pc_in_unmapped_range (pc, osect))
3224 best_match = osect;
3225 }
3226 return best_match;
3227 }
3228
3229 /* Function: find_pc_mapped_section (PC)
3230 If PC falls into the VMA address range of an overlay section that is
3231 currently marked as MAPPED, return that section. Else return NULL. */
3232
3233 struct obj_section *
3234 find_pc_mapped_section (CORE_ADDR pc)
3235 {
3236 struct objfile *objfile;
3237 struct obj_section *osect;
3238
3239 if (overlay_debugging)
3240 ALL_OBJSECTIONS (objfile, osect)
3241 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3242 return osect;
3243
3244 return NULL;
3245 }
3246
3247 /* Function: list_overlays_command
3248 Print a list of mapped sections and their PC ranges. */
3249
3250 static void
3251 list_overlays_command (char *args, int from_tty)
3252 {
3253 int nmapped = 0;
3254 struct objfile *objfile;
3255 struct obj_section *osect;
3256
3257 if (overlay_debugging)
3258 ALL_OBJSECTIONS (objfile, osect)
3259 if (section_is_mapped (osect))
3260 {
3261 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3262 const char *name;
3263 bfd_vma lma, vma;
3264 int size;
3265
3266 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3267 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3268 size = bfd_get_section_size (osect->the_bfd_section);
3269 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3270
3271 printf_filtered ("Section %s, loaded at ", name);
3272 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3273 puts_filtered (" - ");
3274 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3275 printf_filtered (", mapped at ");
3276 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3277 puts_filtered (" - ");
3278 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3279 puts_filtered ("\n");
3280
3281 nmapped++;
3282 }
3283 if (nmapped == 0)
3284 printf_filtered (_("No sections are mapped.\n"));
3285 }
3286
3287 /* Function: map_overlay_command
3288 Mark the named section as mapped (ie. residing at its VMA address). */
3289
3290 static void
3291 map_overlay_command (char *args, int from_tty)
3292 {
3293 struct objfile *objfile, *objfile2;
3294 struct obj_section *sec, *sec2;
3295
3296 if (!overlay_debugging)
3297 error (_("Overlay debugging not enabled. Use "
3298 "either the 'overlay auto' or\n"
3299 "the 'overlay manual' command."));
3300
3301 if (args == 0 || *args == 0)
3302 error (_("Argument required: name of an overlay section"));
3303
3304 /* First, find a section matching the user supplied argument. */
3305 ALL_OBJSECTIONS (objfile, sec)
3306 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3307 {
3308 /* Now, check to see if the section is an overlay. */
3309 if (!section_is_overlay (sec))
3310 continue; /* not an overlay section */
3311
3312 /* Mark the overlay as "mapped". */
3313 sec->ovly_mapped = 1;
3314
3315 /* Next, make a pass and unmap any sections that are
3316 overlapped by this new section: */
3317 ALL_OBJSECTIONS (objfile2, sec2)
3318 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3319 {
3320 if (info_verbose)
3321 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3322 bfd_section_name (objfile->obfd,
3323 sec2->the_bfd_section));
3324 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3325 }
3326 return;
3327 }
3328 error (_("No overlay section called %s"), args);
3329 }
3330
3331 /* Function: unmap_overlay_command
3332 Mark the overlay section as unmapped
3333 (ie. resident in its LMA address range, rather than the VMA range). */
3334
3335 static void
3336 unmap_overlay_command (char *args, int from_tty)
3337 {
3338 struct objfile *objfile;
3339 struct obj_section *sec;
3340
3341 if (!overlay_debugging)
3342 error (_("Overlay debugging not enabled. "
3343 "Use either the 'overlay auto' or\n"
3344 "the 'overlay manual' command."));
3345
3346 if (args == 0 || *args == 0)
3347 error (_("Argument required: name of an overlay section"));
3348
3349 /* First, find a section matching the user supplied argument. */
3350 ALL_OBJSECTIONS (objfile, sec)
3351 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3352 {
3353 if (!sec->ovly_mapped)
3354 error (_("Section %s is not mapped"), args);
3355 sec->ovly_mapped = 0;
3356 return;
3357 }
3358 error (_("No overlay section called %s"), args);
