2000-06-01 Michael Snyder <msnyder@seadog.cygnus.com>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) PARAMS ((char *));
72 void (*post_add_symbol_hook) PARAMS ((void));
73 void (*target_new_objfile_hook) PARAMS ((struct objfile *));
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 struct complaint oldsyms_complaint =
81 {
82 "Replacing old symbols for `%s'", 0, 0
83 };
84
85 struct complaint empty_symtab_complaint =
86 {
87 "Empty symbol table found for `%s'", 0, 0
88 };
89
90 struct complaint unknown_option_complaint =
91 {
92 "Unknown option `%s' ignored", 0, 0
93 };
94
95 /* External variables and functions referenced. */
96
97 extern int info_verbose;
98
99 extern void report_transfer_performance (unsigned long, time_t, time_t);
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table (void);
105 static void simple_free_overlay_region_table (void);
106 #endif
107
108 static void set_initial_language (void);
109
110 static void load_command (char *, int);
111
112 static void add_symbol_file_command (char *, int);
113
114 static void add_shared_symbol_files_command (char *, int);
115
116 static void cashier_psymtab (struct partial_symtab *);
117
118 static int compare_psymbols (const void *, const void *);
119
120 static int compare_symbols (const void *, const void *);
121
122 bfd *symfile_bfd_open (char *);
123
124 static void find_sym_fns (struct objfile *);
125
126 static void decrement_reading_symtab (void *);
127
128 static void overlay_invalidate_all (void);
129
130 static int overlay_is_mapped (struct obj_section *);
131
132 void list_overlays_command (char *, int);
133
134 void map_overlay_command (char *, int);
135
136 void unmap_overlay_command (char *, int);
137
138 static void overlay_auto_command (char *, int);
139
140 static void overlay_manual_command (char *, int);
141
142 static void overlay_off_command (char *, int);
143
144 static void overlay_load_command (char *, int);
145
146 static void overlay_command (char *, int);
147
148 static void simple_free_overlay_table (void);
149
150 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
151
152 static int simple_read_overlay_table (void);
153
154 static int simple_overlay_update_1 (struct obj_section *);
155
156 static void add_filename_language (char *ext, enum language lang);
157
158 static void set_ext_lang_command (char *args, int from_tty);
159
160 static void info_ext_lang_command (char *args, int from_tty);
161
162 static void init_filename_language_table (void);
163
164 void _initialize_symfile (void);
165
166 /* List of all available sym_fns. On gdb startup, each object file reader
167 calls add_symtab_fns() to register information on each format it is
168 prepared to read. */
169
170 static struct sym_fns *symtab_fns = NULL;
171
172 /* Flag for whether user will be reloading symbols multiple times.
173 Defaults to ON for VxWorks, otherwise OFF. */
174
175 #ifdef SYMBOL_RELOADING_DEFAULT
176 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
177 #else
178 int symbol_reloading = 0;
179 #endif
180
181 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
182 this variable is interpreted as a threshhold. If adding a new
183 library's symbol table to those already known to the debugger would
184 exceed this threshhold, then the shlib's symbols are not added.
185
186 If non-zero on other platforms, shared library symbols will be added
187 automatically when the inferior is created, new libraries are loaded,
188 or when attaching to the inferior. This is almost always what users
189 will want to have happen; but for very large programs, the startup
190 time will be excessive, and so if this is a problem, the user can
191 clear this flag and then add the shared library symbols as needed.
192 Note that there is a potential for confusion, since if the shared
193 library symbols are not loaded, commands like "info fun" will *not*
194 report all the functions that are actually present.
195
196 Note that HP-UX interprets this variable to mean, "threshhold size
197 in megabytes, where zero means never add". Other platforms interpret
198 this variable to mean, "always add if non-zero, never add if zero."
199 */
200
201 int auto_solib_add = 1;
202 \f
203
204 /* Since this function is called from within qsort, in an ANSI environment
205 it must conform to the prototype for qsort, which specifies that the
206 comparison function takes two "void *" pointers. */
207
208 static int
209 compare_symbols (s1p, s2p)
210 const PTR s1p;
211 const PTR s2p;
212 {
213 register struct symbol **s1, **s2;
214
215 s1 = (struct symbol **) s1p;
216 s2 = (struct symbol **) s2p;
217
218 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
219 }
220
221 /*
222
223 LOCAL FUNCTION
224
225 compare_psymbols -- compare two partial symbols by name
226
227 DESCRIPTION
228
229 Given pointers to pointers to two partial symbol table entries,
230 compare them by name and return -N, 0, or +N (ala strcmp).
231 Typically used by sorting routines like qsort().
232
233 NOTES
234
235 Does direct compare of first two characters before punting
236 and passing to strcmp for longer compares. Note that the
237 original version had a bug whereby two null strings or two
238 identically named one character strings would return the
239 comparison of memory following the null byte.
240
241 */
242
243 static int
244 compare_psymbols (s1p, s2p)
245 const PTR s1p;
246 const PTR s2p;
247 {
248 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
249 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 /* Note: I replaced the STRCMP line (commented out below)
262 * with a simpler "strcmp()" which compares the 2 strings
263 * from the beginning. (STRCMP is a macro which first compares
264 * the initial characters, then falls back on strcmp).
265 * The reason is that the STRCMP line was tickling a C compiler
266 * bug on HP-UX 10.30, which is avoided with the simpler
267 * code. The performance gain from the more complicated code
268 * is negligible, given that we have already checked the
269 * initial 2 characters above. I reported the compiler bug,
270 * and once it is fixed the original line can be put back. RT
271 */
272 /* return ( STRCMP (st1 + 2, st2 + 2)); */
273 return (strcmp (st1, st2));
274 }
275 }
276
277 void
278 sort_pst_symbols (pst)
279 struct partial_symtab *pst;
280 {
281 /* Sort the global list; don't sort the static list */
282
283 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
284 pst->n_global_syms, sizeof (struct partial_symbol *),
285 compare_psymbols);
286 }
287
288 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
289
290 void
291 sort_block_syms (b)
292 register struct block *b;
293 {
294 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
295 sizeof (struct symbol *), compare_symbols);
296 }
297
298 /* Call sort_symtab_syms to sort alphabetically
299 the symbols of each block of one symtab. */
300
301 void
302 sort_symtab_syms (s)
303 register struct symtab *s;
304 {
305 register struct blockvector *bv;
306 int nbl;
307 int i;
308 register struct block *b;
309
310 if (s == 0)
311 return;
312 bv = BLOCKVECTOR (s);
313 nbl = BLOCKVECTOR_NBLOCKS (bv);
314 for (i = 0; i < nbl; i++)
315 {
316 b = BLOCKVECTOR_BLOCK (bv, i);
317 if (BLOCK_SHOULD_SORT (b))
318 sort_block_syms (b);
319 }
320 }
321
322 /* Make a null terminated copy of the string at PTR with SIZE characters in
323 the obstack pointed to by OBSTACKP . Returns the address of the copy.
324 Note that the string at PTR does not have to be null terminated, I.E. it
325 may be part of a larger string and we are only saving a substring. */
326
327 char *
328 obsavestring (ptr, size, obstackp)
329 char *ptr;
330 int size;
331 struct obstack *obstackp;
332 {
333 register char *p = (char *) obstack_alloc (obstackp, size + 1);
334 /* Open-coded memcpy--saves function call time. These strings are usually
335 short. FIXME: Is this really still true with a compiler that can
336 inline memcpy? */
337 {
338 register char *p1 = ptr;
339 register char *p2 = p;
340 char *end = ptr + size;
341 while (p1 != end)
342 *p2++ = *p1++;
343 }
344 p[size] = 0;
345 return p;
346 }
347
348 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
349 in the obstack pointed to by OBSTACKP. */
350
351 char *
352 obconcat (obstackp, s1, s2, s3)
353 struct obstack *obstackp;
354 const char *s1, *s2, *s3;
355 {
356 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
357 register char *val = (char *) obstack_alloc (obstackp, len);
358 strcpy (val, s1);
359 strcat (val, s2);
360 strcat (val, s3);
361 return val;
362 }
363
364 /* True if we are nested inside psymtab_to_symtab. */
365
366 int currently_reading_symtab = 0;
367
368 static void
369 decrement_reading_symtab (dummy)
370 void *dummy;
371 {
372 currently_reading_symtab--;
373 }
374
375 /* Get the symbol table that corresponds to a partial_symtab.
376 This is fast after the first time you do it. In fact, there
377 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
378 case inline. */
379
380 struct symtab *
381 psymtab_to_symtab (pst)
382 register struct partial_symtab *pst;
383 {
384 /* If it's been looked up before, return it. */
385 if (pst->symtab)
386 return pst->symtab;
387
388 /* If it has not yet been read in, read it. */
389 if (!pst->readin)
390 {
391 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
392 currently_reading_symtab++;
393 (*pst->read_symtab) (pst);
394 do_cleanups (back_to);
395 }
396
397 return pst->symtab;
398 }
399
400 /* Initialize entry point information for this objfile. */
401
402 void
403 init_entry_point_info (objfile)
404 struct objfile *objfile;
405 {
406 /* Save startup file's range of PC addresses to help blockframe.c
407 decide where the bottom of the stack is. */
408
409 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
410 {
411 /* Executable file -- record its entry point so we'll recognize
412 the startup file because it contains the entry point. */
413 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
414 }
415 else
416 {
417 /* Examination of non-executable.o files. Short-circuit this stuff. */
418 objfile->ei.entry_point = INVALID_ENTRY_POINT;
419 }
420 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
421 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
422 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
423 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
424 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
425 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
426 }
427
428 /* Get current entry point address. */
429
430 CORE_ADDR
431 entry_point_address ()
432 {
433 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
434 }
435
436 /* Remember the lowest-addressed loadable section we've seen.
437 This function is called via bfd_map_over_sections.
438
439 In case of equal vmas, the section with the largest size becomes the
440 lowest-addressed loadable section.
