*** empty log message ***
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "bfdlink.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcore.h"
29 #include "frame.h"
30 #include "target.h"
31 #include "value.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "source.h"
35 #include "gdbcmd.h"
36 #include "breakpoint.h"
37 #include "language.h"
38 #include "complaints.h"
39 #include "demangle.h"
40 #include "inferior.h" /* for write_pc */
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57
58 #include <sys/types.h>
59 #include <fcntl.h>
60 #include "gdb_string.h"
61 #include "gdb_stat.h"
62 #include <ctype.h>
63 #include <time.h>
64 #include <sys/time.h>
65
66
67 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
68 void (*deprecated_show_load_progress) (const char *section,
69 unsigned long section_sent,
70 unsigned long section_size,
71 unsigned long total_sent,
72 unsigned long total_size);
73 void (*deprecated_pre_add_symbol_hook) (const char *);
74 void (*deprecated_post_add_symbol_hook) (void);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void load_command (char *, int);
93
94 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
95
96 static void add_symbol_file_command (char *, int);
97
98 static void add_shared_symbol_files_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
133
134 static int simple_read_overlay_table (void);
135
136 static int simple_overlay_update_1 (struct obj_section *);
137
138 static void add_filename_language (char *ext, enum language lang);
139
140 static void info_ext_lang_command (char *args, int from_tty);
141
142 static char *find_separate_debug_file (struct objfile *objfile);
143
144 static void init_filename_language_table (void);
145
146 static void symfile_find_segment_sections (struct objfile *objfile);
147
148 void _initialize_symfile (void);
149
150 /* List of all available sym_fns. On gdb startup, each object file reader
151 calls add_symtab_fns() to register information on each format it is
152 prepared to read. */
153
154 static struct sym_fns *symtab_fns = NULL;
155
156 /* Flag for whether user will be reloading symbols multiple times.
157 Defaults to ON for VxWorks, otherwise OFF. */
158
159 #ifdef SYMBOL_RELOADING_DEFAULT
160 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
161 #else
162 int symbol_reloading = 0;
163 #endif
164 static void
165 show_symbol_reloading (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("\
169 Dynamic symbol table reloading multiple times in one run is %s.\n"),
170 value);
171 }
172
173 /* If non-zero, gdb will notify the user when it is loading symbols
174 from a file. This is almost always what users will want to have happen;
175 but for programs with lots of dynamically linked libraries, the output
176 can be more noise than signal. */
177
178 int print_symbol_loading = 1;
179
180 /* If non-zero, shared library symbols will be added automatically
181 when the inferior is created, new libraries are loaded, or when
182 attaching to the inferior. This is almost always what users will
183 want to have happen; but for very large programs, the startup time
184 will be excessive, and so if this is a problem, the user can clear
185 this flag and then add the shared library symbols as needed. Note
186 that there is a potential for confusion, since if the shared
187 library symbols are not loaded, commands like "info fun" will *not*
188 report all the functions that are actually present. */
189
190 int auto_solib_add = 1;
191
192 /* For systems that support it, a threshold size in megabytes. If
193 automatically adding a new library's symbol table to those already
194 known to the debugger would cause the total shared library symbol
195 size to exceed this threshhold, then the shlib's symbols are not
196 added. The threshold is ignored if the user explicitly asks for a
197 shlib to be added, such as when using the "sharedlibrary"
198 command. */
199
200 int auto_solib_limit;
201 \f
202
203 /* This compares two partial symbols by names, using strcmp_iw_ordered
204 for the comparison. */
205
206 static int
207 compare_psymbols (const void *s1p, const void *s2p)
208 {
209 struct partial_symbol *const *s1 = s1p;
210 struct partial_symbol *const *s2 = s2p;
211
212 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
213 SYMBOL_SEARCH_NAME (*s2));
214 }
215
216 void
217 sort_pst_symbols (struct partial_symtab *pst)
218 {
219 /* Sort the global list; don't sort the static list */
220
221 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
222 pst->n_global_syms, sizeof (struct partial_symbol *),
223 compare_psymbols);
224 }
225
226 /* Make a null terminated copy of the string at PTR with SIZE characters in
227 the obstack pointed to by OBSTACKP . Returns the address of the copy.
228 Note that the string at PTR does not have to be null terminated, I.E. it
229 may be part of a larger string and we are only saving a substring. */
230
231 char *
232 obsavestring (const char *ptr, int size, struct obstack *obstackp)
233 {
234 char *p = (char *) obstack_alloc (obstackp, size + 1);
235 /* Open-coded memcpy--saves function call time. These strings are usually
236 short. FIXME: Is this really still true with a compiler that can
237 inline memcpy? */
238 {
239 const char *p1 = ptr;
240 char *p2 = p;
241 const char *end = ptr + size;
242 while (p1 != end)
243 *p2++ = *p1++;
244 }
245 p[size] = 0;
246 return p;
247 }
248
249 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
250 in the obstack pointed to by OBSTACKP. */
251
252 char *
253 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
254 const char *s3)
255 {
256 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
257 char *val = (char *) obstack_alloc (obstackp, len);
258 strcpy (val, s1);
259 strcat (val, s2);
260 strcat (val, s3);
261 return val;
262 }
263
264 /* True if we are nested inside psymtab_to_symtab. */
265
266 int currently_reading_symtab = 0;
267
268 static void
269 decrement_reading_symtab (void *dummy)
270 {
271 currently_reading_symtab--;
272 }
273
274 /* Get the symbol table that corresponds to a partial_symtab.
275 This is fast after the first time you do it. In fact, there
276 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
277 case inline. */
278
279 struct symtab *
280 psymtab_to_symtab (struct partial_symtab *pst)
281 {
282 /* If it's been looked up before, return it. */
283 if (pst->symtab)
284 return pst->symtab;
285
286 /* If it has not yet been read in, read it. */
287 if (!pst->readin)
288 {
289 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
290 currently_reading_symtab++;
291 (*pst->read_symtab) (pst);
292 do_cleanups (back_to);
293 }
294
295 return pst->symtab;
296 }
297
298 /* Remember the lowest-addressed loadable section we've seen.
299 This function is called via bfd_map_over_sections.
300
301 In case of equal vmas, the section with the largest size becomes the
302 lowest-addressed loadable section.
303
304 If the vmas and sizes are equal, the last section is considered the
305 lowest-addressed loadable section. */
306
307 void
308 find_lowest_section (bfd *abfd, asection *sect, void *obj)
309 {
310 asection **lowest = (asection **) obj;
311
312 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
313 return;
314 if (!*lowest)
315 *lowest = sect; /* First loadable section */
316 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
317 *lowest = sect; /* A lower loadable section */
318 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
319 && (bfd_section_size (abfd, (*lowest))
320 <= bfd_section_size (abfd, sect)))
321 *lowest = sect;
322 }
323
324 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
325
326 struct section_addr_info *
327 alloc_section_addr_info (size_t num_sections)
328 {
329 struct section_addr_info *sap;
330 size_t size;
331
332 size = (sizeof (struct section_addr_info)
333 + sizeof (struct other_sections) * (num_sections - 1));
334 sap = (struct section_addr_info *) xmalloc (size);
335 memset (sap, 0, size);
336 sap->num_sections = num_sections;
337
338 return sap;
339 }
340
341
342 /* Return a freshly allocated copy of ADDRS. The section names, if
343 any, are also freshly allocated copies of those in ADDRS. */
344 struct section_addr_info *
345 copy_section_addr_info (struct section_addr_info *addrs)
346 {
347 struct section_addr_info *copy
348 = alloc_section_addr_info (addrs->num_sections);
349 int i;
350
351 copy->num_sections = addrs->num_sections;
352 for (i = 0; i < addrs->num_sections; i++)
353 {
354 copy->other[i].addr = addrs->other[i].addr;
355 if (addrs->other[i].name)
356 copy->other[i].name = xstrdup (addrs->other[i].name);
357 else
358 copy->other[i].name = NULL;
359 copy->other[i].sectindex = addrs->other[i].sectindex;
360 }
361
362 return copy;
363 }
364
365
366
367 /* Build (allocate and populate) a section_addr_info struct from
368 an existing section table. */
369
370 extern struct section_addr_info *
371 build_section_addr_info_from_section_table (const struct section_table *start,
372 const struct section_table *end)
373 {
374 struct section_addr_info *sap;
375 const struct section_table *stp;
376 int oidx;
377
378 sap = alloc_section_addr_info (end - start);
379
380 for (stp = start, oidx = 0; stp != end; stp++)
381 {
382 if (bfd_get_section_flags (stp->bfd,
383 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
384 && oidx < end - start)
385 {
386 sap->other[oidx].addr = stp->addr;
387 sap->other[oidx].name
388 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
389 sap->other[oidx].sectindex = stp->the_bfd_section->index;
390 oidx++;
391 }
392 }
393
394 return sap;
395 }
396
397
398 /* Free all memory allocated by build_section_addr_info_from_section_table. */
399
400 extern void
401 free_section_addr_info (struct section_addr_info *sap)
402 {
403 int idx;
404
405 for (idx = 0; idx < sap->num_sections; idx++)
406 if (sap->other[idx].name)
407 xfree (sap->other[idx].name);
408 xfree (sap);
409 }
410
411
412 /* Initialize OBJFILE's sect_index_* members. */
413 static void
414 init_objfile_sect_indices (struct objfile *objfile)
415 {
416 asection *sect;
417 int i;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".text");
420 if (sect)
421 objfile->sect_index_text = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".data");
424 if (sect)
425 objfile->sect_index_data = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
428 if (sect)
429 objfile->sect_index_bss = sect->index;
430
431 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
432 if (sect)
433 objfile->sect_index_rodata = sect->index;
434
435 /* This is where things get really weird... We MUST have valid
436 indices for the various sect_index_* members or gdb will abort.
437 So if for example, there is no ".text" section, we have to
438 accomodate that. First, check for a file with the standard
439 one or two segments. */
440
441 symfile_find_segment_sections (objfile);
442
443 /* Except when explicitly adding symbol files at some address,
444 section_offsets contains nothing but zeros, so it doesn't matter
445 which slot in section_offsets the individual sect_index_* members
446 index into. So if they are all zero, it is safe to just point
447 all the currently uninitialized indices to the first slot. But
448 beware: if this is the main executable, it may be relocated
449 later, e.g. by the remote qOffsets packet, and then this will
450 be wrong! That's why we try segments first. */
451
452 for (i = 0; i < objfile->num_sections; i++)
453 {
454 if (ANOFFSET (objfile->section_offsets, i) != 0)
455 {
456 break;
457 }
458 }
459 if (i == objfile->num_sections)
460 {
461 if (objfile->sect_index_text == -1)
462 objfile->sect_index_text = 0;
463 if (objfile->sect_index_data == -1)
464 objfile->sect_index_data = 0;
465 if (objfile->sect_index_bss == -1)
466 objfile->sect_index_bss = 0;
467 if (objfile->sect_index_rodata == -1)
468 objfile->sect_index_rodata = 0;
469 }
470 }
471
472 /* The arguments to place_section. */
473
474 struct place_section_arg
475 {
476 struct section_offsets *offsets;
477 CORE_ADDR lowest;
478 };
479
480 /* Find a unique offset to use for loadable section SECT if
481 the user did not provide an offset. */
482
483 void
484 place_section (bfd *abfd, asection *sect, void *obj)
485 {
486 struct place_section_arg *arg = obj;
487 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
488 int done;
489 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
490
491 /* We are only interested in allocated sections. */
492 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
493 return;
494
495 /* If the user specified an offset, honor it. */
496 if (offsets[sect->index] != 0)
497 return;
498
499 /* Otherwise, let's try to find a place for the section. */
500 start_addr = (arg->lowest + align - 1) & -align;
501
502 do {
503 asection *cur_sec;
504
505 done = 1;
506
507 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
508 {
509 int indx = cur_sec->index;
510 CORE_ADDR cur_offset;
511
512 /* We don't need to compare against ourself. */
513 if (cur_sec == sect)
514 continue;
515
516 /* We can only conflict with allocated sections. */
517 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
518 continue;
519
520 /* If the section offset is 0, either the section has not been placed
521 yet, or it was the lowest section placed (in which case LOWEST
522 will be past its end). */
523 if (offsets[indx] == 0)
524 continue;
525
526 /* If this section would overlap us, then we must move up. */
527 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
528 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
529 {
530 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
531 start_addr = (start_addr + align - 1) & -align;
532 done = 0;
533 break;
534 }
535
536 /* Otherwise, we appear to be OK. So far. */
537 }
538 }
539 while (!done);
540
541 offsets[sect->index] = start_addr;
542 arg->lowest = start_addr + bfd_get_section_size (sect);
543 }
544
545 /* Parse the user's idea of an offset for dynamic linking, into our idea
546 of how to represent it for fast symbol reading. This is the default
547 version of the sym_fns.sym_offsets function for symbol readers that
548 don't need to do anything special. It allocates a section_offsets table
549 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
550
551 void
552 default_symfile_offsets (struct objfile *objfile,
553 struct section_addr_info *addrs)
554 {
555 int i;
556
557 objfile->num_sections = bfd_count_sections (objfile->obfd);
558 objfile->section_offsets = (struct section_offsets *)
559 obstack_alloc (&objfile->objfile_obstack,
560 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
561 memset (objfile->section_offsets, 0,
562 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
563
564 /* Now calculate offsets for section that were specified by the
565 caller. */
566 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
567 {
568 struct other_sections *osp ;
569
570 osp = &addrs->other[i] ;
571 if (osp->addr == 0)
572 continue;
573
574 /* Record all sections in offsets */
575 /* The section_offsets in the objfile are here filled in using
576 the BFD index. */
577 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
578 }
579
580 /* For relocatable files, all loadable sections will start at zero.
581 The zero is meaningless, so try to pick arbitrary addresses such
582 that no loadable sections overlap. This algorithm is quadratic,
583 but the number of sections in a single object file is generally
584 small. */
585 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
586 {
587 struct place_section_arg arg;
588 bfd *abfd = objfile->obfd;
589 asection *cur_sec;
590 CORE_ADDR lowest = 0;
591
592 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
593 /* We do not expect this to happen; just skip this step if the
594 relocatable file has a section with an assigned VMA. */
595 if (bfd_section_vma (abfd, cur_sec) != 0)
596 break;
597
598 if (cur_sec == NULL)
599 {
600 CORE_ADDR *offsets = objfile->section_offsets->offsets;
601
602 /* Pick non-overlapping offsets for sections the user did not
603 place explicitly. */
604 arg.offsets = objfile->section_offsets;
605 arg.lowest = 0;
606 bfd_map_over_sections (objfile->obfd, place_section, &arg);
607
608 /* Correctly filling in the section offsets is not quite
609 enough. Relocatable files have two properties that
610 (most) shared objects do not:
611
612 - Their debug information will contain relocations. Some
613 shared libraries do also, but many do not, so this can not
614 be assumed.
615
616 - If there are multiple code sections they will be loaded
617 at different relative addresses in memory than they are
618 in the objfile, since all sections in the file will start
619 at address zero.
620
621 Because GDB has very limited ability to map from an
622 address in debug info to the correct code section,
623 it relies on adding SECT_OFF_TEXT to things which might be
624 code. If we clear all the section offsets, and set the
625 section VMAs instead, then symfile_relocate_debug_section
626 will return meaningful debug information pointing at the
627 correct sections.
628
629 GDB has too many different data structures for section
630 addresses - a bfd, objfile, and so_list all have section
631 tables, as does exec_ops. Some of these could probably
632 be eliminated. */
633
634 for (cur_sec = abfd->sections; cur_sec != NULL;
635 cur_sec = cur_sec->next)
636 {
637 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
638 continue;
639
640 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
641 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
642 offsets[cur_sec->index]);
643 offsets[cur_sec->index] = 0;
644 }
645 }
646 }
647
648 /* Remember the bfd indexes for the .text, .data, .bss and
649 .rodata sections. */
650 init_objfile_sect_indices (objfile);
651 }
652
653
654 /* Divide the file into segments, which are individual relocatable units.
