* doc/observer.texi (executable_changed): New observer.
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include "gdb_string.h"
56 #include "gdb_stat.h"
57 #include <ctype.h>
58 #include <time.h>
59
60 #ifndef O_BINARY
61 #define O_BINARY 0
62 #endif
63
64 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
65 void (*deprecated_show_load_progress) (const char *section,
66 unsigned long section_sent,
67 unsigned long section_size,
68 unsigned long total_sent,
69 unsigned long total_size);
70 void (*deprecated_pre_add_symbol_hook) (const char *);
71 void (*deprecated_post_add_symbol_hook) (void);
72 void (*deprecated_target_new_objfile_hook) (struct objfile *);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static void find_sym_fns (struct objfile *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173
174 /* If non-zero, shared library symbols will be added automatically
175 when the inferior is created, new libraries are loaded, or when
176 attaching to the inferior. This is almost always what users will
177 want to have happen; but for very large programs, the startup time
178 will be excessive, and so if this is a problem, the user can clear
179 this flag and then add the shared library symbols as needed. Note
180 that there is a potential for confusion, since if the shared
181 library symbols are not loaded, commands like "info fun" will *not*
182 report all the functions that are actually present. */
183
184 int auto_solib_add = 1;
185
186 /* For systems that support it, a threshold size in megabytes. If
187 automatically adding a new library's symbol table to those already
188 known to the debugger would cause the total shared library symbol
189 size to exceed this threshhold, then the shlib's symbols are not
190 added. The threshold is ignored if the user explicitly asks for a
191 shlib to be added, such as when using the "sharedlibrary"
192 command. */
193
194 int auto_solib_limit;
195 \f
196
197 /* This compares two partial symbols by names, using strcmp_iw_ordered
198 for the comparison. */
199
200 static int
201 compare_psymbols (const void *s1p, const void *s2p)
202 {
203 struct partial_symbol *const *s1 = s1p;
204 struct partial_symbol *const *s2 = s2p;
205
206 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
207 SYMBOL_SEARCH_NAME (*s2));
208 }
209
210 void
211 sort_pst_symbols (struct partial_symtab *pst)
212 {
213 /* Sort the global list; don't sort the static list */
214
215 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
216 pst->n_global_syms, sizeof (struct partial_symbol *),
217 compare_psymbols);
218 }
219
220 /* Make a null terminated copy of the string at PTR with SIZE characters in
221 the obstack pointed to by OBSTACKP . Returns the address of the copy.
222 Note that the string at PTR does not have to be null terminated, I.E. it
223 may be part of a larger string and we are only saving a substring. */
224
225 char *
226 obsavestring (const char *ptr, int size, struct obstack *obstackp)
227 {
228 char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time. These strings are usually
230 short. FIXME: Is this really still true with a compiler that can
231 inline memcpy? */
232 {
233 const char *p1 = ptr;
234 char *p2 = p;
235 const char *end = ptr + size;
236 while (p1 != end)
237 *p2++ = *p1++;
238 }
239 p[size] = 0;
240 return p;
241 }
242
243 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
244 in the obstack pointed to by OBSTACKP. */
245
246 char *
247 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
248 const char *s3)
249 {
250 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* True if we are nested inside psymtab_to_symtab. */
259
260 int currently_reading_symtab = 0;
261
262 static void
263 decrement_reading_symtab (void *dummy)
264 {
265 currently_reading_symtab--;
266 }
267
268 /* Get the symbol table that corresponds to a partial_symtab.
269 This is fast after the first time you do it. In fact, there
270 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
271 case inline. */
272
273 struct symtab *
274 psymtab_to_symtab (struct partial_symtab *pst)
275 {
276 /* If it's been looked up before, return it. */
277 if (pst->symtab)
278 return pst->symtab;
279
280 /* If it has not yet been read in, read it. */
281 if (!pst->readin)
282 {
283 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
284 currently_reading_symtab++;
285 (*pst->read_symtab) (pst);
286 do_cleanups (back_to);
287 }
288
289 return pst->symtab;
290 }
291
292 /* Remember the lowest-addressed loadable section we've seen.
293 This function is called via bfd_map_over_sections.
294
295 In case of equal vmas, the section with the largest size becomes the
296 lowest-addressed loadable section.
297
298 If the vmas and sizes are equal, the last section is considered the
299 lowest-addressed loadable section. */
300
301 void
302 find_lowest_section (bfd *abfd, asection *sect, void *obj)
303 {
304 asection **lowest = (asection **) obj;
305
306 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
307 return;
308 if (!*lowest)
309 *lowest = sect; /* First loadable section */
310 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
311 *lowest = sect; /* A lower loadable section */
312 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
313 && (bfd_section_size (abfd, (*lowest))
314 <= bfd_section_size (abfd, sect)))
315 *lowest = sect;
316 }
317
318 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
319
320 struct section_addr_info *
321 alloc_section_addr_info (size_t num_sections)
322 {
323 struct section_addr_info *sap;
324 size_t size;
325
326 size = (sizeof (struct section_addr_info)
327 + sizeof (struct other_sections) * (num_sections - 1));
328 sap = (struct section_addr_info *) xmalloc (size);
329 memset (sap, 0, size);
330 sap->num_sections = num_sections;
331
332 return sap;
333 }
334
335
336 /* Return a freshly allocated copy of ADDRS. The section names, if
337 any, are also freshly allocated copies of those in ADDRS. */
338 struct section_addr_info *
339 copy_section_addr_info (struct section_addr_info *addrs)
340 {
341 struct section_addr_info *copy
342 = alloc_section_addr_info (addrs->num_sections);
343 int i;
344
345 copy->num_sections = addrs->num_sections;
346 for (i = 0; i < addrs->num_sections; i++)
347 {
348 copy->other[i].addr = addrs->other[i].addr;
349 if (addrs->other[i].name)
350 copy->other[i].name = xstrdup (addrs->other[i].name);
351 else
352 copy->other[i].name = NULL;
353 copy->other[i].sectindex = addrs->other[i].sectindex;
354 }
355
356 return copy;
357 }
358
359
360
361 /* Build (allocate and populate) a section_addr_info struct from
362 an existing section table. */
363
364 extern struct section_addr_info *
365 build_section_addr_info_from_section_table (const struct section_table *start,
366 const struct section_table *end)
367 {
368 struct section_addr_info *sap;
369 const struct section_table *stp;
370 int oidx;
371
372 sap = alloc_section_addr_info (end - start);
373
374 for (stp = start, oidx = 0; stp != end; stp++)
375 {
376 if (bfd_get_section_flags (stp->bfd,
377 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
378 && oidx < end - start)
379 {
380 sap->other[oidx].addr = stp->addr;
381 sap->other[oidx].name
382 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
383 sap->other[oidx].sectindex = stp->the_bfd_section->index;
384 oidx++;
385 }
386 }
387
388 return sap;
389 }
390
391
392 /* Free all memory allocated by build_section_addr_info_from_section_table. */
393
394 extern void
395 free_section_addr_info (struct section_addr_info *sap)
396 {
397 int idx;
398
399 for (idx = 0; idx < sap->num_sections; idx++)
400 if (sap->other[idx].name)
401 xfree (sap->other[idx].name);
402 xfree (sap);
403 }
404
405
406 /* Initialize OBJFILE's sect_index_* members. */
407 static void
408 init_objfile_sect_indices (struct objfile *objfile)
409 {
410 asection *sect;
411 int i;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".text");
414 if (sect)
415 objfile->sect_index_text = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".data");
418 if (sect)
419 objfile->sect_index_data = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
422 if (sect)
423 objfile->sect_index_bss = sect->index;
424
425 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
426 if (sect)
427 objfile->sect_index_rodata = sect->index;
428
429 /* This is where things get really weird... We MUST have valid
430 indices for the various sect_index_* members or gdb will abort.
431 So if for example, there is no ".text" section, we have to
432 accomodate that. Except when explicitly adding symbol files at
433 some address, section_offsets contains nothing but zeros, so it
434 doesn't matter which slot in section_offsets the individual
435 sect_index_* members index into. So if they are all zero, it is
436 safe to just point all the currently uninitialized indices to the
437 first slot. */
438
439 for (i = 0; i < objfile->num_sections; i++)
440 {
441 if (ANOFFSET (objfile->section_offsets, i) != 0)
442 {
443 break;
444 }
445 }
446 if (i == objfile->num_sections)
447 {
448 if (objfile->sect_index_text == -1)
449 objfile->sect_index_text = 0;
450 if (objfile->sect_index_data == -1)
451 objfile->sect_index_data = 0;
452 if (objfile->sect_index_bss == -1)
453 objfile->sect_index_bss = 0;
454 if (objfile->sect_index_rodata == -1)
455 objfile->sect_index_rodata = 0;
456 }
457 }
458
459
460 /* Parse the user's idea of an offset for dynamic linking, into our idea
461 of how to represent it for fast symbol reading. This is the default
462 version of the sym_fns.sym_offsets function for symbol readers that
463 don't need to do anything special. It allocates a section_offsets table
464 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
465
466 void
467 default_symfile_offsets (struct objfile *objfile,
468 struct section_addr_info *addrs)
469 {
470 int i;
471
472 objfile->num_sections = bfd_count_sections (objfile->obfd);
473 objfile->section_offsets = (struct section_offsets *)
474 obstack_alloc (&objfile->objfile_obstack,
475 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
476 memset (objfile->section_offsets, 0,
477 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
478
479 /* Now calculate offsets for section that were specified by the
480 caller. */
481 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
482 {
483 struct other_sections *osp ;
484
485 osp = &addrs->other[i] ;
486 if (osp->addr == 0)
487 continue;
488
489 /* Record all sections in offsets */
490 /* The section_offsets in the objfile are here filled in using
491 the BFD index. */
492 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
493 }
494
495 /* Remember the bfd indexes for the .text, .data, .bss and
496 .rodata sections. */
497 init_objfile_sect_indices (objfile);
498 }
499
500
501 /* Process a symbol file, as either the main file or as a dynamically
502 loaded file.
503
504 OBJFILE is where the symbols are to be read from.
505
506 ADDRS is the list of section load addresses. If the user has given
507 an 'add-symbol-file' command, then this is the list of offsets and
508 addresses he or she provided as arguments to the command; or, if
509 we're handling a shared library, these are the actual addresses the
510 sections are loaded at, according to the inferior's dynamic linker
511 (as gleaned by GDB's shared library code). We convert each address
512 into an offset from the section VMA's as it appears in the object
513 file, and then call the file's sym_offsets function to convert this
514 into a format-specific offset table --- a `struct section_offsets'.
515 If ADDRS is non-zero, OFFSETS must be zero.
516
517 OFFSETS is a table of section offsets already in the right
518 format-specific representation. NUM_OFFSETS is the number of
519 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
520 assume this is the proper table the call to sym_offsets described
521 above would produce. Instead of calling sym_offsets, we just dump
522 it right into objfile->section_offsets. (When we're re-reading
523 symbols from an objfile, we don't have the original load address
524 list any more; all we have is the section offset table.) If
525 OFFSETS is non-zero, ADDRS must be zero.
526
527 MAINLINE is nonzero if this is the main symbol file, or zero if
528 it's an extra symbol file such as dynamically loaded code.
529
530 VERBO is nonzero if the caller has printed a verbose message about
531 the symbol reading (and complaints can be more terse about it). */
532
533 void
534 syms_from_objfile (struct objfile *objfile,
535 struct section_addr_info *addrs,
536 struct section_offsets *offsets,
537 int num_offsets,
538 int mainline,
539 int verbo)
540 {
541 struct section_addr_info *local_addr = NULL;
542 struct cleanup *old_chain;
543
544 gdb_assert (! (addrs && offsets));
545
546 init_entry_point_info (objfile);
547 find_sym_fns (objfile);
548
549 if (objfile->sf == NULL)
550 return; /* No symbols. */
551
552 /* Make sure that partially constructed symbol tables will be cleaned up
553 if an error occurs during symbol reading. */
554 old_chain = make_cleanup_free_objfile (objfile);
555
556 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
557 list. We now establish the convention that an addr of zero means
558 no load address was specified. */
559 if (! addrs && ! offsets)
560 {
561 local_addr
562 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
563 make_cleanup (xfree, local_addr);
564 addrs = local_addr;
565 }
566
567 /* Now either addrs or offsets is non-zero. */
568
569 if (mainline)
570 {
571 /* We will modify the main symbol table, make sure that all its users
572 will be cleaned up if an error occurs during symbol reading. */
573 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
574
575 /* Since no error yet, throw away the old symbol table. */
576
577 if (symfile_objfile != NULL)
578 {
579 free_objfile (symfile_objfile);
580 symfile_objfile = NULL;
581 }
582
583 /* Currently we keep symbols from the add-symbol-file command.
584 If the user wants to get rid of them, they should do "symbol-file"
585 without arguments first. Not sure this is the best behavior
586 (PR 2207). */
587
588 (*objfile->sf->sym_new_init) (objfile);
589 }
590
591 /* Convert addr into an offset rather than an absolute address.
592 We find the lowest address of a loaded segment in the objfile,
593 and assume that <addr> is where that got loaded.
594
595 We no longer warn if the lowest section is not a text segment (as
596 happens for the PA64 port. */
597 if (!mainline && addrs && addrs->other[0].name)
598 {
599 asection *lower_sect;
600 asection *sect;
601 CORE_ADDR lower_offset;
602 int i;
603
604 /* Find lowest loadable section to be used as starting point for
605 continguous sections. FIXME!! won't work without call to find
606 .text first, but this assumes text is lowest section. */
607 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
608 if (lower_sect == NULL)
609 bfd_map_over_sections (objfile->obfd, find_lowest_section,
610 &lower_sect);
611 if (lower_sect == NULL)
612 warning (_("no loadable sections found in added symbol-file %s"),
613 objfile->name);
614 else
615 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
616 warning (_("Lowest section in %s is %s at %s"),
617 objfile->name,
618 bfd_section_name (objfile->obfd, lower_sect),
619 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
620 if (lower_sect != NULL)
621 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
622 else
623 lower_offset = 0;
624
625 /* Calculate offsets for the loadable sections.
