*** empty log message ***
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55
56 #include <sys/types.h>
57 #include <fcntl.h>
58 #include "gdb_string.h"
59 #include "gdb_stat.h"
60 #include <ctype.h>
61 #include <time.h>
62 #include <sys/time.h>
63
64
65 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*deprecated_show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*deprecated_pre_add_symbol_hook) (const char *);
72 void (*deprecated_post_add_symbol_hook) (void);
73
74 static void clear_symtab_users_cleanup (void *ignore);
75
76 /* Global variables owned by this file */
77 int readnow_symbol_files; /* Read full symbols immediately */
78
79 /* External variables and functions referenced. */
80
81 extern void report_transfer_performance (unsigned long, time_t, time_t);
82
83 /* Functions this file defines */
84
85 #if 0
86 static int simple_read_overlay_region_table (void);
87 static void simple_free_overlay_region_table (void);
88 #endif
89
90 static void set_initial_language (void);
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 static int overlay_is_mapped (struct obj_section *);
115
116 void list_overlays_command (char *, int);
117
118 void map_overlay_command (char *, int);
119
120 void unmap_overlay_command (char *, int);
121
122 static void overlay_auto_command (char *, int);
123
124 static void overlay_manual_command (char *, int);
125
126 static void overlay_off_command (char *, int);
127
128 static void overlay_load_command (char *, int);
129
130 static void overlay_command (char *, int);
131
132 static void simple_free_overlay_table (void);
133
134 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
135
136 static int simple_read_overlay_table (void);
137
138 static int simple_overlay_update_1 (struct obj_section *);
139
140 static void add_filename_language (char *ext, enum language lang);
141
142 static void info_ext_lang_command (char *args, int from_tty);
143
144 static char *find_separate_debug_file (struct objfile *objfile);
145
146 static void init_filename_language_table (void);
147
148 static void symfile_find_segment_sections (struct objfile *objfile);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. First, check for a file with the standard
435 one or two segments. */
436
437 symfile_find_segment_sections (objfile);
438
439 /* Except when explicitly adding symbol files at some address,
440 section_offsets contains nothing but zeros, so it doesn't matter
441 which slot in section_offsets the individual sect_index_* members
442 index into. So if they are all zero, it is safe to just point
443 all the currently uninitialized indices to the first slot. But
444 beware: if this is the main executable, it may be relocated
445 later, e.g. by the remote qOffsets packet, and then this will
446 be wrong! That's why we try segments first. */
447
448 for (i = 0; i < objfile->num_sections; i++)
449 {
450 if (ANOFFSET (objfile->section_offsets, i) != 0)
451 {
452 break;
453 }
454 }
455 if (i == objfile->num_sections)
456 {
457 if (objfile->sect_index_text == -1)
458 objfile->sect_index_text = 0;
459 if (objfile->sect_index_data == -1)
460 objfile->sect_index_data = 0;
461 if (objfile->sect_index_bss == -1)
462 objfile->sect_index_bss = 0;
463 if (objfile->sect_index_rodata == -1)
464 objfile->sect_index_rodata = 0;
465 }
466 }
467
468 /* The arguments to place_section. */
469
470 struct place_section_arg
471 {
472 struct section_offsets *offsets;
473 CORE_ADDR lowest;
474 };
475
476 /* Find a unique offset to use for loadable section SECT if
477 the user did not provide an offset. */
478
479 void
480 place_section (bfd *abfd, asection *sect, void *obj)
481 {
482 struct place_section_arg *arg = obj;
483 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
484 int done;
485 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
486
487 /* We are only interested in allocated sections. */
488 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
489 return;
490
491 /* If the user specified an offset, honor it. */
492 if (offsets[sect->index] != 0)
493 return;
494
495 /* Otherwise, let's try to find a place for the section. */
496 start_addr = (arg->lowest + align - 1) & -align;
497
498 do {
499 asection *cur_sec;
500
501 done = 1;
502
503 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
504 {
505 int indx = cur_sec->index;
506 CORE_ADDR cur_offset;
507
508 /* We don't need to compare against ourself. */
509 if (cur_sec == sect)
510 continue;
511
512 /* We can only conflict with allocated sections. */
513 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
514 continue;
515
516 /* If the section offset is 0, either the section has not been placed
517 yet, or it was the lowest section placed (in which case LOWEST
518 will be past its end). */
519 if (offsets[indx] == 0)
520 continue;
521
522 /* If this section would overlap us, then we must move up. */
523 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
524 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
525 {
526 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
527 start_addr = (start_addr + align - 1) & -align;
528 done = 0;
529 break;
530 }
531
532 /* Otherwise, we appear to be OK. So far. */
533 }
534 }
535 while (!done);
536
537 offsets[sect->index] = start_addr;
538 arg->lowest = start_addr + bfd_get_section_size (sect);
539
540 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
541 }
542
543 /* Parse the user's idea of an offset for dynamic linking, into our idea
544 of how to represent it for fast symbol reading. This is the default
545 version of the sym_fns.sym_offsets function for symbol readers that
546 don't need to do anything special. It allocates a section_offsets table
547 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
548
549 void
550 default_symfile_offsets (struct objfile *objfile,
551 struct section_addr_info *addrs)
552 {
553 int i;
554
555 objfile->num_sections = bfd_count_sections (objfile->obfd);
556 objfile->section_offsets = (struct section_offsets *)
557 obstack_alloc (&objfile->objfile_obstack,
558 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
559 memset (objfile->section_offsets, 0,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561
562 /* Now calculate offsets for section that were specified by the
563 caller. */
564 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
565 {
566 struct other_sections *osp ;
567
568 osp = &addrs->other[i] ;
569 if (osp->addr == 0)
570 continue;
571
572 /* Record all sections in offsets */
573 /* The section_offsets in the objfile are here filled in using
574 the BFD index. */
575 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
576 }
577
578 /* For relocatable files, all loadable sections will start at zero.
579 The zero is meaningless, so try to pick arbitrary addresses such
580 that no loadable sections overlap. This algorithm is quadratic,
581 but the number of sections in a single object file is generally
582 small. */
583 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
584 {
585 struct place_section_arg arg;
586 bfd *abfd = objfile->obfd;
587 asection *cur_sec;
588 CORE_ADDR lowest = 0;
589
590 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
591 /* We do not expect this to happen; just skip this step if the
592 relocatable file has a section with an assigned VMA. */
593 if (bfd_section_vma (abfd, cur_sec) != 0)
594 break;
595
596 if (cur_sec == NULL)
597 {
598 CORE_ADDR *offsets = objfile->section_offsets->offsets;
599
600 /* Pick non-overlapping offsets for sections the user did not
601 place explicitly. */
602 arg.offsets = objfile->section_offsets;
603 arg.lowest = 0;
604 bfd_map_over_sections (objfile->obfd, place_section, &arg);
605
606 /* Correctly filling in the section offsets is not quite
607 enough. Relocatable files have two properties that
608 (most) shared objects do not:
609
610 - Their debug information will contain relocations. Some
611 shared libraries do also, but many do not, so this can not
612 be assumed.
613
614 - If there are multiple code sections they will be loaded
615 at different relative addresses in memory than they are
616 in the objfile, since all sections in the file will start
617 at address zero.
618
619 Because GDB has very limited ability to map from an
620 address in debug info to the correct code section,
621 it relies on adding SECT_OFF_TEXT to things which might be
622 code. If we clear all the section offsets, and set the
623 section VMAs instead, then symfile_relocate_debug_section
624 will return meaningful debug information pointing at the
625 correct sections.
626
627 GDB has too many different data structures for section
628 addresses - a bfd, objfile, and so_list all have section
629 tables, as does exec_ops. Some of these could probably
630 be eliminated. */
631
632 for (cur_sec = abfd->sections; cur_sec != NULL;
633 cur_sec = cur_sec->next)
634 {
635 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
636 continue;
637
638 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
639 offsets[cur_sec->index] = 0;
640 }
641 }
642 }
643
644 /* Remember the bfd indexes for the .text, .data, .bss and
645 .rodata sections. */
646 init_objfile_sect_indices (objfile);
647 }
648
649
650 /* Divide the file into segments, which are individual relocatable units.
651 This is the default version of the sym_fns.sym_segments function for
652 symbol readers that do not have an explicit representation of segments.
653 It assumes that object files do not have segments, and fully linked
654 files have a single segment. */
655
656 struct symfile_segment_data *
657 default_symfile_segments (bfd *abfd)
658 {
659 int num_sections, i;
660 asection *sect;
661 struct symfile_segment_data *data;
662 CORE_ADDR low, high;
663
664 /* Relocatable files contain enough information to position each
665 loadable section independently; they should not be relocated
666 in segments. */
667 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
668 return NULL;
669
670 /* Make sure there is at least one loadable section in the file. */
671 for (sect = abfd->sections; sect != NULL; sect = sect->next)
672 {
673 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
674 continue;
675
676 break;
677 }
678 if (sect == NULL)
679 return NULL;
680
681 low = bfd_get_section_vma (abfd, sect);
682 high = low + bfd_get_section_size (sect);
683
684 data = XZALLOC (struct symfile_segment_data);
685 data->num_segments = 1;
686 data->segment_bases = XCALLOC (1, CORE_ADDR);
687 data->segment_sizes = XCALLOC (1, CORE_ADDR);
688
689 num_sections = bfd_count_sections (abfd);
690 data->segment_info = XCALLOC (num_sections, int);
691
692 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
693 {
694 CORE_ADDR vma;
695
696 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
697 continue;
698
699 vma = bfd_get_section_vma (abfd, sect);
700 if (vma < low)
701 low = vma;
702 if (vma + bfd_get_section_size (sect) > high)
703 high = vma + bfd_get_section_size (sect);
704
705 data->segment_info[i] = 1;
706 }
707
708 data->segment_bases[0] = low;
709 data->segment_sizes[0] = high - low;
710
711 return data;
712 }
713
714 /* Process a symbol file, as either the main file or as a dynamically
715 loaded file.
716
717 OBJFILE is where the symbols are to be read from.
718
719 ADDRS is the list of section load addresses. If the user has given
720 an 'add-symbol-file' command, then this is the list of offsets and
721 addresses he or she provided as arguments to the command; or, if
722 we're handling a shared library, these are the actual addresses the
723 sections are loaded at, according to the inferior's dynamic linker
724 (as gleaned by GDB's shared library code). We convert each address
725 into an offset from the section VMA's as it appears in the object
726 file, and then call the file's sym_offsets function to convert this
727 into a format-specific offset table --- a `struct section_offsets'.
728 If ADDRS is non-zero, OFFSETS must be zero.
729
730 OFFSETS is a table of section offsets already in the right
731 format-specific representation. NUM_OFFSETS is the number of
732 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
733 assume this is the proper table the call to sym_offsets described
734 above would produce. Instead of calling sym_offsets, we just dump
735 it right into objfile->section_offsets. (When we're re-reading
736 symbols from an objfile, we don't have the original load address
737 list any more; all we have is the section offset table.) If
738 OFFSETS is non-zero, ADDRS must be zero.
739
740 MAINLINE is nonzero if this is the main symbol file, or zero if
741 it's an extra symbol file such as dynamically loaded code.
742
743 VERBO is nonzero if the caller has printed a verbose message about
744 the symbol reading (and complaints can be more terse about it). */
745
746 void
747 syms_from_objfile (struct objfile *objfile,
748 struct section_addr_info *addrs,
749 struct section_offsets *offsets,
750 int num_offsets,
751 int mainline,
752 int verbo)
753 {
754 struct section_addr_info *local_addr = NULL;
755 struct cleanup *old_chain;
756
757 gdb_assert (! (addrs && offsets));
758
759 init_entry_point_info (objfile);
760 objfile->sf = find_sym_fns (objfile->obfd);
761
762 if (objfile->sf == NULL)
763 return; /* No symbols. */
764
765 /* Make sure that partially constructed symbol tables will be cleaned up
766 if an error occurs during symbol reading. */
767 old_chain = make_cleanup_free_objfile (objfile);
768
769 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
770 list. We now establish the convention that an addr of zero means
771 no load address was specified. */
772 if (! addrs && ! offsets)
773 {
774 local_addr
775 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
776 make_cleanup (xfree, local_addr);
777 addrs = local_addr;
778 }
779
780 /* Now either addrs or offsets is non-zero. */
781
782 if (mainline)
783 {
784 /* We will modify the main symbol table, make sure that all its users
785 will be cleaned up if an error occurs during symbol reading. */
786 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
787
788 /* Since no error yet, throw away the old symbol table. */
789
790 if (symfile_objfile != NULL)
791 {
792 free_objfile (symfile_objfile);
793 symfile_objfile = NULL;
794 }
795
796 /* Currently we keep symbols from the add-symbol-file command.
797 If the user wants to get rid of them, they should do "symbol-file"
798 without arguments first. Not sure this is the best behavior
799 (PR 2207). */
800
801 (*objfile->sf->sym_new_init) (objfile);
802 }
803
804 /* Convert addr into an offset rather than an absolute address.
805 We find the lowest address of a loaded segment in the objfile,
806 and assume that <addr> is where that got loaded.
807
808 We no longer warn if the lowest section is not a text segment (as
809 happens for the PA64 port. */
810 if (!mainline && addrs && addrs->other[0].name)
811 {
812 asection *lower_sect;
813 asection *sect;
814 CORE_ADDR lower_offset;
815 int i;
816
817 /* Find lowest loadable section to be used as starting point for
818 continguous sections. FIXME!! won't work without call to find
819 .text first, but this assumes text is lowest section. */
820 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
821 if (lower_sect == NULL)
822 bfd_map_over_sections (objfile->obfd, find_lowest_section,
823 &lower_sect);
824 if (lower_sect == NULL)
825 warning (_("no loadable sections found in added symbol-file %s"),
826 objfile->name);
827 else
828 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
829 warning (_("Lowest section in %s is %s at %s"),
830 objfile->name,
831 bfd_section_name (objfile->obfd, lower_sect),
832 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
833 if (lower_sect != NULL)
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835 else
836 lower_offset = 0;
837
838 /* Calculate offsets for the loadable sections.
839 FIXME! Sections must be in order of increasing loadable section
840 so that contiguous sections can use the lower-offset!!!
841
842 Adjust offsets if the segments are not contiguous.
843 If the section is contiguous, its offset should be set to
844 the offset of the highest loadable section lower than it
845 (the loadable section directly below it in memory).
