gdb: remove SYMTAB_COMPUNIT macro, add getter/setter
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdbsupport/gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64 #include "gdbsupport/buildargv.h"
65
66 #include <sys/types.h>
67 #include <fcntl.h>
68 #include <sys/stat.h>
69 #include <ctype.h>
70 #include <chrono>
71 #include <algorithm>
72
73 int (*deprecated_ui_load_progress_hook) (const char *section,
74 unsigned long num);
75 void (*deprecated_show_load_progress) (const char *section,
76 unsigned long section_sent,
77 unsigned long section_size,
78 unsigned long total_sent,
79 unsigned long total_size);
80 void (*deprecated_pre_add_symbol_hook) (const char *);
81 void (*deprecated_post_add_symbol_hook) (void);
82
83 using clear_symtab_users_cleanup
84 = FORWARD_SCOPE_EXIT (clear_symtab_users);
85
86 /* Global variables owned by this file. */
87
88 /* See symfile.h. */
89
90 int readnow_symbol_files;
91
92 /* See symfile.h. */
93
94 int readnever_symbol_files;
95
96 /* Functions this file defines. */
97
98 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
99 objfile_flags flags, CORE_ADDR reloff);
100
101 static const struct sym_fns *find_sym_fns (bfd *);
102
103 static void overlay_invalidate_all (void);
104
105 static void simple_free_overlay_table (void);
106
107 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
108 enum bfd_endian);
109
110 static int simple_read_overlay_table (void);
111
112 static int simple_overlay_update_1 (struct obj_section *);
113
114 static void symfile_find_segment_sections (struct objfile *objfile);
115
116 /* List of all available sym_fns. On gdb startup, each object file reader
117 calls add_symtab_fns() to register information on each format it is
118 prepared to read. */
119
120 struct registered_sym_fns
121 {
122 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
123 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
124 {}
125
126 /* BFD flavour that we handle. */
127 enum bfd_flavour sym_flavour;
128
129 /* The "vtable" of symbol functions. */
130 const struct sym_fns *sym_fns;
131 };
132
133 static std::vector<registered_sym_fns> symtab_fns;
134
135 /* Values for "set print symbol-loading". */
136
137 const char print_symbol_loading_off[] = "off";
138 const char print_symbol_loading_brief[] = "brief";
139 const char print_symbol_loading_full[] = "full";
140 static const char *print_symbol_loading_enums[] =
141 {
142 print_symbol_loading_off,
143 print_symbol_loading_brief,
144 print_symbol_loading_full,
145 NULL
146 };
147 static const char *print_symbol_loading = print_symbol_loading_full;
148
149 /* See symfile.h. */
150
151 bool auto_solib_add = true;
152 \f
153
154 /* Return non-zero if symbol-loading messages should be printed.
155 FROM_TTY is the standard from_tty argument to gdb commands.
156 If EXEC is non-zero the messages are for the executable.
157 Otherwise, messages are for shared libraries.
158 If FULL is non-zero then the caller is printing a detailed message.
159 E.g., the message includes the shared library name.
160 Otherwise, the caller is printing a brief "summary" message. */
161
162 int
163 print_symbol_loading_p (int from_tty, int exec, int full)
164 {
165 if (!from_tty && !info_verbose)
166 return 0;
167
168 if (exec)
169 {
170 /* We don't check FULL for executables, there are few such
171 messages, therefore brief == full. */
172 return print_symbol_loading != print_symbol_loading_off;
173 }
174 if (full)
175 return print_symbol_loading == print_symbol_loading_full;
176 return print_symbol_loading == print_symbol_loading_brief;
177 }
178
179 /* True if we are reading a symbol table. */
180
181 int currently_reading_symtab = 0;
182
183 /* Increment currently_reading_symtab and return a cleanup that can be
184 used to decrement it. */
185
186 scoped_restore_tmpl<int>
187 increment_reading_symtab (void)
188 {
189 gdb_assert (currently_reading_symtab >= 0);
190 return make_scoped_restore (&currently_reading_symtab,
191 currently_reading_symtab + 1);
192 }
193
194 /* Remember the lowest-addressed loadable section we've seen.
195
196 In case of equal vmas, the section with the largest size becomes the
197 lowest-addressed loadable section.
198
199 If the vmas and sizes are equal, the last section is considered the
200 lowest-addressed loadable section. */
201
202 static void
203 find_lowest_section (asection *sect, asection **lowest)
204 {
205 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
206 return;
207 if (!*lowest)
208 *lowest = sect; /* First loadable section */
209 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
210 *lowest = sect; /* A lower loadable section */
211 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
212 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
213 *lowest = sect;
214 }
215
216 /* Build (allocate and populate) a section_addr_info struct from
217 an existing section table. */
218
219 section_addr_info
220 build_section_addr_info_from_section_table (const target_section_table &table)
221 {
222 section_addr_info sap;
223
224 for (const target_section &stp : table)
225 {
226 struct bfd_section *asect = stp.the_bfd_section;
227 bfd *abfd = asect->owner;
228
229 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
230 && sap.size () < table.size ())
231 sap.emplace_back (stp.addr,
232 bfd_section_name (asect),
233 gdb_bfd_section_index (abfd, asect));
234 }
235
236 return sap;
237 }
238
239 /* Create a section_addr_info from section offsets in ABFD. */
240
241 static section_addr_info
242 build_section_addr_info_from_bfd (bfd *abfd)
243 {
244 struct bfd_section *sec;
245
246 section_addr_info sap;
247 for (sec = abfd->sections; sec != NULL; sec = sec->next)
248 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
249 sap.emplace_back (bfd_section_vma (sec),
250 bfd_section_name (sec),
251 gdb_bfd_section_index (abfd, sec));
252
253 return sap;
254 }
255
256 /* Create a section_addr_info from section offsets in OBJFILE. */
257
258 section_addr_info
259 build_section_addr_info_from_objfile (const struct objfile *objfile)
260 {
261 int i;
262
263 /* Before reread_symbols gets rewritten it is not safe to call:
264 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
265 */
266 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
267 for (i = 0; i < sap.size (); i++)
268 {
269 int sectindex = sap[i].sectindex;
270
271 sap[i].addr += objfile->section_offsets[sectindex];
272 }
273 return sap;
274 }
275
276 /* Initialize OBJFILE's sect_index_* members. */
277
278 static void
279 init_objfile_sect_indices (struct objfile *objfile)
280 {
281 asection *sect;
282 int i;
283
284 sect = bfd_get_section_by_name (objfile->obfd, ".text");
285 if (sect)
286 objfile->sect_index_text = sect->index;
287
288 sect = bfd_get_section_by_name (objfile->obfd, ".data");
289 if (sect)
290 objfile->sect_index_data = sect->index;
291
292 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
293 if (sect)
294 objfile->sect_index_bss = sect->index;
295
296 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
297 if (sect)
298 objfile->sect_index_rodata = sect->index;
299
300 /* This is where things get really weird... We MUST have valid
301 indices for the various sect_index_* members or gdb will abort.
302 So if for example, there is no ".text" section, we have to
303 accomodate that. First, check for a file with the standard
304 one or two segments. */
305
306 symfile_find_segment_sections (objfile);
307
308 /* Except when explicitly adding symbol files at some address,
309 section_offsets contains nothing but zeros, so it doesn't matter
310 which slot in section_offsets the individual sect_index_* members
311 index into. So if they are all zero, it is safe to just point
312 all the currently uninitialized indices to the first slot. But
313 beware: if this is the main executable, it may be relocated
314 later, e.g. by the remote qOffsets packet, and then this will
315 be wrong! That's why we try segments first. */
316
317 for (i = 0; i < objfile->section_offsets.size (); i++)
318 {
319 if (objfile->section_offsets[i] != 0)
320 {
321 break;
322 }
323 }
324 if (i == objfile->section_offsets.size ())
325 {
326 if (objfile->sect_index_text == -1)
327 objfile->sect_index_text = 0;
328 if (objfile->sect_index_data == -1)
329 objfile->sect_index_data = 0;
330 if (objfile->sect_index_bss == -1)
331 objfile->sect_index_bss = 0;
332 if (objfile->sect_index_rodata == -1)
333 objfile->sect_index_rodata = 0;
334 }
335 }
336
337 /* Find a unique offset to use for loadable section SECT if
338 the user did not provide an offset. */
339
340 static void
341 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
342 CORE_ADDR &lowest)
343 {
344 CORE_ADDR start_addr;
345 int done;
346 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
347
348 /* We are only interested in allocated sections. */
349 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
350 return;
351
352 /* If the user specified an offset, honor it. */
353 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
354 return;
355
356 /* Otherwise, let's try to find a place for the section. */
357 start_addr = (lowest + align - 1) & -align;
358
359 do {
360 asection *cur_sec;
361
362 done = 1;
363
364 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
365 {
366 int indx = cur_sec->index;
367
368 /* We don't need to compare against ourself. */
369 if (cur_sec == sect)
370 continue;
371
372 /* We can only conflict with allocated sections. */
373 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
374 continue;
375
376 /* If the section offset is 0, either the section has not been placed
377 yet, or it was the lowest section placed (in which case LOWEST
378 will be past its end). */
379 if (offsets[indx] == 0)
380 continue;
381
382 /* If this section would overlap us, then we must move up. */
383 if (start_addr + bfd_section_size (sect) > offsets[indx]
384 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
385 {
386 start_addr = offsets[indx] + bfd_section_size (cur_sec);
387 start_addr = (start_addr + align - 1) & -align;
388 done = 0;
389 break;
390 }
391
392 /* Otherwise, we appear to be OK. So far. */
393 }
394 }
395 while (!done);
396
397 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
398 lowest = start_addr + bfd_section_size (sect);
399 }
400
401 /* Store section_addr_info as prepared (made relative and with SECTINDEX
402 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
403
404 void
405 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
406 const section_addr_info &addrs)
407 {
408 int i;
409
410 section_offsets.assign (section_offsets.size (), 0);
411
412 /* Now calculate offsets for section that were specified by the caller. */
413 for (i = 0; i < addrs.size (); i++)
414 {
415 const struct other_sections *osp;
416
417 osp = &addrs[i];
418 if (osp->sectindex == -1)
419 continue;
420
421 /* Record all sections in offsets. */
422 /* The section_offsets in the objfile are here filled in using
423 the BFD index. */
424 section_offsets[osp->sectindex] = osp->addr;
425 }
426 }
427
428 /* Transform section name S for a name comparison. prelink can split section
429 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
430 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
431 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
432 (`.sbss') section has invalid (increased) virtual address. */
433
434 static const char *
435 addr_section_name (const char *s)
436 {
437 if (strcmp (s, ".dynbss") == 0)
438 return ".bss";
439 if (strcmp (s, ".sdynbss") == 0)
440 return ".sbss";
441
442 return s;
443 }
444
445 /* std::sort comparator for addrs_section_sort. Sort entries in
446 ascending order by their (name, sectindex) pair. sectindex makes
447 the sort by name stable. */
448
449 static bool
450 addrs_section_compar (const struct other_sections *a,
451 const struct other_sections *b)
452 {
453 int retval;
454
455 retval = strcmp (addr_section_name (a->name.c_str ()),
456 addr_section_name (b->name.c_str ()));
457 if (retval != 0)
458 return retval < 0;
459
460 return a->sectindex < b->sectindex;
461 }
462
463 /* Provide sorted array of pointers to sections of ADDRS. */
464
465 static std::vector<const struct other_sections *>
466 addrs_section_sort (const section_addr_info &addrs)
467 {
468 int i;
469
470 std::vector<const struct other_sections *> array (addrs.size ());
471 for (i = 0; i < addrs.size (); i++)
472 array[i] = &addrs[i];
473
474 std::sort (array.begin (), array.end (), addrs_section_compar);
475
476 return array;
477 }
478
479 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
480 also SECTINDEXes specific to ABFD there. This function can be used to
481 rebase ADDRS to start referencing different BFD than before. */
482
483 void
484 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
485 {
486 asection *lower_sect;
487 CORE_ADDR lower_offset;
488 int i;
489
490 /* Find lowest loadable section to be used as starting point for
491 contiguous sections. */
492 lower_sect = NULL;
493 for (asection *iter : gdb_bfd_sections (abfd))
494 find_lowest_section (iter, &lower_sect);
495 if (lower_sect == NULL)
496 {
497 warning (_("no loadable sections found in added symbol-file %s"),
498 bfd_get_filename (abfd));
499 lower_offset = 0;
500 }
501 else
502 lower_offset = bfd_section_vma (lower_sect);
503
504 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
505 in ABFD. Section names are not unique - there can be multiple sections of
506 the same name. Also the sections of the same name do not have to be
507 adjacent to each other. Some sections may be present only in one of the
508 files. Even sections present in both files do not have to be in the same
509 order.
510
511 Use stable sort by name for the sections in both files. Then linearly
512 scan both lists matching as most of the entries as possible. */
513
514 std::vector<const struct other_sections *> addrs_sorted
515 = addrs_section_sort (*addrs);
516
517 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
518 std::vector<const struct other_sections *> abfd_addrs_sorted
519 = addrs_section_sort (abfd_addrs);
520
521 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
522 ABFD_ADDRS_SORTED. */
523
524 std::vector<const struct other_sections *>
525 addrs_to_abfd_addrs (addrs->size (), nullptr);
526
527 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
528 = abfd_addrs_sorted.begin ();
529 for (const other_sections *sect : addrs_sorted)
530 {
531 const char *sect_name = addr_section_name (sect->name.c_str ());
532
533 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
534 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
535 sect_name) < 0)
536 abfd_sorted_iter++;
537
538 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
539 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
540 sect_name) == 0)
541 {
542 int index_in_addrs;
543
544 /* Make the found item directly addressable from ADDRS. */
545 index_in_addrs = sect - addrs->data ();
546 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
547 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
548
549 /* Never use the same ABFD entry twice. */
550 abfd_sorted_iter++;
551 }
552 }
553
554 /* Calculate offsets for the loadable sections.
555 FIXME! Sections must be in order of increasing loadable section
556 so that contiguous sections can use the lower-offset!!!
557
558 Adjust offsets if the segments are not contiguous.
559 If the section is contiguous, its offset should be set to
560 the offset of the highest loadable section lower than it
561 (the loadable section directly below it in memory).
562 this_offset = lower_offset = lower_addr - lower_orig_addr */
563
564 for (i = 0; i < addrs->size (); i++)
565 {
566 const struct other_sections *sect = addrs_to_abfd_addrs[i];
567
568 if (sect)
569 {
570 /* This is the index used by BFD. */
571 (*addrs)[i].sectindex = sect->sectindex;
572
573 if ((*addrs)[i].addr != 0)
574 {
575 (*addrs)[i].addr -= sect->addr;
576 lower_offset = (*addrs)[i].addr;
577 }
578 else
579 (*addrs)[i].addr = lower_offset;
580 }
581 else
582 {
583 /* addr_section_name transformation is not used for SECT_NAME. */
584 const std::string &sect_name = (*addrs)[i].name;
585
586 /* This section does not exist in ABFD, which is normally
587 unexpected and we want to issue a warning.
588
589 However, the ELF prelinker does create a few sections which are
590 marked in the main executable as loadable (they are loaded in
591 memory from the DYNAMIC segment) and yet are not present in
592 separate debug info files. This is fine, and should not cause
593 a warning. Shared libraries contain just the section
594 ".gnu.liblist" but it is not marked as loadable there. There is
595 no other way to identify them than by their name as the sections
596 created by prelink have no special flags.