626 FIXME! Sections must be in order of increasing loadable section
627 so that contiguous sections can use the lower-offset!!!
628
629 Adjust offsets if the segments are not contiguous.
630 If the section is contiguous, its offset should be set to
631 the offset of the highest loadable section lower than it
632 (the loadable section directly below it in memory).
633 this_offset = lower_offset = lower_addr - lower_orig_addr */
634
635 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
636 {
637 if (addrs->other[i].addr != 0)
638 {
639 sect = bfd_get_section_by_name (objfile->obfd,
640 addrs->other[i].name);
641 if (sect)
642 {
643 addrs->other[i].addr
644 -= bfd_section_vma (objfile->obfd, sect);
645 lower_offset = addrs->other[i].addr;
646 /* This is the index used by BFD. */
647 addrs->other[i].sectindex = sect->index ;
648 }
649 else
650 {
651 warning (_("section %s not found in %s"),
652 addrs->other[i].name,
653 objfile->name);
654 addrs->other[i].addr = 0;
655 }
656 }
657 else
658 addrs->other[i].addr = lower_offset;
659 }
660 }
661
662 /* Initialize symbol reading routines for this objfile, allow complaints to
663 appear for this new file, and record how verbose to be, then do the
664 initial symbol reading for this file. */
665
666 (*objfile->sf->sym_init) (objfile);
667 clear_complaints (&symfile_complaints, 1, verbo);
668
669 if (addrs)
670 (*objfile->sf->sym_offsets) (objfile, addrs);
671 else
672 {
673 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
674
675 /* Just copy in the offset table directly as given to us. */
676 objfile->num_sections = num_offsets;
677 objfile->section_offsets
678 = ((struct section_offsets *)
679 obstack_alloc (&objfile->objfile_obstack, size));
680 memcpy (objfile->section_offsets, offsets, size);
681
682 init_objfile_sect_indices (objfile);
683 }
684
685 #ifndef DEPRECATED_IBM6000_TARGET
686 /* This is a SVR4/SunOS specific hack, I think. In any event, it
687 screws RS/6000. sym_offsets should be doing this sort of thing,
688 because it knows the mapping between bfd sections and
689 section_offsets. */
690 /* This is a hack. As far as I can tell, section offsets are not
691 target dependent. They are all set to addr with a couple of
692 exceptions. The exceptions are sysvr4 shared libraries, whose
693 offsets are kept in solib structures anyway and rs6000 xcoff
694 which handles shared libraries in a completely unique way.
695
696 Section offsets are built similarly, except that they are built
697 by adding addr in all cases because there is no clear mapping
698 from section_offsets into actual sections. Note that solib.c
699 has a different algorithm for finding section offsets.
700
701 These should probably all be collapsed into some target
702 independent form of shared library support. FIXME. */
703
704 if (addrs)
705 {
706 struct obj_section *s;
707
708 /* Map section offsets in "addr" back to the object's
709 sections by comparing the section names with bfd's
710 section names. Then adjust the section address by
711 the offset. */ /* for gdb/13815 */
712
713 ALL_OBJFILE_OSECTIONS (objfile, s)
714 {
715 CORE_ADDR s_addr = 0;
716 int i;
717
718 for (i = 0;
719 !s_addr && i < addrs->num_sections && addrs->other[i].name;
720 i++)
721 if (strcmp (bfd_section_name (s->objfile->obfd,
722 s->the_bfd_section),
723 addrs->other[i].name) == 0)
724 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
725
726 s->addr -= s->offset;
727 s->addr += s_addr;
728 s->endaddr -= s->offset;
729 s->endaddr += s_addr;
730 s->offset += s_addr;
731 }
732 }
733 #endif /* not DEPRECATED_IBM6000_TARGET */
734
735 (*objfile->sf->sym_read) (objfile, mainline);
736
737 /* Don't allow char * to have a typename (else would get caddr_t).
738 Ditto void *. FIXME: Check whether this is now done by all the
739 symbol readers themselves (many of them now do), and if so remove
740 it from here. */
741
742 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
743 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
744
745 /* Mark the objfile has having had initial symbol read attempted. Note
746 that this does not mean we found any symbols... */
747
748 objfile->flags |= OBJF_SYMS;
749
750 /* Discard cleanups as symbol reading was successful. */
751
752 discard_cleanups (old_chain);
753 }
754
755 /* Perform required actions after either reading in the initial
756 symbols for a new objfile, or mapping in the symbols from a reusable
757 objfile. */
758
759 void
760 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
761 {
762
763 /* If this is the main symbol file we have to clean up all users of the
764 old main symbol file. Otherwise it is sufficient to fixup all the
765 breakpoints that may have been redefined by this symbol file. */
766 if (mainline)
767 {
768 /* OK, make it the "real" symbol file. */
769 symfile_objfile = objfile;
770
771 clear_symtab_users ();
772 }
773 else
774 {
775 breakpoint_re_set ();
776 }
777
778 /* We're done reading the symbol file; finish off complaints. */
779 clear_complaints (&symfile_complaints, 0, verbo);
780 }
781
782 /* Process a symbol file, as either the main file or as a dynamically
783 loaded file.
784
785 ABFD is a BFD already open on the file, as from symfile_bfd_open.
786 This BFD will be closed on error, and is always consumed by this function.
787
788 FROM_TTY says how verbose to be.
789
790 MAINLINE specifies whether this is the main symbol file, or whether
791 it's an extra symbol file such as dynamically loaded code.
792
793 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
794 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
795 non-zero.
796
797 Upon success, returns a pointer to the objfile that was added.
798 Upon failure, jumps back to command level (never returns). */
799 static struct objfile *
800 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
801 struct section_addr_info *addrs,
802 struct section_offsets *offsets,
803 int num_offsets,
804 int mainline, int flags)
805 {
806 struct objfile *objfile;
807 struct partial_symtab *psymtab;
808 char *debugfile;
809 struct section_addr_info *orig_addrs = NULL;
810 struct cleanup *my_cleanups;
811 const char *name = bfd_get_filename (abfd);
812
813 my_cleanups = make_cleanup_bfd_close (abfd);
814
815 /* Give user a chance to burp if we'd be
816 interactively wiping out any existing symbols. */
817
818 if ((have_full_symbols () || have_partial_symbols ())
819 && mainline
820 && from_tty
821 && !query ("Load new symbol table from \"%s\"? ", name))
822 error (_("Not confirmed."));
823
824 objfile = allocate_objfile (abfd, flags);
825 discard_cleanups (my_cleanups);
826
827 if (addrs)
828 {
829 orig_addrs = copy_section_addr_info (addrs);
830 make_cleanup_free_section_addr_info (orig_addrs);
831 }
832
833 /* We either created a new mapped symbol table, mapped an existing
834 symbol table file which has not had initial symbol reading
835 performed, or need to read an unmapped symbol table. */
836 if (from_tty || info_verbose)
837 {
838 if (deprecated_pre_add_symbol_hook)
839 deprecated_pre_add_symbol_hook (name);
840 else
841 {
842 printf_unfiltered (_("Reading symbols from %s..."), name);
843 wrap_here ("");
844 gdb_flush (gdb_stdout);
845 }
846 }
847 syms_from_objfile (objfile, addrs, offsets, num_offsets,
848 mainline, from_tty);
849
850 /* We now have at least a partial symbol table. Check to see if the
851 user requested that all symbols be read on initial access via either
852 the gdb startup command line or on a per symbol file basis. Expand
853 all partial symbol tables for this objfile if so. */
854
855 if ((flags & OBJF_READNOW) || readnow_symbol_files)
856 {
857 if (from_tty || info_verbose)
858 {
859 printf_unfiltered (_("expanding to full symbols..."));
860 wrap_here ("");
861 gdb_flush (gdb_stdout);
862 }
863
864 for (psymtab = objfile->psymtabs;
865 psymtab != NULL;
866 psymtab = psymtab->next)
867 {
868 psymtab_to_symtab (psymtab);
869 }
870 }
871
872 debugfile = find_separate_debug_file (objfile);
873 if (debugfile)
874 {
875 if (addrs != NULL)
876 {
877 objfile->separate_debug_objfile
878 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
879 }
880 else
881 {
882 objfile->separate_debug_objfile
883 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
884 }
885 objfile->separate_debug_objfile->separate_debug_objfile_backlink
886 = objfile;
887
888 /* Put the separate debug object before the normal one, this is so that
889 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
890 put_objfile_before (objfile->separate_debug_objfile, objfile);
891
892 xfree (debugfile);
893 }
894
895 if (!have_partial_symbols () && !have_full_symbols ())
896 {
897 wrap_here ("");
898 printf_filtered (_("(no debugging symbols found)"));
899 if (from_tty || info_verbose)
900 printf_filtered ("...");
901 else
902 printf_filtered ("\n");
903 wrap_here ("");
904 }
905
906 if (from_tty || info_verbose)
907 {
908 if (deprecated_post_add_symbol_hook)
909 deprecated_post_add_symbol_hook ();
910 else
911 {
912 printf_unfiltered (_("done.\n"));
913 }
914 }
915
916 /* We print some messages regardless of whether 'from_tty ||
917 info_verbose' is true, so make sure they go out at the right
918 time. */
919 gdb_flush (gdb_stdout);
920
921 do_cleanups (my_cleanups);
922
923 if (objfile->sf == NULL)
924 return objfile; /* No symbols. */
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (deprecated_target_new_objfile_hook)
929 deprecated_target_new_objfile_hook (objfile);
930
931 bfd_cache_close_all ();
932 return (objfile);
933 }
934
935
936 /* Process the symbol file ABFD, as either the main file or as a
937 dynamically loaded file.
938
939 See symbol_file_add_with_addrs_or_offsets's comments for
940 details. */
941 struct objfile *
942 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
943 struct section_addr_info *addrs,
944 int mainline, int flags)
945 {
946 return symbol_file_add_with_addrs_or_offsets (abfd,
947 from_tty, addrs, 0, 0,
948 mainline, flags);
949 }
950
951
952 /* Process a symbol file, as either the main file or as a dynamically
953 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
954 for details. */
955 struct objfile *
956 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
957 int mainline, int flags)
958 {
959 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
960 addrs, mainline, flags);
961 }
962
963
964 /* Call symbol_file_add() with default values and update whatever is
965 affected by the loading of a new main().
966 Used when the file is supplied in the gdb command line
967 and by some targets with special loading requirements.
968 The auxiliary function, symbol_file_add_main_1(), has the flags
969 argument for the switches that can only be specified in the symbol_file
970 command itself. */
971
972 void
973 symbol_file_add_main (char *args, int from_tty)
974 {
975 symbol_file_add_main_1 (args, from_tty, 0);
976 }
977
978 static void
979 symbol_file_add_main_1 (char *args, int from_tty, int flags)
980 {
981 symbol_file_add (args, from_tty, NULL, 1, flags);
982
983 /* Getting new symbols may change our opinion about
984 what is frameless. */
985 reinit_frame_cache ();
986
987 set_initial_language ();
988 }
989
990 void
991 symbol_file_clear (int from_tty)
992 {
993 if ((have_full_symbols () || have_partial_symbols ())
994 && from_tty
995 && !query ("Discard symbol table from `%s'? ",
996 symfile_objfile->name))
997 error (_("Not confirmed."));
998 free_all_objfiles ();
999
1000 /* solib descriptors may have handles to objfiles. Since their
1001 storage has just been released, we'd better wipe the solib
1002 descriptors as well.