846 this_offset = lower_offset = lower_addr - lower_orig_addr */
847
848 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
849 {
850 if (addrs->other[i].addr != 0)
851 {
852 sect = bfd_get_section_by_name (objfile->obfd,
853 addrs->other[i].name);
854 if (sect)
855 {
856 addrs->other[i].addr
857 -= bfd_section_vma (objfile->obfd, sect);
858 lower_offset = addrs->other[i].addr;
859 /* This is the index used by BFD. */
860 addrs->other[i].sectindex = sect->index ;
861 }
862 else
863 {
864 warning (_("section %s not found in %s"),
865 addrs->other[i].name,
866 objfile->name);
867 addrs->other[i].addr = 0;
868 }
869 }
870 else
871 addrs->other[i].addr = lower_offset;
872 }
873 }
874
875 /* Initialize symbol reading routines for this objfile, allow complaints to
876 appear for this new file, and record how verbose to be, then do the
877 initial symbol reading for this file. */
878
879 (*objfile->sf->sym_init) (objfile);
880 clear_complaints (&symfile_complaints, 1, verbo);
881
882 if (addrs)
883 (*objfile->sf->sym_offsets) (objfile, addrs);
884 else
885 {
886 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
887
888 /* Just copy in the offset table directly as given to us. */
889 objfile->num_sections = num_offsets;
890 objfile->section_offsets
891 = ((struct section_offsets *)
892 obstack_alloc (&objfile->objfile_obstack, size));
893 memcpy (objfile->section_offsets, offsets, size);
894
895 init_objfile_sect_indices (objfile);
896 }
897
898 #ifndef DEPRECATED_IBM6000_TARGET
899 /* This is a SVR4/SunOS specific hack, I think. In any event, it
900 screws RS/6000. sym_offsets should be doing this sort of thing,
901 because it knows the mapping between bfd sections and
902 section_offsets. */
903 /* This is a hack. As far as I can tell, section offsets are not
904 target dependent. They are all set to addr with a couple of
905 exceptions. The exceptions are sysvr4 shared libraries, whose
906 offsets are kept in solib structures anyway and rs6000 xcoff
907 which handles shared libraries in a completely unique way.
908
909 Section offsets are built similarly, except that they are built
910 by adding addr in all cases because there is no clear mapping
911 from section_offsets into actual sections. Note that solib.c
912 has a different algorithm for finding section offsets.
913
914 These should probably all be collapsed into some target
915 independent form of shared library support. FIXME. */
916
917 if (addrs)
918 {
919 struct obj_section *s;
920
921 /* Map section offsets in "addr" back to the object's
922 sections by comparing the section names with bfd's
923 section names. Then adjust the section address by
924 the offset. */ /* for gdb/13815 */
925
926 ALL_OBJFILE_OSECTIONS (objfile, s)
927 {
928 CORE_ADDR s_addr = 0;
929 int i;
930
931 for (i = 0;
932 !s_addr && i < addrs->num_sections && addrs->other[i].name;
933 i++)
934 if (strcmp (bfd_section_name (s->objfile->obfd,
935 s->the_bfd_section),
936 addrs->other[i].name) == 0)
937 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
938
939 s->addr -= s->offset;
940 s->addr += s_addr;
941 s->endaddr -= s->offset;
942 s->endaddr += s_addr;
943 s->offset += s_addr;
944 }
945 }
946 #endif /* not DEPRECATED_IBM6000_TARGET */
947
948 (*objfile->sf->sym_read) (objfile, mainline);
949
950 /* Don't allow char * to have a typename (else would get caddr_t).
951 Ditto void *. FIXME: Check whether this is now done by all the
952 symbol readers themselves (many of them now do), and if so remove
953 it from here. */
954
955 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
956 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
957
958 /* Mark the objfile has having had initial symbol read attempted. Note
959 that this does not mean we found any symbols... */
960
961 objfile->flags |= OBJF_SYMS;
962
963 /* Discard cleanups as symbol reading was successful. */
964
965 discard_cleanups (old_chain);
966 }
967
968 /* Perform required actions after either reading in the initial
969 symbols for a new objfile, or mapping in the symbols from a reusable
970 objfile. */
971
972 void
973 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
974 {
975
976 /* If this is the main symbol file we have to clean up all users of the
977 old main symbol file. Otherwise it is sufficient to fixup all the
978 breakpoints that may have been redefined by this symbol file. */
979 if (mainline)
980 {
981 /* OK, make it the "real" symbol file. */
982 symfile_objfile = objfile;
983
984 clear_symtab_users ();
985 }
986 else
987 {
988 breakpoint_re_set ();
989 }
990
991 /* We're done reading the symbol file; finish off complaints. */
992 clear_complaints (&symfile_complaints, 0, verbo);
993 }
994
995 /* Process a symbol file, as either the main file or as a dynamically
996 loaded file.
997
998 ABFD is a BFD already open on the file, as from symfile_bfd_open.
999 This BFD will be closed on error, and is always consumed by this function.
1000
1001 FROM_TTY says how verbose to be.
1002
1003 MAINLINE specifies whether this is the main symbol file, or whether
1004 it's an extra symbol file such as dynamically loaded code.
1005
1006 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1007 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
1008 non-zero.
1009
1010 Upon success, returns a pointer to the objfile that was added.
1011 Upon failure, jumps back to command level (never returns). */
1012 static struct objfile *
1013 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
1014 struct section_addr_info *addrs,
1015 struct section_offsets *offsets,
1016 int num_offsets,
1017 int mainline, int flags)
1018 {
1019 struct objfile *objfile;
1020 struct partial_symtab *psymtab;
1021 char *debugfile = NULL;
1022 struct section_addr_info *orig_addrs = NULL;
1023 struct cleanup *my_cleanups;
1024 const char *name = bfd_get_filename (abfd);
1025
1026 my_cleanups = make_cleanup_bfd_close (abfd);
1027
1028 /* Give user a chance to burp if we'd be
1029 interactively wiping out any existing symbols. */
1030
1031 if ((have_full_symbols () || have_partial_symbols ())
1032 && mainline
1033 && from_tty
1034 && !query ("Load new symbol table from \"%s\"? ", name))
1035 error (_("Not confirmed."));
1036
1037 objfile = allocate_objfile (abfd, flags);
1038 discard_cleanups (my_cleanups);
1039
1040 if (addrs)
1041 {
1042 orig_addrs = copy_section_addr_info (addrs);
1043 make_cleanup_free_section_addr_info (orig_addrs);
1044 }
1045
1046 /* We either created a new mapped symbol table, mapped an existing
1047 symbol table file which has not had initial symbol reading
1048 performed, or need to read an unmapped symbol table. */
1049 if (from_tty || info_verbose)
1050 {
1051 if (deprecated_pre_add_symbol_hook)
1052 deprecated_pre_add_symbol_hook (name);
1053 else
1054 {
1055 printf_unfiltered (_("Reading symbols from %s..."), name);
1056 wrap_here ("");
1057 gdb_flush (gdb_stdout);
1058 }
1059 }
1060 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1061 mainline, from_tty);
1062
1063 /* We now have at least a partial symbol table. Check to see if the
1064 user requested that all symbols be read on initial access via either
1065 the gdb startup command line or on a per symbol file basis. Expand
1066 all partial symbol tables for this objfile if so. */
1067
1068 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1069 {
1070 if (from_tty || info_verbose)
1071 {
1072 printf_unfiltered (_("expanding to full symbols..."));
1073 wrap_here ("");
1074 gdb_flush (gdb_stdout);
1075 }
1076
1077 for (psymtab = objfile->psymtabs;
1078 psymtab != NULL;
1079 psymtab = psymtab->next)
1080 {
1081 psymtab_to_symtab (psymtab);
1082 }
1083 }
1084
1085 /* If the file has its own symbol tables it has no separate debug info.
1086 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1087 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1088 if (objfile->psymtabs == NULL)
1089 debugfile = find_separate_debug_file (objfile);
1090 if (debugfile)
1091 {
1092 if (addrs != NULL)
1093 {
1094 objfile->separate_debug_objfile
1095 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1096 }
1097 else
1098 {
1099 objfile->separate_debug_objfile
1100 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1101 }
1102 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1103 = objfile;
1104
1105 /* Put the separate debug object before the normal one, this is so that
1106 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1107 put_objfile_before (objfile->separate_debug_objfile, objfile);
1108
1109 xfree (debugfile);
1110 }
1111
1112 if (!have_partial_symbols () && !have_full_symbols ())
1113 {
1114 wrap_here ("");
1115 printf_filtered (_("(no debugging symbols found)"));
1116 if (from_tty || info_verbose)
1117 printf_filtered ("...");
1118 else
1119 printf_filtered ("\n");
1120 wrap_here ("");
1121 }
1122
1123 if (from_tty || info_verbose)
1124 {
1125 if (deprecated_post_add_symbol_hook)
1126 deprecated_post_add_symbol_hook ();
1127 else
1128 {
1129 printf_unfiltered (_("done.\n"));
1130 }
1131 }
1132
1133 /* We print some messages regardless of whether 'from_tty ||
1134 info_verbose' is true, so make sure they go out at the right
1135 time. */
1136 gdb_flush (gdb_stdout);
1137
1138 do_cleanups (my_cleanups);
1139
1140 if (objfile->sf == NULL)
1141 return objfile; /* No symbols. */
1142
1143 new_symfile_objfile (objfile, mainline, from_tty);
1144
1145 observer_notify_new_objfile (objfile);
1146
1147 bfd_cache_close_all ();
1148 return (objfile);
1149 }
1150
1151
1152 /* Process the symbol file ABFD, as either the main file or as a
1153 dynamically loaded file.
1154
1155 See symbol_file_add_with_addrs_or_offsets's comments for
1156 details. */
1157 struct objfile *
1158 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1159 struct section_addr_info *addrs,
1160 int mainline, int flags)
1161 {
1162 return symbol_file_add_with_addrs_or_offsets (abfd,
1163 from_tty, addrs, 0, 0,
1164 mainline, flags);
1165 }
1166
1167
1168 /* Process a symbol file, as either the main file or as a dynamically
1169 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1170 for details. */
1171 struct objfile *
1172 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1173 int mainline, int flags)
1174 {
1175 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1176 addrs, mainline, flags);
1177 }
1178
1179
1180 /* Call symbol_file_add() with default values and update whatever is
1181 affected by the loading of a new main().
1182 Used when the file is supplied in the gdb command line
1183 and by some targets with special loading requirements.
1184 The auxiliary function, symbol_file_add_main_1(), has the flags
1185 argument for the switches that can only be specified in the symbol_file
1186 command itself. */
1187
1188 void
1189 symbol_file_add_main (char *args, int from_tty)
1190 {
1191 symbol_file_add_main_1 (args, from_tty, 0);
1192 }
1193
1194 static void
1195 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1196 {
1197 symbol_file_add (args, from_tty, NULL, 1, flags);
1198
1199 /* Getting new symbols may change our opinion about
1200 what is frameless. */
1201 reinit_frame_cache ();
1202
1203 set_initial_language ();
1204 }
1205
1206 void
1207 symbol_file_clear (int from_tty)
1208 {
1209 if ((have_full_symbols () || have_partial_symbols ())
1210 && from_tty
1211 && (symfile_objfile
1212 ? !query (_("Discard symbol table from `%s'? "),
1213 symfile_objfile->name)
1214 : !query (_("Discard symbol table? "))))
1215 error (_("Not confirmed."));
1216 free_all_objfiles ();
1217
1218 /* solib descriptors may have handles to objfiles. Since their
1219 storage has just been released, we'd better wipe the solib
1220 descriptors as well.