597
598 For the sections `.bss' and `.sbss' see addr_section_name. */
599
600 if (!(sect_name == ".gnu.liblist"
601 || sect_name == ".gnu.conflict"
602 || (sect_name == ".bss"
603 && i > 0
604 && (*addrs)[i - 1].name == ".dynbss"
605 && addrs_to_abfd_addrs[i - 1] != NULL)
606 || (sect_name == ".sbss"
607 && i > 0
608 && (*addrs)[i - 1].name == ".sdynbss"
609 && addrs_to_abfd_addrs[i - 1] != NULL)))
610 warning (_("section %s not found in %s"), sect_name.c_str (),
611 bfd_get_filename (abfd));
612
613 (*addrs)[i].addr = 0;
614 (*addrs)[i].sectindex = -1;
615 }
616 }
617 }
618
619 /* Parse the user's idea of an offset for dynamic linking, into our idea
620 of how to represent it for fast symbol reading. This is the default
621 version of the sym_fns.sym_offsets function for symbol readers that
622 don't need to do anything special. It allocates a section_offsets table
623 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
624
625 void
626 default_symfile_offsets (struct objfile *objfile,
627 const section_addr_info &addrs)
628 {
629 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
630 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
631
632 /* For relocatable files, all loadable sections will start at zero.
633 The zero is meaningless, so try to pick arbitrary addresses such
634 that no loadable sections overlap. This algorithm is quadratic,
635 but the number of sections in a single object file is generally
636 small. */
637 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
638 {
639 bfd *abfd = objfile->obfd;
640 asection *cur_sec;
641
642 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
643 /* We do not expect this to happen; just skip this step if the
644 relocatable file has a section with an assigned VMA. */
645 if (bfd_section_vma (cur_sec) != 0)
646 break;
647
648 if (cur_sec == NULL)
649 {
650 section_offsets &offsets = objfile->section_offsets;
651
652 /* Pick non-overlapping offsets for sections the user did not
653 place explicitly. */
654 CORE_ADDR lowest = 0;
655 for (asection *sect : gdb_bfd_sections (objfile->obfd))
656 place_section (objfile->obfd, sect, objfile->section_offsets,
657 lowest);
658
659 /* Correctly filling in the section offsets is not quite
660 enough. Relocatable files have two properties that
661 (most) shared objects do not:
662
663 - Their debug information will contain relocations. Some
664 shared libraries do also, but many do not, so this can not
665 be assumed.
666
667 - If there are multiple code sections they will be loaded
668 at different relative addresses in memory than they are
669 in the objfile, since all sections in the file will start
670 at address zero.
671
672 Because GDB has very limited ability to map from an
673 address in debug info to the correct code section,
674 it relies on adding SECT_OFF_TEXT to things which might be
675 code. If we clear all the section offsets, and set the
676 section VMAs instead, then symfile_relocate_debug_section
677 will return meaningful debug information pointing at the
678 correct sections.
679
680 GDB has too many different data structures for section
681 addresses - a bfd, objfile, and so_list all have section
682 tables, as does exec_ops. Some of these could probably
683 be eliminated. */
684
685 for (cur_sec = abfd->sections; cur_sec != NULL;
686 cur_sec = cur_sec->next)
687 {
688 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
689 continue;
690
691 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
692 exec_set_section_address (bfd_get_filename (abfd),
693 cur_sec->index,
694 offsets[cur_sec->index]);
695 offsets[cur_sec->index] = 0;
696 }
697 }
698 }
699
700 /* Remember the bfd indexes for the .text, .data, .bss and
701 .rodata sections. */
702 init_objfile_sect_indices (objfile);
703 }
704
705 /* Divide the file into segments, which are individual relocatable units.
706 This is the default version of the sym_fns.sym_segments function for
707 symbol readers that do not have an explicit representation of segments.
708 It assumes that object files do not have segments, and fully linked
709 files have a single segment. */
710
711 symfile_segment_data_up
712 default_symfile_segments (bfd *abfd)
713 {
714 int num_sections, i;
715 asection *sect;
716 CORE_ADDR low, high;
717
718 /* Relocatable files contain enough information to position each
719 loadable section independently; they should not be relocated
720 in segments. */
721 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
722 return NULL;
723
724 /* Make sure there is at least one loadable section in the file. */
725 for (sect = abfd->sections; sect != NULL; sect = sect->next)
726 {
727 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
728 continue;
729
730 break;
731 }
732 if (sect == NULL)
733 return NULL;
734
735 low = bfd_section_vma (sect);
736 high = low + bfd_section_size (sect);
737
738 symfile_segment_data_up data (new symfile_segment_data);
739
740 num_sections = bfd_count_sections (abfd);
741
742 /* All elements are initialized to 0 (map to no segment). */
743 data->segment_info.resize (num_sections);
744
745 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
746 {
747 CORE_ADDR vma;
748
749 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
750 continue;
751
752 vma = bfd_section_vma (sect);
753 if (vma < low)
754 low = vma;
755 if (vma + bfd_section_size (sect) > high)
756 high = vma + bfd_section_size (sect);
757
758 data->segment_info[i] = 1;
759 }
760
761 data->segments.emplace_back (low, high - low);
762
763 return data;
764 }
765
766 /* This is a convenience function to call sym_read for OBJFILE and
767 possibly force the partial symbols to be read. */
768
769 static void
770 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
771 {
772 (*objfile->sf->sym_read) (objfile, add_flags);
773 objfile->per_bfd->minsyms_read = true;
774
775 /* find_separate_debug_file_in_section should be called only if there is
776 single binary with no existing separate debug info file. */
777 if (!objfile->has_partial_symbols ()
778 && objfile->separate_debug_objfile == NULL
779 && objfile->separate_debug_objfile_backlink == NULL)
780 {
781 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
782
783 if (abfd != NULL)
784 {
785 /* find_separate_debug_file_in_section uses the same filename for the
786 virtual section-as-bfd like the bfd filename containing the
787 section. Therefore use also non-canonical name form for the same
788 file containing the section. */
789 symbol_file_add_separate (abfd.get (),
790 bfd_get_filename (abfd.get ()),
791 add_flags | SYMFILE_NOT_FILENAME, objfile);
792 }
793 }
794 if ((add_flags & SYMFILE_NO_READ) == 0)
795 objfile->require_partial_symbols (false);
796 }
797
798 /* Initialize entry point information for this objfile. */
799
800 static void
801 init_entry_point_info (struct objfile *objfile)
802 {
803 struct entry_info *ei = &objfile->per_bfd->ei;
804
805 if (ei->initialized)
806 return;
807 ei->initialized = 1;
808
809 /* Save startup file's range of PC addresses to help blockframe.c
810 decide where the bottom of the stack is. */
811
812 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
813 {
814 /* Executable file -- record its entry point so we'll recognize
815 the startup file because it contains the entry point. */
816 ei->entry_point = bfd_get_start_address (objfile->obfd);
817 ei->entry_point_p = 1;
818 }
819 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
820 && bfd_get_start_address (objfile->obfd) != 0)
821 {
822 /* Some shared libraries may have entry points set and be
823 runnable. There's no clear way to indicate this, so just check
824 for values other than zero. */
825 ei->entry_point = bfd_get_start_address (objfile->obfd);
826 ei->entry_point_p = 1;
827 }
828 else
829 {
830 /* Examination of non-executable.o files. Short-circuit this stuff. */
831 ei->entry_point_p = 0;
832 }
833
834 if (ei->entry_point_p)
835 {
836 struct obj_section *osect;
837 CORE_ADDR entry_point = ei->entry_point;
838 int found;
839
840 /* Make certain that the address points at real code, and not a
841 function descriptor. */
842 entry_point = gdbarch_convert_from_func_ptr_addr
843 (objfile->arch (), entry_point, current_inferior ()->top_target ());
844
845 /* Remove any ISA markers, so that this matches entries in the
846 symbol table. */
847 ei->entry_point
848 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
849
850 found = 0;
851 ALL_OBJFILE_OSECTIONS (objfile, osect)
852 {
853 struct bfd_section *sect = osect->the_bfd_section;
854
855 if (entry_point >= bfd_section_vma (sect)
856 && entry_point < (bfd_section_vma (sect)
857 + bfd_section_size (sect)))
858 {
859 ei->the_bfd_section_index
860 = gdb_bfd_section_index (objfile->obfd, sect);
861 found = 1;
862 break;
863 }
864 }
865
866 if (!found)
867 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
868 }
869 }
870
871 /* Process a symbol file, as either the main file or as a dynamically
872 loaded file.
873
874 This function does not set the OBJFILE's entry-point info.
875
876 OBJFILE is where the symbols are to be read from.
877
878 ADDRS is the list of section load addresses. If the user has given
879 an 'add-symbol-file' command, then this is the list of offsets and
880 addresses he or she provided as arguments to the command; or, if
881 we're handling a shared library, these are the actual addresses the
882 sections are loaded at, according to the inferior's dynamic linker
883 (as gleaned by GDB's shared library code). We convert each address
884 into an offset from the section VMA's as it appears in the object
885 file, and then call the file's sym_offsets function to convert this
886 into a format-specific offset table --- a `section_offsets'.
887 The sectindex field is used to control the ordering of sections
888 with the same name. Upon return, it is updated to contain the
889 corresponding BFD section index, or -1 if the section was not found.
890
891 ADD_FLAGS encodes verbosity level, whether this is main symbol or
892 an extra symbol file such as dynamically loaded code, and whether
893 breakpoint reset should be deferred. */
894
895 static void
896 syms_from_objfile_1 (struct objfile *objfile,
897 section_addr_info *addrs,
898 symfile_add_flags add_flags)
899 {
900 section_addr_info local_addr;
901 const int mainline = add_flags & SYMFILE_MAINLINE;
902
903 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
904 objfile->qf.clear ();
905
906 if (objfile->sf == NULL)
907 {
908 /* No symbols to load, but we still need to make sure
909 that the section_offsets table is allocated. */
910 int num_sections = gdb_bfd_count_sections (objfile->obfd);
911
912 objfile->section_offsets.assign (num_sections, 0);
913 return;
914 }
915
916 /* Make sure that partially constructed symbol tables will be cleaned up
917 if an error occurs during symbol reading. */
918 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
919
920 objfile_up objfile_holder (objfile);
921
922 /* If ADDRS is NULL, put together a dummy address list.
923 We now establish the convention that an addr of zero means
924 no load address was specified. */
925 if (! addrs)
926 addrs = &local_addr;
927
928 if (mainline)
929 {
930 /* We will modify the main symbol table, make sure that all its users
931 will be cleaned up if an error occurs during symbol reading. */
932 defer_clear_users.emplace ((symfile_add_flag) 0);
933
934 /* Since no error yet, throw away the old symbol table. */
935
936 if (current_program_space->symfile_object_file != NULL)
937 {
938 current_program_space->symfile_object_file->unlink ();
939 gdb_assert (current_program_space->symfile_object_file == NULL);
940 }
941
942 /* Currently we keep symbols from the add-symbol-file command.
943 If the user wants to get rid of them, they should do "symbol-file"
944 without arguments first. Not sure this is the best behavior
945 (PR 2207). */
946
947 (*objfile->sf->sym_new_init) (objfile);
948 }
949
950 /* Convert addr into an offset rather than an absolute address.
951 We find the lowest address of a loaded segment in the objfile,
952 and assume that <addr> is where that got loaded.
953
954 We no longer warn if the lowest section is not a text segment (as
955 happens for the PA64 port. */
956 if (addrs->size () > 0)
957 addr_info_make_relative (addrs, objfile->obfd);
958
959 /* Initialize symbol reading routines for this objfile, allow complaints to
960 appear for this new file, and record how verbose to be, then do the
961 initial symbol reading for this file. */
962
963 (*objfile->sf->sym_init) (objfile);
964 clear_complaints ();
965
966 (*objfile->sf->sym_offsets) (objfile, *addrs);
967
968 read_symbols (objfile, add_flags);
969
970 /* Discard cleanups as symbol reading was successful. */
971
972 objfile_holder.release ();
973 if (defer_clear_users)
974 defer_clear_users->release ();
975 }
976
977 /* Same as syms_from_objfile_1, but also initializes the objfile
978 entry-point info. */
979
980 static void
981 syms_from_objfile (struct objfile *objfile,
982 section_addr_info *addrs,
983 symfile_add_flags add_flags)
984 {
985 syms_from_objfile_1 (objfile, addrs, add_flags);
986 init_entry_point_info (objfile);
987 }
988
989 /* Perform required actions after either reading in the initial
990 symbols for a new objfile, or mapping in the symbols from a reusable
991 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
992
993 static void
994 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
995 {
996 /* If this is the main symbol file we have to clean up all users of the
997 old main symbol file. Otherwise it is sufficient to fixup all the
998 breakpoints that may have been redefined by this symbol file. */
999 if (add_flags & SYMFILE_MAINLINE)
1000 {
1001 /* OK, make it the "real" symbol file. */
1002 current_program_space->symfile_object_file = objfile;
1003
1004 clear_symtab_users (add_flags);
1005 }
1006 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1007 {
1008 breakpoint_re_set ();
1009 }
1010
1011 /* We're done reading the symbol file; finish off complaints. */
1012 clear_complaints ();
1013 }
1014
1015 /* Process a symbol file, as either the main file or as a dynamically
1016 loaded file.
1017
1018 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1019 A new reference is acquired by this function.
1020
1021 For NAME description see the objfile constructor.
1022
1023 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1024 extra, such as dynamically loaded code, and what to do with breakpoints.