441
442 If the vmas and sizes are equal, the last section is considered the
443 lowest-addressed loadable section. */
444
445 void
446 find_lowest_section (abfd, sect, obj)
447 bfd *abfd;
448 asection *sect;
449 PTR obj;
450 {
451 asection **lowest = (asection **) obj;
452
453 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
454 return;
455 if (!*lowest)
456 *lowest = sect; /* First loadable section */
457 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
458 *lowest = sect; /* A lower loadable section */
459 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
460 && (bfd_section_size (abfd, (*lowest))
461 <= bfd_section_size (abfd, sect)))
462 *lowest = sect;
463 }
464
465
466 /* Build (allocate and populate) a section_addr_info struct from
467 an existing section table. */
468
469 extern struct section_addr_info *
470 build_section_addr_info_from_section_table (const struct section_table *start,
471 const struct section_table *end)
472 {
473 struct section_addr_info *sap;
474 const struct section_table *stp;
475 int oidx;
476
477 sap = xmalloc (sizeof (struct section_addr_info));
478 memset (sap, 0, sizeof (struct section_addr_info));
479
480 for (stp = start, oidx = 0; stp != end; stp++)
481 {
482 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
483 && oidx < MAX_SECTIONS)
484 {
485 sap->other[oidx].addr = stp->addr;
486 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
487 sap->other[oidx].sectindex = stp->the_bfd_section->index;
488 oidx++;
489 }
490 }
491
492 return sap;
493 }
494
495
496 /* Free all memory allocated by build_section_addr_info_from_section_table. */
497
498 extern void
499 free_section_addr_info (struct section_addr_info *sap)
500 {
501 int idx;
502
503 for (idx = 0; idx < MAX_SECTIONS; idx++)
504 if (sap->other[idx].name)
505 free (sap->other[idx].name);
506 free (sap);
507 }
508
509
510 /* Parse the user's idea of an offset for dynamic linking, into our idea
511 of how to represent it for fast symbol reading. This is the default
512 version of the sym_fns.sym_offsets function for symbol readers that
513 don't need to do anything special. It allocates a section_offsets table
514 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
515
516 void
517 default_symfile_offsets (objfile, addrs)
518 struct objfile *objfile;
519 struct section_addr_info *addrs;
520 {
521 int i;
522 asection *sect = NULL;
523
524 objfile->num_sections = SECT_OFF_MAX;
525 objfile->section_offsets = (struct section_offsets *)
526 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
527 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
528
529 /* Now calculate offsets for section that were specified by the
530 caller. */
531 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
532 {
533 struct other_sections *osp ;
534
535 osp = &addrs->other[i] ;
536 if (osp->addr == 0)
537 continue;
538
539 /* Record all sections in offsets */
540 /* The section_offsets in the objfile are here filled in using
541 the BFD index. */
542 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
543 }
544
545 /* Remember the bfd indexes for the .text, .data, .bss and
546 .rodata sections. */
547
548 sect = bfd_get_section_by_name (objfile->obfd, ".text");
549 if (sect)
550 objfile->sect_index_text = sect->index;
551
552 sect = bfd_get_section_by_name (objfile->obfd, ".data");
553 if (sect)
554 objfile->sect_index_data = sect->index;
555
556 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
557 if (sect)
558 objfile->sect_index_bss = sect->index;
559
560 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
561 if (sect)
562 objfile->sect_index_rodata = sect->index;
563
564 }
565
566 /* Process a symbol file, as either the main file or as a dynamically
567 loaded file.
568
569 OBJFILE is where the symbols are to be read from.
570
571 ADDR is the address where the text segment was loaded, unless the
572 objfile is the main symbol file, in which case it is zero.
573
574 MAINLINE is nonzero if this is the main symbol file, or zero if
575 it's an extra symbol file such as dynamically loaded code.
576
577 VERBO is nonzero if the caller has printed a verbose message about
578 the symbol reading (and complaints can be more terse about it). */
579
580 void
581 syms_from_objfile (objfile, addrs, mainline, verbo)
582 struct objfile *objfile;
583 struct section_addr_info *addrs;
584 int mainline;
585 int verbo;
586 {
587 asection *lower_sect;
588 asection *sect;
589 CORE_ADDR lower_offset;
590 struct section_addr_info local_addr;
591 struct cleanup *old_chain;
592 int i;
593
594 /* If ADDRS is NULL, initialize the local section_addr_info struct and
595 point ADDRS to it. We now establish the convention that an addr of
596 zero means no load address was specified. */
597
598 if (addrs == NULL)
599 {
600 memset (&local_addr, 0, sizeof (local_addr));
601 addrs = &local_addr;
602 }
603
604 init_entry_point_info (objfile);
605 find_sym_fns (objfile);
606
607 /* Make sure that partially constructed symbol tables will be cleaned up
608 if an error occurs during symbol reading. */
609 old_chain = make_cleanup_free_objfile (objfile);
610
611 if (mainline)
612 {
613 /* We will modify the main symbol table, make sure that all its users
614 will be cleaned up if an error occurs during symbol reading. */
615 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
616
617 /* Since no error yet, throw away the old symbol table. */
618
619 if (symfile_objfile != NULL)
620 {
621 free_objfile (symfile_objfile);
622 symfile_objfile = NULL;
623 }
624
625 /* Currently we keep symbols from the add-symbol-file command.
626 If the user wants to get rid of them, they should do "symbol-file"
627 without arguments first. Not sure this is the best behavior
628 (PR 2207). */
629
630 (*objfile->sf->sym_new_init) (objfile);
631 }
632
633 /* Convert addr into an offset rather than an absolute address.
634 We find the lowest address of a loaded segment in the objfile,
635 and assume that <addr> is where that got loaded.
636
637 We no longer warn if the lowest section is not a text segment (as
638 happens for the PA64 port. */
639 if (!mainline)
640 {
641 /* Find lowest loadable section to be used as starting point for
642 continguous sections. FIXME!! won't work without call to find
643 .text first, but this assumes text is lowest section. */
644 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
645 if (lower_sect == NULL)
646 bfd_map_over_sections (objfile->obfd, find_lowest_section,
647 (PTR) &lower_sect);
648 if (lower_sect == NULL)
649 warning ("no loadable sections found in added symbol-file %s",
650 objfile->name);
651 else
652 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
653 warning ("Lowest section in %s is %s at %s",
654 objfile->name,
655 bfd_section_name (objfile->obfd, lower_sect),
656 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
657 if (lower_sect != NULL)
658 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
659 else
660 lower_offset = 0;
661
662 /* Calculate offsets for the loadable sections.
663 FIXME! Sections must be in order of increasing loadable section
664 so that contiguous sections can use the lower-offset!!!
665
666 Adjust offsets if the segments are not contiguous.
667 If the section is contiguous, its offset should be set to
668 the offset of the highest loadable section lower than it
669 (the loadable section directly below it in memory).
670 this_offset = lower_offset = lower_addr - lower_orig_addr */
671
672 /* Calculate offsets for sections. */
673 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
674 {
675 if (addrs->other[i].addr != 0)
676 {
677 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
678 if (sect)
679 {
680 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
681 lower_offset = addrs->other[i].addr;
682 /* This is the index used by BFD. */
683 addrs->other[i].sectindex = sect->index ;
684 }
685 else
686 {
687 warning ("section %s not found in %s", addrs->other[i].name,
688 objfile->name);
689 addrs->other[i].addr = 0;
690 }
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 }
696
697 /* Initialize symbol reading routines for this objfile, allow complaints to
698 appear for this new file, and record how verbose to be, then do the
699 initial symbol reading for this file. */
700
701 (*objfile->sf->sym_init) (objfile);
702 clear_complaints (1, verbo);
703
704 (*objfile->sf->sym_offsets) (objfile, addrs);
705
706 #ifndef IBM6000_TARGET
707 /* This is a SVR4/SunOS specific hack, I think. In any event, it
708 screws RS/6000. sym_offsets should be doing this sort of thing,
709 because it knows the mapping between bfd sections and
710 section_offsets. */
711 /* This is a hack. As far as I can tell, section offsets are not
712 target dependent. They are all set to addr with a couple of
713 exceptions. The exceptions are sysvr4 shared libraries, whose
714 offsets are kept in solib structures anyway and rs6000 xcoff
715 which handles shared libraries in a completely unique way.
716
717 Section offsets are built similarly, except that they are built
718 by adding addr in all cases because there is no clear mapping
719 from section_offsets into actual sections. Note that solib.c
720 has a different algorithm for finding section offsets.
721
722 These should probably all be collapsed into some target
723 independent form of shared library support. FIXME. */
724
725 if (addrs)
726 {
727 struct obj_section *s;
728
729 /* Map section offsets in "addr" back to the object's
730 sections by comparing the section names with bfd's
731 section names. Then adjust the section address by
732 the offset. */ /* for gdb/13815 */
733
734 ALL_OBJFILE_OSECTIONS (objfile, s)
735 {
736 CORE_ADDR s_addr = 0;
737 int i;
738
739 for (i = 0;
740 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
741 i++)
742 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
743 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
744
745 s->addr -= s->offset;
746 s->addr += s_addr;
747 s->endaddr -= s->offset;
748 s->endaddr += s_addr;
749 s->offset += s_addr;
750 }
751 }
752 #endif /* not IBM6000_TARGET */
753
754 (*objfile->sf->sym_read) (objfile, mainline);
755
756 if (!have_partial_symbols () && !have_full_symbols ())
757 {
758 wrap_here ("");
759 printf_filtered ("(no debugging symbols found)...");
760 wrap_here ("");
761 }
762
763 /* Don't allow char * to have a typename (else would get caddr_t).
764 Ditto void *. FIXME: Check whether this is now done by all the
765 symbol readers themselves (many of them now do), and if so remove
766 it from here. */
767
768 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
769 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
770
771 /* Mark the objfile has having had initial symbol read attempted. Note
772 that this does not mean we found any symbols... */
773
774 objfile->flags |= OBJF_SYMS;
775
776 /* Discard cleanups as symbol reading was successful. */
777
778 discard_cleanups (old_chain);
779
780 /* Call this after reading in a new symbol table to give target
781 dependant code a crack at the new symbols. For instance, this
782 could be used to update the values of target-specific symbols GDB
783 needs to keep track of (such as _sigtramp, or whatever). */
784
785 TARGET_SYMFILE_POSTREAD (objfile);
786 }
787
788 /* Perform required actions after either reading in the initial
789 symbols for a new objfile, or mapping in the symbols from a reusable
790 objfile. */
791
792 void
793 new_symfile_objfile (objfile, mainline, verbo)
794 struct objfile *objfile;
795 int mainline;
796 int verbo;
797 {
798
799 /* If this is the main symbol file we have to clean up all users of the
800 old main symbol file. Otherwise it is sufficient to fixup all the
801 breakpoints that may have been redefined by this symbol file. */
802 if (mainline)
803 {
804 /* OK, make it the "real" symbol file. */
805 symfile_objfile = objfile;
806
807 clear_symtab_users ();
808 }
809 else
810 {
811 breakpoint_re_set ();
812 }
813
814 /* We're done reading the symbol file; finish off complaints. */
815 clear_complaints (0, verbo);
816 }
817
818 /* Process a symbol file, as either the main file or as a dynamically
819 loaded file.
820
821 NAME is the file name (which will be tilde-expanded and made
822 absolute herein) (but we don't free or modify NAME itself).
823 FROM_TTY says how verbose to be. MAINLINE specifies whether this
824 is the main symbol file, or whether it's an extra symbol file such
825 as dynamically loaded code. If !mainline, ADDR is the address
826 where the text segment was loaded.
