2010-07-28 Balazs Kezes <rlblaster@gmail.com>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 static struct sym_fns *symtab_fns = NULL;
151
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 #else
158 int symbol_reloading = 0;
159 #endif
160 static void
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167 }
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197 char *
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
199 {
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
205 const char *p1 = ptr;
206 char *p2 = p;
207 const char *end = ptr + size;
208
209 while (p1 != end)
210 *p2++ = *p1++;
211 }
212 p[size] = 0;
213 return p;
214 }
215
216 /* Concatenate NULL terminated variable argument list of `const char *' strings;
217 return the new string. Space is found in the OBSTACKP. Argument list must
218 be terminated by a sentinel expression `(char *) NULL'. */
219
220 char *
221 obconcat (struct obstack *obstackp, ...)
222 {
223 va_list ap;
224
225 va_start (ap, obstackp);
226 for (;;)
227 {
228 const char *s = va_arg (ap, const char *);
229
230 if (s == NULL)
231 break;
232
233 obstack_grow_str (obstackp, s);
234 }
235 va_end (ap);
236 obstack_1grow (obstackp, 0);
237
238 return obstack_finish (obstackp);
239 }
240
241 /* True if we are reading a symbol table. */
242
243 int currently_reading_symtab = 0;
244
245 static void
246 decrement_reading_symtab (void *dummy)
247 {
248 currently_reading_symtab--;
249 }
250
251 /* Increment currently_reading_symtab and return a cleanup that can be
252 used to decrement it. */
253 struct cleanup *
254 increment_reading_symtab (void)
255 {
256 ++currently_reading_symtab;
257 return make_cleanup (decrement_reading_symtab, NULL);
258 }
259
260 /* Remember the lowest-addressed loadable section we've seen.
261 This function is called via bfd_map_over_sections.
262
263 In case of equal vmas, the section with the largest size becomes the
264 lowest-addressed loadable section.
265
266 If the vmas and sizes are equal, the last section is considered the
267 lowest-addressed loadable section. */
268
269 void
270 find_lowest_section (bfd *abfd, asection *sect, void *obj)
271 {
272 asection **lowest = (asection **) obj;
273
274 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
275 return;
276 if (!*lowest)
277 *lowest = sect; /* First loadable section */
278 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
279 *lowest = sect; /* A lower loadable section */
280 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
281 && (bfd_section_size (abfd, (*lowest))
282 <= bfd_section_size (abfd, sect)))
283 *lowest = sect;
284 }
285
286 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
287
288 struct section_addr_info *
289 alloc_section_addr_info (size_t num_sections)
290 {
291 struct section_addr_info *sap;
292 size_t size;
293
294 size = (sizeof (struct section_addr_info)
295 + sizeof (struct other_sections) * (num_sections - 1));
296 sap = (struct section_addr_info *) xmalloc (size);
297 memset (sap, 0, size);
298 sap->num_sections = num_sections;
299
300 return sap;
301 }
302
303 /* Build (allocate and populate) a section_addr_info struct from
304 an existing section table. */
305
306 extern struct section_addr_info *
307 build_section_addr_info_from_section_table (const struct target_section *start,
308 const struct target_section *end)
309 {
310 struct section_addr_info *sap;
311 const struct target_section *stp;
312 int oidx;
313
314 sap = alloc_section_addr_info (end - start);
315
316 for (stp = start, oidx = 0; stp != end; stp++)
317 {
318 if (bfd_get_section_flags (stp->bfd,
319 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
320 && oidx < end - start)
321 {
322 sap->other[oidx].addr = stp->addr;
323 sap->other[oidx].name
324 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
325 sap->other[oidx].sectindex = stp->the_bfd_section->index;
326 oidx++;
327 }
328 }
329
330 return sap;
331 }
332
333 /* Create a section_addr_info from section offsets in ABFD. */
334
335 static struct section_addr_info *
336 build_section_addr_info_from_bfd (bfd *abfd)
337 {
338 struct section_addr_info *sap;
339 int i;
340 struct bfd_section *sec;
341
342 sap = alloc_section_addr_info (bfd_count_sections (abfd));
343 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
344 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
345 {
346 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
347 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
348 sap->other[i].sectindex = sec->index;
349 i++;
350 }
351 return sap;
352 }
353
354 /* Create a section_addr_info from section offsets in OBJFILE. */
355
356 struct section_addr_info *
357 build_section_addr_info_from_objfile (const struct objfile *objfile)
358 {
359 struct section_addr_info *sap;
360 int i;
361
362 /* Before reread_symbols gets rewritten it is not safe to call:
363 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
364 */
365 sap = build_section_addr_info_from_bfd (objfile->obfd);
366 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
367 {
368 int sectindex = sap->other[i].sectindex;
369
370 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
371 }
372 return sap;
373 }
374
375 /* Free all memory allocated by build_section_addr_info_from_section_table. */
376
377 extern void
378 free_section_addr_info (struct section_addr_info *sap)
379 {
380 int idx;
381
382 for (idx = 0; idx < sap->num_sections; idx++)
383 if (sap->other[idx].name)
384 xfree (sap->other[idx].name);
385 xfree (sap);
386 }
387
388
389 /* Initialize OBJFILE's sect_index_* members. */
390 static void
391 init_objfile_sect_indices (struct objfile *objfile)
392 {
393 asection *sect;
394 int i;
395
396 sect = bfd_get_section_by_name (objfile->obfd, ".text");
397 if (sect)
398 objfile->sect_index_text = sect->index;
399
400 sect = bfd_get_section_by_name (objfile->obfd, ".data");
401 if (sect)
402 objfile->sect_index_data = sect->index;
403
404 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
405 if (sect)
406 objfile->sect_index_bss = sect->index;
407
408 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
409 if (sect)
410 objfile->sect_index_rodata = sect->index;
411
412 /* This is where things get really weird... We MUST have valid
413 indices for the various sect_index_* members or gdb will abort.
414 So if for example, there is no ".text" section, we have to
415 accomodate that. First, check for a file with the standard
416 one or two segments. */
417
418 symfile_find_segment_sections (objfile);
419
420 /* Except when explicitly adding symbol files at some address,
421 section_offsets contains nothing but zeros, so it doesn't matter
422 which slot in section_offsets the individual sect_index_* members
423 index into. So if they are all zero, it is safe to just point
424 all the currently uninitialized indices to the first slot. But
425 beware: if this is the main executable, it may be relocated
426 later, e.g. by the remote qOffsets packet, and then this will
427 be wrong! That's why we try segments first. */
428
429 for (i = 0; i < objfile->num_sections; i++)
430 {
431 if (ANOFFSET (objfile->section_offsets, i) != 0)
432 {
433 break;
434 }
435 }
436 if (i == objfile->num_sections)
437 {
438 if (objfile->sect_index_text == -1)
439 objfile->sect_index_text = 0;
440 if (objfile->sect_index_data == -1)
441 objfile->sect_index_data = 0;
442 if (objfile->sect_index_bss == -1)
443 objfile->sect_index_bss = 0;
444 if (objfile->sect_index_rodata == -1)
445 objfile->sect_index_rodata = 0;
446 }
447 }
448
449 /* The arguments to place_section. */
450
451 struct place_section_arg
452 {
453 struct section_offsets *offsets;
454 CORE_ADDR lowest;
455 };
456
457 /* Find a unique offset to use for loadable section SECT if
458 the user did not provide an offset. */
459
460 static void
461 place_section (bfd *abfd, asection *sect, void *obj)
462 {
463 struct place_section_arg *arg = obj;
464 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
465 int done;
466 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
467
468 /* We are only interested in allocated sections. */
469 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
470 return;
471
472 /* If the user specified an offset, honor it. */
473 if (offsets[sect->index] != 0)
474 return;
475
476 /* Otherwise, let's try to find a place for the section. */
477 start_addr = (arg->lowest + align - 1) & -align;
478
479 do {
480 asection *cur_sec;
481
482 done = 1;
483
484 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
485 {
486 int indx = cur_sec->index;
487
488 /* We don't need to compare against ourself. */
489 if (cur_sec == sect)
490 continue;
491
492 /* We can only conflict with allocated sections. */
493 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
494 continue;
495
496 /* If the section offset is 0, either the section has not been placed
497 yet, or it was the lowest section placed (in which case LOWEST
498 will be past its end). */
499 if (offsets[indx] == 0)
500 continue;
501
502 /* If this section would overlap us, then we must move up. */
503 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
504 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
505 {
506 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
507 start_addr = (start_addr + align - 1) & -align;
508 done = 0;
509 break;
510 }
511
512 /* Otherwise, we appear to be OK. So far. */
513 }
514 }
515 while (!done);
516
517 offsets[sect->index] = start_addr;
518 arg->lowest = start_addr + bfd_get_section_size (sect);
519 }
520
521 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
522 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
523 entries. */
524
525 void
526 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
527 int num_sections,
528 struct section_addr_info *addrs)
529 {
530 int i;
531
532 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
533
534 /* Now calculate offsets for section that were specified by the caller. */
535 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
536 {
537 struct other_sections *osp;
538
539 osp = &addrs->other[i];
540 if (osp->addr == 0)
541 continue;
542
543 /* Record all sections in offsets */
544 /* The section_offsets in the objfile are here filled in using
545 the BFD index. */
546 section_offsets->offsets[osp->sectindex] = osp->addr;
547 }
548 }
549
550 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
551 their (name, sectindex) pair. sectindex makes the sort by name stable. */
552
553 static int
554 addrs_section_compar (const void *ap, const void *bp)
555 {
556 const struct other_sections *a = *((struct other_sections **) ap);
557 const struct other_sections *b = *((struct other_sections **) bp);
558 int retval, a_idx, b_idx;
559
560 retval = strcmp (a->name, b->name);
561 if (retval)
562 return retval;
563
564 /* SECTINDEX is undefined iff ADDR is zero. */
565 a_idx = a->addr == 0 ? 0 : a->sectindex;
566 b_idx = b->addr == 0 ? 0 : b->sectindex;
567 return a_idx - b_idx;
568 }
569
570 /* Provide sorted array of pointers to sections of ADDRS. The array is
571 terminated by NULL. Caller is responsible to call xfree for it. */
572
573 static struct other_sections **
574 addrs_section_sort (struct section_addr_info *addrs)
575 {
576 struct other_sections **array;
577 int i;
578
579 /* `+ 1' for the NULL terminator. */
580 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
581 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
582 array[i] = &addrs->other[i];
583 array[i] = NULL;
584
585 qsort (array, i, sizeof (*array), addrs_section_compar);
586
587 return array;
588 }
589
590 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
591 also SECTINDEXes specific to ABFD there. This function can be used to
592 rebase ADDRS to start referencing different BFD than before. */
593
594 void
595 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
596 {
597 asection *lower_sect;
598 CORE_ADDR lower_offset;
599 int i;
600 struct cleanup *my_cleanup;
601 struct section_addr_info *abfd_addrs;
602 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
603 struct other_sections **addrs_to_abfd_addrs;
604
605 /* Find lowest loadable section to be used as starting point for
606 continguous sections. */
607 lower_sect = NULL;
608 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
609 if (lower_sect == NULL)
610 {
611 warning (_("no loadable sections found in added symbol-file %s"),
612 bfd_get_filename (abfd));
613 lower_offset = 0;
614 }
615 else
616 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
617
618 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
619 in ABFD. Section names are not unique - there can be multiple sections of
620 the same name. Also the sections of the same name do not have to be
621 adjacent to each other. Some sections may be present only in one of the
622 files. Even sections present in both files do not have to be in the same
623 order.
624
625 Use stable sort by name for the sections in both files. Then linearly
626 scan both lists matching as most of the entries as possible. */
627
628 addrs_sorted = addrs_section_sort (addrs);
629 my_cleanup = make_cleanup (xfree, addrs_sorted);
630
631 abfd_addrs = build_section_addr_info_from_bfd (abfd);
632 make_cleanup_free_section_addr_info (abfd_addrs);
633 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
634 make_cleanup (xfree, abfd_addrs_sorted);
635
636 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
637
638 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
639 * addrs->num_sections);
640 make_cleanup (xfree, addrs_to_abfd_addrs);
641
642 while (*addrs_sorted)
643 {
644 const char *sect_name = (*addrs_sorted)->name;
645
646 while (*abfd_addrs_sorted
647 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
648 abfd_addrs_sorted++;
649
650 if (*abfd_addrs_sorted
651 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
652 {
653 int index_in_addrs;
654
655 /* Make the found item directly addressable from ADDRS. */
656 index_in_addrs = *addrs_sorted - addrs->other;
657 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
658 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
659
660 /* Never use the same ABFD entry twice. */
661 abfd_addrs_sorted++;
662 }
663
664 addrs_sorted++;
665 }
666
667 /* Calculate offsets for the loadable sections.
668 FIXME! Sections must be in order of increasing loadable section
669 so that contiguous sections can use the lower-offset!!!
670
671 Adjust offsets if the segments are not contiguous.
672 If the section is contiguous, its offset should be set to
673 the offset of the highest loadable section lower than it
674 (the loadable section directly below it in memory).
675 this_offset = lower_offset = lower_addr - lower_orig_addr */
676
677 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
678 {
679 const char *sect_name = addrs->other[i].name;
680 struct other_sections *sect = addrs_to_abfd_addrs[i];
681
682 if (sect)
683 {
684 /* This is the index used by BFD. */
685 addrs->other[i].sectindex = sect->sectindex;
686
687 if (addrs->other[i].addr != 0)
688 {
689 addrs->other[i].addr -= sect->addr;
690 lower_offset = addrs->other[i].addr;
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 else
696 {
697 /* This section does not exist in ABFD, which is normally
698 unexpected and we want to issue a warning.