1003 */
1004 #if defined(SOLIB_RESTART)
1005 SOLIB_RESTART ();
1006 #endif
1007
1008 symfile_objfile = NULL;
1009 if (from_tty)
1010 printf_unfiltered (_("No symbol file now.\n"));
1011 }
1012
1013 static char *
1014 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1015 {
1016 asection *sect;
1017 bfd_size_type debuglink_size;
1018 unsigned long crc32;
1019 char *contents;
1020 int crc_offset;
1021 unsigned char *p;
1022
1023 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1024
1025 if (sect == NULL)
1026 return NULL;
1027
1028 debuglink_size = bfd_section_size (objfile->obfd, sect);
1029
1030 contents = xmalloc (debuglink_size);
1031 bfd_get_section_contents (objfile->obfd, sect, contents,
1032 (file_ptr)0, (bfd_size_type)debuglink_size);
1033
1034 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1035 crc_offset = strlen (contents) + 1;
1036 crc_offset = (crc_offset + 3) & ~3;
1037
1038 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1039
1040 *crc32_out = crc32;
1041 return contents;
1042 }
1043
1044 static int
1045 separate_debug_file_exists (const char *name, unsigned long crc)
1046 {
1047 unsigned long file_crc = 0;
1048 int fd;
1049 char buffer[8*1024];
1050 int count;
1051
1052 fd = open (name, O_RDONLY | O_BINARY);
1053 if (fd < 0)
1054 return 0;
1055
1056 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1057 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1058
1059 close (fd);
1060
1061 return crc == file_crc;
1062 }
1063
1064 static char *debug_file_directory = NULL;
1065 static void
1066 show_debug_file_directory (struct ui_file *file, int from_tty,
1067 struct cmd_list_element *c, const char *value)
1068 {
1069 fprintf_filtered (file, _("\
1070 The directory where separate debug symbols are searched for is \"%s\".\n"),
1071 value);
1072 }
1073
1074 #if ! defined (DEBUG_SUBDIRECTORY)
1075 #define DEBUG_SUBDIRECTORY ".debug"
1076 #endif
1077
1078 static char *
1079 find_separate_debug_file (struct objfile *objfile)
1080 {
1081 asection *sect;
1082 char *basename;
1083 char *dir;
1084 char *debugfile;
1085 char *name_copy;
1086 bfd_size_type debuglink_size;
1087 unsigned long crc32;
1088 int i;
1089
1090 basename = get_debug_link_info (objfile, &crc32);
1091
1092 if (basename == NULL)
1093 return NULL;
1094
1095 dir = xstrdup (objfile->name);
1096
1097 /* Strip off the final filename part, leaving the directory name,
1098 followed by a slash. Objfile names should always be absolute and
1099 tilde-expanded, so there should always be a slash in there
1100 somewhere. */
1101 for (i = strlen(dir) - 1; i >= 0; i--)
1102 {
1103 if (IS_DIR_SEPARATOR (dir[i]))
1104 break;
1105 }
1106 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1107 dir[i+1] = '\0';
1108
1109 debugfile = alloca (strlen (debug_file_directory) + 1
1110 + strlen (dir)
1111 + strlen (DEBUG_SUBDIRECTORY)
1112 + strlen ("/")
1113 + strlen (basename)
1114 + 1);
1115
1116 /* First try in the same directory as the original file. */
1117 strcpy (debugfile, dir);
1118 strcat (debugfile, basename);
1119
1120 if (separate_debug_file_exists (debugfile, crc32))
1121 {
1122 xfree (basename);
1123 xfree (dir);
1124 return xstrdup (debugfile);
1125 }
1126
1127 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1128 strcpy (debugfile, dir);
1129 strcat (debugfile, DEBUG_SUBDIRECTORY);
1130 strcat (debugfile, "/");
1131 strcat (debugfile, basename);
1132
1133 if (separate_debug_file_exists (debugfile, crc32))
1134 {
1135 xfree (basename);
1136 xfree (dir);
1137 return xstrdup (debugfile);
1138 }
1139
1140 /* Then try in the global debugfile directory. */
1141 strcpy (debugfile, debug_file_directory);
1142 strcat (debugfile, "/");
1143 strcat (debugfile, dir);
1144 strcat (debugfile, basename);
1145
1146 if (separate_debug_file_exists (debugfile, crc32))
1147 {
1148 xfree (basename);
1149 xfree (dir);
1150 return xstrdup (debugfile);
1151 }
1152
1153 xfree (basename);
1154 xfree (dir);
1155 return NULL;
1156 }
1157
1158
1159 /* This is the symbol-file command. Read the file, analyze its
1160 symbols, and add a struct symtab to a symtab list. The syntax of
1161 the command is rather bizarre--(1) buildargv implements various
1162 quoting conventions which are undocumented and have little or
1163 nothing in common with the way things are quoted (or not quoted)
1164 elsewhere in GDB, (2) options are used, which are not generally
1165 used in GDB (perhaps "set mapped on", "set readnow on" would be
1166 better), (3) the order of options matters, which is contrary to GNU
1167 conventions (because it is confusing and inconvenient). */
1168 /* Note: ezannoni 2000-04-17. This function used to have support for
1169 rombug (see remote-os9k.c). It consisted of a call to target_link()
1170 (target.c) to get the address of the text segment from the target,
1171 and pass that to symbol_file_add(). This is no longer supported. */
1172
1173 void
1174 symbol_file_command (char *args, int from_tty)
1175 {
1176 char **argv;
1177 char *name = NULL;
1178 struct cleanup *cleanups;
1179 int flags = OBJF_USERLOADED;
1180
1181 dont_repeat ();
1182
1183 if (args == NULL)
1184 {
1185 symbol_file_clear (from_tty);
1186 }
1187 else
1188 {
1189 if ((argv = buildargv (args)) == NULL)
1190 {
1191 nomem (0);
1192 }
1193 cleanups = make_cleanup_freeargv (argv);
1194 while (*argv != NULL)
1195 {
1196 if (strcmp (*argv, "-readnow") == 0)
1197 flags |= OBJF_READNOW;
1198 else if (**argv == '-')
1199 error (_("unknown option `%s'"), *argv);
1200 else
1201 {
1202 name = *argv;
1203
1204 symbol_file_add_main_1 (name, from_tty, flags);
1205 }
1206 argv++;
1207 }
1208
1209 if (name == NULL)
1210 {
1211 error (_("no symbol file name was specified"));
1212 }
1213 do_cleanups (cleanups);
1214 }
1215 }
1216
1217 /* Set the initial language.
1218
1219 A better solution would be to record the language in the psymtab when reading
1220 partial symbols, and then use it (if known) to set the language. This would
1221 be a win for formats that encode the language in an easily discoverable place,
1222 such as DWARF. For stabs, we can jump through hoops looking for specially
1223 named symbols or try to intuit the language from the specific type of stabs
1224 we find, but we can't do that until later when we read in full symbols.
1225 FIXME. */
1226
1227 static void
1228 set_initial_language (void)
1229 {
1230 struct partial_symtab *pst;
1231 enum language lang = language_unknown;
1232
1233 pst = find_main_psymtab ();
1234 if (pst != NULL)
1235 {
1236 if (pst->filename != NULL)
1237 {
1238 lang = deduce_language_from_filename (pst->filename);
1239 }
1240 if (lang == language_unknown)
1241 {
1242 /* Make C the default language */
1243 lang = language_c;
1244 }
1245 set_language (lang);
1246 expected_language = current_language; /* Don't warn the user */
1247 }
1248 }
1249
1250 /* Open file specified by NAME and hand it off to BFD for preliminary
1251 analysis. Result is a newly initialized bfd *, which includes a newly
1252 malloc'd` copy of NAME (tilde-expanded and made absolute).
1253 In case of trouble, error() is called. */
1254
1255 bfd *
1256 symfile_bfd_open (char *name)
1257 {
1258 bfd *sym_bfd;
1259 int desc;
1260 char *absolute_name;
1261
1262
1263
1264 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1265
1266 /* Look down path for it, allocate 2nd new malloc'd copy. */
1267 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1268 0, &absolute_name);
1269 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1270 if (desc < 0)
1271 {
1272 char *exename = alloca (strlen (name) + 5);
1273 strcat (strcpy (exename, name), ".exe");
1274 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1275 O_RDONLY | O_BINARY, 0, &absolute_name);
1276 }
1277 #endif
1278 if (desc < 0)
1279 {
1280 make_cleanup (xfree, name);
1281 perror_with_name (name);
1282 }
1283 xfree (name); /* Free 1st new malloc'd copy */
1284 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1285 /* It'll be freed in free_objfile(). */
1286
1287 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1288 if (!sym_bfd)
1289 {
1290 close (desc);
1291 make_cleanup (xfree, name);
1292 error (_("\"%s\": can't open to read symbols: %s."), name,
1293 bfd_errmsg (bfd_get_error ()));
1294 }
1295 bfd_set_cacheable (sym_bfd, 1);
1296
1297 if (!bfd_check_format (sym_bfd, bfd_object))
1298 {
1299 /* FIXME: should be checking for errors from bfd_close (for one thing,
1300 on error it does not free all the storage associated with the
1301 bfd). */
1302 bfd_close (sym_bfd); /* This also closes desc */
1303 make_cleanup (xfree, name);
1304 error (_("\"%s\": can't read symbols: %s."), name,
1305 bfd_errmsg (bfd_get_error ()));
1306 }
1307 return (sym_bfd);
1308 }
1309
1310 /* Return the section index for the given section name. Return -1 if
1311 the section was not found. */
1312 int
1313 get_section_index (struct objfile *objfile, char *section_name)
1314 {
1315 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1316 if (sect)
1317 return sect->index;
1318 else
1319 return -1;
1320 }
1321
1322 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1323 startup by the _initialize routine in each object file format reader,
1324 to register information about each format the the reader is prepared
1325 to handle. */
1326
1327 void
1328 add_symtab_fns (struct sym_fns *sf)
1329 {
1330 sf->next = symtab_fns;
1331 symtab_fns = sf;
1332 }
1333
1334
1335 /* Initialize to read symbols from the symbol file sym_bfd. It either
1336 returns or calls error(). The result is an initialized struct sym_fns
1337 in the objfile structure, that contains cached information about the
1338 symbol file. */
1339
1340 static void
1341 find_sym_fns (struct objfile *objfile)
1342 {
1343 struct sym_fns *sf;
1344 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1345 char *our_target = bfd_get_target (objfile->obfd);
1346
1347 if (our_flavour == bfd_target_srec_flavour
1348 || our_flavour == bfd_target_ihex_flavour
1349 || our_flavour == bfd_target_tekhex_flavour)
1350 return; /* No symbols. */
1351
1352 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1353 {
1354 if (our_flavour == sf->sym_flavour)
1355 {
1356 objfile->sf = sf;
1357 return;
1358 }
1359 }
1360 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1361 bfd_get_target (objfile->obfd));
1362 }
1363 \f
1364 /* This function runs the load command of our current target. */
1365
1366 static void
1367 load_command (char *arg, int from_tty)
1368 {
1369 if (arg == NULL)
1370 arg = get_exec_file (1);
1371 target_load (arg, from_tty);
1372
1373 /* After re-loading the executable, we don't really know which
1374 overlays are mapped any more. */
1375 overlay_cache_invalid = 1;
1376 }
1377
1378 /* This version of "load" should be usable for any target. Currently
1379 it is just used for remote targets, not inftarg.c or core files,
1380 on the theory that only in that case is it useful.
1381
1382 Avoiding xmodem and the like seems like a win (a) because we don't have
1383 to worry about finding it, and (b) On VMS, fork() is very slow and so
1384 we don't want to run a subprocess. On the other hand, I'm not sure how
1385 performance compares. */
1386
1387 static int download_write_size = 512;
1388 static void
1389 show_download_write_size (struct ui_file *file, int from_tty,
1390 struct cmd_list_element *c, const char *value)
1391 {
1392 fprintf_filtered (file, _("\
1393 The write size used when downloading a program is %s.\n"),
1394 value);
1395 }
1396 static int validate_download = 0;
1397
1398 /* Callback service function for generic_load (bfd_map_over_sections). */
1399
1400 static void
1401 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1402 {
1403 bfd_size_type *sum = data;
1404
1405 *sum += bfd_get_section_size (asec);
1406 }
1407
1408 /* Opaque data for load_section_callback. */
1409 struct load_section_data {
1410 unsigned long load_offset;
1411 unsigned long write_count;
1412 unsigned long data_count;
1413 bfd_size_type total_size;
1414 };
1415
1416 /* Callback service function for generic_load (bfd_map_over_sections). */
1417
1418 static void
1419 load_section_callback (bfd *abfd, asection *asec, void *data)
1420 {
1421 struct load_section_data *args = data;
1422
1423 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1424 {
1425 bfd_size_type size = bfd_get_section_size (asec);
1426 if (size > 0)
1427 {
1428 char *buffer;
1429 struct cleanup *old_chain;
1430 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1431 bfd_size_type block_size;
1432 int err;
1433 const char *sect_name = bfd_get_section_name (abfd, asec);
1434 bfd_size_type sent;
1435
1436 if (download_write_size > 0 && size > download_write_size)
1437 block_size = download_write_size;
1438 else
1439 block_size = size;
1440
1441 buffer = xmalloc (size);
1442 old_chain = make_cleanup (xfree, buffer);
1443
1444 /* Is this really necessary? I guess it gives the user something
1445 to look at during a long download. */
1446 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1447 sect_name, paddr_nz (size), paddr_nz (lma));
1448
1449 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1450
1451 sent = 0;
1452 do
1453 {
1454 int len;
1455 bfd_size_type this_transfer = size - sent;
1456
1457 if (this_transfer >= block_size)
1458 this_transfer = block_size;
1459 len = target_write_memory_partial (lma, buffer,
1460 this_transfer, &err);
1461 if (err)
1462 break;
1463 if (validate_download)
1464 {
1465 /* Broken memories and broken monitors manifest
1466 themselves here when bring new computers to
1467 life. This doubles already slow downloads. */
1468 /* NOTE: cagney/1999-10-18: A more efficient
1469 implementation might add a verify_memory()
1470 method to the target vector and then use
1471 that. remote.c could implement that method
1472 using the ``qCRC'' packet. */
1473 char *check = xmalloc (len);
1474 struct cleanup *verify_cleanups =
1475 make_cleanup (xfree, check);
1476
1477 if (target_read_memory (lma, check, len) != 0)
1478 error (_("Download verify read failed at 0x%s"),
1479 paddr (lma));
1480 if (memcmp (buffer, check, len) != 0)
1481 error (_("Download verify compare failed at 0x%s"),
1482 paddr (lma));
1483 do_cleanups (verify_cleanups);
1484 }
1485 args->data_count += len;
1486 lma += len;
1487 buffer += len;
1488 args->write_count += 1;
1489 sent += len;
1490 if (quit_flag
1491 || (deprecated_ui_load_progress_hook != NULL
1492 && deprecated_ui_load_progress_hook (sect_name, sent)))
1493 error (_("Canceled the download"));
1494
1495 if (deprecated_show_load_progress != NULL)
1496 deprecated_show_load_progress (sect_name, sent, size,
1497 args->data_count,
1498 args->total_size);
1499 }
1500 while (sent < size);
1501
1502 if (err != 0)
1503 error (_("Memory access error while loading section %s."), sect_name);
1504
1505 do_cleanups (old_chain);
1506 }
1507 }
1508 }
1509
1510 void
1511 generic_load (char *args, int from_tty)
1512 {
1513 asection *s;
1514 bfd *loadfile_bfd;
1515 time_t start_time, end_time; /* Start and end times of download */
1516 char *filename;
1517 struct cleanup *old_cleanups;
1518 char *offptr;
1519 struct load_section_data cbdata;
1520 CORE_ADDR entry;
1521
1522 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1523 cbdata.write_count = 0; /* Number of writes needed. */
1524 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1525 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1526
1527 /* Parse the input argument - the user can specify a load offset as
1528 a second argument. */
1529 filename = xmalloc (strlen (args) + 1);
1530 old_cleanups = make_cleanup (xfree, filename);
1531 strcpy (filename, args);
1532 offptr = strchr (filename, ' ');
1533 if (offptr != NULL)
1534 {
1535 char *endptr;
1536
1537 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1538 if (offptr == endptr)
1539 error (_("Invalid download offset:%s."), offptr);
1540 *offptr = '\0';
1541 }
1542 else
1543 cbdata.load_offset = 0;
1544
1545 /* Open the file for loading. */
1546 loadfile_bfd = bfd_openr (filename, gnutarget);
1547 if (loadfile_bfd == NULL)
1548 {
1549 perror_with_name (filename);
1550 return;
1551 }
1552
1553 /* FIXME: should be checking for errors from bfd_close (for one thing,
1554 on error it does not free all the storage associated with the
1555 bfd). */
1556 make_cleanup_bfd_close (loadfile_bfd);
1557
1558 if (!bfd_check_format (loadfile_bfd, bfd_object))
1559 {
1560 error (_("\"%s\" is not an object file: %s"), filename,
1561 bfd_errmsg (bfd_get_error ()));
1562 }
1563
1564 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1565 (void *) &cbdata.total_size);
1566
1567 start_time = time (NULL);
1568
1569 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1570
1571 end_time = time (NULL);
1572
1573 entry = bfd_get_start_address (loadfile_bfd);
1574 ui_out_text (uiout, "Start address ");
1575 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1576 ui_out_text (uiout, ", load size ");
1577 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1578 ui_out_text (uiout, "\n");
1579 /* We were doing this in remote-mips.c, I suspect it is right
1580 for other targets too. */
1581 write_pc (entry);
1582
1583 /* FIXME: are we supposed to call symbol_file_add or not? According
1584 to a comment from remote-mips.c (where a call to symbol_file_add
1585 was commented out), making the call confuses GDB if more than one
1586 file is loaded in. Some targets do (e.g., remote-vx.c) but
1587 others don't (or didn't - perhaps they have all been deleted). */
1588
1589 print_transfer_performance (gdb_stdout, cbdata.data_count,
1590 cbdata.write_count, end_time - start_time);
1591
1592 do_cleanups (old_cleanups);
1593 }
1594
1595 /* Report how fast the transfer went. */
1596
1597 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1598 replaced by print_transfer_performance (with a very different
1599 function signature). */
1600
1601 void
1602 report_transfer_performance (unsigned long data_count, time_t start_time,
1603 time_t end_time)
1604 {
1605 print_transfer_performance (gdb_stdout, data_count,
1606 end_time - start_time, 0);
1607 }
1608
1609 void
1610 print_transfer_performance (struct ui_file *stream,
1611 unsigned long data_count,
1612 unsigned long write_count,
1613 unsigned long time_count)
1614 {
1615 ui_out_text (uiout, "Transfer rate: ");
1616 if (time_count > 0)
1617 {
1618 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1619 (data_count * 8) / time_count);
1620 ui_out_text (uiout, " bits/sec");
1621 }
1622 else
1623 {
1624 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1625 ui_out_text (uiout, " bits in <1 sec");
1626 }
1627 if (write_count > 0)
1628 {
1629 ui_out_text (uiout, ", ");
1630 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1631 ui_out_text (uiout, " bytes/write");
1632 }
1633 ui_out_text (uiout, ".\n");
1634 }
1635
1636 /* This function allows the addition of incrementally linked object files.