827
828 Upon success, returns a pointer to the objfile that was added.
829 Upon failure, jumps back to command level (never returns). */
830
831 struct objfile *
832 symbol_file_add (name, from_tty, addrs, mainline, flags)
833 char *name;
834 int from_tty;
835 struct section_addr_info *addrs;
836 int mainline;
837 int flags;
838 {
839 struct objfile *objfile;
840 struct partial_symtab *psymtab;
841 bfd *abfd;
842
843 /* Open a bfd for the file, and give user a chance to burp if we'd be
844 interactively wiping out any existing symbols. */
845
846 abfd = symfile_bfd_open (name);
847
848 if ((have_full_symbols () || have_partial_symbols ())
849 && mainline
850 && from_tty
851 && !query ("Load new symbol table from \"%s\"? ", name))
852 error ("Not confirmed.");
853
854 objfile = allocate_objfile (abfd, flags);
855
856 /* If the objfile uses a mapped symbol file, and we have a psymtab for
857 it, then skip reading any symbols at this time. */
858
859 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
860 {
861 /* We mapped in an existing symbol table file that already has had
862 initial symbol reading performed, so we can skip that part. Notify
863 the user that instead of reading the symbols, they have been mapped.
864 */
865 if (from_tty || info_verbose)
866 {
867 printf_filtered ("Mapped symbols for %s...", name);
868 wrap_here ("");
869 gdb_flush (gdb_stdout);
870 }
871 init_entry_point_info (objfile);
872 find_sym_fns (objfile);
873 }
874 else
875 {
876 /* We either created a new mapped symbol table, mapped an existing
877 symbol table file which has not had initial symbol reading
878 performed, or need to read an unmapped symbol table. */
879 if (from_tty || info_verbose)
880 {
881 if (pre_add_symbol_hook)
882 pre_add_symbol_hook (name);
883 else
884 {
885 printf_filtered ("Reading symbols from %s...", name);
886 wrap_here ("");
887 gdb_flush (gdb_stdout);
888 }
889 }
890 syms_from_objfile (objfile, addrs, mainline, from_tty);
891 }
892
893 /* We now have at least a partial symbol table. Check to see if the
894 user requested that all symbols be read on initial access via either
895 the gdb startup command line or on a per symbol file basis. Expand
896 all partial symbol tables for this objfile if so. */
897
898 if ((flags & OBJF_READNOW) || readnow_symbol_files)
899 {
900 if (from_tty || info_verbose)
901 {
902 printf_filtered ("expanding to full symbols...");
903 wrap_here ("");
904 gdb_flush (gdb_stdout);
905 }
906
907 for (psymtab = objfile->psymtabs;
908 psymtab != NULL;
909 psymtab = psymtab->next)
910 {
911 psymtab_to_symtab (psymtab);
912 }
913 }
914
915 if (from_tty || info_verbose)
916 {
917 if (post_add_symbol_hook)
918 post_add_symbol_hook ();
919 else
920 {
921 printf_filtered ("done.\n");
922 gdb_flush (gdb_stdout);
923 }
924 }
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (target_new_objfile_hook)
929 target_new_objfile_hook (objfile);
930
931 return (objfile);
932 }
933
934 /* This is the symbol-file command. Read the file, analyze its
935 symbols, and add a struct symtab to a symtab list. The syntax of
936 the command is rather bizarre--(1) buildargv implements various
937 quoting conventions which are undocumented and have little or
938 nothing in common with the way things are quoted (or not quoted)
939 elsewhere in GDB, (2) options are used, which are not generally
940 used in GDB (perhaps "set mapped on", "set readnow on" would be
941 better), (3) the order of options matters, which is contrary to GNU
942 conventions (because it is confusing and inconvenient). */
943 /* Note: ezannoni 2000-04-17. This function used to have support for
944 rombug (see remote-os9k.c). It consisted of a call to target_link()
945 (target.c) to get the address of the text segment from the target,
946 and pass that to symbol_file_add(). This is no longer supported. */
947
948 void
949 symbol_file_command (args, from_tty)
950 char *args;
951 int from_tty;
952 {
953 char **argv;
954 char *name = NULL;
955 struct cleanup *cleanups;
956 int flags = OBJF_USERLOADED;
957
958 dont_repeat ();
959
960 if (args == NULL)
961 {
962 if ((have_full_symbols () || have_partial_symbols ())
963 && from_tty
964 && !query ("Discard symbol table from `%s'? ",
965 symfile_objfile->name))
966 error ("Not confirmed.");
967 free_all_objfiles ();
968
969 /* solib descriptors may have handles to objfiles. Since their
970 storage has just been released, we'd better wipe the solib
971 descriptors as well.
972 */
973 #if defined(SOLIB_RESTART)
974 SOLIB_RESTART ();
975 #endif
976
977 symfile_objfile = NULL;
978 if (from_tty)
979 printf_unfiltered ("No symbol file now.\n");
980 #ifdef HPUXHPPA
981 RESET_HP_UX_GLOBALS ();
982 #endif
983 }
984 else
985 {
986 if ((argv = buildargv (args)) == NULL)
987 {
988 nomem (0);
989 }
990 cleanups = make_cleanup_freeargv (argv);
991 while (*argv != NULL)
992 {
993 if (STREQ (*argv, "-mapped"))
994 flags |= OBJF_MAPPED;
995 else
996 if (STREQ (*argv, "-readnow"))
997 flags |= OBJF_READNOW;
998 else
999 if (**argv == '-')
1000 error ("unknown option `%s'", *argv);
1001 else
1002 {
1003 name = *argv;
1004 symbol_file_add (name, from_tty, NULL, 1, flags);
1005 #ifdef HPUXHPPA
1006 RESET_HP_UX_GLOBALS ();
1007 #endif
1008 /* Getting new symbols may change our opinion about
1009 what is frameless. */
1010 reinit_frame_cache ();
1011
1012 set_initial_language ();
1013 }
1014 argv++;
1015 }
1016
1017 if (name == NULL)
1018 {
1019 error ("no symbol file name was specified");
1020 }
1021 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1022 do_cleanups (cleanups);
1023 }
1024 }
1025
1026 /* Set the initial language.
1027
1028 A better solution would be to record the language in the psymtab when reading
1029 partial symbols, and then use it (if known) to set the language. This would
1030 be a win for formats that encode the language in an easily discoverable place,
1031 such as DWARF. For stabs, we can jump through hoops looking for specially
1032 named symbols or try to intuit the language from the specific type of stabs
1033 we find, but we can't do that until later when we read in full symbols.
1034 FIXME. */
1035
1036 static void
1037 set_initial_language ()
1038 {
1039 struct partial_symtab *pst;
1040 enum language lang = language_unknown;
1041
1042 pst = find_main_psymtab ();
1043 if (pst != NULL)
1044 {
1045 if (pst->filename != NULL)
1046 {
1047 lang = deduce_language_from_filename (pst->filename);
1048 }
1049 if (lang == language_unknown)
1050 {
1051 /* Make C the default language */
1052 lang = language_c;
1053 }
1054 set_language (lang);
1055 expected_language = current_language; /* Don't warn the user */
1056 }
1057 }
1058
1059 /* Open file specified by NAME and hand it off to BFD for preliminary
1060 analysis. Result is a newly initialized bfd *, which includes a newly
1061 malloc'd` copy of NAME (tilde-expanded and made absolute).
1062 In case of trouble, error() is called. */
1063
1064 bfd *
1065 symfile_bfd_open (name)
1066 char *name;
1067 {
1068 bfd *sym_bfd;
1069 int desc;
1070 char *absolute_name;
1071
1072
1073
1074 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1075
1076 /* Look down path for it, allocate 2nd new malloc'd copy. */
1077 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1078 #if defined(__GO32__) || defined(_WIN32)
1079 if (desc < 0)
1080 {
1081 char *exename = alloca (strlen (name) + 5);
1082 strcat (strcpy (exename, name), ".exe");
1083 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1084 0, &absolute_name);
1085 }
1086 #endif
1087 if (desc < 0)
1088 {
1089 make_cleanup (free, name);
1090 perror_with_name (name);
1091 }
1092 free (name); /* Free 1st new malloc'd copy */
1093 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1094 /* It'll be freed in free_objfile(). */
1095
1096 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1097 if (!sym_bfd)
1098 {
1099 close (desc);
1100 make_cleanup (free, name);
1101 error ("\"%s\": can't open to read symbols: %s.", name,
1102 bfd_errmsg (bfd_get_error ()));
1103 }
1104 sym_bfd->cacheable = true;
1105
1106 if (!bfd_check_format (sym_bfd, bfd_object))
1107 {
1108 /* FIXME: should be checking for errors from bfd_close (for one thing,
1109 on error it does not free all the storage associated with the
1110 bfd). */
1111 bfd_close (sym_bfd); /* This also closes desc */
1112 make_cleanup (free, name);
1113 error ("\"%s\": can't read symbols: %s.", name,
1114 bfd_errmsg (bfd_get_error ()));
1115 }
1116 return (sym_bfd);
1117 }
1118
1119 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1120 startup by the _initialize routine in each object file format reader,
1121 to register information about each format the the reader is prepared
1122 to handle. */
1123
1124 void
1125 add_symtab_fns (sf)
1126 struct sym_fns *sf;
1127 {
1128 sf->next = symtab_fns;
1129 symtab_fns = sf;
1130 }
1131
1132
1133 /* Initialize to read symbols from the symbol file sym_bfd. It either
1134 returns or calls error(). The result is an initialized struct sym_fns
1135 in the objfile structure, that contains cached information about the
1136 symbol file. */
1137
1138 static void
1139 find_sym_fns (objfile)
1140 struct objfile *objfile;
1141 {
1142 struct sym_fns *sf;
1143 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1144 char *our_target = bfd_get_target (objfile->obfd);
1145
1146 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1147 if (STREQ (our_target, "aixcoff-rs6000") ||
1148 STREQ (our_target, "xcoff-powermac"))
1149 our_flavour = (enum bfd_flavour) -1;
1150
1151 /* Special kludge for apollo. See dstread.c. */
1152 if (STREQN (our_target, "apollo", 6))
1153 our_flavour = (enum bfd_flavour) -2;
1154
1155 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1156 {
1157 if (our_flavour == sf->sym_flavour)
1158 {
1159 objfile->sf = sf;
1160 return;
1161 }
1162 }
1163 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1164 bfd_get_target (objfile->obfd));
1165 }
1166 \f
1167 /* This function runs the load command of our current target. */
1168
1169 static void
1170 load_command (arg, from_tty)
1171 char *arg;
1172 int from_tty;
1173 {
1174 if (arg == NULL)
1175 arg = get_exec_file (1);
1176 target_load (arg, from_tty);
1177 }
1178
1179 /* This version of "load" should be usable for any target. Currently
1180 it is just used for remote targets, not inftarg.c or core files,
1181 on the theory that only in that case is it useful.
