* symfile.c (reread_symbols): When re-reading symbols, do all the
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "gdbcore.h"
25 #include "frame.h"
26 #include "target.h"
27 #include "value.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbcmd.h"
31 #include "breakpoint.h"
32 #include "language.h"
33 #include "complaints.h"
34 #include "demangle.h"
35 #include "inferior.h" /* for write_pc */
36
37 #include <obstack.h>
38 #include <assert.h>
39
40 #include <sys/types.h>
41 #include <fcntl.h>
42 #include <string.h>
43 #include <sys/stat.h>
44 #include <ctype.h>
45
46 #ifndef O_BINARY
47 #define O_BINARY 0
48 #endif
49
50 /* Global variables owned by this file */
51
52 int readnow_symbol_files; /* Read full symbols immediately */
53
54 struct complaint oldsyms_complaint = {
55 "Replacing old symbols for `%s'", 0, 0
56 };
57
58 struct complaint empty_symtab_complaint = {
59 "Empty symbol table found for `%s'", 0, 0
60 };
61
62 /* External variables and functions referenced. */
63
64 extern int info_verbose;
65
66 /* Functions this file defines */
67
68 static void
69 set_initial_language PARAMS ((void));
70
71 static void
72 load_command PARAMS ((char *, int));
73
74 static void
75 add_symbol_file_command PARAMS ((char *, int));
76
77 static void
78 cashier_psymtab PARAMS ((struct partial_symtab *));
79
80 static int
81 compare_psymbols PARAMS ((const void *, const void *));
82
83 static int
84 compare_symbols PARAMS ((const void *, const void *));
85
86 static bfd *
87 symfile_bfd_open PARAMS ((char *));
88
89 static void
90 find_sym_fns PARAMS ((struct objfile *));
91
92 /* List of all available sym_fns. On gdb startup, each object file reader
93 calls add_symtab_fns() to register information on each format it is
94 prepared to read. */
95
96 static struct sym_fns *symtab_fns = NULL;
97
98 /* Structures with which to manage partial symbol allocation. */
99
100 struct psymbol_allocation_list global_psymbols = {0}, static_psymbols = {0};
101
102 /* Flag for whether user will be reloading symbols multiple times.
103 Defaults to ON for VxWorks, otherwise OFF. */
104
105 #ifdef SYMBOL_RELOADING_DEFAULT
106 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
107 #else
108 int symbol_reloading = 0;
109 #endif
110
111 \f
112 /* Since this function is called from within qsort, in an ANSI environment
113 it must conform to the prototype for qsort, which specifies that the
114 comparison function takes two "void *" pointers. */
115
116 static int
117 compare_symbols (s1p, s2p)
118 const PTR s1p;
119 const PTR s2p;
120 {
121 register struct symbol **s1, **s2;
122
123 s1 = (struct symbol **) s1p;
124 s2 = (struct symbol **) s2p;
125
126 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
127 }
128
129 /*
130
131 LOCAL FUNCTION
132
133 compare_psymbols -- compare two partial symbols by name
134
135 DESCRIPTION
136
137 Given pointer to two partial symbol table entries, compare
138 them by name and return -N, 0, or +N (ala strcmp). Typically
139 used by sorting routines like qsort().
140
141 NOTES
142
143 Does direct compare of first two characters before punting
144 and passing to strcmp for longer compares. Note that the
145 original version had a bug whereby two null strings or two
146 identically named one character strings would return the
147 comparison of memory following the null byte.
148
149 */
150
151 static int
152 compare_psymbols (s1p, s2p)
153 const PTR s1p;
154 const PTR s2p;
155 {
156 register char *st1 = SYMBOL_NAME ((struct partial_symbol *) s1p);
157 register char *st2 = SYMBOL_NAME ((struct partial_symbol *) s2p);
158
159 if ((st1[0] - st2[0]) || !st1[0])
160 {
161 return (st1[0] - st2[0]);
162 }
163 else if ((st1[1] - st2[1]) || !st1[1])
164 {
165 return (st1[1] - st2[1]);
166 }
167 else
168 {
169 return (STRCMP (st1 + 2, st2 + 2));
170 }
171 }
172
173 void
174 sort_pst_symbols (pst)
175 struct partial_symtab *pst;
176 {
177 /* Sort the global list; don't sort the static list */
178
179 qsort (pst -> objfile -> global_psymbols.list + pst -> globals_offset,
180 pst -> n_global_syms, sizeof (struct partial_symbol),
181 compare_psymbols);
182 }
183
184 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
185
186 void
187 sort_block_syms (b)
188 register struct block *b;
189 {
190 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
191 sizeof (struct symbol *), compare_symbols);
192 }
193
194 /* Call sort_symtab_syms to sort alphabetically
195 the symbols of each block of one symtab. */
196
197 void
198 sort_symtab_syms (s)
199 register struct symtab *s;
200 {
201 register struct blockvector *bv;
202 int nbl;
203 int i;
204 register struct block *b;
205
206 if (s == 0)
207 return;
208 bv = BLOCKVECTOR (s);
209 nbl = BLOCKVECTOR_NBLOCKS (bv);
210 for (i = 0; i < nbl; i++)
211 {
212 b = BLOCKVECTOR_BLOCK (bv, i);
213 if (BLOCK_SHOULD_SORT (b))
214 sort_block_syms (b);
215 }
216 }
217
218 /* Make a copy of the string at PTR with SIZE characters in the symbol obstack
219 (and add a null character at the end in the copy).
220 Returns the address of the copy. */
221
222 char *
223 obsavestring (ptr, size, obstackp)
224 char *ptr;
225 int size;
226 struct obstack *obstackp;
227 {
228 register char *p = (char *) obstack_alloc (obstackp, size + 1);
229 /* Open-coded memcpy--saves function call time.
230 These strings are usually short. */
231 {
232 register char *p1 = ptr;
233 register char *p2 = p;
234 char *end = ptr + size;
235 while (p1 != end)
236 *p2++ = *p1++;
237 }
238 p[size] = 0;
239 return p;
240 }
241
242 /* Concatenate strings S1, S2 and S3; return the new string.
243 Space is found in the symbol_obstack. */
244
245 char *
246 obconcat (obstackp, s1, s2, s3)
247 struct obstack *obstackp;
248 const char *s1, *s2, *s3;
249 {
250 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
251 register char *val = (char *) obstack_alloc (obstackp, len);
252 strcpy (val, s1);
253 strcat (val, s2);
254 strcat (val, s3);
255 return val;
256 }
257
258 /* Get the symbol table that corresponds to a partial_symtab.