1025
1026 ADDRS is as described for syms_from_objfile_1, above.
1027 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1028
1029 PARENT is the original objfile if ABFD is a separate debug info file.
1030 Otherwise PARENT is NULL.
1031
1032 Upon success, returns a pointer to the objfile that was added.
1033 Upon failure, jumps back to command level (never returns). */
1034
1035 static struct objfile *
1036 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1037 symfile_add_flags add_flags,
1038 section_addr_info *addrs,
1039 objfile_flags flags, struct objfile *parent)
1040 {
1041 struct objfile *objfile;
1042 const int from_tty = add_flags & SYMFILE_VERBOSE;
1043 const int mainline = add_flags & SYMFILE_MAINLINE;
1044 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1045 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1046 && (readnow_symbol_files
1047 || (add_flags & SYMFILE_NO_READ) == 0));
1048
1049 if (readnow_symbol_files)
1050 {
1051 flags |= OBJF_READNOW;
1052 add_flags &= ~SYMFILE_NO_READ;
1053 }
1054 else if (readnever_symbol_files
1055 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1056 {
1057 flags |= OBJF_READNEVER;
1058 add_flags |= SYMFILE_NO_READ;
1059 }
1060 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1061 flags |= OBJF_NOT_FILENAME;
1062
1063 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1064 interactively wiping out any existing symbols. */
1065
1066 if (from_tty
1067 && (always_confirm
1068 || ((have_full_symbols () || have_partial_symbols ())
1069 && mainline))
1070 && !query (_("Load new symbol table from \"%s\"? "), name))
1071 error (_("Not confirmed."));
1072
1073 if (mainline)
1074 flags |= OBJF_MAINLINE;
1075 objfile = objfile::make (abfd, name, flags, parent);
1076
1077 /* We either created a new mapped symbol table, mapped an existing
1078 symbol table file which has not had initial symbol reading
1079 performed, or need to read an unmapped symbol table. */
1080 if (should_print)
1081 {
1082 if (deprecated_pre_add_symbol_hook)
1083 deprecated_pre_add_symbol_hook (name);
1084 else
1085 printf_filtered (_("Reading symbols from %ps...\n"),
1086 styled_string (file_name_style.style (), name));
1087 }
1088 syms_from_objfile (objfile, addrs, add_flags);
1089
1090 /* We now have at least a partial symbol table. Check to see if the
1091 user requested that all symbols be read on initial access via either
1092 the gdb startup command line or on a per symbol file basis. Expand
1093 all partial symbol tables for this objfile if so. */
1094
1095 if ((flags & OBJF_READNOW))
1096 {
1097 if (should_print)
1098 printf_filtered (_("Expanding full symbols from %ps...\n"),
1099 styled_string (file_name_style.style (), name));
1100
1101 objfile->expand_all_symtabs ();
1102 }
1103
1104 /* Note that we only print a message if we have no symbols and have
1105 no separate debug file. If there is a separate debug file which
1106 does not have symbols, we'll have emitted this message for that
1107 file, and so printing it twice is just redundant. */
1108 if (should_print && !objfile_has_symbols (objfile)
1109 && objfile->separate_debug_objfile == nullptr)
1110 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1111 styled_string (file_name_style.style (), name));
1112
1113 if (should_print)
1114 {
1115 if (deprecated_post_add_symbol_hook)
1116 deprecated_post_add_symbol_hook ();
1117 }
1118
1119 /* We print some messages regardless of whether 'from_tty ||
1120 info_verbose' is true, so make sure they go out at the right
1121 time. */
1122 gdb_flush (gdb_stdout);
1123
1124 if (objfile->sf == NULL)
1125 {
1126 gdb::observers::new_objfile.notify (objfile);
1127 return objfile; /* No symbols. */
1128 }
1129
1130 finish_new_objfile (objfile, add_flags);
1131
1132 gdb::observers::new_objfile.notify (objfile);
1133
1134 bfd_cache_close_all ();
1135 return (objfile);
1136 }
1137
1138 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1139 see the objfile constructor. */
1140
1141 void
1142 symbol_file_add_separate (bfd *bfd, const char *name,
1143 symfile_add_flags symfile_flags,
1144 struct objfile *objfile)
1145 {
1146 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1147 because sections of BFD may not match sections of OBJFILE and because
1148 vma may have been modified by tools such as prelink. */
1149 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1150
1151 symbol_file_add_with_addrs
1152 (bfd, name, symfile_flags, &sap,
1153 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1154 | OBJF_USERLOADED | OBJF_MAINLINE),
1155 objfile);
1156 }
1157
1158 /* Process the symbol file ABFD, as either the main file or as a
1159 dynamically loaded file.
1160 See symbol_file_add_with_addrs's comments for details. */
1161
1162 struct objfile *
1163 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1164 symfile_add_flags add_flags,
1165 section_addr_info *addrs,
1166 objfile_flags flags, struct objfile *parent)
1167 {
1168 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1169 parent);
1170 }
1171
1172 /* Process a symbol file, as either the main file or as a dynamically
1173 loaded file. See symbol_file_add_with_addrs's comments for details. */
1174
1175 struct objfile *
1176 symbol_file_add (const char *name, symfile_add_flags add_flags,
1177 section_addr_info *addrs, objfile_flags flags)
1178 {
1179 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1180
1181 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1182 flags, NULL);
1183 }
1184
1185 /* Call symbol_file_add() with default values and update whatever is
1186 affected by the loading of a new main().
1187 Used when the file is supplied in the gdb command line
1188 and by some targets with special loading requirements.
1189 The auxiliary function, symbol_file_add_main_1(), has the flags
1190 argument for the switches that can only be specified in the symbol_file
1191 command itself. */
1192
1193 void
1194 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1195 {
1196 symbol_file_add_main_1 (args, add_flags, 0, 0);
1197 }
1198
1199 static void
1200 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1201 objfile_flags flags, CORE_ADDR reloff)
1202 {
1203 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1204
1205 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1206 if (reloff != 0)
1207 objfile_rebase (objfile, reloff);
1208
1209 /* Getting new symbols may change our opinion about
1210 what is frameless. */
1211 reinit_frame_cache ();
1212
1213 if ((add_flags & SYMFILE_NO_READ) == 0)
1214 set_initial_language ();
1215 }
1216
1217 void
1218 symbol_file_clear (int from_tty)
1219 {
1220 if ((have_full_symbols () || have_partial_symbols ())
1221 && from_tty
1222 && (current_program_space->symfile_object_file
1223 ? !query (_("Discard symbol table from `%s'? "),
1224 objfile_name (current_program_space->symfile_object_file))
1225 : !query (_("Discard symbol table? "))))
1226 error (_("Not confirmed."));
1227
1228 /* solib descriptors may have handles to objfiles. Wipe them before their
1229 objfiles get stale by free_all_objfiles. */
1230 no_shared_libraries (NULL, from_tty);
1231
1232 current_program_space->free_all_objfiles ();
1233
1234 clear_symtab_users (0);
1235
1236 gdb_assert (current_program_space->symfile_object_file == NULL);
1237 if (from_tty)
1238 printf_filtered (_("No symbol file now.\n"));
1239 }
1240
1241 /* See symfile.h. */
1242
1243 bool separate_debug_file_debug = false;
1244
1245 static int
1246 separate_debug_file_exists (const std::string &name, unsigned long crc,
1247 struct objfile *parent_objfile)
1248 {
1249 unsigned long file_crc;
1250 int file_crc_p;
1251 struct stat parent_stat, abfd_stat;
1252 int verified_as_different;
1253
1254 /* Find a separate debug info file as if symbols would be present in
1255 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1256 section can contain just the basename of PARENT_OBJFILE without any
1257 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1258 the separate debug infos with the same basename can exist. */
1259
1260 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1261 return 0;
1262
1263 if (separate_debug_file_debug)
1264 {
1265 fprintf_filtered (gdb_stdlog, _(" Trying %s..."), name.c_str ());
1266 gdb_flush (gdb_stdlog);
1267 }
1268
1269 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1270
1271 if (abfd == NULL)
1272 {
1273 if (separate_debug_file_debug)
1274 fprintf_filtered (gdb_stdlog, _(" no, unable to open.\n"));
1275
1276 return 0;
1277 }
1278
1279 /* Verify symlinks were not the cause of filename_cmp name difference above.
1280
1281 Some operating systems, e.g. Windows, do not provide a meaningful
1282 st_ino; they always set it to zero. (Windows does provide a
1283 meaningful st_dev.) Files accessed from gdbservers that do not
1284 support the vFile:fstat packet will also have st_ino set to zero.
1285 Do not indicate a duplicate library in either case. While there
1286 is no guarantee that a system that provides meaningful inode
1287 numbers will never set st_ino to zero, this is merely an
1288 optimization, so we do not need to worry about false negatives. */
1289
1290 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1291 && abfd_stat.st_ino != 0
1292 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1293 {
1294 if (abfd_stat.st_dev == parent_stat.st_dev
1295 && abfd_stat.st_ino == parent_stat.st_ino)
1296 {
1297 if (separate_debug_file_debug)
1298 fprintf_filtered (gdb_stdlog,
1299 _(" no, same file as the objfile.\n"));
1300
1301 return 0;
1302 }
1303 verified_as_different = 1;
1304 }
1305 else
1306 verified_as_different = 0;
1307
1308 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1309
1310 if (!file_crc_p)
1311 {
1312 if (separate_debug_file_debug)
1313 fprintf_filtered (gdb_stdlog, _(" no, error computing CRC.\n"));
1314
1315 return 0;
1316 }
1317
1318 if (crc != file_crc)
1319 {
1320 unsigned long parent_crc;
1321
1322 /* If the files could not be verified as different with
1323 bfd_stat then we need to calculate the parent's CRC
1324 to verify whether the files are different or not. */
1325
1326 if (!verified_as_different)
1327 {
1328 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1329 {
1330 if (separate_debug_file_debug)
1331 fprintf_filtered (gdb_stdlog,
1332 _(" no, error computing CRC.\n"));
1333
1334 return 0;
1335 }
1336 }
1337
1338 if (verified_as_different || parent_crc != file_crc)
1339 warning (_("the debug information found in \"%s\""
1340 " does not match \"%s\" (CRC mismatch).\n"),
1341 name.c_str (), objfile_name (parent_objfile));
1342
1343 if (separate_debug_file_debug)
1344 fprintf_filtered (gdb_stdlog, _(" no, CRC doesn't match.\n"));
1345
1346 return 0;
1347 }
1348
1349 if (separate_debug_file_debug)
1350 fprintf_filtered (gdb_stdlog, _(" yes!\n"));
1351
1352 return 1;
1353 }
1354
1355 std::string debug_file_directory;
1356 static void
1357 show_debug_file_directory (struct ui_file *file, int from_tty,
1358 struct cmd_list_element *c, const char *value)
1359 {
1360 fprintf_filtered (file,
1361 _("The directory where separate debug "
1362 "symbols are searched for is \"%s\".\n"),
1363 value);
1364 }
1365
1366 #if ! defined (DEBUG_SUBDIRECTORY)
1367 #define DEBUG_SUBDIRECTORY ".debug"
1368 #endif
1369
1370 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1371 where the original file resides (may not be the same as
1372 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1373 looking for. CANON_DIR is the "realpath" form of DIR.
1374 DIR must contain a trailing '/'.
1375 Returns the path of the file with separate debug info, or an empty
1376 string. */
1377
1378 static std::string
1379 find_separate_debug_file (const char *dir,
1380 const char *canon_dir,
1381 const char *debuglink,
1382 unsigned long crc32, struct objfile *objfile)
1383 {
1384 if (separate_debug_file_debug)
1385 fprintf_filtered (gdb_stdlog,
1386 _("\nLooking for separate debug info (debug link) for "
1387 "%s\n"), objfile_name (objfile));
1388
1389 /* First try in the same directory as the original file. */
1390 std::string debugfile = dir;
1391 debugfile += debuglink;
1392
1393 if (separate_debug_file_exists (debugfile, crc32, objfile))
1394 return debugfile;
1395
1396 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1397 debugfile = dir;
1398 debugfile += DEBUG_SUBDIRECTORY;
1399 debugfile += "/";
1400 debugfile += debuglink;
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 return debugfile;
1404
1405 /* Then try in the global debugfile directories.
1406
1407 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1408 cause "/..." lookups. */
1409
1410 bool target_prefix = startswith (dir, "target:");
1411 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1412 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1413 = dirnames_to_char_ptr_vec (debug_file_directory.c_str ());
1414 gdb::unique_xmalloc_ptr<char> canon_sysroot
1415 = gdb_realpath (gdb_sysroot.c_str ());
1416
1417 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1418 convert the drive letter into a one-letter directory, so that the
1419 file name resulting from splicing below will be valid.
1420
1421 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1422 There are various remote-debugging scenarios where such a
1423 transformation of the drive letter might be required when GDB runs
1424 on a Posix host, see
1425
1426 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1427
1428 If some of those scenarios need to be supported, we will need to
1429 use a different condition for HAS_DRIVE_SPEC and a different macro
1430 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1431 std::string drive;
1432 if (HAS_DRIVE_SPEC (dir_notarget))
1433 {
1434 drive = dir_notarget[0];
1435 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1436 }
1437
1438 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1439 {
1440 debugfile = target_prefix ? "target:" : "";
1441 debugfile += debugdir.get ();
1442 debugfile += "/";
1443 debugfile += drive;
1444 debugfile += dir_notarget;
1445 debugfile += debuglink;
1446
1447 if (separate_debug_file_exists (debugfile, crc32, objfile))
1448 return debugfile;
1449
1450 const char *base_path = NULL;
1451 if (canon_dir != NULL)
1452 {
1453 if (canon_sysroot.get () != NULL)
1454 base_path = child_path (canon_sysroot.get (), canon_dir);
1455 else
1456 base_path = child_path (gdb_sysroot.c_str (), canon_dir);
1457 }
1458 if (base_path != NULL)
1459 {
1460 /* If the file is in the sysroot, try using its base path in
1461 the global debugfile directory. */
1462 debugfile = target_prefix ? "target:" : "";
1463 debugfile += debugdir.get ();
1464 debugfile += "/";
1465 debugfile += base_path;
1466 debugfile += "/";
1467 debugfile += debuglink;
1468
1469 if (separate_debug_file_exists (debugfile, crc32, objfile))
1470 return debugfile;
1471
1472 /* If the file is in the sysroot, try using its base path in
1473 the sysroot's global debugfile directory. */
1474 debugfile = target_prefix ? "target:" : "";
1475 debugfile += gdb_sysroot;
1476 debugfile += debugdir.get ();
1477 debugfile += "/";
1478 debugfile += base_path;
1479 debugfile += "/";
1480 debugfile += debuglink;
1481
1482 if (separate_debug_file_exists (debugfile, crc32, objfile))
1483 return debugfile;
1484 }
1485
1486 }
1487
1488 return std::string ();
1489 }
1490
1491 /* Modify PATH to contain only "[/]directory/" part of PATH.
1492 If there were no directory separators in PATH, PATH will be empty
1493 string on return. */
1494
1495 static void
1496 terminate_after_last_dir_separator (char *path)
1497 {
1498 int i;
1499
1500 /* Strip off the final filename part, leaving the directory name,
1501 followed by a slash. The directory can be relative or absolute. */
1502 for (i = strlen(path) - 1; i >= 0; i--)
1503 if (IS_DIR_SEPARATOR (path[i]))
1504 break;
1505
1506 /* If I is -1 then no directory is present there and DIR will be "". */
1507 path[i + 1] = '\0';
1508 }
1509
1510 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1511 Returns pathname, or an empty string. */
1512
1513 std::string
1514 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1515 {
1516 unsigned long crc32;
1517
1518 gdb::unique_xmalloc_ptr<char> debuglink
1519 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1520
1521 if (debuglink == NULL)
1522 {
1523 /* There's no separate debug info, hence there's no way we could
1524 load it => no warning. */
1525 return std::string ();
1526 }
1527
1528 std::string dir = objfile_name (objfile);
1529 terminate_after_last_dir_separator (&dir[0]);
1530 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1531
1532 std::string debugfile
1533 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1534 debuglink.get (), crc32, objfile);
1535
1536 if (debugfile.empty ())
1537 {
1538 /* For PR gdb/9538, try again with realpath (if different from the
1539 original). */
1540
1541 struct stat st_buf;
1542
1543 if (lstat (objfile_name (objfile), &st_buf) == 0
1544 && S_ISLNK (st_buf.st_mode))
1545 {
1546 gdb::unique_xmalloc_ptr<char> symlink_dir
1547 (lrealpath (objfile_name (objfile)));
1548 if (symlink_dir != NULL)
1549 {
1550 terminate_after_last_dir_separator (symlink_dir.get ());
1551 if (dir != symlink_dir.get ())
1552 {
1553 /* Different directory, so try using it. */
1554 debugfile = find_separate_debug_file (symlink_dir.get (),
1555 symlink_dir.get (),
1556 debuglink.get (),
1557 crc32,
1558 objfile);
1559 }
1560 }
1561 }
1562 }
1563
1564 return debugfile;
1565 }
1566
1567 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1568 simultaneously. */
1569
1570 static void
1571 validate_readnow_readnever (objfile_flags flags)
1572 {
1573 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1574 error (_("-readnow and -readnever cannot be used simultaneously"));
1575 }
1576
1577 /* This is the symbol-file command. Read the file, analyze its
1578 symbols, and add a struct symtab to a symtab list. The syntax of
1579 the command is rather bizarre:
1580
1581 1. The function buildargv implements various quoting conventions
1582 which are undocumented and have little or nothing in common with
1583 the way things are quoted (or not quoted) elsewhere in GDB.