1182
1183 Avoiding xmodem and the like seems like a win (a) because we don't have
1184 to worry about finding it, and (b) On VMS, fork() is very slow and so
1185 we don't want to run a subprocess. On the other hand, I'm not sure how
1186 performance compares. */
1187
1188 static int download_write_size = 512;
1189 static int validate_download = 0;
1190
1191 void
1192 generic_load (char *args, int from_tty)
1193 {
1194 asection *s;
1195 bfd *loadfile_bfd;
1196 time_t start_time, end_time; /* Start and end times of download */
1197 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1198 unsigned long write_count = 0; /* Number of writes needed. */
1199 unsigned long load_offset; /* offset to add to vma for each section */
1200 char *filename;
1201 struct cleanup *old_cleanups;
1202 char *offptr;
1203 CORE_ADDR total_size = 0;
1204 CORE_ADDR total_sent = 0;
1205
1206 /* Parse the input argument - the user can specify a load offset as
1207 a second argument. */
1208 filename = xmalloc (strlen (args) + 1);
1209 old_cleanups = make_cleanup (free, filename);
1210 strcpy (filename, args);
1211 offptr = strchr (filename, ' ');
1212 if (offptr != NULL)
1213 {
1214 char *endptr;
1215 load_offset = strtoul (offptr, &endptr, 0);
1216 if (offptr == endptr)
1217 error ("Invalid download offset:%s\n", offptr);
1218 *offptr = '\0';
1219 }
1220 else
1221 load_offset = 0;
1222
1223 /* Open the file for loading. */
1224 loadfile_bfd = bfd_openr (filename, gnutarget);
1225 if (loadfile_bfd == NULL)
1226 {
1227 perror_with_name (filename);
1228 return;
1229 }
1230
1231 /* FIXME: should be checking for errors from bfd_close (for one thing,
1232 on error it does not free all the storage associated with the
1233 bfd). */
1234 make_cleanup_bfd_close (loadfile_bfd);
1235
1236 if (!bfd_check_format (loadfile_bfd, bfd_object))
1237 {
1238 error ("\"%s\" is not an object file: %s", filename,
1239 bfd_errmsg (bfd_get_error ()));
1240 }
1241
1242 for (s = loadfile_bfd->sections; s; s = s->next)
1243 if (s->flags & SEC_LOAD)
1244 total_size += bfd_get_section_size_before_reloc (s);
1245
1246 start_time = time (NULL);
1247
1248 for (s = loadfile_bfd->sections; s; s = s->next)
1249 {
1250 if (s->flags & SEC_LOAD)
1251 {
1252 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1253 if (size > 0)
1254 {
1255 char *buffer;
1256 struct cleanup *old_chain;
1257 CORE_ADDR lma = s->lma + load_offset;
1258 CORE_ADDR block_size;
1259 int err;
1260 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1261 CORE_ADDR sent;
1262
1263 if (download_write_size > 0 && size > download_write_size)
1264 block_size = download_write_size;
1265 else
1266 block_size = size;
1267
1268 buffer = xmalloc (size);
1269 old_chain = make_cleanup (free, buffer);
1270
1271 /* Is this really necessary? I guess it gives the user something
1272 to look at during a long download. */
1273 #ifdef UI_OUT
1274 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1275 sect_name, paddr_nz (size), paddr_nz (lma));
1276 #else
1277 fprintf_unfiltered (gdb_stdout,
1278 "Loading section %s, size 0x%s lma 0x%s\n",
1279 sect_name, paddr_nz (size), paddr_nz (lma));
1280 #endif
1281
1282 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1283
1284 sent = 0;
1285 do
1286 {
1287 CORE_ADDR len;
1288 CORE_ADDR this_transfer = size - sent;
1289 if (this_transfer >= block_size)
1290 this_transfer = block_size;
1291 len = target_write_memory_partial (lma, buffer,
1292 this_transfer, &err);
1293 if (err)
1294 break;
1295 if (validate_download)
1296 {
1297 /* Broken memories and broken monitors manifest
1298 themselves here when bring new computers to
1299 life. This doubles already slow downloads. */
1300 /* NOTE: cagney/1999-10-18: A more efficient
1301 implementation might add a verify_memory()
1302 method to the target vector and then use
1303 that. remote.c could implement that method
1304 using the ``qCRC'' packet. */
1305 char *check = xmalloc (len);
1306 struct cleanup *verify_cleanups = make_cleanup (free, check);
1307 if (target_read_memory (lma, check, len) != 0)
1308 error ("Download verify read failed at 0x%s",
1309 paddr (lma));
1310 if (memcmp (buffer, check, len) != 0)
1311 error ("Download verify compare failed at 0x%s",
1312 paddr (lma));
1313 do_cleanups (verify_cleanups);
1314 }
1315 data_count += len;
1316 lma += len;
1317 buffer += len;
1318 write_count += 1;
1319 sent += len;
1320 total_sent += len;
1321 if (quit_flag
1322 || (ui_load_progress_hook != NULL
1323 && ui_load_progress_hook (sect_name, sent)))
1324 error ("Canceled the download");
1325
1326 if (show_load_progress != NULL)
1327 show_load_progress (sect_name, sent, size, total_sent, total_size);
1328 }
1329 while (sent < size);
1330
1331 if (err != 0)
1332 error ("Memory access error while loading section %s.", sect_name);
1333
1334 do_cleanups (old_chain);
1335 }
1336 }
1337 }
1338
1339 end_time = time (NULL);
1340 {
1341 CORE_ADDR entry;
1342 entry = bfd_get_start_address (loadfile_bfd);
1343 #ifdef UI_OUT
1344 ui_out_text (uiout, "Start address ");
1345 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1346 ui_out_text (uiout, ", load size ");
1347 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1348 ui_out_text (uiout, "\n");
1349
1350 #else
1351 fprintf_unfiltered (gdb_stdout,
1352 "Start address 0x%s , load size %ld\n",
1353 paddr_nz (entry), data_count);
1354 #endif
1355 /* We were doing this in remote-mips.c, I suspect it is right
1356 for other targets too. */
1357 write_pc (entry);
1358 }
1359
1360 /* FIXME: are we supposed to call symbol_file_add or not? According to
1361 a comment from remote-mips.c (where a call to symbol_file_add was
1362 commented out), making the call confuses GDB if more than one file is
1363 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1364 does. */
1365
1366 print_transfer_performance (gdb_stdout, data_count, write_count,
1367 end_time - start_time);
1368
1369 do_cleanups (old_cleanups);
1370 }
1371
1372 /* Report how fast the transfer went. */
1373
1374 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1375 replaced by print_transfer_performance (with a very different
1376 function signature). */
1377
1378 void
1379 report_transfer_performance (data_count, start_time, end_time)
1380 unsigned long data_count;
1381 time_t start_time, end_time;
1382 {
1383 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1384 }
1385
1386 void
1387 print_transfer_performance (struct ui_file *stream,
1388 unsigned long data_count,
1389 unsigned long write_count,
1390 unsigned long time_count)
1391 {
1392 #ifdef UI_OUT
1393 ui_out_text (uiout, "Transfer rate: ");
1394 if (time_count > 0)
1395 {
1396 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1397 (data_count * 8) / time_count);
1398 ui_out_text (uiout, " bits/sec");
1399 }
1400 else
1401 {
1402 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1403 ui_out_text (uiout, " bits in <1 sec");
1404 }
1405 if (write_count > 0)
1406 {
1407 ui_out_text (uiout, ", ");
1408 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1409 ui_out_text (uiout, " bytes/write");
1410 }
1411 ui_out_text (uiout, ".\n");
1412 #else
1413 fprintf_unfiltered (stream, "Transfer rate: ");
1414 if (time_count > 0)
1415 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1416 else
1417 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1418 if (write_count > 0)
1419 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1420 fprintf_unfiltered (stream, ".\n");
1421 #endif
1422 }
1423
1424 /* This function allows the addition of incrementally linked object files.
1425 It does not modify any state in the target, only in the debugger. */
1426 /* Note: ezannoni 2000-04-13 This function/command used to have a
1427 special case syntax for the rombug target (Rombug is the boot
1428 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1429 rombug case, the user doesn't need to supply a text address,
1430 instead a call to target_link() (in target.c) would supply the
1431 value to use. We are now discontinuing this type of ad hoc syntax. */
1432
1433 /* ARGSUSED */
1434 static void
1435 add_symbol_file_command (args, from_tty)
1436 char *args;
1437 int from_tty;
1438 {
1439 char *filename = NULL;
1440 int flags = OBJF_USERLOADED;
1441 char *arg;
1442 int expecting_option = 0;
1443 int section_index = 0;
1444 int argcnt = 0;
1445 int sec_num = 0;
1446 int i;
1447 int expecting_sec_name = 0;
1448 int expecting_sec_addr = 0;
1449
1450 struct
1451 {
1452 char *name;
1453 char *value;
1454 } sect_opts[SECT_OFF_MAX];
1455
1456 struct section_addr_info section_addrs;
1457 struct cleanup *my_cleanups;
1458
1459 dont_repeat ();
1460
1461 if (args == NULL)
1462 error ("add-symbol-file takes a file name and an address");
1463
1464 /* Make a copy of the string that we can safely write into. */
1465 args = xstrdup (args);
1466
1467 /* Ensure section_addrs is initialized */
1468 memset (&section_addrs, 0, sizeof (section_addrs));
1469
1470 while (*args != '\000')
1471 {
1472 /* Any leading spaces? */
1473 while (isspace (*args))
1474 args++;
1475
1476 /* Point arg to the beginning of the argument. */
1477 arg = args;
1478
1479 /* Move args pointer over the argument. */
1480 while ((*args != '\000') && !isspace (*args))
1481 args++;
1482
1483 /* If there are more arguments, terminate arg and
1484 proceed past it. */
1485 if (*args != '\000')
1486 *args++ = '\000';
1487
1488 /* Now process the argument. */
1489 if (argcnt == 0)
1490 {
1491 /* The first argument is the file name. */
1492 filename = tilde_expand (arg);
1493 my_cleanups = make_cleanup (free, filename);
1494 }
1495 else
1496 if (argcnt == 1)
1497 {
1498 /* The second argument is always the text address at which
1499 to load the program. */
1500 sect_opts[section_index].name = ".text";
1501 sect_opts[section_index].value = arg;
1502 section_index++;
1503 }
1504 else
1505 {
1506 /* It's an option (starting with '-') or it's an argument
1507 to an option */
1508
1509 if (*arg == '-')
1510 {
1511 if (strcmp (arg, "-mapped") == 0)
1512 flags |= OBJF_MAPPED;
1513 else
1514 if (strcmp (arg, "-readnow") == 0)
1515 flags |= OBJF_READNOW;
1516 else
1517 if (strcmp (arg, "-s") == 0)
1518 {
1519 if (section_index >= SECT_OFF_MAX)
1520 error ("Too many sections specified.");
1521 expecting_sec_name = 1;
1522 expecting_sec_addr = 1;
1523 }
1524 }
1525 else
1526 {
1527 if (expecting_sec_name)
1528 {
1529 sect_opts[section_index].name = arg;
1530 expecting_sec_name = 0;
1531 }
1532 else
1533 if (expecting_sec_addr)
1534 {
1535 sect_opts[section_index].value = arg;
1536 expecting_sec_addr = 0;
1537 section_index++;
1538 }
1539 else
1540 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1541 }
1542 }
1543 argcnt++;
1544 }
1545
1546 /* Print the prompt for the query below. And save the arguments into
1547 a sect_addr_info structure to be passed around to other
1548 functions. We have to split this up into separate print
1549 statements because local_hex_string returns a local static
1550 string. */
1551
1552 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1553 for (i = 0; i < section_index; i++)
1554 {
1555 CORE_ADDR addr;
1556 char *val = sect_opts[i].value;
1557 char *sec = sect_opts[i].name;
1558
1559 val = sect_opts[i].value;
1560 if (val[0] == '0' && val[1] == 'x')
1561 addr = strtoul (val+2, NULL, 16);
1562 else
1563 addr = strtoul (val, NULL, 10);
1564
1565 /* Here we store the section offsets in the order they were
1566 entered on the command line. */
1567 section_addrs.other[sec_num].name = sec;
1568 section_addrs.other[sec_num].addr = addr;
1569 printf_filtered ("\t%s_addr = %s\n",
1570 sec,
1571 local_hex_string ((unsigned long)addr));
1572 sec_num++;
1573
1574 /* The object's sections are initialized when a
1575 call is made to build_objfile_section_table (objfile).