699
700 However, the ELF prelinker does create a few sections which are
701 marked in the main executable as loadable (they are loaded in
702 memory from the DYNAMIC segment) and yet are not present in
703 separate debug info files. This is fine, and should not cause
704 a warning. Shared libraries contain just the section
705 ".gnu.liblist" but it is not marked as loadable there. There is
706 no other way to identify them than by their name as the sections
707 created by prelink have no special flags. */
708
709 if (!(strcmp (sect_name, ".gnu.liblist") == 0
710 || strcmp (sect_name, ".gnu.conflict") == 0
711 || strcmp (sect_name, ".dynbss") == 0
712 || strcmp (sect_name, ".sdynbss") == 0))
713 warning (_("section %s not found in %s"), sect_name,
714 bfd_get_filename (abfd));
715
716 addrs->other[i].addr = 0;
717
718 /* SECTINDEX is invalid if ADDR is zero. */
719 }
720 }
721
722 do_cleanups (my_cleanup);
723 }
724
725 /* Parse the user's idea of an offset for dynamic linking, into our idea
726 of how to represent it for fast symbol reading. This is the default
727 version of the sym_fns.sym_offsets function for symbol readers that
728 don't need to do anything special. It allocates a section_offsets table
729 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
730
731 void
732 default_symfile_offsets (struct objfile *objfile,
733 struct section_addr_info *addrs)
734 {
735 objfile->num_sections = bfd_count_sections (objfile->obfd);
736 objfile->section_offsets = (struct section_offsets *)
737 obstack_alloc (&objfile->objfile_obstack,
738 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
739 relative_addr_info_to_section_offsets (objfile->section_offsets,
740 objfile->num_sections, addrs);
741
742 /* For relocatable files, all loadable sections will start at zero.
743 The zero is meaningless, so try to pick arbitrary addresses such
744 that no loadable sections overlap. This algorithm is quadratic,
745 but the number of sections in a single object file is generally
746 small. */
747 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
748 {
749 struct place_section_arg arg;
750 bfd *abfd = objfile->obfd;
751 asection *cur_sec;
752
753 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
754 /* We do not expect this to happen; just skip this step if the
755 relocatable file has a section with an assigned VMA. */
756 if (bfd_section_vma (abfd, cur_sec) != 0)
757 break;
758
759 if (cur_sec == NULL)
760 {
761 CORE_ADDR *offsets = objfile->section_offsets->offsets;
762
763 /* Pick non-overlapping offsets for sections the user did not
764 place explicitly. */
765 arg.offsets = objfile->section_offsets;
766 arg.lowest = 0;
767 bfd_map_over_sections (objfile->obfd, place_section, &arg);
768
769 /* Correctly filling in the section offsets is not quite
770 enough. Relocatable files have two properties that
771 (most) shared objects do not:
772
773 - Their debug information will contain relocations. Some
774 shared libraries do also, but many do not, so this can not
775 be assumed.
776
777 - If there are multiple code sections they will be loaded
778 at different relative addresses in memory than they are
779 in the objfile, since all sections in the file will start
780 at address zero.
781
782 Because GDB has very limited ability to map from an
783 address in debug info to the correct code section,
784 it relies on adding SECT_OFF_TEXT to things which might be
785 code. If we clear all the section offsets, and set the
786 section VMAs instead, then symfile_relocate_debug_section
787 will return meaningful debug information pointing at the
788 correct sections.
789
790 GDB has too many different data structures for section
791 addresses - a bfd, objfile, and so_list all have section
792 tables, as does exec_ops. Some of these could probably
793 be eliminated. */
794
795 for (cur_sec = abfd->sections; cur_sec != NULL;
796 cur_sec = cur_sec->next)
797 {
798 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
799 continue;
800
801 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
802 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
803 offsets[cur_sec->index]);
804 offsets[cur_sec->index] = 0;
805 }
806 }
807 }
808
809 /* Remember the bfd indexes for the .text, .data, .bss and
810 .rodata sections. */
811 init_objfile_sect_indices (objfile);
812 }
813
814
815 /* Divide the file into segments, which are individual relocatable units.
816 This is the default version of the sym_fns.sym_segments function for
817 symbol readers that do not have an explicit representation of segments.
818 It assumes that object files do not have segments, and fully linked
819 files have a single segment. */
820
821 struct symfile_segment_data *
822 default_symfile_segments (bfd *abfd)
823 {
824 int num_sections, i;
825 asection *sect;
826 struct symfile_segment_data *data;
827 CORE_ADDR low, high;
828
829 /* Relocatable files contain enough information to position each
830 loadable section independently; they should not be relocated
831 in segments. */
832 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
833 return NULL;
834
835 /* Make sure there is at least one loadable section in the file. */
836 for (sect = abfd->sections; sect != NULL; sect = sect->next)
837 {
838 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
839 continue;
840
841 break;
842 }
843 if (sect == NULL)
844 return NULL;
845
846 low = bfd_get_section_vma (abfd, sect);
847 high = low + bfd_get_section_size (sect);
848
849 data = XZALLOC (struct symfile_segment_data);
850 data->num_segments = 1;
851 data->segment_bases = XCALLOC (1, CORE_ADDR);
852 data->segment_sizes = XCALLOC (1, CORE_ADDR);
853
854 num_sections = bfd_count_sections (abfd);
855 data->segment_info = XCALLOC (num_sections, int);
856
857 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
858 {
859 CORE_ADDR vma;
860
861 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
862 continue;
863
864 vma = bfd_get_section_vma (abfd, sect);
865 if (vma < low)
866 low = vma;
867 if (vma + bfd_get_section_size (sect) > high)
868 high = vma + bfd_get_section_size (sect);
869
870 data->segment_info[i] = 1;
871 }
872
873 data->segment_bases[0] = low;
874 data->segment_sizes[0] = high - low;
875
876 return data;
877 }
878
879 /* Process a symbol file, as either the main file or as a dynamically
880 loaded file.
881
882 OBJFILE is where the symbols are to be read from.
883
884 ADDRS is the list of section load addresses. If the user has given
885 an 'add-symbol-file' command, then this is the list of offsets and
886 addresses he or she provided as arguments to the command; or, if
887 we're handling a shared library, these are the actual addresses the
888 sections are loaded at, according to the inferior's dynamic linker
889 (as gleaned by GDB's shared library code). We convert each address
890 into an offset from the section VMA's as it appears in the object
891 file, and then call the file's sym_offsets function to convert this
892 into a format-specific offset table --- a `struct section_offsets'.
893 If ADDRS is non-zero, OFFSETS must be zero.
894
895 OFFSETS is a table of section offsets already in the right
896 format-specific representation. NUM_OFFSETS is the number of
897 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
898 assume this is the proper table the call to sym_offsets described
899 above would produce. Instead of calling sym_offsets, we just dump
900 it right into objfile->section_offsets. (When we're re-reading
901 symbols from an objfile, we don't have the original load address
902 list any more; all we have is the section offset table.) If
903 OFFSETS is non-zero, ADDRS must be zero.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and wether
907 breakpoint reset should be deferred. */
908
909 void
910 syms_from_objfile (struct objfile *objfile,
911 struct section_addr_info *addrs,
912 struct section_offsets *offsets,
913 int num_offsets,
914 int add_flags)
915 {
916 struct section_addr_info *local_addr = NULL;
917 struct cleanup *old_chain;
918 const int mainline = add_flags & SYMFILE_MAINLINE;
919
920 gdb_assert (! (addrs && offsets));
921
922 init_entry_point_info (objfile);
923 objfile->sf = find_sym_fns (objfile->obfd);
924
925 if (objfile->sf == NULL)
926 return; /* No symbols. */
927
928 /* Make sure that partially constructed symbol tables will be cleaned up
929 if an error occurs during symbol reading. */
930 old_chain = make_cleanup_free_objfile (objfile);
931
932 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
933 list. We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs && ! offsets)
936 {
937 local_addr
938 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
939 make_cleanup (xfree, local_addr);
940 addrs = local_addr;
941 }
942
943 /* Now either addrs or offsets is non-zero. */
944
945 if (mainline)
946 {
947 /* We will modify the main symbol table, make sure that all its users
948 will be cleaned up if an error occurs during symbol reading. */
949 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
950
951 /* Since no error yet, throw away the old symbol table. */
952
953 if (symfile_objfile != NULL)
954 {
955 free_objfile (symfile_objfile);
956 gdb_assert (symfile_objfile == NULL);
957 }
958
959 /* Currently we keep symbols from the add-symbol-file command.
960 If the user wants to get rid of them, they should do "symbol-file"
961 without arguments first. Not sure this is the best behavior
962 (PR 2207). */
963
964 (*objfile->sf->sym_new_init) (objfile);
965 }
966
967 /* Convert addr into an offset rather than an absolute address.
968 We find the lowest address of a loaded segment in the objfile,
969 and assume that <addr> is where that got loaded.
970
971 We no longer warn if the lowest section is not a text segment (as
972 happens for the PA64 port. */
973 if (addrs && addrs->other[0].name)
974 addr_info_make_relative (addrs, objfile->obfd);
975
976 /* Initialize symbol reading routines for this objfile, allow complaints to
977 appear for this new file, and record how verbose to be, then do the
978 initial symbol reading for this file. */
979
980 (*objfile->sf->sym_init) (objfile);
981 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
982
983 if (addrs)
984 (*objfile->sf->sym_offsets) (objfile, addrs);
985 else
986 {
987 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
988
989 /* Just copy in the offset table directly as given to us. */
990 objfile->num_sections = num_offsets;
991 objfile->section_offsets
992 = ((struct section_offsets *)
993 obstack_alloc (&objfile->objfile_obstack, size));
994 memcpy (objfile->section_offsets, offsets, size);
995
996 init_objfile_sect_indices (objfile);
997 }
998
999 (*objfile->sf->sym_read) (objfile, add_flags);
1000
1001 /* Discard cleanups as symbol reading was successful. */
1002
1003 discard_cleanups (old_chain);
1004 xfree (local_addr);
1005 }
1006
1007 /* Perform required actions after either reading in the initial
1008 symbols for a new objfile, or mapping in the symbols from a reusable
1009 objfile. */
1010
1011 void
1012 new_symfile_objfile (struct objfile *objfile, int add_flags)
1013 {
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1025 {
1026 breakpoint_re_set ();
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1031 }
1032
1033 /* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1038
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1045
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1048
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
1055 int flags)
1056 {
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1061
1062 if (readnow_symbol_files)
1063 flags |= OBJF_READNOW;
1064
1065 my_cleanups = make_cleanup_bfd_close (abfd);
1066
1067 /* Give user a chance to burp if we'd be
1068 interactively wiping out any existing symbols. */
1069
1070 if ((have_full_symbols () || have_partial_symbols ())
1071 && (add_flags & SYMFILE_MAINLINE)
1072 && from_tty
1073 && !query (_("Load new symbol table from \"%s\"? "), name))
1074 error (_("Not confirmed."));
1075
1076 objfile = allocate_objfile (abfd, flags);
1077 discard_cleanups (my_cleanups);
1078
1079 /* We either created a new mapped symbol table, mapped an existing
1080 symbol table file which has not had initial symbol reading
1081 performed, or need to read an unmapped symbol table. */
1082 if (from_tty || info_verbose)
1083 {
1084 if (deprecated_pre_add_symbol_hook)
1085 deprecated_pre_add_symbol_hook (name);
1086 else
1087 {
1088 printf_unfiltered (_("Reading symbols from %s..."), name);
1089 wrap_here ("");
1090 gdb_flush (gdb_stdout);
1091 }
1092 }
1093 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1094 add_flags);
1095
1096 /* We now have at least a partial symbol table. Check to see if the
1097 user requested that all symbols be read on initial access via either
1098 the gdb startup command line or on a per symbol file basis. Expand
1099 all partial symbol tables for this objfile if so. */
1100
1101 if ((flags & OBJF_READNOW))
1102 {
1103 if (from_tty || info_verbose)
1104 {
1105 printf_unfiltered (_("expanding to full symbols..."));
1106 wrap_here ("");
1107 gdb_flush (gdb_stdout);
1108 }
1109
1110 if (objfile->sf)
1111 objfile->sf->qf->expand_all_symtabs (objfile);
1112 }
1113
1114 if ((from_tty || info_verbose)
1115 && !objfile_has_symbols (objfile))
1116 {
1117 wrap_here ("");
1118 printf_unfiltered (_("(no debugging symbols found)..."));
1119 wrap_here ("");
1120 }
1121
1122 if (from_tty || info_verbose)
1123 {
1124 if (deprecated_post_add_symbol_hook)
1125 deprecated_post_add_symbol_hook ();
1126 else
1127 printf_unfiltered (_("done.\n"));
1128 }
1129
1130 /* We print some messages regardless of whether 'from_tty ||
1131 info_verbose' is true, so make sure they go out at the right
1132 time. */
1133 gdb_flush (gdb_stdout);
1134
1135 do_cleanups (my_cleanups);
1136
1137 if (objfile->sf == NULL)
1138 {
1139 observer_notify_new_objfile (objfile);
1140 return objfile; /* No symbols. */
1141 }
1142
1143 new_symfile_objfile (objfile, add_flags);
1144
1145 observer_notify_new_objfile (objfile);
1146
1147 bfd_cache_close_all ();
1148 return (objfile);
1149 }
1150
1151 /* Add BFD as a separate debug file for OBJFILE. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1155 {
1156 struct objfile *new_objfile;
1157 struct section_addr_info *sap;
1158 struct cleanup *my_cleanup;
1159
1160 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1161 because sections of BFD may not match sections of OBJFILE and because
1162 vma may have been modified by tools such as prelink. */
1163 sap = build_section_addr_info_from_objfile (objfile);
1164 my_cleanup = make_cleanup_free_section_addr_info (sap);
1165
1166 new_objfile = symbol_file_add_with_addrs_or_offsets
1167 (bfd, symfile_flags,
1168 sap, NULL, 0,
1169 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1170 | OBJF_USERLOADED));
1171
1172 do_cleanups (my_cleanup);
1173
1174 add_separate_debug_objfile (new_objfile, objfile);
1175 }
1176
1177 /* Process the symbol file ABFD, as either the main file or as a
1178 dynamically loaded file.