1584
1585 2. Options are used, which are not generally used in GDB (perhaps
1586 "set mapped on", "set readnow on" would be better)
1587
1588 3. The order of options matters, which is contrary to GNU
1589 conventions (because it is confusing and inconvenient). */
1590
1591 void
1592 symbol_file_command (const char *args, int from_tty)
1593 {
1594 dont_repeat ();
1595
1596 if (args == NULL)
1597 {
1598 symbol_file_clear (from_tty);
1599 }
1600 else
1601 {
1602 objfile_flags flags = OBJF_USERLOADED;
1603 symfile_add_flags add_flags = 0;
1604 char *name = NULL;
1605 bool stop_processing_options = false;
1606 CORE_ADDR offset = 0;
1607 int idx;
1608 char *arg;
1609
1610 if (from_tty)
1611 add_flags |= SYMFILE_VERBOSE;
1612
1613 gdb_argv built_argv (args);
1614 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1615 {
1616 if (stop_processing_options || *arg != '-')
1617 {
1618 if (name == NULL)
1619 name = arg;
1620 else
1621 error (_("Unrecognized argument \"%s\""), arg);
1622 }
1623 else if (strcmp (arg, "-readnow") == 0)
1624 flags |= OBJF_READNOW;
1625 else if (strcmp (arg, "-readnever") == 0)
1626 flags |= OBJF_READNEVER;
1627 else if (strcmp (arg, "-o") == 0)
1628 {
1629 arg = built_argv[++idx];
1630 if (arg == NULL)
1631 error (_("Missing argument to -o"));
1632
1633 offset = parse_and_eval_address (arg);
1634 }
1635 else if (strcmp (arg, "--") == 0)
1636 stop_processing_options = true;
1637 else
1638 error (_("Unrecognized argument \"%s\""), arg);
1639 }
1640
1641 if (name == NULL)
1642 error (_("no symbol file name was specified"));
1643
1644 validate_readnow_readnever (flags);
1645
1646 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1647 (Position Independent Executable) main symbol file will only be
1648 computed by the solib_create_inferior_hook below. Without it,
1649 breakpoint_re_set would fail to insert the breakpoints with the zero
1650 displacement. */
1651 add_flags |= SYMFILE_DEFER_BP_RESET;
1652
1653 symbol_file_add_main_1 (name, add_flags, flags, offset);
1654
1655 solib_create_inferior_hook (from_tty);
1656
1657 /* Now it's safe to re-add the breakpoints. */
1658 breakpoint_re_set ();
1659 }
1660 }
1661
1662 /* Set the initial language. */
1663
1664 void
1665 set_initial_language (void)
1666 {
1667 if (language_mode == language_mode_manual)
1668 return;
1669 enum language lang = main_language ();
1670 /* Make C the default language. */
1671 enum language default_lang = language_c;
1672
1673 if (lang == language_unknown)
1674 {
1675 const char *name = main_name ();
1676 struct symbol *sym
1677 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1678 NULL).symbol;
1679
1680 if (sym != NULL)
1681 lang = sym->language ();
1682 }
1683
1684 if (lang == language_unknown)
1685 {
1686 lang = default_lang;
1687 }
1688
1689 set_language (lang);
1690 expected_language = current_language; /* Don't warn the user. */
1691 }
1692
1693 /* Open the file specified by NAME and hand it off to BFD for
1694 preliminary analysis. Return a newly initialized bfd *, which
1695 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1696 absolute). In case of trouble, error() is called. */
1697
1698 gdb_bfd_ref_ptr
1699 symfile_bfd_open (const char *name)
1700 {
1701 int desc = -1;
1702
1703 gdb::unique_xmalloc_ptr<char> absolute_name;
1704 if (!is_target_filename (name))
1705 {
1706 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1707
1708 /* Look down path for it, allocate 2nd new malloc'd copy. */
1709 desc = openp (getenv ("PATH"),
1710 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1711 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1712 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1713 if (desc < 0)
1714 {
1715 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1716
1717 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1718 desc = openp (getenv ("PATH"),
1719 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1720 exename, O_RDONLY | O_BINARY, &absolute_name);
1721 }
1722 #endif
1723 if (desc < 0)
1724 perror_with_name (expanded_name.get ());
1725
1726 name = absolute_name.get ();
1727 }
1728
1729 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1730 if (sym_bfd == NULL)
1731 error (_("`%s': can't open to read symbols: %s."), name,
1732 bfd_errmsg (bfd_get_error ()));
1733
1734 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1735 bfd_set_cacheable (sym_bfd.get (), 1);
1736
1737 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1738 error (_("`%s': can't read symbols: %s."), name,
1739 bfd_errmsg (bfd_get_error ()));
1740
1741 return sym_bfd;
1742 }
1743
1744 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1745 the section was not found. */
1746
1747 int
1748 get_section_index (struct objfile *objfile, const char *section_name)
1749 {
1750 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1751
1752 if (sect)
1753 return sect->index;
1754 else
1755 return -1;
1756 }
1757
1758 /* Link SF into the global symtab_fns list.
1759 FLAVOUR is the file format that SF handles.
1760 Called on startup by the _initialize routine in each object file format
1761 reader, to register information about each format the reader is prepared
1762 to handle. */
1763
1764 void
1765 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1766 {
1767 symtab_fns.emplace_back (flavour, sf);
1768 }
1769
1770 /* Initialize OBJFILE to read symbols from its associated BFD. It
1771 either returns or calls error(). The result is an initialized
1772 struct sym_fns in the objfile structure, that contains cached
1773 information about the symbol file. */
1774
1775 static const struct sym_fns *
1776 find_sym_fns (bfd *abfd)
1777 {
1778 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1779
1780 if (our_flavour == bfd_target_srec_flavour
1781 || our_flavour == bfd_target_ihex_flavour
1782 || our_flavour == bfd_target_tekhex_flavour)
1783 return NULL; /* No symbols. */
1784
1785 for (const registered_sym_fns &rsf : symtab_fns)
1786 if (our_flavour == rsf.sym_flavour)
1787 return rsf.sym_fns;
1788
1789 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1790 bfd_get_target (abfd));
1791 }
1792 \f
1793
1794 /* This function runs the load command of our current target. */
1795
1796 static void
1797 load_command (const char *arg, int from_tty)
1798 {
1799 dont_repeat ();
1800
1801 /* The user might be reloading because the binary has changed. Take
1802 this opportunity to check. */
1803 reopen_exec_file ();
1804 reread_symbols (from_tty);
1805
1806 std::string temp;
1807 if (arg == NULL)
1808 {
1809 const char *parg, *prev;
1810
1811 arg = get_exec_file (1);
1812
1813 /* We may need to quote this string so buildargv can pull it
1814 apart. */
1815 prev = parg = arg;
1816 while ((parg = strpbrk (parg, "\\\"'\t ")))
1817 {
1818 temp.append (prev, parg - prev);
1819 prev = parg++;
1820 temp.push_back ('\\');
1821 }
1822 /* If we have not copied anything yet, then we didn't see a
1823 character to quote, and we can just leave ARG unchanged. */
1824 if (!temp.empty ())
1825 {
1826 temp.append (prev);
1827 arg = temp.c_str ();
1828 }
1829 }
1830
1831 target_load (arg, from_tty);
1832
1833 /* After re-loading the executable, we don't really know which
1834 overlays are mapped any more. */
1835 overlay_cache_invalid = 1;
1836 }
1837
1838 /* This version of "load" should be usable for any target. Currently
1839 it is just used for remote targets, not inftarg.c or core files,
1840 on the theory that only in that case is it useful.
1841
1842 Avoiding xmodem and the like seems like a win (a) because we don't have
1843 to worry about finding it, and (b) On VMS, fork() is very slow and so
1844 we don't want to run a subprocess. On the other hand, I'm not sure how
1845 performance compares. */
1846
1847 static int validate_download = 0;
1848
1849 /* Opaque data for load_progress. */
1850 struct load_progress_data
1851 {
1852 /* Cumulative data. */
1853 unsigned long write_count = 0;
1854 unsigned long data_count = 0;
1855 bfd_size_type total_size = 0;
1856 };
1857
1858 /* Opaque data for load_progress for a single section. */
1859 struct load_progress_section_data
1860 {
1861 load_progress_section_data (load_progress_data *cumulative_,
1862 const char *section_name_, ULONGEST section_size_,
1863 CORE_ADDR lma_, gdb_byte *buffer_)
1864 : cumulative (cumulative_), section_name (section_name_),
1865 section_size (section_size_), lma (lma_), buffer (buffer_)
1866 {}
1867
1868 struct load_progress_data *cumulative;
1869
1870 /* Per-section data. */
1871 const char *section_name;
1872 ULONGEST section_sent = 0;
1873 ULONGEST section_size;
1874 CORE_ADDR lma;
1875 gdb_byte *buffer;
1876 };
1877
1878 /* Opaque data for load_section_callback. */
1879 struct load_section_data
1880 {
1881 load_section_data (load_progress_data *progress_data_)
1882 : progress_data (progress_data_)
1883 {}
1884
1885 ~load_section_data ()
1886 {
1887 for (auto &&request : requests)
1888 {
1889 xfree (request.data);
1890 delete ((load_progress_section_data *) request.baton);
1891 }
1892 }
1893
1894 CORE_ADDR load_offset = 0;
1895 struct load_progress_data *progress_data;
1896 std::vector<struct memory_write_request> requests;
1897 };
1898
1899 /* Target write callback routine for progress reporting. */
1900
1901 static void
1902 load_progress (ULONGEST bytes, void *untyped_arg)
1903 {
1904 struct load_progress_section_data *args
1905 = (struct load_progress_section_data *) untyped_arg;
1906 struct load_progress_data *totals;
1907
1908 if (args == NULL)
1909 /* Writing padding data. No easy way to get at the cumulative
1910 stats, so just ignore this. */
1911 return;
1912
1913 totals = args->cumulative;
1914
1915 if (bytes == 0 && args->section_sent == 0)
1916 {
1917 /* The write is just starting. Let the user know we've started
1918 this section. */
1919 current_uiout->message ("Loading section %s, size %s lma %s\n",
1920 args->section_name,
1921 hex_string (args->section_size),
1922 paddress (target_gdbarch (), args->lma));
1923 return;
1924 }
1925
1926 if (validate_download)
1927 {
1928 /* Broken memories and broken monitors manifest themselves here
1929 when bring new computers to life. This doubles already slow
1930 downloads. */
1931 /* NOTE: cagney/1999-10-18: A more efficient implementation
1932 might add a verify_memory() method to the target vector and
1933 then use that. remote.c could implement that method using
1934 the ``qCRC'' packet. */
1935 gdb::byte_vector check (bytes);
1936
1937 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1938 error (_("Download verify read failed at %s"),
1939 paddress (target_gdbarch (), args->lma));
1940 if (memcmp (args->buffer, check.data (), bytes) != 0)
1941 error (_("Download verify compare failed at %s"),
1942 paddress (target_gdbarch (), args->lma));
1943 }
1944 totals->data_count += bytes;
1945 args->lma += bytes;
1946 args->buffer += bytes;
1947 totals->write_count += 1;
1948 args->section_sent += bytes;
1949 if (check_quit_flag ()
1950 || (deprecated_ui_load_progress_hook != NULL
1951 && deprecated_ui_load_progress_hook (args->section_name,
1952 args->section_sent)))
1953 error (_("Canceled the download"));
1954
1955 if (deprecated_show_load_progress != NULL)
1956 deprecated_show_load_progress (args->section_name,
1957 args->section_sent,
1958 args->section_size,
1959 totals->data_count,
1960 totals->total_size);
1961 }
1962
1963 /* Service function for generic_load. */
1964
1965 static void
1966 load_one_section (bfd *abfd, asection *asec,
1967 struct load_section_data *args)
1968 {
1969 bfd_size_type size = bfd_section_size (asec);
1970 const char *sect_name = bfd_section_name (asec);
1971
1972 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1973 return;
1974
1975 if (size == 0)
1976 return;
1977
1978 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1979 ULONGEST end = begin + size;
1980 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1981 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1982
1983 load_progress_section_data *section_data
1984 = new load_progress_section_data (args->progress_data, sect_name, size,
1985 begin, buffer);
1986
1987 args->requests.emplace_back (begin, end, buffer, section_data);
1988 }
1989
1990 static void print_transfer_performance (struct ui_file *stream,
1991 unsigned long data_count,
1992 unsigned long write_count,
1993 std::chrono::steady_clock::duration d);
1994
1995 /* See symfile.h. */
1996
1997 void
1998 generic_load (const char *args, int from_tty)
1999 {
2000 struct load_progress_data total_progress;
2001 struct load_section_data cbdata (&total_progress);
2002 struct ui_out *uiout = current_uiout;
2003
2004 if (args == NULL)
2005 error_no_arg (_("file to load"));
2006
2007 gdb_argv argv (args);
2008
2009 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2010
2011 if (argv[1] != NULL)
2012 {
2013 const char *endptr;
2014
2015 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2016
2017 /* If the last word was not a valid number then
2018 treat it as a file name with spaces in. */
2019 if (argv[1] == endptr)
2020 error (_("Invalid download offset:%s."), argv[1]);
2021
2022 if (argv[2] != NULL)
2023 error (_("Too many parameters."));
2024 }
2025
2026 /* Open the file for loading. */
2027 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2028 if (loadfile_bfd == NULL)
2029 perror_with_name (filename.get ());
2030
2031 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2032 {
2033 error (_("\"%s\" is not an object file: %s"), filename.get (),
2034 bfd_errmsg (bfd_get_error ()));
2035 }
2036
2037 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2038 total_progress.total_size += bfd_section_size (asec);
2039
2040 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2041 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2042
2043 using namespace std::chrono;
2044
2045 steady_clock::time_point start_time = steady_clock::now ();
2046
2047 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2048 load_progress) != 0)
2049 error (_("Load failed"));
2050
2051 steady_clock::time_point end_time = steady_clock::now ();
2052
2053 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2054 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2055 uiout->text ("Start address ");
2056 uiout->field_core_addr ("address", target_gdbarch (), entry);
2057 uiout->text (", load size ");
2058 uiout->field_unsigned ("load-size", total_progress.data_count);
2059 uiout->text ("\n");
2060 regcache_write_pc (get_current_regcache (), entry);
2061
2062 /* Reset breakpoints, now that we have changed the load image. For
2063 instance, breakpoints may have been set (or reset, by
2064 post_create_inferior) while connected to the target but before we
2065 loaded the program. In that case, the prologue analyzer could
2066 have read instructions from the target to find the right
2067 breakpoint locations. Loading has changed the contents of that
2068 memory. */
2069
2070 breakpoint_re_set ();
2071
2072 print_transfer_performance (gdb_stdout, total_progress.data_count,
2073 total_progress.write_count,
2074 end_time - start_time);
2075 }
2076
2077 /* Report on STREAM the performance of a memory transfer operation,
2078 such as 'load'. DATA_COUNT is the number of bytes transferred.