655 This is the default version of the sym_fns.sym_segments function for
656 symbol readers that do not have an explicit representation of segments.
657 It assumes that object files do not have segments, and fully linked
658 files have a single segment. */
659
660 struct symfile_segment_data *
661 default_symfile_segments (bfd *abfd)
662 {
663 int num_sections, i;
664 asection *sect;
665 struct symfile_segment_data *data;
666 CORE_ADDR low, high;
667
668 /* Relocatable files contain enough information to position each
669 loadable section independently; they should not be relocated
670 in segments. */
671 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
672 return NULL;
673
674 /* Make sure there is at least one loadable section in the file. */
675 for (sect = abfd->sections; sect != NULL; sect = sect->next)
676 {
677 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
678 continue;
679
680 break;
681 }
682 if (sect == NULL)
683 return NULL;
684
685 low = bfd_get_section_vma (abfd, sect);
686 high = low + bfd_get_section_size (sect);
687
688 data = XZALLOC (struct symfile_segment_data);
689 data->num_segments = 1;
690 data->segment_bases = XCALLOC (1, CORE_ADDR);
691 data->segment_sizes = XCALLOC (1, CORE_ADDR);
692
693 num_sections = bfd_count_sections (abfd);
694 data->segment_info = XCALLOC (num_sections, int);
695
696 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
697 {
698 CORE_ADDR vma;
699
700 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
701 continue;
702
703 vma = bfd_get_section_vma (abfd, sect);
704 if (vma < low)
705 low = vma;
706 if (vma + bfd_get_section_size (sect) > high)
707 high = vma + bfd_get_section_size (sect);
708
709 data->segment_info[i] = 1;
710 }
711
712 data->segment_bases[0] = low;
713 data->segment_sizes[0] = high - low;
714
715 return data;
716 }
717
718 /* Process a symbol file, as either the main file or as a dynamically
719 loaded file.
720
721 OBJFILE is where the symbols are to be read from.
722
723 ADDRS is the list of section load addresses. If the user has given
724 an 'add-symbol-file' command, then this is the list of offsets and
725 addresses he or she provided as arguments to the command; or, if
726 we're handling a shared library, these are the actual addresses the
727 sections are loaded at, according to the inferior's dynamic linker
728 (as gleaned by GDB's shared library code). We convert each address
729 into an offset from the section VMA's as it appears in the object
730 file, and then call the file's sym_offsets function to convert this
731 into a format-specific offset table --- a `struct section_offsets'.
732 If ADDRS is non-zero, OFFSETS must be zero.
733
734 OFFSETS is a table of section offsets already in the right
735 format-specific representation. NUM_OFFSETS is the number of
736 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
737 assume this is the proper table the call to sym_offsets described
738 above would produce. Instead of calling sym_offsets, we just dump
739 it right into objfile->section_offsets. (When we're re-reading
740 symbols from an objfile, we don't have the original load address
741 list any more; all we have is the section offset table.) If
742 OFFSETS is non-zero, ADDRS must be zero.
743
744 MAINLINE is nonzero if this is the main symbol file, or zero if
745 it's an extra symbol file such as dynamically loaded code.
746
747 VERBO is nonzero if the caller has printed a verbose message about
748 the symbol reading (and complaints can be more terse about it). */
749
750 void
751 syms_from_objfile (struct objfile *objfile,
752 struct section_addr_info *addrs,
753 struct section_offsets *offsets,
754 int num_offsets,
755 int mainline,
756 int verbo)
757 {
758 struct section_addr_info *local_addr = NULL;
759 struct cleanup *old_chain;
760
761 gdb_assert (! (addrs && offsets));
762
763 init_entry_point_info (objfile);
764 objfile->sf = find_sym_fns (objfile->obfd);
765
766 if (objfile->sf == NULL)
767 return; /* No symbols. */
768
769 /* Make sure that partially constructed symbol tables will be cleaned up
770 if an error occurs during symbol reading. */
771 old_chain = make_cleanup_free_objfile (objfile);
772
773 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
774 list. We now establish the convention that an addr of zero means
775 no load address was specified. */
776 if (! addrs && ! offsets)
777 {
778 local_addr
779 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
780 make_cleanup (xfree, local_addr);
781 addrs = local_addr;
782 }
783
784 /* Now either addrs or offsets is non-zero. */
785
786 if (mainline)
787 {
788 /* We will modify the main symbol table, make sure that all its users
789 will be cleaned up if an error occurs during symbol reading. */
790 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
791
792 /* Since no error yet, throw away the old symbol table. */
793
794 if (symfile_objfile != NULL)
795 {
796 free_objfile (symfile_objfile);
797 symfile_objfile = NULL;
798 }
799
800 /* Currently we keep symbols from the add-symbol-file command.
801 If the user wants to get rid of them, they should do "symbol-file"
802 without arguments first. Not sure this is the best behavior
803 (PR 2207). */
804
805 (*objfile->sf->sym_new_init) (objfile);
806 }
807
808 /* Convert addr into an offset rather than an absolute address.
809 We find the lowest address of a loaded segment in the objfile,
810 and assume that <addr> is where that got loaded.
811
812 We no longer warn if the lowest section is not a text segment (as
813 happens for the PA64 port. */
814 if (!mainline && addrs && addrs->other[0].name)
815 {
816 asection *lower_sect;
817 asection *sect;
818 CORE_ADDR lower_offset;
819 int i;
820
821 /* Find lowest loadable section to be used as starting point for
822 continguous sections. FIXME!! won't work without call to find
823 .text first, but this assumes text is lowest section. */
824 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
825 if (lower_sect == NULL)
826 bfd_map_over_sections (objfile->obfd, find_lowest_section,
827 &lower_sect);
828 if (lower_sect == NULL)
829 {
830 warning (_("no loadable sections found in added symbol-file %s"),
831 objfile->name);
832 lower_offset = 0;
833 }
834 else
835 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
836
837 /* Calculate offsets for the loadable sections.
838 FIXME! Sections must be in order of increasing loadable section
839 so that contiguous sections can use the lower-offset!!!
840
841 Adjust offsets if the segments are not contiguous.
842 If the section is contiguous, its offset should be set to
843 the offset of the highest loadable section lower than it
844 (the loadable section directly below it in memory).
845 this_offset = lower_offset = lower_addr - lower_orig_addr */
846
847 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
848 {
849 if (addrs->other[i].addr != 0)
850 {
851 sect = bfd_get_section_by_name (objfile->obfd,
852 addrs->other[i].name);
853 if (sect)
854 {
855 addrs->other[i].addr
856 -= bfd_section_vma (objfile->obfd, sect);
857 lower_offset = addrs->other[i].addr;
858 /* This is the index used by BFD. */
859 addrs->other[i].sectindex = sect->index ;
860 }
861 else
862 {
863 warning (_("section %s not found in %s"),
864 addrs->other[i].name,
865 objfile->name);
866 addrs->other[i].addr = 0;
867 }
868 }
869 else
870 addrs->other[i].addr = lower_offset;
871 }
872 }
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, verbo);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, mainline);
898
899 /* Mark the objfile has having had initial symbol read attempted. Note
900 that this does not mean we found any symbols... */
901
902 objfile->flags |= OBJF_SYMS;
903
904 /* Discard cleanups as symbol reading was successful. */
905
906 discard_cleanups (old_chain);
907 }
908
909 /* Perform required actions after either reading in the initial
910 symbols for a new objfile, or mapping in the symbols from a reusable
911 objfile. */
912
913 void
914 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
915 {
916
917 /* If this is the main symbol file we have to clean up all users of the
918 old main symbol file. Otherwise it is sufficient to fixup all the
919 breakpoints that may have been redefined by this symbol file. */
920 if (mainline)
921 {
922 /* OK, make it the "real" symbol file. */
923 symfile_objfile = objfile;
924
925 clear_symtab_users ();
926 }
927 else
928 {
929 breakpoint_re_set ();
930 }
931
932 /* We're done reading the symbol file; finish off complaints. */
933 clear_complaints (&symfile_complaints, 0, verbo);
934 }
935
936 /* Process a symbol file, as either the main file or as a dynamically
937 loaded file.
938
939 ABFD is a BFD already open on the file, as from symfile_bfd_open.
940 This BFD will be closed on error, and is always consumed by this function.
941
942 FROM_TTY says how verbose to be.
943
944 MAINLINE specifies whether this is the main symbol file, or whether
945 it's an extra symbol file such as dynamically loaded code.
946
947 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
948 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
949 non-zero.
950
951 Upon success, returns a pointer to the objfile that was added.
952 Upon failure, jumps back to command level (never returns). */
953 static struct objfile *
954 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
955 struct section_addr_info *addrs,
956 struct section_offsets *offsets,
957 int num_offsets,
958 int mainline, int flags)
959 {
960 struct objfile *objfile;
961 struct partial_symtab *psymtab;
962 char *debugfile = NULL;
963 struct section_addr_info *orig_addrs = NULL;
964 struct cleanup *my_cleanups;
965 const char *name = bfd_get_filename (abfd);
966
967 my_cleanups = make_cleanup_bfd_close (abfd);
968
969 /* Give user a chance to burp if we'd be
970 interactively wiping out any existing symbols. */
971
972 if ((have_full_symbols () || have_partial_symbols ())
973 && mainline
974 && from_tty
975 && !query ("Load new symbol table from \"%s\"? ", name))
976 error (_("Not confirmed."));
977
978 objfile = allocate_objfile (abfd, flags);
979 discard_cleanups (my_cleanups);
980
981 if (addrs)
982 {
983 orig_addrs = copy_section_addr_info (addrs);
984 make_cleanup_free_section_addr_info (orig_addrs);
985 }
986
987 /* We either created a new mapped symbol table, mapped an existing
988 symbol table file which has not had initial symbol reading
989 performed, or need to read an unmapped symbol table. */
990 if (from_tty || info_verbose)
991 {
992 if (deprecated_pre_add_symbol_hook)
993 deprecated_pre_add_symbol_hook (name);
994 else
995 {
996 if (print_symbol_loading)
997 {
998 printf_unfiltered (_("Reading symbols from %s..."), name);
999 wrap_here ("");
1000 gdb_flush (gdb_stdout);
1001 }
1002 }
1003 }
1004 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1005 mainline, from_tty);
1006
1007 /* We now have at least a partial symbol table. Check to see if the
1008 user requested that all symbols be read on initial access via either
1009 the gdb startup command line or on a per symbol file basis. Expand
1010 all partial symbol tables for this objfile if so. */
1011
1012 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1013 {
1014 if ((from_tty || info_verbose) && print_symbol_loading)
1015 {
1016 printf_unfiltered (_("expanding to full symbols..."));
1017 wrap_here ("");
1018 gdb_flush (gdb_stdout);
1019 }
1020
1021 for (psymtab = objfile->psymtabs;
1022 psymtab != NULL;
1023 psymtab = psymtab->next)
1024 {
1025 psymtab_to_symtab (psymtab);
1026 }
1027 }
1028
1029 /* If the file has its own symbol tables it has no separate debug info.
1030 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1031 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1032 if (objfile->psymtabs == NULL)
1033 debugfile = find_separate_debug_file (objfile);
1034 if (debugfile)
1035 {
1036 if (addrs != NULL)
1037 {
1038 objfile->separate_debug_objfile
1039 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
1040 }
1041 else
1042 {
1043 objfile->separate_debug_objfile
1044 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
1045 }
1046 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1047 = objfile;
1048
1049 /* Put the separate debug object before the normal one, this is so that
1050 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1051 put_objfile_before (objfile->separate_debug_objfile, objfile);
1052
1053 xfree (debugfile);
1054 }
1055
1056 if (!have_partial_symbols () && !have_full_symbols ()
1057 && print_symbol_loading)
1058 {
1059 wrap_here ("");
1060 printf_unfiltered (_("(no debugging symbols found)"));
1061 if (from_tty || info_verbose)
1062 printf_unfiltered ("...");
1063 else
1064 printf_unfiltered ("\n");
1065 wrap_here ("");
1066 }
1067
1068 if (from_tty || info_verbose)
1069 {
1070 if (deprecated_post_add_symbol_hook)
1071 deprecated_post_add_symbol_hook ();
1072 else
1073 {
1074 if (print_symbol_loading)
1075 printf_unfiltered (_("done.\n"));
1076 }
1077 }
1078
1079 /* We print some messages regardless of whether 'from_tty ||
1080 info_verbose' is true, so make sure they go out at the right
1081 time. */
1082 gdb_flush (gdb_stdout);
1083
1084 do_cleanups (my_cleanups);
1085
1086 if (objfile->sf == NULL)
1087 return objfile; /* No symbols. */
1088
1089 new_symfile_objfile (objfile, mainline, from_tty);
1090
1091 observer_notify_new_objfile (objfile);
1092
1093 bfd_cache_close_all ();
1094 return (objfile);
1095 }
1096
1097
1098 /* Process the symbol file ABFD, as either the main file or as a
1099 dynamically loaded file.
1100
1101 See symbol_file_add_with_addrs_or_offsets's comments for
1102 details. */
1103 struct objfile *
1104 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1105 struct section_addr_info *addrs,
1106 int mainline, int flags)
1107 {
1108 return symbol_file_add_with_addrs_or_offsets (abfd,
1109 from_tty, addrs, 0, 0,
1110 mainline, flags);
1111 }
1112
1113
1114 /* Process a symbol file, as either the main file or as a dynamically
1115 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1116 for details. */
1117 struct objfile *
1118 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1119 int mainline, int flags)
1120 {
1121 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1122 addrs, mainline, flags);
1123 }
1124
1125
1126 /* Call symbol_file_add() with default values and update whatever is
1127 affected by the loading of a new main().
1128 Used when the file is supplied in the gdb command line
1129 and by some targets with special loading requirements.
1130 The auxiliary function, symbol_file_add_main_1(), has the flags
1131 argument for the switches that can only be specified in the symbol_file
1132 command itself. */
1133
1134 void
1135 symbol_file_add_main (char *args, int from_tty)
1136 {
1137 symbol_file_add_main_1 (args, from_tty, 0);
1138 }
1139
1140 static void
1141 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1142 {
1143 symbol_file_add (args, from_tty, NULL, 1, flags);
1144
1145 /* Getting new symbols may change our opinion about
1146 what is frameless. */
1147 reinit_frame_cache ();
1148
1149 set_initial_language ();
1150 }
1151
1152 void
1153 symbol_file_clear (int from_tty)
1154 {
1155 if ((have_full_symbols () || have_partial_symbols ())
1156 && from_tty
1157 && (symfile_objfile
1158 ? !query (_("Discard symbol table from `%s'? "),
1159 symfile_objfile->name)
1160 : !query (_("Discard symbol table? "))))
1161 error (_("Not confirmed."));
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well.