1179
1180 See symbol_file_add_with_addrs_or_offsets's comments for
1181 details. */
1182 struct objfile *
1183 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1184 struct section_addr_info *addrs,
1185 int flags)
1186 {
1187 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1188 flags);
1189 }
1190
1191
1192 /* Process a symbol file, as either the main file or as a dynamically
1193 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1194 for details. */
1195 struct objfile *
1196 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1197 int flags)
1198 {
1199 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1200 flags);
1201 }
1202
1203
1204 /* Call symbol_file_add() with default values and update whatever is
1205 affected by the loading of a new main().
1206 Used when the file is supplied in the gdb command line
1207 and by some targets with special loading requirements.
1208 The auxiliary function, symbol_file_add_main_1(), has the flags
1209 argument for the switches that can only be specified in the symbol_file
1210 command itself. */
1211
1212 void
1213 symbol_file_add_main (char *args, int from_tty)
1214 {
1215 symbol_file_add_main_1 (args, from_tty, 0);
1216 }
1217
1218 static void
1219 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1220 {
1221 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1222 symbol_file_add (args, add_flags, NULL, flags);
1223
1224 /* Getting new symbols may change our opinion about
1225 what is frameless. */
1226 reinit_frame_cache ();
1227
1228 set_initial_language ();
1229 }
1230
1231 void
1232 symbol_file_clear (int from_tty)
1233 {
1234 if ((have_full_symbols () || have_partial_symbols ())
1235 && from_tty
1236 && (symfile_objfile
1237 ? !query (_("Discard symbol table from `%s'? "),
1238 symfile_objfile->name)
1239 : !query (_("Discard symbol table? "))))
1240 error (_("Not confirmed."));
1241
1242 /* solib descriptors may have handles to objfiles. Wipe them before their
1243 objfiles get stale by free_all_objfiles. */
1244 no_shared_libraries (NULL, from_tty);
1245
1246 free_all_objfiles ();
1247
1248 gdb_assert (symfile_objfile == NULL);
1249 if (from_tty)
1250 printf_unfiltered (_("No symbol file now.\n"));
1251 }
1252
1253 static char *
1254 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1255 {
1256 asection *sect;
1257 bfd_size_type debuglink_size;
1258 unsigned long crc32;
1259 char *contents;
1260 int crc_offset;
1261
1262 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1263
1264 if (sect == NULL)
1265 return NULL;
1266
1267 debuglink_size = bfd_section_size (objfile->obfd, sect);
1268
1269 contents = xmalloc (debuglink_size);
1270 bfd_get_section_contents (objfile->obfd, sect, contents,
1271 (file_ptr)0, (bfd_size_type)debuglink_size);
1272
1273 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1274 crc_offset = strlen (contents) + 1;
1275 crc_offset = (crc_offset + 3) & ~3;
1276
1277 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1278
1279 *crc32_out = crc32;
1280 return contents;
1281 }
1282
1283 static int
1284 separate_debug_file_exists (const char *name, unsigned long crc,
1285 struct objfile *parent_objfile)
1286 {
1287 unsigned long file_crc = 0;
1288 bfd *abfd;
1289 gdb_byte buffer[8*1024];
1290 int count;
1291 struct stat parent_stat, abfd_stat;
1292
1293 /* Find a separate debug info file as if symbols would be present in
1294 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1295 section can contain just the basename of PARENT_OBJFILE without any
1296 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1297 the separate debug infos with the same basename can exist. */
1298
1299 if (strcmp (name, parent_objfile->name) == 0)
1300 return 0;
1301
1302 abfd = bfd_open_maybe_remote (name);
1303
1304 if (!abfd)
1305 return 0;
1306
1307 /* Verify symlinks were not the cause of strcmp name difference above.
1308
1309 Some operating systems, e.g. Windows, do not provide a meaningful
1310 st_ino; they always set it to zero. (Windows does provide a
1311 meaningful st_dev.) Do not indicate a duplicate library in that
1312 case. While there is no guarantee that a system that provides
1313 meaningful inode numbers will never set st_ino to zero, this is
1314 merely an optimization, so we do not need to worry about false
1315 negatives. */
1316
1317 if (bfd_stat (abfd, &abfd_stat) == 0
1318 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1319 && abfd_stat.st_dev == parent_stat.st_dev
1320 && abfd_stat.st_ino == parent_stat.st_ino
1321 && abfd_stat.st_ino != 0)
1322 {
1323 bfd_close (abfd);
1324 return 0;
1325 }
1326
1327 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1328 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1329
1330 bfd_close (abfd);
1331
1332 if (crc != file_crc)
1333 {
1334 warning (_("the debug information found in \"%s\""
1335 " does not match \"%s\" (CRC mismatch).\n"),
1336 name, parent_objfile->name);
1337 return 0;
1338 }
1339
1340 return 1;
1341 }
1342
1343 char *debug_file_directory = NULL;
1344 static void
1345 show_debug_file_directory (struct ui_file *file, int from_tty,
1346 struct cmd_list_element *c, const char *value)
1347 {
1348 fprintf_filtered (file, _("\
1349 The directory where separate debug symbols are searched for is \"%s\".\n"),
1350 value);
1351 }
1352
1353 #if ! defined (DEBUG_SUBDIRECTORY)
1354 #define DEBUG_SUBDIRECTORY ".debug"
1355 #endif
1356
1357 char *
1358 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1359 {
1360 char *basename, *debugdir;
1361 char *dir = NULL;
1362 char *debugfile = NULL;
1363 char *canon_name = NULL;
1364 unsigned long crc32;
1365 int i;
1366
1367 basename = get_debug_link_info (objfile, &crc32);
1368
1369 if (basename == NULL)
1370 /* There's no separate debug info, hence there's no way we could
1371 load it => no warning. */
1372 goto cleanup_return_debugfile;
1373
1374 dir = xstrdup (objfile->name);
1375
1376 /* Strip off the final filename part, leaving the directory name,
1377 followed by a slash. The directory can be relative or absolute. */
1378 for (i = strlen(dir) - 1; i >= 0; i--)
1379 {
1380 if (IS_DIR_SEPARATOR (dir[i]))
1381 break;
1382 }
1383 /* If I is -1 then no directory is present there and DIR will be "". */
1384 dir[i+1] = '\0';
1385
1386 /* Set I to max (strlen (canon_name), strlen (dir)). */
1387 canon_name = lrealpath (dir);
1388 i = strlen (dir);
1389 if (canon_name && strlen (canon_name) > i)
1390 i = strlen (canon_name);
1391
1392 debugfile = xmalloc (strlen (debug_file_directory) + 1
1393 + i
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (basename)
1397 + 1);
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, basename);
1402
1403 if (separate_debug_file_exists (debugfile, crc32, objfile))
1404 goto cleanup_return_debugfile;
1405
1406 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1407 strcpy (debugfile, dir);
1408 strcat (debugfile, DEBUG_SUBDIRECTORY);
1409 strcat (debugfile, "/");
1410 strcat (debugfile, basename);
1411
1412 if (separate_debug_file_exists (debugfile, crc32, objfile))
1413 goto cleanup_return_debugfile;
1414
1415 /* Then try in the global debugfile directories.
1416
1417 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1418 cause "/..." lookups. */
1419
1420 debugdir = debug_file_directory;
1421 do
1422 {
1423 char *debugdir_end;
1424
1425 while (*debugdir == DIRNAME_SEPARATOR)
1426 debugdir++;
1427
1428 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1429 if (debugdir_end == NULL)
1430 debugdir_end = &debugdir[strlen (debugdir)];
1431
1432 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1433 debugfile[debugdir_end - debugdir] = 0;
1434 strcat (debugfile, "/");
1435 strcat (debugfile, dir);
1436 strcat (debugfile, basename);
1437
1438 if (separate_debug_file_exists (debugfile, crc32, objfile))
1439 goto cleanup_return_debugfile;
1440
1441 /* If the file is in the sysroot, try using its base path in the
1442 global debugfile directory. */
1443 if (canon_name
1444 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1445 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1446 {
1447 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1448 debugfile[debugdir_end - debugdir] = 0;
1449 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1450 strcat (debugfile, "/");
1451 strcat (debugfile, basename);
1452
1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1454 goto cleanup_return_debugfile;
1455 }
1456
1457 debugdir = debugdir_end;
1458 }
1459 while (*debugdir != 0);
1460
1461 xfree (debugfile);
1462 debugfile = NULL;
1463
1464 cleanup_return_debugfile:
1465 xfree (canon_name);
1466 xfree (basename);
1467 xfree (dir);
1468 return debugfile;
1469 }
1470
1471
1472 /* This is the symbol-file command. Read the file, analyze its
1473 symbols, and add a struct symtab to a symtab list. The syntax of
1474 the command is rather bizarre:
1475
1476 1. The function buildargv implements various quoting conventions
1477 which are undocumented and have little or nothing in common with
1478 the way things are quoted (or not quoted) elsewhere in GDB.
1479
1480 2. Options are used, which are not generally used in GDB (perhaps
1481 "set mapped on", "set readnow on" would be better)
1482
1483 3. The order of options matters, which is contrary to GNU
1484 conventions (because it is confusing and inconvenient). */
1485
1486 void
1487 symbol_file_command (char *args, int from_tty)
1488 {
1489 dont_repeat ();
1490
1491 if (args == NULL)
1492 {
1493 symbol_file_clear (from_tty);
1494 }
1495 else
1496 {
1497 char **argv = gdb_buildargv (args);
1498 int flags = OBJF_USERLOADED;
1499 struct cleanup *cleanups;
1500 char *name = NULL;
1501
1502 cleanups = make_cleanup_freeargv (argv);
1503 while (*argv != NULL)
1504 {
1505 if (strcmp (*argv, "-readnow") == 0)
1506 flags |= OBJF_READNOW;
1507 else if (**argv == '-')
1508 error (_("unknown option `%s'"), *argv);
1509 else
1510 {
1511 symbol_file_add_main_1 (*argv, from_tty, flags);
1512 name = *argv;
1513 }
1514
1515 argv++;
1516 }
1517
1518 if (name == NULL)
1519 error (_("no symbol file name was specified"));
1520
1521 do_cleanups (cleanups);
1522 }
1523 }
1524
1525 /* Set the initial language.