2079 WRITE_COUNT is the number of separate write operations, or 0, if
2080 that information is not available. TIME is how long the operation
2081 lasted. */
2082
2083 static void
2084 print_transfer_performance (struct ui_file *stream,
2085 unsigned long data_count,
2086 unsigned long write_count,
2087 std::chrono::steady_clock::duration time)
2088 {
2089 using namespace std::chrono;
2090 struct ui_out *uiout = current_uiout;
2091
2092 milliseconds ms = duration_cast<milliseconds> (time);
2093
2094 uiout->text ("Transfer rate: ");
2095 if (ms.count () > 0)
2096 {
2097 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2098
2099 if (uiout->is_mi_like_p ())
2100 {
2101 uiout->field_unsigned ("transfer-rate", rate * 8);
2102 uiout->text (" bits/sec");
2103 }
2104 else if (rate < 1024)
2105 {
2106 uiout->field_unsigned ("transfer-rate", rate);
2107 uiout->text (" bytes/sec");
2108 }
2109 else
2110 {
2111 uiout->field_unsigned ("transfer-rate", rate / 1024);
2112 uiout->text (" KB/sec");
2113 }
2114 }
2115 else
2116 {
2117 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2118 uiout->text (" bits in <1 sec");
2119 }
2120 if (write_count > 0)
2121 {
2122 uiout->text (", ");
2123 uiout->field_unsigned ("write-rate", data_count / write_count);
2124 uiout->text (" bytes/write");
2125 }
2126 uiout->text (".\n");
2127 }
2128
2129 /* Add an OFFSET to the start address of each section in OBJF, except
2130 sections that were specified in ADDRS. */
2131
2132 static void
2133 set_objfile_default_section_offset (struct objfile *objf,
2134 const section_addr_info &addrs,
2135 CORE_ADDR offset)
2136 {
2137 /* Add OFFSET to all sections by default. */
2138 section_offsets offsets (objf->section_offsets.size (), offset);
2139
2140 /* Create sorted lists of all sections in ADDRS as well as all
2141 sections in OBJF. */
2142
2143 std::vector<const struct other_sections *> addrs_sorted
2144 = addrs_section_sort (addrs);
2145
2146 section_addr_info objf_addrs
2147 = build_section_addr_info_from_objfile (objf);
2148 std::vector<const struct other_sections *> objf_addrs_sorted
2149 = addrs_section_sort (objf_addrs);
2150
2151 /* Walk the BFD section list, and if a matching section is found in
2152 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2153 unchanged.
2154
2155 Note that both lists may contain multiple sections with the same
2156 name, and then the sections from ADDRS are matched in BFD order
2157 (thanks to sectindex). */
2158
2159 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2160 = addrs_sorted.begin ();
2161 for (const other_sections *objf_sect : objf_addrs_sorted)
2162 {
2163 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2164 int cmp = -1;
2165
2166 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2167 {
2168 const struct other_sections *sect = *addrs_sorted_iter;
2169 const char *sect_name = addr_section_name (sect->name.c_str ());
2170 cmp = strcmp (sect_name, objf_name);
2171 if (cmp <= 0)
2172 ++addrs_sorted_iter;
2173 }
2174
2175 if (cmp == 0)
2176 offsets[objf_sect->sectindex] = 0;
2177 }
2178
2179 /* Apply the new section offsets. */
2180 objfile_relocate (objf, offsets);
2181 }
2182
2183 /* This function allows the addition of incrementally linked object files.
2184 It does not modify any state in the target, only in the debugger. */
2185
2186 static void
2187 add_symbol_file_command (const char *args, int from_tty)
2188 {
2189 struct gdbarch *gdbarch = get_current_arch ();
2190 gdb::unique_xmalloc_ptr<char> filename;
2191 char *arg;
2192 int argcnt = 0;
2193 struct objfile *objf;
2194 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2195 symfile_add_flags add_flags = 0;
2196
2197 if (from_tty)
2198 add_flags |= SYMFILE_VERBOSE;
2199
2200 struct sect_opt
2201 {
2202 const char *name;
2203 const char *value;
2204 };
2205
2206 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2207 bool stop_processing_options = false;
2208 CORE_ADDR offset = 0;
2209
2210 dont_repeat ();
2211
2212 if (args == NULL)
2213 error (_("add-symbol-file takes a file name and an address"));
2214
2215 bool seen_addr = false;
2216 bool seen_offset = false;
2217 gdb_argv argv (args);
2218
2219 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2220 {
2221 if (stop_processing_options || *arg != '-')
2222 {
2223 if (filename == NULL)
2224 {
2225 /* First non-option argument is always the filename. */
2226 filename.reset (tilde_expand (arg));
2227 }
2228 else if (!seen_addr)
2229 {
2230 /* The second non-option argument is always the text
2231 address at which to load the program. */
2232 sect_opts[0].value = arg;
2233 seen_addr = true;
2234 }
2235 else
2236 error (_("Unrecognized argument \"%s\""), arg);
2237 }
2238 else if (strcmp (arg, "-readnow") == 0)
2239 flags |= OBJF_READNOW;
2240 else if (strcmp (arg, "-readnever") == 0)
2241 flags |= OBJF_READNEVER;
2242 else if (strcmp (arg, "-s") == 0)
2243 {
2244 if (argv[argcnt + 1] == NULL)
2245 error (_("Missing section name after \"-s\""));
2246 else if (argv[argcnt + 2] == NULL)
2247 error (_("Missing section address after \"-s\""));
2248
2249 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2250
2251 sect_opts.push_back (sect);
2252 argcnt += 2;
2253 }
2254 else if (strcmp (arg, "-o") == 0)
2255 {
2256 arg = argv[++argcnt];
2257 if (arg == NULL)
2258 error (_("Missing argument to -o"));
2259
2260 offset = parse_and_eval_address (arg);
2261 seen_offset = true;
2262 }
2263 else if (strcmp (arg, "--") == 0)
2264 stop_processing_options = true;
2265 else
2266 error (_("Unrecognized argument \"%s\""), arg);
2267 }
2268
2269 if (filename == NULL)
2270 error (_("You must provide a filename to be loaded."));
2271
2272 validate_readnow_readnever (flags);
2273
2274 /* Print the prompt for the query below. And save the arguments into
2275 a sect_addr_info structure to be passed around to other
2276 functions. We have to split this up into separate print
2277 statements because hex_string returns a local static
2278 string. */
2279
2280 printf_filtered (_("add symbol table from file \"%s\""),
2281 filename.get ());
2282 section_addr_info section_addrs;
2283 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2284 if (!seen_addr)
2285 ++it;
2286 for (; it != sect_opts.end (); ++it)
2287 {
2288 CORE_ADDR addr;
2289 const char *val = it->value;
2290 const char *sec = it->name;
2291
2292 if (section_addrs.empty ())
2293 printf_filtered (_(" at\n"));
2294 addr = parse_and_eval_address (val);
2295
2296 /* Here we store the section offsets in the order they were
2297 entered on the command line. Every array element is
2298 assigned an ascending section index to preserve the above
2299 order over an unstable sorting algorithm. This dummy
2300 index is not used for any other purpose.
2301 */
2302 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2303 printf_filtered ("\t%s_addr = %s\n", sec,
2304 paddress (gdbarch, addr));
2305
2306 /* The object's sections are initialized when a
2307 call is made to build_objfile_section_table (objfile).
2308 This happens in reread_symbols.
2309 At this point, we don't know what file type this is,
2310 so we can't determine what section names are valid. */
2311 }
2312 if (seen_offset)
2313 printf_filtered (_("%s offset by %s\n"),
2314 (section_addrs.empty ()
2315 ? _(" with all sections")
2316 : _("with other sections")),
2317 paddress (gdbarch, offset));
2318 else if (section_addrs.empty ())
2319 printf_filtered ("\n");
2320
2321 if (from_tty && (!query ("%s", "")))
2322 error (_("Not confirmed."));
2323
2324 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2325 flags);
2326 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2327 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2328 filename.get ());
2329
2330 if (seen_offset)
2331 set_objfile_default_section_offset (objf, section_addrs, offset);
2332
2333 current_program_space->add_target_sections (objf);
2334
2335 /* Getting new symbols may change our opinion about what is
2336 frameless. */
2337 reinit_frame_cache ();
2338 }
2339 \f
2340
2341 /* This function removes a symbol file that was added via add-symbol-file. */
2342
2343 static void
2344 remove_symbol_file_command (const char *args, int from_tty)
2345 {
2346 struct objfile *objf = NULL;
2347 struct program_space *pspace = current_program_space;
2348
2349 dont_repeat ();
2350
2351 if (args == NULL)
2352 error (_("remove-symbol-file: no symbol file provided"));
2353
2354 gdb_argv argv (args);
2355
2356 if (strcmp (argv[0], "-a") == 0)
2357 {
2358 /* Interpret the next argument as an address. */
2359 CORE_ADDR addr;
2360
2361 if (argv[1] == NULL)
2362 error (_("Missing address argument"));
2363
2364 if (argv[2] != NULL)
2365 error (_("Junk after %s"), argv[1]);
2366
2367 addr = parse_and_eval_address (argv[1]);
2368
2369 for (objfile *objfile : current_program_space->objfiles ())
2370 {
2371 if ((objfile->flags & OBJF_USERLOADED) != 0
2372 && (objfile->flags & OBJF_SHARED) != 0
2373 && objfile->pspace == pspace
2374 && is_addr_in_objfile (addr, objfile))
2375 {
2376 objf = objfile;
2377 break;
2378 }
2379 }
2380 }
2381 else if (argv[0] != NULL)
2382 {
2383 /* Interpret the current argument as a file name. */
2384
2385 if (argv[1] != NULL)
2386 error (_("Junk after %s"), argv[0]);
2387
2388 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2389
2390 for (objfile *objfile : current_program_space->objfiles ())
2391 {
2392 if ((objfile->flags & OBJF_USERLOADED) != 0
2393 && (objfile->flags & OBJF_SHARED) != 0
2394 && objfile->pspace == pspace
2395 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2396 {
2397 objf = objfile;
2398 break;
2399 }
2400 }
2401 }
2402
2403 if (objf == NULL)
2404 error (_("No symbol file found"));
2405
2406 if (from_tty
2407 && !query (_("Remove symbol table from file \"%s\"? "),
2408 objfile_name (objf)))
2409 error (_("Not confirmed."));
2410
2411 objf->unlink ();
2412 clear_symtab_users (0);
2413 }
2414
2415 /* Re-read symbols if a symbol-file has changed. */
2416
2417 void
2418 reread_symbols (int from_tty)
2419 {
2420 long new_modtime;
2421 struct stat new_statbuf;
2422 int res;
2423 std::vector<struct objfile *> new_objfiles;
2424
2425 for (objfile *objfile : current_program_space->objfiles ())
2426 {
2427 if (objfile->obfd == NULL)
2428 continue;
2429
2430 /* Separate debug objfiles are handled in the main objfile. */
2431 if (objfile->separate_debug_objfile_backlink)
2432 continue;
2433
2434 /* If this object is from an archive (what you usually create with
2435 `ar', often called a `static library' on most systems, though
2436 a `shared library' on AIX is also an archive), then you should
2437 stat on the archive name, not member name. */
2438 if (objfile->obfd->my_archive)
2439 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2440 else
2441 res = stat (objfile_name (objfile), &new_statbuf);
2442 if (res != 0)
2443 {
2444 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2445 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2446 objfile_name (objfile));
2447 continue;
2448 }
2449 new_modtime = new_statbuf.st_mtime;
2450 if (new_modtime != objfile->mtime)
2451 {
2452 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2453 objfile_name (objfile));
2454
2455 /* There are various functions like symbol_file_add,
2456 symfile_bfd_open, syms_from_objfile, etc., which might
2457 appear to do what we want. But they have various other
2458 effects which we *don't* want. So we just do stuff
2459 ourselves. We don't worry about mapped files (for one thing,
2460 any mapped file will be out of date). */
2461
2462 /* If we get an error, blow away this objfile (not sure if
2463 that is the correct response for things like shared
2464 libraries). */
2465 objfile_up objfile_holder (objfile);
2466
2467 /* We need to do this whenever any symbols go away. */
2468 clear_symtab_users_cleanup defer_clear_users (0);
2469
2470 if (current_program_space->exec_bfd () != NULL
2471 && filename_cmp (bfd_get_filename (objfile->obfd),
2472 bfd_get_filename (current_program_space->exec_bfd ())) == 0)
2473 {
2474 /* Reload EXEC_BFD without asking anything. */
2475
2476 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2477 }
2478
2479 /* Keep the calls order approx. the same as in free_objfile. */
2480
2481 /* Free the separate debug objfiles. It will be
2482 automatically recreated by sym_read. */
2483 free_objfile_separate_debug (objfile);
2484
2485 /* Clear the stale source cache. */
2486 forget_cached_source_info ();
2487
2488 /* Remove any references to this objfile in the global
2489 value lists. */
2490 preserve_values (objfile);
2491
2492 /* Nuke all the state that we will re-read. Much of the following
2493 code which sets things to NULL really is necessary to tell
2494 other parts of GDB that there is nothing currently there.
2495
2496 Try to keep the freeing order compatible with free_objfile. */
2497
2498 if (objfile->sf != NULL)
2499 {
2500 (*objfile->sf->sym_finish) (objfile);
2501 }
2502
2503 clear_objfile_data (objfile);
2504
2505 /* Clean up any state BFD has sitting around. */
2506 {
2507 gdb_bfd_ref_ptr obfd (objfile->obfd);
2508 const char *obfd_filename;
2509
2510 obfd_filename = bfd_get_filename (objfile->obfd);
2511 /* Open the new BFD before freeing the old one, so that
2512 the filename remains live. */
2513 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2514 objfile->obfd = temp.release ();
2515 if (objfile->obfd == NULL)
2516 error (_("Can't open %s to read symbols."), obfd_filename);
2517 }
2518
2519 std::string original_name = objfile->original_name;
2520
2521 /* bfd_openr sets cacheable to true, which is what we want. */
2522 if (!bfd_check_format (objfile->obfd, bfd_object))
2523 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2524 bfd_errmsg (bfd_get_error ()));
2525
2526 /* NB: after this call to obstack_free, objfiles_changed
2527 will need to be called (see discussion below). */
2528 obstack_free (&objfile->objfile_obstack, 0);
2529 objfile->sections = NULL;
2530 objfile->section_offsets.clear ();
2531 objfile->sect_index_bss = -1;
2532 objfile->sect_index_data = -1;
2533 objfile->sect_index_rodata = -1;
2534 objfile->sect_index_text = -1;
2535 objfile->compunit_symtabs = NULL;
2536 objfile->template_symbols = NULL;
2537 objfile->static_links.reset (nullptr);
2538
2539 /* obstack_init also initializes the obstack so it is
2540 empty. We could use obstack_specify_allocation but
2541 gdb_obstack.h specifies the alloc/dealloc functions. */
2542 obstack_init (&objfile->objfile_obstack);
2543
2544 /* set_objfile_per_bfd potentially allocates the per-bfd
2545 data on the objfile's obstack (if sharing data across
2546 multiple users is not possible), so it's important to
2547 do it *after* the obstack has been initialized. */
2548 set_objfile_per_bfd (objfile);
2549
2550 objfile->original_name
2551 = obstack_strdup (&objfile->objfile_obstack, original_name);
2552
2553 /* Reset the sym_fns pointer. The ELF reader can change it
2554 based on whether .gdb_index is present, and we need it to
2555 start over. PR symtab/15885 */
2556 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2557 objfile->qf.clear ();
2558
2559 build_objfile_section_table (objfile);
2560
2561 /* What the hell is sym_new_init for, anyway? The concept of
2562 distinguishing between the main file and additional files
2563 in this way seems rather dubious. */
2564 if (objfile == current_program_space->symfile_object_file)
2565 {
2566 (*objfile->sf->sym_new_init) (objfile);
2567 }
2568
2569 (*objfile->sf->sym_init) (objfile);
2570 clear_complaints ();
2571
2572 objfile->flags &= ~OBJF_PSYMTABS_READ;
2573
2574 /* We are about to read new symbols and potentially also
2575 DWARF information. Some targets may want to pass addresses
2576 read from DWARF DIE's through an adjustment function before
2577 saving them, like MIPS, which may call into
2578 "find_pc_section". When called, that function will make
2579 use of per-objfile program space data.