1221 */
1222 #if defined(SOLIB_RESTART)
1223 SOLIB_RESTART ();
1224 #endif
1225
1226 symfile_objfile = NULL;
1227 if (from_tty)
1228 printf_unfiltered (_("No symbol file now.\n"));
1229 }
1230
1231 struct build_id
1232 {
1233 size_t size;
1234 gdb_byte data[1];
1235 };
1236
1237 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1238
1239 static struct build_id *
1240 build_id_bfd_get (bfd *abfd)
1241 {
1242 struct build_id *retval;
1243
1244 if (!bfd_check_format (abfd, bfd_object)
1245 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1246 || elf_tdata (abfd)->build_id == NULL)
1247 return NULL;
1248
1249 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1250 retval->size = elf_tdata (abfd)->build_id_size;
1251 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1252
1253 return retval;
1254 }
1255
1256 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1257
1258 static int
1259 build_id_verify (const char *filename, struct build_id *check)
1260 {
1261 bfd *abfd;
1262 struct build_id *found = NULL;
1263 int retval = 0;
1264
1265 /* We expect to be silent on the non-existing files. */
1266 abfd = bfd_openr (filename, gnutarget);
1267 if (abfd == NULL)
1268 return 0;
1269
1270 found = build_id_bfd_get (abfd);
1271
1272 if (found == NULL)
1273 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1274 else if (found->size != check->size
1275 || memcmp (found->data, check->data, found->size) != 0)
1276 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1277 else
1278 retval = 1;
1279
1280 if (!bfd_close (abfd))
1281 warning (_("cannot close \"%s\": %s"), filename,
1282 bfd_errmsg (bfd_get_error ()));
1283 return retval;
1284 }
1285
1286 static char *
1287 build_id_to_debug_filename (struct build_id *build_id)
1288 {
1289 char *link, *s, *retval = NULL;
1290 gdb_byte *data = build_id->data;
1291 size_t size = build_id->size;
1292
1293 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1294 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1295 + 2 * size + (sizeof ".debug" - 1) + 1);
1296 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1297 if (size > 0)
1298 {
1299 size--;
1300 s += sprintf (s, "%02x", (unsigned) *data++);
1301 }
1302 if (size > 0)
1303 *s++ = '/';
1304 while (size-- > 0)
1305 s += sprintf (s, "%02x", (unsigned) *data++);
1306 strcpy (s, ".debug");
1307
1308 /* lrealpath() is expensive even for the usually non-existent files. */
1309 if (access (link, F_OK) == 0)
1310 retval = lrealpath (link);
1311 xfree (link);
1312
1313 if (retval != NULL && !build_id_verify (retval, build_id))
1314 {
1315 xfree (retval);
1316 retval = NULL;
1317 }
1318
1319 return retval;
1320 }
1321
1322 static char *
1323 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1324 {
1325 asection *sect;
1326 bfd_size_type debuglink_size;
1327 unsigned long crc32;
1328 char *contents;
1329 int crc_offset;
1330 unsigned char *p;
1331
1332 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1333
1334 if (sect == NULL)
1335 return NULL;
1336
1337 debuglink_size = bfd_section_size (objfile->obfd, sect);
1338
1339 contents = xmalloc (debuglink_size);
1340 bfd_get_section_contents (objfile->obfd, sect, contents,
1341 (file_ptr)0, (bfd_size_type)debuglink_size);
1342
1343 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1344 crc_offset = strlen (contents) + 1;
1345 crc_offset = (crc_offset + 3) & ~3;
1346
1347 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1348
1349 *crc32_out = crc32;
1350 return contents;
1351 }
1352
1353 static int
1354 separate_debug_file_exists (const char *name, unsigned long crc)
1355 {
1356 unsigned long file_crc = 0;
1357 int fd;
1358 gdb_byte buffer[8*1024];
1359 int count;
1360
1361 fd = open (name, O_RDONLY | O_BINARY);
1362 if (fd < 0)
1363 return 0;
1364
1365 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1366 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1367
1368 close (fd);
1369
1370 return crc == file_crc;
1371 }
1372
1373 char *debug_file_directory = NULL;
1374 static void
1375 show_debug_file_directory (struct ui_file *file, int from_tty,
1376 struct cmd_list_element *c, const char *value)
1377 {
1378 fprintf_filtered (file, _("\
1379 The directory where separate debug symbols are searched for is \"%s\".\n"),
1380 value);
1381 }
1382
1383 #if ! defined (DEBUG_SUBDIRECTORY)
1384 #define DEBUG_SUBDIRECTORY ".debug"
1385 #endif
1386
1387 static char *
1388 find_separate_debug_file (struct objfile *objfile)
1389 {
1390 asection *sect;
1391 char *basename;
1392 char *dir;
1393 char *debugfile;
1394 char *name_copy;
1395 char *canon_name;
1396 bfd_size_type debuglink_size;
1397 unsigned long crc32;
1398 int i;
1399 struct build_id *build_id;
1400
1401 build_id = build_id_bfd_get (objfile->obfd);
1402 if (build_id != NULL)
1403 {
1404 char *build_id_name;
1405
1406 build_id_name = build_id_to_debug_filename (build_id);
1407 free (build_id);
1408 /* Prevent looping on a stripped .debug file. */
1409 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1410 {
1411 warning (_("\"%s\": separate debug info file has no debug info"),
1412 build_id_name);
1413 xfree (build_id_name);
1414 }
1415 else if (build_id_name != NULL)
1416 return build_id_name;
1417 }
1418
1419 basename = get_debug_link_info (objfile, &crc32);
1420
1421 if (basename == NULL)
1422 return NULL;
1423
1424 dir = xstrdup (objfile->name);
1425
1426 /* Strip off the final filename part, leaving the directory name,
1427 followed by a slash. Objfile names should always be absolute and
1428 tilde-expanded, so there should always be a slash in there
1429 somewhere. */
1430 for (i = strlen(dir) - 1; i >= 0; i--)
1431 {
1432 if (IS_DIR_SEPARATOR (dir[i]))
1433 break;
1434 }
1435 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1436 dir[i+1] = '\0';
1437
1438 debugfile = alloca (strlen (debug_file_directory) + 1
1439 + strlen (dir)
1440 + strlen (DEBUG_SUBDIRECTORY)
1441 + strlen ("/")
1442 + strlen (basename)
1443 + 1);
1444
1445 /* First try in the same directory as the original file. */
1446 strcpy (debugfile, dir);
1447 strcat (debugfile, basename);
1448
1449 if (separate_debug_file_exists (debugfile, crc32))
1450 {
1451 xfree (basename);
1452 xfree (dir);
1453 return xstrdup (debugfile);
1454 }
1455
1456 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1457 strcpy (debugfile, dir);
1458 strcat (debugfile, DEBUG_SUBDIRECTORY);
1459 strcat (debugfile, "/");
1460 strcat (debugfile, basename);
1461
1462 if (separate_debug_file_exists (debugfile, crc32))
1463 {
1464 xfree (basename);
1465 xfree (dir);
1466 return xstrdup (debugfile);
1467 }
1468
1469 /* Then try in the global debugfile directory. */
1470 strcpy (debugfile, debug_file_directory);
1471 strcat (debugfile, "/");
1472 strcat (debugfile, dir);
1473 strcat (debugfile, basename);
1474
1475 if (separate_debug_file_exists (debugfile, crc32))
1476 {
1477 xfree (basename);
1478 xfree (dir);
1479 return xstrdup (debugfile);
1480 }
1481
1482 /* If the file is in the sysroot, try using its base path in the
1483 global debugfile directory. */
1484 canon_name = lrealpath (dir);
1485 if (canon_name
1486 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1487 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1488 {
1489 strcpy (debugfile, debug_file_directory);
1490 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1491 strcat (debugfile, "/");
1492 strcat (debugfile, basename);
1493
1494 if (separate_debug_file_exists (debugfile, crc32))
1495 {
1496 xfree (canon_name);
1497 xfree (basename);
1498 xfree (dir);
1499 return xstrdup (debugfile);
1500 }
1501 }
1502
1503 if (canon_name)
1504 xfree (canon_name);
1505
1506 xfree (basename);
1507 xfree (dir);
1508 return NULL;
1509 }
1510
1511
1512 /* This is the symbol-file command. Read the file, analyze its
1513 symbols, and add a struct symtab to a symtab list. The syntax of
1514 the command is rather bizarre:
1515
1516 1. The function buildargv implements various quoting conventions
1517 which are undocumented and have little or nothing in common with
1518 the way things are quoted (or not quoted) elsewhere in GDB.
1519
1520 2. Options are used, which are not generally used in GDB (perhaps
1521 "set mapped on", "set readnow on" would be better)
1522
1523 3. The order of options matters, which is contrary to GNU
1524 conventions (because it is confusing and inconvenient). */
1525
1526 void
1527 symbol_file_command (char *args, int from_tty)
1528 {
1529 dont_repeat ();
1530
1531 if (args == NULL)
1532 {
1533 symbol_file_clear (from_tty);
1534 }
1535 else
1536 {
1537 char **argv = buildargv (args);
1538 int flags = OBJF_USERLOADED;
1539 struct cleanup *cleanups;
1540 char *name = NULL;
1541
1542 if (argv == NULL)
1543 nomem (0);
1544
1545 cleanups = make_cleanup_freeargv (argv);
1546 while (*argv != NULL)
1547 {
1548 if (strcmp (*argv, "-readnow") == 0)
1549 flags |= OBJF_READNOW;
1550 else if (**argv == '-')
1551 error (_("unknown option `%s'"), *argv);
1552 else
1553 {
1554 symbol_file_add_main_1 (*argv, from_tty, flags);
1555 name = *argv;
1556 }
1557
1558 argv++;
1559 }
1560
1561 if (name == NULL)
1562 error (_("no symbol file name was specified"));
1563
1564 do_cleanups (cleanups);
1565 }
1566 }
1567
1568 /* Set the initial language.
1569
1570 FIXME: A better solution would be to record the language in the
1571 psymtab when reading partial symbols, and then use it (if known) to
1572 set the language. This would be a win for formats that encode the
1573 language in an easily discoverable place, such as DWARF. For
1574 stabs, we can jump through hoops looking for specially named
1575 symbols or try to intuit the language from the specific type of
1576 stabs we find, but we can't do that until later when we read in
1577 full symbols. */
1578
1579 static void
1580 set_initial_language (void)
1581 {
1582 struct partial_symtab *pst;
1583 enum language lang = language_unknown;
1584
1585 pst = find_main_psymtab ();
1586 if (pst != NULL)
1587 {
1588 if (pst->filename != NULL)
1589 lang = deduce_language_from_filename (pst->filename);
1590
1591 if (lang == language_unknown)
1592 {
1593 /* Make C the default language */
1594 lang = language_c;
1595 }
1596
1597 set_language (lang);
1598 expected_language = current_language; /* Don't warn the user. */
1599 }
1600 }
1601
1602 /* Open the file specified by NAME and hand it off to BFD for
1603 preliminary analysis. Return a newly initialized bfd *, which
1604 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1605 absolute). In case of trouble, error() is called. */
1606
1607 bfd *
1608 symfile_bfd_open (char *name)
1609 {
1610 bfd *sym_bfd;
1611 int desc;
1612 char *absolute_name;
1613
1614 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1615
1616 /* Look down path for it, allocate 2nd new malloc'd copy. */
1617 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1618 O_RDONLY | O_BINARY, 0, &absolute_name);
1619 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1620 if (desc < 0)
1621 {
1622 char *exename = alloca (strlen (name) + 5);
1623 strcat (strcpy (exename, name), ".exe");
1624 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1625 O_RDONLY | O_BINARY, 0, &absolute_name);
1626 }
1627 #endif
1628 if (desc < 0)
1629 {
1630 make_cleanup (xfree, name);
1631 perror_with_name (name);
1632 }
1633
1634 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1635 bfd. It'll be freed in free_objfile(). */
1636 xfree (name);
1637 name = absolute_name;
1638
1639 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1640 if (!sym_bfd)
1641 {
1642 close (desc);
1643 make_cleanup (xfree, name);
1644 error (_("\"%s\": can't open to read symbols: %s."), name,
1645 bfd_errmsg (bfd_get_error ()));
1646 }
1647 bfd_set_cacheable (sym_bfd, 1);
1648
1649 if (!bfd_check_format (sym_bfd, bfd_object))
1650 {
1651 /* FIXME: should be checking for errors from bfd_close (for one
1652 thing, on error it does not free all the storage associated
1653 with the bfd). */
1654 bfd_close (sym_bfd); /* This also closes desc. */
1655 make_cleanup (xfree, name);
1656 error (_("\"%s\": can't read symbols: %s."), name,
1657 bfd_errmsg (bfd_get_error ()));
1658 }
1659
1660 return sym_bfd;
1661 }
1662
1663 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1664 the section was not found. */
1665
1666 int
1667 get_section_index (struct objfile *objfile, char *section_name)
1668 {
1669 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1670
1671 if (sect)
1672 return sect->index;
1673 else
1674 return -1;
1675 }
1676
1677 /* Link SF into the global symtab_fns list. Called on startup by the
1678 _initialize routine in each object file format reader, to register
1679 information about each format the the reader is prepared to
1680 handle. */
1681
1682 void
1683 add_symtab_fns (struct sym_fns *sf)
1684 {
1685 sf->next = symtab_fns;
1686 symtab_fns = sf;
1687 }
1688
1689 /* Initialize OBJFILE to read symbols from its associated BFD. It
1690 either returns or calls error(). The result is an initialized
1691 struct sym_fns in the objfile structure, that contains cached
1692 information about the symbol file. */
1693
1694 static struct sym_fns *
1695 find_sym_fns (bfd *abfd)
1696 {
1697 struct sym_fns *sf;
1698 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1699
1700 if (our_flavour == bfd_target_srec_flavour
1701 || our_flavour == bfd_target_ihex_flavour
1702 || our_flavour == bfd_target_tekhex_flavour)
1703 return NULL; /* No symbols. */
1704
1705 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1706 if (our_flavour == sf->sym_flavour)
1707 return sf;
1708
1709 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1710 bfd_get_target (abfd));
1711 }
1712 \f
1713
1714 /* This function runs the load command of our current target. */
1715
1716 static void
1717 load_command (char *arg, int from_tty)
1718 {
1719 if (arg == NULL)
1720 {
1721 char *parg;
1722 int count = 0;
1723
1724 parg = arg = get_exec_file (1);
1725
1726 /* Count how many \ " ' tab space there are in the name. */
1727 while ((parg = strpbrk (parg, "\\\"'\t ")))
1728 {
1729 parg++;
1730 count++;
1731 }
1732
1733 if (count)
1734 {
1735 /* We need to quote this string so buildargv can pull it apart. */
1736 char *temp = xmalloc (strlen (arg) + count + 1 );
1737 char *ptemp = temp;
1738 char *prev;
1739
1740 make_cleanup (xfree, temp);
1741
1742 prev = parg = arg;
1743 while ((parg = strpbrk (parg, "\\\"'\t ")))
1744 {
1745 strncpy (ptemp, prev, parg - prev);
1746 ptemp += parg - prev;
1747 prev = parg++;
1748 *ptemp++ = '\\';
1749 }
1750 strcpy (ptemp, prev);
1751
1752 arg = temp;
1753 }
1754 }
1755
1756 /* The user might be reloading because the binary has changed. Take
1757 this opportunity to check. */
1758 reopen_exec_file ();
1759 reread_symbols ();
1760
1761 target_load (arg, from_tty);
1762
1763 /* After re-loading the executable, we don't really know which
1764 overlays are mapped any more. */
1765 overlay_cache_invalid = 1;
1766 }
1767
1768 /* This version of "load" should be usable for any target. Currently
1769 it is just used for remote targets, not inftarg.c or core files,
1770 on the theory that only in that case is it useful.