1526
1527 FIXME: A better solution would be to record the language in the
1528 psymtab when reading partial symbols, and then use it (if known) to
1529 set the language. This would be a win for formats that encode the
1530 language in an easily discoverable place, such as DWARF. For
1531 stabs, we can jump through hoops looking for specially named
1532 symbols or try to intuit the language from the specific type of
1533 stabs we find, but we can't do that until later when we read in
1534 full symbols. */
1535
1536 void
1537 set_initial_language (void)
1538 {
1539 const char *filename;
1540 enum language lang = language_unknown;
1541
1542 filename = find_main_filename ();
1543 if (filename != NULL)
1544 lang = deduce_language_from_filename (filename);
1545
1546 if (lang == language_unknown)
1547 {
1548 /* Make C the default language */
1549 lang = language_c;
1550 }
1551
1552 set_language (lang);
1553 expected_language = current_language; /* Don't warn the user. */
1554 }
1555
1556 /* If NAME is a remote name open the file using remote protocol, otherwise
1557 open it normally. */
1558
1559 bfd *
1560 bfd_open_maybe_remote (const char *name)
1561 {
1562 if (remote_filename_p (name))
1563 return remote_bfd_open (name, gnutarget);
1564 else
1565 return bfd_openr (name, gnutarget);
1566 }
1567
1568
1569 /* Open the file specified by NAME and hand it off to BFD for
1570 preliminary analysis. Return a newly initialized bfd *, which
1571 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1572 absolute). In case of trouble, error() is called. */
1573
1574 bfd *
1575 symfile_bfd_open (char *name)
1576 {
1577 bfd *sym_bfd;
1578 int desc;
1579 char *absolute_name;
1580
1581 if (remote_filename_p (name))
1582 {
1583 name = xstrdup (name);
1584 sym_bfd = remote_bfd_open (name, gnutarget);
1585 if (!sym_bfd)
1586 {
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't open to read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 if (!bfd_check_format (sym_bfd, bfd_object))
1593 {
1594 bfd_close (sym_bfd);
1595 make_cleanup (xfree, name);
1596 error (_("`%s': can't read symbols: %s."), name,
1597 bfd_errmsg (bfd_get_error ()));
1598 }
1599
1600 return sym_bfd;
1601 }
1602
1603 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1604
1605 /* Look down path for it, allocate 2nd new malloc'd copy. */
1606 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1607 O_RDONLY | O_BINARY, &absolute_name);
1608 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1609 if (desc < 0)
1610 {
1611 char *exename = alloca (strlen (name) + 5);
1612
1613 strcat (strcpy (exename, name), ".exe");
1614 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1615 O_RDONLY | O_BINARY, &absolute_name);
1616 }
1617 #endif
1618 if (desc < 0)
1619 {
1620 make_cleanup (xfree, name);
1621 perror_with_name (name);
1622 }
1623
1624 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1625 bfd. It'll be freed in free_objfile(). */
1626 xfree (name);
1627 name = absolute_name;
1628
1629 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1630 if (!sym_bfd)
1631 {
1632 close (desc);
1633 make_cleanup (xfree, name);
1634 error (_("`%s': can't open to read symbols: %s."), name,
1635 bfd_errmsg (bfd_get_error ()));
1636 }
1637 bfd_set_cacheable (sym_bfd, 1);
1638
1639 if (!bfd_check_format (sym_bfd, bfd_object))
1640 {
1641 /* FIXME: should be checking for errors from bfd_close (for one
1642 thing, on error it does not free all the storage associated
1643 with the bfd). */
1644 bfd_close (sym_bfd); /* This also closes desc. */
1645 make_cleanup (xfree, name);
1646 error (_("`%s': can't read symbols: %s."), name,
1647 bfd_errmsg (bfd_get_error ()));
1648 }
1649
1650 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1651 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1652
1653 return sym_bfd;
1654 }
1655
1656 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1657 the section was not found. */
1658
1659 int
1660 get_section_index (struct objfile *objfile, char *section_name)
1661 {
1662 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1663
1664 if (sect)
1665 return sect->index;
1666 else
1667 return -1;
1668 }
1669
1670 /* Link SF into the global symtab_fns list. Called on startup by the
1671 _initialize routine in each object file format reader, to register
1672 information about each format the the reader is prepared to
1673 handle. */
1674
1675 void
1676 add_symtab_fns (struct sym_fns *sf)
1677 {
1678 sf->next = symtab_fns;
1679 symtab_fns = sf;
1680 }
1681
1682 /* Initialize OBJFILE to read symbols from its associated BFD. It
1683 either returns or calls error(). The result is an initialized
1684 struct sym_fns in the objfile structure, that contains cached
1685 information about the symbol file. */
1686
1687 static struct sym_fns *
1688 find_sym_fns (bfd *abfd)
1689 {
1690 struct sym_fns *sf;
1691 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1692
1693 if (our_flavour == bfd_target_srec_flavour
1694 || our_flavour == bfd_target_ihex_flavour
1695 || our_flavour == bfd_target_tekhex_flavour)
1696 return NULL; /* No symbols. */
1697
1698 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1699 if (our_flavour == sf->sym_flavour)
1700 return sf;
1701
1702 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1703 bfd_get_target (abfd));
1704 }
1705 \f
1706
1707 /* This function runs the load command of our current target. */
1708
1709 static void
1710 load_command (char *arg, int from_tty)
1711 {
1712 /* The user might be reloading because the binary has changed. Take
1713 this opportunity to check. */
1714 reopen_exec_file ();
1715 reread_symbols ();
1716
1717 if (arg == NULL)
1718 {
1719 char *parg;
1720 int count = 0;
1721
1722 parg = arg = get_exec_file (1);
1723
1724 /* Count how many \ " ' tab space there are in the name. */
1725 while ((parg = strpbrk (parg, "\\\"'\t ")))
1726 {
1727 parg++;
1728 count++;
1729 }
1730
1731 if (count)
1732 {
1733 /* We need to quote this string so buildargv can pull it apart. */
1734 char *temp = xmalloc (strlen (arg) + count + 1 );
1735 char *ptemp = temp;
1736 char *prev;
1737
1738 make_cleanup (xfree, temp);
1739
1740 prev = parg = arg;
1741 while ((parg = strpbrk (parg, "\\\"'\t ")))
1742 {
1743 strncpy (ptemp, prev, parg - prev);
1744 ptemp += parg - prev;
1745 prev = parg++;
1746 *ptemp++ = '\\';
1747 }
1748 strcpy (ptemp, prev);
1749
1750 arg = temp;
1751 }
1752 }
1753
1754 target_load (arg, from_tty);
1755
1756 /* After re-loading the executable, we don't really know which
1757 overlays are mapped any more. */
1758 overlay_cache_invalid = 1;
1759 }
1760
1761 /* This version of "load" should be usable for any target. Currently
1762 it is just used for remote targets, not inftarg.c or core files,
1763 on the theory that only in that case is it useful.
1764
1765 Avoiding xmodem and the like seems like a win (a) because we don't have
1766 to worry about finding it, and (b) On VMS, fork() is very slow and so
1767 we don't want to run a subprocess. On the other hand, I'm not sure how
1768 performance compares. */
1769
1770 static int validate_download = 0;
1771
1772 /* Callback service function for generic_load (bfd_map_over_sections). */
1773
1774 static void
1775 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1776 {
1777 bfd_size_type *sum = data;
1778
1779 *sum += bfd_get_section_size (asec);
1780 }
1781
1782 /* Opaque data for load_section_callback. */
1783 struct load_section_data {
1784 unsigned long load_offset;
1785 struct load_progress_data *progress_data;
1786 VEC(memory_write_request_s) *requests;
1787 };
1788
1789 /* Opaque data for load_progress. */
1790 struct load_progress_data {
1791 /* Cumulative data. */
1792 unsigned long write_count;
1793 unsigned long data_count;
1794 bfd_size_type total_size;
1795 };
1796
1797 /* Opaque data for load_progress for a single section. */
1798 struct load_progress_section_data {
1799 struct load_progress_data *cumulative;
1800
1801 /* Per-section data. */
1802 const char *section_name;
1803 ULONGEST section_sent;
1804 ULONGEST section_size;
1805 CORE_ADDR lma;
1806 gdb_byte *buffer;
1807 };
1808
1809 /* Target write callback routine for progress reporting. */
1810
1811 static void
1812 load_progress (ULONGEST bytes, void *untyped_arg)
1813 {
1814 struct load_progress_section_data *args = untyped_arg;
1815 struct load_progress_data *totals;
1816
1817 if (args == NULL)
1818 /* Writing padding data. No easy way to get at the cumulative
1819 stats, so just ignore this. */
1820 return;
1821
1822 totals = args->cumulative;
1823
1824 if (bytes == 0 && args->section_sent == 0)
1825 {
1826 /* The write is just starting. Let the user know we've started
1827 this section. */
1828 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1829 args->section_name, hex_string (args->section_size),
1830 paddress (target_gdbarch, args->lma));
1831 return;
1832 }
1833
1834 if (validate_download)
1835 {
1836 /* Broken memories and broken monitors manifest themselves here
1837 when bring new computers to life. This doubles already slow
1838 downloads. */
1839 /* NOTE: cagney/1999-10-18: A more efficient implementation
1840 might add a verify_memory() method to the target vector and
1841 then use that. remote.c could implement that method using
1842 the ``qCRC'' packet. */
1843 gdb_byte *check = xmalloc (bytes);
1844 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1845
1846 if (target_read_memory (args->lma, check, bytes) != 0)
1847 error (_("Download verify read failed at %s"),
1848 paddress (target_gdbarch, args->lma));
1849 if (memcmp (args->buffer, check, bytes) != 0)
1850 error (_("Download verify compare failed at %s"),
1851 paddress (target_gdbarch, args->lma));
1852 do_cleanups (verify_cleanups);
1853 }
1854 totals->data_count += bytes;
1855 args->lma += bytes;
1856 args->buffer += bytes;
1857 totals->write_count += 1;
1858 args->section_sent += bytes;
1859 if (quit_flag
1860 || (deprecated_ui_load_progress_hook != NULL
1861 && deprecated_ui_load_progress_hook (args->section_name,
1862 args->section_sent)))
1863 error (_("Canceled the download"));
1864
1865 if (deprecated_show_load_progress != NULL)
1866 deprecated_show_load_progress (args->section_name,
1867 args->section_sent,
1868 args->section_size,
1869 totals->data_count,
1870 totals->total_size);
1871 }
1872
1873 /* Callback service function for generic_load (bfd_map_over_sections). */
1874
1875 static void
1876 load_section_callback (bfd *abfd, asection *asec, void *data)
1877 {
1878 struct memory_write_request *new_request;
1879 struct load_section_data *args = data;
1880 struct load_progress_section_data *section_data;
1881 bfd_size_type size = bfd_get_section_size (asec);
1882 gdb_byte *buffer;
1883 const char *sect_name = bfd_get_section_name (abfd, asec);
1884
1885 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1886 return;
1887
1888 if (size == 0)
1889 return;
1890
1891 new_request = VEC_safe_push (memory_write_request_s,
1892 args->requests, NULL);
1893 memset (new_request, 0, sizeof (struct memory_write_request));
1894 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1895 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1896 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1897 new_request->data = xmalloc (size);
1898 new_request->baton = section_data;
1899
1900 buffer = new_request->data;
1901
1902 section_data->cumulative = args->progress_data;
1903 section_data->section_name = sect_name;
1904 section_data->section_size = size;
1905 section_data->lma = new_request->begin;
1906 section_data->buffer = buffer;
1907
1908 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1909 }
1910
1911 /* Clean up an entire memory request vector, including load
1912 data and progress records. */
1913
1914 static void
1915 clear_memory_write_data (void *arg)
1916 {
1917 VEC(memory_write_request_s) **vec_p = arg;
1918 VEC(memory_write_request_s) *vec = *vec_p;
1919 int i;
1920 struct memory_write_request *mr;
1921
1922 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1923 {
1924 xfree (mr->data);
1925 xfree (mr->baton);
1926 }
1927 VEC_free (memory_write_request_s, vec);
1928 }
1929
1930 void
1931 generic_load (char *args, int from_tty)
1932 {
1933 bfd *loadfile_bfd;
1934 struct timeval start_time, end_time;
1935 char *filename;
1936 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1937 struct load_section_data cbdata;
1938 struct load_progress_data total_progress;
1939
1940 CORE_ADDR entry;
1941 char **argv;
1942
1943 memset (&cbdata, 0, sizeof (cbdata));
1944 memset (&total_progress, 0, sizeof (total_progress));
1945 cbdata.progress_data = &total_progress;
1946
1947 make_cleanup (clear_memory_write_data, &cbdata.requests);
1948
1949 if (args == NULL)
1950 error_no_arg (_("file to load"));
1951
1952 argv = gdb_buildargv (args);
1953 make_cleanup_freeargv (argv);
1954
1955 filename = tilde_expand (argv[0]);
1956 make_cleanup (xfree, filename);
1957
1958 if (argv[1] != NULL)
1959 {
1960 char *endptr;
1961
1962 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1963
1964 /* If the last word was not a valid number then
1965 treat it as a file name with spaces in. */
1966 if (argv[1] == endptr)
1967 error (_("Invalid download offset:%s."), argv[1]);
1968
1969 if (argv[2] != NULL)
1970 error (_("Too many parameters."));
1971 }
1972
1973 /* Open the file for loading. */
1974 loadfile_bfd = bfd_openr (filename, gnutarget);
1975 if (loadfile_bfd == NULL)
1976 {
1977 perror_with_name (filename);
1978 return;
1979 }
1980
1981 /* FIXME: should be checking for errors from bfd_close (for one thing,
1982 on error it does not free all the storage associated with the
1983 bfd). */
1984 make_cleanup_bfd_close (loadfile_bfd);
1985
1986 if (!bfd_check_format (loadfile_bfd, bfd_object))
1987 {
1988 error (_("\"%s\" is not an object file: %s"), filename,
1989 bfd_errmsg (bfd_get_error ()));
1990 }
1991
1992 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1993 (void *) &total_progress.total_size);
1994
1995 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1996
1997 gettimeofday (&start_time, NULL);
1998
1999 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2000 load_progress) != 0)
2001 error (_("Load failed"));
2002
2003 gettimeofday (&end_time, NULL);
2004
2005 entry = bfd_get_start_address (loadfile_bfd);
2006 ui_out_text (uiout, "Start address ");
2007 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2008 ui_out_text (uiout, ", load size ");
2009 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2010 ui_out_text (uiout, "\n");
2011 /* We were doing this in remote-mips.c, I suspect it is right
2012 for other targets too. */
2013 regcache_write_pc (get_current_regcache (), entry);
2014
2015 /* Reset breakpoints, now that we have changed the load image. For
2016 instance, breakpoints may have been set (or reset, by
2017 post_create_inferior) while connected to the target but before we
2018 loaded the program. In that case, the prologue analyzer could
2019 have read instructions from the target to find the right
2020 breakpoint locations. Loading has changed the contents of that
2021 memory. */
2022
2023 breakpoint_re_set ();
2024
2025 /* FIXME: are we supposed to call symbol_file_add or not? According
2026 to a comment from remote-mips.c (where a call to symbol_file_add
2027 was commented out), making the call confuses GDB if more than one
2028 file is loaded in. Some targets do (e.g., remote-vx.c) but
2029 others don't (or didn't - perhaps they have all been deleted). */
2030
2031 print_transfer_performance (gdb_stdout, total_progress.data_count,
2032 total_progress.write_count,
2033 &start_time, &end_time);
2034
2035 do_cleanups (old_cleanups);
2036 }
2037
2038 /* Report how fast the transfer went. */
2039
2040 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2041 replaced by print_transfer_performance (with a very different
2042 function signature). */
2043
2044 void
2045 report_transfer_performance (unsigned long data_count, time_t start_time,
2046 time_t end_time)
2047 {
2048 struct timeval start, end;
2049
2050 start.tv_sec = start_time;
2051 start.tv_usec = 0;
2052 end.tv_sec = end_time;
2053 end.tv_usec = 0;
2054
2055 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2056 }
2057
2058 void
2059 print_transfer_performance (struct ui_file *stream,
2060 unsigned long data_count,
2061 unsigned long write_count,
2062 const struct timeval *start_time,
2063 const struct timeval *end_time)
2064 {
2065 ULONGEST time_count;
2066
2067 /* Compute the elapsed time in milliseconds, as a tradeoff between
2068 accuracy and overflow. */
2069 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2070 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2071
2072 ui_out_text (uiout, "Transfer rate: ");
2073 if (time_count > 0)
2074 {
2075 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2076
2077 if (ui_out_is_mi_like_p (uiout))
2078 {
2079 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2080 ui_out_text (uiout, " bits/sec");
2081 }
2082 else if (rate < 1024)
2083 {
2084 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2085 ui_out_text (uiout, " bytes/sec");
2086 }
2087 else
2088 {
2089 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2090 ui_out_text (uiout, " KB/sec");
2091 }
2092 }
2093 else
2094 {
2095 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2096 ui_out_text (uiout, " bits in <1 sec");
2097 }
2098 if (write_count > 0)
2099 {
2100 ui_out_text (uiout, ", ");
2101 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2102 ui_out_text (uiout, " bytes/write");
2103 }
2104 ui_out_text (uiout, ".\n");
2105 }
2106
2107 /* This function allows the addition of incrementally linked object files.