2580
2581 Since we discarded our section information above, we have
2582 dangling pointers in the per-objfile program space data
2583 structure. Force GDB to update the section mapping
2584 information by letting it know the objfile has changed,
2585 making the dangling pointers point to correct data
2586 again. */
2587
2588 objfiles_changed ();
2589
2590 /* Recompute section offsets and section indices. */
2591 objfile->sf->sym_offsets (objfile, {});
2592
2593 read_symbols (objfile, 0);
2594
2595 if ((objfile->flags & OBJF_READNOW))
2596 {
2597 const int mainline = objfile->flags & OBJF_MAINLINE;
2598 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
2599 && readnow_symbol_files);
2600 if (should_print)
2601 printf_filtered (_("Expanding full symbols from %ps...\n"),
2602 styled_string (file_name_style.style (),
2603 objfile_name (objfile)));
2604
2605 objfile->expand_all_symtabs ();
2606 }
2607
2608 if (!objfile_has_symbols (objfile))
2609 {
2610 gdb_stdout->wrap_here (0);
2611 printf_filtered (_("(no debugging symbols found)\n"));
2612 gdb_stdout->wrap_here (0);
2613 }
2614
2615 /* We're done reading the symbol file; finish off complaints. */
2616 clear_complaints ();
2617
2618 /* Getting new symbols may change our opinion about what is
2619 frameless. */
2620
2621 reinit_frame_cache ();
2622
2623 /* Discard cleanups as symbol reading was successful. */
2624 objfile_holder.release ();
2625 defer_clear_users.release ();
2626
2627 /* If the mtime has changed between the time we set new_modtime
2628 and now, we *want* this to be out of date, so don't call stat
2629 again now. */
2630 objfile->mtime = new_modtime;
2631 init_entry_point_info (objfile);
2632
2633 new_objfiles.push_back (objfile);
2634 }
2635 }
2636
2637 if (!new_objfiles.empty ())
2638 {
2639 clear_symtab_users (0);
2640
2641 /* clear_objfile_data for each objfile was called before freeing it and
2642 gdb::observers::new_objfile.notify (NULL) has been called by
2643 clear_symtab_users above. Notify the new files now. */
2644 for (auto iter : new_objfiles)
2645 gdb::observers::new_objfile.notify (iter);
2646
2647 /* At least one objfile has changed, so we can consider that
2648 the executable we're debugging has changed too. */
2649 gdb::observers::executable_changed.notify ();
2650 }
2651 }
2652 \f
2653
2654 struct filename_language
2655 {
2656 filename_language (const std::string &ext_, enum language lang_)
2657 : ext (ext_), lang (lang_)
2658 {}
2659
2660 std::string ext;
2661 enum language lang;
2662 };
2663
2664 static std::vector<filename_language> filename_language_table;
2665
2666 /* See symfile.h. */
2667
2668 void
2669 add_filename_language (const char *ext, enum language lang)
2670 {
2671 gdb_assert (ext != nullptr);
2672 filename_language_table.emplace_back (ext, lang);
2673 }
2674
2675 static std::string ext_args;
2676 static void
2677 show_ext_args (struct ui_file *file, int from_tty,
2678 struct cmd_list_element *c, const char *value)
2679 {
2680 fprintf_filtered (file,
2681 _("Mapping between filename extension "
2682 "and source language is \"%s\".\n"),
2683 value);
2684 }
2685
2686 static void
2687 set_ext_lang_command (const char *args,
2688 int from_tty, struct cmd_list_element *e)
2689 {
2690 const char *begin = ext_args.c_str ();
2691 const char *end = ext_args.c_str ();
2692
2693 /* First arg is filename extension, starting with '.' */
2694 if (*end != '.')
2695 error (_("'%s': Filename extension must begin with '.'"), ext_args.c_str ());
2696
2697 /* Find end of first arg. */
2698 while (*end != '\0' && !isspace (*end))
2699 end++;
2700
2701 if (*end == '\0')
2702 error (_("'%s': two arguments required -- "
2703 "filename extension and language"),
2704 ext_args.c_str ());
2705
2706 /* Extract first arg, the extension. */
2707 std::string extension = ext_args.substr (0, end - begin);
2708
2709 /* Find beginning of second arg, which should be a source language. */
2710 begin = skip_spaces (end);
2711
2712 if (*begin == '\0')
2713 error (_("'%s': two arguments required -- "
2714 "filename extension and language"),
2715 ext_args.c_str ());
2716
2717 /* Lookup the language from among those we know. */
2718 language lang = language_enum (begin);
2719
2720 auto it = filename_language_table.begin ();
2721 /* Now lookup the filename extension: do we already know it? */
2722 for (; it != filename_language_table.end (); it++)
2723 {
2724 if (it->ext == extension)
2725 break;
2726 }
2727
2728 if (it == filename_language_table.end ())
2729 {
2730 /* New file extension. */
2731 add_filename_language (extension.data (), lang);
2732 }
2733 else
2734 {
2735 /* Redefining a previously known filename extension. */
2736
2737 /* if (from_tty) */
2738 /* query ("Really make files of type %s '%s'?", */
2739 /* ext_args, language_str (lang)); */
2740
2741 it->lang = lang;
2742 }
2743 }
2744
2745 static void
2746 info_ext_lang_command (const char *args, int from_tty)
2747 {
2748 printf_filtered (_("Filename extensions and the languages they represent:"));
2749 printf_filtered ("\n\n");
2750 for (const filename_language &entry : filename_language_table)
2751 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2752 language_str (entry.lang));
2753 }
2754
2755 enum language
2756 deduce_language_from_filename (const char *filename)
2757 {
2758 const char *cp;
2759
2760 if (filename != NULL)
2761 if ((cp = strrchr (filename, '.')) != NULL)
2762 {
2763 for (const filename_language &entry : filename_language_table)
2764 if (entry.ext == cp)
2765 return entry.lang;
2766 }
2767
2768 return language_unknown;
2769 }
2770 \f
2771 /* Allocate and initialize a new symbol table.
2772 CUST is from the result of allocate_compunit_symtab. */
2773
2774 struct symtab *
2775 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2776 {
2777 struct objfile *objfile = cust->objfile ();
2778 struct symtab *symtab
2779 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2780
2781 symtab->filename = objfile->intern (filename);
2782 symtab->fullname = NULL;
2783 symtab->language = deduce_language_from_filename (filename);
2784
2785 /* This can be very verbose with lots of headers.
2786 Only print at higher debug levels. */
2787 if (symtab_create_debug >= 2)
2788 {
2789 /* Be a bit clever with debugging messages, and don't print objfile
2790 every time, only when it changes. */
2791 static std::string last_objfile_name;
2792 const char *this_objfile_name = objfile_name (objfile);
2793
2794 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name)
2795 {
2796 last_objfile_name = this_objfile_name;
2797 fprintf_filtered (gdb_stdlog,
2798 "Creating one or more symtabs for objfile %s ...\n",
2799 this_objfile_name);
2800 }
2801 fprintf_filtered (gdb_stdlog,
2802 "Created symtab %s for module %s.\n",
2803 host_address_to_string (symtab), filename);
2804 }
2805
2806 /* Add it to CUST's list of symtabs. */
2807 cust->add_filetab (symtab);
2808
2809 /* Backlink to the containing compunit symtab. */
2810 symtab->set_compunit (cust);
2811
2812 return symtab;
2813 }
2814
2815 /* Allocate and initialize a new compunit.
2816 NAME is the name of the main source file, if there is one, or some
2817 descriptive text if there are no source files. */
2818
2819 struct compunit_symtab *
2820 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2821 {
2822 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2823 struct compunit_symtab);
2824 const char *saved_name;
2825
2826 cu->set_objfile (objfile);
2827
2828 /* The name we record here is only for display/debugging purposes.
2829 Just save the basename to avoid path issues (too long for display,
2830 relative vs absolute, etc.). */
2831 saved_name = lbasename (name);
2832 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2833
2834 cu->set_debugformat ("unknown");
2835
2836 if (symtab_create_debug)
2837 {
2838 fprintf_filtered (gdb_stdlog,
2839 "Created compunit symtab %s for %s.\n",
2840 host_address_to_string (cu),
2841 cu->name);
2842 }
2843
2844 return cu;
2845 }
2846
2847 /* Hook CU to the objfile it comes from. */
2848
2849 void
2850 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2851 {
2852 cu->next = cu->objfile ()->compunit_symtabs;
2853 cu->objfile ()->compunit_symtabs = cu;
2854 }
2855 \f
2856
2857 /* Reset all data structures in gdb which may contain references to
2858 symbol table data. */
2859
2860 void
2861 clear_symtab_users (symfile_add_flags add_flags)
2862 {
2863 /* Someday, we should do better than this, by only blowing away
2864 the things that really need to be blown. */
2865
2866 /* Clear the "current" symtab first, because it is no longer valid.
2867 breakpoint_re_set may try to access the current symtab. */
2868 clear_current_source_symtab_and_line ();
2869
2870 clear_displays ();
2871 clear_last_displayed_sal ();
2872 clear_pc_function_cache ();
2873 gdb::observers::new_objfile.notify (NULL);
2874
2875 /* Varobj may refer to old symbols, perform a cleanup. */
2876 varobj_invalidate ();
2877
2878 /* Now that the various caches have been cleared, we can re_set
2879 our breakpoints without risking it using stale data. */
2880 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2881 breakpoint_re_set ();
2882 }
2883 \f
2884 /* OVERLAYS:
2885 The following code implements an abstraction for debugging overlay sections.
2886
2887 The target model is as follows:
2888 1) The gnu linker will permit multiple sections to be mapped into the
2889 same VMA, each with its own unique LMA (or load address).
2890 2) It is assumed that some runtime mechanism exists for mapping the
2891 sections, one by one, from the load address into the VMA address.
2892 3) This code provides a mechanism for gdb to keep track of which
2893 sections should be considered to be mapped from the VMA to the LMA.
2894 This information is used for symbol lookup, and memory read/write.
2895 For instance, if a section has been mapped then its contents
2896 should be read from the VMA, otherwise from the LMA.
2897
2898 Two levels of debugger support for overlays are available. One is
2899 "manual", in which the debugger relies on the user to tell it which
2900 overlays are currently mapped. This level of support is
2901 implemented entirely in the core debugger, and the information about
2902 whether a section is mapped is kept in the objfile->obj_section table.
2903
2904 The second level of support is "automatic", and is only available if
2905 the target-specific code provides functionality to read the target's
2906 overlay mapping table, and translate its contents for the debugger
2907 (by updating the mapped state information in the obj_section tables).
2908
2909 The interface is as follows:
2910 User commands:
2911 overlay map <name> -- tell gdb to consider this section mapped
2912 overlay unmap <name> -- tell gdb to consider this section unmapped
2913 overlay list -- list the sections that GDB thinks are mapped
2914 overlay read-target -- get the target's state of what's mapped
2915 overlay off/manual/auto -- set overlay debugging state
2916 Functional interface:
2917 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2918 section, return that section.
2919 find_pc_overlay(pc): find any overlay section that contains
2920 the pc, either in its VMA or its LMA
2921 section_is_mapped(sect): true if overlay is marked as mapped
2922 section_is_overlay(sect): true if section's VMA != LMA
2923 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2924 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2925 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2926 overlay_mapped_address(...): map an address from section's LMA to VMA
2927 overlay_unmapped_address(...): map an address from section's VMA to LMA
2928 symbol_overlayed_address(...): Return a "current" address for symbol:
2929 either in VMA or LMA depending on whether
2930 the symbol's section is currently mapped. */
2931
2932 /* Overlay debugging state: */
2933
2934 enum overlay_debugging_state overlay_debugging = ovly_off;
2935 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2936
2937 /* Function: section_is_overlay (SECTION)
2938 Returns true if SECTION has VMA not equal to LMA, ie.
2939 SECTION is loaded at an address different from where it will "run". */
2940
2941 int
2942 section_is_overlay (struct obj_section *section)
2943 {
2944 if (overlay_debugging && section)
2945 {
2946 asection *bfd_section = section->the_bfd_section;
2947
2948 if (bfd_section_lma (bfd_section) != 0
2949 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2950 return 1;
2951 }
2952
2953 return 0;
2954 }
2955
2956 /* Function: overlay_invalidate_all (void)
2957 Invalidate the mapped state of all overlay sections (mark it as stale). */
2958
2959 static void
2960 overlay_invalidate_all (void)
2961 {
2962 struct obj_section *sect;
2963
2964 for (objfile *objfile : current_program_space->objfiles ())
2965 ALL_OBJFILE_OSECTIONS (objfile, sect)
2966 if (section_is_overlay (sect))
2967 sect->ovly_mapped = -1;
2968 }
2969
2970 /* Function: section_is_mapped (SECTION)
2971 Returns true if section is an overlay, and is currently mapped.
2972
2973 Access to the ovly_mapped flag is restricted to this function, so
2974 that we can do automatic update. If the global flag
2975 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2976 overlay_invalidate_all. If the mapped state of the particular
2977 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2978
2979 int
2980 section_is_mapped (struct obj_section *osect)
2981 {
2982 struct gdbarch *gdbarch;
2983
2984 if (osect == 0 || !section_is_overlay (osect))
2985 return 0;
2986
2987 switch (overlay_debugging)
2988 {
2989 default:
2990 case ovly_off:
2991 return 0; /* overlay debugging off */
2992 case ovly_auto: /* overlay debugging automatic */
2993 /* Unles there is a gdbarch_overlay_update function,
2994 there's really nothing useful to do here (can't really go auto). */
2995 gdbarch = osect->objfile->arch ();
2996 if (gdbarch_overlay_update_p (gdbarch))
2997 {
2998 if (overlay_cache_invalid)
2999 {
3000 overlay_invalidate_all ();
3001 overlay_cache_invalid = 0;
3002 }
3003 if (osect->ovly_mapped == -1)
3004 gdbarch_overlay_update (gdbarch, osect);
3005 }
3006 /* fall thru */
3007 case ovly_on: /* overlay debugging manual */
3008 return osect->ovly_mapped == 1;
3009 }
3010 }
3011
3012 /* Function: pc_in_unmapped_range
3013 If PC falls into the lma range of SECTION, return true, else false. */
3014
3015 CORE_ADDR
3016 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3017 {
3018 if (section_is_overlay (section))
3019 {
3020 asection *bfd_section = section->the_bfd_section;
3021
3022 /* We assume the LMA is relocated by the same offset as the VMA. */
3023 bfd_vma size = bfd_section_size (bfd_section);
3024 CORE_ADDR offset = section->offset ();
3025
3026 if (bfd_section_lma (bfd_section) + offset <= pc
3027 && pc < bfd_section_lma (bfd_section) + offset + size)
3028 return 1;
3029 }
3030
3031 return 0;
3032 }
3033
3034 /* Function: pc_in_mapped_range
3035 If PC falls into the vma range of SECTION, return true, else false. */
3036
3037 CORE_ADDR
3038 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3039 {
3040 if (section_is_overlay (section))
3041 {
3042 if (section->addr () <= pc
3043 && pc < section->endaddr ())
3044 return 1;
3045 }
3046
3047 return 0;
3048 }
3049
3050 /* Return true if the mapped ranges of sections A and B overlap, false
3051 otherwise. */
3052
3053 static int
3054 sections_overlap (struct obj_section *a, struct obj_section *b)
3055 {
3056 CORE_ADDR a_start = a->addr ();
3057 CORE_ADDR a_end = a->endaddr ();
3058 CORE_ADDR b_start = b->addr ();
3059 CORE_ADDR b_end = b->endaddr ();
3060
3061 return (a_start < b_end && b_start < a_end);
3062 }
3063
3064 /* Function: overlay_unmapped_address (PC, SECTION)