1637 It does not modify any state in the target, only in the debugger. */
1638 /* Note: ezannoni 2000-04-13 This function/command used to have a
1639 special case syntax for the rombug target (Rombug is the boot
1640 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1641 rombug case, the user doesn't need to supply a text address,
1642 instead a call to target_link() (in target.c) would supply the
1643 value to use. We are now discontinuing this type of ad hoc syntax. */
1644
1645 static void
1646 add_symbol_file_command (char *args, int from_tty)
1647 {
1648 char *filename = NULL;
1649 int flags = OBJF_USERLOADED;
1650 char *arg;
1651 int expecting_option = 0;
1652 int section_index = 0;
1653 int argcnt = 0;
1654 int sec_num = 0;
1655 int i;
1656 int expecting_sec_name = 0;
1657 int expecting_sec_addr = 0;
1658
1659 struct sect_opt
1660 {
1661 char *name;
1662 char *value;
1663 };
1664
1665 struct section_addr_info *section_addrs;
1666 struct sect_opt *sect_opts = NULL;
1667 size_t num_sect_opts = 0;
1668 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1669
1670 num_sect_opts = 16;
1671 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1672 * sizeof (struct sect_opt));
1673
1674 dont_repeat ();
1675
1676 if (args == NULL)
1677 error (_("add-symbol-file takes a file name and an address"));
1678
1679 /* Make a copy of the string that we can safely write into. */
1680 args = xstrdup (args);
1681
1682 while (*args != '\000')
1683 {
1684 /* Any leading spaces? */
1685 while (isspace (*args))
1686 args++;
1687
1688 /* Point arg to the beginning of the argument. */
1689 arg = args;
1690
1691 /* Move args pointer over the argument. */
1692 while ((*args != '\000') && !isspace (*args))
1693 args++;
1694
1695 /* If there are more arguments, terminate arg and
1696 proceed past it. */
1697 if (*args != '\000')
1698 *args++ = '\000';
1699
1700 /* Now process the argument. */
1701 if (argcnt == 0)
1702 {
1703 /* The first argument is the file name. */
1704 filename = tilde_expand (arg);
1705 make_cleanup (xfree, filename);
1706 }
1707 else
1708 if (argcnt == 1)
1709 {
1710 /* The second argument is always the text address at which
1711 to load the program. */
1712 sect_opts[section_index].name = ".text";
1713 sect_opts[section_index].value = arg;
1714 if (++section_index > num_sect_opts)
1715 {
1716 num_sect_opts *= 2;
1717 sect_opts = ((struct sect_opt *)
1718 xrealloc (sect_opts,
1719 num_sect_opts
1720 * sizeof (struct sect_opt)));
1721 }
1722 }
1723 else
1724 {
1725 /* It's an option (starting with '-') or it's an argument
1726 to an option */
1727
1728 if (*arg == '-')
1729 {
1730 if (strcmp (arg, "-readnow") == 0)
1731 flags |= OBJF_READNOW;
1732 else if (strcmp (arg, "-s") == 0)
1733 {
1734 expecting_sec_name = 1;
1735 expecting_sec_addr = 1;
1736 }
1737 }
1738 else
1739 {
1740 if (expecting_sec_name)
1741 {
1742 sect_opts[section_index].name = arg;
1743 expecting_sec_name = 0;
1744 }
1745 else
1746 if (expecting_sec_addr)
1747 {
1748 sect_opts[section_index].value = arg;
1749 expecting_sec_addr = 0;
1750 if (++section_index > num_sect_opts)
1751 {
1752 num_sect_opts *= 2;
1753 sect_opts = ((struct sect_opt *)
1754 xrealloc (sect_opts,
1755 num_sect_opts
1756 * sizeof (struct sect_opt)));
1757 }
1758 }
1759 else
1760 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1761 }
1762 }
1763 argcnt++;
1764 }
1765
1766 /* Print the prompt for the query below. And save the arguments into
1767 a sect_addr_info structure to be passed around to other
1768 functions. We have to split this up into separate print
1769 statements because hex_string returns a local static
1770 string. */
1771
1772 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1773 section_addrs = alloc_section_addr_info (section_index);
1774 make_cleanup (xfree, section_addrs);
1775 for (i = 0; i < section_index; i++)
1776 {
1777 CORE_ADDR addr;
1778 char *val = sect_opts[i].value;
1779 char *sec = sect_opts[i].name;
1780
1781 addr = parse_and_eval_address (val);
1782
1783 /* Here we store the section offsets in the order they were
1784 entered on the command line. */
1785 section_addrs->other[sec_num].name = sec;
1786 section_addrs->other[sec_num].addr = addr;
1787 printf_unfiltered ("\t%s_addr = %s\n",
1788 sec, hex_string ((unsigned long)addr));
1789 sec_num++;
1790
1791 /* The object's sections are initialized when a
1792 call is made to build_objfile_section_table (objfile).
1793 This happens in reread_symbols.
1794 At this point, we don't know what file type this is,
1795 so we can't determine what section names are valid. */
1796 }
1797
1798 if (from_tty && (!query ("%s", "")))
1799 error (_("Not confirmed."));
1800
1801 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1802
1803 /* Getting new symbols may change our opinion about what is
1804 frameless. */
1805 reinit_frame_cache ();
1806 do_cleanups (my_cleanups);
1807 }
1808 \f
1809 static void
1810 add_shared_symbol_files_command (char *args, int from_tty)
1811 {
1812 #ifdef ADD_SHARED_SYMBOL_FILES
1813 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1814 #else
1815 error (_("This command is not available in this configuration of GDB."));
1816 #endif
1817 }
1818 \f
1819 /* Re-read symbols if a symbol-file has changed. */
1820 void
1821 reread_symbols (void)
1822 {
1823 struct objfile *objfile;
1824 long new_modtime;
1825 int reread_one = 0;
1826 struct stat new_statbuf;
1827 int res;
1828
1829 /* With the addition of shared libraries, this should be modified,
1830 the load time should be saved in the partial symbol tables, since
1831 different tables may come from different source files. FIXME.
1832 This routine should then walk down each partial symbol table
1833 and see if the symbol table that it originates from has been changed */
1834
1835 for (objfile = object_files; objfile; objfile = objfile->next)
1836 {
1837 if (objfile->obfd)
1838 {
1839 #ifdef DEPRECATED_IBM6000_TARGET
1840 /* If this object is from a shared library, then you should
1841 stat on the library name, not member name. */
1842
1843 if (objfile->obfd->my_archive)
1844 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1845 else
1846 #endif
1847 res = stat (objfile->name, &new_statbuf);
1848 if (res != 0)
1849 {
1850 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1851 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1852 objfile->name);
1853 continue;
1854 }
1855 new_modtime = new_statbuf.st_mtime;
1856 if (new_modtime != objfile->mtime)
1857 {
1858 struct cleanup *old_cleanups;
1859 struct section_offsets *offsets;
1860 int num_offsets;
1861 char *obfd_filename;
1862
1863 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1864 objfile->name);
1865
1866 /* There are various functions like symbol_file_add,
1867 symfile_bfd_open, syms_from_objfile, etc., which might
1868 appear to do what we want. But they have various other
1869 effects which we *don't* want. So we just do stuff
1870 ourselves. We don't worry about mapped files (for one thing,
1871 any mapped file will be out of date). */
1872
1873 /* If we get an error, blow away this objfile (not sure if
1874 that is the correct response for things like shared
1875 libraries). */
1876 old_cleanups = make_cleanup_free_objfile (objfile);
1877 /* We need to do this whenever any symbols go away. */
1878 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1879
1880 /* Clean up any state BFD has sitting around. We don't need
1881 to close the descriptor but BFD lacks a way of closing the
1882 BFD without closing the descriptor. */
1883 obfd_filename = bfd_get_filename (objfile->obfd);
1884 if (!bfd_close (objfile->obfd))
1885 error (_("Can't close BFD for %s: %s"), objfile->name,
1886 bfd_errmsg (bfd_get_error ()));
1887 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1888 if (objfile->obfd == NULL)
1889 error (_("Can't open %s to read symbols."), objfile->name);
1890 /* bfd_openr sets cacheable to true, which is what we want. */
1891 if (!bfd_check_format (objfile->obfd, bfd_object))
1892 error (_("Can't read symbols from %s: %s."), objfile->name,
1893 bfd_errmsg (bfd_get_error ()));
1894
1895 /* Save the offsets, we will nuke them with the rest of the
1896 objfile_obstack. */
1897 num_offsets = objfile->num_sections;
1898 offsets = ((struct section_offsets *)
1899 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1900 memcpy (offsets, objfile->section_offsets,
1901 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1902
1903 /* Nuke all the state that we will re-read. Much of the following
1904 code which sets things to NULL really is necessary to tell
1905 other parts of GDB that there is nothing currently there. */
1906
1907 /* FIXME: Do we have to free a whole linked list, or is this
1908 enough? */
1909 if (objfile->global_psymbols.list)
1910 xfree (objfile->global_psymbols.list);
1911 memset (&objfile->global_psymbols, 0,
1912 sizeof (objfile->global_psymbols));
1913 if (objfile->static_psymbols.list)
1914 xfree (objfile->static_psymbols.list);
1915 memset (&objfile->static_psymbols, 0,
1916 sizeof (objfile->static_psymbols));
1917
1918 /* Free the obstacks for non-reusable objfiles */
1919 bcache_xfree (objfile->psymbol_cache);
1920 objfile->psymbol_cache = bcache_xmalloc ();
1921 bcache_xfree (objfile->macro_cache);
1922 objfile->macro_cache = bcache_xmalloc ();
1923 if (objfile->demangled_names_hash != NULL)
1924 {
1925 htab_delete (objfile->demangled_names_hash);
1926 objfile->demangled_names_hash = NULL;
1927 }
1928 obstack_free (&objfile->objfile_obstack, 0);
1929 objfile->sections = NULL;
1930 objfile->symtabs = NULL;
1931 objfile->psymtabs = NULL;
1932 objfile->free_psymtabs = NULL;
1933 objfile->cp_namespace_symtab = NULL;
1934 objfile->msymbols = NULL;
1935 objfile->deprecated_sym_private = NULL;
1936 objfile->minimal_symbol_count = 0;
1937 memset (&objfile->msymbol_hash, 0,
1938 sizeof (objfile->msymbol_hash));
1939 memset (&objfile->msymbol_demangled_hash, 0,
1940 sizeof (objfile->msymbol_demangled_hash));
1941 objfile->fundamental_types = NULL;
1942 clear_objfile_data (objfile);
1943 if (objfile->sf != NULL)
1944 {
1945 (*objfile->sf->sym_finish) (objfile);
1946 }
1947
1948 /* We never make this a mapped file. */
1949 objfile->md = NULL;
1950 objfile->psymbol_cache = bcache_xmalloc ();
1951 objfile->macro_cache = bcache_xmalloc ();
1952 /* obstack_init also initializes the obstack so it is
1953 empty. We could use obstack_specify_allocation but
1954 gdb_obstack.h specifies the alloc/dealloc
1955 functions. */
1956 obstack_init (&objfile->objfile_obstack);
1957 if (build_objfile_section_table (objfile))
1958 {
1959 error (_("Can't find the file sections in `%s': %s"),
1960 objfile->name, bfd_errmsg (bfd_get_error ()));
1961 }
1962 terminate_minimal_symbol_table (objfile);
1963
1964 /* We use the same section offsets as from last time. I'm not
1965 sure whether that is always correct for shared libraries. */
1966 objfile->section_offsets = (struct section_offsets *)
1967 obstack_alloc (&objfile->objfile_obstack,
1968 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1969 memcpy (objfile->section_offsets, offsets,
1970 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1971 objfile->num_sections = num_offsets;
1972
1973 /* What the hell is sym_new_init for, anyway? The concept of
1974 distinguishing between the main file and additional files
1975 in this way seems rather dubious. */
1976 if (objfile == symfile_objfile)
1977 {
1978 (*objfile->sf->sym_new_init) (objfile);
1979 }
1980
1981 (*objfile->sf->sym_init) (objfile);
1982 clear_complaints (&symfile_complaints, 1, 1);
1983 /* The "mainline" parameter is a hideous hack; I think leaving it
1984 zero is OK since dbxread.c also does what it needs to do if
1985 objfile->global_psymbols.size is 0. */
1986 (*objfile->sf->sym_read) (objfile, 0);
1987 if (!have_partial_symbols () && !have_full_symbols ())
1988 {
1989 wrap_here ("");
1990 printf_unfiltered (_("(no debugging symbols found)\n"));
1991 wrap_here ("");
1992 }
1993 objfile->flags |= OBJF_SYMS;
1994
1995 /* We're done reading the symbol file; finish off complaints. */
1996 clear_complaints (&symfile_complaints, 0, 1);
1997
1998 /* Getting new symbols may change our opinion about what is
1999 frameless. */
2000
2001 reinit_frame_cache ();
2002
2003 /* Discard cleanups as symbol reading was successful. */
2004 discard_cleanups (old_cleanups);
2005
2006 /* If the mtime has changed between the time we set new_modtime
2007 and now, we *want* this to be out of date, so don't call stat
2008 again now. */
2009 objfile->mtime = new_modtime;
2010 reread_one = 1;
2011 reread_separate_symbols (objfile);
2012 }
2013 }
2014 }
2015
2016 if (reread_one)
2017 {
2018 clear_symtab_users ();
2019 /* At least one objfile has changed, so we can consider that
2020 the executable we're debugging has changed too. */
2021 observer_notify_executable_changed (NULL);
2022 }
2023
2024 }
2025
2026
2027 /* Handle separate debug info for OBJFILE, which has just been
2028 re-read:
2029 - If we had separate debug info before, but now we don't, get rid
2030 of the separated objfile.