2108 It does not modify any state in the target, only in the debugger. */
2109 /* Note: ezannoni 2000-04-13 This function/command used to have a
2110 special case syntax for the rombug target (Rombug is the boot
2111 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2112 rombug case, the user doesn't need to supply a text address,
2113 instead a call to target_link() (in target.c) would supply the
2114 value to use. We are now discontinuing this type of ad hoc syntax. */
2115
2116 static void
2117 add_symbol_file_command (char *args, int from_tty)
2118 {
2119 struct gdbarch *gdbarch = get_current_arch ();
2120 char *filename = NULL;
2121 int flags = OBJF_USERLOADED;
2122 char *arg;
2123 int section_index = 0;
2124 int argcnt = 0;
2125 int sec_num = 0;
2126 int i;
2127 int expecting_sec_name = 0;
2128 int expecting_sec_addr = 0;
2129 char **argv;
2130
2131 struct sect_opt
2132 {
2133 char *name;
2134 char *value;
2135 };
2136
2137 struct section_addr_info *section_addrs;
2138 struct sect_opt *sect_opts = NULL;
2139 size_t num_sect_opts = 0;
2140 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2141
2142 num_sect_opts = 16;
2143 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2144 * sizeof (struct sect_opt));
2145
2146 dont_repeat ();
2147
2148 if (args == NULL)
2149 error (_("add-symbol-file takes a file name and an address"));
2150
2151 argv = gdb_buildargv (args);
2152 make_cleanup_freeargv (argv);
2153
2154 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2155 {
2156 /* Process the argument. */
2157 if (argcnt == 0)
2158 {
2159 /* The first argument is the file name. */
2160 filename = tilde_expand (arg);
2161 make_cleanup (xfree, filename);
2162 }
2163 else
2164 if (argcnt == 1)
2165 {
2166 /* The second argument is always the text address at which
2167 to load the program. */
2168 sect_opts[section_index].name = ".text";
2169 sect_opts[section_index].value = arg;
2170 if (++section_index >= num_sect_opts)
2171 {
2172 num_sect_opts *= 2;
2173 sect_opts = ((struct sect_opt *)
2174 xrealloc (sect_opts,
2175 num_sect_opts
2176 * sizeof (struct sect_opt)));
2177 }
2178 }
2179 else
2180 {
2181 /* It's an option (starting with '-') or it's an argument
2182 to an option */
2183
2184 if (*arg == '-')
2185 {
2186 if (strcmp (arg, "-readnow") == 0)
2187 flags |= OBJF_READNOW;
2188 else if (strcmp (arg, "-s") == 0)
2189 {
2190 expecting_sec_name = 1;
2191 expecting_sec_addr = 1;
2192 }
2193 }
2194 else
2195 {
2196 if (expecting_sec_name)
2197 {
2198 sect_opts[section_index].name = arg;
2199 expecting_sec_name = 0;
2200 }
2201 else
2202 if (expecting_sec_addr)
2203 {
2204 sect_opts[section_index].value = arg;
2205 expecting_sec_addr = 0;
2206 if (++section_index >= num_sect_opts)
2207 {
2208 num_sect_opts *= 2;
2209 sect_opts = ((struct sect_opt *)
2210 xrealloc (sect_opts,
2211 num_sect_opts
2212 * sizeof (struct sect_opt)));
2213 }
2214 }
2215 else
2216 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2217 }
2218 }
2219 }
2220
2221 /* This command takes at least two arguments. The first one is a
2222 filename, and the second is the address where this file has been
2223 loaded. Abort now if this address hasn't been provided by the
2224 user. */
2225 if (section_index < 1)
2226 error (_("The address where %s has been loaded is missing"), filename);
2227
2228 /* Print the prompt for the query below. And save the arguments into
2229 a sect_addr_info structure to be passed around to other
2230 functions. We have to split this up into separate print
2231 statements because hex_string returns a local static
2232 string. */
2233
2234 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2235 section_addrs = alloc_section_addr_info (section_index);
2236 make_cleanup (xfree, section_addrs);
2237 for (i = 0; i < section_index; i++)
2238 {
2239 CORE_ADDR addr;
2240 char *val = sect_opts[i].value;
2241 char *sec = sect_opts[i].name;
2242
2243 addr = parse_and_eval_address (val);
2244
2245 /* Here we store the section offsets in the order they were
2246 entered on the command line. */
2247 section_addrs->other[sec_num].name = sec;
2248 section_addrs->other[sec_num].addr = addr;
2249 printf_unfiltered ("\t%s_addr = %s\n", sec,
2250 paddress (gdbarch, addr));
2251 sec_num++;
2252
2253 /* The object's sections are initialized when a
2254 call is made to build_objfile_section_table (objfile).
2255 This happens in reread_symbols.
2256 At this point, we don't know what file type this is,
2257 so we can't determine what section names are valid. */
2258 }
2259
2260 if (from_tty && (!query ("%s", "")))
2261 error (_("Not confirmed."));
2262
2263 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2264 section_addrs, flags);
2265
2266 /* Getting new symbols may change our opinion about what is
2267 frameless. */
2268 reinit_frame_cache ();
2269 do_cleanups (my_cleanups);
2270 }
2271 \f
2272
2273 /* Re-read symbols if a symbol-file has changed. */
2274 void
2275 reread_symbols (void)
2276 {
2277 struct objfile *objfile;
2278 long new_modtime;
2279 int reread_one = 0;
2280 struct stat new_statbuf;
2281 int res;
2282
2283 /* With the addition of shared libraries, this should be modified,
2284 the load time should be saved in the partial symbol tables, since
2285 different tables may come from different source files. FIXME.
2286 This routine should then walk down each partial symbol table
2287 and see if the symbol table that it originates from has been changed */
2288
2289 for (objfile = object_files; objfile; objfile = objfile->next)
2290 {
2291 /* solib-sunos.c creates one objfile with obfd. */
2292 if (objfile->obfd == NULL)
2293 continue;
2294
2295 /* Separate debug objfiles are handled in the main objfile. */
2296 if (objfile->separate_debug_objfile_backlink)
2297 continue;
2298
2299 /* If this object is from an archive (what you usually create with
2300 `ar', often called a `static library' on most systems, though
2301 a `shared library' on AIX is also an archive), then you should
2302 stat on the archive name, not member name. */
2303 if (objfile->obfd->my_archive)
2304 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2305 else
2306 res = stat (objfile->name, &new_statbuf);
2307 if (res != 0)
2308 {
2309 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2310 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2311 objfile->name);
2312 continue;
2313 }
2314 new_modtime = new_statbuf.st_mtime;
2315 if (new_modtime != objfile->mtime)
2316 {
2317 struct cleanup *old_cleanups;
2318 struct section_offsets *offsets;
2319 int num_offsets;
2320 char *obfd_filename;
2321
2322 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2323 objfile->name);
2324
2325 /* There are various functions like symbol_file_add,
2326 symfile_bfd_open, syms_from_objfile, etc., which might
2327 appear to do what we want. But they have various other
2328 effects which we *don't* want. So we just do stuff
2329 ourselves. We don't worry about mapped files (for one thing,
2330 any mapped file will be out of date). */
2331
2332 /* If we get an error, blow away this objfile (not sure if
2333 that is the correct response for things like shared
2334 libraries). */
2335 old_cleanups = make_cleanup_free_objfile (objfile);
2336 /* We need to do this whenever any symbols go away. */
2337 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2338
2339 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2340 bfd_get_filename (exec_bfd)) == 0)
2341 {
2342 /* Reload EXEC_BFD without asking anything. */
2343
2344 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2345 }
2346
2347 /* Clean up any state BFD has sitting around. We don't need
2348 to close the descriptor but BFD lacks a way of closing the
2349 BFD without closing the descriptor. */
2350 obfd_filename = bfd_get_filename (objfile->obfd);
2351 if (!bfd_close (objfile->obfd))
2352 error (_("Can't close BFD for %s: %s"), objfile->name,
2353 bfd_errmsg (bfd_get_error ()));
2354 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2355 if (objfile->obfd == NULL)
2356 error (_("Can't open %s to read symbols."), objfile->name);
2357 else
2358 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2359 /* bfd_openr sets cacheable to true, which is what we want. */
2360 if (!bfd_check_format (objfile->obfd, bfd_object))
2361 error (_("Can't read symbols from %s: %s."), objfile->name,
2362 bfd_errmsg (bfd_get_error ()));
2363
2364 /* Save the offsets, we will nuke them with the rest of the
2365 objfile_obstack. */
2366 num_offsets = objfile->num_sections;
2367 offsets = ((struct section_offsets *)
2368 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2369 memcpy (offsets, objfile->section_offsets,
2370 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2371
2372 /* Remove any references to this objfile in the global
2373 value lists. */
2374 preserve_values (objfile);
2375
2376 /* Nuke all the state that we will re-read. Much of the following
2377 code which sets things to NULL really is necessary to tell
2378 other parts of GDB that there is nothing currently there.
2379
2380 Try to keep the freeing order compatible with free_objfile. */
2381
2382 if (objfile->sf != NULL)
2383 {
2384 (*objfile->sf->sym_finish) (objfile);
2385 }
2386
2387 clear_objfile_data (objfile);
2388
2389 /* Free the separate debug objfiles. It will be
2390 automatically recreated by sym_read. */
2391 free_objfile_separate_debug (objfile);
2392
2393 /* FIXME: Do we have to free a whole linked list, or is this
2394 enough? */
2395 if (objfile->global_psymbols.list)
2396 xfree (objfile->global_psymbols.list);
2397 memset (&objfile->global_psymbols, 0,
2398 sizeof (objfile->global_psymbols));
2399 if (objfile->static_psymbols.list)
2400 xfree (objfile->static_psymbols.list);
2401 memset (&objfile->static_psymbols, 0,
2402 sizeof (objfile->static_psymbols));
2403
2404 /* Free the obstacks for non-reusable objfiles */
2405 bcache_xfree (objfile->psymbol_cache);
2406 objfile->psymbol_cache = bcache_xmalloc ();
2407 bcache_xfree (objfile->macro_cache);
2408 objfile->macro_cache = bcache_xmalloc ();
2409 bcache_xfree (objfile->filename_cache);
2410 objfile->filename_cache = bcache_xmalloc ();
2411 if (objfile->demangled_names_hash != NULL)
2412 {
2413 htab_delete (objfile->demangled_names_hash);
2414 objfile->demangled_names_hash = NULL;
2415 }
2416 obstack_free (&objfile->objfile_obstack, 0);
2417 objfile->sections = NULL;
2418 objfile->symtabs = NULL;
2419 objfile->psymtabs = NULL;
2420 objfile->psymtabs_addrmap = NULL;
2421 objfile->free_psymtabs = NULL;
2422 objfile->cp_namespace_symtab = NULL;
2423 objfile->msymbols = NULL;
2424 objfile->deprecated_sym_private = NULL;
2425 objfile->minimal_symbol_count = 0;
2426 memset (&objfile->msymbol_hash, 0,
2427 sizeof (objfile->msymbol_hash));
2428 memset (&objfile->msymbol_demangled_hash, 0,
2429 sizeof (objfile->msymbol_demangled_hash));
2430
2431 objfile->psymbol_cache = bcache_xmalloc ();
2432 objfile->macro_cache = bcache_xmalloc ();
2433 objfile->filename_cache = bcache_xmalloc ();
2434 /* obstack_init also initializes the obstack so it is
2435 empty. We could use obstack_specify_allocation but
2436 gdb_obstack.h specifies the alloc/dealloc
2437 functions. */
2438 obstack_init (&objfile->objfile_obstack);
2439 if (build_objfile_section_table (objfile))
2440 {
2441 error (_("Can't find the file sections in `%s': %s"),
2442 objfile->name, bfd_errmsg (bfd_get_error ()));
2443 }
2444 terminate_minimal_symbol_table (objfile);
2445
2446 /* We use the same section offsets as from last time. I'm not
2447 sure whether that is always correct for shared libraries. */
2448 objfile->section_offsets = (struct section_offsets *)
2449 obstack_alloc (&objfile->objfile_obstack,
2450 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2451 memcpy (objfile->section_offsets, offsets,
2452 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2453 objfile->num_sections = num_offsets;
2454
2455 /* What the hell is sym_new_init for, anyway? The concept of
2456 distinguishing between the main file and additional files
2457 in this way seems rather dubious. */
2458 if (objfile == symfile_objfile)
2459 {
2460 (*objfile->sf->sym_new_init) (objfile);
2461 }
2462
2463 (*objfile->sf->sym_init) (objfile);
2464 clear_complaints (&symfile_complaints, 1, 1);
2465 /* Do not set flags as this is safe and we don't want to be
2466 verbose. */
2467 (*objfile->sf->sym_read) (objfile, 0);
2468 if (!objfile_has_symbols (objfile))
2469 {
2470 wrap_here ("");
2471 printf_unfiltered (_("(no debugging symbols found)\n"));
2472 wrap_here ("");
2473 }
2474
2475 /* We're done reading the symbol file; finish off complaints. */
2476 clear_complaints (&symfile_complaints, 0, 1);
2477
2478 /* Getting new symbols may change our opinion about what is
2479 frameless. */
2480
2481 reinit_frame_cache ();
2482
2483 /* Discard cleanups as symbol reading was successful. */
2484 discard_cleanups (old_cleanups);
2485
2486 /* If the mtime has changed between the time we set new_modtime
2487 and now, we *want* this to be out of date, so don't call stat
2488 again now. */
2489 objfile->mtime = new_modtime;
2490 reread_one = 1;
2491 init_entry_point_info (objfile);
2492 }
2493 }
2494
2495 if (reread_one)
2496 {
2497 /* Notify objfiles that we've modified objfile sections. */
2498 objfiles_changed ();
2499
2500 clear_symtab_users ();
2501 /* At least one objfile has changed, so we can consider that
2502 the executable we're debugging has changed too. */
2503 observer_notify_executable_changed ();
2504 }
2505 }
2506 \f
2507
2508
2509 typedef struct
2510 {
2511 char *ext;
2512 enum language lang;
2513 }
2514 filename_language;
2515
2516 static filename_language *filename_language_table;
2517 static int fl_table_size, fl_table_next;
2518
2519 static void
2520 add_filename_language (char *ext, enum language lang)
2521 {
2522 if (fl_table_next >= fl_table_size)
2523 {
2524 fl_table_size += 10;
2525 filename_language_table =
2526 xrealloc (filename_language_table,
2527 fl_table_size * sizeof (*filename_language_table));
2528 }
2529
2530 filename_language_table[fl_table_next].ext = xstrdup (ext);
2531 filename_language_table[fl_table_next].lang = lang;
2532 fl_table_next++;
2533 }
2534
2535 static char *ext_args;
2536 static void
2537 show_ext_args (struct ui_file *file, int from_tty,
2538 struct cmd_list_element *c, const char *value)
2539 {
2540 fprintf_filtered (file, _("\
2541 Mapping between filename extension and source language is \"%s\".\n"),
2542 value);
2543 }
2544
2545 static void
2546 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2547 {
2548 int i;
2549 char *cp = ext_args;
2550 enum language lang;
2551
2552 /* First arg is filename extension, starting with '.' */
2553 if (*cp != '.')