3065 Returns the address corresponding to PC in the unmapped (load) range.
3066 May be the same as PC. */
3067
3068 CORE_ADDR
3069 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3070 {
3071 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3072 {
3073 asection *bfd_section = section->the_bfd_section;
3074
3075 return (pc + bfd_section_lma (bfd_section)
3076 - bfd_section_vma (bfd_section));
3077 }
3078
3079 return pc;
3080 }
3081
3082 /* Function: overlay_mapped_address (PC, SECTION)
3083 Returns the address corresponding to PC in the mapped (runtime) range.
3084 May be the same as PC. */
3085
3086 CORE_ADDR
3087 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3088 {
3089 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3090 {
3091 asection *bfd_section = section->the_bfd_section;
3092
3093 return (pc + bfd_section_vma (bfd_section)
3094 - bfd_section_lma (bfd_section));
3095 }
3096
3097 return pc;
3098 }
3099
3100 /* Function: symbol_overlayed_address
3101 Return one of two addresses (relative to the VMA or to the LMA),
3102 depending on whether the section is mapped or not. */
3103
3104 CORE_ADDR
3105 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3106 {
3107 if (overlay_debugging)
3108 {
3109 /* If the symbol has no section, just return its regular address. */
3110 if (section == 0)
3111 return address;
3112 /* If the symbol's section is not an overlay, just return its
3113 address. */
3114 if (!section_is_overlay (section))
3115 return address;
3116 /* If the symbol's section is mapped, just return its address. */
3117 if (section_is_mapped (section))
3118 return address;
3119 /*
3120 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3121 * then return its LOADED address rather than its vma address!!
3122 */
3123 return overlay_unmapped_address (address, section);
3124 }
3125 return address;
3126 }
3127
3128 /* Function: find_pc_overlay (PC)
3129 Return the best-match overlay section for PC:
3130 If PC matches a mapped overlay section's VMA, return that section.
3131 Else if PC matches an unmapped section's VMA, return that section.
3132 Else if PC matches an unmapped section's LMA, return that section. */
3133
3134 struct obj_section *
3135 find_pc_overlay (CORE_ADDR pc)
3136 {
3137 struct obj_section *osect, *best_match = NULL;
3138
3139 if (overlay_debugging)
3140 {
3141 for (objfile *objfile : current_program_space->objfiles ())
3142 ALL_OBJFILE_OSECTIONS (objfile, osect)
3143 if (section_is_overlay (osect))
3144 {
3145 if (pc_in_mapped_range (pc, osect))
3146 {
3147 if (section_is_mapped (osect))
3148 return osect;
3149 else
3150 best_match = osect;
3151 }
3152 else if (pc_in_unmapped_range (pc, osect))
3153 best_match = osect;
3154 }
3155 }
3156 return best_match;
3157 }
3158
3159 /* Function: find_pc_mapped_section (PC)
3160 If PC falls into the VMA address range of an overlay section that is
3161 currently marked as MAPPED, return that section. Else return NULL. */
3162
3163 struct obj_section *
3164 find_pc_mapped_section (CORE_ADDR pc)
3165 {
3166 struct obj_section *osect;
3167
3168 if (overlay_debugging)
3169 {
3170 for (objfile *objfile : current_program_space->objfiles ())
3171 ALL_OBJFILE_OSECTIONS (objfile, osect)
3172 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3173 return osect;
3174 }
3175
3176 return NULL;
3177 }
3178
3179 /* Function: list_overlays_command
3180 Print a list of mapped sections and their PC ranges. */
3181
3182 static void
3183 list_overlays_command (const char *args, int from_tty)
3184 {
3185 int nmapped = 0;
3186 struct obj_section *osect;
3187
3188 if (overlay_debugging)
3189 {
3190 for (objfile *objfile : current_program_space->objfiles ())
3191 ALL_OBJFILE_OSECTIONS (objfile, osect)
3192 if (section_is_mapped (osect))
3193 {
3194 struct gdbarch *gdbarch = objfile->arch ();
3195 const char *name;
3196 bfd_vma lma, vma;
3197 int size;
3198
3199 vma = bfd_section_vma (osect->the_bfd_section);
3200 lma = bfd_section_lma (osect->the_bfd_section);
3201 size = bfd_section_size (osect->the_bfd_section);
3202 name = bfd_section_name (osect->the_bfd_section);
3203
3204 printf_filtered ("Section %s, loaded at ", name);
3205 puts_filtered (paddress (gdbarch, lma));
3206 puts_filtered (" - ");
3207 puts_filtered (paddress (gdbarch, lma + size));
3208 printf_filtered (", mapped at ");
3209 puts_filtered (paddress (gdbarch, vma));
3210 puts_filtered (" - ");
3211 puts_filtered (paddress (gdbarch, vma + size));
3212 puts_filtered ("\n");
3213
3214 nmapped++;
3215 }
3216 }
3217 if (nmapped == 0)
3218 printf_filtered (_("No sections are mapped.\n"));
3219 }
3220
3221 /* Function: map_overlay_command
3222 Mark the named section as mapped (ie. residing at its VMA address). */
3223
3224 static void
3225 map_overlay_command (const char *args, int from_tty)
3226 {
3227 struct obj_section *sec, *sec2;
3228
3229 if (!overlay_debugging)
3230 error (_("Overlay debugging not enabled. Use "
3231 "either the 'overlay auto' or\n"
3232 "the 'overlay manual' command."));
3233
3234 if (args == 0 || *args == 0)
3235 error (_("Argument required: name of an overlay section"));
3236
3237 /* First, find a section matching the user supplied argument. */
3238 for (objfile *obj_file : current_program_space->objfiles ())
3239 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3240 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3241 {
3242 /* Now, check to see if the section is an overlay. */
3243 if (!section_is_overlay (sec))
3244 continue; /* not an overlay section */
3245
3246 /* Mark the overlay as "mapped". */
3247 sec->ovly_mapped = 1;
3248
3249 /* Next, make a pass and unmap any sections that are
3250 overlapped by this new section: */
3251 for (objfile *objfile2 : current_program_space->objfiles ())
3252 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3253 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3254 sec2))
3255 {
3256 if (info_verbose)
3257 printf_filtered (_("Note: section %s unmapped by overlap\n"),
3258 bfd_section_name (sec2->the_bfd_section));
3259 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3260 }
3261 return;
3262 }
3263 error (_("No overlay section called %s"), args);
3264 }
3265
3266 /* Function: unmap_overlay_command
3267 Mark the overlay section as unmapped
3268 (ie. resident in its LMA address range, rather than the VMA range). */
3269
3270 static void
3271 unmap_overlay_command (const char *args, int from_tty)
3272 {
3273 struct obj_section *sec = NULL;
3274
3275 if (!overlay_debugging)
3276 error (_("Overlay debugging not enabled. "
3277 "Use either the 'overlay auto' or\n"
3278 "the 'overlay manual' command."));
3279
3280 if (args == 0 || *args == 0)
3281 error (_("Argument required: name of an overlay section"));
3282
3283 /* First, find a section matching the user supplied argument. */
3284 for (objfile *objfile : current_program_space->objfiles ())
3285 ALL_OBJFILE_OSECTIONS (objfile, sec)
3286 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3287 {
3288 if (!sec->ovly_mapped)
3289 error (_("Section %s is not mapped"), args);
3290 sec->ovly_mapped = 0;
3291 return;
3292 }
3293 error (_("No overlay section called %s"), args);
3294 }
3295
3296 /* Function: overlay_auto_command
3297 A utility command to turn on overlay debugging.
3298 Possibly this should be done via a set/show command. */
3299
3300 static void
3301 overlay_auto_command (const char *args, int from_tty)
3302 {
3303 overlay_debugging = ovly_auto;
3304 enable_overlay_breakpoints ();
3305 if (info_verbose)
3306 printf_filtered (_("Automatic overlay debugging enabled."));
3307 }
3308
3309 /* Function: overlay_manual_command
3310 A utility command to turn on overlay debugging.
3311 Possibly this should be done via a set/show command. */
3312
3313 static void
3314 overlay_manual_command (const char *args, int from_tty)
3315 {
3316 overlay_debugging = ovly_on;
3317 disable_overlay_breakpoints ();
3318 if (info_verbose)
3319 printf_filtered (_("Overlay debugging enabled."));
3320 }
3321
3322 /* Function: overlay_off_command
3323 A utility command to turn on overlay debugging.
3324 Possibly this should be done via a set/show command. */
3325
3326 static void
3327 overlay_off_command (const char *args, int from_tty)
3328 {
3329 overlay_debugging = ovly_off;
3330 disable_overlay_breakpoints ();
3331 if (info_verbose)
3332 printf_filtered (_("Overlay debugging disabled."));
3333 }
3334
3335 static void
3336 overlay_load_command (const char *args, int from_tty)
3337 {
3338 struct gdbarch *gdbarch = get_current_arch ();
3339
3340 if (gdbarch_overlay_update_p (gdbarch))
3341 gdbarch_overlay_update (gdbarch, NULL);
3342 else
3343 error (_("This target does not know how to read its overlay state."));
3344 }
3345
3346 /* Command list chain containing all defined "overlay" subcommands. */
3347 static struct cmd_list_element *overlaylist;
3348
3349 /* Target Overlays for the "Simplest" overlay manager:
3350
3351 This is GDB's default target overlay layer. It works with the
3352 minimal overlay manager supplied as an example by Cygnus. The
3353 entry point is via a function pointer "gdbarch_overlay_update",
3354 so targets that use a different runtime overlay manager can
3355 substitute their own overlay_update function and take over the
3356 function pointer.
3357
3358 The overlay_update function pokes around in the target's data structures
3359 to see what overlays are mapped, and updates GDB's overlay mapping with
3360 this information.
3361
3362 In this simple implementation, the target data structures are as follows:
3363 unsigned _novlys; /# number of overlay sections #/
3364 unsigned _ovly_table[_novlys][4] = {
3365 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3366 {..., ..., ..., ...},
3367 }
3368 unsigned _novly_regions; /# number of overlay regions #/
3369 unsigned _ovly_region_table[_novly_regions][3] = {
3370 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3371 {..., ..., ...},
3372 }
3373 These functions will attempt to update GDB's mappedness state in the
3374 symbol section table, based on the target's mappedness state.
3375
3376 To do this, we keep a cached copy of the target's _ovly_table, and
3377 attempt to detect when the cached copy is invalidated. The main
3378 entry point is "simple_overlay_update(SECT), which looks up SECT in
3379 the cached table and re-reads only the entry for that section from
3380 the target (whenever possible). */
3381
3382 /* Cached, dynamically allocated copies of the target data structures: */
3383 static unsigned (*cache_ovly_table)[4] = 0;
3384 static unsigned cache_novlys = 0;
3385 static CORE_ADDR cache_ovly_table_base = 0;
3386 enum ovly_index
3387 {
3388 VMA, OSIZE, LMA, MAPPED
3389 };
3390
3391 /* Throw away the cached copy of _ovly_table. */
3392
3393 static void
3394 simple_free_overlay_table (void)
3395 {
3396 xfree (cache_ovly_table);
3397 cache_novlys = 0;
3398 cache_ovly_table = NULL;
3399 cache_ovly_table_base = 0;
3400 }
3401
3402 /* Read an array of ints of size SIZE from the target into a local buffer.
3403 Convert to host order. int LEN is number of ints. */
3404
3405 static void
3406 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3407 int len, int size, enum bfd_endian byte_order)
3408 {
3409 /* FIXME (alloca): Not safe if array is very large. */
3410 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3411 int i;
3412
3413 read_memory (memaddr, buf, len * size);
3414 for (i = 0; i < len; i++)
3415 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3416 }
3417
3418 /* Find and grab a copy of the target _ovly_table
3419 (and _novlys, which is needed for the table's size). */
3420
3421 static int
3422 simple_read_overlay_table (void)
3423 {
3424 struct bound_minimal_symbol novlys_msym;
3425 struct bound_minimal_symbol ovly_table_msym;
3426 struct gdbarch *gdbarch;
3427 int word_size;
3428 enum bfd_endian byte_order;
3429
3430 simple_free_overlay_table ();
3431 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3432 if (! novlys_msym.minsym)
3433 {
3434 error (_("Error reading inferior's overlay table: "
3435 "couldn't find `_novlys' variable\n"
3436 "in inferior. Use `overlay manual' mode."));
3437 return 0;
3438 }
3439
3440 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3441 if (! ovly_table_msym.minsym)
3442 {
3443 error (_("Error reading inferior's overlay table: couldn't find "
3444 "`_ovly_table' array\n"
3445 "in inferior. Use `overlay manual' mode."));
3446 return 0;
3447 }
3448
3449 gdbarch = ovly_table_msym.objfile->arch ();
3450 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3451 byte_order = gdbarch_byte_order (gdbarch);
3452
3453 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3454 4, byte_order);
3455 cache_ovly_table
3456 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3457 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3458 read_target_long_array (cache_ovly_table_base,
3459 (unsigned int *) cache_ovly_table,
3460 cache_novlys * 4, word_size, byte_order);
3461
3462 return 1; /* SUCCESS */
3463 }
3464
3465 /* Function: simple_overlay_update_1
3466 A helper function for simple_overlay_update. Assuming a cached copy
3467 of _ovly_table exists, look through it to find an entry whose vma,
3468 lma and size match those of OSECT. Re-read the entry and make sure
3469 it still matches OSECT (else the table may no longer be valid).
3470 Set OSECT's mapped state to match the entry. Return: 1 for
3471 success, 0 for failure. */
3472
3473 static int
3474 simple_overlay_update_1 (struct obj_section *osect)
3475 {
3476 int i;
3477 asection *bsect = osect->the_bfd_section;
3478 struct gdbarch *gdbarch = osect->objfile->arch ();
3479 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3480 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3481
3482 for (i = 0; i < cache_novlys; i++)
3483 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3484 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3485 {
3486 read_target_long_array (cache_ovly_table_base + i * word_size,
3487 (unsigned int *) cache_ovly_table[i],
3488 4, word_size, byte_order);
3489 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3490 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3491 {
3492 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3493 return 1;
3494 }
3495 else /* Warning! Warning! Target's ovly table has changed! */
3496 return 0;
3497 }
3498 return 0;
3499 }
3500
3501 /* Function: simple_overlay_update
3502 If OSECT is NULL, then update all sections' mapped state
3503 (after re-reading the entire target _ovly_table).