3359 }
3360
3361 /* Function: overlay_auto_command
3362 A utility command to turn on overlay debugging.
3363 Possibly this should be done via a set/show command. */
3364
3365 static void
3366 overlay_auto_command (char *args, int from_tty)
3367 {
3368 overlay_debugging = ovly_auto;
3369 enable_overlay_breakpoints ();
3370 if (info_verbose)
3371 printf_unfiltered (_("Automatic overlay debugging enabled."));
3372 }
3373
3374 /* Function: overlay_manual_command
3375 A utility command to turn on overlay debugging.
3376 Possibly this should be done via a set/show command. */
3377
3378 static void
3379 overlay_manual_command (char *args, int from_tty)
3380 {
3381 overlay_debugging = ovly_on;
3382 disable_overlay_breakpoints ();
3383 if (info_verbose)
3384 printf_unfiltered (_("Overlay debugging enabled."));
3385 }
3386
3387 /* Function: overlay_off_command
3388 A utility command to turn on overlay debugging.
3389 Possibly this should be done via a set/show command. */
3390
3391 static void
3392 overlay_off_command (char *args, int from_tty)
3393 {
3394 overlay_debugging = ovly_off;
3395 disable_overlay_breakpoints ();
3396 if (info_verbose)
3397 printf_unfiltered (_("Overlay debugging disabled."));
3398 }
3399
3400 static void
3401 overlay_load_command (char *args, int from_tty)
3402 {
3403 struct gdbarch *gdbarch = get_current_arch ();
3404
3405 if (gdbarch_overlay_update_p (gdbarch))
3406 gdbarch_overlay_update (gdbarch, NULL);
3407 else
3408 error (_("This target does not know how to read its overlay state."));
3409 }
3410
3411 /* Function: overlay_command
3412 A place-holder for a mis-typed command. */
3413
3414 /* Command list chain containing all defined "overlay" subcommands. */
3415 static struct cmd_list_element *overlaylist;
3416
3417 static void
3418 overlay_command (char *args, int from_tty)
3419 {
3420 printf_unfiltered
3421 ("\"overlay\" must be followed by the name of an overlay command.\n");
3422 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3423 }
3424
3425 /* Target Overlays for the "Simplest" overlay manager:
3426
3427 This is GDB's default target overlay layer. It works with the
3428 minimal overlay manager supplied as an example by Cygnus. The
3429 entry point is via a function pointer "gdbarch_overlay_update",
3430 so targets that use a different runtime overlay manager can
3431 substitute their own overlay_update function and take over the
3432 function pointer.
3433
3434 The overlay_update function pokes around in the target's data structures
3435 to see what overlays are mapped, and updates GDB's overlay mapping with
3436 this information.
3437
3438 In this simple implementation, the target data structures are as follows:
3439 unsigned _novlys; /# number of overlay sections #/
3440 unsigned _ovly_table[_novlys][4] = {
3441 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3442 {..., ..., ..., ...},
3443 }
3444 unsigned _novly_regions; /# number of overlay regions #/
3445 unsigned _ovly_region_table[_novly_regions][3] = {
3446 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3447 {..., ..., ...},
3448 }
3449 These functions will attempt to update GDB's mappedness state in the
3450 symbol section table, based on the target's mappedness state.