259 This is fast after the first time you do it. In fact, there
260 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
261 case inline. */
262
263 struct symtab *
264 psymtab_to_symtab (pst)
265 register struct partial_symtab *pst;
266 {
267 /* If it's been looked up before, return it. */
268 if (pst->symtab)
269 return pst->symtab;
270
271 /* If it has not yet been read in, read it. */
272 if (!pst->readin)
273 {
274 (*pst->read_symtab) (pst);
275 }
276
277 return pst->symtab;
278 }
279
280 /* Initialize entry point information for this objfile. */
281
282 void
283 init_entry_point_info (objfile)
284 struct objfile *objfile;
285 {
286 /* Save startup file's range of PC addresses to help blockframe.c
287 decide where the bottom of the stack is. */
288
289 if (bfd_get_file_flags (objfile -> obfd) & EXEC_P)
290 {
291 /* Executable file -- record its entry point so we'll recognize
292 the startup file because it contains the entry point. */
293 objfile -> ei.entry_point = bfd_get_start_address (objfile -> obfd);
294 }
295 else
296 {
297 /* Examination of non-executable.o files. Short-circuit this stuff. */
298 /* ~0 will not be in any file, we hope. */
299 objfile -> ei.entry_point = ~0;
300 /* set the startup file to be an empty range. */
301 objfile -> ei.entry_file_lowpc = 0;
302 objfile -> ei.entry_file_highpc = 0;
303 }
304 }
305
306 /* Get current entry point address. */
307
308 CORE_ADDR
309 entry_point_address()
310 {
311 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
312 }
313
314 /* Remember the lowest-addressed loadable section we've seen.
315 This function is called via bfd_map_over_sections. */
316
317 #if 0 /* Not used yet */
318 static void
319 find_lowest_section (abfd, sect, obj)
320 bfd *abfd;
321 asection *sect;
322 PTR obj;
323 {
324 asection **lowest = (asection **)obj;
325
326 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
327 return;
328 if (!*lowest)
329 *lowest = sect; /* First loadable section */
330 else if (bfd_section_vma (abfd, *lowest) >= bfd_section_vma (abfd, sect))
331 *lowest = sect; /* A lower loadable section */
332 }
333 #endif
334
335 /* Process a symbol file, as either the main file or as a dynamically
336 loaded file.
337
338 NAME is the file name (which will be tilde-expanded and made
339 absolute herein) (but we don't free or modify NAME itself).
340 FROM_TTY says how verbose to be. MAINLINE specifies whether this
341 is the main symbol file, or whether it's an extra symbol file such
342 as dynamically loaded code. If !mainline, ADDR is the address
343 where the text segment was loaded. If VERBO, the caller has printed
344 a verbose message about the symbol reading (and complaints can be
345 more terse about it). */
346
347 void
348 syms_from_objfile (objfile, addr, mainline, verbo)
349 struct objfile *objfile;
350 CORE_ADDR addr;
351 int mainline;
352 int verbo;
353 {
354 struct section_offsets *section_offsets;
355 asection *lowest_sect;
356 struct cleanup *old_chain;
357
358 init_entry_point_info (objfile);
359 find_sym_fns (objfile);
360
361 /* Make sure that partially constructed symbol tables will be cleaned up
362 if an error occurs during symbol reading. */
363 old_chain = make_cleanup (free_objfile, objfile);
364
365 if (mainline)
366 {
367 /* We will modify the main symbol table, make sure that all its users
368 will be cleaned up if an error occurs during symbol reading. */
369 make_cleanup (clear_symtab_users, 0);
370
371 /* Since no error yet, throw away the old symbol table. */
372
373 if (symfile_objfile != NULL)
374 {
375 free_objfile (symfile_objfile);
376 symfile_objfile = NULL;
377 }
378
379 (*objfile -> sf -> sym_new_init) (objfile);
380 }
381
382 /* Convert addr into an offset rather than an absolute address.
383 We find the lowest address of a loaded segment in the objfile,
384 and assume that <addr> is where that got loaded. Due to historical
385 precedent, we warn if that doesn't happen to be the ".text"
386 segment. */
387
388 if (mainline)
389 {
390 addr = 0; /* No offset from objfile addresses. */
391 }
392 else
393 {
394 lowest_sect = bfd_get_section_by_name (objfile->obfd, ".text");
395 #if 0
396 lowest_sect = 0;
397 bfd_map_over_sections (objfile->obfd, find_lowest_section,
398 (PTR) &lowest_sect);
399 #endif
400
401 if (lowest_sect == 0)
402 warning ("no loadable sections found in added symbol-file %s",
403 objfile->name);
404 else if (0 == bfd_get_section_name (objfile->obfd, lowest_sect)
405 || !STREQ (".text",
406 bfd_get_section_name (objfile->obfd, lowest_sect)))
407 warning ("Lowest section in %s is %s at 0x%lx",
408 objfile->name,
409 bfd_section_name (objfile->obfd, lowest_sect),
410 (unsigned long) bfd_section_vma (objfile->obfd, lowest_sect));
411
412 if (lowest_sect)
413 addr -= bfd_section_vma (objfile->obfd, lowest_sect);
414 }
415
416 /* Initialize symbol reading routines for this objfile, allow complaints to
417 appear for this new file, and record how verbose to be, then do the
418 initial symbol reading for this file. */
419
420 (*objfile -> sf -> sym_init) (objfile);
421 clear_complaints (1, verbo);
422
423 section_offsets = (*objfile -> sf -> sym_offsets) (objfile, addr);
424 objfile->section_offsets = section_offsets;
425
426 #ifndef IBM6000_TARGET
427 /* This is a SVR4/SunOS specific hack, I think. In any event, it
428 screws RS/6000. sym_offsets should be doing this sort of thing,
429 because it knows the mapping between bfd sections and
430 section_offsets. */
431 /* This is a hack. As far as I can tell, section offsets are not
432 target dependent. They are all set to addr with a couple of
433 exceptions. The exceptions are sysvr4 shared libraries, whose
434 offsets are kept in solib structures anyway and rs6000 xcoff
435 which handles shared libraries in a completely unique way.
436
437 Section offsets are built similarly, except that they are built
438 by adding addr in all cases because there is no clear mapping
439 from section_offsets into actual sections. Note that solib.c
440 has a different algorythm for finding section offsets.