1576 This happens in reread_symbols.
1577 At this point, we don't know what file type this is,
1578 so we can't determine what section names are valid. */
1579 }
1580
1581 if (from_tty && (!query ("%s", "")))
1582 error ("Not confirmed.");
1583
1584 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1585
1586 /* Getting new symbols may change our opinion about what is
1587 frameless. */
1588 reinit_frame_cache ();
1589 do_cleanups (my_cleanups);
1590 }
1591 \f
1592 static void
1593 add_shared_symbol_files_command (args, from_tty)
1594 char *args;
1595 int from_tty;
1596 {
1597 #ifdef ADD_SHARED_SYMBOL_FILES
1598 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1599 #else
1600 error ("This command is not available in this configuration of GDB.");
1601 #endif
1602 }
1603 \f
1604 /* Re-read symbols if a symbol-file has changed. */
1605 void
1606 reread_symbols ()
1607 {
1608 struct objfile *objfile;
1609 long new_modtime;
1610 int reread_one = 0;
1611 struct stat new_statbuf;
1612 int res;
1613
1614 /* With the addition of shared libraries, this should be modified,
1615 the load time should be saved in the partial symbol tables, since
1616 different tables may come from different source files. FIXME.
1617 This routine should then walk down each partial symbol table
1618 and see if the symbol table that it originates from has been changed */
1619
1620 for (objfile = object_files; objfile; objfile = objfile->next)
1621 {
1622 if (objfile->obfd)
1623 {
1624 #ifdef IBM6000_TARGET
1625 /* If this object is from a shared library, then you should
1626 stat on the library name, not member name. */
1627
1628 if (objfile->obfd->my_archive)
1629 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1630 else
1631 #endif
1632 res = stat (objfile->name, &new_statbuf);
1633 if (res != 0)
1634 {
1635 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1636 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1637 objfile->name);
1638 continue;
1639 }
1640 new_modtime = new_statbuf.st_mtime;
1641 if (new_modtime != objfile->mtime)
1642 {
1643 struct cleanup *old_cleanups;
1644 struct section_offsets *offsets;
1645 int num_offsets;
1646 char *obfd_filename;
1647
1648 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1649 objfile->name);
1650
1651 /* There are various functions like symbol_file_add,
1652 symfile_bfd_open, syms_from_objfile, etc., which might
1653 appear to do what we want. But they have various other
1654 effects which we *don't* want. So we just do stuff
1655 ourselves. We don't worry about mapped files (for one thing,
1656 any mapped file will be out of date). */
1657
1658 /* If we get an error, blow away this objfile (not sure if
1659 that is the correct response for things like shared
1660 libraries). */
1661 old_cleanups = make_cleanup_free_objfile (objfile);
1662 /* We need to do this whenever any symbols go away. */
1663 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1664
1665 /* Clean up any state BFD has sitting around. We don't need
1666 to close the descriptor but BFD lacks a way of closing the
1667 BFD without closing the descriptor. */
1668 obfd_filename = bfd_get_filename (objfile->obfd);
1669 if (!bfd_close (objfile->obfd))
1670 error ("Can't close BFD for %s: %s", objfile->name,
1671 bfd_errmsg (bfd_get_error ()));
1672 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1673 if (objfile->obfd == NULL)
1674 error ("Can't open %s to read symbols.", objfile->name);
1675 /* bfd_openr sets cacheable to true, which is what we want. */
1676 if (!bfd_check_format (objfile->obfd, bfd_object))
1677 error ("Can't read symbols from %s: %s.", objfile->name,
1678 bfd_errmsg (bfd_get_error ()));
1679
1680 /* Save the offsets, we will nuke them with the rest of the
1681 psymbol_obstack. */
1682 num_offsets = objfile->num_sections;
1683 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1684 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1685
1686 /* Nuke all the state that we will re-read. Much of the following
1687 code which sets things to NULL really is necessary to tell
1688 other parts of GDB that there is nothing currently there. */
1689
1690 /* FIXME: Do we have to free a whole linked list, or is this
1691 enough? */
1692 if (objfile->global_psymbols.list)
1693 mfree (objfile->md, objfile->global_psymbols.list);
1694 memset (&objfile->global_psymbols, 0,
1695 sizeof (objfile->global_psymbols));
1696 if (objfile->static_psymbols.list)
1697 mfree (objfile->md, objfile->static_psymbols.list);
1698 memset (&objfile->static_psymbols, 0,
1699 sizeof (objfile->static_psymbols));
1700
1701 /* Free the obstacks for non-reusable objfiles */
1702 free_bcache (&objfile->psymbol_cache);
1703 obstack_free (&objfile->psymbol_obstack, 0);
1704 obstack_free (&objfile->symbol_obstack, 0);
1705 obstack_free (&objfile->type_obstack, 0);
1706 objfile->sections = NULL;
1707 objfile->symtabs = NULL;
1708 objfile->psymtabs = NULL;
1709 objfile->free_psymtabs = NULL;
1710 objfile->msymbols = NULL;
1711 objfile->minimal_symbol_count = 0;
1712 memset (&objfile->msymbol_hash, 0,
1713 sizeof (objfile->msymbol_hash));
1714 memset (&objfile->msymbol_demangled_hash, 0,
1715 sizeof (objfile->msymbol_demangled_hash));
1716 objfile->fundamental_types = NULL;
1717 if (objfile->sf != NULL)
1718 {
1719 (*objfile->sf->sym_finish) (objfile);
1720 }
1721
1722 /* We never make this a mapped file. */
1723 objfile->md = NULL;
1724 /* obstack_specify_allocation also initializes the obstack so
1725 it is empty. */
1726 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1727 xmalloc, free);
1728 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1729 xmalloc, free);
1730 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1731 xmalloc, free);
1732 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1733 xmalloc, free);
1734 if (build_objfile_section_table (objfile))
1735 {
1736 error ("Can't find the file sections in `%s': %s",
1737 objfile->name, bfd_errmsg (bfd_get_error ()));
1738 }
1739
1740 /* We use the same section offsets as from last time. I'm not
1741 sure whether that is always correct for shared libraries. */
1742 objfile->section_offsets = (struct section_offsets *)
1743 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1744 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1745 objfile->num_sections = num_offsets;
1746
1747 /* What the hell is sym_new_init for, anyway? The concept of
1748 distinguishing between the main file and additional files
1749 in this way seems rather dubious. */
1750 if (objfile == symfile_objfile)
1751 {
1752 (*objfile->sf->sym_new_init) (objfile);
1753 #ifdef HPUXHPPA
1754 RESET_HP_UX_GLOBALS ();
1755 #endif
1756 }
1757
1758 (*objfile->sf->sym_init) (objfile);
1759 clear_complaints (1, 1);
1760 /* The "mainline" parameter is a hideous hack; I think leaving it
1761 zero is OK since dbxread.c also does what it needs to do if
1762 objfile->global_psymbols.size is 0. */
1763 (*objfile->sf->sym_read) (objfile, 0);
1764 if (!have_partial_symbols () && !have_full_symbols ())
1765 {
1766 wrap_here ("");
1767 printf_filtered ("(no debugging symbols found)\n");
1768 wrap_here ("");
1769 }
1770 objfile->flags |= OBJF_SYMS;
1771
1772 /* We're done reading the symbol file; finish off complaints. */
1773 clear_complaints (0, 1);
1774
1775 /* Getting new symbols may change our opinion about what is
1776 frameless. */
1777
1778 reinit_frame_cache ();
1779
1780 /* Discard cleanups as symbol reading was successful. */
1781 discard_cleanups (old_cleanups);
1782
1783 /* If the mtime has changed between the time we set new_modtime
1784 and now, we *want* this to be out of date, so don't call stat
1785 again now. */
1786 objfile->mtime = new_modtime;
1787 reread_one = 1;
1788
1789 /* Call this after reading in a new symbol table to give target
1790 dependant code a crack at the new symbols. For instance, this
1791 could be used to update the values of target-specific symbols GDB
1792 needs to keep track of (such as _sigtramp, or whatever). */
1793
1794 TARGET_SYMFILE_POSTREAD (objfile);
1795 }
1796 }
1797 }
1798
1799 if (reread_one)
1800 clear_symtab_users ();
1801 }
1802 \f
1803
1804
1805 typedef struct
1806 {
1807 char *ext;
1808 enum language lang;
1809 }
1810 filename_language;
1811
1812 static filename_language *filename_language_table;
1813 static int fl_table_size, fl_table_next;
1814
1815 static void
1816 add_filename_language (ext, lang)
1817 char *ext;
1818 enum language lang;
1819 {
1820 if (fl_table_next >= fl_table_size)
1821 {
1822 fl_table_size += 10;
1823 filename_language_table = realloc (filename_language_table,
1824 fl_table_size);
1825 }
1826
1827 filename_language_table[fl_table_next].ext = strsave (ext);
1828 filename_language_table[fl_table_next].lang = lang;
1829 fl_table_next++;
1830 }
1831
1832 static char *ext_args;
1833
1834 static void
1835 set_ext_lang_command (args, from_tty)
1836 char *args;
1837 int from_tty;
1838 {
1839 int i;
1840 char *cp = ext_args;
1841 enum language lang;
1842
1843 /* First arg is filename extension, starting with '.' */
1844 if (*cp != '.')