2031 - If we didn't have separated debug info before, but now we do,
2032 read in the new separated debug info file.
2033 - If the debug link points to a different file, toss the old one
2034 and read the new one.
2035 This function does *not* handle the case where objfile is still
2036 using the same separate debug info file, but that file's timestamp
2037 has changed. That case should be handled by the loop in
2038 reread_symbols already. */
2039 static void
2040 reread_separate_symbols (struct objfile *objfile)
2041 {
2042 char *debug_file;
2043 unsigned long crc32;
2044
2045 /* Does the updated objfile's debug info live in a
2046 separate file? */
2047 debug_file = find_separate_debug_file (objfile);
2048
2049 if (objfile->separate_debug_objfile)
2050 {
2051 /* There are two cases where we need to get rid of
2052 the old separated debug info objfile:
2053 - if the new primary objfile doesn't have
2054 separated debug info, or
2055 - if the new primary objfile has separate debug
2056 info, but it's under a different filename.
2057
2058 If the old and new objfiles both have separate
2059 debug info, under the same filename, then we're
2060 okay --- if the separated file's contents have
2061 changed, we will have caught that when we
2062 visited it in this function's outermost
2063 loop. */
2064 if (! debug_file
2065 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2066 free_objfile (objfile->separate_debug_objfile);
2067 }
2068
2069 /* If the new objfile has separate debug info, and we
2070 haven't loaded it already, do so now. */
2071 if (debug_file
2072 && ! objfile->separate_debug_objfile)
2073 {
2074 /* Use the same section offset table as objfile itself.
2075 Preserve the flags from objfile that make sense. */
2076 objfile->separate_debug_objfile
2077 = (symbol_file_add_with_addrs_or_offsets
2078 (symfile_bfd_open (debug_file),
2079 info_verbose, /* from_tty: Don't override the default. */
2080 0, /* No addr table. */
2081 objfile->section_offsets, objfile->num_sections,
2082 0, /* Not mainline. See comments about this above. */
2083 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2084 | OBJF_USERLOADED)));
2085 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2086 = objfile;
2087 }
2088 }
2089
2090
2091 \f
2092
2093
2094 typedef struct
2095 {
2096 char *ext;
2097 enum language lang;
2098 }
2099 filename_language;
2100
2101 static filename_language *filename_language_table;
2102 static int fl_table_size, fl_table_next;
2103
2104 static void
2105 add_filename_language (char *ext, enum language lang)
2106 {
2107 if (fl_table_next >= fl_table_size)
2108 {
2109 fl_table_size += 10;
2110 filename_language_table =
2111 xrealloc (filename_language_table,
2112 fl_table_size * sizeof (*filename_language_table));
2113 }
2114
2115 filename_language_table[fl_table_next].ext = xstrdup (ext);
2116 filename_language_table[fl_table_next].lang = lang;
2117 fl_table_next++;
2118 }
2119
2120 static char *ext_args;
2121 static void
2122 show_ext_args (struct ui_file *file, int from_tty,
2123 struct cmd_list_element *c, const char *value)
2124 {
2125 fprintf_filtered (file, _("\
2126 Mapping between filename extension and source language is \"%s\".\n"),
2127 value);
2128 }
2129
2130 static void
2131 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2132 {
2133 int i;
2134 char *cp = ext_args;
2135 enum language lang;
2136
2137 /* First arg is filename extension, starting with '.' */
2138 if (*cp != '.')
2139 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2140
2141 /* Find end of first arg. */
2142 while (*cp && !isspace (*cp))
2143 cp++;
2144
2145 if (*cp == '\0')
2146 error (_("'%s': two arguments required -- filename extension and language"),
2147 ext_args);
2148
2149 /* Null-terminate first arg */
2150 *cp++ = '\0';
2151
2152 /* Find beginning of second arg, which should be a source language. */
2153 while (*cp && isspace (*cp))
2154 cp++;
2155
2156 if (*cp == '\0')
2157 error (_("'%s': two arguments required -- filename extension and language"),
2158 ext_args);
2159
2160 /* Lookup the language from among those we know. */
2161 lang = language_enum (cp);
2162
2163 /* Now lookup the filename extension: do we already know it? */
2164 for (i = 0; i < fl_table_next; i++)
2165 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2166 break;
2167
2168 if (i >= fl_table_next)
2169 {
2170 /* new file extension */
2171 add_filename_language (ext_args, lang);
2172 }
2173 else
2174 {
2175 /* redefining a previously known filename extension */
2176
2177 /* if (from_tty) */
2178 /* query ("Really make files of type %s '%s'?", */
2179 /* ext_args, language_str (lang)); */
2180
2181 xfree (filename_language_table[i].ext);
2182 filename_language_table[i].ext = xstrdup (ext_args);
2183 filename_language_table[i].lang = lang;
2184 }
2185 }
2186
2187 static void
2188 info_ext_lang_command (char *args, int from_tty)
2189 {
2190 int i;
2191
2192 printf_filtered (_("Filename extensions and the languages they represent:"));
2193 printf_filtered ("\n\n");
2194 for (i = 0; i < fl_table_next; i++)
2195 printf_filtered ("\t%s\t- %s\n",
2196 filename_language_table[i].ext,
2197 language_str (filename_language_table[i].lang));
2198 }
2199
2200 static void
2201 init_filename_language_table (void)
2202 {
2203 if (fl_table_size == 0) /* protect against repetition */
2204 {
2205 fl_table_size = 20;
2206 fl_table_next = 0;
2207 filename_language_table =
2208 xmalloc (fl_table_size * sizeof (*filename_language_table));
2209 add_filename_language (".c", language_c);
2210 add_filename_language (".C", language_cplus);
2211 add_filename_language (".cc", language_cplus);
2212 add_filename_language (".cp", language_cplus);
2213 add_filename_language (".cpp", language_cplus);
2214 add_filename_language (".cxx", language_cplus);
2215 add_filename_language (".c++", language_cplus);
2216 add_filename_language (".java", language_java);
2217 add_filename_language (".class", language_java);
2218 add_filename_language (".m", language_objc);
2219 add_filename_language (".f", language_fortran);
2220 add_filename_language (".F", language_fortran);
2221 add_filename_language (".s", language_asm);
2222 add_filename_language (".S", language_asm);
2223 add_filename_language (".pas", language_pascal);
2224 add_filename_language (".p", language_pascal);
2225 add_filename_language (".pp", language_pascal);
2226 add_filename_language (".adb", language_ada);
2227 add_filename_language (".ads", language_ada);
2228 add_filename_language (".a", language_ada);
2229 add_filename_language (".ada", language_ada);
2230 }
2231 }
2232
2233 enum language
2234 deduce_language_from_filename (char *filename)
2235 {
2236 int i;
2237 char *cp;
2238
2239 if (filename != NULL)
2240 if ((cp = strrchr (filename, '.')) != NULL)
2241 for (i = 0; i < fl_table_next; i++)
2242 if (strcmp (cp, filename_language_table[i].ext) == 0)
2243 return filename_language_table[i].lang;
2244
2245 return language_unknown;
2246 }
2247 \f
2248 /* allocate_symtab:
2249
2250 Allocate and partly initialize a new symbol table. Return a pointer
2251 to it. error() if no space.
2252
2253 Caller must set these fields:
2254 LINETABLE(symtab)
2255 symtab->blockvector
2256 symtab->dirname
2257 symtab->free_code
2258 symtab->free_ptr
2259 possibly free_named_symtabs (symtab->filename);
2260 */
2261
2262 struct symtab *
2263 allocate_symtab (char *filename, struct objfile *objfile)
2264 {
2265 struct symtab *symtab;
2266
2267 symtab = (struct symtab *)
2268 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2269 memset (symtab, 0, sizeof (*symtab));
2270 symtab->filename = obsavestring (filename, strlen (filename),
2271 &objfile->objfile_obstack);
2272 symtab->fullname = NULL;
2273 symtab->language = deduce_language_from_filename (filename);
2274 symtab->debugformat = obsavestring ("unknown", 7,
2275 &objfile->objfile_obstack);
2276
2277 /* Hook it to the objfile it comes from */
2278
2279 symtab->objfile = objfile;
2280 symtab->next = objfile->symtabs;
2281 objfile->symtabs = symtab;
2282
2283 /* FIXME: This should go away. It is only defined for the Z8000,
2284 and the Z8000 definition of this macro doesn't have anything to
2285 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2286 here for convenience. */
2287 #ifdef INIT_EXTRA_SYMTAB_INFO
2288 INIT_EXTRA_SYMTAB_INFO (symtab);
2289 #endif
2290
2291 return (symtab);
2292 }
2293
2294 struct partial_symtab *
2295 allocate_psymtab (char *filename, struct objfile *objfile)
2296 {
2297 struct partial_symtab *psymtab;
2298
2299 if (objfile->free_psymtabs)
2300 {
2301 psymtab = objfile->free_psymtabs;
2302 objfile->free_psymtabs = psymtab->next;
2303 }
2304 else
2305 psymtab = (struct partial_symtab *)
2306 obstack_alloc (&objfile->objfile_obstack,
2307 sizeof (struct partial_symtab));
2308
2309 memset (psymtab, 0, sizeof (struct partial_symtab));
2310 psymtab->filename = obsavestring (filename, strlen (filename),
2311 &objfile->objfile_obstack);
2312 psymtab->symtab = NULL;
2313
2314 /* Prepend it to the psymtab list for the objfile it belongs to.
2315 Psymtabs are searched in most recent inserted -> least recent
2316 inserted order. */
2317
2318 psymtab->objfile = objfile;
2319 psymtab->next = objfile->psymtabs;
2320 objfile->psymtabs = psymtab;
2321 #if 0
2322 {
2323 struct partial_symtab **prev_pst;
2324 psymtab->objfile = objfile;
2325 psymtab->next = NULL;
2326 prev_pst = &(objfile->psymtabs);
2327 while ((*prev_pst) != NULL)
2328 prev_pst = &((*prev_pst)->next);
2329 (*prev_pst) = psymtab;
2330 }
2331 #endif
2332
2333 return (psymtab);
2334 }
2335
2336 void
2337 discard_psymtab (struct partial_symtab *pst)
2338 {
2339 struct partial_symtab **prev_pst;
2340
2341 /* From dbxread.c:
2342 Empty psymtabs happen as a result of header files which don't
2343 have any symbols in them. There can be a lot of them. But this
2344 check is wrong, in that a psymtab with N_SLINE entries but
2345 nothing else is not empty, but we don't realize that. Fixing
2346 that without slowing things down might be tricky. */
2347
2348 /* First, snip it out of the psymtab chain */
2349
2350 prev_pst = &(pst->objfile->psymtabs);
2351 while ((*prev_pst) != pst)
2352 prev_pst = &((*prev_pst)->next);
2353 (*prev_pst) = pst->next;
2354
2355 /* Next, put it on a free list for recycling */
2356
2357 pst->next = pst->objfile->free_psymtabs;
2358 pst->objfile->free_psymtabs = pst;
2359 }
2360 \f
2361
2362 /* Reset all data structures in gdb which may contain references to symbol
2363 table data. */
2364
2365 void
2366 clear_symtab_users (void)
2367 {
2368 /* Someday, we should do better than this, by only blowing away
2369 the things that really need to be blown. */
2370 clear_value_history ();
2371 clear_displays ();
2372 clear_internalvars ();
2373 breakpoint_re_set ();
2374 set_default_breakpoint (0, 0, 0, 0);
2375 clear_current_source_symtab_and_line ();
2376 clear_pc_function_cache ();
2377 if (deprecated_target_new_objfile_hook)
2378 deprecated_target_new_objfile_hook (NULL);
2379 }
2380
2381 static void
2382 clear_symtab_users_cleanup (void *ignore)
2383 {
2384 clear_symtab_users ();
2385 }
2386
2387 /* clear_symtab_users_once:
2388
2389 This function is run after symbol reading, or from a cleanup.
2390 If an old symbol table was obsoleted, the old symbol table
2391 has been blown away, but the other GDB data structures that may
2392 reference it have not yet been cleared or re-directed. (The old
2393 symtab was zapped, and the cleanup queued, in free_named_symtab()
2394 below.)