441
442 These should probably all be collapsed into some target
443 independent form of shared library support. FIXME. */
444
445 if (addr)
446 {
447 struct obj_section *s;
448
449 for (s = objfile->sections; s < objfile->sections_end; ++s)
450 {
451 s->addr -= s->offset;
452 s->addr += addr;
453 s->endaddr -= s->offset;
454 s->endaddr += addr;
455 s->offset += addr;
456 }
457 }
458 #endif /* not IBM6000_TARGET */
459
460 (*objfile -> sf -> sym_read) (objfile, section_offsets, mainline);
461
462 /* Don't allow char * to have a typename (else would get caddr_t).
463 Ditto void *. FIXME: Check whether this is now done by all the
464 symbol readers themselves (many of them now do), and if so remove
465 it from here. */
466
467 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
468 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
469
470 /* Mark the objfile has having had initial symbol read attempted. Note
471 that this does not mean we found any symbols... */
472
473 objfile -> flags |= OBJF_SYMS;
474
475 /* Discard cleanups as symbol reading was successful. */
476
477 discard_cleanups (old_chain);
478 }
479
480 /* Perform required actions after either reading in the initial
481 symbols for a new objfile, or mapping in the symbols from a reusable
482 objfile. */
483
484 void
485 new_symfile_objfile (objfile, mainline, verbo)
486 struct objfile *objfile;
487 int mainline;
488 int verbo;
489 {
490
491 /* If this is the main symbol file we have to clean up all users of the
492 old main symbol file. Otherwise it is sufficient to fixup all the
493 breakpoints that may have been redefined by this symbol file. */
494 if (mainline)
495 {
496 /* OK, make it the "real" symbol file. */
497 symfile_objfile = objfile;
498
499 clear_symtab_users ();
500 }
501 else
502 {
503 breakpoint_re_set ();
504 }
505
506 /* We're done reading the symbol file; finish off complaints. */
507 clear_complaints (0, verbo);
508 }
509
510 /* Process a symbol file, as either the main file or as a dynamically
511 loaded file.
512
513 NAME is the file name (which will be tilde-expanded and made
514 absolute herein) (but we don't free or modify NAME itself).
515 FROM_TTY says how verbose to be. MAINLINE specifies whether this
516 is the main symbol file, or whether it's an extra symbol file such
517 as dynamically loaded code. If !mainline, ADDR is the address
518 where the text segment was loaded.
519
520 Upon success, returns a pointer to the objfile that was added.
521 Upon failure, jumps back to command level (never returns). */
522
523 struct objfile *
524 symbol_file_add (name, from_tty, addr, mainline, mapped, readnow)
525 char *name;
526 int from_tty;
527 CORE_ADDR addr;
528 int mainline;
529 int mapped;
530 int readnow;
531 {
532 struct objfile *objfile;
533 struct partial_symtab *psymtab;
534 bfd *abfd;
535
536 /* Open a bfd for the file, and give user a chance to burp if we'd be
537 interactively wiping out any existing symbols. */
538
539 abfd = symfile_bfd_open (name);
540
541 if ((have_full_symbols () || have_partial_symbols ())
542 && mainline
543 && from_tty
544 && !query ("Load new symbol table from \"%s\"? ", name))
545 error ("Not confirmed.");
546
547 objfile = allocate_objfile (abfd, mapped);
548
549 /* If the objfile uses a mapped symbol file, and we have a psymtab for
550 it, then skip reading any symbols at this time. */
551
552 if ((objfile -> flags & OBJF_MAPPED) && (objfile -> flags & OBJF_SYMS))
553 {
554 /* We mapped in an existing symbol table file that already has had
555 initial symbol reading performed, so we can skip that part. Notify
556 the user that instead of reading the symbols, they have been mapped.
557 */
558 if (from_tty || info_verbose)
559 {
560 printf_filtered ("Mapped symbols for %s...", name);
561 wrap_here ("");
562 fflush (stdout);
563 }
564 init_entry_point_info (objfile);
565 find_sym_fns (objfile);
566 }
567 else
568 {
569 /* We either created a new mapped symbol table, mapped an existing
570 symbol table file which has not had initial symbol reading
571 performed, or need to read an unmapped symbol table. */
572 if (from_tty || info_verbose)
573 {
574 printf_filtered ("Reading symbols from %s...", name);
575 wrap_here ("");
576 fflush (stdout);
577 }
578 syms_from_objfile (objfile, addr, mainline, from_tty);
579 }
580
581 /* We now have at least a partial symbol table. Check to see if the
582 user requested that all symbols be read on initial access via either
583 the gdb startup command line or on a per symbol file basis. Expand
584 all partial symbol tables for this objfile if so. */
585
586 if (readnow || readnow_symbol_files)
587 {
588 if (from_tty || info_verbose)
589 {
590 printf_filtered ("expanding to full symbols...");
591 wrap_here ("");
592 fflush (stdout);
593 }
594
595 for (psymtab = objfile -> psymtabs;
596 psymtab != NULL;
597 psymtab = psymtab -> next)
598 {
599 psymtab_to_symtab (psymtab);
600 }
601 }
602
603 if (from_tty || info_verbose)
604 {
605 printf_filtered ("done.\n");
606 fflush (stdout);
607 }
608
609 new_symfile_objfile (objfile, mainline, from_tty);
610
611 /* Getting new symbols may change our opinion about what is
612 frameless. */
613
614 reinit_frame_cache ();
615
616 return (objfile);
617 }
618
619 /* This is the symbol-file command. Read the file, analyze its symbols,
620 and add a struct symtab to a symtab list. */
621
622 void
623 symbol_file_command (args, from_tty)
624 char *args;
625 int from_tty;
626 {
627 char **argv;
628 char *name = NULL;
629 struct cleanup *cleanups;
630 int mapped = 0;
631 int readnow = 0;
632
633 dont_repeat ();
634
635 if (args == NULL)
636 {
637 if ((have_full_symbols () || have_partial_symbols ())
638 && from_tty
639 && !query ("Discard symbol table from `%s'? ",
640 symfile_objfile -> name))
641 error ("Not confirmed.");
642 free_all_objfiles ();
643 symfile_objfile = NULL;
644 if (from_tty)
645 {
646 printf ("No symbol file now.\n");
647 }
648 }
649 else
650 {
651 if ((argv = buildargv (args)) == NULL)
652 {
653 nomem (0);
654 }
655 cleanups = make_cleanup (freeargv, (char *) argv);
656 while (*argv != NULL)
657 {
658 if (STREQ (*argv, "-mapped"))
659 {
660 mapped = 1;
661 }
662 else if (STREQ (*argv, "-readnow"))
663 {
664 readnow = 1;
665 }
666 else if (**argv == '-')
667 {
668 error ("unknown option `%s'", *argv);
669 }
670 else
671 {
672 name = *argv;
673 }
674 argv++;
675 }
676
677 if (name == NULL)
678 {
679 error ("no symbol file name was specified");
680 }
681 else
682 {
683 symbol_file_add (name, from_tty, (CORE_ADDR)0, 1, mapped, readnow);
684 set_initial_language ();
685 }
686 do_cleanups (cleanups);
687 }
688 }
689
690 /* Set the initial language.