1771
1772 Avoiding xmodem and the like seems like a win (a) because we don't have
1773 to worry about finding it, and (b) On VMS, fork() is very slow and so
1774 we don't want to run a subprocess. On the other hand, I'm not sure how
1775 performance compares. */
1776
1777 static int validate_download = 0;
1778
1779 /* Callback service function for generic_load (bfd_map_over_sections). */
1780
1781 static void
1782 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1783 {
1784 bfd_size_type *sum = data;
1785
1786 *sum += bfd_get_section_size (asec);
1787 }
1788
1789 /* Opaque data for load_section_callback. */
1790 struct load_section_data {
1791 unsigned long load_offset;
1792 struct load_progress_data *progress_data;
1793 VEC(memory_write_request_s) *requests;
1794 };
1795
1796 /* Opaque data for load_progress. */
1797 struct load_progress_data {
1798 /* Cumulative data. */
1799 unsigned long write_count;
1800 unsigned long data_count;
1801 bfd_size_type total_size;
1802 };
1803
1804 /* Opaque data for load_progress for a single section. */
1805 struct load_progress_section_data {
1806 struct load_progress_data *cumulative;
1807
1808 /* Per-section data. */
1809 const char *section_name;
1810 ULONGEST section_sent;
1811 ULONGEST section_size;
1812 CORE_ADDR lma;
1813 gdb_byte *buffer;
1814 };
1815
1816 /* Target write callback routine for progress reporting. */
1817
1818 static void
1819 load_progress (ULONGEST bytes, void *untyped_arg)
1820 {
1821 struct load_progress_section_data *args = untyped_arg;
1822 struct load_progress_data *totals;
1823
1824 if (args == NULL)
1825 /* Writing padding data. No easy way to get at the cumulative
1826 stats, so just ignore this. */
1827 return;
1828
1829 totals = args->cumulative;
1830
1831 if (bytes == 0 && args->section_sent == 0)
1832 {
1833 /* The write is just starting. Let the user know we've started
1834 this section. */
1835 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1836 args->section_name, paddr_nz (args->section_size),
1837 paddr_nz (args->lma));
1838 return;
1839 }
1840
1841 if (validate_download)
1842 {
1843 /* Broken memories and broken monitors manifest themselves here
1844 when bring new computers to life. This doubles already slow
1845 downloads. */
1846 /* NOTE: cagney/1999-10-18: A more efficient implementation
1847 might add a verify_memory() method to the target vector and
1848 then use that. remote.c could implement that method using
1849 the ``qCRC'' packet. */
1850 gdb_byte *check = xmalloc (bytes);
1851 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1852
1853 if (target_read_memory (args->lma, check, bytes) != 0)
1854 error (_("Download verify read failed at 0x%s"),
1855 paddr (args->lma));
1856 if (memcmp (args->buffer, check, bytes) != 0)
1857 error (_("Download verify compare failed at 0x%s"),
1858 paddr (args->lma));
1859 do_cleanups (verify_cleanups);
1860 }
1861 totals->data_count += bytes;
1862 args->lma += bytes;
1863 args->buffer += bytes;
1864 totals->write_count += 1;
1865 args->section_sent += bytes;
1866 if (quit_flag
1867 || (deprecated_ui_load_progress_hook != NULL
1868 && deprecated_ui_load_progress_hook (args->section_name,
1869 args->section_sent)))
1870 error (_("Canceled the download"));
1871
1872 if (deprecated_show_load_progress != NULL)
1873 deprecated_show_load_progress (args->section_name,
1874 args->section_sent,
1875 args->section_size,
1876 totals->data_count,
1877 totals->total_size);
1878 }
1879
1880 /* Callback service function for generic_load (bfd_map_over_sections). */
1881
1882 static void
1883 load_section_callback (bfd *abfd, asection *asec, void *data)
1884 {
1885 struct memory_write_request *new_request;
1886 struct load_section_data *args = data;
1887 struct load_progress_section_data *section_data;
1888 bfd_size_type size = bfd_get_section_size (asec);
1889 gdb_byte *buffer;
1890 const char *sect_name = bfd_get_section_name (abfd, asec);
1891
1892 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1893 return;
1894
1895 if (size == 0)
1896 return;
1897
1898 new_request = VEC_safe_push (memory_write_request_s,
1899 args->requests, NULL);
1900 memset (new_request, 0, sizeof (struct memory_write_request));
1901 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1902 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1903 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1904 new_request->data = xmalloc (size);
1905 new_request->baton = section_data;
1906
1907 buffer = new_request->data;
1908
1909 section_data->cumulative = args->progress_data;
1910 section_data->section_name = sect_name;
1911 section_data->section_size = size;
1912 section_data->lma = new_request->begin;
1913 section_data->buffer = buffer;
1914
1915 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1916 }
1917
1918 /* Clean up an entire memory request vector, including load
1919 data and progress records. */
1920
1921 static void
1922 clear_memory_write_data (void *arg)
1923 {
1924 VEC(memory_write_request_s) **vec_p = arg;
1925 VEC(memory_write_request_s) *vec = *vec_p;
1926 int i;
1927 struct memory_write_request *mr;
1928
1929 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1930 {
1931 xfree (mr->data);
1932 xfree (mr->baton);
1933 }
1934 VEC_free (memory_write_request_s, vec);
1935 }
1936
1937 void
1938 generic_load (char *args, int from_tty)
1939 {
1940 bfd *loadfile_bfd;
1941 struct timeval start_time, end_time;
1942 char *filename;
1943 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1944 struct load_section_data cbdata;
1945 struct load_progress_data total_progress;
1946
1947 CORE_ADDR entry;
1948 char **argv;
1949
1950 memset (&cbdata, 0, sizeof (cbdata));
1951 memset (&total_progress, 0, sizeof (total_progress));
1952 cbdata.progress_data = &total_progress;
1953
1954 make_cleanup (clear_memory_write_data, &cbdata.requests);
1955
1956 argv = buildargv (args);
1957
1958 if (argv == NULL)
1959 nomem(0);
1960
1961 make_cleanup_freeargv (argv);
1962
1963 filename = tilde_expand (argv[0]);
1964 make_cleanup (xfree, filename);
1965
1966 if (argv[1] != NULL)
1967 {
1968 char *endptr;
1969
1970 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1971
1972 /* If the last word was not a valid number then
1973 treat it as a file name with spaces in. */
1974 if (argv[1] == endptr)
1975 error (_("Invalid download offset:%s."), argv[1]);
1976
1977 if (argv[2] != NULL)
1978 error (_("Too many parameters."));
1979 }
1980
1981 /* Open the file for loading. */
1982 loadfile_bfd = bfd_openr (filename, gnutarget);
1983 if (loadfile_bfd == NULL)
1984 {
1985 perror_with_name (filename);
1986 return;
1987 }
1988
1989 /* FIXME: should be checking for errors from bfd_close (for one thing,
1990 on error it does not free all the storage associated with the
1991 bfd). */
1992 make_cleanup_bfd_close (loadfile_bfd);
1993
1994 if (!bfd_check_format (loadfile_bfd, bfd_object))
1995 {
1996 error (_("\"%s\" is not an object file: %s"), filename,
1997 bfd_errmsg (bfd_get_error ()));
1998 }
1999
2000 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2001 (void *) &total_progress.total_size);
2002
2003 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2004
2005 gettimeofday (&start_time, NULL);
2006
2007 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2008 load_progress) != 0)
2009 error (_("Load failed"));
2010
2011 gettimeofday (&end_time, NULL);
2012
2013 entry = bfd_get_start_address (loadfile_bfd);
2014 ui_out_text (uiout, "Start address ");
2015 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
2016 ui_out_text (uiout, ", load size ");
2017 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2018 ui_out_text (uiout, "\n");
2019 /* We were doing this in remote-mips.c, I suspect it is right
2020 for other targets too. */
2021 write_pc (entry);
2022
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
2027 others don't (or didn't - perhaps they have all been deleted). */
2028
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
2032
2033 do_cleanups (old_cleanups);
2034 }
2035
2036 /* Report how fast the transfer went. */
2037
2038 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2041
2042 void
2043 report_transfer_performance (unsigned long data_count, time_t start_time,
2044 time_t end_time)
2045 {
2046 struct timeval start, end;
2047
2048 start.tv_sec = start_time;
2049 start.tv_usec = 0;
2050 end.tv_sec = end_time;
2051 end.tv_usec = 0;
2052
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2054 }
2055
2056 void
2057 print_transfer_performance (struct ui_file *stream,
2058 unsigned long data_count,
2059 unsigned long write_count,
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
2062 {
2063 ULONGEST time_count;
2064
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
2070 ui_out_text (uiout, "Transfer rate: ");
2071 if (time_count > 0)
2072 {
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075 if (ui_out_is_mi_like_p (uiout))
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2079 }
2080 else if (rate < 1024)
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2084 }
2085 else
2086 {
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2089 }
2090 }
2091 else
2092 {
2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2094 ui_out_text (uiout, " bits in <1 sec");
2095 }
2096 if (write_count > 0)
2097 {
2098 ui_out_text (uiout, ", ");
2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2100 ui_out_text (uiout, " bytes/write");
2101 }
2102 ui_out_text (uiout, ".\n");
2103 }
2104
2105 /* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
2107 /* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
2113
2114 static void
2115 add_symbol_file_command (char *args, int from_tty)
2116 {
2117 char *filename = NULL;
2118 int flags = OBJF_USERLOADED;
2119 char *arg;
2120 int expecting_option = 0;
2121 int section_index = 0;
2122 int argcnt = 0;
2123 int sec_num = 0;
2124 int i;
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
2127 char **argv;
2128
2129 struct sect_opt
2130 {
2131 char *name;
2132 char *value;
2133 };
2134
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2139
2140 num_sect_opts = 16;
2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2142 * sizeof (struct sect_opt));
2143
2144 dont_repeat ();
2145
2146 if (args == NULL)
2147 error (_("add-symbol-file takes a file name and an address"));
2148
2149 argv = buildargv (args);
2150 make_cleanup_freeargv (argv);
2151
2152 if (argv == NULL)
2153 nomem (0);
2154
2155 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2156 {
2157 /* Process the argument. */
2158 if (argcnt == 0)
2159 {
2160 /* The first argument is the file name. */
2161 filename = tilde_expand (arg);
2162 make_cleanup (xfree, filename);
2163 }
2164 else
2165 if (argcnt == 1)
2166 {
2167 /* The second argument is always the text address at which
2168 to load the program. */
2169 sect_opts[section_index].name = ".text";
2170 sect_opts[section_index].value = arg;
2171 if (++section_index >= num_sect_opts)
2172 {
2173 num_sect_opts *= 2;
2174 sect_opts = ((struct sect_opt *)
2175 xrealloc (sect_opts,
2176 num_sect_opts
2177 * sizeof (struct sect_opt)));
2178 }
2179 }
2180 else
2181 {
2182 /* It's an option (starting with '-') or it's an argument
2183 to an option */
2184
2185 if (*arg == '-')
2186 {
2187 if (strcmp (arg, "-readnow") == 0)
2188 flags |= OBJF_READNOW;
2189 else if (strcmp (arg, "-s") == 0)
2190 {
2191 expecting_sec_name = 1;
2192 expecting_sec_addr = 1;
2193 }
2194 }
2195 else
2196 {
2197 if (expecting_sec_name)
2198 {
2199 sect_opts[section_index].name = arg;
2200 expecting_sec_name = 0;
2201 }
2202 else
2203 if (expecting_sec_addr)
2204 {
2205 sect_opts[section_index].value = arg;
2206 expecting_sec_addr = 0;
2207 if (++section_index >= num_sect_opts)
2208 {
2209 num_sect_opts *= 2;
2210 sect_opts = ((struct sect_opt *)
2211 xrealloc (sect_opts,
2212 num_sect_opts
2213 * sizeof (struct sect_opt)));
2214 }
2215 }
2216 else
2217 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2218 }
2219 }
2220 }
2221
2222 /* This command takes at least two arguments. The first one is a
2223 filename, and the second is the address where this file has been
2224 loaded. Abort now if this address hasn't been provided by the
2225 user. */
2226 if (section_index < 1)
2227 error (_("The address where %s has been loaded is missing"), filename);
2228
2229 /* Print the prompt for the query below. And save the arguments into
2230 a sect_addr_info structure to be passed around to other
2231 functions. We have to split this up into separate print
2232 statements because hex_string returns a local static
2233 string. */
2234
2235 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2236 section_addrs = alloc_section_addr_info (section_index);
2237 make_cleanup (xfree, section_addrs);
2238 for (i = 0; i < section_index; i++)
2239 {
2240 CORE_ADDR addr;
2241 char *val = sect_opts[i].value;
2242 char *sec = sect_opts[i].name;
2243
2244 addr = parse_and_eval_address (val);
2245
2246 /* Here we store the section offsets in the order they were
2247 entered on the command line. */
2248 section_addrs->other[sec_num].name = sec;
2249 section_addrs->other[sec_num].addr = addr;
2250 printf_unfiltered ("\t%s_addr = %s\n",
2251 sec, hex_string ((unsigned long)addr));
2252 sec_num++;
2253
2254 /* The object's sections are initialized when a
2255 call is made to build_objfile_section_table (objfile).
2256 This happens in reread_symbols.
2257 At this point, we don't know what file type this is,
2258 so we can't determine what section names are valid. */
2259 }
2260
2261 if (from_tty && (!query ("%s", "")))
2262 error (_("Not confirmed."));
2263
2264 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2265
2266 /* Getting new symbols may change our opinion about what is
2267 frameless. */
2268 reinit_frame_cache ();
2269 do_cleanups (my_cleanups);
2270 }
2271 \f
2272 static void
2273 add_shared_symbol_files_command (char *args, int from_tty)
2274 {
2275 #ifdef ADD_SHARED_SYMBOL_FILES
2276 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2277 #else
2278 error (_("This command is not available in this configuration of GDB."));
2279 #endif
2280 }
2281 \f
2282 /* Re-read symbols if a symbol-file has changed. */
2283 void
2284 reread_symbols (void)
2285 {
2286 struct objfile *objfile;
2287 long new_modtime;
2288 int reread_one = 0;
2289 struct stat new_statbuf;
2290 int res;
2291
2292 /* With the addition of shared libraries, this should be modified,
2293 the load time should be saved in the partial symbol tables, since
2294 different tables may come from different source files. FIXME.