1845 error ("'%s': Filename extension must begin with '.'", ext_args);
1846
1847 /* Find end of first arg. */
1848 while (*cp && !isspace (*cp))
1849 cp++;
1850
1851 if (*cp == '\0')
1852 error ("'%s': two arguments required -- filename extension and language",
1853 ext_args);
1854
1855 /* Null-terminate first arg */
1856 *cp++ = '\0';
1857
1858 /* Find beginning of second arg, which should be a source language. */
1859 while (*cp && isspace (*cp))
1860 cp++;
1861
1862 if (*cp == '\0')
1863 error ("'%s': two arguments required -- filename extension and language",
1864 ext_args);
1865
1866 /* Lookup the language from among those we know. */
1867 lang = language_enum (cp);
1868
1869 /* Now lookup the filename extension: do we already know it? */
1870 for (i = 0; i < fl_table_next; i++)
1871 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1872 break;
1873
1874 if (i >= fl_table_next)
1875 {
1876 /* new file extension */
1877 add_filename_language (ext_args, lang);
1878 }
1879 else
1880 {
1881 /* redefining a previously known filename extension */
1882
1883 /* if (from_tty) */
1884 /* query ("Really make files of type %s '%s'?", */
1885 /* ext_args, language_str (lang)); */
1886
1887 free (filename_language_table[i].ext);
1888 filename_language_table[i].ext = strsave (ext_args);
1889 filename_language_table[i].lang = lang;
1890 }
1891 }
1892
1893 static void
1894 info_ext_lang_command (args, from_tty)
1895 char *args;
1896 int from_tty;
1897 {
1898 int i;
1899
1900 printf_filtered ("Filename extensions and the languages they represent:");
1901 printf_filtered ("\n\n");
1902 for (i = 0; i < fl_table_next; i++)
1903 printf_filtered ("\t%s\t- %s\n",
1904 filename_language_table[i].ext,
1905 language_str (filename_language_table[i].lang));
1906 }
1907
1908 static void
1909 init_filename_language_table ()
1910 {
1911 if (fl_table_size == 0) /* protect against repetition */
1912 {
1913 fl_table_size = 20;
1914 fl_table_next = 0;
1915 filename_language_table =
1916 xmalloc (fl_table_size * sizeof (*filename_language_table));
1917 add_filename_language (".c", language_c);
1918 add_filename_language (".C", language_cplus);
1919 add_filename_language (".cc", language_cplus);
1920 add_filename_language (".cp", language_cplus);
1921 add_filename_language (".cpp", language_cplus);
1922 add_filename_language (".cxx", language_cplus);
1923 add_filename_language (".c++", language_cplus);
1924 add_filename_language (".java", language_java);
1925 add_filename_language (".class", language_java);
1926 add_filename_language (".ch", language_chill);
1927 add_filename_language (".c186", language_chill);
1928 add_filename_language (".c286", language_chill);
1929 add_filename_language (".f", language_fortran);
1930 add_filename_language (".F", language_fortran);
1931 add_filename_language (".s", language_asm);
1932 add_filename_language (".S", language_asm);
1933 }
1934 }
1935
1936 enum language
1937 deduce_language_from_filename (filename)
1938 char *filename;
1939 {
1940 int i;
1941 char *cp;
1942
1943 if (filename != NULL)
1944 if ((cp = strrchr (filename, '.')) != NULL)
1945 for (i = 0; i < fl_table_next; i++)
1946 if (strcmp (cp, filename_language_table[i].ext) == 0)
1947 return filename_language_table[i].lang;
1948
1949 return language_unknown;
1950 }
1951 \f
1952 /* allocate_symtab:
1953
1954 Allocate and partly initialize a new symbol table. Return a pointer
1955 to it. error() if no space.
1956
1957 Caller must set these fields:
1958 LINETABLE(symtab)
1959 symtab->blockvector
1960 symtab->dirname
1961 symtab->free_code
1962 symtab->free_ptr
1963 possibly free_named_symtabs (symtab->filename);
1964 */
1965
1966 struct symtab *
1967 allocate_symtab (filename, objfile)
1968 char *filename;
1969 struct objfile *objfile;
1970 {
1971 register struct symtab *symtab;
1972
1973 symtab = (struct symtab *)
1974 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1975 memset (symtab, 0, sizeof (*symtab));
1976 symtab->filename = obsavestring (filename, strlen (filename),
1977 &objfile->symbol_obstack);
1978 symtab->fullname = NULL;
1979 symtab->language = deduce_language_from_filename (filename);
1980 symtab->debugformat = obsavestring ("unknown", 7,
1981 &objfile->symbol_obstack);
1982
1983 /* Hook it to the objfile it comes from */
1984
1985 symtab->objfile = objfile;
1986 symtab->next = objfile->symtabs;
1987 objfile->symtabs = symtab;
1988
1989 /* FIXME: This should go away. It is only defined for the Z8000,
1990 and the Z8000 definition of this macro doesn't have anything to
1991 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1992 here for convenience. */
1993 #ifdef INIT_EXTRA_SYMTAB_INFO
1994 INIT_EXTRA_SYMTAB_INFO (symtab);
1995 #endif
1996
1997 return (symtab);
1998 }
1999
2000 struct partial_symtab *
2001 allocate_psymtab (filename, objfile)
2002 char *filename;
2003 struct objfile *objfile;
2004 {
2005 struct partial_symtab *psymtab;
2006
2007 if (objfile->free_psymtabs)
2008 {
2009 psymtab = objfile->free_psymtabs;
2010 objfile->free_psymtabs = psymtab->next;
2011 }
2012 else
2013 psymtab = (struct partial_symtab *)
2014 obstack_alloc (&objfile->psymbol_obstack,
2015 sizeof (struct partial_symtab));
2016
2017 memset (psymtab, 0, sizeof (struct partial_symtab));
2018 psymtab->filename = obsavestring (filename, strlen (filename),
2019 &objfile->psymbol_obstack);
2020 psymtab->symtab = NULL;
2021
2022 /* Prepend it to the psymtab list for the objfile it belongs to.
2023 Psymtabs are searched in most recent inserted -> least recent
2024 inserted order. */
2025
2026 psymtab->objfile = objfile;
2027 psymtab->next = objfile->psymtabs;
2028 objfile->psymtabs = psymtab;
2029 #if 0
2030 {
2031 struct partial_symtab **prev_pst;
2032 psymtab->objfile = objfile;
2033 psymtab->next = NULL;
2034 prev_pst = &(objfile->psymtabs);
2035 while ((*prev_pst) != NULL)
2036 prev_pst = &((*prev_pst)->next);
2037 (*prev_pst) = psymtab;
2038 }
2039 #endif
2040
2041 return (psymtab);
2042 }
2043
2044 void
2045 discard_psymtab (pst)
2046 struct partial_symtab *pst;
2047 {
2048 struct partial_symtab **prev_pst;
2049
2050 /* From dbxread.c:
2051 Empty psymtabs happen as a result of header files which don't
2052 have any symbols in them. There can be a lot of them. But this
2053 check is wrong, in that a psymtab with N_SLINE entries but
2054 nothing else is not empty, but we don't realize that. Fixing
2055 that without slowing things down might be tricky. */
2056
2057 /* First, snip it out of the psymtab chain */
2058
2059 prev_pst = &(pst->objfile->psymtabs);
2060 while ((*prev_pst) != pst)
2061 prev_pst = &((*prev_pst)->next);
2062 (*prev_pst) = pst->next;
2063
2064 /* Next, put it on a free list for recycling */
2065
2066 pst->next = pst->objfile->free_psymtabs;
2067 pst->objfile->free_psymtabs = pst;
2068 }
2069 \f
2070
2071 /* Reset all data structures in gdb which may contain references to symbol
2072 table data. */
2073
2074 void
2075 clear_symtab_users ()
2076 {
2077 /* Someday, we should do better than this, by only blowing away
2078 the things that really need to be blown. */
2079 clear_value_history ();
2080 clear_displays ();
2081 clear_internalvars ();
2082 breakpoint_re_set ();
2083 set_default_breakpoint (0, 0, 0, 0);
2084 current_source_symtab = 0;
2085 current_source_line = 0;
2086 clear_pc_function_cache ();
2087 if (target_new_objfile_hook)
2088 target_new_objfile_hook (NULL);
2089 }
2090
2091 static void
2092 clear_symtab_users_cleanup (void *ignore)
2093 {
2094 clear_symtab_users ();
2095 }
2096
2097 /* clear_symtab_users_once:
2098
2099 This function is run after symbol reading, or from a cleanup.
2100 If an old symbol table was obsoleted, the old symbol table
2101 has been blown away, but the other GDB data structures that may
2102 reference it have not yet been cleared or re-directed. (The old
2103 symtab was zapped, and the cleanup queued, in free_named_symtab()
2104 below.)
2105
2106 This function can be queued N times as a cleanup, or called
2107 directly; it will do all the work the first time, and then will be a
2108 no-op until the next time it is queued. This works by bumping a
2109 counter at queueing time. Much later when the cleanup is run, or at
2110 the end of symbol processing (in case the cleanup is discarded), if
2111 the queued count is greater than the "done-count", we do the work
2112 and set the done-count to the queued count. If the queued count is
2113 less than or equal to the done-count, we just ignore the call. This
2114 is needed because reading a single .o file will often replace many
2115 symtabs (one per .h file, for example), and we don't want to reset
2116 the breakpoints N times in the user's face.
2117
2118 The reason we both queue a cleanup, and call it directly after symbol
2119 reading, is because the cleanup protects us in case of errors, but is
2120 discarded if symbol reading is successful. */
2121
2122 #if 0
2123 /* FIXME: As free_named_symtabs is currently a big noop this function
2124 is no longer needed. */
2125 static void clear_symtab_users_once (void);
2126
2127 static int clear_symtab_users_queued;
2128 static int clear_symtab_users_done;
2129
2130 static void
2131 clear_symtab_users_once ()
2132 {
2133 /* Enforce once-per-`do_cleanups'-semantics */
2134 if (clear_symtab_users_queued <= clear_symtab_users_done)
2135 return;
2136 clear_symtab_users_done = clear_symtab_users_queued;
2137
2138 clear_symtab_users ();
2139 }
2140 #endif
2141
2142 /* Delete the specified psymtab, and any others that reference it. */
2143
2144 static void
2145 cashier_psymtab (pst)
2146 struct partial_symtab *pst;
2147 {
2148 struct partial_symtab *ps, *pprev = NULL;
2149 int i;
2150
2151 /* Find its previous psymtab in the chain */
2152 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2153 {
2154 if (ps == pst)
2155 break;
2156 pprev = ps;
2157 }
2158
2159 if (ps)
2160 {
2161 /* Unhook it from the chain. */
2162 if (ps == pst->objfile->psymtabs)
2163 pst->objfile->psymtabs = ps->next;
2164 else
2165 pprev->next = ps->next;
2166
2167 /* FIXME, we can't conveniently deallocate the entries in the
2168 partial_symbol lists (global_psymbols/static_psymbols) that
2169 this psymtab points to. These just take up space until all
2170 the psymtabs are reclaimed. Ditto the dependencies list and
2171 filename, which are all in the psymbol_obstack. */
2172
2173 /* We need to cashier any psymtab that has this one as a dependency... */
2174 again:
2175 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2176 {
2177 for (i = 0; i < ps->number_of_dependencies; i++)
2178 {
2179 if (ps->dependencies[i] == pst)
2180 {
2181 cashier_psymtab (ps);
2182 goto again; /* Must restart, chain has been munged. */
2183 }
2184 }
2185 }
2186 }
2187 }
2188
2189 /* If a symtab or psymtab for filename NAME is found, free it along
2190 with any dependent breakpoints, displays, etc.