2554 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2555
2556 /* Find end of first arg. */
2557 while (*cp && !isspace (*cp))
2558 cp++;
2559
2560 if (*cp == '\0')
2561 error (_("'%s': two arguments required -- filename extension and language"),
2562 ext_args);
2563
2564 /* Null-terminate first arg */
2565 *cp++ = '\0';
2566
2567 /* Find beginning of second arg, which should be a source language. */
2568 while (*cp && isspace (*cp))
2569 cp++;
2570
2571 if (*cp == '\0')
2572 error (_("'%s': two arguments required -- filename extension and language"),
2573 ext_args);
2574
2575 /* Lookup the language from among those we know. */
2576 lang = language_enum (cp);
2577
2578 /* Now lookup the filename extension: do we already know it? */
2579 for (i = 0; i < fl_table_next; i++)
2580 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2581 break;
2582
2583 if (i >= fl_table_next)
2584 {
2585 /* new file extension */
2586 add_filename_language (ext_args, lang);
2587 }
2588 else
2589 {
2590 /* redefining a previously known filename extension */
2591
2592 /* if (from_tty) */
2593 /* query ("Really make files of type %s '%s'?", */
2594 /* ext_args, language_str (lang)); */
2595
2596 xfree (filename_language_table[i].ext);
2597 filename_language_table[i].ext = xstrdup (ext_args);
2598 filename_language_table[i].lang = lang;
2599 }
2600 }
2601
2602 static void
2603 info_ext_lang_command (char *args, int from_tty)
2604 {
2605 int i;
2606
2607 printf_filtered (_("Filename extensions and the languages they represent:"));
2608 printf_filtered ("\n\n");
2609 for (i = 0; i < fl_table_next; i++)
2610 printf_filtered ("\t%s\t- %s\n",
2611 filename_language_table[i].ext,
2612 language_str (filename_language_table[i].lang));
2613 }
2614
2615 static void
2616 init_filename_language_table (void)
2617 {
2618 if (fl_table_size == 0) /* protect against repetition */
2619 {
2620 fl_table_size = 20;
2621 fl_table_next = 0;
2622 filename_language_table =
2623 xmalloc (fl_table_size * sizeof (*filename_language_table));
2624 add_filename_language (".c", language_c);
2625 add_filename_language (".d", language_d);
2626 add_filename_language (".C", language_cplus);
2627 add_filename_language (".cc", language_cplus);
2628 add_filename_language (".cp", language_cplus);
2629 add_filename_language (".cpp", language_cplus);
2630 add_filename_language (".cxx", language_cplus);
2631 add_filename_language (".c++", language_cplus);
2632 add_filename_language (".java", language_java);
2633 add_filename_language (".class", language_java);
2634 add_filename_language (".m", language_objc);
2635 add_filename_language (".f", language_fortran);
2636 add_filename_language (".F", language_fortran);
2637 add_filename_language (".for", language_fortran);
2638 add_filename_language (".FOR", language_fortran);
2639 add_filename_language (".ftn", language_fortran);
2640 add_filename_language (".FTN", language_fortran);
2641 add_filename_language (".fpp", language_fortran);
2642 add_filename_language (".FPP", language_fortran);
2643 add_filename_language (".f90", language_fortran);
2644 add_filename_language (".F90", language_fortran);
2645 add_filename_language (".f95", language_fortran);
2646 add_filename_language (".F95", language_fortran);
2647 add_filename_language (".f03", language_fortran);
2648 add_filename_language (".F03", language_fortran);
2649 add_filename_language (".f08", language_fortran);
2650 add_filename_language (".F08", language_fortran);
2651 add_filename_language (".s", language_asm);
2652 add_filename_language (".sx", language_asm);
2653 add_filename_language (".S", language_asm);
2654 add_filename_language (".pas", language_pascal);
2655 add_filename_language (".p", language_pascal);
2656 add_filename_language (".pp", language_pascal);
2657 add_filename_language (".adb", language_ada);
2658 add_filename_language (".ads", language_ada);
2659 add_filename_language (".a", language_ada);
2660 add_filename_language (".ada", language_ada);
2661 add_filename_language (".dg", language_ada);
2662 }
2663 }
2664
2665 enum language
2666 deduce_language_from_filename (const char *filename)
2667 {
2668 int i;
2669 char *cp;
2670
2671 if (filename != NULL)
2672 if ((cp = strrchr (filename, '.')) != NULL)
2673 for (i = 0; i < fl_table_next; i++)
2674 if (strcmp (cp, filename_language_table[i].ext) == 0)
2675 return filename_language_table[i].lang;
2676
2677 return language_unknown;
2678 }
2679 \f
2680 /* allocate_symtab:
2681
2682 Allocate and partly initialize a new symbol table. Return a pointer
2683 to it. error() if no space.
2684
2685 Caller must set these fields:
2686 LINETABLE(symtab)
2687 symtab->blockvector
2688 symtab->dirname
2689 symtab->free_code
2690 symtab->free_ptr
2691 */
2692
2693 struct symtab *
2694 allocate_symtab (char *filename, struct objfile *objfile)
2695 {
2696 struct symtab *symtab;
2697
2698 symtab = (struct symtab *)
2699 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2700 memset (symtab, 0, sizeof (*symtab));
2701 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2702 objfile->filename_cache);
2703 symtab->fullname = NULL;
2704 symtab->language = deduce_language_from_filename (filename);
2705 symtab->debugformat = "unknown";
2706
2707 /* Hook it to the objfile it comes from */
2708
2709 symtab->objfile = objfile;
2710 symtab->next = objfile->symtabs;
2711 objfile->symtabs = symtab;
2712
2713 return (symtab);
2714 }
2715 \f
2716
2717 /* Reset all data structures in gdb which may contain references to symbol
2718 table data. */
2719
2720 void
2721 clear_symtab_users (void)
2722 {
2723 /* Someday, we should do better than this, by only blowing away
2724 the things that really need to be blown. */
2725
2726 /* Clear the "current" symtab first, because it is no longer valid.
2727 breakpoint_re_set may try to access the current symtab. */
2728 clear_current_source_symtab_and_line ();
2729
2730 clear_displays ();
2731 breakpoint_re_set ();
2732 set_default_breakpoint (0, NULL, 0, 0, 0);
2733 clear_pc_function_cache ();
2734 observer_notify_new_objfile (NULL);
2735
2736 /* Clear globals which might have pointed into a removed objfile.
2737 FIXME: It's not clear which of these are supposed to persist
2738 between expressions and which ought to be reset each time. */
2739 expression_context_block = NULL;
2740 innermost_block = NULL;
2741
2742 /* Varobj may refer to old symbols, perform a cleanup. */
2743 varobj_invalidate ();
2744
2745 }
2746
2747 static void
2748 clear_symtab_users_cleanup (void *ignore)
2749 {
2750 clear_symtab_users ();
2751 }
2752 \f
2753 /* OVERLAYS:
2754 The following code implements an abstraction for debugging overlay sections.
2755
2756 The target model is as follows:
2757 1) The gnu linker will permit multiple sections to be mapped into the
2758 same VMA, each with its own unique LMA (or load address).
2759 2) It is assumed that some runtime mechanism exists for mapping the
2760 sections, one by one, from the load address into the VMA address.
2761 3) This code provides a mechanism for gdb to keep track of which
2762 sections should be considered to be mapped from the VMA to the LMA.
2763 This information is used for symbol lookup, and memory read/write.
2764 For instance, if a section has been mapped then its contents
2765 should be read from the VMA, otherwise from the LMA.
2766
2767 Two levels of debugger support for overlays are available. One is
2768 "manual", in which the debugger relies on the user to tell it which
2769 overlays are currently mapped. This level of support is
2770 implemented entirely in the core debugger, and the information about
2771 whether a section is mapped is kept in the objfile->obj_section table.
2772
2773 The second level of support is "automatic", and is only available if
2774 the target-specific code provides functionality to read the target's
2775 overlay mapping table, and translate its contents for the debugger
2776 (by updating the mapped state information in the obj_section tables).
2777
2778 The interface is as follows:
2779 User commands:
2780 overlay map <name> -- tell gdb to consider this section mapped
2781 overlay unmap <name> -- tell gdb to consider this section unmapped
2782 overlay list -- list the sections that GDB thinks are mapped
2783 overlay read-target -- get the target's state of what's mapped
2784 overlay off/manual/auto -- set overlay debugging state
2785 Functional interface:
2786 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2787 section, return that section.
2788 find_pc_overlay(pc): find any overlay section that contains
2789 the pc, either in its VMA or its LMA
2790 section_is_mapped(sect): true if overlay is marked as mapped
2791 section_is_overlay(sect): true if section's VMA != LMA
2792 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2793 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2794 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2795 overlay_mapped_address(...): map an address from section's LMA to VMA
2796 overlay_unmapped_address(...): map an address from section's VMA to LMA
2797 symbol_overlayed_address(...): Return a "current" address for symbol:
2798 either in VMA or LMA depending on whether
2799 the symbol's section is currently mapped
2800 */
2801
2802 /* Overlay debugging state: */
2803
2804 enum overlay_debugging_state overlay_debugging = ovly_off;
2805 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2806
2807 /* Function: section_is_overlay (SECTION)
2808 Returns true if SECTION has VMA not equal to LMA, ie.
2809 SECTION is loaded at an address different from where it will "run". */
2810
2811 int
2812 section_is_overlay (struct obj_section *section)
2813 {
2814 if (overlay_debugging && section)
2815 {
2816 bfd *abfd = section->objfile->obfd;
2817 asection *bfd_section = section->the_bfd_section;
2818
2819 if (bfd_section_lma (abfd, bfd_section) != 0
2820 && bfd_section_lma (abfd, bfd_section)
2821 != bfd_section_vma (abfd, bfd_section))
2822 return 1;
2823 }
2824
2825 return 0;
2826 }
2827
2828 /* Function: overlay_invalidate_all (void)
2829 Invalidate the mapped state of all overlay sections (mark it as stale). */
2830
2831 static void
2832 overlay_invalidate_all (void)
2833 {
2834 struct objfile *objfile;
2835 struct obj_section *sect;
2836
2837 ALL_OBJSECTIONS (objfile, sect)
2838 if (section_is_overlay (sect))
2839 sect->ovly_mapped = -1;
2840 }
2841
2842 /* Function: section_is_mapped (SECTION)
2843 Returns true if section is an overlay, and is currently mapped.
2844
2845 Access to the ovly_mapped flag is restricted to this function, so
2846 that we can do automatic update. If the global flag
2847 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2848 overlay_invalidate_all. If the mapped state of the particular
2849 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2850
2851 int
2852 section_is_mapped (struct obj_section *osect)
2853 {
2854 struct gdbarch *gdbarch;
2855
2856 if (osect == 0 || !section_is_overlay (osect))
2857 return 0;
2858
2859 switch (overlay_debugging)
2860 {
2861 default:
2862 case ovly_off:
2863 return 0; /* overlay debugging off */
2864 case ovly_auto: /* overlay debugging automatic */
2865 /* Unles there is a gdbarch_overlay_update function,
2866 there's really nothing useful to do here (can't really go auto) */
2867 gdbarch = get_objfile_arch (osect->objfile);
2868 if (gdbarch_overlay_update_p (gdbarch))
2869 {
2870 if (overlay_cache_invalid)
2871 {
2872 overlay_invalidate_all ();
2873 overlay_cache_invalid = 0;
2874 }
2875 if (osect->ovly_mapped == -1)
2876 gdbarch_overlay_update (gdbarch, osect);
2877 }
2878 /* fall thru to manual case */
2879 case ovly_on: /* overlay debugging manual */
2880 return osect->ovly_mapped == 1;
2881 }
2882 }
2883
2884 /* Function: pc_in_unmapped_range
2885 If PC falls into the lma range of SECTION, return true, else false. */
2886
2887 CORE_ADDR
2888 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2889 {
2890 if (section_is_overlay (section))
2891 {
2892 bfd *abfd = section->objfile->obfd;
2893 asection *bfd_section = section->the_bfd_section;
2894
2895 /* We assume the LMA is relocated by the same offset as the VMA. */
2896 bfd_vma size = bfd_get_section_size (bfd_section);
2897 CORE_ADDR offset = obj_section_offset (section);
2898
2899 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2900 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2901 return 1;
2902 }
2903
2904 return 0;
2905 }
2906
2907 /* Function: pc_in_mapped_range
2908 If PC falls into the vma range of SECTION, return true, else false. */
2909
2910 CORE_ADDR
2911 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2912 {
2913 if (section_is_overlay (section))
2914 {
2915 if (obj_section_addr (section) <= pc
2916 && pc < obj_section_endaddr (section))
2917 return 1;
2918 }
2919
2920 return 0;
2921 }
2922
2923
2924 /* Return true if the mapped ranges of sections A and B overlap, false
2925 otherwise. */
2926 static int
2927 sections_overlap (struct obj_section *a, struct obj_section *b)
2928 {
2929 CORE_ADDR a_start = obj_section_addr (a);
2930 CORE_ADDR a_end = obj_section_endaddr (a);
2931 CORE_ADDR b_start = obj_section_addr (b);
2932 CORE_ADDR b_end = obj_section_endaddr (b);
2933
2934 return (a_start < b_end && b_start < a_end);
2935 }
2936
2937 /* Function: overlay_unmapped_address (PC, SECTION)