1167 */
1168 no_shared_libraries (NULL, from_tty);
1169
1170 symfile_objfile = NULL;
1171 if (from_tty)
1172 printf_unfiltered (_("No symbol file now.\n"));
1173 }
1174
1175 struct build_id
1176 {
1177 size_t size;
1178 gdb_byte data[1];
1179 };
1180
1181 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1182
1183 static struct build_id *
1184 build_id_bfd_get (bfd *abfd)
1185 {
1186 struct build_id *retval;
1187
1188 if (!bfd_check_format (abfd, bfd_object)
1189 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1190 || elf_tdata (abfd)->build_id == NULL)
1191 return NULL;
1192
1193 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1194 retval->size = elf_tdata (abfd)->build_id_size;
1195 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1196
1197 return retval;
1198 }
1199
1200 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1201
1202 static int
1203 build_id_verify (const char *filename, struct build_id *check)
1204 {
1205 bfd *abfd;
1206 struct build_id *found = NULL;
1207 int retval = 0;
1208
1209 /* We expect to be silent on the non-existing files. */
1210 if (remote_filename_p (filename))
1211 abfd = remote_bfd_open (filename, gnutarget);
1212 else
1213 abfd = bfd_openr (filename, gnutarget);
1214 if (abfd == NULL)
1215 return 0;
1216
1217 found = build_id_bfd_get (abfd);
1218
1219 if (found == NULL)
1220 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1221 else if (found->size != check->size
1222 || memcmp (found->data, check->data, found->size) != 0)
1223 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1224 else
1225 retval = 1;
1226
1227 if (!bfd_close (abfd))
1228 warning (_("cannot close \"%s\": %s"), filename,
1229 bfd_errmsg (bfd_get_error ()));
1230
1231 xfree (found);
1232
1233 return retval;
1234 }
1235
1236 static char *
1237 build_id_to_debug_filename (struct build_id *build_id)
1238 {
1239 char *link, *s, *retval = NULL;
1240 gdb_byte *data = build_id->data;
1241 size_t size = build_id->size;
1242
1243 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1244 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1245 + 2 * size + (sizeof ".debug" - 1) + 1);
1246 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1247 if (size > 0)
1248 {
1249 size--;
1250 s += sprintf (s, "%02x", (unsigned) *data++);
1251 }
1252 if (size > 0)
1253 *s++ = '/';
1254 while (size-- > 0)
1255 s += sprintf (s, "%02x", (unsigned) *data++);
1256 strcpy (s, ".debug");
1257
1258 /* lrealpath() is expensive even for the usually non-existent files. */
1259 if (access (link, F_OK) == 0)
1260 retval = lrealpath (link);
1261 xfree (link);
1262
1263 if (retval != NULL && !build_id_verify (retval, build_id))
1264 {
1265 xfree (retval);
1266 retval = NULL;
1267 }
1268
1269 return retval;
1270 }
1271
1272 static char *
1273 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1274 {
1275 asection *sect;
1276 bfd_size_type debuglink_size;
1277 unsigned long crc32;
1278 char *contents;
1279 int crc_offset;
1280 unsigned char *p;
1281
1282 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1283
1284 if (sect == NULL)
1285 return NULL;
1286
1287 debuglink_size = bfd_section_size (objfile->obfd, sect);
1288
1289 contents = xmalloc (debuglink_size);
1290 bfd_get_section_contents (objfile->obfd, sect, contents,
1291 (file_ptr)0, (bfd_size_type)debuglink_size);
1292
1293 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1294 crc_offset = strlen (contents) + 1;
1295 crc_offset = (crc_offset + 3) & ~3;
1296
1297 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1298
1299 *crc32_out = crc32;
1300 return contents;
1301 }
1302
1303 static int
1304 separate_debug_file_exists (const char *name, unsigned long crc)
1305 {
1306 unsigned long file_crc = 0;
1307 bfd *abfd;
1308 gdb_byte buffer[8*1024];
1309 int count;
1310
1311 if (remote_filename_p (name))
1312 abfd = remote_bfd_open (name, gnutarget);
1313 else
1314 abfd = bfd_openr (name, gnutarget);
1315
1316 if (!abfd)
1317 return 0;
1318
1319 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1320 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1321
1322 bfd_close (abfd);
1323
1324 return crc == file_crc;
1325 }
1326
1327 char *debug_file_directory = NULL;
1328 static void
1329 show_debug_file_directory (struct ui_file *file, int from_tty,
1330 struct cmd_list_element *c, const char *value)
1331 {
1332 fprintf_filtered (file, _("\
1333 The directory where separate debug symbols are searched for is \"%s\".\n"),
1334 value);
1335 }
1336
1337 #if ! defined (DEBUG_SUBDIRECTORY)
1338 #define DEBUG_SUBDIRECTORY ".debug"
1339 #endif
1340
1341 static char *
1342 find_separate_debug_file (struct objfile *objfile)
1343 {
1344 asection *sect;
1345 char *basename;
1346 char *dir;
1347 char *debugfile;
1348 char *name_copy;
1349 char *canon_name;
1350 bfd_size_type debuglink_size;
1351 unsigned long crc32;
1352 int i;
1353 struct build_id *build_id;
1354
1355 build_id = build_id_bfd_get (objfile->obfd);
1356 if (build_id != NULL)
1357 {
1358 char *build_id_name;
1359
1360 build_id_name = build_id_to_debug_filename (build_id);
1361 xfree (build_id);
1362 /* Prevent looping on a stripped .debug file. */
1363 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1364 {
1365 warning (_("\"%s\": separate debug info file has no debug info"),
1366 build_id_name);
1367 xfree (build_id_name);
1368 }
1369 else if (build_id_name != NULL)
1370 return build_id_name;
1371 }
1372
1373 basename = get_debug_link_info (objfile, &crc32);
1374
1375 if (basename == NULL)
1376 return NULL;
1377
1378 dir = xstrdup (objfile->name);
1379
1380 /* Strip off the final filename part, leaving the directory name,
1381 followed by a slash. Objfile names should always be absolute and
1382 tilde-expanded, so there should always be a slash in there
1383 somewhere. */
1384 for (i = strlen(dir) - 1; i >= 0; i--)
1385 {
1386 if (IS_DIR_SEPARATOR (dir[i]))
1387 break;
1388 }
1389 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1390 dir[i+1] = '\0';
1391
1392 debugfile = alloca (strlen (debug_file_directory) + 1
1393 + strlen (dir)
1394 + strlen (DEBUG_SUBDIRECTORY)
1395 + strlen ("/")
1396 + strlen (basename)
1397 + 1);
1398
1399 /* First try in the same directory as the original file. */
1400 strcpy (debugfile, dir);
1401 strcat (debugfile, basename);
1402
1403 if (separate_debug_file_exists (debugfile, crc32))
1404 {
1405 xfree (basename);
1406 xfree (dir);
1407 return xstrdup (debugfile);
1408 }
1409
1410 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1411 strcpy (debugfile, dir);
1412 strcat (debugfile, DEBUG_SUBDIRECTORY);
1413 strcat (debugfile, "/");
1414 strcat (debugfile, basename);
1415
1416 if (separate_debug_file_exists (debugfile, crc32))
1417 {
1418 xfree (basename);
1419 xfree (dir);
1420 return xstrdup (debugfile);
1421 }
1422
1423 /* Then try in the global debugfile directory. */
1424 strcpy (debugfile, debug_file_directory);
1425 strcat (debugfile, "/");
1426 strcat (debugfile, dir);
1427 strcat (debugfile, basename);
1428
1429 if (separate_debug_file_exists (debugfile, crc32))
1430 {
1431 xfree (basename);
1432 xfree (dir);
1433 return xstrdup (debugfile);
1434 }
1435
1436 /* If the file is in the sysroot, try using its base path in the
1437 global debugfile directory. */
1438 canon_name = lrealpath (dir);
1439 if (canon_name
1440 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1441 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1442 {
1443 strcpy (debugfile, debug_file_directory);
1444 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1445 strcat (debugfile, "/");
1446 strcat (debugfile, basename);
1447
1448 if (separate_debug_file_exists (debugfile, crc32))
1449 {
1450 xfree (canon_name);
1451 xfree (basename);
1452 xfree (dir);
1453 return xstrdup (debugfile);
1454 }
1455 }
1456
1457 if (canon_name)
1458 xfree (canon_name);
1459
1460 xfree (basename);
1461 xfree (dir);
1462 return NULL;
1463 }
1464
1465
1466 /* This is the symbol-file command. Read the file, analyze its
1467 symbols, and add a struct symtab to a symtab list. The syntax of
1468 the command is rather bizarre:
1469
1470 1. The function buildargv implements various quoting conventions
1471 which are undocumented and have little or nothing in common with
1472 the way things are quoted (or not quoted) elsewhere in GDB.
1473
1474 2. Options are used, which are not generally used in GDB (perhaps
1475 "set mapped on", "set readnow on" would be better)
1476
1477 3. The order of options matters, which is contrary to GNU
1478 conventions (because it is confusing and inconvenient). */
1479
1480 void
1481 symbol_file_command (char *args, int from_tty)
1482 {
1483 dont_repeat ();
1484
1485 if (args == NULL)
1486 {
1487 symbol_file_clear (from_tty);
1488 }
1489 else
1490 {
1491 char **argv = buildargv (args);
1492 int flags = OBJF_USERLOADED;
1493 struct cleanup *cleanups;
1494 char *name = NULL;
1495
1496 if (argv == NULL)
1497 nomem (0);
1498
1499 cleanups = make_cleanup_freeargv (argv);
1500 while (*argv != NULL)
1501 {
1502 if (strcmp (*argv, "-readnow") == 0)
1503 flags |= OBJF_READNOW;
1504 else if (**argv == '-')
1505 error (_("unknown option `%s'"), *argv);
1506 else
1507 {
1508 symbol_file_add_main_1 (*argv, from_tty, flags);
1509 name = *argv;
1510 }
1511
1512 argv++;
1513 }
1514
1515 if (name == NULL)
1516 error (_("no symbol file name was specified"));
1517
1518 do_cleanups (cleanups);
1519 }
1520 }
1521
1522 /* Set the initial language.
1523
1524 FIXME: A better solution would be to record the language in the
1525 psymtab when reading partial symbols, and then use it (if known) to
1526 set the language. This would be a win for formats that encode the
1527 language in an easily discoverable place, such as DWARF. For
1528 stabs, we can jump through hoops looking for specially named
1529 symbols or try to intuit the language from the specific type of
1530 stabs we find, but we can't do that until later when we read in
1531 full symbols. */
1532
1533 void
1534 set_initial_language (void)
1535 {
1536 struct partial_symtab *pst;
1537 enum language lang = language_unknown;
1538
1539 pst = find_main_psymtab ();
1540 if (pst != NULL)
1541 {
1542 if (pst->filename != NULL)
1543 lang = deduce_language_from_filename (pst->filename);
1544
1545 if (lang == language_unknown)
1546 {
1547 /* Make C the default language */
1548 lang = language_c;
1549 }
1550
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
1553 }
1554 }
1555
1556 /* Open the file specified by NAME and hand it off to BFD for
1557 preliminary analysis. Return a newly initialized bfd *, which
1558 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1559 absolute). In case of trouble, error() is called. */
1560
1561 bfd *
1562 symfile_bfd_open (char *name)
1563 {
1564 bfd *sym_bfd;
1565 int desc;
1566 char *absolute_name;
1567
1568 if (remote_filename_p (name))
1569 {
1570 name = xstrdup (name);
1571 sym_bfd = remote_bfd_open (name, gnutarget);
1572 if (!sym_bfd)
1573 {
1574 make_cleanup (xfree, name);
1575 error (_("`%s': can't open to read symbols: %s."), name,
1576 bfd_errmsg (bfd_get_error ()));
1577 }
1578
1579 if (!bfd_check_format (sym_bfd, bfd_object))
1580 {
1581 bfd_close (sym_bfd);
1582 make_cleanup (xfree, name);
1583 error (_("`%s': can't read symbols: %s."), name,
1584 bfd_errmsg (bfd_get_error ()));
1585 }
1586
1587 return sym_bfd;
1588 }
1589
1590 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1591
1592 /* Look down path for it, allocate 2nd new malloc'd copy. */
1593 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1594 O_RDONLY | O_BINARY, 0, &absolute_name);
1595 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1596 if (desc < 0)
1597 {
1598 char *exename = alloca (strlen (name) + 5);
1599 strcat (strcpy (exename, name), ".exe");
1600 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1601 O_RDONLY | O_BINARY, 0, &absolute_name);
1602 }
1603 #endif
1604 if (desc < 0)
1605 {
1606 make_cleanup (xfree, name);
1607 perror_with_name (name);
1608 }
1609
1610 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1611 bfd. It'll be freed in free_objfile(). */
1612 xfree (name);
1613 name = absolute_name;
1614
1615 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1616 if (!sym_bfd)
1617 {
1618 close (desc);
1619 make_cleanup (xfree, name);
1620 error (_("`%s': can't open to read symbols: %s."), name,
1621 bfd_errmsg (bfd_get_error ()));
1622 }
1623 bfd_set_cacheable (sym_bfd, 1);
1624
1625 if (!bfd_check_format (sym_bfd, bfd_object))
1626 {
1627 /* FIXME: should be checking for errors from bfd_close (for one
1628 thing, on error it does not free all the storage associated
1629 with the bfd). */
1630 bfd_close (sym_bfd); /* This also closes desc. */
1631 make_cleanup (xfree, name);
1632 error (_("`%s': can't read symbols: %s."), name,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
1635
1636 return sym_bfd;
1637 }
1638
1639 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1640 the section was not found. */
1641
1642 int
1643 get_section_index (struct objfile *objfile, char *section_name)
1644 {
1645 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1646
1647 if (sect)
1648 return sect->index;
1649 else
1650 return -1;
1651 }
1652
1653 /* Link SF into the global symtab_fns list. Called on startup by the
1654 _initialize routine in each object file format reader, to register
1655 information about each format the the reader is prepared to
1656 handle. */
1657
1658 void
1659 add_symtab_fns (struct sym_fns *sf)
1660 {
1661 sf->next = symtab_fns;
1662 symtab_fns = sf;
1663 }
1664
1665 /* Initialize OBJFILE to read symbols from its associated BFD. It
1666 either returns or calls error(). The result is an initialized
1667 struct sym_fns in the objfile structure, that contains cached
1668 information about the symbol file. */
1669
1670 static struct sym_fns *
1671 find_sym_fns (bfd *abfd)
1672 {
1673 struct sym_fns *sf;
1674 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1675
1676 if (our_flavour == bfd_target_srec_flavour
1677 || our_flavour == bfd_target_ihex_flavour
1678 || our_flavour == bfd_target_tekhex_flavour)
1679 return NULL; /* No symbols. */
1680
1681 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1682 if (our_flavour == sf->sym_flavour)
1683 return sf;
1684
1685 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1686 bfd_get_target (abfd));
1687 }
1688 \f
1689
1690 /* This function runs the load command of our current target. */
1691
1692 static void
1693 load_command (char *arg, int from_tty)
1694 {
1695 /* The user might be reloading because the binary has changed. Take
1696 this opportunity to check. */
1697 reopen_exec_file ();
1698 reread_symbols ();
1699
1700 if (arg == NULL)
1701 {
1702 char *parg;
1703 int count = 0;
1704
1705 parg = arg = get_exec_file (1);
1706
1707 /* Count how many \ " ' tab space there are in the name. */
1708 while ((parg = strpbrk (parg, "\\\"'\t ")))
1709 {
1710 parg++;
1711 count++;
1712 }
1713
1714 if (count)
1715 {
1716 /* We need to quote this string so buildargv can pull it apart. */
1717 char *temp = xmalloc (strlen (arg) + count + 1 );
1718 char *ptemp = temp;
1719 char *prev;
1720
1721 make_cleanup (xfree, temp);
1722
1723 prev = parg = arg;
1724 while ((parg = strpbrk (parg, "\\\"'\t ")))
1725 {
1726 strncpy (ptemp, prev, parg - prev);
1727 ptemp += parg - prev;
1728 prev = parg++;
1729 *ptemp++ = '\\';
1730 }
1731 strcpy (ptemp, prev);
1732
1733 arg = temp;
1734 }
1735 }
1736
1737 target_load (arg, from_tty);
1738
1739 /* After re-loading the executable, we don't really know which
1740 overlays are mapped any more. */
1741 overlay_cache_invalid = 1;
1742 }
1743
1744 /* This version of "load" should be usable for any target. Currently
1745 it is just used for remote targets, not inftarg.c or core files,
1746 on the theory that only in that case is it useful.