691
692 A better solution would be to record the language in the psymtab when reading
693 partial symbols, and then use it (if known) to set the language. This would
694 be a win for formats that encode the language in an easily discoverable place,
695 such as DWARF. For stabs, we can jump through hoops looking for specially
696 named symbols or try to intuit the language from the specific type of stabs
697 we find, but we can't do that until later when we read in full symbols.
698 FIXME. */
699
700 static void
701 set_initial_language ()
702 {
703 struct partial_symtab *pst;
704 enum language lang = language_unknown;
705
706 pst = find_main_psymtab ();
707 if (pst != NULL)
708 {
709 if (pst -> filename != NULL)
710 {
711 lang = deduce_language_from_filename (pst -> filename);
712 }
713 if (lang == language_unknown)
714 {
715 /* Make C the default language */
716 lang = language_c;
717 }
718 set_language (lang);
719 expected_language = current_language; /* Don't warn the user */
720 }
721 }
722
723 /* Open file specified by NAME and hand it off to BFD for preliminary
724 analysis. Result is a newly initialized bfd *, which includes a newly
725 malloc'd` copy of NAME (tilde-expanded and made absolute).
726 In case of trouble, error() is called. */
727
728 static bfd *
729 symfile_bfd_open (name)
730 char *name;
731 {
732 bfd *sym_bfd;
733 int desc;
734 char *absolute_name;
735
736 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
737
738 /* Look down path for it, allocate 2nd new malloc'd copy. */
739 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
740 if (desc < 0)
741 {
742 make_cleanup (free, name);
743 perror_with_name (name);
744 }
745 free (name); /* Free 1st new malloc'd copy */
746 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
747 /* It'll be freed in free_objfile(). */
748
749 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
750 if (!sym_bfd)
751 {
752 close (desc);
753 make_cleanup (free, name);
754 error ("\"%s\": can't open to read symbols: %s.", name,
755 bfd_errmsg (bfd_error));
756 }
757 sym_bfd->cacheable = true;
758
759 if (!bfd_check_format (sym_bfd, bfd_object))
760 {
761 bfd_close (sym_bfd); /* This also closes desc */
762 make_cleanup (free, name);
763 error ("\"%s\": can't read symbols: %s.", name,
764 bfd_errmsg (bfd_error));
765 }
766
767 return (sym_bfd);
768 }
769
770 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
771 startup by the _initialize routine in each object file format reader,
772 to register information about each format the the reader is prepared
773 to handle. */
774
775 void
776 add_symtab_fns (sf)
777 struct sym_fns *sf;
778 {
779 sf->next = symtab_fns;
780 symtab_fns = sf;
781 }
782
783
784 /* Initialize to read symbols from the symbol file sym_bfd. It either
785 returns or calls error(). The result is an initialized struct sym_fns
786 in the objfile structure, that contains cached information about the
787 symbol file. */
788
789 static void
790 find_sym_fns (objfile)
791 struct objfile *objfile;
792 {
793 struct sym_fns *sf;
794
795 for (sf = symtab_fns; sf != NULL; sf = sf -> next)
796 {
797 if (strncmp (bfd_get_target (objfile -> obfd),
798 sf -> sym_name, sf -> sym_namelen) == 0)
799 {
800 objfile -> sf = sf;
801 return;
802 }
803 }
804 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
805 bfd_get_target (objfile -> obfd));
806 }
807 \f
808 /* This function runs the load command of our current target. */
809
810 static void
811 load_command (arg, from_tty)
812 char *arg;
813 int from_tty;
814 {
815 target_load (arg, from_tty);
816 }
817
818 /* This version of "load" should be usable for any target. Currently
819 it is just used for remote targets, not inftarg.c or core files,
820 on the theory that only in that case is it useful.
821
822 Avoiding xmodem and the like seems like a win (a) because we don't have
823 to worry about finding it, and (b) On VMS, fork() is very slow and so
824 we don't want to run a subprocess. On the other hand, I'm not sure how
825 performance compares. */
826 void
827 generic_load (filename, from_tty)
828 char *filename;
829 int from_tty;
830 {
831 struct cleanup *old_cleanups;
832 asection *s;
833 bfd *loadfile_bfd = bfd_openr (filename, gnutarget);
834 if (loadfile_bfd == NULL)
835 {
836 perror_with_name (filename);
837 return;
838 }
839 old_cleanups = make_cleanup (bfd_close, loadfile_bfd);
840
841 if (!bfd_check_format (loadfile_bfd, bfd_object))
842 {
843 error ("\"%s\" is not an object file: %s", filename,
844 bfd_errmsg (bfd_error));
845 }
846
847 for (s = loadfile_bfd->sections; s; s = s->next)
848 {
849 if (s->flags & SEC_LOAD)
850 {
851 bfd_size_type size;
852
853 size = bfd_get_section_size_before_reloc (s);
854 if (size > 0)
855 {
856 char *buffer;
857 struct cleanup *old_chain;
858 bfd_vma vma;
859
860 buffer = xmalloc (size);
861 old_chain = make_cleanup (free, buffer);
862
863 vma = bfd_get_section_vma (loadfile_bfd, s);
864
865 /* Is this really necessary? I guess it gives the user something
866 to look at during a long download. */
867 printf_filtered ("Loading section %s, size 0x%lx vma 0x%lx\n",
868 bfd_get_section_name (loadfile_bfd, s),
869 (unsigned long) size, (unsigned long) vma);
870
871 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
872
873 target_write_memory (vma, buffer, size);
874
875 do_cleanups (old_chain);
876 }
877 }
878 }
879
880 /* We were doing this in remote-mips.c, I suspect it is right
881 for other targets too. */
882 write_pc (loadfile_bfd->start_address);
883
884 /* FIXME: are we supposed to call symbol_file_add or not? According to
885 a comment from remote-mips.c (where a call to symbol_file_add was
886 commented out), making the call confuses GDB if more than one file is
887 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
888 does. */
889
890 do_cleanups (old_cleanups);
891 }
892
893 /* This function allows the addition of incrementally linked object files.