2295 This routine should then walk down each partial symbol table
2296 and see if the symbol table that it originates from has been changed */
2297
2298 for (objfile = object_files; objfile; objfile = objfile->next)
2299 {
2300 if (objfile->obfd)
2301 {
2302 #ifdef DEPRECATED_IBM6000_TARGET
2303 /* If this object is from a shared library, then you should
2304 stat on the library name, not member name. */
2305
2306 if (objfile->obfd->my_archive)
2307 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2308 else
2309 #endif
2310 res = stat (objfile->name, &new_statbuf);
2311 if (res != 0)
2312 {
2313 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2314 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2315 objfile->name);
2316 continue;
2317 }
2318 new_modtime = new_statbuf.st_mtime;
2319 if (new_modtime != objfile->mtime)
2320 {
2321 struct cleanup *old_cleanups;
2322 struct section_offsets *offsets;
2323 int num_offsets;
2324 char *obfd_filename;
2325
2326 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2327 objfile->name);
2328
2329 /* There are various functions like symbol_file_add,
2330 symfile_bfd_open, syms_from_objfile, etc., which might
2331 appear to do what we want. But they have various other
2332 effects which we *don't* want. So we just do stuff
2333 ourselves. We don't worry about mapped files (for one thing,
2334 any mapped file will be out of date). */
2335
2336 /* If we get an error, blow away this objfile (not sure if
2337 that is the correct response for things like shared
2338 libraries). */
2339 old_cleanups = make_cleanup_free_objfile (objfile);
2340 /* We need to do this whenever any symbols go away. */
2341 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2342
2343 /* Clean up any state BFD has sitting around. We don't need
2344 to close the descriptor but BFD lacks a way of closing the
2345 BFD without closing the descriptor. */
2346 obfd_filename = bfd_get_filename (objfile->obfd);
2347 if (!bfd_close (objfile->obfd))
2348 error (_("Can't close BFD for %s: %s"), objfile->name,
2349 bfd_errmsg (bfd_get_error ()));
2350 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2351 if (objfile->obfd == NULL)
2352 error (_("Can't open %s to read symbols."), objfile->name);
2353 /* bfd_openr sets cacheable to true, which is what we want. */
2354 if (!bfd_check_format (objfile->obfd, bfd_object))
2355 error (_("Can't read symbols from %s: %s."), objfile->name,
2356 bfd_errmsg (bfd_get_error ()));
2357
2358 /* Save the offsets, we will nuke them with the rest of the
2359 objfile_obstack. */
2360 num_offsets = objfile->num_sections;
2361 offsets = ((struct section_offsets *)
2362 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2363 memcpy (offsets, objfile->section_offsets,
2364 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2365
2366 /* Remove any references to this objfile in the global
2367 value lists. */
2368 preserve_values (objfile);
2369
2370 /* Nuke all the state that we will re-read. Much of the following
2371 code which sets things to NULL really is necessary to tell
2372 other parts of GDB that there is nothing currently there. */
2373
2374 /* FIXME: Do we have to free a whole linked list, or is this
2375 enough? */
2376 if (objfile->global_psymbols.list)
2377 xfree (objfile->global_psymbols.list);
2378 memset (&objfile->global_psymbols, 0,
2379 sizeof (objfile->global_psymbols));
2380 if (objfile->static_psymbols.list)
2381 xfree (objfile->static_psymbols.list);
2382 memset (&objfile->static_psymbols, 0,
2383 sizeof (objfile->static_psymbols));
2384
2385 /* Free the obstacks for non-reusable objfiles */
2386 bcache_xfree (objfile->psymbol_cache);
2387 objfile->psymbol_cache = bcache_xmalloc ();
2388 bcache_xfree (objfile->macro_cache);
2389 objfile->macro_cache = bcache_xmalloc ();
2390 if (objfile->demangled_names_hash != NULL)
2391 {
2392 htab_delete (objfile->demangled_names_hash);
2393 objfile->demangled_names_hash = NULL;
2394 }
2395 obstack_free (&objfile->objfile_obstack, 0);
2396 objfile->sections = NULL;
2397 objfile->symtabs = NULL;
2398 objfile->psymtabs = NULL;
2399 objfile->free_psymtabs = NULL;
2400 objfile->cp_namespace_symtab = NULL;
2401 objfile->msymbols = NULL;
2402 objfile->deprecated_sym_private = NULL;
2403 objfile->minimal_symbol_count = 0;
2404 memset (&objfile->msymbol_hash, 0,
2405 sizeof (objfile->msymbol_hash));
2406 memset (&objfile->msymbol_demangled_hash, 0,
2407 sizeof (objfile->msymbol_demangled_hash));
2408 clear_objfile_data (objfile);
2409 if (objfile->sf != NULL)
2410 {
2411 (*objfile->sf->sym_finish) (objfile);
2412 }
2413
2414 /* We never make this a mapped file. */
2415 objfile->md = NULL;
2416 objfile->psymbol_cache = bcache_xmalloc ();
2417 objfile->macro_cache = bcache_xmalloc ();
2418 /* obstack_init also initializes the obstack so it is
2419 empty. We could use obstack_specify_allocation but
2420 gdb_obstack.h specifies the alloc/dealloc
2421 functions. */
2422 obstack_init (&objfile->objfile_obstack);
2423 if (build_objfile_section_table (objfile))
2424 {
2425 error (_("Can't find the file sections in `%s': %s"),
2426 objfile->name, bfd_errmsg (bfd_get_error ()));
2427 }
2428 terminate_minimal_symbol_table (objfile);
2429
2430 /* We use the same section offsets as from last time. I'm not
2431 sure whether that is always correct for shared libraries. */
2432 objfile->section_offsets = (struct section_offsets *)
2433 obstack_alloc (&objfile->objfile_obstack,
2434 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2435 memcpy (objfile->section_offsets, offsets,
2436 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2437 objfile->num_sections = num_offsets;
2438
2439 /* What the hell is sym_new_init for, anyway? The concept of
2440 distinguishing between the main file and additional files
2441 in this way seems rather dubious. */
2442 if (objfile == symfile_objfile)
2443 {
2444 (*objfile->sf->sym_new_init) (objfile);
2445 }
2446
2447 (*objfile->sf->sym_init) (objfile);
2448 clear_complaints (&symfile_complaints, 1, 1);
2449 /* The "mainline" parameter is a hideous hack; I think leaving it
2450 zero is OK since dbxread.c also does what it needs to do if
2451 objfile->global_psymbols.size is 0. */
2452 (*objfile->sf->sym_read) (objfile, 0);
2453 if (!have_partial_symbols () && !have_full_symbols ())
2454 {
2455 wrap_here ("");
2456 printf_unfiltered (_("(no debugging symbols found)\n"));
2457 wrap_here ("");
2458 }
2459 objfile->flags |= OBJF_SYMS;
2460
2461 /* We're done reading the symbol file; finish off complaints. */
2462 clear_complaints (&symfile_complaints, 0, 1);
2463
2464 /* Getting new symbols may change our opinion about what is
2465 frameless. */
2466
2467 reinit_frame_cache ();
2468
2469 /* Discard cleanups as symbol reading was successful. */
2470 discard_cleanups (old_cleanups);
2471
2472 /* If the mtime has changed between the time we set new_modtime
2473 and now, we *want* this to be out of date, so don't call stat
2474 again now. */
2475 objfile->mtime = new_modtime;
2476 reread_one = 1;
2477 reread_separate_symbols (objfile);
2478 }
2479 }
2480 }
2481
2482 if (reread_one)
2483 {
2484 clear_symtab_users ();
2485 /* At least one objfile has changed, so we can consider that
2486 the executable we're debugging has changed too. */
2487 observer_notify_executable_changed (NULL);
2488 }
2489
2490 }
2491
2492
2493 /* Handle separate debug info for OBJFILE, which has just been
2494 re-read:
2495 - If we had separate debug info before, but now we don't, get rid
2496 of the separated objfile.
2497 - If we didn't have separated debug info before, but now we do,
2498 read in the new separated debug info file.
2499 - If the debug link points to a different file, toss the old one
2500 and read the new one.
2501 This function does *not* handle the case where objfile is still
2502 using the same separate debug info file, but that file's timestamp
2503 has changed. That case should be handled by the loop in
2504 reread_symbols already. */
2505 static void
2506 reread_separate_symbols (struct objfile *objfile)
2507 {
2508 char *debug_file;
2509 unsigned long crc32;
2510
2511 /* Does the updated objfile's debug info live in a
2512 separate file? */
2513 debug_file = find_separate_debug_file (objfile);
2514
2515 if (objfile->separate_debug_objfile)
2516 {
2517 /* There are two cases where we need to get rid of
2518 the old separated debug info objfile:
2519 - if the new primary objfile doesn't have
2520 separated debug info, or
2521 - if the new primary objfile has separate debug
2522 info, but it's under a different filename.
2523
2524 If the old and new objfiles both have separate
2525 debug info, under the same filename, then we're
2526 okay --- if the separated file's contents have
2527 changed, we will have caught that when we
2528 visited it in this function's outermost
2529 loop. */
2530 if (! debug_file
2531 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2532 free_objfile (objfile->separate_debug_objfile);
2533 }
2534
2535 /* If the new objfile has separate debug info, and we
2536 haven't loaded it already, do so now. */
2537 if (debug_file
2538 && ! objfile->separate_debug_objfile)
2539 {
2540 /* Use the same section offset table as objfile itself.
2541 Preserve the flags from objfile that make sense. */
2542 objfile->separate_debug_objfile
2543 = (symbol_file_add_with_addrs_or_offsets
2544 (symfile_bfd_open (debug_file),
2545 info_verbose, /* from_tty: Don't override the default. */
2546 0, /* No addr table. */
2547 objfile->section_offsets, objfile->num_sections,
2548 0, /* Not mainline. See comments about this above. */
2549 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2550 | OBJF_USERLOADED)));
2551 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2552 = objfile;
2553 }
2554 if (debug_file)
2555 xfree (debug_file);
2556 }
2557
2558
2559 \f
2560
2561
2562 typedef struct
2563 {
2564 char *ext;
2565 enum language lang;
2566 }
2567 filename_language;
2568
2569 static filename_language *filename_language_table;
2570 static int fl_table_size, fl_table_next;
2571
2572 static void
2573 add_filename_language (char *ext, enum language lang)
2574 {
2575 if (fl_table_next >= fl_table_size)
2576 {
2577 fl_table_size += 10;
2578 filename_language_table =
2579 xrealloc (filename_language_table,
2580 fl_table_size * sizeof (*filename_language_table));
2581 }
2582
2583 filename_language_table[fl_table_next].ext = xstrdup (ext);
2584 filename_language_table[fl_table_next].lang = lang;
2585 fl_table_next++;
2586 }
2587
2588 static char *ext_args;
2589 static void
2590 show_ext_args (struct ui_file *file, int from_tty,
2591 struct cmd_list_element *c, const char *value)
2592 {
2593 fprintf_filtered (file, _("\
2594 Mapping between filename extension and source language is \"%s\".\n"),
2595 value);
2596 }
2597
2598 static void
2599 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2600 {
2601 int i;
2602 char *cp = ext_args;
2603 enum language lang;
2604
2605 /* First arg is filename extension, starting with '.' */
2606 if (*cp != '.')
2607 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2608
2609 /* Find end of first arg. */
2610 while (*cp && !isspace (*cp))
2611 cp++;
2612
2613 if (*cp == '\0')
2614 error (_("'%s': two arguments required -- filename extension and language"),
2615 ext_args);
2616
2617 /* Null-terminate first arg */
2618 *cp++ = '\0';
2619
2620 /* Find beginning of second arg, which should be a source language. */
2621 while (*cp && isspace (*cp))
2622 cp++;
2623
2624 if (*cp == '\0')
2625 error (_("'%s': two arguments required -- filename extension and language"),
2626 ext_args);
2627
2628 /* Lookup the language from among those we know. */
2629 lang = language_enum (cp);
2630
2631 /* Now lookup the filename extension: do we already know it? */
2632 for (i = 0; i < fl_table_next; i++)
2633 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2634 break;
2635
2636 if (i >= fl_table_next)
2637 {
2638 /* new file extension */
2639 add_filename_language (ext_args, lang);
2640 }
2641 else
2642 {
2643 /* redefining a previously known filename extension */
2644
2645 /* if (from_tty) */
2646 /* query ("Really make files of type %s '%s'?", */
2647 /* ext_args, language_str (lang)); */
2648
2649 xfree (filename_language_table[i].ext);
2650 filename_language_table[i].ext = xstrdup (ext_args);
2651 filename_language_table[i].lang = lang;
2652 }
2653 }
2654
2655 static void
2656 info_ext_lang_command (char *args, int from_tty)
2657 {
2658 int i;
2659
2660 printf_filtered (_("Filename extensions and the languages they represent:"));
2661 printf_filtered ("\n\n");
2662 for (i = 0; i < fl_table_next; i++)
2663 printf_filtered ("\t%s\t- %s\n",
2664 filename_language_table[i].ext,
2665 language_str (filename_language_table[i].lang));
2666 }
2667
2668 static void
2669 init_filename_language_table (void)
2670 {
2671 if (fl_table_size == 0) /* protect against repetition */
2672 {
2673 fl_table_size = 20;
2674 fl_table_next = 0;
2675 filename_language_table =
2676 xmalloc (fl_table_size * sizeof (*filename_language_table));
2677 add_filename_language (".c", language_c);
2678 add_filename_language (".C", language_cplus);
2679 add_filename_language (".cc", language_cplus);
2680 add_filename_language (".cp", language_cplus);
2681 add_filename_language (".cpp", language_cplus);
2682 add_filename_language (".cxx", language_cplus);
2683 add_filename_language (".c++", language_cplus);
2684 add_filename_language (".java", language_java);
2685 add_filename_language (".class", language_java);
2686 add_filename_language (".m", language_objc);
2687 add_filename_language (".f", language_fortran);
2688 add_filename_language (".F", language_fortran);
2689 add_filename_language (".s", language_asm);
2690 add_filename_language (".S", language_asm);
2691 add_filename_language (".pas", language_pascal);
2692 add_filename_language (".p", language_pascal);
2693 add_filename_language (".pp", language_pascal);
2694 add_filename_language (".adb", language_ada);
2695 add_filename_language (".ads", language_ada);
2696 add_filename_language (".a", language_ada);
2697 add_filename_language (".ada", language_ada);
2698 }
2699 }
2700
2701 enum language
2702 deduce_language_from_filename (char *filename)
2703 {
2704 int i;
2705 char *cp;
2706
2707 if (filename != NULL)
2708 if ((cp = strrchr (filename, '.')) != NULL)
2709 for (i = 0; i < fl_table_next; i++)
2710 if (strcmp (cp, filename_language_table[i].ext) == 0)
2711 return filename_language_table[i].lang;
2712
2713 return language_unknown;
2714 }
2715 \f
2716 /* allocate_symtab:
2717
2718 Allocate and partly initialize a new symbol table. Return a pointer
2719 to it. error() if no space.
2720
2721 Caller must set these fields:
2722 LINETABLE(symtab)
2723 symtab->blockvector
2724 symtab->dirname
2725 symtab->free_code
2726 symtab->free_ptr
2727 possibly free_named_symtabs (symtab->filename);
2728 */
2729
2730 struct symtab *
2731 allocate_symtab (char *filename, struct objfile *objfile)
2732 {
2733 struct symtab *symtab;
2734
2735 symtab = (struct symtab *)
2736 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2737 memset (symtab, 0, sizeof (*symtab));
2738 symtab->filename = obsavestring (filename, strlen (filename),
2739 &objfile->objfile_obstack);
2740 symtab->fullname = NULL;
2741 symtab->language = deduce_language_from_filename (filename);
2742 symtab->debugformat = obsavestring ("unknown", 7,
2743 &objfile->objfile_obstack);
2744
2745 /* Hook it to the objfile it comes from */
2746
2747 symtab->objfile = objfile;
2748 symtab->next = objfile->symtabs;
2749 objfile->symtabs = symtab;
2750
2751 return (symtab);
2752 }
2753
2754 struct partial_symtab *
2755 allocate_psymtab (char *filename, struct objfile *objfile)
2756 {
2757 struct partial_symtab *psymtab;
2758
2759 if (objfile->free_psymtabs)
2760 {
2761 psymtab = objfile->free_psymtabs;
2762 objfile->free_psymtabs = psymtab->next;
2763 }
2764 else
2765 psymtab = (struct partial_symtab *)
2766 obstack_alloc (&objfile->objfile_obstack,
2767 sizeof (struct partial_symtab));
2768
2769 memset (psymtab, 0, sizeof (struct partial_symtab));
2770 psymtab->filename = obsavestring (filename, strlen (filename),
2771 &objfile->objfile_obstack);
2772 psymtab->symtab = NULL;
2773
2774 /* Prepend it to the psymtab list for the objfile it belongs to.
2775 Psymtabs are searched in most recent inserted -> least recent
2776 inserted order. */
2777
2778 psymtab->objfile = objfile;
2779 psymtab->next = objfile->psymtabs;
2780 objfile->psymtabs = psymtab;
2781 #if 0
2782 {
2783 struct partial_symtab **prev_pst;
2784 psymtab->objfile = objfile;
2785 psymtab->next = NULL;
2786 prev_pst = &(objfile->psymtabs);
2787 while ((*prev_pst) != NULL)
2788 prev_pst = &((*prev_pst)->next);
2789 (*prev_pst) = psymtab;
2790 }
2791 #endif
2792
2793 return (psymtab);
2794 }
2795
2796 void
2797 discard_psymtab (struct partial_symtab *pst)
2798 {
2799 struct partial_symtab **prev_pst;
2800
2801 /* From dbxread.c:
2802 Empty psymtabs happen as a result of header files which don't
2803 have any symbols in them. There can be a lot of them. But this
2804 check is wrong, in that a psymtab with N_SLINE entries but
2805 nothing else is not empty, but we don't realize that. Fixing
2806 that without slowing things down might be tricky. */
2807
2808 /* First, snip it out of the psymtab chain */
2809
2810 prev_pst = &(pst->objfile->psymtabs);
2811 while ((*prev_pst) != pst)
2812 prev_pst = &((*prev_pst)->next);
2813 (*prev_pst) = pst->next;
2814
2815 /* Next, put it on a free list for recycling */
2816
2817 pst->next = pst->objfile->free_psymtabs;
2818 pst->objfile->free_psymtabs = pst;
2819 }
2820 \f
2821
2822 /* Reset all data structures in gdb which may contain references to symbol
2823 table data. */
2824
2825 void
2826 clear_symtab_users (void)
2827 {
2828 /* Someday, we should do better than this, by only blowing away
2829 the things that really need to be blown. */
2830
2831 /* Clear the "current" symtab first, because it is no longer valid.