1747
1748 Avoiding xmodem and the like seems like a win (a) because we don't have
1749 to worry about finding it, and (b) On VMS, fork() is very slow and so
1750 we don't want to run a subprocess. On the other hand, I'm not sure how
1751 performance compares. */
1752
1753 static int validate_download = 0;
1754
1755 /* Callback service function for generic_load (bfd_map_over_sections). */
1756
1757 static void
1758 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1759 {
1760 bfd_size_type *sum = data;
1761
1762 *sum += bfd_get_section_size (asec);
1763 }
1764
1765 /* Opaque data for load_section_callback. */
1766 struct load_section_data {
1767 unsigned long load_offset;
1768 struct load_progress_data *progress_data;
1769 VEC(memory_write_request_s) *requests;
1770 };
1771
1772 /* Opaque data for load_progress. */
1773 struct load_progress_data {
1774 /* Cumulative data. */
1775 unsigned long write_count;
1776 unsigned long data_count;
1777 bfd_size_type total_size;
1778 };
1779
1780 /* Opaque data for load_progress for a single section. */
1781 struct load_progress_section_data {
1782 struct load_progress_data *cumulative;
1783
1784 /* Per-section data. */
1785 const char *section_name;
1786 ULONGEST section_sent;
1787 ULONGEST section_size;
1788 CORE_ADDR lma;
1789 gdb_byte *buffer;
1790 };
1791
1792 /* Target write callback routine for progress reporting. */
1793
1794 static void
1795 load_progress (ULONGEST bytes, void *untyped_arg)
1796 {
1797 struct load_progress_section_data *args = untyped_arg;
1798 struct load_progress_data *totals;
1799
1800 if (args == NULL)
1801 /* Writing padding data. No easy way to get at the cumulative
1802 stats, so just ignore this. */
1803 return;
1804
1805 totals = args->cumulative;
1806
1807 if (bytes == 0 && args->section_sent == 0)
1808 {
1809 /* The write is just starting. Let the user know we've started
1810 this section. */
1811 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1812 args->section_name, paddr_nz (args->section_size),
1813 paddr_nz (args->lma));
1814 return;
1815 }
1816
1817 if (validate_download)
1818 {
1819 /* Broken memories and broken monitors manifest themselves here
1820 when bring new computers to life. This doubles already slow
1821 downloads. */
1822 /* NOTE: cagney/1999-10-18: A more efficient implementation
1823 might add a verify_memory() method to the target vector and
1824 then use that. remote.c could implement that method using
1825 the ``qCRC'' packet. */
1826 gdb_byte *check = xmalloc (bytes);
1827 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1828
1829 if (target_read_memory (args->lma, check, bytes) != 0)
1830 error (_("Download verify read failed at 0x%s"),
1831 paddr (args->lma));
1832 if (memcmp (args->buffer, check, bytes) != 0)
1833 error (_("Download verify compare failed at 0x%s"),
1834 paddr (args->lma));
1835 do_cleanups (verify_cleanups);
1836 }
1837 totals->data_count += bytes;
1838 args->lma += bytes;
1839 args->buffer += bytes;
1840 totals->write_count += 1;
1841 args->section_sent += bytes;
1842 if (quit_flag
1843 || (deprecated_ui_load_progress_hook != NULL
1844 && deprecated_ui_load_progress_hook (args->section_name,
1845 args->section_sent)))
1846 error (_("Canceled the download"));
1847
1848 if (deprecated_show_load_progress != NULL)
1849 deprecated_show_load_progress (args->section_name,
1850 args->section_sent,
1851 args->section_size,
1852 totals->data_count,
1853 totals->total_size);
1854 }
1855
1856 /* Callback service function for generic_load (bfd_map_over_sections). */
1857
1858 static void
1859 load_section_callback (bfd *abfd, asection *asec, void *data)
1860 {
1861 struct memory_write_request *new_request;
1862 struct load_section_data *args = data;
1863 struct load_progress_section_data *section_data;
1864 bfd_size_type size = bfd_get_section_size (asec);
1865 gdb_byte *buffer;
1866 const char *sect_name = bfd_get_section_name (abfd, asec);
1867
1868 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1869 return;
1870
1871 if (size == 0)
1872 return;
1873
1874 new_request = VEC_safe_push (memory_write_request_s,
1875 args->requests, NULL);
1876 memset (new_request, 0, sizeof (struct memory_write_request));
1877 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1878 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1879 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1880 new_request->data = xmalloc (size);
1881 new_request->baton = section_data;
1882
1883 buffer = new_request->data;
1884
1885 section_data->cumulative = args->progress_data;
1886 section_data->section_name = sect_name;
1887 section_data->section_size = size;
1888 section_data->lma = new_request->begin;
1889 section_data->buffer = buffer;
1890
1891 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1892 }
1893
1894 /* Clean up an entire memory request vector, including load
1895 data and progress records. */
1896
1897 static void
1898 clear_memory_write_data (void *arg)
1899 {
1900 VEC(memory_write_request_s) **vec_p = arg;
1901 VEC(memory_write_request_s) *vec = *vec_p;
1902 int i;
1903 struct memory_write_request *mr;
1904
1905 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1906 {
1907 xfree (mr->data);
1908 xfree (mr->baton);
1909 }
1910 VEC_free (memory_write_request_s, vec);
1911 }
1912
1913 void
1914 generic_load (char *args, int from_tty)
1915 {
1916 bfd *loadfile_bfd;
1917 struct timeval start_time, end_time;
1918 char *filename;
1919 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1920 struct load_section_data cbdata;
1921 struct load_progress_data total_progress;
1922
1923 CORE_ADDR entry;
1924 char **argv;
1925
1926 memset (&cbdata, 0, sizeof (cbdata));
1927 memset (&total_progress, 0, sizeof (total_progress));
1928 cbdata.progress_data = &total_progress;
1929
1930 make_cleanup (clear_memory_write_data, &cbdata.requests);
1931
1932 argv = buildargv (args);
1933
1934 if (argv == NULL)
1935 nomem(0);
1936
1937 make_cleanup_freeargv (argv);
1938
1939 filename = tilde_expand (argv[0]);
1940 make_cleanup (xfree, filename);
1941
1942 if (argv[1] != NULL)
1943 {
1944 char *endptr;
1945
1946 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1947
1948 /* If the last word was not a valid number then
1949 treat it as a file name with spaces in. */
1950 if (argv[1] == endptr)
1951 error (_("Invalid download offset:%s."), argv[1]);
1952
1953 if (argv[2] != NULL)
1954 error (_("Too many parameters."));
1955 }
1956
1957 /* Open the file for loading. */
1958 loadfile_bfd = bfd_openr (filename, gnutarget);
1959 if (loadfile_bfd == NULL)
1960 {
1961 perror_with_name (filename);
1962 return;
1963 }
1964
1965 /* FIXME: should be checking for errors from bfd_close (for one thing,
1966 on error it does not free all the storage associated with the
1967 bfd). */
1968 make_cleanup_bfd_close (loadfile_bfd);
1969
1970 if (!bfd_check_format (loadfile_bfd, bfd_object))
1971 {
1972 error (_("\"%s\" is not an object file: %s"), filename,
1973 bfd_errmsg (bfd_get_error ()));
1974 }
1975
1976 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1977 (void *) &total_progress.total_size);
1978
1979 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1980
1981 gettimeofday (&start_time, NULL);
1982
1983 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1984 load_progress) != 0)
1985 error (_("Load failed"));
1986
1987 gettimeofday (&end_time, NULL);
1988
1989 entry = bfd_get_start_address (loadfile_bfd);
1990 ui_out_text (uiout, "Start address ");
1991 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1992 ui_out_text (uiout, ", load size ");
1993 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1994 ui_out_text (uiout, "\n");
1995 /* We were doing this in remote-mips.c, I suspect it is right
1996 for other targets too. */
1997 write_pc (entry);
1998
1999 /* FIXME: are we supposed to call symbol_file_add or not? According
2000 to a comment from remote-mips.c (where a call to symbol_file_add
2001 was commented out), making the call confuses GDB if more than one
2002 file is loaded in. Some targets do (e.g., remote-vx.c) but
2003 others don't (or didn't - perhaps they have all been deleted). */
2004
2005 print_transfer_performance (gdb_stdout, total_progress.data_count,
2006 total_progress.write_count,
2007 &start_time, &end_time);
2008
2009 do_cleanups (old_cleanups);
2010 }
2011
2012 /* Report how fast the transfer went. */
2013
2014 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2015 replaced by print_transfer_performance (with a very different
2016 function signature). */
2017
2018 void
2019 report_transfer_performance (unsigned long data_count, time_t start_time,
2020 time_t end_time)
2021 {
2022 struct timeval start, end;
2023
2024 start.tv_sec = start_time;
2025 start.tv_usec = 0;
2026 end.tv_sec = end_time;
2027 end.tv_usec = 0;
2028
2029 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2030 }
2031
2032 void
2033 print_transfer_performance (struct ui_file *stream,
2034 unsigned long data_count,
2035 unsigned long write_count,
2036 const struct timeval *start_time,
2037 const struct timeval *end_time)
2038 {
2039 ULONGEST time_count;
2040
2041 /* Compute the elapsed time in milliseconds, as a tradeoff between
2042 accuracy and overflow. */
2043 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2044 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2045
2046 ui_out_text (uiout, "Transfer rate: ");
2047 if (time_count > 0)
2048 {
2049 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2050
2051 if (ui_out_is_mi_like_p (uiout))
2052 {
2053 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2054 ui_out_text (uiout, " bits/sec");
2055 }
2056 else if (rate < 1024)
2057 {
2058 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2059 ui_out_text (uiout, " bytes/sec");
2060 }
2061 else
2062 {
2063 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2064 ui_out_text (uiout, " KB/sec");
2065 }
2066 }
2067 else
2068 {
2069 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2070 ui_out_text (uiout, " bits in <1 sec");
2071 }
2072 if (write_count > 0)
2073 {
2074 ui_out_text (uiout, ", ");
2075 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2076 ui_out_text (uiout, " bytes/write");
2077 }
2078 ui_out_text (uiout, ".\n");
2079 }
2080
2081 /* This function allows the addition of incrementally linked object files.
2082 It does not modify any state in the target, only in the debugger. */
2083 /* Note: ezannoni 2000-04-13 This function/command used to have a
2084 special case syntax for the rombug target (Rombug is the boot
2085 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2086 rombug case, the user doesn't need to supply a text address,
2087 instead a call to target_link() (in target.c) would supply the
2088 value to use. We are now discontinuing this type of ad hoc syntax. */
2089
2090 static void
2091 add_symbol_file_command (char *args, int from_tty)
2092 {
2093 char *filename = NULL;
2094 int flags = OBJF_USERLOADED;
2095 char *arg;
2096 int expecting_option = 0;
2097 int section_index = 0;
2098 int argcnt = 0;
2099 int sec_num = 0;
2100 int i;
2101 int expecting_sec_name = 0;
2102 int expecting_sec_addr = 0;
2103 char **argv;
2104
2105 struct sect_opt
2106 {
2107 char *name;
2108 char *value;
2109 };
2110
2111 struct section_addr_info *section_addrs;
2112 struct sect_opt *sect_opts = NULL;
2113 size_t num_sect_opts = 0;
2114 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2115
2116 num_sect_opts = 16;
2117 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2118 * sizeof (struct sect_opt));
2119
2120 dont_repeat ();
2121
2122 if (args == NULL)
2123 error (_("add-symbol-file takes a file name and an address"));
2124
2125 argv = buildargv (args);
2126 make_cleanup_freeargv (argv);
2127
2128 if (argv == NULL)
2129 nomem (0);
2130
2131 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2132 {
2133 /* Process the argument. */
2134 if (argcnt == 0)
2135 {
2136 /* The first argument is the file name. */
2137 filename = tilde_expand (arg);
2138 make_cleanup (xfree, filename);
2139 }
2140 else
2141 if (argcnt == 1)
2142 {
2143 /* The second argument is always the text address at which
2144 to load the program. */
2145 sect_opts[section_index].name = ".text";
2146 sect_opts[section_index].value = arg;
2147 if (++section_index >= num_sect_opts)
2148 {
2149 num_sect_opts *= 2;
2150 sect_opts = ((struct sect_opt *)
2151 xrealloc (sect_opts,
2152 num_sect_opts
2153 * sizeof (struct sect_opt)));
2154 }
2155 }
2156 else
2157 {
2158 /* It's an option (starting with '-') or it's an argument
2159 to an option */
2160
2161 if (*arg == '-')
2162 {
2163 if (strcmp (arg, "-readnow") == 0)
2164 flags |= OBJF_READNOW;
2165 else if (strcmp (arg, "-s") == 0)
2166 {
2167 expecting_sec_name = 1;
2168 expecting_sec_addr = 1;
2169 }
2170 }
2171 else
2172 {
2173 if (expecting_sec_name)
2174 {
2175 sect_opts[section_index].name = arg;
2176 expecting_sec_name = 0;
2177 }
2178 else
2179 if (expecting_sec_addr)
2180 {
2181 sect_opts[section_index].value = arg;
2182 expecting_sec_addr = 0;
2183 if (++section_index >= num_sect_opts)
2184 {
2185 num_sect_opts *= 2;
2186 sect_opts = ((struct sect_opt *)
2187 xrealloc (sect_opts,
2188 num_sect_opts
2189 * sizeof (struct sect_opt)));
2190 }
2191 }
2192 else
2193 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2194 }
2195 }
2196 }
2197
2198 /* This command takes at least two arguments. The first one is a
2199 filename, and the second is the address where this file has been
2200 loaded. Abort now if this address hasn't been provided by the
2201 user. */
2202 if (section_index < 1)
2203 error (_("The address where %s has been loaded is missing"), filename);
2204
2205 /* Print the prompt for the query below. And save the arguments into
2206 a sect_addr_info structure to be passed around to other
2207 functions. We have to split this up into separate print
2208 statements because hex_string returns a local static
2209 string. */
2210
2211 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2212 section_addrs = alloc_section_addr_info (section_index);
2213 make_cleanup (xfree, section_addrs);
2214 for (i = 0; i < section_index; i++)
2215 {
2216 CORE_ADDR addr;
2217 char *val = sect_opts[i].value;
2218 char *sec = sect_opts[i].name;
2219
2220 addr = parse_and_eval_address (val);
2221
2222 /* Here we store the section offsets in the order they were
2223 entered on the command line. */
2224 section_addrs->other[sec_num].name = sec;
2225 section_addrs->other[sec_num].addr = addr;
2226 printf_unfiltered ("\t%s_addr = %s\n", sec, paddress (addr));
2227 sec_num++;
2228
2229 /* The object's sections are initialized when a
2230 call is made to build_objfile_section_table (objfile).
2231 This happens in reread_symbols.
2232 At this point, we don't know what file type this is,
2233 so we can't determine what section names are valid. */
2234 }
2235
2236 if (from_tty && (!query ("%s", "")))
2237 error (_("Not confirmed."));
2238
2239 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
2240
2241 /* Getting new symbols may change our opinion about what is
2242 frameless. */
2243 reinit_frame_cache ();
2244 do_cleanups (my_cleanups);
2245 }
2246 \f
2247 static void
2248 add_shared_symbol_files_command (char *args, int from_tty)
2249 {
2250 #ifdef ADD_SHARED_SYMBOL_FILES
2251 ADD_SHARED_SYMBOL_FILES (args, from_tty);
2252 #else
2253 error (_("This command is not available in this configuration of GDB."));
2254 #endif
2255 }
2256 \f
2257 /* Re-read symbols if a symbol-file has changed. */
2258 void
2259 reread_symbols (void)
2260 {
2261 struct objfile *objfile;
2262 long new_modtime;
2263 int reread_one = 0;
2264 struct stat new_statbuf;
2265 int res;
2266
2267 /* With the addition of shared libraries, this should be modified,
2268 the load time should be saved in the partial symbol tables, since
2269 different tables may come from different source files. FIXME.