2395
2396 This function can be queued N times as a cleanup, or called
2397 directly; it will do all the work the first time, and then will be a
2398 no-op until the next time it is queued. This works by bumping a
2399 counter at queueing time. Much later when the cleanup is run, or at
2400 the end of symbol processing (in case the cleanup is discarded), if
2401 the queued count is greater than the "done-count", we do the work
2402 and set the done-count to the queued count. If the queued count is
2403 less than or equal to the done-count, we just ignore the call. This
2404 is needed because reading a single .o file will often replace many
2405 symtabs (one per .h file, for example), and we don't want to reset
2406 the breakpoints N times in the user's face.
2407
2408 The reason we both queue a cleanup, and call it directly after symbol
2409 reading, is because the cleanup protects us in case of errors, but is
2410 discarded if symbol reading is successful. */
2411
2412 #if 0
2413 /* FIXME: As free_named_symtabs is currently a big noop this function
2414 is no longer needed. */
2415 static void clear_symtab_users_once (void);
2416
2417 static int clear_symtab_users_queued;
2418 static int clear_symtab_users_done;
2419
2420 static void
2421 clear_symtab_users_once (void)
2422 {
2423 /* Enforce once-per-`do_cleanups'-semantics */
2424 if (clear_symtab_users_queued <= clear_symtab_users_done)
2425 return;
2426 clear_symtab_users_done = clear_symtab_users_queued;
2427
2428 clear_symtab_users ();
2429 }
2430 #endif
2431
2432 /* Delete the specified psymtab, and any others that reference it. */
2433
2434 static void
2435 cashier_psymtab (struct partial_symtab *pst)
2436 {
2437 struct partial_symtab *ps, *pprev = NULL;
2438 int i;
2439
2440 /* Find its previous psymtab in the chain */
2441 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2442 {
2443 if (ps == pst)
2444 break;
2445 pprev = ps;
2446 }
2447
2448 if (ps)
2449 {
2450 /* Unhook it from the chain. */
2451 if (ps == pst->objfile->psymtabs)
2452 pst->objfile->psymtabs = ps->next;
2453 else
2454 pprev->next = ps->next;
2455
2456 /* FIXME, we can't conveniently deallocate the entries in the
2457 partial_symbol lists (global_psymbols/static_psymbols) that
2458 this psymtab points to. These just take up space until all
2459 the psymtabs are reclaimed. Ditto the dependencies list and
2460 filename, which are all in the objfile_obstack. */
2461
2462 /* We need to cashier any psymtab that has this one as a dependency... */
2463 again:
2464 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2465 {
2466 for (i = 0; i < ps->number_of_dependencies; i++)
2467 {
2468 if (ps->dependencies[i] == pst)
2469 {
2470 cashier_psymtab (ps);
2471 goto again; /* Must restart, chain has been munged. */
2472 }
2473 }
2474 }
2475 }
2476 }
2477
2478 /* If a symtab or psymtab for filename NAME is found, free it along
2479 with any dependent breakpoints, displays, etc.
2480 Used when loading new versions of object modules with the "add-file"
2481 command. This is only called on the top-level symtab or psymtab's name;
2482 it is not called for subsidiary files such as .h files.
2483
2484 Return value is 1 if we blew away the environment, 0 if not.
2485 FIXME. The return value appears to never be used.
2486
2487 FIXME. I think this is not the best way to do this. We should
2488 work on being gentler to the environment while still cleaning up
2489 all stray pointers into the freed symtab. */
2490
2491 int
2492 free_named_symtabs (char *name)
2493 {
2494 #if 0
2495 /* FIXME: With the new method of each objfile having it's own
2496 psymtab list, this function needs serious rethinking. In particular,
2497 why was it ever necessary to toss psymtabs with specific compilation
2498 unit filenames, as opposed to all psymtabs from a particular symbol
2499 file? -- fnf
2500 Well, the answer is that some systems permit reloading of particular
2501 compilation units. We want to blow away any old info about these
2502 compilation units, regardless of which objfiles they arrived in. --gnu. */
2503
2504 struct symtab *s;
2505 struct symtab *prev;
2506 struct partial_symtab *ps;
2507 struct blockvector *bv;
2508 int blewit = 0;
2509
2510 /* We only wack things if the symbol-reload switch is set. */
2511 if (!symbol_reloading)
2512 return 0;
2513
2514 /* Some symbol formats have trouble providing file names... */
2515 if (name == 0 || *name == '\0')
2516 return 0;
2517
2518 /* Look for a psymtab with the specified name. */
2519
2520 again2:
2521 for (ps = partial_symtab_list; ps; ps = ps->next)
2522 {
2523 if (strcmp (name, ps->filename) == 0)
2524 {
2525 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2526 goto again2; /* Must restart, chain has been munged */
2527 }
2528 }
2529
2530 /* Look for a symtab with the specified name. */
2531
2532 for (s = symtab_list; s; s = s->next)
2533 {
2534 if (strcmp (name, s->filename) == 0)
2535 break;
2536 prev = s;
2537 }
2538
2539 if (s)
2540 {
2541 if (s == symtab_list)
2542 symtab_list = s->next;
2543 else
2544 prev->next = s->next;
2545
2546 /* For now, queue a delete for all breakpoints, displays, etc., whether
2547 or not they depend on the symtab being freed. This should be
2548 changed so that only those data structures affected are deleted. */
2549
2550 /* But don't delete anything if the symtab is empty.
2551 This test is necessary due to a bug in "dbxread.c" that
2552 causes empty symtabs to be created for N_SO symbols that
2553 contain the pathname of the object file. (This problem
2554 has been fixed in GDB 3.9x). */
2555
2556 bv = BLOCKVECTOR (s);
2557 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2558 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2559 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2560 {
2561 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2562 name);
2563 clear_symtab_users_queued++;
2564 make_cleanup (clear_symtab_users_once, 0);
2565 blewit = 1;
2566 }
2567 else
2568 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2569 name);
2570
2571 free_symtab (s);
2572 }
2573 else
2574 {
2575 /* It is still possible that some breakpoints will be affected
2576 even though no symtab was found, since the file might have
2577 been compiled without debugging, and hence not be associated
2578 with a symtab. In order to handle this correctly, we would need
2579 to keep a list of text address ranges for undebuggable files.
2580 For now, we do nothing, since this is a fairly obscure case. */
2581 ;
2582 }
2583
2584 /* FIXME, what about the minimal symbol table? */
2585 return blewit;
2586 #else
2587 return (0);
2588 #endif
2589 }
2590 \f
2591 /* Allocate and partially fill a partial symtab. It will be
2592 completely filled at the end of the symbol list.
2593
2594 FILENAME is the name of the symbol-file we are reading from. */
2595
2596 struct partial_symtab *
2597 start_psymtab_common (struct objfile *objfile,
2598 struct section_offsets *section_offsets, char *filename,
2599 CORE_ADDR textlow, struct partial_symbol **global_syms,
2600 struct partial_symbol **static_syms)
2601 {
2602 struct partial_symtab *psymtab;
2603
2604 psymtab = allocate_psymtab (filename, objfile);
2605 psymtab->section_offsets = section_offsets;
2606 psymtab->textlow = textlow;
2607 psymtab->texthigh = psymtab->textlow; /* default */
2608 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2609 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2610 return (psymtab);
2611 }
2612 \f
2613 /* Add a symbol with a long value to a psymtab.
2614 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2615 Return the partial symbol that has been added. */
2616
2617 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2618 symbol is so that callers can get access to the symbol's demangled
2619 name, which they don't have any cheap way to determine otherwise.
2620 (Currenly, dwarf2read.c is the only file who uses that information,
2621 though it's possible that other readers might in the future.)
2622 Elena wasn't thrilled about that, and I don't blame her, but we
2623 couldn't come up with a better way to get that information. If
2624 it's needed in other situations, we could consider breaking up
2625 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2626 cache. */
2627
2628 const struct partial_symbol *
2629 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2630 enum address_class class,
2631 struct psymbol_allocation_list *list, long val, /* Value as a long */
2632 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2633 enum language language, struct objfile *objfile)
2634 {
2635 struct partial_symbol *psym;
2636 char *buf = alloca (namelength + 1);
2637 /* psymbol is static so that there will be no uninitialized gaps in the
2638 structure which might contain random data, causing cache misses in
2639 bcache. */
2640 static struct partial_symbol psymbol;
2641
2642 /* Create local copy of the partial symbol */
2643 memcpy (buf, name, namelength);
2644 buf[namelength] = '\0';
2645 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2646 if (val != 0)
2647 {
2648 SYMBOL_VALUE (&psymbol) = val;
2649 }
2650 else
2651 {
2652 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2653 }
2654 SYMBOL_SECTION (&psymbol) = 0;
2655 SYMBOL_LANGUAGE (&psymbol) = language;
2656 PSYMBOL_DOMAIN (&psymbol) = domain;
2657 PSYMBOL_CLASS (&psymbol) = class;
2658
2659 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2660
2661 /* Stash the partial symbol away in the cache */
2662 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2663 objfile->psymbol_cache);
2664
2665 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2666 if (list->next >= list->list + list->size)
2667 {
2668 extend_psymbol_list (list, objfile);
2669 }
2670 *list->next++ = psym;
2671 OBJSTAT (objfile, n_psyms++);
2672
2673 return psym;
2674 }
2675
2676 /* Add a symbol with a long value to a psymtab. This differs from
2677 * add_psymbol_to_list above in taking both a mangled and a demangled
2678 * name. */
2679
2680 void
2681 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2682 int dem_namelength, domain_enum domain,
2683 enum address_class class,
2684 struct psymbol_allocation_list *list, long val, /* Value as a long */
2685 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2686 enum language language,
2687 struct objfile *objfile)
2688 {
2689 struct partial_symbol *psym;
2690 char *buf = alloca (namelength + 1);
2691 /* psymbol is static so that there will be no uninitialized gaps in the
2692 structure which might contain random data, causing cache misses in
2693 bcache. */
2694 static struct partial_symbol psymbol;
2695
2696 /* Create local copy of the partial symbol */
2697
2698 memcpy (buf, name, namelength);
2699 buf[namelength] = '\0';
2700 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2701 objfile->psymbol_cache);
2702
2703 buf = alloca (dem_namelength + 1);
2704 memcpy (buf, dem_name, dem_namelength);
2705 buf[dem_namelength] = '\0';
2706
2707 switch (language)
2708 {
2709 case language_c:
2710 case language_cplus:
2711 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2712 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2713 break;
2714 /* FIXME What should be done for the default case? Ignoring for now. */
2715 }
2716
2717 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2718 if (val != 0)
2719 {
2720 SYMBOL_VALUE (&psymbol) = val;
2721 }
2722 else
2723 {
2724 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2725 }
2726 SYMBOL_SECTION (&psymbol) = 0;
2727 SYMBOL_LANGUAGE (&psymbol) = language;
2728 PSYMBOL_DOMAIN (&psymbol) = domain;
2729 PSYMBOL_CLASS (&psymbol) = class;
2730 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2731
2732 /* Stash the partial symbol away in the cache */
2733 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2734 objfile->psymbol_cache);
2735
2736 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2737 if (list->next >= list->list + list->size)
2738 {
2739 extend_psymbol_list (list, objfile);
2740 }
2741 *list->next++ = psym;
2742 OBJSTAT (objfile, n_psyms++);
2743 }
2744
2745 /* Initialize storage for partial symbols. */
2746
2747 void
2748 init_psymbol_list (struct objfile *objfile, int total_symbols)
2749 {
2750 /* Free any previously allocated psymbol lists. */
2751
2752 if (objfile->global_psymbols.list)
2753 {
2754 xfree (objfile->global_psymbols.list);
2755 }
2756 if (objfile->static_psymbols.list)
2757 {
2758 xfree (objfile->static_psymbols.list);
2759 }
2760
2761 /* Current best guess is that approximately a twentieth
2762 of the total symbols (in a debugging file) are global or static
2763 oriented symbols */
2764
2765 objfile->global_psymbols.size = total_symbols / 10;
2766 objfile->static_psymbols.size = total_symbols / 10;
2767
2768 if (objfile->global_psymbols.size > 0)
2769 {
2770 objfile->global_psymbols.next =
2771 objfile->global_psymbols.list = (struct partial_symbol **)
2772 xmalloc ((objfile->global_psymbols.size
2773 * sizeof (struct partial_symbol *)));
2774 }
2775 if (objfile->static_psymbols.size > 0)
2776 {
2777 objfile->static_psymbols.next =
2778 objfile->static_psymbols.list = (struct partial_symbol **)
2779 xmalloc ((objfile->static_psymbols.size
2780 * sizeof (struct partial_symbol *)));
2781 }
2782 }
2783
2784 /* OVERLAYS:
2785 The following code implements an abstraction for debugging overlay sections.
2786
2787 The target model is as follows:
2788 1) The gnu linker will permit multiple sections to be mapped into the
2789 same VMA, each with its own unique LMA (or load address).
2790 2) It is assumed that some runtime mechanism exists for mapping the
2791 sections, one by one, from the load address into the VMA address.
2792 3) This code provides a mechanism for gdb to keep track of which
2793 sections should be considered to be mapped from the VMA to the LMA.
2794 This information is used for symbol lookup, and memory read/write.
2795 For instance, if a section has been mapped then its contents
2796 should be read from the VMA, otherwise from the LMA.
2797
2798 Two levels of debugger support for overlays are available. One is
2799 "manual", in which the debugger relies on the user to tell it which
2800 overlays are currently mapped. This level of support is
2801 implemented entirely in the core debugger, and the information about
2802 whether a section is mapped is kept in the objfile->obj_section table.
2803
2804 The second level of support is "automatic", and is only available if
2805 the target-specific code provides functionality to read the target's
2806 overlay mapping table, and translate its contents for the debugger
2807 (by updating the mapped state information in the obj_section tables).