2191 Used when loading new versions of object modules with the "add-file"
2192 command. This is only called on the top-level symtab or psymtab's name;
2193 it is not called for subsidiary files such as .h files.
2194
2195 Return value is 1 if we blew away the environment, 0 if not.
2196 FIXME. The return valu appears to never be used.
2197
2198 FIXME. I think this is not the best way to do this. We should
2199 work on being gentler to the environment while still cleaning up
2200 all stray pointers into the freed symtab. */
2201
2202 int
2203 free_named_symtabs (name)
2204 char *name;
2205 {
2206 #if 0
2207 /* FIXME: With the new method of each objfile having it's own
2208 psymtab list, this function needs serious rethinking. In particular,
2209 why was it ever necessary to toss psymtabs with specific compilation
2210 unit filenames, as opposed to all psymtabs from a particular symbol
2211 file? -- fnf
2212 Well, the answer is that some systems permit reloading of particular
2213 compilation units. We want to blow away any old info about these
2214 compilation units, regardless of which objfiles they arrived in. --gnu. */
2215
2216 register struct symtab *s;
2217 register struct symtab *prev;
2218 register struct partial_symtab *ps;
2219 struct blockvector *bv;
2220 int blewit = 0;
2221
2222 /* We only wack things if the symbol-reload switch is set. */
2223 if (!symbol_reloading)
2224 return 0;
2225
2226 /* Some symbol formats have trouble providing file names... */
2227 if (name == 0 || *name == '\0')
2228 return 0;
2229
2230 /* Look for a psymtab with the specified name. */
2231
2232 again2:
2233 for (ps = partial_symtab_list; ps; ps = ps->next)
2234 {
2235 if (STREQ (name, ps->filename))
2236 {
2237 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2238 goto again2; /* Must restart, chain has been munged */
2239 }
2240 }
2241
2242 /* Look for a symtab with the specified name. */
2243
2244 for (s = symtab_list; s; s = s->next)
2245 {
2246 if (STREQ (name, s->filename))
2247 break;
2248 prev = s;
2249 }
2250
2251 if (s)
2252 {
2253 if (s == symtab_list)
2254 symtab_list = s->next;
2255 else
2256 prev->next = s->next;
2257
2258 /* For now, queue a delete for all breakpoints, displays, etc., whether
2259 or not they depend on the symtab being freed. This should be
2260 changed so that only those data structures affected are deleted. */
2261
2262 /* But don't delete anything if the symtab is empty.
2263 This test is necessary due to a bug in "dbxread.c" that
2264 causes empty symtabs to be created for N_SO symbols that
2265 contain the pathname of the object file. (This problem
2266 has been fixed in GDB 3.9x). */
2267
2268 bv = BLOCKVECTOR (s);
2269 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2270 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2271 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2272 {
2273 complain (&oldsyms_complaint, name);
2274
2275 clear_symtab_users_queued++;
2276 make_cleanup (clear_symtab_users_once, 0);
2277 blewit = 1;
2278 }
2279 else
2280 {
2281 complain (&empty_symtab_complaint, name);
2282 }
2283
2284 free_symtab (s);
2285 }
2286 else
2287 {
2288 /* It is still possible that some breakpoints will be affected
2289 even though no symtab was found, since the file might have
2290 been compiled without debugging, and hence not be associated
2291 with a symtab. In order to handle this correctly, we would need
2292 to keep a list of text address ranges for undebuggable files.
2293 For now, we do nothing, since this is a fairly obscure case. */
2294 ;
2295 }
2296
2297 /* FIXME, what about the minimal symbol table? */
2298 return blewit;
2299 #else
2300 return (0);
2301 #endif
2302 }
2303 \f
2304 /* Allocate and partially fill a partial symtab. It will be
2305 completely filled at the end of the symbol list.
2306
2307 FILENAME is the name of the symbol-file we are reading from. */
2308
2309 struct partial_symtab *
2310 start_psymtab_common (objfile, section_offsets,
2311 filename, textlow, global_syms, static_syms)
2312 struct objfile *objfile;
2313 struct section_offsets *section_offsets;
2314 char *filename;
2315 CORE_ADDR textlow;
2316 struct partial_symbol **global_syms;
2317 struct partial_symbol **static_syms;
2318 {
2319 struct partial_symtab *psymtab;
2320
2321 psymtab = allocate_psymtab (filename, objfile);
2322 psymtab->section_offsets = section_offsets;
2323 psymtab->textlow = textlow;
2324 psymtab->texthigh = psymtab->textlow; /* default */
2325 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2326 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2327 return (psymtab);
2328 }
2329 \f
2330 /* Add a symbol with a long value to a psymtab.
2331 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2332
2333 void
2334 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2335 language, objfile)
2336 char *name;
2337 int namelength;
2338 namespace_enum namespace;
2339 enum address_class class;
2340 struct psymbol_allocation_list *list;
2341 long val; /* Value as a long */
2342 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2343 enum language language;
2344 struct objfile *objfile;
2345 {
2346 register struct partial_symbol *psym;
2347 char *buf = alloca (namelength + 1);
2348 /* psymbol is static so that there will be no uninitialized gaps in the
2349 structure which might contain random data, causing cache misses in
2350 bcache. */
2351 static struct partial_symbol psymbol;
2352
2353 /* Create local copy of the partial symbol */
2354 memcpy (buf, name, namelength);
2355 buf[namelength] = '\0';
2356 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2357 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2358 if (val != 0)
2359 {
2360 SYMBOL_VALUE (&psymbol) = val;
2361 }
2362 else
2363 {
2364 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2365 }
2366 SYMBOL_SECTION (&psymbol) = 0;
2367 SYMBOL_LANGUAGE (&psymbol) = language;
2368 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2369 PSYMBOL_CLASS (&psymbol) = class;
2370 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2371
2372 /* Stash the partial symbol away in the cache */
2373 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2374
2375 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2376 if (list->next >= list->list + list->size)
2377 {
2378 extend_psymbol_list (list, objfile);
2379 }
2380 *list->next++ = psym;
2381 OBJSTAT (objfile, n_psyms++);
2382 }
2383
2384 /* Add a symbol with a long value to a psymtab. This differs from
2385 * add_psymbol_to_list above in taking both a mangled and a demangled
2386 * name. */
2387
2388 void
2389 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2390 namespace, class, list, val, coreaddr, language, objfile)
2391 char *name;
2392 int namelength;
2393 char *dem_name;
2394 int dem_namelength;
2395 namespace_enum namespace;
2396 enum address_class class;
2397 struct psymbol_allocation_list *list;
2398 long val; /* Value as a long */
2399 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2400 enum language language;
2401 struct objfile *objfile;
2402 {
2403 register struct partial_symbol *psym;
2404 char *buf = alloca (namelength + 1);
2405 /* psymbol is static so that there will be no uninitialized gaps in the
2406 structure which might contain random data, causing cache misses in
2407 bcache. */
2408 static struct partial_symbol psymbol;
2409
2410 /* Create local copy of the partial symbol */
2411
2412 memcpy (buf, name, namelength);
2413 buf[namelength] = '\0';
2414 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2415
2416 buf = alloca (dem_namelength + 1);
2417 memcpy (buf, dem_name, dem_namelength);
2418 buf[dem_namelength] = '\0';
2419
2420 switch (language)
2421 {
2422 case language_c:
2423 case language_cplus:
2424 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2425 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2426 break;
2427 case language_chill:
2428 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2429 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2430
2431 /* FIXME What should be done for the default case? Ignoring for now. */
2432 }
2433
2434 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2435 if (val != 0)
2436 {
2437 SYMBOL_VALUE (&psymbol) = val;
2438 }
2439 else
2440 {
2441 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2442 }
2443 SYMBOL_SECTION (&psymbol) = 0;
2444 SYMBOL_LANGUAGE (&psymbol) = language;
2445 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2446 PSYMBOL_CLASS (&psymbol) = class;
2447 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2448
2449 /* Stash the partial symbol away in the cache */
2450 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2451
2452 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2453 if (list->next >= list->list + list->size)
2454 {
2455 extend_psymbol_list (list, objfile);
2456 }
2457 *list->next++ = psym;
2458 OBJSTAT (objfile, n_psyms++);
2459 }
2460
2461 /* Initialize storage for partial symbols. */
2462
2463 void
2464 init_psymbol_list (objfile, total_symbols)
2465 struct objfile *objfile;
2466 int total_symbols;
2467 {
2468 /* Free any previously allocated psymbol lists. */
2469
2470 if (objfile->global_psymbols.list)
2471 {
2472 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2473 }
2474 if (objfile->static_psymbols.list)
2475 {
2476 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2477 }
2478
2479 /* Current best guess is that approximately a twentieth
2480 of the total symbols (in a debugging file) are global or static
2481 oriented symbols */
2482
2483 objfile->global_psymbols.size = total_symbols / 10;
2484 objfile->static_psymbols.size = total_symbols / 10;
2485
2486 if (objfile->global_psymbols.size > 0)
2487 {
2488 objfile->global_psymbols.next =
2489 objfile->global_psymbols.list = (struct partial_symbol **)
2490 xmmalloc (objfile->md, (objfile->global_psymbols.size
2491 * sizeof (struct partial_symbol *)));
2492 }
2493 if (objfile->static_psymbols.size > 0)
2494 {
2495 objfile->static_psymbols.next =
2496 objfile->static_psymbols.list = (struct partial_symbol **)
2497 xmmalloc (objfile->md, (objfile->static_psymbols.size
2498 * sizeof (struct partial_symbol *)));
2499 }
2500 }
2501
2502 /* OVERLAYS:
2503 The following code implements an abstraction for debugging overlay sections.
2504
2505 The target model is as follows:
2506 1) The gnu linker will permit multiple sections to be mapped into the
2507 same VMA, each with its own unique LMA (or load address).
2508 2) It is assumed that some runtime mechanism exists for mapping the
2509 sections, one by one, from the load address into the VMA address.
2510 3) This code provides a mechanism for gdb to keep track of which
2511 sections should be considered to be mapped from the VMA to the LMA.
2512 This information is used for symbol lookup, and memory read/write.
2513 For instance, if a section has been mapped then its contents
2514 should be read from the VMA, otherwise from the LMA.
2515
2516 Two levels of debugger support for overlays are available. One is
2517 "manual", in which the debugger relies on the user to tell it which
2518 overlays are currently mapped. This level of support is
2519 implemented entirely in the core debugger, and the information about
2520 whether a section is mapped is kept in the objfile->obj_section table.
2521
2522 The second level of support is "automatic", and is only available if
2523 the target-specific code provides functionality to read the target's
2524 overlay mapping table, and translate its contents for the debugger
2525 (by updating the mapped state information in the obj_section tables).