2270 This routine should then walk down each partial symbol table
2271 and see if the symbol table that it originates from has been changed */
2272
2273 for (objfile = object_files; objfile; objfile = objfile->next)
2274 {
2275 if (objfile->obfd)
2276 {
2277 #ifdef DEPRECATED_IBM6000_TARGET
2278 /* If this object is from a shared library, then you should
2279 stat on the library name, not member name. */
2280
2281 if (objfile->obfd->my_archive)
2282 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2283 else
2284 #endif
2285 res = stat (objfile->name, &new_statbuf);
2286 if (res != 0)
2287 {
2288 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2289 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2290 objfile->name);
2291 continue;
2292 }
2293 new_modtime = new_statbuf.st_mtime;
2294 if (new_modtime != objfile->mtime)
2295 {
2296 struct cleanup *old_cleanups;
2297 struct section_offsets *offsets;
2298 int num_offsets;
2299 char *obfd_filename;
2300
2301 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2302 objfile->name);
2303
2304 /* There are various functions like symbol_file_add,
2305 symfile_bfd_open, syms_from_objfile, etc., which might
2306 appear to do what we want. But they have various other
2307 effects which we *don't* want. So we just do stuff
2308 ourselves. We don't worry about mapped files (for one thing,
2309 any mapped file will be out of date). */
2310
2311 /* If we get an error, blow away this objfile (not sure if
2312 that is the correct response for things like shared
2313 libraries). */
2314 old_cleanups = make_cleanup_free_objfile (objfile);
2315 /* We need to do this whenever any symbols go away. */
2316 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2317
2318 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2319 bfd_get_filename (exec_bfd)) == 0)
2320 {
2321 /* Reload EXEC_BFD without asking anything. */
2322
2323 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2324 }
2325
2326 /* Clean up any state BFD has sitting around. We don't need
2327 to close the descriptor but BFD lacks a way of closing the
2328 BFD without closing the descriptor. */
2329 obfd_filename = bfd_get_filename (objfile->obfd);
2330 if (!bfd_close (objfile->obfd))
2331 error (_("Can't close BFD for %s: %s"), objfile->name,
2332 bfd_errmsg (bfd_get_error ()));
2333 if (remote_filename_p (obfd_filename))
2334 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2335 else
2336 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2337 if (objfile->obfd == NULL)
2338 error (_("Can't open %s to read symbols."), objfile->name);
2339 /* bfd_openr sets cacheable to true, which is what we want. */
2340 if (!bfd_check_format (objfile->obfd, bfd_object))
2341 error (_("Can't read symbols from %s: %s."), objfile->name,
2342 bfd_errmsg (bfd_get_error ()));
2343
2344 /* Save the offsets, we will nuke them with the rest of the
2345 objfile_obstack. */
2346 num_offsets = objfile->num_sections;
2347 offsets = ((struct section_offsets *)
2348 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2349 memcpy (offsets, objfile->section_offsets,
2350 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2351
2352 /* Remove any references to this objfile in the global
2353 value lists. */
2354 preserve_values (objfile);
2355
2356 /* Nuke all the state that we will re-read. Much of the following
2357 code which sets things to NULL really is necessary to tell
2358 other parts of GDB that there is nothing currently there. */
2359
2360 /* FIXME: Do we have to free a whole linked list, or is this
2361 enough? */
2362 if (objfile->global_psymbols.list)
2363 xfree (objfile->global_psymbols.list);
2364 memset (&objfile->global_psymbols, 0,
2365 sizeof (objfile->global_psymbols));
2366 if (objfile->static_psymbols.list)
2367 xfree (objfile->static_psymbols.list);
2368 memset (&objfile->static_psymbols, 0,
2369 sizeof (objfile->static_psymbols));
2370
2371 /* Free the obstacks for non-reusable objfiles */
2372 bcache_xfree (objfile->psymbol_cache);
2373 objfile->psymbol_cache = bcache_xmalloc ();
2374 bcache_xfree (objfile->macro_cache);
2375 objfile->macro_cache = bcache_xmalloc ();
2376 if (objfile->demangled_names_hash != NULL)
2377 {
2378 htab_delete (objfile->demangled_names_hash);
2379 objfile->demangled_names_hash = NULL;
2380 }
2381 obstack_free (&objfile->objfile_obstack, 0);
2382 objfile->sections = NULL;
2383 objfile->symtabs = NULL;
2384 objfile->psymtabs = NULL;
2385 objfile->free_psymtabs = NULL;
2386 objfile->cp_namespace_symtab = NULL;
2387 objfile->msymbols = NULL;
2388 objfile->deprecated_sym_private = NULL;
2389 objfile->minimal_symbol_count = 0;
2390 memset (&objfile->msymbol_hash, 0,
2391 sizeof (objfile->msymbol_hash));
2392 memset (&objfile->msymbol_demangled_hash, 0,
2393 sizeof (objfile->msymbol_demangled_hash));
2394 clear_objfile_data (objfile);
2395 if (objfile->sf != NULL)
2396 {
2397 (*objfile->sf->sym_finish) (objfile);
2398 }
2399
2400 objfile->psymbol_cache = bcache_xmalloc ();
2401 objfile->macro_cache = bcache_xmalloc ();
2402 /* obstack_init also initializes the obstack so it is
2403 empty. We could use obstack_specify_allocation but
2404 gdb_obstack.h specifies the alloc/dealloc
2405 functions. */
2406 obstack_init (&objfile->objfile_obstack);
2407 if (build_objfile_section_table (objfile))
2408 {
2409 error (_("Can't find the file sections in `%s': %s"),
2410 objfile->name, bfd_errmsg (bfd_get_error ()));
2411 }
2412 terminate_minimal_symbol_table (objfile);
2413
2414 /* We use the same section offsets as from last time. I'm not
2415 sure whether that is always correct for shared libraries. */
2416 objfile->section_offsets = (struct section_offsets *)
2417 obstack_alloc (&objfile->objfile_obstack,
2418 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2419 memcpy (objfile->section_offsets, offsets,
2420 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2421 objfile->num_sections = num_offsets;
2422
2423 /* What the hell is sym_new_init for, anyway? The concept of
2424 distinguishing between the main file and additional files
2425 in this way seems rather dubious. */
2426 if (objfile == symfile_objfile)
2427 {
2428 (*objfile->sf->sym_new_init) (objfile);
2429 }
2430
2431 (*objfile->sf->sym_init) (objfile);
2432 clear_complaints (&symfile_complaints, 1, 1);
2433 /* The "mainline" parameter is a hideous hack; I think leaving it
2434 zero is OK since dbxread.c also does what it needs to do if
2435 objfile->global_psymbols.size is 0. */
2436 (*objfile->sf->sym_read) (objfile, 0);
2437 if (!have_partial_symbols () && !have_full_symbols ())
2438 {
2439 wrap_here ("");
2440 printf_unfiltered (_("(no debugging symbols found)\n"));
2441 wrap_here ("");
2442 }
2443 objfile->flags |= OBJF_SYMS;
2444
2445 /* We're done reading the symbol file; finish off complaints. */
2446 clear_complaints (&symfile_complaints, 0, 1);
2447
2448 /* Getting new symbols may change our opinion about what is
2449 frameless. */
2450
2451 reinit_frame_cache ();
2452
2453 /* Discard cleanups as symbol reading was successful. */
2454 discard_cleanups (old_cleanups);
2455
2456 /* If the mtime has changed between the time we set new_modtime
2457 and now, we *want* this to be out of date, so don't call stat
2458 again now. */
2459 objfile->mtime = new_modtime;
2460 reread_one = 1;
2461 reread_separate_symbols (objfile);
2462 init_entry_point_info (objfile);
2463 }
2464 }
2465 }
2466
2467 if (reread_one)
2468 {
2469 clear_symtab_users ();
2470 /* At least one objfile has changed, so we can consider that
2471 the executable we're debugging has changed too. */
2472 observer_notify_executable_changed ();
2473 }
2474
2475 }
2476
2477
2478 /* Handle separate debug info for OBJFILE, which has just been
2479 re-read:
2480 - If we had separate debug info before, but now we don't, get rid
2481 of the separated objfile.
2482 - If we didn't have separated debug info before, but now we do,
2483 read in the new separated debug info file.
2484 - If the debug link points to a different file, toss the old one
2485 and read the new one.
2486 This function does *not* handle the case where objfile is still
2487 using the same separate debug info file, but that file's timestamp
2488 has changed. That case should be handled by the loop in
2489 reread_symbols already. */
2490 static void
2491 reread_separate_symbols (struct objfile *objfile)
2492 {
2493 char *debug_file;
2494 unsigned long crc32;
2495
2496 /* Does the updated objfile's debug info live in a
2497 separate file? */
2498 debug_file = find_separate_debug_file (objfile);
2499
2500 if (objfile->separate_debug_objfile)
2501 {
2502 /* There are two cases where we need to get rid of
2503 the old separated debug info objfile:
2504 - if the new primary objfile doesn't have
2505 separated debug info, or
2506 - if the new primary objfile has separate debug
2507 info, but it's under a different filename.
2508
2509 If the old and new objfiles both have separate
2510 debug info, under the same filename, then we're
2511 okay --- if the separated file's contents have
2512 changed, we will have caught that when we
2513 visited it in this function's outermost
2514 loop. */
2515 if (! debug_file
2516 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2517 free_objfile (objfile->separate_debug_objfile);
2518 }
2519
2520 /* If the new objfile has separate debug info, and we
2521 haven't loaded it already, do so now. */
2522 if (debug_file
2523 && ! objfile->separate_debug_objfile)
2524 {
2525 /* Use the same section offset table as objfile itself.
2526 Preserve the flags from objfile that make sense. */
2527 objfile->separate_debug_objfile
2528 = (symbol_file_add_with_addrs_or_offsets
2529 (symfile_bfd_open (debug_file),
2530 info_verbose, /* from_tty: Don't override the default. */
2531 0, /* No addr table. */
2532 objfile->section_offsets, objfile->num_sections,
2533 0, /* Not mainline. See comments about this above. */
2534 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2535 | OBJF_USERLOADED)));
2536 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2537 = objfile;
2538 }
2539 if (debug_file)
2540 xfree (debug_file);
2541 }
2542
2543
2544 \f
2545
2546
2547 typedef struct
2548 {
2549 char *ext;
2550 enum language lang;
2551 }
2552 filename_language;
2553
2554 static filename_language *filename_language_table;
2555 static int fl_table_size, fl_table_next;
2556
2557 static void
2558 add_filename_language (char *ext, enum language lang)
2559 {
2560 if (fl_table_next >= fl_table_size)
2561 {
2562 fl_table_size += 10;
2563 filename_language_table =
2564 xrealloc (filename_language_table,
2565 fl_table_size * sizeof (*filename_language_table));
2566 }
2567
2568 filename_language_table[fl_table_next].ext = xstrdup (ext);
2569 filename_language_table[fl_table_next].lang = lang;
2570 fl_table_next++;
2571 }
2572
2573 static char *ext_args;
2574 static void
2575 show_ext_args (struct ui_file *file, int from_tty,
2576 struct cmd_list_element *c, const char *value)
2577 {
2578 fprintf_filtered (file, _("\
2579 Mapping between filename extension and source language is \"%s\".\n"),
2580 value);
2581 }
2582
2583 static void
2584 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2585 {
2586 int i;
2587 char *cp = ext_args;
2588 enum language lang;
2589
2590 /* First arg is filename extension, starting with '.' */
2591 if (*cp != '.')
2592 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2593
2594 /* Find end of first arg. */
2595 while (*cp && !isspace (*cp))
2596 cp++;
2597
2598 if (*cp == '\0')
2599 error (_("'%s': two arguments required -- filename extension and language"),
2600 ext_args);
2601
2602 /* Null-terminate first arg */
2603 *cp++ = '\0';
2604
2605 /* Find beginning of second arg, which should be a source language. */
2606 while (*cp && isspace (*cp))
2607 cp++;
2608
2609 if (*cp == '\0')
2610 error (_("'%s': two arguments required -- filename extension and language"),
2611 ext_args);
2612
2613 /* Lookup the language from among those we know. */
2614 lang = language_enum (cp);
2615
2616 /* Now lookup the filename extension: do we already know it? */
2617 for (i = 0; i < fl_table_next; i++)
2618 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2619 break;
2620
2621 if (i >= fl_table_next)
2622 {
2623 /* new file extension */
2624 add_filename_language (ext_args, lang);
2625 }
2626 else
2627 {
2628 /* redefining a previously known filename extension */
2629
2630 /* if (from_tty) */
2631 /* query ("Really make files of type %s '%s'?", */
2632 /* ext_args, language_str (lang)); */
2633
2634 xfree (filename_language_table[i].ext);
2635 filename_language_table[i].ext = xstrdup (ext_args);
2636 filename_language_table[i].lang = lang;
2637 }
2638 }
2639
2640 static void
2641 info_ext_lang_command (char *args, int from_tty)
2642 {
2643 int i;
2644
2645 printf_filtered (_("Filename extensions and the languages they represent:"));
2646 printf_filtered ("\n\n");
2647 for (i = 0; i < fl_table_next; i++)
2648 printf_filtered ("\t%s\t- %s\n",
2649 filename_language_table[i].ext,
2650 language_str (filename_language_table[i].lang));
2651 }
2652
2653 static void
2654 init_filename_language_table (void)
2655 {
2656 if (fl_table_size == 0) /* protect against repetition */
2657 {
2658 fl_table_size = 20;
2659 fl_table_next = 0;
2660 filename_language_table =
2661 xmalloc (fl_table_size * sizeof (*filename_language_table));
2662 add_filename_language (".c", language_c);
2663 add_filename_language (".C", language_cplus);
2664 add_filename_language (".cc", language_cplus);
2665 add_filename_language (".cp", language_cplus);
2666 add_filename_language (".cpp", language_cplus);
2667 add_filename_language (".cxx", language_cplus);
2668 add_filename_language (".c++", language_cplus);
2669 add_filename_language (".java", language_java);
2670 add_filename_language (".class", language_java);
2671 add_filename_language (".m", language_objc);
2672 add_filename_language (".f", language_fortran);
2673 add_filename_language (".F", language_fortran);
2674 add_filename_language (".s", language_asm);
2675 add_filename_language (".sx", language_asm);
2676 add_filename_language (".S", language_asm);
2677 add_filename_language (".pas", language_pascal);
2678 add_filename_language (".p", language_pascal);
2679 add_filename_language (".pp", language_pascal);
2680 add_filename_language (".adb", language_ada);
2681 add_filename_language (".ads", language_ada);
2682 add_filename_language (".a", language_ada);
2683 add_filename_language (".ada", language_ada);
2684 }
2685 }
2686
2687 enum language
2688 deduce_language_from_filename (char *filename)
2689 {
2690 int i;
2691 char *cp;
2692
2693 if (filename != NULL)
2694 if ((cp = strrchr (filename, '.')) != NULL)
2695 for (i = 0; i < fl_table_next; i++)
2696 if (strcmp (cp, filename_language_table[i].ext) == 0)
2697 return filename_language_table[i].lang;
2698
2699 return language_unknown;
2700 }
2701 \f
2702 /* allocate_symtab:
2703
2704 Allocate and partly initialize a new symbol table. Return a pointer
2705 to it. error() if no space.
2706
2707 Caller must set these fields:
2708 LINETABLE(symtab)
2709 symtab->blockvector
2710 symtab->dirname
2711 symtab->free_code
2712 symtab->free_ptr
2713 possibly free_named_symtabs (symtab->filename);
2714 */
2715
2716 struct symtab *
2717 allocate_symtab (char *filename, struct objfile *objfile)
2718 {
2719 struct symtab *symtab;
2720
2721 symtab = (struct symtab *)
2722 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2723 memset (symtab, 0, sizeof (*symtab));
2724 symtab->filename = obsavestring (filename, strlen (filename),
2725 &objfile->objfile_obstack);
2726 symtab->fullname = NULL;
2727 symtab->language = deduce_language_from_filename (filename);
2728 symtab->debugformat = obsavestring ("unknown", 7,
2729 &objfile->objfile_obstack);
2730
2731 /* Hook it to the objfile it comes from */
2732
2733 symtab->objfile = objfile;
2734 symtab->next = objfile->symtabs;
2735 objfile->symtabs = symtab;
2736
2737 return (symtab);
2738 }
2739
2740 struct partial_symtab *
2741 allocate_psymtab (char *filename, struct objfile *objfile)
2742 {
2743 struct partial_symtab *psymtab;
2744
2745 if (objfile->free_psymtabs)
2746 {
2747 psymtab = objfile->free_psymtabs;
2748 objfile->free_psymtabs = psymtab->next;
2749 }
2750 else
2751 psymtab = (struct partial_symtab *)
2752 obstack_alloc (&objfile->objfile_obstack,
2753 sizeof (struct partial_symtab));
2754
2755 memset (psymtab, 0, sizeof (struct partial_symtab));
2756 psymtab->filename = obsavestring (filename, strlen (filename),
2757 &objfile->objfile_obstack);
2758 psymtab->symtab = NULL;
2759
2760 /* Prepend it to the psymtab list for the objfile it belongs to.