894 It does not modify any state in the target, only in the debugger. */
895
896 /* ARGSUSED */
897 static void
898 add_symbol_file_command (args, from_tty)
899 char *args;
900 int from_tty;
901 {
902 char *name = NULL;
903 CORE_ADDR text_addr;
904 char *arg;
905 int readnow = 0;
906 int mapped = 0;
907
908 dont_repeat ();
909
910 if (args == NULL)
911 {
912 error ("add-symbol-file takes a file name and an address");
913 }
914
915 /* Make a copy of the string that we can safely write into. */
916
917 args = strdup (args);
918 make_cleanup (free, args);
919
920 /* Pick off any -option args and the file name. */
921
922 while ((*args != '\000') && (name == NULL))
923 {
924 while (isspace (*args)) {args++;}
925 arg = args;
926 while ((*args != '\000') && !isspace (*args)) {args++;}
927 if (*args != '\000')
928 {
929 *args++ = '\000';
930 }
931 if (*arg != '-')
932 {
933 name = arg;
934 }
935 else if (STREQ (arg, "-mapped"))
936 {
937 mapped = 1;
938 }
939 else if (STREQ (arg, "-readnow"))
940 {
941 readnow = 1;
942 }
943 else
944 {
945 error ("unknown option `%s'", arg);
946 }
947 }
948
949 /* After picking off any options and the file name, args should be
950 left pointing at the remainder of the command line, which should
951 be the address expression to evaluate. */
952
953 if ((name == NULL) || (*args == '\000') )
954 {
955 error ("add-symbol-file takes a file name and an address");
956 }
957 name = tilde_expand (name);
958 make_cleanup (free, name);
959
960 text_addr = parse_and_eval_address (args);
961
962 if (!query ("add symbol table from file \"%s\" at text_addr = %s?\n",
963 name, local_hex_string ((unsigned long)text_addr)))
964 error ("Not confirmed.");
965
966 symbol_file_add (name, 0, text_addr, 0, mapped, readnow);
967 }
968 \f
969 /* Re-read symbols if a symbol-file has changed. */
970 void
971 reread_symbols ()
972 {
973 struct objfile *objfile;
974 long new_modtime;
975 int reread_one = 0;
976 struct stat new_statbuf;
977 int res;
978
979 /* With the addition of shared libraries, this should be modified,
980 the load time should be saved in the partial symbol tables, since
981 different tables may come from different source files. FIXME.
982 This routine should then walk down each partial symbol table
983 and see if the symbol table that it originates from has been changed */
984
985 for (objfile = object_files; objfile; objfile = objfile->next) {
986 if (objfile->obfd) {
987 #ifdef IBM6000_TARGET
988 /* If this object is from a shared library, then you should
989 stat on the library name, not member name. */
990
991 if (objfile->obfd->my_archive)
992 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
993 else
994 #endif
995 res = stat (objfile->name, &new_statbuf);
996 if (res != 0) {
997 /* FIXME, should use print_sys_errmsg but it's not filtered. */
998 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
999 objfile->name);
1000 continue;
1001 }
1002 new_modtime = new_statbuf.st_mtime;
1003 if (new_modtime != objfile->mtime)
1004 {
1005 struct cleanup *old_cleanups;
1006 struct section_offsets *offsets;
1007 int num_offsets;
1008 int section_offsets_size;
1009
1010 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1011 objfile->name);
1012
1013 /* There are various functions like symbol_file_add,
1014 symfile_bfd_open, syms_from_objfile, etc., which might
1015 appear to do what we want. But they have various other
1016 effects which we *don't* want. So we just do stuff
1017 ourselves. We don't worry about mapped files (for one thing,
1018 any mapped file will be out of date). */
1019
1020 /* If we get an error, blow away this objfile (not sure if
1021 that is the correct response for things like shared
1022 libraries). */
1023 old_cleanups = make_cleanup (free_objfile, objfile);
1024 /* We need to do this whenever any symbols go away. */
1025 make_cleanup (clear_symtab_users, 0);
1026
1027 /* Clean up any state BFD has sitting around. We don't need
1028 to close the descriptor but BFD lacks a way of closing the
1029 BFD without closing the descriptor. */
1030 if (!bfd_close (objfile->obfd))
1031 error ("Can't close BFD for %s.", objfile->name);
1032 objfile->obfd = bfd_openr (objfile->name, gnutarget);
1033 if (objfile->obfd == NULL)
1034 error ("Can't open %s to read symbols.", objfile->name);
1035 /* bfd_openr sets cacheable to true, which is what we want. */
1036 if (!bfd_check_format (objfile->obfd, bfd_object))
1037 error ("Can't read symbols from %s: %s.", objfile->name,
1038 bfd_errmsg (bfd_error));
1039
1040 /* Save the offsets, we will nuke them with the rest of the
1041 psymbol_obstack. */
1042 num_offsets = objfile->num_sections;
1043 section_offsets_size =
1044 sizeof (struct section_offsets)
1045 + sizeof (objfile->section_offsets->offsets) * num_offsets;
1046 offsets = (struct section_offsets *) alloca (section_offsets_size);
1047 memcpy (offsets, objfile->section_offsets, section_offsets_size);
1048
1049 /* Nuke all the state that we will re-read. Much of the following
1050 code which sets things to NULL really is necessary to tell
1051 other parts of GDB that there is nothing currently there. */
1052
1053 /* FIXME: Do we have to free a whole linked list, or is this
1054 enough? */
1055 if (objfile->global_psymbols.list)
1056 mfree (objfile->md, objfile->global_psymbols.list);
1057 objfile->global_psymbols.list = NULL;
1058 objfile->global_psymbols.size = 0;
1059 if (objfile->static_psymbols.list)
1060 mfree (objfile->md, objfile->static_psymbols.list);
1061 objfile->static_psymbols.list = NULL;
1062 objfile->static_psymbols.size = 0;
1063
1064 /* Free the obstacks for non-reusable objfiles */
1065 obstack_free (&objfile -> psymbol_obstack, 0);
1066 obstack_free (&objfile -> symbol_obstack, 0);
1067 obstack_free (&objfile -> type_obstack, 0);