2938 Returns the address corresponding to PC in the unmapped (load) range.
2939 May be the same as PC. */
2940
2941 CORE_ADDR
2942 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2943 {
2944 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2945 {
2946 bfd *abfd = section->objfile->obfd;
2947 asection *bfd_section = section->the_bfd_section;
2948
2949 return pc + bfd_section_lma (abfd, bfd_section)
2950 - bfd_section_vma (abfd, bfd_section);
2951 }
2952
2953 return pc;
2954 }
2955
2956 /* Function: overlay_mapped_address (PC, SECTION)
2957 Returns the address corresponding to PC in the mapped (runtime) range.
2958 May be the same as PC. */
2959
2960 CORE_ADDR
2961 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2962 {
2963 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2964 {
2965 bfd *abfd = section->objfile->obfd;
2966 asection *bfd_section = section->the_bfd_section;
2967
2968 return pc + bfd_section_vma (abfd, bfd_section)
2969 - bfd_section_lma (abfd, bfd_section);
2970 }
2971
2972 return pc;
2973 }
2974
2975
2976 /* Function: symbol_overlayed_address
2977 Return one of two addresses (relative to the VMA or to the LMA),
2978 depending on whether the section is mapped or not. */
2979
2980 CORE_ADDR
2981 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2982 {
2983 if (overlay_debugging)
2984 {
2985 /* If the symbol has no section, just return its regular address. */
2986 if (section == 0)
2987 return address;
2988 /* If the symbol's section is not an overlay, just return its address */
2989 if (!section_is_overlay (section))
2990 return address;
2991 /* If the symbol's section is mapped, just return its address */
2992 if (section_is_mapped (section))
2993 return address;
2994 /*
2995 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2996 * then return its LOADED address rather than its vma address!!
2997 */
2998 return overlay_unmapped_address (address, section);
2999 }
3000 return address;
3001 }
3002
3003 /* Function: find_pc_overlay (PC)
3004 Return the best-match overlay section for PC:
3005 If PC matches a mapped overlay section's VMA, return that section.
3006 Else if PC matches an unmapped section's VMA, return that section.
3007 Else if PC matches an unmapped section's LMA, return that section. */
3008
3009 struct obj_section *
3010 find_pc_overlay (CORE_ADDR pc)
3011 {
3012 struct objfile *objfile;
3013 struct obj_section *osect, *best_match = NULL;
3014
3015 if (overlay_debugging)
3016 ALL_OBJSECTIONS (objfile, osect)
3017 if (section_is_overlay (osect))
3018 {
3019 if (pc_in_mapped_range (pc, osect))
3020 {
3021 if (section_is_mapped (osect))
3022 return osect;
3023 else
3024 best_match = osect;
3025 }
3026 else if (pc_in_unmapped_range (pc, osect))
3027 best_match = osect;
3028 }
3029 return best_match;
3030 }
3031
3032 /* Function: find_pc_mapped_section (PC)
3033 If PC falls into the VMA address range of an overlay section that is
3034 currently marked as MAPPED, return that section. Else return NULL. */
3035
3036 struct obj_section *
3037 find_pc_mapped_section (CORE_ADDR pc)
3038 {
3039 struct objfile *objfile;
3040 struct obj_section *osect;
3041
3042 if (overlay_debugging)
3043 ALL_OBJSECTIONS (objfile, osect)
3044 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3045 return osect;
3046
3047 return NULL;
3048 }
3049
3050 /* Function: list_overlays_command
3051 Print a list of mapped sections and their PC ranges */
3052
3053 void
3054 list_overlays_command (char *args, int from_tty)
3055 {
3056 int nmapped = 0;
3057 struct objfile *objfile;
3058 struct obj_section *osect;
3059
3060 if (overlay_debugging)
3061 ALL_OBJSECTIONS (objfile, osect)
3062 if (section_is_mapped (osect))
3063 {
3064 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3065 const char *name;
3066 bfd_vma lma, vma;
3067 int size;
3068
3069 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3070 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3071 size = bfd_get_section_size (osect->the_bfd_section);
3072 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3073
3074 printf_filtered ("Section %s, loaded at ", name);
3075 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3076 puts_filtered (" - ");
3077 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3078 printf_filtered (", mapped at ");
3079 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3080 puts_filtered (" - ");
3081 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3082 puts_filtered ("\n");
3083
3084 nmapped++;
3085 }
3086 if (nmapped == 0)
3087 printf_filtered (_("No sections are mapped.\n"));
3088 }
3089
3090 /* Function: map_overlay_command
3091 Mark the named section as mapped (ie. residing at its VMA address). */
3092
3093 void
3094 map_overlay_command (char *args, int from_tty)
3095 {
3096 struct objfile *objfile, *objfile2;
3097 struct obj_section *sec, *sec2;
3098
3099 if (!overlay_debugging)
3100 error (_("\
3101 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3102 the 'overlay manual' command."));
3103
3104 if (args == 0 || *args == 0)
3105 error (_("Argument required: name of an overlay section"));
3106
3107 /* First, find a section matching the user supplied argument */
3108 ALL_OBJSECTIONS (objfile, sec)
3109 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3110 {
3111 /* Now, check to see if the section is an overlay. */
3112 if (!section_is_overlay (sec))
3113 continue; /* not an overlay section */
3114
3115 /* Mark the overlay as "mapped" */
3116 sec->ovly_mapped = 1;
3117
3118 /* Next, make a pass and unmap any sections that are
3119 overlapped by this new section: */
3120 ALL_OBJSECTIONS (objfile2, sec2)
3121 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3122 {
3123 if (info_verbose)
3124 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3125 bfd_section_name (objfile->obfd,
3126 sec2->the_bfd_section));
3127 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3128 }
3129 return;
3130 }
3131 error (_("No overlay section called %s"), args);
3132 }
3133
3134 /* Function: unmap_overlay_command
3135 Mark the overlay section as unmapped
3136 (ie. resident in its LMA address range, rather than the VMA range). */
3137
3138 void
3139 unmap_overlay_command (char *args, int from_tty)
3140 {
3141 struct objfile *objfile;
3142 struct obj_section *sec;
3143
3144 if (!overlay_debugging)
3145 error (_("\
3146 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3147 the 'overlay manual' command."));
3148
3149 if (args == 0 || *args == 0)
3150 error (_("Argument required: name of an overlay section"));
3151
3152 /* First, find a section matching the user supplied argument */
3153 ALL_OBJSECTIONS (objfile, sec)
3154 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3155 {
3156 if (!sec->ovly_mapped)
3157 error (_("Section %s is not mapped"), args);
3158 sec->ovly_mapped = 0;
3159 return;
3160 }
3161 error (_("No overlay section called %s"), args);
3162 }
3163
3164 /* Function: overlay_auto_command
3165 A utility command to turn on overlay debugging.
3166 Possibly this should be done via a set/show command. */
3167
3168 static void
3169 overlay_auto_command (char *args, int from_tty)
3170 {
3171 overlay_debugging = ovly_auto;
3172 enable_overlay_breakpoints ();
3173 if (info_verbose)
3174 printf_unfiltered (_("Automatic overlay debugging enabled."));
3175 }
3176
3177 /* Function: overlay_manual_command
3178 A utility command to turn on overlay debugging.
3179 Possibly this should be done via a set/show command. */
3180
3181 static void
3182 overlay_manual_command (char *args, int from_tty)
3183 {
3184 overlay_debugging = ovly_on;
3185 disable_overlay_breakpoints ();
3186 if (info_verbose)
3187 printf_unfiltered (_("Overlay debugging enabled."));
3188 }
3189
3190 /* Function: overlay_off_command
3191 A utility command to turn on overlay debugging.
3192 Possibly this should be done via a set/show command. */
3193
3194 static void
3195 overlay_off_command (char *args, int from_tty)
3196 {
3197 overlay_debugging = ovly_off;
3198 disable_overlay_breakpoints ();
3199 if (info_verbose)
3200 printf_unfiltered (_("Overlay debugging disabled."));
3201 }
3202
3203 static void
3204 overlay_load_command (char *args, int from_tty)
3205 {
3206 struct gdbarch *gdbarch = get_current_arch ();
3207
3208 if (gdbarch_overlay_update_p (gdbarch))
3209 gdbarch_overlay_update (gdbarch, NULL);
3210 else
3211 error (_("This target does not know how to read its overlay state."));
3212 }
3213
3214 /* Function: overlay_command
3215 A place-holder for a mis-typed command */
3216
3217 /* Command list chain containing all defined "overlay" subcommands. */
3218 struct cmd_list_element *overlaylist;
3219
3220 static void
3221 overlay_command (char *args, int from_tty)
3222 {
3223 printf_unfiltered
3224 ("\"overlay\" must be followed by the name of an overlay command.\n");
3225 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3226 }
3227
3228
3229 /* Target Overlays for the "Simplest" overlay manager:
3230
3231 This is GDB's default target overlay layer. It works with the
3232 minimal overlay manager supplied as an example by Cygnus. The
3233 entry point is via a function pointer "gdbarch_overlay_update",
3234 so targets that use a different runtime overlay manager can
3235 substitute their own overlay_update function and take over the
3236 function pointer.
3237
3238 The overlay_update function pokes around in the target's data structures
3239 to see what overlays are mapped, and updates GDB's overlay mapping with
3240 this information.
3241
3242 In this simple implementation, the target data structures are as follows:
3243 unsigned _novlys; /# number of overlay sections #/
3244 unsigned _ovly_table[_novlys][4] = {
3245 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3246 {..., ..., ..., ...},
3247 }
3248 unsigned _novly_regions; /# number of overlay regions #/
3249 unsigned _ovly_region_table[_novly_regions][3] = {
3250 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3251 {..., ..., ...},
3252 }
3253 These functions will attempt to update GDB's mappedness state in the
3254 symbol section table, based on the target's mappedness state.
3255
3256 To do this, we keep a cached copy of the target's _ovly_table, and
3257 attempt to detect when the cached copy is invalidated. The main
3258 entry point is "simple_overlay_update(SECT), which looks up SECT in
3259 the cached table and re-reads only the entry for that section from
3260 the target (whenever possible).
3261 */
3262
3263 /* Cached, dynamically allocated copies of the target data structures: */
3264 static unsigned (*cache_ovly_table)[4] = 0;
3265 #if 0
3266 static unsigned (*cache_ovly_region_table)[3] = 0;
3267 #endif
3268 static unsigned cache_novlys = 0;
3269 #if 0
3270 static unsigned cache_novly_regions = 0;
3271 #endif
3272 static CORE_ADDR cache_ovly_table_base = 0;
3273 #if 0
3274 static CORE_ADDR cache_ovly_region_table_base = 0;
3275 #endif
3276 enum ovly_index
3277 {
3278 VMA, SIZE, LMA, MAPPED
3279 };
3280
3281 /* Throw away the cached copy of _ovly_table */
3282 static void
3283 simple_free_overlay_table (void)
3284 {
3285 if (cache_ovly_table)
3286 xfree (cache_ovly_table);
3287 cache_novlys = 0;
3288 cache_ovly_table = NULL;
3289 cache_ovly_table_base = 0;
3290 }
3291
3292 #if 0
3293 /* Throw away the cached copy of _ovly_region_table */
3294 static void
3295 simple_free_overlay_region_table (void)
3296 {
3297 if (cache_ovly_region_table)
3298 xfree (cache_ovly_region_table);
3299 cache_novly_regions = 0;
3300 cache_ovly_region_table = NULL;
3301 cache_ovly_region_table_base = 0;
3302 }
3303 #endif
3304
3305 /* Read an array of ints of size SIZE from the target into a local buffer.