2761 Psymtabs are searched in most recent inserted -> least recent
2762 inserted order. */
2763
2764 psymtab->objfile = objfile;
2765 psymtab->next = objfile->psymtabs;
2766 objfile->psymtabs = psymtab;
2767 #if 0
2768 {
2769 struct partial_symtab **prev_pst;
2770 psymtab->objfile = objfile;
2771 psymtab->next = NULL;
2772 prev_pst = &(objfile->psymtabs);
2773 while ((*prev_pst) != NULL)
2774 prev_pst = &((*prev_pst)->next);
2775 (*prev_pst) = psymtab;
2776 }
2777 #endif
2778
2779 return (psymtab);
2780 }
2781
2782 void
2783 discard_psymtab (struct partial_symtab *pst)
2784 {
2785 struct partial_symtab **prev_pst;
2786
2787 /* From dbxread.c:
2788 Empty psymtabs happen as a result of header files which don't
2789 have any symbols in them. There can be a lot of them. But this
2790 check is wrong, in that a psymtab with N_SLINE entries but
2791 nothing else is not empty, but we don't realize that. Fixing
2792 that without slowing things down might be tricky. */
2793
2794 /* First, snip it out of the psymtab chain */
2795
2796 prev_pst = &(pst->objfile->psymtabs);
2797 while ((*prev_pst) != pst)
2798 prev_pst = &((*prev_pst)->next);
2799 (*prev_pst) = pst->next;
2800
2801 /* Next, put it on a free list for recycling */
2802
2803 pst->next = pst->objfile->free_psymtabs;
2804 pst->objfile->free_psymtabs = pst;
2805 }
2806 \f
2807
2808 /* Reset all data structures in gdb which may contain references to symbol
2809 table data. */
2810
2811 void
2812 clear_symtab_users (void)
2813 {
2814 /* Someday, we should do better than this, by only blowing away
2815 the things that really need to be blown. */
2816
2817 /* Clear the "current" symtab first, because it is no longer valid.
2818 breakpoint_re_set may try to access the current symtab. */
2819 clear_current_source_symtab_and_line ();
2820
2821 clear_displays ();
2822 breakpoint_re_set ();
2823 set_default_breakpoint (0, 0, 0, 0);
2824 clear_pc_function_cache ();
2825 observer_notify_new_objfile (NULL);
2826
2827 /* Clear globals which might have pointed into a removed objfile.
2828 FIXME: It's not clear which of these are supposed to persist
2829 between expressions and which ought to be reset each time. */
2830 expression_context_block = NULL;
2831 innermost_block = NULL;
2832
2833 /* Varobj may refer to old symbols, perform a cleanup. */
2834 varobj_invalidate ();
2835
2836 }
2837
2838 static void
2839 clear_symtab_users_cleanup (void *ignore)
2840 {
2841 clear_symtab_users ();
2842 }
2843
2844 /* clear_symtab_users_once:
2845
2846 This function is run after symbol reading, or from a cleanup.
2847 If an old symbol table was obsoleted, the old symbol table
2848 has been blown away, but the other GDB data structures that may
2849 reference it have not yet been cleared or re-directed. (The old
2850 symtab was zapped, and the cleanup queued, in free_named_symtab()
2851 below.)
2852
2853 This function can be queued N times as a cleanup, or called
2854 directly; it will do all the work the first time, and then will be a
2855 no-op until the next time it is queued. This works by bumping a
2856 counter at queueing time. Much later when the cleanup is run, or at
2857 the end of symbol processing (in case the cleanup is discarded), if
2858 the queued count is greater than the "done-count", we do the work
2859 and set the done-count to the queued count. If the queued count is
2860 less than or equal to the done-count, we just ignore the call. This
2861 is needed because reading a single .o file will often replace many
2862 symtabs (one per .h file, for example), and we don't want to reset
2863 the breakpoints N times in the user's face.
2864
2865 The reason we both queue a cleanup, and call it directly after symbol
2866 reading, is because the cleanup protects us in case of errors, but is
2867 discarded if symbol reading is successful. */
2868
2869 #if 0
2870 /* FIXME: As free_named_symtabs is currently a big noop this function
2871 is no longer needed. */
2872 static void clear_symtab_users_once (void);
2873
2874 static int clear_symtab_users_queued;
2875 static int clear_symtab_users_done;
2876
2877 static void
2878 clear_symtab_users_once (void)
2879 {
2880 /* Enforce once-per-`do_cleanups'-semantics */
2881 if (clear_symtab_users_queued <= clear_symtab_users_done)
2882 return;
2883 clear_symtab_users_done = clear_symtab_users_queued;
2884
2885 clear_symtab_users ();
2886 }
2887 #endif
2888
2889 /* Delete the specified psymtab, and any others that reference it. */
2890
2891 static void
2892 cashier_psymtab (struct partial_symtab *pst)
2893 {
2894 struct partial_symtab *ps, *pprev = NULL;
2895 int i;
2896
2897 /* Find its previous psymtab in the chain */
2898 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2899 {
2900 if (ps == pst)
2901 break;
2902 pprev = ps;
2903 }
2904
2905 if (ps)
2906 {
2907 /* Unhook it from the chain. */
2908 if (ps == pst->objfile->psymtabs)
2909 pst->objfile->psymtabs = ps->next;
2910 else
2911 pprev->next = ps->next;
2912
2913 /* FIXME, we can't conveniently deallocate the entries in the
2914 partial_symbol lists (global_psymbols/static_psymbols) that
2915 this psymtab points to. These just take up space until all
2916 the psymtabs are reclaimed. Ditto the dependencies list and
2917 filename, which are all in the objfile_obstack. */
2918
2919 /* We need to cashier any psymtab that has this one as a dependency... */
2920 again:
2921 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2922 {
2923 for (i = 0; i < ps->number_of_dependencies; i++)
2924 {
2925 if (ps->dependencies[i] == pst)
2926 {
2927 cashier_psymtab (ps);
2928 goto again; /* Must restart, chain has been munged. */
2929 }
2930 }
2931 }
2932 }
2933 }
2934
2935 /* If a symtab or psymtab for filename NAME is found, free it along
2936 with any dependent breakpoints, displays, etc.
2937 Used when loading new versions of object modules with the "add-file"
2938 command. This is only called on the top-level symtab or psymtab's name;
2939 it is not called for subsidiary files such as .h files.
2940
2941 Return value is 1 if we blew away the environment, 0 if not.
2942 FIXME. The return value appears to never be used.
2943
2944 FIXME. I think this is not the best way to do this. We should
2945 work on being gentler to the environment while still cleaning up
2946 all stray pointers into the freed symtab. */
2947
2948 int
2949 free_named_symtabs (char *name)
2950 {
2951 #if 0
2952 /* FIXME: With the new method of each objfile having it's own
2953 psymtab list, this function needs serious rethinking. In particular,
2954 why was it ever necessary to toss psymtabs with specific compilation
2955 unit filenames, as opposed to all psymtabs from a particular symbol
2956 file? -- fnf
2957 Well, the answer is that some systems permit reloading of particular
2958 compilation units. We want to blow away any old info about these
2959 compilation units, regardless of which objfiles they arrived in. --gnu. */
2960
2961 struct symtab *s;
2962 struct symtab *prev;
2963 struct partial_symtab *ps;
2964 struct blockvector *bv;
2965 int blewit = 0;
2966
2967 /* We only wack things if the symbol-reload switch is set. */
2968 if (!symbol_reloading)
2969 return 0;
2970
2971 /* Some symbol formats have trouble providing file names... */
2972 if (name == 0 || *name == '\0')
2973 return 0;
2974
2975 /* Look for a psymtab with the specified name. */
2976
2977 again2:
2978 for (ps = partial_symtab_list; ps; ps = ps->next)
2979 {
2980 if (strcmp (name, ps->filename) == 0)
2981 {
2982 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2983 goto again2; /* Must restart, chain has been munged */
2984 }
2985 }
2986
2987 /* Look for a symtab with the specified name. */
2988
2989 for (s = symtab_list; s; s = s->next)
2990 {
2991 if (strcmp (name, s->filename) == 0)
2992 break;
2993 prev = s;
2994 }
2995
2996 if (s)
2997 {
2998 if (s == symtab_list)
2999 symtab_list = s->next;
3000 else
3001 prev->next = s->next;
3002
3003 /* For now, queue a delete for all breakpoints, displays, etc., whether
3004 or not they depend on the symtab being freed. This should be
3005 changed so that only those data structures affected are deleted. */
3006
3007 /* But don't delete anything if the symtab is empty.
3008 This test is necessary due to a bug in "dbxread.c" that
3009 causes empty symtabs to be created for N_SO symbols that
3010 contain the pathname of the object file. (This problem
3011 has been fixed in GDB 3.9x). */
3012
3013 bv = BLOCKVECTOR (s);
3014 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3015 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3016 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3017 {
3018 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3019 name);
3020 clear_symtab_users_queued++;
3021 make_cleanup (clear_symtab_users_once, 0);
3022 blewit = 1;
3023 }
3024 else
3025 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3026 name);
3027
3028 free_symtab (s);
3029 }
3030 else
3031 {
3032 /* It is still possible that some breakpoints will be affected
3033 even though no symtab was found, since the file might have
3034 been compiled without debugging, and hence not be associated
3035 with a symtab. In order to handle this correctly, we would need
3036 to keep a list of text address ranges for undebuggable files.
3037 For now, we do nothing, since this is a fairly obscure case. */
3038 ;
3039 }
3040
3041 /* FIXME, what about the minimal symbol table? */
3042 return blewit;
3043 #else
3044 return (0);
3045 #endif
3046 }
3047 \f
3048 /* Allocate and partially fill a partial symtab. It will be
3049 completely filled at the end of the symbol list.
3050
3051 FILENAME is the name of the symbol-file we are reading from. */
3052
3053 struct partial_symtab *
3054 start_psymtab_common (struct objfile *objfile,
3055 struct section_offsets *section_offsets, char *filename,
3056 CORE_ADDR textlow, struct partial_symbol **global_syms,
3057 struct partial_symbol **static_syms)
3058 {
3059 struct partial_symtab *psymtab;
3060
3061 psymtab = allocate_psymtab (filename, objfile);
3062 psymtab->section_offsets = section_offsets;
3063 psymtab->textlow = textlow;
3064 psymtab->texthigh = psymtab->textlow; /* default */
3065 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3066 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3067 return (psymtab);
3068 }
3069 \f
3070 /* Helper function, initialises partial symbol structure and stashes
3071 it into objfile's bcache. Note that our caching mechanism will
3072 use all fields of struct partial_symbol to determine hash value of the
3073 structure. In other words, having two symbols with the same name but
3074 different domain (or address) is possible and correct. */
3075
3076 static const struct partial_symbol *
3077 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3078 enum address_class class,
3079 long val, /* Value as a long */
3080 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3081 enum language language, struct objfile *objfile,
3082 int *added)
3083 {
3084 char *buf = name;
3085 /* psymbol is static so that there will be no uninitialized gaps in the
3086 structure which might contain random data, causing cache misses in
3087 bcache. */
3088 static struct partial_symbol psymbol;
3089
3090 if (name[namelength] != '\0')
3091 {
3092 buf = alloca (namelength + 1);
3093 /* Create local copy of the partial symbol */
3094 memcpy (buf, name, namelength);
3095 buf[namelength] = '\0';
3096 }
3097 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3098 if (val != 0)
3099 {
3100 SYMBOL_VALUE (&psymbol) = val;
3101 }
3102 else
3103 {
3104 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3105 }
3106 SYMBOL_SECTION (&psymbol) = 0;
3107 SYMBOL_LANGUAGE (&psymbol) = language;
3108 PSYMBOL_DOMAIN (&psymbol) = domain;
3109 PSYMBOL_CLASS (&psymbol) = class;
3110
3111 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3112
3113 /* Stash the partial symbol away in the cache */
3114 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3115 objfile->psymbol_cache, added);
3116 }
3117
3118 /* Helper function, adds partial symbol to the given partial symbol
3119 list. */
3120
3121 static void
3122 append_psymbol_to_list (struct psymbol_allocation_list *list,
3123 const struct partial_symbol *psym,
3124 struct objfile *objfile)
3125 {
3126 if (list->next >= list->list + list->size)
3127 extend_psymbol_list (list, objfile);
3128 *list->next++ = (struct partial_symbol *) psym;
3129 OBJSTAT (objfile, n_psyms++);
3130 }
3131
3132 /* Add a symbol with a long value to a psymtab.
3133 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3134 Return the partial symbol that has been added. */
3135
3136 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3137 symbol is so that callers can get access to the symbol's demangled
3138 name, which they don't have any cheap way to determine otherwise.
3139 (Currenly, dwarf2read.c is the only file who uses that information,
3140 though it's possible that other readers might in the future.)
3141 Elena wasn't thrilled about that, and I don't blame her, but we
3142 couldn't come up with a better way to get that information. If
3143 it's needed in other situations, we could consider breaking up
3144 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3145 cache. */
3146
3147 const struct partial_symbol *
3148 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3149 enum address_class class,
3150 struct psymbol_allocation_list *list,
3151 long val, /* Value as a long */
3152 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3153 enum language language, struct objfile *objfile)
3154 {
3155 const struct partial_symbol *psym;
3156
3157 int added;
3158
3159 /* Stash the partial symbol away in the cache */
3160 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3161 val, coreaddr, language, objfile, &added);
3162
3163 /* Do not duplicate global partial symbols. */
3164 if (list == &objfile->global_psymbols
3165 && !added)
3166 return psym;
3167
3168 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3169 append_psymbol_to_list (list, psym, objfile);
3170 return psym;
3171 }
3172
3173 /* Initialize storage for partial symbols. */
3174
3175 void
3176 init_psymbol_list (struct objfile *objfile, int total_symbols)
3177 {
3178 /* Free any previously allocated psymbol lists. */
3179
3180 if (objfile->global_psymbols.list)
3181 {
3182 xfree (objfile->global_psymbols.list);
3183 }
3184 if (objfile->static_psymbols.list)
3185 {
3186 xfree (objfile->static_psymbols.list);
3187 }
3188
3189 /* Current best guess is that approximately a twentieth
3190 of the total symbols (in a debugging file) are global or static
3191 oriented symbols */
3192
3193 objfile->global_psymbols.size = total_symbols / 10;
3194 objfile->static_psymbols.size = total_symbols / 10;
3195
3196 if (objfile->global_psymbols.size > 0)
3197 {
3198 objfile->global_psymbols.next =
3199 objfile->global_psymbols.list = (struct partial_symbol **)
3200 xmalloc ((objfile->global_psymbols.size
3201 * sizeof (struct partial_symbol *)));
3202 }
3203 if (objfile->static_psymbols.size > 0)
3204 {
3205 objfile->static_psymbols.next =
3206 objfile->static_psymbols.list = (struct partial_symbol **)
3207 xmalloc ((objfile->static_psymbols.size
3208 * sizeof (struct partial_symbol *)));
3209 }
3210 }
3211
3212 /* OVERLAYS:
3213 The following code implements an abstraction for debugging overlay sections.
3214
3215 The target model is as follows:
3216 1) The gnu linker will permit multiple sections to be mapped into the
3217 same VMA, each with its own unique LMA (or load address).
3218 2) It is assumed that some runtime mechanism exists for mapping the
3219 sections, one by one, from the load address into the VMA address.
3220 3) This code provides a mechanism for gdb to keep track of which
3221 sections should be considered to be mapped from the VMA to the LMA.
3222 This information is used for symbol lookup, and memory read/write.
3223 For instance, if a section has been mapped then its contents
3224 should be read from the VMA, otherwise from the LMA.