3451
3452 To do this, we keep a cached copy of the target's _ovly_table, and
3453 attempt to detect when the cached copy is invalidated. The main
3454 entry point is "simple_overlay_update(SECT), which looks up SECT in
3455 the cached table and re-reads only the entry for that section from
3456 the target (whenever possible). */
3457
3458 /* Cached, dynamically allocated copies of the target data structures: */
3459 static unsigned (*cache_ovly_table)[4] = 0;
3460 static unsigned cache_novlys = 0;
3461 static CORE_ADDR cache_ovly_table_base = 0;
3462 enum ovly_index
3463 {
3464 VMA, SIZE, LMA, MAPPED
3465 };
3466
3467 /* Throw away the cached copy of _ovly_table. */
3468
3469 static void
3470 simple_free_overlay_table (void)
3471 {
3472 if (cache_ovly_table)
3473 xfree (cache_ovly_table);
3474 cache_novlys = 0;
3475 cache_ovly_table = NULL;
3476 cache_ovly_table_base = 0;
3477 }
3478
3479 /* Read an array of ints of size SIZE from the target into a local buffer.
3480 Convert to host order. int LEN is number of ints. */
3481
3482 static void
3483 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3484 int len, int size, enum bfd_endian byte_order)
3485 {
3486 /* FIXME (alloca): Not safe if array is very large. */
3487 gdb_byte *buf = alloca (len * size);
3488 int i;
3489
3490 read_memory (memaddr, buf, len * size);
3491 for (i = 0; i < len; i++)
3492 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3493 }
3494
3495 /* Find and grab a copy of the target _ovly_table
3496 (and _novlys, which is needed for the table's size). */
3497
3498 static int
3499 simple_read_overlay_table (void)
3500 {
3501 struct minimal_symbol *novlys_msym;
3502 struct bound_minimal_symbol ovly_table_msym;
3503 struct gdbarch *gdbarch;
3504 int word_size;
3505 enum bfd_endian byte_order;
3506
3507 simple_free_overlay_table ();
3508 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3509 if (! novlys_msym)
3510 {
3511 error (_("Error reading inferior's overlay table: "
3512 "couldn't find `_novlys' variable\n"
3513 "in inferior. Use `overlay manual' mode."));
3514 return 0;
3515 }
3516
3517 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3518 if (! ovly_table_msym.minsym)
3519 {
3520 error (_("Error reading inferior's overlay table: couldn't find "
3521 "`_ovly_table' array\n"
3522 "in inferior. Use `overlay manual' mode."));
3523 return 0;
3524 }
3525
3526 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3527 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3528 byte_order = gdbarch_byte_order (gdbarch);
3529
3530 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3531 4, byte_order);
3532 cache_ovly_table
3533 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3534 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym.minsym);
3535 read_target_long_array (cache_ovly_table_base,
3536 (unsigned int *) cache_ovly_table,
3537 cache_novlys * 4, word_size, byte_order);
3538
3539 return 1; /* SUCCESS */
3540 }
3541
3542 /* Function: simple_overlay_update_1
3543 A helper function for simple_overlay_update. Assuming a cached copy
3544 of _ovly_table exists, look through it to find an entry whose vma,
3545 lma and size match those of OSECT. Re-read the entry and make sure
3546 it still matches OSECT (else the table may no longer be valid).
3547 Set OSECT's mapped state to match the entry. Return: 1 for
3548 success, 0 for failure. */
3549
3550 static int
3551 simple_overlay_update_1 (struct obj_section *osect)
3552 {
3553 int i, size;
3554 bfd *obfd = osect->objfile->obfd;
3555 asection *bsect = osect->the_bfd_section;
3556 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3557 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3559
3560 size = bfd_get_section_size (osect->the_bfd_section);
3561 for (i = 0; i < cache_novlys; i++)
3562 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3563 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3564 /* && cache_ovly_table[i][SIZE] == size */ )
3565 {
3566 read_target_long_array (cache_ovly_table_base + i * word_size,
3567 (unsigned int *) cache_ovly_table[i],
3568 4, word_size, byte_order);
3569 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3570 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3571 /* && cache_ovly_table[i][SIZE] == size */ )
3572 {
3573 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3574 return 1;
3575 }
3576 else /* Warning! Warning! Target's ovly table has changed! */
3577 return 0;
3578 }
3579 return 0;
3580 }
3581
3582 /* Function: simple_overlay_update
3583 If OSECT is NULL, then update all sections' mapped state
3584 (after re-reading the entire target _ovly_table).