3504 If OSECT is non-NULL, then try to find a matching entry in the
3505 cached ovly_table and update only OSECT's mapped state.
3506 If a cached entry can't be found or the cache isn't valid, then
3507 re-read the entire cache, and go ahead and update all sections. */
3508
3509 void
3510 simple_overlay_update (struct obj_section *osect)
3511 {
3512 /* Were we given an osect to look up? NULL means do all of them. */
3513 if (osect)
3514 /* Have we got a cached copy of the target's overlay table? */
3515 if (cache_ovly_table != NULL)
3516 {
3517 /* Does its cached location match what's currently in the
3518 symtab? */
3519 struct bound_minimal_symbol minsym
3520 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3521
3522 if (minsym.minsym == NULL)
3523 error (_("Error reading inferior's overlay table: couldn't "
3524 "find `_ovly_table' array\n"
3525 "in inferior. Use `overlay manual' mode."));
3526
3527 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3528 /* Then go ahead and try to look up this single section in
3529 the cache. */
3530 if (simple_overlay_update_1 (osect))
3531 /* Found it! We're done. */
3532 return;
3533 }
3534
3535 /* Cached table no good: need to read the entire table anew.
3536 Or else we want all the sections, in which case it's actually
3537 more efficient to read the whole table in one block anyway. */
3538
3539 if (! simple_read_overlay_table ())
3540 return;
3541
3542 /* Now may as well update all sections, even if only one was requested. */
3543 for (objfile *objfile : current_program_space->objfiles ())
3544 ALL_OBJFILE_OSECTIONS (objfile, osect)
3545 if (section_is_overlay (osect))
3546 {
3547 int i;
3548 asection *bsect = osect->the_bfd_section;
3549
3550 for (i = 0; i < cache_novlys; i++)
3551 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3552 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3553 { /* obj_section matches i'th entry in ovly_table. */
3554 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3555 break; /* finished with inner for loop: break out. */
3556 }
3557 }
3558 }
3559
3560 /* Default implementation for sym_relocate. */
3561
3562 bfd_byte *
3563 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3564 bfd_byte *buf)
3565 {
3566 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3567 DWO file. */
3568 bfd *abfd = sectp->owner;
3569
3570 /* We're only interested in sections with relocation
3571 information. */
3572 if ((sectp->flags & SEC_RELOC) == 0)
3573 return NULL;
3574
3575 /* We will handle section offsets properly elsewhere, so relocate as if
3576 all sections begin at 0. */
3577 for (asection *sect : gdb_bfd_sections (abfd))
3578 {
3579 sect->output_section = sect;
3580 sect->output_offset = 0;
3581 }
3582
3583 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3584 }
3585
3586 /* Relocate the contents of a debug section SECTP in ABFD. The
3587 contents are stored in BUF if it is non-NULL, or returned in a
3588 malloc'd buffer otherwise.
3589
3590 For some platforms and debug info formats, shared libraries contain
3591 relocations against the debug sections (particularly for DWARF-2;
3592 one affected platform is PowerPC GNU/Linux, although it depends on
3593 the version of the linker in use). Also, ELF object files naturally
3594 have unresolved relocations for their debug sections. We need to apply
3595 the relocations in order to get the locations of symbols correct.
3596 Another example that may require relocation processing, is the
3597 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3598 debug section. */
3599
3600 bfd_byte *
3601 symfile_relocate_debug_section (struct objfile *objfile,
3602 asection *sectp, bfd_byte *buf)
3603 {
3604 gdb_assert (objfile->sf->sym_relocate);
3605
3606 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3607 }
3608
3609 symfile_segment_data_up
3610 get_symfile_segment_data (bfd *abfd)
3611 {
3612 const struct sym_fns *sf = find_sym_fns (abfd);
3613
3614 if (sf == NULL)
3615 return NULL;
3616
3617 return sf->sym_segments (abfd);
3618 }
3619
3620 /* Given:
3621 - DATA, containing segment addresses from the object file ABFD, and
3622 the mapping from ABFD's sections onto the segments that own them,
3623 and
3624 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3625 segment addresses reported by the target,
3626 store the appropriate offsets for each section in OFFSETS.
3627
3628 If there are fewer entries in SEGMENT_BASES than there are segments
3629 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3630
3631 If there are more entries, then ignore the extra. The target may
3632 not be able to distinguish between an empty data segment and a
3633 missing data segment; a missing text segment is less plausible. */
3634
3635 int
3636 symfile_map_offsets_to_segments (bfd *abfd,
3637 const struct symfile_segment_data *data,
3638 section_offsets &offsets,
3639 int num_segment_bases,
3640 const CORE_ADDR *segment_bases)
3641 {
3642 int i;
3643 asection *sect;
3644
3645 /* It doesn't make sense to call this function unless you have some
3646 segment base addresses. */
3647 gdb_assert (num_segment_bases > 0);
3648
3649 /* If we do not have segment mappings for the object file, we
3650 can not relocate it by segments. */
3651 gdb_assert (data != NULL);
3652 gdb_assert (data->segments.size () > 0);
3653
3654 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3655 {
3656 int which = data->segment_info[i];
3657
3658 gdb_assert (0 <= which && which <= data->segments.size ());
3659
3660 /* Don't bother computing offsets for sections that aren't
3661 loaded as part of any segment. */
3662 if (! which)
3663 continue;
3664
3665 /* Use the last SEGMENT_BASES entry as the address of any extra
3666 segments mentioned in DATA->segment_info. */
3667 if (which > num_segment_bases)
3668 which = num_segment_bases;
3669
3670 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3671 }
3672
3673 return 1;
3674 }
3675
3676 static void
3677 symfile_find_segment_sections (struct objfile *objfile)
3678 {
3679 bfd *abfd = objfile->obfd;
3680 int i;
3681 asection *sect;
3682
3683 symfile_segment_data_up data
3684 = get_symfile_segment_data (objfile->obfd);
3685 if (data == NULL)
3686 return;
3687
3688 if (data->segments.size () != 1 && data->segments.size () != 2)
3689 return;
3690
3691 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3692 {
3693 int which = data->segment_info[i];
3694
3695 if (which == 1)
3696 {
3697 if (objfile->sect_index_text == -1)
3698 objfile->sect_index_text = sect->index;
3699
3700 if (objfile->sect_index_rodata == -1)
3701 objfile->sect_index_rodata = sect->index;
3702 }
3703 else if (which == 2)
3704 {
3705 if (objfile->sect_index_data == -1)
3706 objfile->sect_index_data = sect->index;
3707
3708 if (objfile->sect_index_bss == -1)
3709 objfile->sect_index_bss = sect->index;
3710 }
3711 }
3712 }
3713
3714 /* Listen for free_objfile events. */
3715
3716 static void
3717 symfile_free_objfile (struct objfile *objfile)
3718 {
3719 /* Remove the target sections owned by this objfile. */
3720 if (objfile != NULL)
3721 current_program_space->remove_target_sections ((void *) objfile);
3722 }
3723
3724 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3725 Expand all symtabs that match the specified criteria.
3726 See quick_symbol_functions.expand_symtabs_matching for details. */
3727
3728 bool
3729 expand_symtabs_matching
3730 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3731 const lookup_name_info &lookup_name,
3732 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3733 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3734 block_search_flags search_flags,
3735 enum search_domain kind)
3736 {
3737 for (objfile *objfile : current_program_space->objfiles ())
3738 if (!objfile->expand_symtabs_matching (file_matcher,
3739 &lookup_name,
3740 symbol_matcher,
3741 expansion_notify,
3742 search_flags,
3743 UNDEF_DOMAIN,
3744 kind))
3745 return false;
3746 return true;
3747 }
3748
3749 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3750 Map function FUN over every file.
3751 See quick_symbol_functions.map_symbol_filenames for details. */
3752
3753 void
3754 map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
3755 bool need_fullname)
3756 {
3757 for (objfile *objfile : current_program_space->objfiles ())
3758 objfile->map_symbol_filenames (fun, need_fullname);
3759 }
3760
3761 #if GDB_SELF_TEST
3762
3763 namespace selftests {
3764 namespace filename_language {
3765
3766 static void test_filename_language ()
3767 {
3768 /* This test messes up the filename_language_table global. */
3769 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3770
3771 /* Test deducing an unknown extension. */
3772 language lang = deduce_language_from_filename ("myfile.blah");
3773 SELF_CHECK (lang == language_unknown);
3774
3775 /* Test deducing a known extension. */
3776 lang = deduce_language_from_filename ("myfile.c");
3777 SELF_CHECK (lang == language_c);
3778
3779 /* Test adding a new extension using the internal API. */
3780 add_filename_language (".blah", language_pascal);
3781 lang = deduce_language_from_filename ("myfile.blah");
3782 SELF_CHECK (lang == language_pascal);
3783 }
3784
3785 static void
3786 test_set_ext_lang_command ()
3787 {
3788 /* This test messes up the filename_language_table global. */
3789 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3790
3791 /* Confirm that the .hello extension is not known. */
3792 language lang = deduce_language_from_filename ("cake.hello");
3793 SELF_CHECK (lang == language_unknown);
3794
3795 /* Test adding a new extension using the CLI command. */
3796 ext_args = ".hello rust";
3797 set_ext_lang_command (NULL, 1, NULL);
3798
3799 lang = deduce_language_from_filename ("cake.hello");
3800 SELF_CHECK (lang == language_rust);
3801
3802 /* Test overriding an existing extension using the CLI command. */
3803 int size_before = filename_language_table.size ();
3804 ext_args = ".hello pascal";
3805 set_ext_lang_command (NULL, 1, NULL);
3806 int size_after = filename_language_table.size ();
3807
3808 lang = deduce_language_from_filename ("cake.hello");
3809 SELF_CHECK (lang == language_pascal);
3810 SELF_CHECK (size_before == size_after);
3811 }
3812
3813 } /* namespace filename_language */
3814 } /* namespace selftests */
3815
3816 #endif /* GDB_SELF_TEST */
3817
3818 void _initialize_symfile ();
3819 void
3820 _initialize_symfile ()
3821 {
3822 struct cmd_list_element *c;
3823
3824 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile");
3825
3826 #define READNOW_READNEVER_HELP \
3827 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3828 immediately. This makes the command slower, but may make future operations\n\
3829 faster.\n\
3830 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3831 symbolic debug information."
3832
3833 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3834 Load symbol table from executable file FILE.\n\
3835 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3836 OFF is an optional offset which is added to each section address.\n\
3837 The `file' command can also load symbol tables, as well as setting the file\n\
3838 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3839 set_cmd_completer (c, filename_completer);
3840
3841 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3842 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3843 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3844 [-s SECT-NAME SECT-ADDR]...\n\
3845 ADDR is the starting address of the file's text.\n\
3846 Each '-s' argument provides a section name and address, and\n\
3847 should be specified if the data and bss segments are not contiguous\n\
3848 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3849 OFF is an optional offset which is added to the default load addresses\n\
3850 of all sections for which no other address was specified.\n"
3851 READNOW_READNEVER_HELP),
3852 &cmdlist);
3853 set_cmd_completer (c, filename_completer);
3854
3855 c = add_cmd ("remove-symbol-file", class_files,
3856 remove_symbol_file_command, _("\
3857 Remove a symbol file added via the add-symbol-file command.\n\
3858 Usage: remove-symbol-file FILENAME\n\
3859 remove-symbol-file -a ADDRESS\n\
3860 The file to remove can be identified by its filename or by an address\n\
3861 that lies within the boundaries of this symbol file in memory."),
3862 &cmdlist);
3863
3864 c = add_cmd ("load", class_files, load_command, _("\
3865 Dynamically load FILE into the running program.\n\
3866 FILE symbols are recorded for access from GDB.\n\
3867 Usage: load [FILE] [OFFSET]\n\
3868 An optional load OFFSET may also be given as a literal address.\n\
3869 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3870 on its own."), &cmdlist);
3871 set_cmd_completer (c, filename_completer);
3872
3873 cmd_list_element *overlay_cmd
3874 = add_basic_prefix_cmd ("overlay", class_support,
3875 _("Commands for debugging overlays."), &overlaylist,
3876 0, &cmdlist);
3877
3878 add_com_alias ("ovly", overlay_cmd, class_support, 1);
3879 add_com_alias ("ov", overlay_cmd, class_support, 1);
3880
3881 add_cmd ("map-overlay", class_support, map_overlay_command,
3882 _("Assert that an overlay section is mapped."), &overlaylist);
3883
3884 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3885 _("Assert that an overlay section is unmapped."), &overlaylist);
3886
3887 add_cmd ("list-overlays", class_support, list_overlays_command,
3888 _("List mappings of overlay sections."), &overlaylist);
3889
3890 add_cmd ("manual", class_support, overlay_manual_command,
3891 _("Enable overlay debugging."), &overlaylist);
3892 add_cmd ("off", class_support, overlay_off_command,
3893 _("Disable overlay debugging."), &overlaylist);
3894 add_cmd ("auto", class_support, overlay_auto_command,
3895 _("Enable automatic overlay debugging."), &overlaylist);
3896 add_cmd ("load-target", class_support, overlay_load_command,
3897 _("Read the overlay mapping state from the target."), &overlaylist);
3898
3899 /* Filename extension to source language lookup table: */
3900 add_setshow_string_noescape_cmd ("extension-language", class_files,
3901 &ext_args, _("\
3902 Set mapping between filename extension and source language."), _("\
3903 Show mapping between filename extension and source language."), _("\
3904 Usage: set extension-language .foo bar"),
3905 set_ext_lang_command,
3906 show_ext_args,
3907 &setlist, &showlist);
3908
3909 add_info ("extensions", info_ext_lang_command,
3910 _("All filename extensions associated with a source language."));
3911
3912 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3913 &debug_file_directory, _("\
3914 Set the directories where separate debug symbols are searched for."), _("\
3915 Show the directories where separate debug symbols are searched for."), _("\
3916 Separate debug symbols are first searched for in the same\n\
3917 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3918 and lastly at the path of the directory of the binary with\n\
3919 each global debug-file-directory component prepended."),
3920 NULL,
3921 show_debug_file_directory,
3922 &setlist, &showlist);
3923
3924 add_setshow_enum_cmd ("symbol-loading", no_class,
3925 print_symbol_loading_enums, &print_symbol_loading,
3926 _("\
3927 Set printing of symbol loading messages."), _("\
3928 Show printing of symbol loading messages."), _("\
3929 off == turn all messages off\n\
3930 brief == print messages for the executable,\n\
3931 and brief messages for shared libraries\n\
3932 full == print messages for the executable,\n\
3933 and messages for each shared library."),
3934 NULL,
3935 NULL,
3936 &setprintlist, &showprintlist);
3937
3938 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3939 &separate_debug_file_debug, _("\
3940 Set printing of separate debug info file search debug."), _("\
3941 Show printing of separate debug info file search debug."), _("\
3942 When on, GDB prints the searched locations while looking for separate debug \
3943 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3944
3945 #if GDB_SELF_TEST
3946 selftests::register_test
3947 ("filename_language", selftests::filename_language::test_filename_language);
3948 selftests::register_test
3949 ("set_ext_lang_command",
3950 selftests::filename_language::test_set_ext_lang_command);
3951 #endif
3952 }