3306 Convert to host order. int LEN is number of ints */
3307 static void
3308 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3309 int len, int size, enum bfd_endian byte_order)
3310 {
3311 /* FIXME (alloca): Not safe if array is very large. */
3312 gdb_byte *buf = alloca (len * size);
3313 int i;
3314
3315 read_memory (memaddr, buf, len * size);
3316 for (i = 0; i < len; i++)
3317 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3318 }
3319
3320 /* Find and grab a copy of the target _ovly_table
3321 (and _novlys, which is needed for the table's size) */
3322 static int
3323 simple_read_overlay_table (void)
3324 {
3325 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3326 struct gdbarch *gdbarch;
3327 int word_size;
3328 enum bfd_endian byte_order;
3329
3330 simple_free_overlay_table ();
3331 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3332 if (! novlys_msym)
3333 {
3334 error (_("Error reading inferior's overlay table: "
3335 "couldn't find `_novlys' variable\n"
3336 "in inferior. Use `overlay manual' mode."));
3337 return 0;
3338 }
3339
3340 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3341 if (! ovly_table_msym)
3342 {
3343 error (_("Error reading inferior's overlay table: couldn't find "
3344 "`_ovly_table' array\n"
3345 "in inferior. Use `overlay manual' mode."));
3346 return 0;
3347 }
3348
3349 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3350 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3351 byte_order = gdbarch_byte_order (gdbarch);
3352
3353 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3354 4, byte_order);
3355 cache_ovly_table
3356 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3357 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3358 read_target_long_array (cache_ovly_table_base,
3359 (unsigned int *) cache_ovly_table,
3360 cache_novlys * 4, word_size, byte_order);
3361
3362 return 1; /* SUCCESS */
3363 }
3364
3365 #if 0
3366 /* Find and grab a copy of the target _ovly_region_table
3367 (and _novly_regions, which is needed for the table's size) */
3368 static int
3369 simple_read_overlay_region_table (void)
3370 {
3371 struct minimal_symbol *msym;
3372 struct gdbarch *gdbarch;
3373 int word_size;
3374 enum bfd_endian byte_order;
3375
3376 simple_free_overlay_region_table ();
3377 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3378 if (msym == NULL)
3379 return 0; /* failure */
3380
3381 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3382 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3383 byte_order = gdbarch_byte_order (gdbarch);
3384
3385 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3386 4, byte_order);
3387
3388 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3389 if (cache_ovly_region_table != NULL)
3390 {
3391 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3392 if (msym != NULL)
3393 {
3394 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3395 read_target_long_array (cache_ovly_region_table_base,
3396 (unsigned int *) cache_ovly_region_table,
3397 cache_novly_regions * 3,
3398 word_size, byte_order);
3399 }
3400 else
3401 return 0; /* failure */
3402 }
3403 else
3404 return 0; /* failure */
3405 return 1; /* SUCCESS */
3406 }
3407 #endif
3408
3409 /* Function: simple_overlay_update_1
3410 A helper function for simple_overlay_update. Assuming a cached copy
3411 of _ovly_table exists, look through it to find an entry whose vma,
3412 lma and size match those of OSECT. Re-read the entry and make sure
3413 it still matches OSECT (else the table may no longer be valid).
3414 Set OSECT's mapped state to match the entry. Return: 1 for
3415 success, 0 for failure. */
3416
3417 static int
3418 simple_overlay_update_1 (struct obj_section *osect)
3419 {
3420 int i, size;
3421 bfd *obfd = osect->objfile->obfd;
3422 asection *bsect = osect->the_bfd_section;
3423 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3424 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3425 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3426
3427 size = bfd_get_section_size (osect->the_bfd_section);
3428 for (i = 0; i < cache_novlys; i++)
3429 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3430 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3431 /* && cache_ovly_table[i][SIZE] == size */ )
3432 {
3433 read_target_long_array (cache_ovly_table_base + i * word_size,
3434 (unsigned int *) cache_ovly_table[i],
3435 4, word_size, byte_order);
3436 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3437 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3438 /* && cache_ovly_table[i][SIZE] == size */ )
3439 {
3440 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3441 return 1;
3442 }
3443 else /* Warning! Warning! Target's ovly table has changed! */
3444 return 0;
3445 }
3446 return 0;
3447 }
3448
3449 /* Function: simple_overlay_update
3450 If OSECT is NULL, then update all sections' mapped state
3451 (after re-reading the entire target _ovly_table).
3452 If OSECT is non-NULL, then try to find a matching entry in the
3453 cached ovly_table and update only OSECT's mapped state.
3454 If a cached entry can't be found or the cache isn't valid, then
3455 re-read the entire cache, and go ahead and update all sections. */
3456
3457 void
3458 simple_overlay_update (struct obj_section *osect)
3459 {
3460 struct objfile *objfile;
3461
3462 /* Were we given an osect to look up? NULL means do all of them. */
3463 if (osect)
3464 /* Have we got a cached copy of the target's overlay table? */
3465 if (cache_ovly_table != NULL)
3466 /* Does its cached location match what's currently in the symtab? */
3467 if (cache_ovly_table_base ==
3468 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3469 /* Then go ahead and try to look up this single section in the cache */
3470 if (simple_overlay_update_1 (osect))
3471 /* Found it! We're done. */
3472 return;
3473
3474 /* Cached table no good: need to read the entire table anew.
3475 Or else we want all the sections, in which case it's actually
3476 more efficient to read the whole table in one block anyway. */
3477
3478 if (! simple_read_overlay_table ())
3479 return;
3480
3481 /* Now may as well update all sections, even if only one was requested. */
3482 ALL_OBJSECTIONS (objfile, osect)
3483 if (section_is_overlay (osect))
3484 {
3485 int i, size;
3486 bfd *obfd = osect->objfile->obfd;
3487 asection *bsect = osect->the_bfd_section;
3488
3489 size = bfd_get_section_size (bsect);
3490 for (i = 0; i < cache_novlys; i++)
3491 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3492 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3493 /* && cache_ovly_table[i][SIZE] == size */ )
3494 { /* obj_section matches i'th entry in ovly_table */
3495 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3496 break; /* finished with inner for loop: break out */
3497 }
3498 }
3499 }
3500
3501 /* Set the output sections and output offsets for section SECTP in
3502 ABFD. The relocation code in BFD will read these offsets, so we
3503 need to be sure they're initialized. We map each section to itself,
3504 with no offset; this means that SECTP->vma will be honored. */
3505
3506 static void
3507 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3508 {
3509 sectp->output_section = sectp;
3510 sectp->output_offset = 0;
3511 }
3512
3513 /* Default implementation for sym_relocate. */
3514
3515
3516 bfd_byte *
3517 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3518 bfd_byte *buf)
3519 {
3520 bfd *abfd = objfile->obfd;
3521
3522 /* We're only interested in sections with relocation
3523 information. */
3524 if ((sectp->flags & SEC_RELOC) == 0)
3525 return NULL;
3526
3527 /* We will handle section offsets properly elsewhere, so relocate as if
3528 all sections begin at 0. */
3529 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3530
3531 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3532 }
3533
3534 /* Relocate the contents of a debug section SECTP in ABFD. The
3535 contents are stored in BUF if it is non-NULL, or returned in a
3536 malloc'd buffer otherwise.
3537
3538 For some platforms and debug info formats, shared libraries contain
3539 relocations against the debug sections (particularly for DWARF-2;
3540 one affected platform is PowerPC GNU/Linux, although it depends on
3541 the version of the linker in use). Also, ELF object files naturally
3542 have unresolved relocations for their debug sections. We need to apply
3543 the relocations in order to get the locations of symbols correct.
3544 Another example that may require relocation processing, is the
3545 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3546 debug section. */
3547
3548 bfd_byte *
3549 symfile_relocate_debug_section (struct objfile *objfile,
3550 asection *sectp, bfd_byte *buf)
3551 {
3552 gdb_assert (objfile->sf->sym_relocate);
3553
3554 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3555 }
3556
3557 struct symfile_segment_data *
3558 get_symfile_segment_data (bfd *abfd)
3559 {
3560 struct sym_fns *sf = find_sym_fns (abfd);
3561
3562 if (sf == NULL)
3563 return NULL;
3564
3565 return sf->sym_segments (abfd);
3566 }
3567
3568 void
3569 free_symfile_segment_data (struct symfile_segment_data *data)
3570 {
3571 xfree (data->segment_bases);
3572 xfree (data->segment_sizes);
3573 xfree (data->segment_info);
3574 xfree (data);
3575 }
3576
3577
3578 /* Given:
3579 - DATA, containing segment addresses from the object file ABFD, and
3580 the mapping from ABFD's sections onto the segments that own them,
3581 and
3582 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3583 segment addresses reported by the target,
3584 store the appropriate offsets for each section in OFFSETS.
3585
3586 If there are fewer entries in SEGMENT_BASES than there are segments
3587 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3588
3589 If there are more entries, then ignore the extra. The target may
3590 not be able to distinguish between an empty data segment and a
3591 missing data segment; a missing text segment is less plausible. */
3592 int
3593 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3594 struct section_offsets *offsets,
3595 int num_segment_bases,
3596 const CORE_ADDR *segment_bases)
3597 {
3598 int i;
3599 asection *sect;
3600
3601 /* It doesn't make sense to call this function unless you have some
3602 segment base addresses. */
3603 gdb_assert (num_segment_bases > 0);
3604
3605 /* If we do not have segment mappings for the object file, we
3606 can not relocate it by segments. */
3607 gdb_assert (data != NULL);
3608 gdb_assert (data->num_segments > 0);
3609
3610 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3611 {
3612 int which = data->segment_info[i];
3613
3614 gdb_assert (0 <= which && which <= data->num_segments);
3615
3616 /* Don't bother computing offsets for sections that aren't
3617 loaded as part of any segment. */
3618 if (! which)
3619 continue;
3620
3621 /* Use the last SEGMENT_BASES entry as the address of any extra
3622 segments mentioned in DATA->segment_info. */
3623 if (which > num_segment_bases)
3624 which = num_segment_bases;
3625
3626 offsets->offsets[i] = (segment_bases[which - 1]
3627 - data->segment_bases[which - 1]);
3628 }
3629
3630 return 1;
3631 }
3632
3633 static void
3634 symfile_find_segment_sections (struct objfile *objfile)
3635 {
3636 bfd *abfd = objfile->obfd;
3637 int i;
3638 asection *sect;
3639 struct symfile_segment_data *data;
3640
3641 data = get_symfile_segment_data (objfile->obfd);
3642 if (data == NULL)
3643 return;
3644
3645 if (data->num_segments != 1 && data->num_segments != 2)
3646 {
3647 free_symfile_segment_data (data);
3648 return;
3649 }
3650
3651 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3652 {
3653 int which = data->segment_info[i];
3654
3655 if (which == 1)
3656 {
3657 if (objfile->sect_index_text == -1)
3658 objfile->sect_index_text = sect->index;
3659
3660 if (objfile->sect_index_rodata == -1)
3661 objfile->sect_index_rodata = sect->index;
3662 }
3663 else if (which == 2)
3664 {
3665 if (objfile->sect_index_data == -1)
3666 objfile->sect_index_data = sect->index;
3667
3668 if (objfile->sect_index_bss == -1)
3669 objfile->sect_index_bss = sect->index;
3670 }
3671 }
3672
3673 free_symfile_segment_data (data);
3674 }
3675
3676 void
3677 _initialize_symfile (void)
3678 {
3679 struct cmd_list_element *c;
3680
3681 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3682 Load symbol table from executable file FILE.\n\
3683 The `file' command can also load symbol tables, as well as setting the file\n\
3684 to execute."), &cmdlist);
3685 set_cmd_completer (c, filename_completer);
3686
3687 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3688 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3689 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3690 ADDR is the starting address of the file's text.\n\
3691 The optional arguments are section-name section-address pairs and\n\
3692 should be specified if the data and bss segments are not contiguous\n\
3693 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3694 &cmdlist);
3695 set_cmd_completer (c, filename_completer);
3696
3697 c = add_cmd ("load", class_files, load_command, _("\
3698 Dynamically load FILE into the running program, and record its symbols\n\
3699 for access from GDB.\n\
3700 A load OFFSET may also be given."), &cmdlist);
3701 set_cmd_completer (c, filename_completer);
3702
3703 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3704 &symbol_reloading, _("\
3705 Set dynamic symbol table reloading multiple times in one run."), _("\
3706 Show dynamic symbol table reloading multiple times in one run."), NULL,
3707 NULL,
3708 show_symbol_reloading,
3709 &setlist, &showlist);
3710
3711 add_prefix_cmd ("overlay", class_support, overlay_command,
3712 _("Commands for debugging overlays."), &overlaylist,
3713 "overlay ", 0, &cmdlist);
3714
3715 add_com_alias ("ovly", "overlay", class_alias, 1);
3716 add_com_alias ("ov", "overlay", class_alias, 1);
3717
3718 add_cmd ("map-overlay", class_support, map_overlay_command,
3719 _("Assert that an overlay section is mapped."), &overlaylist);
3720
3721 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3722 _("Assert that an overlay section is unmapped."), &overlaylist);
3723
3724 add_cmd ("list-overlays", class_support, list_overlays_command,
3725 _("List mappings of overlay sections."), &overlaylist);
3726
3727 add_cmd ("manual", class_support, overlay_manual_command,
3728 _("Enable overlay debugging."), &overlaylist);
3729 add_cmd ("off", class_support, overlay_off_command,
3730 _("Disable overlay debugging."), &overlaylist);
3731 add_cmd ("auto", class_support, overlay_auto_command,
3732 _("Enable automatic overlay debugging."), &overlaylist);
3733 add_cmd ("load-target", class_support, overlay_load_command,
3734 _("Read the overlay mapping state from the target."), &overlaylist);
3735
3736 /* Filename extension to source language lookup table: */
3737 init_filename_language_table ();
3738 add_setshow_string_noescape_cmd ("extension-language", class_files,
3739 &ext_args, _("\
3740 Set mapping between filename extension and source language."), _("\
3741 Show mapping between filename extension and source language."), _("\
3742 Usage: set extension-language .foo bar"),
3743 set_ext_lang_command,
3744 show_ext_args,
3745 &setlist, &showlist);
3746
3747 add_info ("extensions", info_ext_lang_command,
3748 _("All filename extensions associated with a source language."));
3749
3750 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3751 &debug_file_directory, _("\
3752 Set the directories where separate debug symbols are searched for."), _("\
3753 Show the directories where separate debug symbols are searched for."), _("\
3754 Separate debug symbols are first searched for in the same\n\
3755 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3756 and lastly at the path of the directory of the binary with\n\
3757 each global debug-file-directory component prepended."),
3758 NULL,
3759 show_debug_file_directory,
3760 &setlist, &showlist);
3761 }