2808
2809 The interface is as follows:
2810 User commands:
2811 overlay map <name> -- tell gdb to consider this section mapped
2812 overlay unmap <name> -- tell gdb to consider this section unmapped
2813 overlay list -- list the sections that GDB thinks are mapped
2814 overlay read-target -- get the target's state of what's mapped
2815 overlay off/manual/auto -- set overlay debugging state
2816 Functional interface:
2817 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2818 section, return that section.
2819 find_pc_overlay(pc): find any overlay section that contains
2820 the pc, either in its VMA or its LMA
2821 overlay_is_mapped(sect): true if overlay is marked as mapped
2822 section_is_overlay(sect): true if section's VMA != LMA
2823 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2824 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2825 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2826 overlay_mapped_address(...): map an address from section's LMA to VMA
2827 overlay_unmapped_address(...): map an address from section's VMA to LMA
2828 symbol_overlayed_address(...): Return a "current" address for symbol:
2829 either in VMA or LMA depending on whether
2830 the symbol's section is currently mapped
2831 */
2832
2833 /* Overlay debugging state: */
2834
2835 enum overlay_debugging_state overlay_debugging = ovly_off;
2836 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2837
2838 /* Target vector for refreshing overlay mapped state */
2839 static void simple_overlay_update (struct obj_section *);
2840 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2841
2842 /* Function: section_is_overlay (SECTION)
2843 Returns true if SECTION has VMA not equal to LMA, ie.
2844 SECTION is loaded at an address different from where it will "run". */
2845
2846 int
2847 section_is_overlay (asection *section)
2848 {
2849 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2850
2851 if (overlay_debugging)
2852 if (section && section->lma != 0 &&
2853 section->vma != section->lma)
2854 return 1;
2855
2856 return 0;
2857 }
2858
2859 /* Function: overlay_invalidate_all (void)
2860 Invalidate the mapped state of all overlay sections (mark it as stale). */
2861
2862 static void
2863 overlay_invalidate_all (void)
2864 {
2865 struct objfile *objfile;
2866 struct obj_section *sect;
2867
2868 ALL_OBJSECTIONS (objfile, sect)
2869 if (section_is_overlay (sect->the_bfd_section))
2870 sect->ovly_mapped = -1;
2871 }
2872
2873 /* Function: overlay_is_mapped (SECTION)
2874 Returns true if section is an overlay, and is currently mapped.
2875 Private: public access is thru function section_is_mapped.
2876
2877 Access to the ovly_mapped flag is restricted to this function, so
2878 that we can do automatic update. If the global flag
2879 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2880 overlay_invalidate_all. If the mapped state of the particular
2881 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2882
2883 static int
2884 overlay_is_mapped (struct obj_section *osect)
2885 {
2886 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2887 return 0;
2888
2889 switch (overlay_debugging)
2890 {
2891 default:
2892 case ovly_off:
2893 return 0; /* overlay debugging off */
2894 case ovly_auto: /* overlay debugging automatic */
2895 /* Unles there is a target_overlay_update function,
2896 there's really nothing useful to do here (can't really go auto) */
2897 if (target_overlay_update)
2898 {
2899 if (overlay_cache_invalid)
2900 {
2901 overlay_invalidate_all ();
2902 overlay_cache_invalid = 0;
2903 }
2904 if (osect->ovly_mapped == -1)
2905 (*target_overlay_update) (osect);
2906 }
2907 /* fall thru to manual case */
2908 case ovly_on: /* overlay debugging manual */
2909 return osect->ovly_mapped == 1;
2910 }
2911 }
2912
2913 /* Function: section_is_mapped
2914 Returns true if section is an overlay, and is currently mapped. */
2915
2916 int
2917 section_is_mapped (asection *section)
2918 {
2919 struct objfile *objfile;
2920 struct obj_section *osect;
2921
2922 if (overlay_debugging)
2923 if (section && section_is_overlay (section))
2924 ALL_OBJSECTIONS (objfile, osect)
2925 if (osect->the_bfd_section == section)
2926 return overlay_is_mapped (osect);
2927
2928 return 0;
2929 }
2930
2931 /* Function: pc_in_unmapped_range
2932 If PC falls into the lma range of SECTION, return true, else false. */
2933
2934 CORE_ADDR
2935 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2936 {
2937 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2938
2939 int size;
2940
2941 if (overlay_debugging)
2942 if (section && section_is_overlay (section))
2943 {
2944 size = bfd_get_section_size (section);
2945 if (section->lma <= pc && pc < section->lma + size)
2946 return 1;
2947 }
2948 return 0;
2949 }
2950
2951 /* Function: pc_in_mapped_range
2952 If PC falls into the vma range of SECTION, return true, else false. */
2953
2954 CORE_ADDR
2955 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2956 {
2957 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2958
2959 int size;
2960
2961 if (overlay_debugging)
2962 if (section && section_is_overlay (section))
2963 {
2964 size = bfd_get_section_size (section);
2965 if (section->vma <= pc && pc < section->vma + size)
2966 return 1;
2967 }
2968 return 0;
2969 }
2970
2971
2972 /* Return true if the mapped ranges of sections A and B overlap, false
2973 otherwise. */
2974 static int
2975 sections_overlap (asection *a, asection *b)
2976 {
2977 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2978
2979 CORE_ADDR a_start = a->vma;
2980 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
2981 CORE_ADDR b_start = b->vma;
2982 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
2983
2984 return (a_start < b_end && b_start < a_end);
2985 }
2986
2987 /* Function: overlay_unmapped_address (PC, SECTION)
2988 Returns the address corresponding to PC in the unmapped (load) range.
2989 May be the same as PC. */
2990
2991 CORE_ADDR
2992 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2993 {
2994 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2995
2996 if (overlay_debugging)
2997 if (section && section_is_overlay (section) &&
2998 pc_in_mapped_range (pc, section))
2999 return pc + section->lma - section->vma;
3000
3001 return pc;
3002 }
3003
3004 /* Function: overlay_mapped_address (PC, SECTION)
3005 Returns the address corresponding to PC in the mapped (runtime) range.
3006 May be the same as PC. */
3007
3008 CORE_ADDR
3009 overlay_mapped_address (CORE_ADDR pc, asection *section)
3010 {
3011 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3012
3013 if (overlay_debugging)
3014 if (section && section_is_overlay (section) &&
3015 pc_in_unmapped_range (pc, section))
3016 return pc + section->vma - section->lma;
3017
3018 return pc;
3019 }
3020
3021
3022 /* Function: symbol_overlayed_address
3023 Return one of two addresses (relative to the VMA or to the LMA),
3024 depending on whether the section is mapped or not. */
3025
3026 CORE_ADDR
3027 symbol_overlayed_address (CORE_ADDR address, asection *section)
3028 {
3029 if (overlay_debugging)
3030 {
3031 /* If the symbol has no section, just return its regular address. */
3032 if (section == 0)
3033 return address;
3034 /* If the symbol's section is not an overlay, just return its address */
3035 if (!section_is_overlay (section))
3036 return address;
3037 /* If the symbol's section is mapped, just return its address */
3038 if (section_is_mapped (section))
3039 return address;
3040 /*
3041 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3042 * then return its LOADED address rather than its vma address!!
3043 */
3044 return overlay_unmapped_address (address, section);
3045 }
3046 return address;
3047 }
3048
3049 /* Function: find_pc_overlay (PC)
3050 Return the best-match overlay section for PC:
3051 If PC matches a mapped overlay section's VMA, return that section.
3052 Else if PC matches an unmapped section's VMA, return that section.
3053 Else if PC matches an unmapped section's LMA, return that section. */
3054
3055 asection *
3056 find_pc_overlay (CORE_ADDR pc)
3057 {
3058 struct objfile *objfile;
3059 struct obj_section *osect, *best_match = NULL;
3060
3061 if (overlay_debugging)
3062 ALL_OBJSECTIONS (objfile, osect)
3063 if (section_is_overlay (osect->the_bfd_section))
3064 {
3065 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3066 {
3067 if (overlay_is_mapped (osect))
3068 return osect->the_bfd_section;
3069 else
3070 best_match = osect;
3071 }
3072 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3073 best_match = osect;
3074 }
3075 return best_match ? best_match->the_bfd_section : NULL;
3076 }
3077
3078 /* Function: find_pc_mapped_section (PC)
3079 If PC falls into the VMA address range of an overlay section that is
3080 currently marked as MAPPED, return that section. Else return NULL. */
3081
3082 asection *
3083 find_pc_mapped_section (CORE_ADDR pc)
3084 {
3085 struct objfile *objfile;
3086 struct obj_section *osect;
3087
3088 if (overlay_debugging)
3089 ALL_OBJSECTIONS (objfile, osect)
3090 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3091 overlay_is_mapped (osect))
3092 return osect->the_bfd_section;
3093
3094 return NULL;
3095 }
3096
3097 /* Function: list_overlays_command
3098 Print a list of mapped sections and their PC ranges */
3099
3100 void
3101 list_overlays_command (char *args, int from_tty)
3102 {
3103 int nmapped = 0;
3104 struct objfile *objfile;
3105 struct obj_section *osect;
3106
3107 if (overlay_debugging)
3108 ALL_OBJSECTIONS (objfile, osect)
3109 if (overlay_is_mapped (osect))
3110 {
3111 const char *name;
3112 bfd_vma lma, vma;
3113 int size;
3114
3115 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3116 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3117 size = bfd_get_section_size (osect->the_bfd_section);
3118 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3119
3120 printf_filtered ("Section %s, loaded at ", name);
3121 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3122 puts_filtered (" - ");
3123 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3124 printf_filtered (", mapped at ");
3125 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3126 puts_filtered (" - ");
3127 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3128 puts_filtered ("\n");
3129
3130 nmapped++;
3131 }
3132 if (nmapped == 0)
3133 printf_filtered (_("No sections are mapped.\n"));
3134 }
3135
3136 /* Function: map_overlay_command
3137 Mark the named section as mapped (ie. residing at its VMA address). */
3138
3139 void
3140 map_overlay_command (char *args, int from_tty)
3141 {
3142 struct objfile *objfile, *objfile2;
3143 struct obj_section *sec, *sec2;
3144 asection *bfdsec;
3145
3146 if (!overlay_debugging)
3147 error (_("\
3148 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3149 the 'overlay manual' command."));
3150
3151 if (args == 0 || *args == 0)
3152 error (_("Argument required: name of an overlay section"));
3153
3154 /* First, find a section matching the user supplied argument */
3155 ALL_OBJSECTIONS (objfile, sec)
3156 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3157 {
3158 /* Now, check to see if the section is an overlay. */
3159 bfdsec = sec->the_bfd_section;
3160 if (!section_is_overlay (bfdsec))
3161 continue; /* not an overlay section */
3162
3163 /* Mark the overlay as "mapped" */
3164 sec->ovly_mapped = 1;
3165
3166 /* Next, make a pass and unmap any sections that are
3167 overlapped by this new section: */
3168 ALL_OBJSECTIONS (objfile2, sec2)
3169 if (sec2->ovly_mapped
3170 && sec != sec2
3171 && sec->the_bfd_section != sec2->the_bfd_section
3172 && sections_overlap (sec->the_bfd_section,
3173 sec2->the_bfd_section))
3174 {
3175 if (info_verbose)
3176 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3177 bfd_section_name (objfile->obfd,
3178 sec2->the_bfd_section));
3179 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3180 }
3181 return;
3182 }
3183 error (_("No overlay section called %s"), args);
3184 }
3185
3186 /* Function: unmap_overlay_command
3187 Mark the overlay section as unmapped
3188 (ie. resident in its LMA address range, rather than the VMA range). */
3189
3190 void
3191 unmap_overlay_command (char *args, int from_tty)
3192 {
3193 struct objfile *objfile;
3194 struct obj_section *sec;
3195
3196 if (!overlay_debugging)
3197 error (_("\
3198 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3199 the 'overlay manual' command."));
3200
3201 if (args == 0 || *args == 0)
3202 error (_("Argument required: name of an overlay section"));
3203
3204 /* First, find a section matching the user supplied argument */
3205 ALL_OBJSECTIONS (objfile, sec)
3206 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3207 {
3208 if (!sec->ovly_mapped)
3209 error (_("Section %s is not mapped"), args);
3210 sec->ovly_mapped = 0;
3211 return;
3212 }
3213 error (_("No overlay section called %s"), args);
3214 }
3215
3216 /* Function: overlay_auto_command
3217 A utility command to turn on overlay debugging.
3218 Possibly this should be done via a set/show command. */
3219
3220 static void
3221 overlay_auto_command (char *args, int from_tty)
3222 {
3223 overlay_debugging = ovly_auto;
3224 enable_overlay_breakpoints ();
3225 if (info_verbose)
3226 printf_unfiltered (_("Automatic overlay debugging enabled."));
3227 }
3228
3229 /* Function: overlay_manual_command
3230 A utility command to turn on overlay debugging.
3231 Possibly this should be done via a set/show command. */
3232
3233 static void
3234 overlay_manual_command (char *args, int from_tty)
3235 {
3236 overlay_debugging = ovly_on;
3237 disable_overlay_breakpoints ();
3238 if (info_verbose)
3239 printf_unfiltered (_("Overlay debugging enabled."));
3240 }
3241
3242 /* Function: overlay_off_command
3243 A utility command to turn on overlay debugging.
3244 Possibly this should be done via a set/show command. */
3245
3246 static void
3247 overlay_off_command (char *args, int from_tty)
3248 {
3249 overlay_debugging = ovly_off;
3250 disable_overlay_breakpoints ();
3251 if (info_verbose)
3252 printf_unfiltered (_("Overlay debugging disabled."));
3253 }
3254
3255 static void
3256 overlay_load_command (char *args, int from_tty)
3257 {
3258 if (target_overlay_update)
3259 (*target_overlay_update) (NULL);
3260 else
3261 error (_("This target does not know how to read its overlay state."));
3262 }
3263
3264 /* Function: overlay_command
3265 A place-holder for a mis-typed command */
3266
3267 /* Command list chain containing all defined "overlay" subcommands. */
3268 struct cmd_list_element *overlaylist;
3269
3270 static void
3271 overlay_command (char *args, int from_tty)
3272 {
3273 printf_unfiltered
3274 ("\"overlay\" must be followed by the name of an overlay command.\n");
3275 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3276 }
3277
3278
3279 /* Target Overlays for the "Simplest" overlay manager:
3280
3281 This is GDB's default target overlay layer. It works with the
3282 minimal overlay manager supplied as an example by Cygnus. The
3283 entry point is via a function pointer "target_overlay_update",
3284 so targets that use a different runtime overlay manager can
3285 substitute their own overlay_update function and take over the
3286 function pointer.