3585 If OSECT is non-NULL, then try to find a matching entry in the
3586 cached ovly_table and update only OSECT's mapped state.
3587 If a cached entry can't be found or the cache isn't valid, then
3588 re-read the entire cache, and go ahead and update all sections. */
3589
3590 void
3591 simple_overlay_update (struct obj_section *osect)
3592 {
3593 struct objfile *objfile;
3594
3595 /* Were we given an osect to look up? NULL means do all of them. */
3596 if (osect)
3597 /* Have we got a cached copy of the target's overlay table? */
3598 if (cache_ovly_table != NULL)
3599 {
3600 /* Does its cached location match what's currently in the
3601 symtab? */
3602 struct minimal_symbol *minsym
3603 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3604
3605 if (minsym == NULL)
3606 error (_("Error reading inferior's overlay table: couldn't "
3607 "find `_ovly_table' array\n"
3608 "in inferior. Use `overlay manual' mode."));
3609
3610 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3611 /* Then go ahead and try to look up this single section in
3612 the cache. */
3613 if (simple_overlay_update_1 (osect))
3614 /* Found it! We're done. */
3615 return;
3616 }
3617
3618 /* Cached table no good: need to read the entire table anew.
3619 Or else we want all the sections, in which case it's actually
3620 more efficient to read the whole table in one block anyway. */
3621
3622 if (! simple_read_overlay_table ())
3623 return;
3624
3625 /* Now may as well update all sections, even if only one was requested. */
3626 ALL_OBJSECTIONS (objfile, osect)
3627 if (section_is_overlay (osect))
3628 {
3629 int i, size;
3630 bfd *obfd = osect->objfile->obfd;
3631 asection *bsect = osect->the_bfd_section;
3632
3633 size = bfd_get_section_size (bsect);
3634 for (i = 0; i < cache_novlys; i++)
3635 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3636 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3637 /* && cache_ovly_table[i][SIZE] == size */ )
3638 { /* obj_section matches i'th entry in ovly_table. */
3639 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3640 break; /* finished with inner for loop: break out. */
3641 }
3642 }
3643 }
3644
3645 /* Set the output sections and output offsets for section SECTP in
3646 ABFD. The relocation code in BFD will read these offsets, so we
3647 need to be sure they're initialized. We map each section to itself,
3648 with no offset; this means that SECTP->vma will be honored. */
3649
3650 static void
3651 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3652 {
3653 sectp->output_section = sectp;
3654 sectp->output_offset = 0;
3655 }
3656
3657 /* Default implementation for sym_relocate. */
3658
3659 bfd_byte *
3660 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3661 bfd_byte *buf)
3662 {
3663 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3664 DWO file. */
3665 bfd *abfd = sectp->owner;
3666
3667 /* We're only interested in sections with relocation
3668 information. */
3669 if ((sectp->flags & SEC_RELOC) == 0)
3670 return NULL;
3671
3672 /* We will handle section offsets properly elsewhere, so relocate as if
3673 all sections begin at 0. */
3674 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3675
3676 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3677 }
3678
3679 /* Relocate the contents of a debug section SECTP in ABFD. The
3680 contents are stored in BUF if it is non-NULL, or returned in a
3681 malloc'd buffer otherwise.
3682
3683 For some platforms and debug info formats, shared libraries contain
3684 relocations against the debug sections (particularly for DWARF-2;
3685 one affected platform is PowerPC GNU/Linux, although it depends on
3686 the version of the linker in use). Also, ELF object files naturally
3687 have unresolved relocations for their debug sections. We need to apply
3688 the relocations in order to get the locations of symbols correct.