2832 breakpoint_re_set may try to access the current symtab. */
2833 clear_current_source_symtab_and_line ();
2834
2835 clear_displays ();
2836 breakpoint_re_set ();
2837 set_default_breakpoint (0, 0, 0, 0);
2838 clear_pc_function_cache ();
2839 observer_notify_new_objfile (NULL);
2840
2841 /* Clear globals which might have pointed into a removed objfile.
2842 FIXME: It's not clear which of these are supposed to persist
2843 between expressions and which ought to be reset each time. */
2844 expression_context_block = NULL;
2845 innermost_block = NULL;
2846
2847 /* Varobj may refer to old symbols, perform a cleanup. */
2848 varobj_invalidate ();
2849
2850 }
2851
2852 static void
2853 clear_symtab_users_cleanup (void *ignore)
2854 {
2855 clear_symtab_users ();
2856 }
2857
2858 /* clear_symtab_users_once:
2859
2860 This function is run after symbol reading, or from a cleanup.
2861 If an old symbol table was obsoleted, the old symbol table
2862 has been blown away, but the other GDB data structures that may
2863 reference it have not yet been cleared or re-directed. (The old
2864 symtab was zapped, and the cleanup queued, in free_named_symtab()
2865 below.)
2866
2867 This function can be queued N times as a cleanup, or called
2868 directly; it will do all the work the first time, and then will be a
2869 no-op until the next time it is queued. This works by bumping a
2870 counter at queueing time. Much later when the cleanup is run, or at
2871 the end of symbol processing (in case the cleanup is discarded), if
2872 the queued count is greater than the "done-count", we do the work
2873 and set the done-count to the queued count. If the queued count is
2874 less than or equal to the done-count, we just ignore the call. This
2875 is needed because reading a single .o file will often replace many
2876 symtabs (one per .h file, for example), and we don't want to reset
2877 the breakpoints N times in the user's face.
2878
2879 The reason we both queue a cleanup, and call it directly after symbol
2880 reading, is because the cleanup protects us in case of errors, but is
2881 discarded if symbol reading is successful. */
2882
2883 #if 0
2884 /* FIXME: As free_named_symtabs is currently a big noop this function
2885 is no longer needed. */
2886 static void clear_symtab_users_once (void);
2887
2888 static int clear_symtab_users_queued;
2889 static int clear_symtab_users_done;
2890
2891 static void
2892 clear_symtab_users_once (void)
2893 {
2894 /* Enforce once-per-`do_cleanups'-semantics */
2895 if (clear_symtab_users_queued <= clear_symtab_users_done)
2896 return;
2897 clear_symtab_users_done = clear_symtab_users_queued;
2898
2899 clear_symtab_users ();
2900 }
2901 #endif
2902
2903 /* Delete the specified psymtab, and any others that reference it. */
2904
2905 static void
2906 cashier_psymtab (struct partial_symtab *pst)
2907 {
2908 struct partial_symtab *ps, *pprev = NULL;
2909 int i;
2910
2911 /* Find its previous psymtab in the chain */
2912 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2913 {
2914 if (ps == pst)
2915 break;
2916 pprev = ps;
2917 }
2918
2919 if (ps)
2920 {
2921 /* Unhook it from the chain. */
2922 if (ps == pst->objfile->psymtabs)
2923 pst->objfile->psymtabs = ps->next;
2924 else
2925 pprev->next = ps->next;
2926
2927 /* FIXME, we can't conveniently deallocate the entries in the
2928 partial_symbol lists (global_psymbols/static_psymbols) that
2929 this psymtab points to. These just take up space until all
2930 the psymtabs are reclaimed. Ditto the dependencies list and
2931 filename, which are all in the objfile_obstack. */
2932
2933 /* We need to cashier any psymtab that has this one as a dependency... */
2934 again:
2935 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2936 {
2937 for (i = 0; i < ps->number_of_dependencies; i++)
2938 {
2939 if (ps->dependencies[i] == pst)
2940 {
2941 cashier_psymtab (ps);
2942 goto again; /* Must restart, chain has been munged. */
2943 }
2944 }
2945 }
2946 }
2947 }
2948
2949 /* If a symtab or psymtab for filename NAME is found, free it along
2950 with any dependent breakpoints, displays, etc.
2951 Used when loading new versions of object modules with the "add-file"
2952 command. This is only called on the top-level symtab or psymtab's name;
2953 it is not called for subsidiary files such as .h files.
2954
2955 Return value is 1 if we blew away the environment, 0 if not.
2956 FIXME. The return value appears to never be used.
2957
2958 FIXME. I think this is not the best way to do this. We should
2959 work on being gentler to the environment while still cleaning up
2960 all stray pointers into the freed symtab. */
2961
2962 int
2963 free_named_symtabs (char *name)
2964 {
2965 #if 0
2966 /* FIXME: With the new method of each objfile having it's own
2967 psymtab list, this function needs serious rethinking. In particular,
2968 why was it ever necessary to toss psymtabs with specific compilation
2969 unit filenames, as opposed to all psymtabs from a particular symbol
2970 file? -- fnf
2971 Well, the answer is that some systems permit reloading of particular
2972 compilation units. We want to blow away any old info about these
2973 compilation units, regardless of which objfiles they arrived in. --gnu. */
2974
2975 struct symtab *s;
2976 struct symtab *prev;
2977 struct partial_symtab *ps;
2978 struct blockvector *bv;
2979 int blewit = 0;
2980
2981 /* We only wack things if the symbol-reload switch is set. */
2982 if (!symbol_reloading)
2983 return 0;
2984
2985 /* Some symbol formats have trouble providing file names... */
2986 if (name == 0 || *name == '\0')
2987 return 0;
2988
2989 /* Look for a psymtab with the specified name. */
2990
2991 again2:
2992 for (ps = partial_symtab_list; ps; ps = ps->next)
2993 {
2994 if (strcmp (name, ps->filename) == 0)
2995 {
2996 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2997 goto again2; /* Must restart, chain has been munged */
2998 }
2999 }
3000
3001 /* Look for a symtab with the specified name. */
3002
3003 for (s = symtab_list; s; s = s->next)
3004 {
3005 if (strcmp (name, s->filename) == 0)
3006 break;
3007 prev = s;
3008 }
3009
3010 if (s)
3011 {
3012 if (s == symtab_list)
3013 symtab_list = s->next;
3014 else
3015 prev->next = s->next;
3016
3017 /* For now, queue a delete for all breakpoints, displays, etc., whether
3018 or not they depend on the symtab being freed. This should be
3019 changed so that only those data structures affected are deleted. */
3020
3021 /* But don't delete anything if the symtab is empty.
3022 This test is necessary due to a bug in "dbxread.c" that
3023 causes empty symtabs to be created for N_SO symbols that
3024 contain the pathname of the object file. (This problem
3025 has been fixed in GDB 3.9x). */
3026
3027 bv = BLOCKVECTOR (s);
3028 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3029 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3030 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3031 {
3032 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3033 name);
3034 clear_symtab_users_queued++;
3035 make_cleanup (clear_symtab_users_once, 0);
3036 blewit = 1;
3037 }
3038 else
3039 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3040 name);
3041
3042 free_symtab (s);
3043 }
3044 else
3045 {
3046 /* It is still possible that some breakpoints will be affected
3047 even though no symtab was found, since the file might have
3048 been compiled without debugging, and hence not be associated
3049 with a symtab. In order to handle this correctly, we would need
3050 to keep a list of text address ranges for undebuggable files.
3051 For now, we do nothing, since this is a fairly obscure case. */
3052 ;
3053 }
3054
3055 /* FIXME, what about the minimal symbol table? */
3056 return blewit;
3057 #else
3058 return (0);
3059 #endif
3060 }
3061 \f
3062 /* Allocate and partially fill a partial symtab. It will be
3063 completely filled at the end of the symbol list.
3064
3065 FILENAME is the name of the symbol-file we are reading from. */
3066
3067 struct partial_symtab *
3068 start_psymtab_common (struct objfile *objfile,
3069 struct section_offsets *section_offsets, char *filename,
3070 CORE_ADDR textlow, struct partial_symbol **global_syms,
3071 struct partial_symbol **static_syms)
3072 {
3073 struct partial_symtab *psymtab;
3074
3075 psymtab = allocate_psymtab (filename, objfile);
3076 psymtab->section_offsets = section_offsets;
3077 psymtab->textlow = textlow;
3078 psymtab->texthigh = psymtab->textlow; /* default */
3079 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3080 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3081 return (psymtab);
3082 }
3083 \f
3084 /* Add a symbol with a long value to a psymtab.
3085 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3086 Return the partial symbol that has been added. */
3087
3088 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3089 symbol is so that callers can get access to the symbol's demangled
3090 name, which they don't have any cheap way to determine otherwise.
3091 (Currenly, dwarf2read.c is the only file who uses that information,
3092 though it's possible that other readers might in the future.)
3093 Elena wasn't thrilled about that, and I don't blame her, but we
3094 couldn't come up with a better way to get that information. If
3095 it's needed in other situations, we could consider breaking up
3096 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3097 cache. */
3098
3099 const struct partial_symbol *
3100 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3101 enum address_class class,
3102 struct psymbol_allocation_list *list, long val, /* Value as a long */
3103 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3104 enum language language, struct objfile *objfile)
3105 {
3106 struct partial_symbol *psym;
3107 char *buf = alloca (namelength + 1);
3108 /* psymbol is static so that there will be no uninitialized gaps in the
3109 structure which might contain random data, causing cache misses in
3110 bcache. */
3111 static struct partial_symbol psymbol;
3112
3113 /* Create local copy of the partial symbol */
3114 memcpy (buf, name, namelength);
3115 buf[namelength] = '\0';
3116 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3117 if (val != 0)
3118 {
3119 SYMBOL_VALUE (&psymbol) = val;
3120 }
3121 else
3122 {
3123 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3124 }
3125 SYMBOL_SECTION (&psymbol) = 0;
3126 SYMBOL_LANGUAGE (&psymbol) = language;
3127 PSYMBOL_DOMAIN (&psymbol) = domain;
3128 PSYMBOL_CLASS (&psymbol) = class;
3129
3130 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3131
3132 /* Stash the partial symbol away in the cache */
3133 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
3134 objfile->psymbol_cache);
3135
3136 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3137 if (list->next >= list->list + list->size)
3138 {
3139 extend_psymbol_list (list, objfile);
3140 }
3141 *list->next++ = psym;
3142 OBJSTAT (objfile, n_psyms++);
3143
3144 return psym;
3145 }
3146
3147 /* Initialize storage for partial symbols. */
3148
3149 void
3150 init_psymbol_list (struct objfile *objfile, int total_symbols)
3151 {
3152 /* Free any previously allocated psymbol lists. */
3153
3154 if (objfile->global_psymbols.list)
3155 {
3156 xfree (objfile->global_psymbols.list);
3157 }
3158 if (objfile->static_psymbols.list)
3159 {
3160 xfree (objfile->static_psymbols.list);
3161 }
3162
3163 /* Current best guess is that approximately a twentieth
3164 of the total symbols (in a debugging file) are global or static
3165 oriented symbols */
3166
3167 objfile->global_psymbols.size = total_symbols / 10;
3168 objfile->static_psymbols.size = total_symbols / 10;
3169
3170 if (objfile->global_psymbols.size > 0)
3171 {
3172 objfile->global_psymbols.next =
3173 objfile->global_psymbols.list = (struct partial_symbol **)
3174 xmalloc ((objfile->global_psymbols.size
3175 * sizeof (struct partial_symbol *)));
3176 }
3177 if (objfile->static_psymbols.size > 0)
3178 {
3179 objfile->static_psymbols.next =
3180 objfile->static_psymbols.list = (struct partial_symbol **)
3181 xmalloc ((objfile->static_psymbols.size
3182 * sizeof (struct partial_symbol *)));
3183 }
3184 }
3185
3186 /* OVERLAYS:
3187 The following code implements an abstraction for debugging overlay sections.
3188
3189 The target model is as follows:
3190 1) The gnu linker will permit multiple sections to be mapped into the
3191 same VMA, each with its own unique LMA (or load address).
3192 2) It is assumed that some runtime mechanism exists for mapping the
3193 sections, one by one, from the load address into the VMA address.
3194 3) This code provides a mechanism for gdb to keep track of which
3195 sections should be considered to be mapped from the VMA to the LMA.
3196 This information is used for symbol lookup, and memory read/write.
3197 For instance, if a section has been mapped then its contents
3198 should be read from the VMA, otherwise from the LMA.
3199
3200 Two levels of debugger support for overlays are available. One is
3201 "manual", in which the debugger relies on the user to tell it which
3202 overlays are currently mapped. This level of support is
3203 implemented entirely in the core debugger, and the information about
3204 whether a section is mapped is kept in the objfile->obj_section table.
3205
3206 The second level of support is "automatic", and is only available if
3207 the target-specific code provides functionality to read the target's
3208 overlay mapping table, and translate its contents for the debugger
3209 (by updating the mapped state information in the obj_section tables).
3210
3211 The interface is as follows:
3212 User commands:
3213 overlay map <name> -- tell gdb to consider this section mapped
3214 overlay unmap <name> -- tell gdb to consider this section unmapped
3215 overlay list -- list the sections that GDB thinks are mapped
3216 overlay read-target -- get the target's state of what's mapped
3217 overlay off/manual/auto -- set overlay debugging state
3218 Functional interface:
3219 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3220 section, return that section.