1068 objfile->sections = NULL;
1069 objfile->symtabs = NULL;
1070 objfile->psymtabs = NULL;
1071 objfile->free_psymtabs = NULL;
1072 objfile->msymbols = NULL;
1073 objfile->minimal_symbol_count= 0;
1074 objfile->fundamental_types = NULL;
1075 if (objfile -> sf != NULL)
1076 {
1077 (*objfile -> sf -> sym_finish) (objfile);
1078 }
1079
1080 /* We never make this a mapped file. */
1081 objfile -> md = NULL;
1082 /* obstack_specify_allocation also initializes the obstack so
1083 it is empty. */
1084 obstack_specify_allocation (&objfile -> psymbol_obstack, 0, 0,
1085 xmalloc, free);
1086 obstack_specify_allocation (&objfile -> symbol_obstack, 0, 0,
1087 xmalloc, free);
1088 obstack_specify_allocation (&objfile -> type_obstack, 0, 0,
1089 xmalloc, free);
1090 if (build_objfile_section_table (objfile))
1091 {
1092 error ("Can't find the file sections in `%s': %s",
1093 objfile -> name, bfd_errmsg (bfd_error));
1094 }
1095
1096 /* We use the same section offsets as from last time. I'm not
1097 sure whether that is always correct for shared libraries. */
1098 objfile->section_offsets = (struct section_offsets *)
1099 obstack_alloc (&objfile -> psymbol_obstack, section_offsets_size);
1100 memcpy (objfile->section_offsets, offsets, section_offsets_size);
1101 objfile->num_sections = num_offsets;
1102
1103 /* What the hell is sym_new_init for, anyway? The concept of
1104 distinguishing between the main file and additional files
1105 in this way seems rather dubious. */
1106 if (objfile == symfile_objfile)
1107 (*objfile->sf->sym_new_init) (objfile);
1108
1109 (*objfile->sf->sym_init) (objfile);
1110 clear_complaints (1, 1);
1111 /* The "mainline" parameter is a hideous hack; I think leaving it
1112 zero is OK since dbxread.c also does what it needs to do if
1113 objfile->global_psymbols.size is 0. */
1114 (*objfile->sf->sym_read) (objfile, objfile->section_offsets, 0);
1115 objfile -> flags |= OBJF_SYMS;
1116
1117 /* We're done reading the symbol file; finish off complaints. */
1118 clear_complaints (0, 1);
1119
1120 /* Getting new symbols may change our opinion about what is
1121 frameless. */
1122
1123 reinit_frame_cache ();
1124
1125 /* Discard cleanups as symbol reading was successful. */
1126 discard_cleanups (old_cleanups);
1127
1128 /* If the mtime has changed between the time we set new_modtime
1129 and now, we *want* this to be out of date, so don't call stat
1130 again now. */
1131 objfile->mtime = new_modtime;
1132 reread_one = 1;
1133 }
1134 }
1135 }
1136
1137 if (reread_one)
1138 clear_symtab_users ();
1139 }
1140
1141 \f
1142 enum language
1143 deduce_language_from_filename (filename)
1144 char *filename;
1145 {
1146 char *c;
1147
1148 if (0 == filename)
1149 ; /* Get default */
1150 else if (0 == (c = strrchr (filename, '.')))
1151 ; /* Get default. */
1152 else if (STREQ(c,".mod"))
1153 return language_m2;
1154 else if (STREQ(c,".c"))
1155 return language_c;
1156 else if (STREQ (c,".cc") || STREQ (c,".C") || STREQ (c, ".cxx"))
1157 return language_cplus;
1158 else if (STREQ (c,".ch") || STREQ (c,".c186") || STREQ (c,".c286"))
1159 return language_chill;
1160
1161 return language_unknown; /* default */
1162 }
1163 \f
1164 /* allocate_symtab:
1165
1166 Allocate and partly initialize a new symbol table. Return a pointer
1167 to it. error() if no space.
1168
1169 Caller must set these fields:
1170 LINETABLE(symtab)
1171 symtab->blockvector
1172 symtab->dirname
1173 symtab->free_code
1174 symtab->free_ptr
1175 initialize any EXTRA_SYMTAB_INFO
1176 possibly free_named_symtabs (symtab->filename);
1177 */
1178
1179 struct symtab *
1180 allocate_symtab (filename, objfile)
1181 char *filename;
1182 struct objfile *objfile;
1183 {
1184 register struct symtab *symtab;
1185
1186 symtab = (struct symtab *)
1187 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symtab));
1188 memset (symtab, 0, sizeof (*symtab));
1189 symtab -> filename = obsavestring (filename, strlen (filename),
1190 &objfile -> symbol_obstack);
1191 symtab -> fullname = NULL;
1192 symtab -> language = deduce_language_from_filename (filename);
1193
1194 /* Hook it to the objfile it comes from */
1195
1196 symtab -> objfile = objfile;
1197 symtab -> next = objfile -> symtabs;
1198 objfile -> symtabs = symtab;
1199
1200 #ifdef INIT_EXTRA_SYMTAB_INFO
1201 INIT_EXTRA_SYMTAB_INFO (symtab);
1202 #endif
1203
1204 return (symtab);
1205 }
1206
1207 struct partial_symtab *
1208 allocate_psymtab (filename, objfile)
1209 char *filename;
1210 struct objfile *objfile;
1211 {
1212 struct partial_symtab *psymtab;
1213
1214 if (objfile -> free_psymtabs)
1215 {
1216 psymtab = objfile -> free_psymtabs;
1217 objfile -> free_psymtabs = psymtab -> next;
1218 }
1219 else
1220 psymtab = (struct partial_symtab *)
1221 obstack_alloc (&objfile -> psymbol_obstack,
1222 sizeof (struct partial_symtab));
1223
1224 memset (psymtab, 0, sizeof (struct partial_symtab));
1225 psymtab -> filename = obsavestring (filename, strlen (filename),
1226 &objfile -> psymbol_obstack);
1227 psymtab -> symtab = NULL;
1228
1229 /* Hook it to the objfile it comes from */
1230
1231 psymtab -> objfile = objfile;
1232 psymtab -> next = objfile -> psymtabs;
1233 objfile -> psymtabs = psymtab;
1234
1235 return (psymtab);
1236 }
1237
1238 \f
1239 /* Reset all data structures in gdb which may contain references to symbol
1240 table date. */
1241
1242 void
1243 clear_symtab_users ()
1244 {
1245 /* Someday, we should do better than this, by only blowing away
1246 the things that really need to be blown. */
1247 clear_value_history ();
1248 clear_displays ();
1249 clear_internalvars ();
1250 breakpoint_re_set ();
1251 set_default_breakpoint (0, 0, 0, 0);
1252 current_source_symtab = 0;
1253 current_source_line = 0;
1254 clear_pc_function_cache ();
1255 }
1256
1257 /* clear_symtab_users_once:
1258
1259 This function is run after symbol reading, or from a cleanup.
1260 If an old symbol table was obsoleted, the old symbol table
1261 has been blown away, but the other GDB data structures that may
1262 reference it have not yet been cleared or re-directed. (The old
1263 symtab was zapped, and the cleanup queued, in free_named_symtab()
1264 below.)
1265
1266 This function can be queued N times as a cleanup, or called
1267 directly; it will do all the work the first time, and then will be a
1268 no-op until the next time it is queued. This works by bumping a
1269 counter at queueing time. Much later when the cleanup is run, or at
1270 the end of symbol processing (in case the cleanup is discarded), if
1271 the queued count is greater than the "done-count", we do the work
1272 and set the done-count to the queued count. If the queued count is
1273 less than or equal to the done-count, we just ignore the call. This
1274 is needed because reading a single .o file will often replace many
1275 symtabs (one per .h file, for example), and we don't want to reset
1276 the breakpoints N times in the user's face.
1277
1278 The reason we both queue a cleanup, and call it directly after symbol
1279 reading, is because the cleanup protects us in case of errors, but is
1280 discarded if symbol reading is successful. */
1281
1282 #if 0
1283 /* FIXME: As free_named_symtabs is currently a big noop this function
1284 is no longer needed. */
1285 static void
1286 clear_symtab_users_once PARAMS ((void));
1287
1288 static int clear_symtab_users_queued;
1289 static int clear_symtab_users_done;
1290
1291 static void
1292 clear_symtab_users_once ()
1293 {
1294 /* Enforce once-per-`do_cleanups'-semantics */
1295 if (clear_symtab_users_queued <= clear_symtab_users_done)
1296 return;
1297 clear_symtab_users_done = clear_symtab_users_queued;
1298
1299 clear_symtab_users ();
1300 }
1301 #endif
1302
1303 /* Delete the specified psymtab, and any others that reference it. */
1304
1305 static void
1306 cashier_psymtab (pst)
1307 struct partial_symtab *pst;
1308 {
1309 struct partial_symtab *ps, *pprev = NULL;
1310 int i;
1311
1312 /* Find its previous psymtab in the chain */
1313 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
1314 if (ps == pst)
1315 break;
1316 pprev = ps;
1317 }
1318
1319 if (ps) {
1320 /* Unhook it from the chain. */
1321 if (ps == pst->objfile->psymtabs)
1322 pst->objfile->psymtabs = ps->next;
1323 else
1324 pprev->next = ps->next;
1325
1326 /* FIXME, we can't conveniently deallocate the entries in the
1327 partial_symbol lists (global_psymbols/static_psymbols) that
1328 this psymtab points to. These just take up space until all
1329 the psymtabs are reclaimed. Ditto the dependencies list and
1330 filename, which are all in the psymbol_obstack. */
1331
1332 /* We need to cashier any psymtab that has this one as a dependency... */
1333 again:
1334 for (ps = pst->objfile->psymtabs; ps; ps = ps->next) {
1335 for (i = 0; i < ps->number_of_dependencies; i++) {
1336 if (ps->dependencies[i] == pst) {
1337 cashier_psymtab (ps);
1338 goto again; /* Must restart, chain has been munged. */
1339 }
1340 }
1341 }
1342 }
1343 }
1344
1345 /* If a symtab or psymtab for filename NAME is found, free it along
1346 with any dependent breakpoints, displays, etc.
1347 Used when loading new versions of object modules with the "add-file"
1348 command. This is only called on the top-level symtab or psymtab's name;
1349 it is not called for subsidiary files such as .h files.
1350
1351 Return value is 1 if we blew away the environment, 0 if not.
1352 FIXME. The return valu appears to never be used.
1353
1354 FIXME. I think this is not the best way to do this. We should
1355 work on being gentler to the environment while still cleaning up
1356 all stray pointers into the freed symtab. */
1357
1358 int
1359 free_named_symtabs (name)
1360 char *name;
1361 {
1362 #if 0
1363 /* FIXME: With the new method of each objfile having it's own
1364 psymtab list, this function needs serious rethinking. In particular,
1365 why was it ever necessary to toss psymtabs with specific compilation
1366 unit filenames, as opposed to all psymtabs from a particular symbol
1367 file? -- fnf
1368 Well, the answer is that some systems permit reloading of particular
1369 compilation units. We want to blow away any old info about these
1370 compilation units, regardless of which objfiles they arrived in. --gnu. */
1371
1372 register struct symtab *s;
1373 register struct symtab *prev;
1374 register struct partial_symtab *ps;
1375 struct blockvector *bv;
1376 int blewit = 0;
1377
1378 /* We only wack things if the symbol-reload switch is set. */
1379 if (!symbol_reloading)
1380 return 0;
1381
1382 /* Some symbol formats have trouble providing file names... */
1383 if (name == 0 || *name == '\0')
1384 return 0;
1385
1386 /* Look for a psymtab with the specified name. */
1387
1388 again2:
1389 for (ps = partial_symtab_list; ps; ps = ps->next) {
1390 if (STREQ (name, ps->filename)) {
1391 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
1392 goto again2; /* Must restart, chain has been munged */
1393 }
1394 }
1395
1396 /* Look for a symtab with the specified name. */
1397
1398 for (s = symtab_list; s; s = s->next)
1399 {
1400 if (STREQ (name, s->filename))
1401 break;
1402 prev = s;
1403 }
1404
1405 if (s)
1406 {
1407 if (s == symtab_list)
1408 symtab_list = s->next;
1409 else
1410 prev->next = s->next;
1411
1412 /* For now, queue a delete for all breakpoints, displays, etc., whether
1413 or not they depend on the symtab being freed. This should be
1414 changed so that only those data structures affected are deleted. */
1415
1416 /* But don't delete anything if the symtab is empty.