3225
3226 Two levels of debugger support for overlays are available. One is
3227 "manual", in which the debugger relies on the user to tell it which
3228 overlays are currently mapped. This level of support is
3229 implemented entirely in the core debugger, and the information about
3230 whether a section is mapped is kept in the objfile->obj_section table.
3231
3232 The second level of support is "automatic", and is only available if
3233 the target-specific code provides functionality to read the target's
3234 overlay mapping table, and translate its contents for the debugger
3235 (by updating the mapped state information in the obj_section tables).
3236
3237 The interface is as follows:
3238 User commands:
3239 overlay map <name> -- tell gdb to consider this section mapped
3240 overlay unmap <name> -- tell gdb to consider this section unmapped
3241 overlay list -- list the sections that GDB thinks are mapped
3242 overlay read-target -- get the target's state of what's mapped
3243 overlay off/manual/auto -- set overlay debugging state
3244 Functional interface:
3245 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3246 section, return that section.
3247 find_pc_overlay(pc): find any overlay section that contains
3248 the pc, either in its VMA or its LMA
3249 section_is_mapped(sect): true if overlay is marked as mapped
3250 section_is_overlay(sect): true if section's VMA != LMA
3251 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3252 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3253 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3254 overlay_mapped_address(...): map an address from section's LMA to VMA
3255 overlay_unmapped_address(...): map an address from section's VMA to LMA
3256 symbol_overlayed_address(...): Return a "current" address for symbol:
3257 either in VMA or LMA depending on whether
3258 the symbol's section is currently mapped
3259 */
3260
3261 /* Overlay debugging state: */
3262
3263 enum overlay_debugging_state overlay_debugging = ovly_off;
3264 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3265
3266 /* Function: section_is_overlay (SECTION)
3267 Returns true if SECTION has VMA not equal to LMA, ie.
3268 SECTION is loaded at an address different from where it will "run". */
3269
3270 int
3271 section_is_overlay (struct obj_section *section)
3272 {
3273 if (overlay_debugging && section)
3274 {
3275 bfd *abfd = section->objfile->obfd;
3276 asection *bfd_section = section->the_bfd_section;
3277
3278 if (bfd_section_lma (abfd, bfd_section) != 0
3279 && bfd_section_lma (abfd, bfd_section)
3280 != bfd_section_vma (abfd, bfd_section))
3281 return 1;
3282 }
3283
3284 return 0;
3285 }
3286
3287 /* Function: overlay_invalidate_all (void)
3288 Invalidate the mapped state of all overlay sections (mark it as stale). */
3289
3290 static void
3291 overlay_invalidate_all (void)
3292 {
3293 struct objfile *objfile;
3294 struct obj_section *sect;
3295
3296 ALL_OBJSECTIONS (objfile, sect)
3297 if (section_is_overlay (sect))
3298 sect->ovly_mapped = -1;
3299 }
3300
3301 /* Function: section_is_mapped (SECTION)
3302 Returns true if section is an overlay, and is currently mapped.
3303
3304 Access to the ovly_mapped flag is restricted to this function, so
3305 that we can do automatic update. If the global flag
3306 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3307 overlay_invalidate_all. If the mapped state of the particular
3308 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3309
3310 int
3311 section_is_mapped (struct obj_section *osect)
3312 {
3313 if (osect == 0 || !section_is_overlay (osect))
3314 return 0;
3315
3316 switch (overlay_debugging)
3317 {
3318 default:
3319 case ovly_off:
3320 return 0; /* overlay debugging off */
3321 case ovly_auto: /* overlay debugging automatic */
3322 /* Unles there is a gdbarch_overlay_update function,
3323 there's really nothing useful to do here (can't really go auto) */
3324 if (gdbarch_overlay_update_p (current_gdbarch))
3325 {
3326 if (overlay_cache_invalid)
3327 {
3328 overlay_invalidate_all ();
3329 overlay_cache_invalid = 0;
3330 }
3331 if (osect->ovly_mapped == -1)
3332 gdbarch_overlay_update (current_gdbarch, osect);
3333 }
3334 /* fall thru to manual case */
3335 case ovly_on: /* overlay debugging manual */
3336 return osect->ovly_mapped == 1;
3337 }
3338 }
3339
3340 /* Function: pc_in_unmapped_range
3341 If PC falls into the lma range of SECTION, return true, else false. */
3342
3343 CORE_ADDR
3344 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3345 {
3346 if (section_is_overlay (section))
3347 {
3348 bfd *abfd = section->objfile->obfd;
3349 asection *bfd_section = section->the_bfd_section;
3350
3351 /* We assume the LMA is relocated by the same offset as the VMA. */
3352 bfd_vma size = bfd_get_section_size (bfd_section);
3353 CORE_ADDR offset = obj_section_offset (section);
3354
3355 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3356 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3357 return 1;
3358 }
3359
3360 return 0;
3361 }
3362
3363 /* Function: pc_in_mapped_range
3364 If PC falls into the vma range of SECTION, return true, else false. */
3365
3366 CORE_ADDR
3367 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3368 {
3369 if (section_is_overlay (section))
3370 {
3371 if (obj_section_addr (section) <= pc
3372 && pc < obj_section_endaddr (section))
3373 return 1;
3374 }
3375
3376 return 0;
3377 }
3378
3379
3380 /* Return true if the mapped ranges of sections A and B overlap, false
3381 otherwise. */
3382 static int
3383 sections_overlap (struct obj_section *a, struct obj_section *b)
3384 {
3385 CORE_ADDR a_start = obj_section_addr (a);
3386 CORE_ADDR a_end = obj_section_endaddr (a);
3387 CORE_ADDR b_start = obj_section_addr (b);
3388 CORE_ADDR b_end = obj_section_endaddr (b);
3389
3390 return (a_start < b_end && b_start < a_end);
3391 }
3392
3393 /* Function: overlay_unmapped_address (PC, SECTION)
3394 Returns the address corresponding to PC in the unmapped (load) range.
3395 May be the same as PC. */
3396
3397 CORE_ADDR
3398 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3399 {
3400 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3401 {
3402 bfd *abfd = section->objfile->obfd;
3403 asection *bfd_section = section->the_bfd_section;
3404
3405 return pc + bfd_section_lma (abfd, bfd_section)
3406 - bfd_section_vma (abfd, bfd_section);
3407 }
3408
3409 return pc;
3410 }
3411
3412 /* Function: overlay_mapped_address (PC, SECTION)
3413 Returns the address corresponding to PC in the mapped (runtime) range.
3414 May be the same as PC. */
3415
3416 CORE_ADDR
3417 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3418 {
3419 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3420 {
3421 bfd *abfd = section->objfile->obfd;
3422 asection *bfd_section = section->the_bfd_section;
3423
3424 return pc + bfd_section_vma (abfd, bfd_section)
3425 - bfd_section_lma (abfd, bfd_section);
3426 }
3427
3428 return pc;
3429 }
3430
3431
3432 /* Function: symbol_overlayed_address
3433 Return one of two addresses (relative to the VMA or to the LMA),
3434 depending on whether the section is mapped or not. */
3435
3436 CORE_ADDR
3437 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3438 {
3439 if (overlay_debugging)
3440 {
3441 /* If the symbol has no section, just return its regular address. */
3442 if (section == 0)
3443 return address;
3444 /* If the symbol's section is not an overlay, just return its address */
3445 if (!section_is_overlay (section))
3446 return address;
3447 /* If the symbol's section is mapped, just return its address */
3448 if (section_is_mapped (section))
3449 return address;
3450 /*
3451 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3452 * then return its LOADED address rather than its vma address!!
3453 */
3454 return overlay_unmapped_address (address, section);
3455 }
3456 return address;
3457 }
3458
3459 /* Function: find_pc_overlay (PC)
3460 Return the best-match overlay section for PC:
3461 If PC matches a mapped overlay section's VMA, return that section.
3462 Else if PC matches an unmapped section's VMA, return that section.
3463 Else if PC matches an unmapped section's LMA, return that section. */
3464
3465 struct obj_section *
3466 find_pc_overlay (CORE_ADDR pc)
3467 {
3468 struct objfile *objfile;
3469 struct obj_section *osect, *best_match = NULL;
3470
3471 if (overlay_debugging)
3472 ALL_OBJSECTIONS (objfile, osect)
3473 if (section_is_overlay (osect))
3474 {
3475 if (pc_in_mapped_range (pc, osect))
3476 {
3477 if (section_is_mapped (osect))
3478 return osect;
3479 else
3480 best_match = osect;
3481 }
3482 else if (pc_in_unmapped_range (pc, osect))
3483 best_match = osect;
3484 }
3485 return best_match;
3486 }
3487
3488 /* Function: find_pc_mapped_section (PC)
3489 If PC falls into the VMA address range of an overlay section that is
3490 currently marked as MAPPED, return that section. Else return NULL. */
3491
3492 struct obj_section *
3493 find_pc_mapped_section (CORE_ADDR pc)
3494 {
3495 struct objfile *objfile;
3496 struct obj_section *osect;
3497
3498 if (overlay_debugging)
3499 ALL_OBJSECTIONS (objfile, osect)
3500 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3501 return osect;
3502
3503 return NULL;
3504 }
3505
3506 /* Function: list_overlays_command
3507 Print a list of mapped sections and their PC ranges */
3508
3509 void
3510 list_overlays_command (char *args, int from_tty)
3511 {
3512 int nmapped = 0;
3513 struct objfile *objfile;
3514 struct obj_section *osect;
3515
3516 if (overlay_debugging)
3517 ALL_OBJSECTIONS (objfile, osect)
3518 if (section_is_mapped (osect))
3519 {
3520 const char *name;
3521 bfd_vma lma, vma;
3522 int size;
3523
3524 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3525 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3526 size = bfd_get_section_size (osect->the_bfd_section);
3527 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3528
3529 printf_filtered ("Section %s, loaded at ", name);
3530 fputs_filtered (paddress (lma), gdb_stdout);
3531 puts_filtered (" - ");
3532 fputs_filtered (paddress (lma + size), gdb_stdout);
3533 printf_filtered (", mapped at ");
3534 fputs_filtered (paddress (vma), gdb_stdout);
3535 puts_filtered (" - ");
3536 fputs_filtered (paddress (vma + size), gdb_stdout);
3537 puts_filtered ("\n");
3538
3539 nmapped++;
3540 }
3541 if (nmapped == 0)
3542 printf_filtered (_("No sections are mapped.\n"));
3543 }
3544
3545 /* Function: map_overlay_command
3546 Mark the named section as mapped (ie. residing at its VMA address). */
3547
3548 void
3549 map_overlay_command (char *args, int from_tty)
3550 {
3551 struct objfile *objfile, *objfile2;
3552 struct obj_section *sec, *sec2;
3553
3554 if (!overlay_debugging)
3555 error (_("\
3556 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3557 the 'overlay manual' command."));
3558
3559 if (args == 0 || *args == 0)
3560 error (_("Argument required: name of an overlay section"));
3561
3562 /* First, find a section matching the user supplied argument */
3563 ALL_OBJSECTIONS (objfile, sec)
3564 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3565 {
3566 /* Now, check to see if the section is an overlay. */
3567 if (!section_is_overlay (sec))
3568 continue; /* not an overlay section */
3569
3570 /* Mark the overlay as "mapped" */
3571 sec->ovly_mapped = 1;
3572
3573 /* Next, make a pass and unmap any sections that are
3574 overlapped by this new section: */
3575 ALL_OBJSECTIONS (objfile2, sec2)
3576 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3577 {
3578 if (info_verbose)
3579 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3580 bfd_section_name (objfile->obfd,
3581 sec2->the_bfd_section));
3582 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3583 }
3584 return;
3585 }
3586 error (_("No overlay section called %s"), args);
3587 }
3588
3589 /* Function: unmap_overlay_command
3590 Mark the overlay section as unmapped
3591 (ie. resident in its LMA address range, rather than the VMA range). */
3592
3593 void
3594 unmap_overlay_command (char *args, int from_tty)
3595 {
3596 struct objfile *objfile;
3597 struct obj_section *sec;
3598
3599 if (!overlay_debugging)
3600 error (_("\
3601 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3602 the 'overlay manual' command."));
3603
3604 if (args == 0 || *args == 0)
3605 error (_("Argument required: name of an overlay section"));
3606
3607 /* First, find a section matching the user supplied argument */
3608 ALL_OBJSECTIONS (objfile, sec)
3609 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3610 {
3611 if (!sec->ovly_mapped)
3612 error (_("Section %s is not mapped"), args);
3613 sec->ovly_mapped = 0;
3614 return;
3615 }
3616 error (_("No overlay section called %s"), args);
3617 }
3618
3619 /* Function: overlay_auto_command
3620 A utility command to turn on overlay debugging.
3621 Possibly this should be done via a set/show command. */
3622
3623 static void
3624 overlay_auto_command (char *args, int from_tty)
3625 {
3626 overlay_debugging = ovly_auto;
3627 enable_overlay_breakpoints ();
3628 if (info_verbose)
3629 printf_unfiltered (_("Automatic overlay debugging enabled."));
3630 }
3631
3632 /* Function: overlay_manual_command
3633 A utility command to turn on overlay debugging.
3634 Possibly this should be done via a set/show command. */
3635
3636 static void
3637 overlay_manual_command (char *args, int from_tty)
3638 {
3639 overlay_debugging = ovly_on;
3640 disable_overlay_breakpoints ();
3641 if (info_verbose)
3642 printf_unfiltered (_("Overlay debugging enabled."));
3643 }
3644
3645 /* Function: overlay_off_command
3646 A utility command to turn on overlay debugging.
3647 Possibly this should be done via a set/show command. */
3648
3649 static void
3650 overlay_off_command (char *args, int from_tty)
3651 {
3652 overlay_debugging = ovly_off;
3653 disable_overlay_breakpoints ();
3654 if (info_verbose)
3655 printf_unfiltered (_("Overlay debugging disabled."));
3656 }
3657
3658 static void
3659 overlay_load_command (char *args, int from_tty)
3660 {
3661 if (gdbarch_overlay_update_p (current_gdbarch))
3662 gdbarch_overlay_update (current_gdbarch, NULL);
3663 else
3664 error (_("This target does not know how to read its overlay state."));
3665 }
3666
3667 /* Function: overlay_command
3668 A place-holder for a mis-typed command */
3669
3670 /* Command list chain containing all defined "overlay" subcommands. */
3671 struct cmd_list_element *overlaylist;
3672
3673 static void
3674 overlay_command (char *args, int from_tty)
3675 {
3676 printf_unfiltered
3677 ("\"overlay\" must be followed by the name of an overlay command.\n");
3678 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3679 }
3680
3681
3682 /* Target Overlays for the "Simplest" overlay manager:
3683
3684 This is GDB's default target overlay layer. It works with the
3685 minimal overlay manager supplied as an example by Cygnus. The
3686 entry point is via a function pointer "gdbarch_overlay_update",
3687 so targets that use a different runtime overlay manager can
3688 substitute their own overlay_update function and take over the
3689 function pointer.
3690
3691 The overlay_update function pokes around in the target's data structures
3692 to see what overlays are mapped, and updates GDB's overlay mapping with
3693 this information.
3694
3695 In this simple implementation, the target data structures are as follows:
3696 unsigned _novlys; /# number of overlay sections #/
3697 unsigned _ovly_table[_novlys][4] = {
3698 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3699 {..., ..., ..., ...},
3700 }
3701 unsigned _novly_regions; /# number of overlay regions #/
3702 unsigned _ovly_region_table[_novly_regions][3] = {
3703 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3704 {..., ..., ...},
3705 }
3706 These functions will attempt to update GDB's mappedness state in the
3707 symbol section table, based on the target's mappedness state.
3708
3709 To do this, we keep a cached copy of the target's _ovly_table, and
3710 attempt to detect when the cached copy is invalidated. The main
3711 entry point is "simple_overlay_update(SECT), which looks up SECT in
3712 the cached table and re-reads only the entry for that section from
3713 the target (whenever possible).