3221 find_pc_overlay(pc): find any overlay section that contains
3222 the pc, either in its VMA or its LMA
3223 overlay_is_mapped(sect): true if overlay is marked as mapped
3224 section_is_overlay(sect): true if section's VMA != LMA
3225 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3226 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3227 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3228 overlay_mapped_address(...): map an address from section's LMA to VMA
3229 overlay_unmapped_address(...): map an address from section's VMA to LMA
3230 symbol_overlayed_address(...): Return a "current" address for symbol:
3231 either in VMA or LMA depending on whether
3232 the symbol's section is currently mapped
3233 */
3234
3235 /* Overlay debugging state: */
3236
3237 enum overlay_debugging_state overlay_debugging = ovly_off;
3238 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3239
3240 /* Function: section_is_overlay (SECTION)
3241 Returns true if SECTION has VMA not equal to LMA, ie.
3242 SECTION is loaded at an address different from where it will "run". */
3243
3244 int
3245 section_is_overlay (asection *section)
3246 {
3247 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3248
3249 if (overlay_debugging)
3250 if (section && section->lma != 0 &&
3251 section->vma != section->lma)
3252 return 1;
3253
3254 return 0;
3255 }
3256
3257 /* Function: overlay_invalidate_all (void)
3258 Invalidate the mapped state of all overlay sections (mark it as stale). */
3259
3260 static void
3261 overlay_invalidate_all (void)
3262 {
3263 struct objfile *objfile;
3264 struct obj_section *sect;
3265
3266 ALL_OBJSECTIONS (objfile, sect)
3267 if (section_is_overlay (sect->the_bfd_section))
3268 sect->ovly_mapped = -1;
3269 }
3270
3271 /* Function: overlay_is_mapped (SECTION)
3272 Returns true if section is an overlay, and is currently mapped.
3273 Private: public access is thru function section_is_mapped.
3274
3275 Access to the ovly_mapped flag is restricted to this function, so
3276 that we can do automatic update. If the global flag
3277 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3278 overlay_invalidate_all. If the mapped state of the particular
3279 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3280
3281 static int
3282 overlay_is_mapped (struct obj_section *osect)
3283 {
3284 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3285 return 0;
3286
3287 switch (overlay_debugging)
3288 {
3289 default:
3290 case ovly_off:
3291 return 0; /* overlay debugging off */
3292 case ovly_auto: /* overlay debugging automatic */
3293 /* Unles there is a gdbarch_overlay_update function,
3294 there's really nothing useful to do here (can't really go auto) */
3295 if (gdbarch_overlay_update_p (current_gdbarch))
3296 {
3297 if (overlay_cache_invalid)
3298 {
3299 overlay_invalidate_all ();
3300 overlay_cache_invalid = 0;
3301 }
3302 if (osect->ovly_mapped == -1)
3303 gdbarch_overlay_update (current_gdbarch, osect);
3304 }
3305 /* fall thru to manual case */
3306 case ovly_on: /* overlay debugging manual */
3307 return osect->ovly_mapped == 1;
3308 }
3309 }
3310
3311 /* Function: section_is_mapped
3312 Returns true if section is an overlay, and is currently mapped. */
3313
3314 int
3315 section_is_mapped (asection *section)
3316 {
3317 struct objfile *objfile;
3318 struct obj_section *osect;
3319
3320 if (overlay_debugging)
3321 if (section && section_is_overlay (section))
3322 ALL_OBJSECTIONS (objfile, osect)
3323 if (osect->the_bfd_section == section)
3324 return overlay_is_mapped (osect);
3325
3326 return 0;
3327 }
3328
3329 /* Function: pc_in_unmapped_range
3330 If PC falls into the lma range of SECTION, return true, else false. */
3331
3332 CORE_ADDR
3333 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3334 {
3335 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3336
3337 int size;
3338
3339 if (overlay_debugging)
3340 if (section && section_is_overlay (section))
3341 {
3342 size = bfd_get_section_size (section);
3343 if (section->lma <= pc && pc < section->lma + size)
3344 return 1;
3345 }
3346 return 0;
3347 }
3348
3349 /* Function: pc_in_mapped_range
3350 If PC falls into the vma range of SECTION, return true, else false. */
3351
3352 CORE_ADDR
3353 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3354 {
3355 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3356
3357 int size;
3358
3359 if (overlay_debugging)
3360 if (section && section_is_overlay (section))
3361 {
3362 size = bfd_get_section_size (section);
3363 if (section->vma <= pc && pc < section->vma + size)
3364 return 1;
3365 }
3366 return 0;
3367 }
3368
3369
3370 /* Return true if the mapped ranges of sections A and B overlap, false
3371 otherwise. */
3372 static int
3373 sections_overlap (asection *a, asection *b)
3374 {
3375 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3376
3377 CORE_ADDR a_start = a->vma;
3378 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3379 CORE_ADDR b_start = b->vma;
3380 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3381
3382 return (a_start < b_end && b_start < a_end);
3383 }
3384
3385 /* Function: overlay_unmapped_address (PC, SECTION)
3386 Returns the address corresponding to PC in the unmapped (load) range.
3387 May be the same as PC. */
3388
3389 CORE_ADDR
3390 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3391 {
3392 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3393
3394 if (overlay_debugging)
3395 if (section && section_is_overlay (section) &&
3396 pc_in_mapped_range (pc, section))
3397 return pc + section->lma - section->vma;
3398
3399 return pc;
3400 }
3401
3402 /* Function: overlay_mapped_address (PC, SECTION)
3403 Returns the address corresponding to PC in the mapped (runtime) range.
3404 May be the same as PC. */
3405
3406 CORE_ADDR
3407 overlay_mapped_address (CORE_ADDR pc, asection *section)
3408 {
3409 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3410
3411 if (overlay_debugging)
3412 if (section && section_is_overlay (section) &&
3413 pc_in_unmapped_range (pc, section))
3414 return pc + section->vma - section->lma;
3415
3416 return pc;
3417 }
3418
3419
3420 /* Function: symbol_overlayed_address
3421 Return one of two addresses (relative to the VMA or to the LMA),
3422 depending on whether the section is mapped or not. */
3423
3424 CORE_ADDR
3425 symbol_overlayed_address (CORE_ADDR address, asection *section)
3426 {
3427 if (overlay_debugging)
3428 {
3429 /* If the symbol has no section, just return its regular address. */
3430 if (section == 0)
3431 return address;
3432 /* If the symbol's section is not an overlay, just return its address */
3433 if (!section_is_overlay (section))
3434 return address;
3435 /* If the symbol's section is mapped, just return its address */
3436 if (section_is_mapped (section))
3437 return address;
3438 /*
3439 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3440 * then return its LOADED address rather than its vma address!!
3441 */
3442 return overlay_unmapped_address (address, section);
3443 }
3444 return address;
3445 }
3446
3447 /* Function: find_pc_overlay (PC)
3448 Return the best-match overlay section for PC:
3449 If PC matches a mapped overlay section's VMA, return that section.
3450 Else if PC matches an unmapped section's VMA, return that section.
3451 Else if PC matches an unmapped section's LMA, return that section. */
3452
3453 asection *
3454 find_pc_overlay (CORE_ADDR pc)
3455 {
3456 struct objfile *objfile;
3457 struct obj_section *osect, *best_match = NULL;
3458
3459 if (overlay_debugging)
3460 ALL_OBJSECTIONS (objfile, osect)
3461 if (section_is_overlay (osect->the_bfd_section))
3462 {
3463 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3464 {
3465 if (overlay_is_mapped (osect))
3466 return osect->the_bfd_section;
3467 else
3468 best_match = osect;
3469 }
3470 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3471 best_match = osect;
3472 }
3473 return best_match ? best_match->the_bfd_section : NULL;
3474 }
3475
3476 /* Function: find_pc_mapped_section (PC)
3477 If PC falls into the VMA address range of an overlay section that is
3478 currently marked as MAPPED, return that section. Else return NULL. */
3479
3480 asection *
3481 find_pc_mapped_section (CORE_ADDR pc)
3482 {
3483 struct objfile *objfile;
3484 struct obj_section *osect;
3485
3486 if (overlay_debugging)
3487 ALL_OBJSECTIONS (objfile, osect)
3488 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3489 overlay_is_mapped (osect))
3490 return osect->the_bfd_section;
3491
3492 return NULL;
3493 }
3494
3495 /* Function: list_overlays_command
3496 Print a list of mapped sections and their PC ranges */
3497
3498 void
3499 list_overlays_command (char *args, int from_tty)
3500 {
3501 int nmapped = 0;
3502 struct objfile *objfile;
3503 struct obj_section *osect;
3504
3505 if (overlay_debugging)
3506 ALL_OBJSECTIONS (objfile, osect)
3507 if (overlay_is_mapped (osect))
3508 {
3509 const char *name;
3510 bfd_vma lma, vma;
3511 int size;
3512
3513 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3514 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3515 size = bfd_get_section_size (osect->the_bfd_section);
3516 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3517
3518 printf_filtered ("Section %s, loaded at ", name);
3519 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3520 puts_filtered (" - ");
3521 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3522 printf_filtered (", mapped at ");
3523 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3524 puts_filtered (" - ");
3525 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3526 puts_filtered ("\n");
3527
3528 nmapped++;
3529 }
3530 if (nmapped == 0)
3531 printf_filtered (_("No sections are mapped.\n"));
3532 }
3533
3534 /* Function: map_overlay_command
3535 Mark the named section as mapped (ie. residing at its VMA address). */
3536
3537 void
3538 map_overlay_command (char *args, int from_tty)
3539 {
3540 struct objfile *objfile, *objfile2;
3541 struct obj_section *sec, *sec2;
3542 asection *bfdsec;
3543
3544 if (!overlay_debugging)
3545 error (_("\
3546 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3547 the 'overlay manual' command."));
3548
3549 if (args == 0 || *args == 0)
3550 error (_("Argument required: name of an overlay section"));
3551
3552 /* First, find a section matching the user supplied argument */
3553 ALL_OBJSECTIONS (objfile, sec)
3554 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3555 {
3556 /* Now, check to see if the section is an overlay. */
3557 bfdsec = sec->the_bfd_section;
3558 if (!section_is_overlay (bfdsec))
3559 continue; /* not an overlay section */
3560
3561 /* Mark the overlay as "mapped" */
3562 sec->ovly_mapped = 1;
3563
3564 /* Next, make a pass and unmap any sections that are
3565 overlapped by this new section: */
3566 ALL_OBJSECTIONS (objfile2, sec2)
3567 if (sec2->ovly_mapped
3568 && sec != sec2
3569 && sec->the_bfd_section != sec2->the_bfd_section
3570 && sections_overlap (sec->the_bfd_section,
3571 sec2->the_bfd_section))
3572 {
3573 if (info_verbose)
3574 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3575 bfd_section_name (objfile->obfd,
3576 sec2->the_bfd_section));
3577 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3578 }
3579 return;
3580 }
3581 error (_("No overlay section called %s"), args);
3582 }
3583
3584 /* Function: unmap_overlay_command
3585 Mark the overlay section as unmapped
3586 (ie. resident in its LMA address range, rather than the VMA range). */
3587
3588 void
3589 unmap_overlay_command (char *args, int from_tty)
3590 {
3591 struct objfile *objfile;
3592 struct obj_section *sec;
3593
3594 if (!overlay_debugging)
3595 error (_("\
3596 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3597 the 'overlay manual' command."));
3598
3599 if (args == 0 || *args == 0)
3600 error (_("Argument required: name of an overlay section"));
3601
3602 /* First, find a section matching the user supplied argument */
3603 ALL_OBJSECTIONS (objfile, sec)
3604 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3605 {
3606 if (!sec->ovly_mapped)
3607 error (_("Section %s is not mapped"), args);
3608 sec->ovly_mapped = 0;
3609 return;
3610 }
3611 error (_("No overlay section called %s"), args);
3612 }
3613
3614 /* Function: overlay_auto_command
3615 A utility command to turn on overlay debugging.
3616 Possibly this should be done via a set/show command. */
3617
3618 static void
3619 overlay_auto_command (char *args, int from_tty)
3620 {
3621 overlay_debugging = ovly_auto;
3622 enable_overlay_breakpoints ();
3623 if (info_verbose)
3624 printf_unfiltered (_("Automatic overlay debugging enabled."));
3625 }
3626
3627 /* Function: overlay_manual_command
3628 A utility command to turn on overlay debugging.
3629 Possibly this should be done via a set/show command. */
3630
3631 static void
3632 overlay_manual_command (char *args, int from_tty)
3633 {
3634 overlay_debugging = ovly_on;
3635 disable_overlay_breakpoints ();
3636 if (info_verbose)
3637 printf_unfiltered (_("Overlay debugging enabled."));
3638 }
3639
3640 /* Function: overlay_off_command
3641 A utility command to turn on overlay debugging.
3642 Possibly this should be done via a set/show command. */
3643
3644 static void
3645 overlay_off_command (char *args, int from_tty)
3646 {
3647 overlay_debugging = ovly_off;
3648 disable_overlay_breakpoints ();
3649 if (info_verbose)
3650 printf_unfiltered (_("Overlay debugging disabled."));
3651 }
3652
3653 static void
3654 overlay_load_command (char *args, int from_tty)
3655 {
3656 if (gdbarch_overlay_update_p (current_gdbarch))
3657 gdbarch_overlay_update (current_gdbarch, NULL);
3658 else
3659 error (_("This target does not know how to read its overlay state."));
3660 }
3661
3662 /* Function: overlay_command
3663 A place-holder for a mis-typed command */
3664
3665 /* Command list chain containing all defined "overlay" subcommands. */
3666 struct cmd_list_element *overlaylist;
3667
3668 static void
3669 overlay_command (char *args, int from_tty)
3670 {
3671 printf_unfiltered
3672 ("\"overlay\" must be followed by the name of an overlay command.\n");
3673 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3674 }
3675
3676
3677 /* Target Overlays for the "Simplest" overlay manager:
3678
3679 This is GDB's default target overlay layer. It works with the
3680 minimal overlay manager supplied as an example by Cygnus. The
3681 entry point is via a function pointer "gdbarch_overlay_update",
3682 so targets that use a different runtime overlay manager can
3683 substitute their own overlay_update function and take over the
3684 function pointer.
3685
3686 The overlay_update function pokes around in the target's data structures
3687 to see what overlays are mapped, and updates GDB's overlay mapping with
3688 this information.
3689
3690 In this simple implementation, the target data structures are as follows:
3691 unsigned _novlys; /# number of overlay sections #/
3692 unsigned _ovly_table[_novlys][4] = {
3693 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3694 {..., ..., ..., ...},
3695 }
3696 unsigned _novly_regions; /# number of overlay regions #/
3697 unsigned _ovly_region_table[_novly_regions][3] = {
3698 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3699 {..., ..., ...},
3700 }
3701 These functions will attempt to update GDB's mappedness state in the
3702 symbol section table, based on the target's mappedness state.
3703
3704 To do this, we keep a cached copy of the target's _ovly_table, and
3705 attempt to detect when the cached copy is invalidated. The main
3706 entry point is "simple_overlay_update(SECT), which looks up SECT in
3707 the cached table and re-reads only the entry for that section from
3708 the target (whenever possible).
3709 */
3710
3711 /* Cached, dynamically allocated copies of the target data structures: */
3712 static unsigned (*cache_ovly_table)[4] = 0;
3713 #if 0
3714 static unsigned (*cache_ovly_region_table)[3] = 0;
3715 #endif
3716 static unsigned cache_novlys = 0;
3717 #if 0
3718 static unsigned cache_novly_regions = 0;
3719 #endif
3720 static CORE_ADDR cache_ovly_table_base = 0;
3721 #if 0
3722 static CORE_ADDR cache_ovly_region_table_base = 0;
3723 #endif
3724 enum ovly_index
3725 {
3726 VMA, SIZE, LMA, MAPPED
3727 };
3728 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3729 / TARGET_CHAR_BIT)
3730
3731 /* Throw away the cached copy of _ovly_table */
3732 static void
3733 simple_free_overlay_table (void)
3734 {
3735 if (cache_ovly_table)
3736 xfree (cache_ovly_table);
3737 cache_novlys = 0;
3738 cache_ovly_table = NULL;
3739 cache_ovly_table_base = 0;
3740 }
3741
3742 #if 0
3743 /* Throw away the cached copy of _ovly_region_table */
3744 static void
3745 simple_free_overlay_region_table (void)
3746 {
3747 if (cache_ovly_region_table)
3748 xfree (cache_ovly_region_table);
3749 cache_novly_regions = 0;
3750 cache_ovly_region_table = NULL;
3751 cache_ovly_region_table_base = 0;
3752 }
3753 #endif
3754
3755 /* Read an array of ints from the target into a local buffer.