3689 Another example that may require relocation processing, is the
3690 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3691 debug section. */
3692
3693 bfd_byte *
3694 symfile_relocate_debug_section (struct objfile *objfile,
3695 asection *sectp, bfd_byte *buf)
3696 {
3697 gdb_assert (objfile->sf->sym_relocate);
3698
3699 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3700 }
3701
3702 struct symfile_segment_data *
3703 get_symfile_segment_data (bfd *abfd)
3704 {
3705 const struct sym_fns *sf = find_sym_fns (abfd);
3706
3707 if (sf == NULL)
3708 return NULL;
3709
3710 return sf->sym_segments (abfd);
3711 }
3712
3713 void
3714 free_symfile_segment_data (struct symfile_segment_data *data)
3715 {
3716 xfree (data->segment_bases);
3717 xfree (data->segment_sizes);
3718 xfree (data->segment_info);
3719 xfree (data);
3720 }
3721
3722 /* Given:
3723 - DATA, containing segment addresses from the object file ABFD, and
3724 the mapping from ABFD's sections onto the segments that own them,
3725 and
3726 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3727 segment addresses reported by the target,
3728 store the appropriate offsets for each section in OFFSETS.
3729
3730 If there are fewer entries in SEGMENT_BASES than there are segments
3731 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3732
3733 If there are more entries, then ignore the extra. The target may
3734 not be able to distinguish between an empty data segment and a
3735 missing data segment; a missing text segment is less plausible. */
3736
3737 int
3738 symfile_map_offsets_to_segments (bfd *abfd,
3739 const struct symfile_segment_data *data,
3740 struct section_offsets *offsets,
3741 int num_segment_bases,
3742 const CORE_ADDR *segment_bases)
3743 {
3744 int i;
3745 asection *sect;
3746
3747 /* It doesn't make sense to call this function unless you have some
3748 segment base addresses. */
3749 gdb_assert (num_segment_bases > 0);
3750
3751 /* If we do not have segment mappings for the object file, we
3752 can not relocate it by segments. */
3753 gdb_assert (data != NULL);
3754 gdb_assert (data->num_segments > 0);
3755
3756 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3757 {
3758 int which = data->segment_info[i];
3759
3760 gdb_assert (0 <= which && which <= data->num_segments);
3761
3762 /* Don't bother computing offsets for sections that aren't
3763 loaded as part of any segment. */
3764 if (! which)
3765 continue;
3766
3767 /* Use the last SEGMENT_BASES entry as the address of any extra
3768 segments mentioned in DATA->segment_info. */
3769 if (which > num_segment_bases)
3770 which = num_segment_bases;
3771
3772 offsets->offsets[i] = (segment_bases[which - 1]
3773 - data->segment_bases[which - 1]);
3774 }
3775
3776 return 1;
3777 }
3778
3779 static void
3780 symfile_find_segment_sections (struct objfile *objfile)
3781 {
3782 bfd *abfd = objfile->obfd;
3783 int i;
3784 asection *sect;
3785 struct symfile_segment_data *data;
3786
3787 data = get_symfile_segment_data (objfile->obfd);
3788 if (data == NULL)
3789 return;
3790
3791 if (data->num_segments != 1 && data->num_segments != 2)
3792 {
3793 free_symfile_segment_data (data);
3794 return;
3795 }
3796
3797 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3798 {
3799 int which = data->segment_info[i];
3800
3801 if (which == 1)
3802 {
3803 if (objfile->sect_index_text == -1)
3804 objfile->sect_index_text = sect->index;
3805
3806 if (objfile->sect_index_rodata == -1)
3807 objfile->sect_index_rodata = sect->index;
3808 }
3809 else if (which == 2)
3810 {
3811 if (objfile->sect_index_data == -1)
3812 objfile->sect_index_data = sect->index;
3813
3814 if (objfile->sect_index_bss == -1)
3815 objfile->sect_index_bss = sect->index;
3816 }
3817 }
3818
3819 free_symfile_segment_data (data);
3820 }
3821
3822 void
3823 _initialize_symfile (void)
3824 {