3714 */
3715
3716 /* Cached, dynamically allocated copies of the target data structures: */
3717 static unsigned (*cache_ovly_table)[4] = 0;
3718 #if 0
3719 static unsigned (*cache_ovly_region_table)[3] = 0;
3720 #endif
3721 static unsigned cache_novlys = 0;
3722 #if 0
3723 static unsigned cache_novly_regions = 0;
3724 #endif
3725 static CORE_ADDR cache_ovly_table_base = 0;
3726 #if 0
3727 static CORE_ADDR cache_ovly_region_table_base = 0;
3728 #endif
3729 enum ovly_index
3730 {
3731 VMA, SIZE, LMA, MAPPED
3732 };
3733 #define TARGET_LONG_BYTES (gdbarch_long_bit (current_gdbarch) \
3734 / TARGET_CHAR_BIT)
3735
3736 /* Throw away the cached copy of _ovly_table */
3737 static void
3738 simple_free_overlay_table (void)
3739 {
3740 if (cache_ovly_table)
3741 xfree (cache_ovly_table);
3742 cache_novlys = 0;
3743 cache_ovly_table = NULL;
3744 cache_ovly_table_base = 0;
3745 }
3746
3747 #if 0
3748 /* Throw away the cached copy of _ovly_region_table */
3749 static void
3750 simple_free_overlay_region_table (void)
3751 {
3752 if (cache_ovly_region_table)
3753 xfree (cache_ovly_region_table);
3754 cache_novly_regions = 0;
3755 cache_ovly_region_table = NULL;
3756 cache_ovly_region_table_base = 0;
3757 }
3758 #endif
3759
3760 /* Read an array of ints from the target into a local buffer.
3761 Convert to host order. int LEN is number of ints */
3762 static void
3763 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3764 {
3765 /* FIXME (alloca): Not safe if array is very large. */
3766 gdb_byte *buf = alloca (len * TARGET_LONG_BYTES);
3767 int i;
3768
3769 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3770 for (i = 0; i < len; i++)
3771 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3772 TARGET_LONG_BYTES);
3773 }
3774
3775 /* Find and grab a copy of the target _ovly_table
3776 (and _novlys, which is needed for the table's size) */
3777 static int
3778 simple_read_overlay_table (void)
3779 {
3780 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3781
3782 simple_free_overlay_table ();
3783 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3784 if (! novlys_msym)
3785 {
3786 error (_("Error reading inferior's overlay table: "
3787 "couldn't find `_novlys' variable\n"
3788 "in inferior. Use `overlay manual' mode."));
3789 return 0;
3790 }
3791
3792 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3793 if (! ovly_table_msym)
3794 {
3795 error (_("Error reading inferior's overlay table: couldn't find "
3796 "`_ovly_table' array\n"
3797 "in inferior. Use `overlay manual' mode."));
3798 return 0;
3799 }
3800
3801 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3802 cache_ovly_table
3803 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3804 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3805 read_target_long_array (cache_ovly_table_base,
3806 (unsigned int *) cache_ovly_table,
3807 cache_novlys * 4);
3808
3809 return 1; /* SUCCESS */
3810 }
3811
3812 #if 0
3813 /* Find and grab a copy of the target _ovly_region_table
3814 (and _novly_regions, which is needed for the table's size) */
3815 static int
3816 simple_read_overlay_region_table (void)
3817 {
3818 struct minimal_symbol *msym;
3819
3820 simple_free_overlay_region_table ();
3821 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3822 if (msym != NULL)
3823 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3824 else
3825 return 0; /* failure */
3826 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3827 if (cache_ovly_region_table != NULL)
3828 {
3829 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3830 if (msym != NULL)
3831 {
3832 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3833 read_target_long_array (cache_ovly_region_table_base,
3834 (unsigned int *) cache_ovly_region_table,
3835 cache_novly_regions * 3);
3836 }
3837 else
3838 return 0; /* failure */
3839 }
3840 else
3841 return 0; /* failure */
3842 return 1; /* SUCCESS */
3843 }
3844 #endif
3845
3846 /* Function: simple_overlay_update_1
3847 A helper function for simple_overlay_update. Assuming a cached copy
3848 of _ovly_table exists, look through it to find an entry whose vma,
3849 lma and size match those of OSECT. Re-read the entry and make sure
3850 it still matches OSECT (else the table may no longer be valid).
3851 Set OSECT's mapped state to match the entry. Return: 1 for
3852 success, 0 for failure. */
3853
3854 static int
3855 simple_overlay_update_1 (struct obj_section *osect)
3856 {
3857 int i, size;
3858 bfd *obfd = osect->objfile->obfd;
3859 asection *bsect = osect->the_bfd_section;
3860
3861 size = bfd_get_section_size (osect->the_bfd_section);
3862 for (i = 0; i < cache_novlys; i++)
3863 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3864 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3865 /* && cache_ovly_table[i][SIZE] == size */ )
3866 {
3867 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3868 (unsigned int *) cache_ovly_table[i], 4);
3869 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3870 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3871 /* && cache_ovly_table[i][SIZE] == size */ )
3872 {
3873 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3874 return 1;
3875 }
3876 else /* Warning! Warning! Target's ovly table has changed! */
3877 return 0;
3878 }
3879 return 0;
3880 }
3881
3882 /* Function: simple_overlay_update
3883 If OSECT is NULL, then update all sections' mapped state
3884 (after re-reading the entire target _ovly_table).
3885 If OSECT is non-NULL, then try to find a matching entry in the
3886 cached ovly_table and update only OSECT's mapped state.
3887 If a cached entry can't be found or the cache isn't valid, then
3888 re-read the entire cache, and go ahead and update all sections. */
3889
3890 void
3891 simple_overlay_update (struct obj_section *osect)
3892 {
3893 struct objfile *objfile;
3894
3895 /* Were we given an osect to look up? NULL means do all of them. */
3896 if (osect)
3897 /* Have we got a cached copy of the target's overlay table? */
3898 if (cache_ovly_table != NULL)
3899 /* Does its cached location match what's currently in the symtab? */
3900 if (cache_ovly_table_base ==
3901 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3902 /* Then go ahead and try to look up this single section in the cache */
3903 if (simple_overlay_update_1 (osect))
3904 /* Found it! We're done. */
3905 return;
3906
3907 /* Cached table no good: need to read the entire table anew.
3908 Or else we want all the sections, in which case it's actually
3909 more efficient to read the whole table in one block anyway. */
3910
3911 if (! simple_read_overlay_table ())
3912 return;
3913
3914 /* Now may as well update all sections, even if only one was requested. */
3915 ALL_OBJSECTIONS (objfile, osect)
3916 if (section_is_overlay (osect))
3917 {
3918 int i, size;
3919 bfd *obfd = osect->objfile->obfd;
3920 asection *bsect = osect->the_bfd_section;
3921
3922 size = bfd_get_section_size (bsect);
3923 for (i = 0; i < cache_novlys; i++)
3924 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3925 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3926 /* && cache_ovly_table[i][SIZE] == size */ )
3927 { /* obj_section matches i'th entry in ovly_table */
3928 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3929 break; /* finished with inner for loop: break out */
3930 }
3931 }
3932 }
3933
3934 /* Set the output sections and output offsets for section SECTP in
3935 ABFD. The relocation code in BFD will read these offsets, so we
3936 need to be sure they're initialized. We map each section to itself,
3937 with no offset; this means that SECTP->vma will be honored. */
3938
3939 static void
3940 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3941 {
3942 sectp->output_section = sectp;
3943 sectp->output_offset = 0;
3944 }
3945
3946 /* Relocate the contents of a debug section SECTP in ABFD. The
3947 contents are stored in BUF if it is non-NULL, or returned in a
3948 malloc'd buffer otherwise.
3949
3950 For some platforms and debug info formats, shared libraries contain
3951 relocations against the debug sections (particularly for DWARF-2;
3952 one affected platform is PowerPC GNU/Linux, although it depends on
3953 the version of the linker in use). Also, ELF object files naturally
3954 have unresolved relocations for their debug sections. We need to apply
3955 the relocations in order to get the locations of symbols correct. */
3956
3957 bfd_byte *
3958 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3959 {
3960 /* We're only interested in debugging sections with relocation
3961 information. */
3962 if ((sectp->flags & SEC_RELOC) == 0)
3963 return NULL;
3964 if ((sectp->flags & SEC_DEBUGGING) == 0)
3965 return NULL;
3966
3967 /* We will handle section offsets properly elsewhere, so relocate as if
3968 all sections begin at 0. */
3969 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3970
3971 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3972 }
3973
3974 struct symfile_segment_data *
3975 get_symfile_segment_data (bfd *abfd)
3976 {
3977 struct sym_fns *sf = find_sym_fns (abfd);
3978
3979 if (sf == NULL)
3980 return NULL;
3981
3982 return sf->sym_segments (abfd);
3983 }
3984
3985 void
3986 free_symfile_segment_data (struct symfile_segment_data *data)
3987 {
3988 xfree (data->segment_bases);
3989 xfree (data->segment_sizes);
3990 xfree (data->segment_info);
3991 xfree (data);
3992 }
3993
3994
3995 /* Given:
3996 - DATA, containing segment addresses from the object file ABFD, and
3997 the mapping from ABFD's sections onto the segments that own them,
3998 and
3999 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4000 segment addresses reported by the target,
4001 store the appropriate offsets for each section in OFFSETS.
4002
4003 If there are fewer entries in SEGMENT_BASES than there are segments
4004 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4005
4006 If there are more entries, then ignore the extra. The target may
4007 not be able to distinguish between an empty data segment and a
4008 missing data segment; a missing text segment is less plausible. */
4009 int
4010 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4011 struct section_offsets *offsets,
4012 int num_segment_bases,
4013 const CORE_ADDR *segment_bases)
4014 {
4015 int i;
4016 asection *sect;
4017
4018 /* It doesn't make sense to call this function unless you have some
4019 segment base addresses. */
4020 gdb_assert (segment_bases > 0);
4021
4022 /* If we do not have segment mappings for the object file, we
4023 can not relocate it by segments. */
4024 gdb_assert (data != NULL);
4025 gdb_assert (data->num_segments > 0);
4026
4027 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4028 {
4029 int which = data->segment_info[i];
4030
4031 gdb_assert (0 <= which && which <= data->num_segments);
4032
4033 /* Don't bother computing offsets for sections that aren't
4034 loaded as part of any segment. */
4035 if (! which)
4036 continue;
4037
4038 /* Use the last SEGMENT_BASES entry as the address of any extra
4039 segments mentioned in DATA->segment_info. */
4040 if (which > num_segment_bases)
4041 which = num_segment_bases;
4042
4043 offsets->offsets[i] = (segment_bases[which - 1]
4044 - data->segment_bases[which - 1]);
4045 }
4046
4047 return 1;
4048 }
4049
4050 static void
4051 symfile_find_segment_sections (struct objfile *objfile)
4052 {
4053 bfd *abfd = objfile->obfd;
4054 int i;
4055 asection *sect;
4056 struct symfile_segment_data *data;
4057
4058 data = get_symfile_segment_data (objfile->obfd);
4059 if (data == NULL)
4060 return;
4061
4062 if (data->num_segments != 1 && data->num_segments != 2)
4063 {
4064 free_symfile_segment_data (data);
4065 return;
4066 }
4067
4068 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4069 {
4070 CORE_ADDR vma;
4071 int which = data->segment_info[i];
4072
4073 if (which == 1)
4074 {
4075 if (objfile->sect_index_text == -1)
4076 objfile->sect_index_text = sect->index;
4077
4078 if (objfile->sect_index_rodata == -1)
4079 objfile->sect_index_rodata = sect->index;
4080 }
4081 else if (which == 2)
4082 {
4083 if (objfile->sect_index_data == -1)
4084 objfile->sect_index_data = sect->index;
4085
4086 if (objfile->sect_index_bss == -1)
4087 objfile->sect_index_bss = sect->index;
4088 }
4089 }
4090
4091 free_symfile_segment_data (data);
4092 }
4093
4094 void
4095 _initialize_symfile (void)
4096 {
4097 struct cmd_list_element *c;
4098
4099 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4100 Load symbol table from executable file FILE.\n\
4101 The `file' command can also load symbol tables, as well as setting the file\n\
4102 to execute."), &cmdlist);
4103 set_cmd_completer (c, filename_completer);
4104
4105 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4106 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4107 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4108 ADDR is the starting address of the file's text.\n\
4109 The optional arguments are section-name section-address pairs and\n\
4110 should be specified if the data and bss segments are not contiguous\n\
4111 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4112 &cmdlist);
4113 set_cmd_completer (c, filename_completer);
4114
4115 c = add_cmd ("add-shared-symbol-files", class_files,
4116 add_shared_symbol_files_command, _("\
4117 Load the symbols from shared objects in the dynamic linker's link map."),
4118 &cmdlist);
4119 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
4120 &cmdlist);
4121
4122 c = add_cmd ("load", class_files, load_command, _("\
4123 Dynamically load FILE into the running program, and record its symbols\n\
4124 for access from GDB.\n\
4125 A load OFFSET may also be given."), &cmdlist);
4126 set_cmd_completer (c, filename_completer);
4127
4128 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4129 &symbol_reloading, _("\
4130 Set dynamic symbol table reloading multiple times in one run."), _("\
4131 Show dynamic symbol table reloading multiple times in one run."), NULL,
4132 NULL,
4133 show_symbol_reloading,
4134 &setlist, &showlist);
4135
4136 add_prefix_cmd ("overlay", class_support, overlay_command,
4137 _("Commands for debugging overlays."), &overlaylist,
4138 "overlay ", 0, &cmdlist);
4139
4140 add_com_alias ("ovly", "overlay", class_alias, 1);
4141 add_com_alias ("ov", "overlay", class_alias, 1);
4142
4143 add_cmd ("map-overlay", class_support, map_overlay_command,
4144 _("Assert that an overlay section is mapped."), &overlaylist);
4145
4146 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4147 _("Assert that an overlay section is unmapped."), &overlaylist);
4148
4149 add_cmd ("list-overlays", class_support, list_overlays_command,
4150 _("List mappings of overlay sections."), &overlaylist);
4151
4152 add_cmd ("manual", class_support, overlay_manual_command,
4153 _("Enable overlay debugging."), &overlaylist);
4154 add_cmd ("off", class_support, overlay_off_command,
4155 _("Disable overlay debugging."), &overlaylist);
4156 add_cmd ("auto", class_support, overlay_auto_command,
4157 _("Enable automatic overlay debugging."), &overlaylist);
4158 add_cmd ("load-target", class_support, overlay_load_command,
4159 _("Read the overlay mapping state from the target."), &overlaylist);
4160
4161 /* Filename extension to source language lookup table: */
4162 init_filename_language_table ();
4163 add_setshow_string_noescape_cmd ("extension-language", class_files,
4164 &ext_args, _("\
4165 Set mapping between filename extension and source language."), _("\
4166 Show mapping between filename extension and source language."), _("\
4167 Usage: set extension-language .foo bar"),
4168 set_ext_lang_command,
4169 show_ext_args,
4170 &setlist, &showlist);
4171
4172 add_info ("extensions", info_ext_lang_command,
4173 _("All filename extensions associated with a source language."));
4174
4175 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4176 &debug_file_directory, _("\
4177 Set the directory where separate debug symbols are searched for."), _("\
4178 Show the directory where separate debug symbols are searched for."), _("\
4179 Separate debug symbols are first searched for in the same\n\
4180 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4181 and lastly at the path of the directory of the binary with\n\
4182 the global debug-file directory prepended."),
4183 NULL,
4184 show_debug_file_directory,
4185 &setlist, &showlist);
4186
4187 add_setshow_boolean_cmd ("symbol-loading", no_class,
4188 &print_symbol_loading, _("\
4189 Set printing of symbol loading messages."), _("\
4190 Show printing of symbol loading messages."), NULL,
4191 NULL,
4192 NULL,
4193 &setprintlist, &showprintlist);
4194 }