3756 Convert to host order. int LEN is number of ints */
3757 static void
3758 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3759 {
3760 /* FIXME (alloca): Not safe if array is very large. */
3761 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3762 int i;
3763
3764 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3765 for (i = 0; i < len; i++)
3766 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3767 TARGET_LONG_BYTES);
3768 }
3769
3770 /* Find and grab a copy of the target _ovly_table
3771 (and _novlys, which is needed for the table's size) */
3772 static int
3773 simple_read_overlay_table (void)
3774 {
3775 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3776
3777 simple_free_overlay_table ();
3778 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3779 if (! novlys_msym)
3780 {
3781 error (_("Error reading inferior's overlay table: "
3782 "couldn't find `_novlys' variable\n"
3783 "in inferior. Use `overlay manual' mode."));
3784 return 0;
3785 }
3786
3787 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3788 if (! ovly_table_msym)
3789 {
3790 error (_("Error reading inferior's overlay table: couldn't find "
3791 "`_ovly_table' array\n"
3792 "in inferior. Use `overlay manual' mode."));
3793 return 0;
3794 }
3795
3796 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3797 cache_ovly_table
3798 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3799 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3800 read_target_long_array (cache_ovly_table_base,
3801 (unsigned int *) cache_ovly_table,
3802 cache_novlys * 4);
3803
3804 return 1; /* SUCCESS */
3805 }
3806
3807 #if 0
3808 /* Find and grab a copy of the target _ovly_region_table
3809 (and _novly_regions, which is needed for the table's size) */
3810 static int
3811 simple_read_overlay_region_table (void)
3812 {
3813 struct minimal_symbol *msym;
3814
3815 simple_free_overlay_region_table ();
3816 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3817 if (msym != NULL)
3818 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3819 else
3820 return 0; /* failure */
3821 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3822 if (cache_ovly_region_table != NULL)
3823 {
3824 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3825 if (msym != NULL)
3826 {
3827 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3828 read_target_long_array (cache_ovly_region_table_base,
3829 (unsigned int *) cache_ovly_region_table,
3830 cache_novly_regions * 3);
3831 }
3832 else
3833 return 0; /* failure */
3834 }
3835 else
3836 return 0; /* failure */
3837 return 1; /* SUCCESS */
3838 }
3839 #endif
3840
3841 /* Function: simple_overlay_update_1
3842 A helper function for simple_overlay_update. Assuming a cached copy
3843 of _ovly_table exists, look through it to find an entry whose vma,
3844 lma and size match those of OSECT. Re-read the entry and make sure
3845 it still matches OSECT (else the table may no longer be valid).
3846 Set OSECT's mapped state to match the entry. Return: 1 for
3847 success, 0 for failure. */
3848
3849 static int
3850 simple_overlay_update_1 (struct obj_section *osect)
3851 {
3852 int i, size;
3853 bfd *obfd = osect->objfile->obfd;
3854 asection *bsect = osect->the_bfd_section;
3855
3856 size = bfd_get_section_size (osect->the_bfd_section);
3857 for (i = 0; i < cache_novlys; i++)
3858 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3859 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3860 /* && cache_ovly_table[i][SIZE] == size */ )
3861 {
3862 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3863 (unsigned int *) cache_ovly_table[i], 4);
3864 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3865 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3866 /* && cache_ovly_table[i][SIZE] == size */ )
3867 {
3868 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3869 return 1;
3870 }
3871 else /* Warning! Warning! Target's ovly table has changed! */
3872 return 0;
3873 }
3874 return 0;
3875 }
3876
3877 /* Function: simple_overlay_update
3878 If OSECT is NULL, then update all sections' mapped state
3879 (after re-reading the entire target _ovly_table).
3880 If OSECT is non-NULL, then try to find a matching entry in the
3881 cached ovly_table and update only OSECT's mapped state.
3882 If a cached entry can't be found or the cache isn't valid, then
3883 re-read the entire cache, and go ahead and update all sections. */
3884
3885 void
3886 simple_overlay_update (struct obj_section *osect)
3887 {
3888 struct objfile *objfile;
3889
3890 /* Were we given an osect to look up? NULL means do all of them. */
3891 if (osect)
3892 /* Have we got a cached copy of the target's overlay table? */
3893 if (cache_ovly_table != NULL)
3894 /* Does its cached location match what's currently in the symtab? */
3895 if (cache_ovly_table_base ==
3896 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3897 /* Then go ahead and try to look up this single section in the cache */
3898 if (simple_overlay_update_1 (osect))
3899 /* Found it! We're done. */
3900 return;
3901
3902 /* Cached table no good: need to read the entire table anew.
3903 Or else we want all the sections, in which case it's actually
3904 more efficient to read the whole table in one block anyway. */
3905
3906 if (! simple_read_overlay_table ())
3907 return;
3908
3909 /* Now may as well update all sections, even if only one was requested. */
3910 ALL_OBJSECTIONS (objfile, osect)
3911 if (section_is_overlay (osect->the_bfd_section))
3912 {
3913 int i, size;
3914 bfd *obfd = osect->objfile->obfd;
3915 asection *bsect = osect->the_bfd_section;
3916
3917 size = bfd_get_section_size (bsect);
3918 for (i = 0; i < cache_novlys; i++)
3919 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3920 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3921 /* && cache_ovly_table[i][SIZE] == size */ )
3922 { /* obj_section matches i'th entry in ovly_table */
3923 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3924 break; /* finished with inner for loop: break out */
3925 }
3926 }
3927 }
3928
3929 /* Set the output sections and output offsets for section SECTP in
3930 ABFD. The relocation code in BFD will read these offsets, so we
3931 need to be sure they're initialized. We map each section to itself,
3932 with no offset; this means that SECTP->vma will be honored. */
3933
3934 static void
3935 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3936 {
3937 sectp->output_section = sectp;
3938 sectp->output_offset = 0;
3939 }
3940
3941 /* Relocate the contents of a debug section SECTP in ABFD. The
3942 contents are stored in BUF if it is non-NULL, or returned in a
3943 malloc'd buffer otherwise.
3944
3945 For some platforms and debug info formats, shared libraries contain
3946 relocations against the debug sections (particularly for DWARF-2;
3947 one affected platform is PowerPC GNU/Linux, although it depends on
3948 the version of the linker in use). Also, ELF object files naturally
3949 have unresolved relocations for their debug sections. We need to apply
3950 the relocations in order to get the locations of symbols correct. */
3951
3952 bfd_byte *
3953 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3954 {
3955 /* We're only interested in debugging sections with relocation
3956 information. */
3957 if ((sectp->flags & SEC_RELOC) == 0)
3958 return NULL;
3959 if ((sectp->flags & SEC_DEBUGGING) == 0)
3960 return NULL;
3961
3962 /* We will handle section offsets properly elsewhere, so relocate as if
3963 all sections begin at 0. */
3964 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3965
3966 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3967 }
3968
3969 struct symfile_segment_data *
3970 get_symfile_segment_data (bfd *abfd)
3971 {
3972 struct sym_fns *sf = find_sym_fns (abfd);
3973
3974 if (sf == NULL)
3975 return NULL;
3976
3977 return sf->sym_segments (abfd);
3978 }
3979
3980 void
3981 free_symfile_segment_data (struct symfile_segment_data *data)
3982 {
3983 xfree (data->segment_bases);
3984 xfree (data->segment_sizes);
3985 xfree (data->segment_info);
3986 xfree (data);
3987 }
3988
3989
3990 /* Given:
3991 - DATA, containing segment addresses from the object file ABFD, and
3992 the mapping from ABFD's sections onto the segments that own them,
3993 and
3994 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3995 segment addresses reported by the target,
3996 store the appropriate offsets for each section in OFFSETS.
3997
3998 If there are fewer entries in SEGMENT_BASES than there are segments
3999 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4000
4001 If there are more, then verify that all the excess addresses are
4002 the same as the last legitimate one, and then ignore them. This
4003 allows "TextSeg=X;DataSeg=X" qOffset replies for files which have
4004 only a single segment. */
4005 int
4006 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4007 struct section_offsets *offsets,
4008 int num_segment_bases,
4009 const CORE_ADDR *segment_bases)
4010 {
4011 int i;
4012 asection *sect;
4013
4014 /* It doesn't make sense to call this function unless you have some
4015 segment base addresses. */
4016 gdb_assert (segment_bases > 0);
4017
4018 /* If we do not have segment mappings for the object file, we
4019 can not relocate it by segments. */
4020 gdb_assert (data != NULL);
4021 gdb_assert (data->num_segments > 0);
4022
4023 /* Check any extra SEGMENT_BASES entries. */
4024 if (num_segment_bases > data->num_segments)
4025 for (i = data->num_segments; i < num_segment_bases; i++)
4026 if (segment_bases[i] != segment_bases[data->num_segments - 1])
4027 return 0;
4028
4029 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4030 {
4031 int which = data->segment_info[i];
4032
4033 gdb_assert (0 <= which && which <= data->num_segments);
4034
4035 /* Don't bother computing offsets for sections that aren't
4036 loaded as part of any segment. */
4037 if (! which)
4038 continue;
4039
4040 /* Use the last SEGMENT_BASES entry as the address of any extra
4041 segments mentioned in DATA->segment_info. */
4042 if (which > num_segment_bases)
4043 which = num_segment_bases;
4044
4045 offsets->offsets[i] = (segment_bases[which - 1]
4046 - data->segment_bases[which - 1]);
4047 }
4048
4049 return 1;
4050 }
4051
4052 static void
4053 symfile_find_segment_sections (struct objfile *objfile)
4054 {
4055 bfd *abfd = objfile->obfd;
4056 int i;
4057 asection *sect;
4058 struct symfile_segment_data *data;
4059
4060 data = get_symfile_segment_data (objfile->obfd);
4061 if (data == NULL)
4062 return;
4063
4064 if (data->num_segments != 1 && data->num_segments != 2)
4065 {
4066 free_symfile_segment_data (data);
4067 return;
4068 }
4069
4070 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4071 {
4072 CORE_ADDR vma;
4073 int which = data->segment_info[i];
4074
4075 if (which == 1)
4076 {
4077 if (objfile->sect_index_text == -1)
4078 objfile->sect_index_text = sect->index;
4079
4080 if (objfile->sect_index_rodata == -1)
4081 objfile->sect_index_rodata = sect->index;
4082 }
4083 else if (which == 2)
4084 {
4085 if (objfile->sect_index_data == -1)
4086 objfile->sect_index_data = sect->index;
4087
4088 if (objfile->sect_index_bss == -1)
4089 objfile->sect_index_bss = sect->index;
4090 }
4091 }
4092
4093 free_symfile_segment_data (data);
4094 }
4095
4096 void
4097 _initialize_symfile (void)
4098 {
4099 struct cmd_list_element *c;
4100
4101 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4102 Load symbol table from executable file FILE.\n\
4103 The `file' command can also load symbol tables, as well as setting the file\n\
4104 to execute."), &cmdlist);
4105 set_cmd_completer (c, filename_completer);
4106
4107 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4108 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4109 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4110 ADDR is the starting address of the file's text.\n\
4111 The optional arguments are section-name section-address pairs and\n\
4112 should be specified if the data and bss segments are not contiguous\n\
4113 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4114 &cmdlist);
4115 set_cmd_completer (c, filename_completer);
4116
4117 c = add_cmd ("add-shared-symbol-files", class_files,
4118 add_shared_symbol_files_command, _("\
4119 Load the symbols from shared objects in the dynamic linker's link map."),
4120 &cmdlist);
4121 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4122 &cmdlist);
4123
4124 c = add_cmd ("load", class_files, load_command, _("\
4125 Dynamically load FILE into the running program, and record its symbols\n\
4126 for access from GDB.\n\
4127 A load OFFSET may also be given."), &cmdlist);
4128 set_cmd_completer (c, filename_completer);
4129
4130 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4131 &symbol_reloading, _("\
4132 Set dynamic symbol table reloading multiple times in one run."), _("\
4133 Show dynamic symbol table reloading multiple times in one run."), NULL,
4134 NULL,
4135 show_symbol_reloading,
4136 &setlist, &showlist);
4137
4138 add_prefix_cmd ("overlay", class_support, overlay_command,
4139 _("Commands for debugging overlays."), &overlaylist,
4140 "overlay ", 0, &cmdlist);
4141
4142 add_com_alias ("ovly", "overlay", class_alias, 1);
4143 add_com_alias ("ov", "overlay", class_alias, 1);
4144
4145 add_cmd ("map-overlay", class_support, map_overlay_command,
4146 _("Assert that an overlay section is mapped."), &overlaylist);
4147
4148 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4149 _("Assert that an overlay section is unmapped."), &overlaylist);
4150
4151 add_cmd ("list-overlays", class_support, list_overlays_command,
4152 _("List mappings of overlay sections."), &overlaylist);
4153
4154 add_cmd ("manual", class_support, overlay_manual_command,
4155 _("Enable overlay debugging."), &overlaylist);
4156 add_cmd ("off", class_support, overlay_off_command,
4157 _("Disable overlay debugging."), &overlaylist);
4158 add_cmd ("auto", class_support, overlay_auto_command,
4159 _("Enable automatic overlay debugging."), &overlaylist);
4160 add_cmd ("load-target", class_support, overlay_load_command,
4161 _("Read the overlay mapping state from the target."), &overlaylist);
4162
4163 /* Filename extension to source language lookup table: */
4164 init_filename_language_table ();
4165 add_setshow_string_noescape_cmd ("extension-language", class_files,
4166 &ext_args, _("\
4167 Set mapping between filename extension and source language."), _("\
4168 Show mapping between filename extension and source language."), _("\
4169 Usage: set extension-language .foo bar"),
4170 set_ext_lang_command,
4171 show_ext_args,
4172 &setlist, &showlist);
4173
4174 add_info ("extensions", info_ext_lang_command,
4175 _("All filename extensions associated with a source language."));
4176
4177 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4178 &debug_file_directory, _("\
4179 Set the directory where separate debug symbols are searched for."), _("\
4180 Show the directory where separate debug symbols are searched for."), _("\
4181 Separate debug symbols are first searched for in the same\n\
4182 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4183 and lastly at the path of the directory of the binary with\n\
4184 the global debug-file directory prepended."),
4185 NULL,
4186 show_debug_file_directory,
4187 &setlist, &showlist);
4188 }