3287
3288 The overlay_update function pokes around in the target's data structures
3289 to see what overlays are mapped, and updates GDB's overlay mapping with
3290 this information.
3291
3292 In this simple implementation, the target data structures are as follows:
3293 unsigned _novlys; /# number of overlay sections #/
3294 unsigned _ovly_table[_novlys][4] = {
3295 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3296 {..., ..., ..., ...},
3297 }
3298 unsigned _novly_regions; /# number of overlay regions #/
3299 unsigned _ovly_region_table[_novly_regions][3] = {
3300 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3301 {..., ..., ...},
3302 }
3303 These functions will attempt to update GDB's mappedness state in the
3304 symbol section table, based on the target's mappedness state.
3305
3306 To do this, we keep a cached copy of the target's _ovly_table, and
3307 attempt to detect when the cached copy is invalidated. The main
3308 entry point is "simple_overlay_update(SECT), which looks up SECT in
3309 the cached table and re-reads only the entry for that section from
3310 the target (whenever possible).
3311 */
3312
3313 /* Cached, dynamically allocated copies of the target data structures: */
3314 static unsigned (*cache_ovly_table)[4] = 0;
3315 #if 0
3316 static unsigned (*cache_ovly_region_table)[3] = 0;
3317 #endif
3318 static unsigned cache_novlys = 0;
3319 #if 0
3320 static unsigned cache_novly_regions = 0;
3321 #endif
3322 static CORE_ADDR cache_ovly_table_base = 0;
3323 #if 0
3324 static CORE_ADDR cache_ovly_region_table_base = 0;
3325 #endif
3326 enum ovly_index
3327 {
3328 VMA, SIZE, LMA, MAPPED
3329 };
3330 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3331
3332 /* Throw away the cached copy of _ovly_table */
3333 static void
3334 simple_free_overlay_table (void)
3335 {
3336 if (cache_ovly_table)
3337 xfree (cache_ovly_table);
3338 cache_novlys = 0;
3339 cache_ovly_table = NULL;
3340 cache_ovly_table_base = 0;
3341 }
3342
3343 #if 0
3344 /* Throw away the cached copy of _ovly_region_table */
3345 static void
3346 simple_free_overlay_region_table (void)
3347 {
3348 if (cache_ovly_region_table)
3349 xfree (cache_ovly_region_table);
3350 cache_novly_regions = 0;
3351 cache_ovly_region_table = NULL;
3352 cache_ovly_region_table_base = 0;
3353 }
3354 #endif
3355
3356 /* Read an array of ints from the target into a local buffer.
3357 Convert to host order. int LEN is number of ints */
3358 static void
3359 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3360 {
3361 /* FIXME (alloca): Not safe if array is very large. */
3362 char *buf = alloca (len * TARGET_LONG_BYTES);
3363 int i;
3364
3365 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3366 for (i = 0; i < len; i++)
3367 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3368 TARGET_LONG_BYTES);
3369 }
3370
3371 /* Find and grab a copy of the target _ovly_table
3372 (and _novlys, which is needed for the table's size) */
3373 static int
3374 simple_read_overlay_table (void)
3375 {
3376 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3377
3378 simple_free_overlay_table ();
3379 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3380 if (! novlys_msym)
3381 {
3382 error (_("Error reading inferior's overlay table: "
3383 "couldn't find `_novlys' variable\n"
3384 "in inferior. Use `overlay manual' mode."));
3385 return 0;
3386 }
3387
3388 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3389 if (! ovly_table_msym)
3390 {
3391 error (_("Error reading inferior's overlay table: couldn't find "
3392 "`_ovly_table' array\n"
3393 "in inferior. Use `overlay manual' mode."));
3394 return 0;
3395 }
3396
3397 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3398 cache_ovly_table
3399 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3400 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3401 read_target_long_array (cache_ovly_table_base,
3402 (int *) cache_ovly_table,
3403 cache_novlys * 4);
3404
3405 return 1; /* SUCCESS */
3406 }
3407
3408 #if 0
3409 /* Find and grab a copy of the target _ovly_region_table
3410 (and _novly_regions, which is needed for the table's size) */
3411 static int
3412 simple_read_overlay_region_table (void)
3413 {
3414 struct minimal_symbol *msym;
3415
3416 simple_free_overlay_region_table ();
3417 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3418 if (msym != NULL)
3419 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3420 else
3421 return 0; /* failure */
3422 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3423 if (cache_ovly_region_table != NULL)
3424 {
3425 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3426 if (msym != NULL)
3427 {
3428 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3429 read_target_long_array (cache_ovly_region_table_base,
3430 (int *) cache_ovly_region_table,
3431 cache_novly_regions * 3);
3432 }
3433 else
3434 return 0; /* failure */
3435 }
3436 else
3437 return 0; /* failure */
3438 return 1; /* SUCCESS */
3439 }
3440 #endif
3441
3442 /* Function: simple_overlay_update_1
3443 A helper function for simple_overlay_update. Assuming a cached copy
3444 of _ovly_table exists, look through it to find an entry whose vma,
3445 lma and size match those of OSECT. Re-read the entry and make sure
3446 it still matches OSECT (else the table may no longer be valid).
3447 Set OSECT's mapped state to match the entry. Return: 1 for
3448 success, 0 for failure. */
3449
3450 static int
3451 simple_overlay_update_1 (struct obj_section *osect)
3452 {
3453 int i, size;
3454 bfd *obfd = osect->objfile->obfd;
3455 asection *bsect = osect->the_bfd_section;
3456
3457 size = bfd_get_section_size (osect->the_bfd_section);
3458 for (i = 0; i < cache_novlys; i++)
3459 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3460 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3461 /* && cache_ovly_table[i][SIZE] == size */ )
3462 {
3463 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3464 (int *) cache_ovly_table[i], 4);
3465 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3466 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3467 /* && cache_ovly_table[i][SIZE] == size */ )
3468 {
3469 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3470 return 1;
3471 }
3472 else /* Warning! Warning! Target's ovly table has changed! */
3473 return 0;
3474 }
3475 return 0;
3476 }
3477
3478 /* Function: simple_overlay_update
3479 If OSECT is NULL, then update all sections' mapped state
3480 (after re-reading the entire target _ovly_table).
3481 If OSECT is non-NULL, then try to find a matching entry in the
3482 cached ovly_table and update only OSECT's mapped state.
3483 If a cached entry can't be found or the cache isn't valid, then
3484 re-read the entire cache, and go ahead and update all sections. */
3485
3486 static void
3487 simple_overlay_update (struct obj_section *osect)
3488 {
3489 struct objfile *objfile;
3490
3491 /* Were we given an osect to look up? NULL means do all of them. */
3492 if (osect)
3493 /* Have we got a cached copy of the target's overlay table? */
3494 if (cache_ovly_table != NULL)
3495 /* Does its cached location match what's currently in the symtab? */
3496 if (cache_ovly_table_base ==
3497 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3498 /* Then go ahead and try to look up this single section in the cache */
3499 if (simple_overlay_update_1 (osect))
3500 /* Found it! We're done. */
3501 return;
3502
3503 /* Cached table no good: need to read the entire table anew.
3504 Or else we want all the sections, in which case it's actually
3505 more efficient to read the whole table in one block anyway. */
3506
3507 if (! simple_read_overlay_table ())
3508 return;
3509
3510 /* Now may as well update all sections, even if only one was requested. */
3511 ALL_OBJSECTIONS (objfile, osect)
3512 if (section_is_overlay (osect->the_bfd_section))
3513 {
3514 int i, size;
3515 bfd *obfd = osect->objfile->obfd;
3516 asection *bsect = osect->the_bfd_section;
3517
3518 size = bfd_get_section_size (bsect);
3519 for (i = 0; i < cache_novlys; i++)
3520 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3521 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3522 /* && cache_ovly_table[i][SIZE] == size */ )
3523 { /* obj_section matches i'th entry in ovly_table */
3524 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3525 break; /* finished with inner for loop: break out */
3526 }
3527 }
3528 }
3529
3530 /* Set the output sections and output offsets for section SECTP in
3531 ABFD. The relocation code in BFD will read these offsets, so we
3532 need to be sure they're initialized. We map each section to itself,
3533 with no offset; this means that SECTP->vma will be honored. */
3534
3535 static void
3536 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3537 {
3538 sectp->output_section = sectp;
3539 sectp->output_offset = 0;
3540 }
3541
3542 /* Relocate the contents of a debug section SECTP in ABFD. The
3543 contents are stored in BUF if it is non-NULL, or returned in a
3544 malloc'd buffer otherwise.
3545
3546 For some platforms and debug info formats, shared libraries contain
3547 relocations against the debug sections (particularly for DWARF-2;
3548 one affected platform is PowerPC GNU/Linux, although it depends on
3549 the version of the linker in use). Also, ELF object files naturally
3550 have unresolved relocations for their debug sections. We need to apply
3551 the relocations in order to get the locations of symbols correct. */
3552
3553 bfd_byte *
3554 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3555 {
3556 /* We're only interested in debugging sections with relocation
3557 information. */
3558 if ((sectp->flags & SEC_RELOC) == 0)
3559 return NULL;
3560 if ((sectp->flags & SEC_DEBUGGING) == 0)
3561 return NULL;
3562
3563 /* We will handle section offsets properly elsewhere, so relocate as if
3564 all sections begin at 0. */
3565 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3566
3567 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3568 }
3569
3570 void
3571 _initialize_symfile (void)
3572 {
3573 struct cmd_list_element *c;
3574
3575 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3576 Load symbol table from executable file FILE.\n\
3577 The `file' command can also load symbol tables, as well as setting the file\n\
3578 to execute."), &cmdlist);
3579 set_cmd_completer (c, filename_completer);
3580
3581 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3582 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3583 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3584 ADDR is the starting address of the file's text.\n\
3585 The optional arguments are section-name section-address pairs and\n\
3586 should be specified if the data and bss segments are not contiguous\n\
3587 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3588 &cmdlist);
3589 set_cmd_completer (c, filename_completer);
3590
3591 c = add_cmd ("add-shared-symbol-files", class_files,
3592 add_shared_symbol_files_command, _("\
3593 Load the symbols from shared objects in the dynamic linker's link map."),
3594 &cmdlist);
3595 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3596 &cmdlist);
3597
3598 c = add_cmd ("load", class_files, load_command, _("\
3599 Dynamically load FILE into the running program, and record its symbols\n\
3600 for access from GDB."), &cmdlist);
3601 set_cmd_completer (c, filename_completer);
3602
3603 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3604 &symbol_reloading, _("\
3605 Set dynamic symbol table reloading multiple times in one run."), _("\
3606 Show dynamic symbol table reloading multiple times in one run."), NULL,
3607 NULL,
3608 show_symbol_reloading,
3609 &setlist, &showlist);
3610
3611 add_prefix_cmd ("overlay", class_support, overlay_command,
3612 _("Commands for debugging overlays."), &overlaylist,
3613 "overlay ", 0, &cmdlist);
3614
3615 add_com_alias ("ovly", "overlay", class_alias, 1);
3616 add_com_alias ("ov", "overlay", class_alias, 1);
3617
3618 add_cmd ("map-overlay", class_support, map_overlay_command,
3619 _("Assert that an overlay section is mapped."), &overlaylist);
3620
3621 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3622 _("Assert that an overlay section is unmapped."), &overlaylist);
3623
3624 add_cmd ("list-overlays", class_support, list_overlays_command,
3625 _("List mappings of overlay sections."), &overlaylist);
3626
3627 add_cmd ("manual", class_support, overlay_manual_command,
3628 _("Enable overlay debugging."), &overlaylist);
3629 add_cmd ("off", class_support, overlay_off_command,
3630 _("Disable overlay debugging."), &overlaylist);
3631 add_cmd ("auto", class_support, overlay_auto_command,
3632 _("Enable automatic overlay debugging."), &overlaylist);
3633 add_cmd ("load-target", class_support, overlay_load_command,
3634 _("Read the overlay mapping state from the target."), &overlaylist);
3635
3636 /* Filename extension to source language lookup table: */
3637 init_filename_language_table ();
3638 add_setshow_string_noescape_cmd ("extension-language", class_files,
3639 &ext_args, _("\
3640 Set mapping between filename extension and source language."), _("\
3641 Show mapping between filename extension and source language."), _("\
3642 Usage: set extension-language .foo bar"),
3643 set_ext_lang_command,
3644 show_ext_args,
3645 &setlist, &showlist);
3646
3647 add_info ("extensions", info_ext_lang_command,
3648 _("All filename extensions associated with a source language."));
3649
3650 add_setshow_integer_cmd ("download-write-size", class_obscure,
3651 &download_write_size, _("\
3652 Set the write size used when downloading a program."), _("\
3653 Show the write size used when downloading a program."), _("\
3654 Only used when downloading a program onto a remote\n\
3655 target. Specify zero, or a negative value, to disable\n\
3656 blocked writes. The actual size of each transfer is also\n\
3657 limited by the size of the target packet and the memory\n\
3658 cache."),
3659 NULL,
3660 show_download_write_size,
3661 &setlist, &showlist);
3662
3663 debug_file_directory = xstrdup (DEBUGDIR);
3664 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3665 &debug_file_directory, _("\
3666 Set the directory where separate debug symbols are searched for."), _("\
3667 Show the directory where separate debug symbols are searched for."), _("\
3668 Separate debug symbols are first searched for in the same\n\
3669 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3670 and lastly at the path of the directory of the binary with\n\
3671 the global debug-file directory prepended."),
3672 NULL,
3673 show_debug_file_directory,
3674 &setlist, &showlist);
3675 }