3825 struct cmd_list_element *c;
3826
3827 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3828 Load symbol table from executable file FILE.\n\
3829 The `file' command can also load symbol tables, as well as setting the file\n\
3830 to execute."), &cmdlist);
3831 set_cmd_completer (c, filename_completer);
3832
3833 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3834 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3835 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3836 ...]\nADDR is the starting address of the file's text.\n\
3837 The optional arguments are section-name section-address pairs and\n\
3838 should be specified if the data and bss segments are not contiguous\n\
3839 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3840 &cmdlist);
3841 set_cmd_completer (c, filename_completer);
3842
3843 c = add_cmd ("remove-symbol-file", class_files,
3844 remove_symbol_file_command, _("\
3845 Remove a symbol file added via the add-symbol-file command.\n\
3846 Usage: remove-symbol-file FILENAME\n\
3847 remove-symbol-file -a ADDRESS\n\
3848 The file to remove can be identified by its filename or by an address\n\
3849 that lies within the boundaries of this symbol file in memory."),
3850 &cmdlist);
3851
3852 c = add_cmd ("load", class_files, load_command, _("\
3853 Dynamically load FILE into the running program, and record its symbols\n\
3854 for access from GDB.\n\
3855 A load OFFSET may also be given."), &cmdlist);
3856 set_cmd_completer (c, filename_completer);
3857
3858 add_prefix_cmd ("overlay", class_support, overlay_command,
3859 _("Commands for debugging overlays."), &overlaylist,
3860 "overlay ", 0, &cmdlist);
3861
3862 add_com_alias ("ovly", "overlay", class_alias, 1);
3863 add_com_alias ("ov", "overlay", class_alias, 1);
3864
3865 add_cmd ("map-overlay", class_support, map_overlay_command,
3866 _("Assert that an overlay section is mapped."), &overlaylist);
3867
3868 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3869 _("Assert that an overlay section is unmapped."), &overlaylist);
3870
3871 add_cmd ("list-overlays", class_support, list_overlays_command,
3872 _("List mappings of overlay sections."), &overlaylist);
3873
3874 add_cmd ("manual", class_support, overlay_manual_command,
3875 _("Enable overlay debugging."), &overlaylist);
3876 add_cmd ("off", class_support, overlay_off_command,
3877 _("Disable overlay debugging."), &overlaylist);
3878 add_cmd ("auto", class_support, overlay_auto_command,
3879 _("Enable automatic overlay debugging."), &overlaylist);
3880 add_cmd ("load-target", class_support, overlay_load_command,
3881 _("Read the overlay mapping state from the target."), &overlaylist);
3882
3883 /* Filename extension to source language lookup table: */
3884 init_filename_language_table ();
3885 add_setshow_string_noescape_cmd ("extension-language", class_files,
3886 &ext_args, _("\
3887 Set mapping between filename extension and source language."), _("\
3888 Show mapping between filename extension and source language."), _("\
3889 Usage: set extension-language .foo bar"),
3890 set_ext_lang_command,
3891 show_ext_args,
3892 &setlist, &showlist);
3893
3894 add_info ("extensions", info_ext_lang_command,
3895 _("All filename extensions associated with a source language."));
3896
3897 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3898 &debug_file_directory, _("\
3899 Set the directories where separate debug symbols are searched for."), _("\
3900 Show the directories where separate debug symbols are searched for."), _("\
3901 Separate debug symbols are first searched for in the same\n\
3902 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3903 and lastly at the path of the directory of the binary with\n\
3904 each global debug-file-directory component prepended."),
3905 NULL,
3906 show_debug_file_directory,
3907 &setlist, &showlist);
3908 }