1417 This test is necessary due to a bug in "dbxread.c" that
1418 causes empty symtabs to be created for N_SO symbols that
1419 contain the pathname of the object file. (This problem
1420 has been fixed in GDB 3.9x). */
1421
1422 bv = BLOCKVECTOR (s);
1423 if (BLOCKVECTOR_NBLOCKS (bv) > 2
1424 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
1425 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
1426 {
1427 complain (&oldsyms_complaint, name);
1428
1429 clear_symtab_users_queued++;
1430 make_cleanup (clear_symtab_users_once, 0);
1431 blewit = 1;
1432 } else {
1433 complain (&empty_symtab_complaint, name);
1434 }
1435
1436 free_symtab (s);
1437 }
1438 else
1439 {
1440 /* It is still possible that some breakpoints will be affected
1441 even though no symtab was found, since the file might have
1442 been compiled without debugging, and hence not be associated
1443 with a symtab. In order to handle this correctly, we would need
1444 to keep a list of text address ranges for undebuggable files.
1445 For now, we do nothing, since this is a fairly obscure case. */
1446 ;
1447 }
1448
1449 /* FIXME, what about the minimal symbol table? */
1450 return blewit;
1451 #else
1452 return (0);
1453 #endif
1454 }
1455 \f
1456 /* Allocate and partially fill a partial symtab. It will be
1457 completely filled at the end of the symbol list.
1458
1459 SYMFILE_NAME is the name of the symbol-file we are reading from, and ADDR
1460 is the address relative to which its symbols are (incremental) or 0
1461 (normal). */
1462
1463
1464 struct partial_symtab *
1465 start_psymtab_common (objfile, section_offsets,
1466 filename, textlow, global_syms, static_syms)
1467 struct objfile *objfile;
1468 struct section_offsets *section_offsets;
1469 char *filename;
1470 CORE_ADDR textlow;
1471 struct partial_symbol *global_syms;
1472 struct partial_symbol *static_syms;
1473 {
1474 struct partial_symtab *psymtab;
1475
1476 psymtab = allocate_psymtab (filename, objfile);
1477 psymtab -> section_offsets = section_offsets;
1478 psymtab -> textlow = textlow;
1479 psymtab -> texthigh = psymtab -> textlow; /* default */
1480 psymtab -> globals_offset = global_syms - objfile -> global_psymbols.list;
1481 psymtab -> statics_offset = static_syms - objfile -> static_psymbols.list;
1482 return (psymtab);
1483 }
1484 \f
1485 /* Debugging versions of functions that are usually inline macros
1486 (see symfile.h). */
1487
1488 #if !INLINE_ADD_PSYMBOL
1489
1490 /* Add a symbol with a long value to a psymtab.
1491 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
1492
1493 void
1494 add_psymbol_to_list (name, namelength, namespace, class, list, val, language,
1495 objfile)
1496 char *name;
1497 int namelength;
1498 enum namespace namespace;
1499 enum address_class class;
1500 struct psymbol_allocation_list *list;
1501 long val;
1502 enum language language;
1503 struct objfile *objfile;
1504 {
1505 register struct partial_symbol *psym;
1506 register char *demangled_name;
1507
1508 if (list->next >= list->list + list->size)
1509 {
1510 extend_psymbol_list (list,objfile);
1511 }
1512 psym = list->next++;
1513
1514 SYMBOL_NAME (psym) =
1515 (char *) obstack_alloc (&objfile->psymbol_obstack, namelength + 1);
1516 memcpy (SYMBOL_NAME (psym), name, namelength);
1517 SYMBOL_NAME (psym)[namelength] = '\0';
1518 SYMBOL_VALUE (psym) = val;
1519 SYMBOL_LANGUAGE (psym) = language;
1520 PSYMBOL_NAMESPACE (psym) = namespace;
1521 PSYMBOL_CLASS (psym) = class;
1522 SYMBOL_INIT_DEMANGLED_NAME (psym, &objfile->psymbol_obstack);
1523 }
1524
1525 /* Add a symbol with a CORE_ADDR value to a psymtab. */
1526
1527 void
1528 add_psymbol_addr_to_list (name, namelength, namespace, class, list, val,
1529 language, objfile)
1530 char *name;
1531 int namelength;
1532 enum namespace namespace;
1533 enum address_class class;
1534 struct psymbol_allocation_list *list;
1535 CORE_ADDR val;
1536 enum language language;
1537 struct objfile *objfile;
1538 {
1539 register struct partial_symbol *psym;
1540 register char *demangled_name;
1541
1542 if (list->next >= list->list + list->size)
1543 {
1544 extend_psymbol_list (list,objfile);
1545 }
1546 psym = list->next++;
1547
1548 SYMBOL_NAME (psym) =
1549 (char *) obstack_alloc (&objfile->psymbol_obstack, namelength + 1);
1550 memcpy (SYMBOL_NAME (psym), name, namelength);
1551 SYMBOL_NAME (psym)[namelength] = '\0';
1552 SYMBOL_VALUE_ADDRESS (psym) = val;
1553 SYMBOL_LANGUAGE (psym) = language;
1554 PSYMBOL_NAMESPACE (psym) = namespace;
1555 PSYMBOL_CLASS (psym) = class;
1556 SYMBOL_INIT_DEMANGLED_NAME (psym, &objfile->psymbol_obstack);
1557 }
1558
1559 #endif /* !INLINE_ADD_PSYMBOL */
1560
1561 \f
1562 void
1563 _initialize_symfile ()
1564 {
1565 struct cmd_list_element *c;
1566
1567 c = add_cmd ("symbol-file", class_files, symbol_file_command,
1568 "Load symbol table from executable file FILE.\n\
1569 The `file' command can also load symbol tables, as well as setting the file\n\
1570 to execute.", &cmdlist);
1571 c->completer = filename_completer;
1572
1573 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
1574 "Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
1575 The second argument provides the starting address of the file's text.",
1576 &cmdlist);
1577 c->completer = filename_completer;
1578
1579 c = add_cmd ("load", class_files, load_command,
1580 "Dynamically load FILE into the running program, and record its symbols\n\
1581 for access from GDB.", &cmdlist);
1582 c->completer = filename_completer;
1583
1584 add_show_from_set
1585 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
1586 (char *)&symbol_reloading,
1587 "Set dynamic symbol table reloading multiple times in one run.",
1588 &setlist),
1589 &showlist);
1590
1591 }