2526
2527 The interface is as follows:
2528 User commands:
2529 overlay map <name> -- tell gdb to consider this section mapped
2530 overlay unmap <name> -- tell gdb to consider this section unmapped
2531 overlay list -- list the sections that GDB thinks are mapped
2532 overlay read-target -- get the target's state of what's mapped
2533 overlay off/manual/auto -- set overlay debugging state
2534 Functional interface:
2535 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2536 section, return that section.
2537 find_pc_overlay(pc): find any overlay section that contains
2538 the pc, either in its VMA or its LMA
2539 overlay_is_mapped(sect): true if overlay is marked as mapped
2540 section_is_overlay(sect): true if section's VMA != LMA
2541 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2542 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2543 overlay_mapped_address(...): map an address from section's LMA to VMA
2544 overlay_unmapped_address(...): map an address from section's VMA to LMA
2545 symbol_overlayed_address(...): Return a "current" address for symbol:
2546 either in VMA or LMA depending on whether
2547 the symbol's section is currently mapped
2548 */
2549
2550 /* Overlay debugging state: */
2551
2552 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2553 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2554
2555 /* Target vector for refreshing overlay mapped state */
2556 static void simple_overlay_update (struct obj_section *);
2557 void (*target_overlay_update) PARAMS ((struct obj_section *))
2558 = simple_overlay_update;
2559
2560 /* Function: section_is_overlay (SECTION)
2561 Returns true if SECTION has VMA not equal to LMA, ie.
2562 SECTION is loaded at an address different from where it will "run". */
2563
2564 int
2565 section_is_overlay (section)
2566 asection *section;
2567 {
2568 if (overlay_debugging)
2569 if (section && section->lma != 0 &&
2570 section->vma != section->lma)
2571 return 1;
2572
2573 return 0;
2574 }
2575
2576 /* Function: overlay_invalidate_all (void)
2577 Invalidate the mapped state of all overlay sections (mark it as stale). */
2578
2579 static void
2580 overlay_invalidate_all ()
2581 {
2582 struct objfile *objfile;
2583 struct obj_section *sect;
2584
2585 ALL_OBJSECTIONS (objfile, sect)
2586 if (section_is_overlay (sect->the_bfd_section))
2587 sect->ovly_mapped = -1;
2588 }
2589
2590 /* Function: overlay_is_mapped (SECTION)
2591 Returns true if section is an overlay, and is currently mapped.
2592 Private: public access is thru function section_is_mapped.
2593
2594 Access to the ovly_mapped flag is restricted to this function, so
2595 that we can do automatic update. If the global flag
2596 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2597 overlay_invalidate_all. If the mapped state of the particular
2598 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2599
2600 static int
2601 overlay_is_mapped (osect)
2602 struct obj_section *osect;
2603 {
2604 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2605 return 0;
2606
2607 switch (overlay_debugging)
2608 {
2609 default:
2610 case 0:
2611 return 0; /* overlay debugging off */
2612 case -1: /* overlay debugging automatic */
2613 /* Unles there is a target_overlay_update function,
2614 there's really nothing useful to do here (can't really go auto) */
2615 if (target_overlay_update)
2616 {
2617 if (overlay_cache_invalid)
2618 {
2619 overlay_invalidate_all ();
2620 overlay_cache_invalid = 0;
2621 }
2622 if (osect->ovly_mapped == -1)
2623 (*target_overlay_update) (osect);
2624 }
2625 /* fall thru to manual case */
2626 case 1: /* overlay debugging manual */
2627 return osect->ovly_mapped == 1;
2628 }
2629 }
2630
2631 /* Function: section_is_mapped
2632 Returns true if section is an overlay, and is currently mapped. */
2633
2634 int
2635 section_is_mapped (section)
2636 asection *section;
2637 {
2638 struct objfile *objfile;
2639 struct obj_section *osect;
2640
2641 if (overlay_debugging)
2642 if (section && section_is_overlay (section))
2643 ALL_OBJSECTIONS (objfile, osect)
2644 if (osect->the_bfd_section == section)
2645 return overlay_is_mapped (osect);
2646
2647 return 0;
2648 }
2649
2650 /* Function: pc_in_unmapped_range
2651 If PC falls into the lma range of SECTION, return true, else false. */
2652
2653 CORE_ADDR
2654 pc_in_unmapped_range (pc, section)
2655 CORE_ADDR pc;
2656 asection *section;
2657 {
2658 int size;
2659
2660 if (overlay_debugging)
2661 if (section && section_is_overlay (section))
2662 {
2663 size = bfd_get_section_size_before_reloc (section);
2664 if (section->lma <= pc && pc < section->lma + size)
2665 return 1;
2666 }
2667 return 0;
2668 }
2669
2670 /* Function: pc_in_mapped_range
2671 If PC falls into the vma range of SECTION, return true, else false. */
2672
2673 CORE_ADDR
2674 pc_in_mapped_range (pc, section)
2675 CORE_ADDR pc;
2676 asection *section;
2677 {
2678 int size;
2679
2680 if (overlay_debugging)
2681 if (section && section_is_overlay (section))
2682 {
2683 size = bfd_get_section_size_before_reloc (section);
2684 if (section->vma <= pc && pc < section->vma + size)
2685 return 1;
2686 }
2687 return 0;
2688 }
2689
2690 /* Function: overlay_unmapped_address (PC, SECTION)
2691 Returns the address corresponding to PC in the unmapped (load) range.
2692 May be the same as PC. */
2693
2694 CORE_ADDR
2695 overlay_unmapped_address (pc, section)
2696 CORE_ADDR pc;
2697 asection *section;
2698 {
2699 if (overlay_debugging)
2700 if (section && section_is_overlay (section) &&
2701 pc_in_mapped_range (pc, section))
2702 return pc + section->lma - section->vma;
2703
2704 return pc;
2705 }
2706
2707 /* Function: overlay_mapped_address (PC, SECTION)
2708 Returns the address corresponding to PC in the mapped (runtime) range.
2709 May be the same as PC. */
2710
2711 CORE_ADDR
2712 overlay_mapped_address (pc, section)
2713 CORE_ADDR pc;
2714 asection *section;
2715 {
2716 if (overlay_debugging)
2717 if (section && section_is_overlay (section) &&
2718 pc_in_unmapped_range (pc, section))
2719 return pc + section->vma - section->lma;
2720
2721 return pc;
2722 }
2723
2724
2725 /* Function: symbol_overlayed_address
2726 Return one of two addresses (relative to the VMA or to the LMA),
2727 depending on whether the section is mapped or not. */
2728
2729 CORE_ADDR
2730 symbol_overlayed_address (address, section)
2731 CORE_ADDR address;
2732 asection *section;
2733 {
2734 if (overlay_debugging)
2735 {
2736 /* If the symbol has no section, just return its regular address. */
2737 if (section == 0)
2738 return address;
2739 /* If the symbol's section is not an overlay, just return its address */
2740 if (!section_is_overlay (section))
2741 return address;
2742 /* If the symbol's section is mapped, just return its address */
2743 if (section_is_mapped (section))
2744 return address;
2745 /*
2746 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2747 * then return its LOADED address rather than its vma address!!
2748 */
2749 return overlay_unmapped_address (address, section);
2750 }
2751 return address;
2752 }
2753
2754 /* Function: find_pc_overlay (PC)
2755 Return the best-match overlay section for PC:
2756 If PC matches a mapped overlay section's VMA, return that section.
2757 Else if PC matches an unmapped section's VMA, return that section.
2758 Else if PC matches an unmapped section's LMA, return that section. */
2759
2760 asection *
2761 find_pc_overlay (pc)
2762 CORE_ADDR pc;
2763 {
2764 struct objfile *objfile;
2765 struct obj_section *osect, *best_match = NULL;
2766
2767 if (overlay_debugging)
2768 ALL_OBJSECTIONS (objfile, osect)
2769 if (section_is_overlay (osect->the_bfd_section))
2770 {
2771 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2772 {
2773 if (overlay_is_mapped (osect))
2774 return osect->the_bfd_section;
2775 else
2776 best_match = osect;
2777 }
2778 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2779 best_match = osect;
2780 }
2781 return best_match ? best_match->the_bfd_section : NULL;
2782 }
2783
2784 /* Function: find_pc_mapped_section (PC)
2785 If PC falls into the VMA address range of an overlay section that is
2786 currently marked as MAPPED, return that section. Else return NULL. */
2787
2788 asection *
2789 find_pc_mapped_section (pc)
2790 CORE_ADDR pc;
2791 {
2792 struct objfile *objfile;
2793 struct obj_section *osect;
2794
2795 if (overlay_debugging)
2796 ALL_OBJSECTIONS (objfile, osect)
2797 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2798 overlay_is_mapped (osect))
2799 return osect->the_bfd_section;
2800
2801 return NULL;
2802 }
2803
2804 /* Function: list_overlays_command
2805 Print a list of mapped sections and their PC ranges */
2806
2807 void
2808 list_overlays_command (args, from_tty)
2809 char *args;
2810 int from_tty;
2811 {
2812 int nmapped = 0;
2813 struct objfile *objfile;
2814 struct obj_section *osect;
2815
2816 if (overlay_debugging)
2817 ALL_OBJSECTIONS (objfile, osect)
2818 if (overlay_is_mapped (osect))
2819 {
2820 const char *name;
2821 bfd_vma lma, vma;
2822 int size;
2823
2824 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2825 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2826 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2827 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2828
2829 printf_filtered ("Section %s, loaded at ", name);
2830 print_address_numeric (lma, 1, gdb_stdout);
2831 puts_filtered (" - ");
2832 print_address_numeric (lma + size, 1, gdb_stdout);
2833 printf_filtered (", mapped at ");
2834 print_address_numeric (vma, 1, gdb_stdout);
2835 puts_filtered (" - ");
2836 print_address_numeric (vma + size, 1, gdb_stdout);
2837 puts_filtered ("\n");
2838
2839 nmapped++;
2840 }
2841 if (nmapped == 0)
2842 printf_filtered ("No sections are mapped.\n");
2843 }
2844
2845 /* Function: map_overlay_command
2846 Mark the named section as mapped (ie. residing at its VMA address). */
2847
2848 void
2849 map_overlay_command (args, from_tty)
2850 char *args;
2851 int from_tty;
2852 {
2853 struct objfile *objfile, *objfile2;
2854 struct obj_section *sec, *sec2;
2855 asection *bfdsec;
2856
2857 if (!overlay_debugging)
2858 error ("\
2859 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2860 the 'overlay manual' command.");
2861
2862 if (args == 0 || *args == 0)
2863 error ("Argument required: name of an overlay section");
2864
2865 /* First, find a section matching the user supplied argument */
2866 ALL_OBJSECTIONS (objfile, sec)
2867 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2868 {
2869 /* Now, check to see if the section is an overlay. */
2870 bfdsec = sec->the_bfd_section;
2871 if (!section_is_overlay (bfdsec))
2872 continue; /* not an overlay section */
2873
2874 /* Mark the overlay as "mapped" */
2875 sec->ovly_mapped = 1;
2876
2877 /* Next, make a pass and unmap any sections that are
2878 overlapped by this new section: */
2879 ALL_OBJSECTIONS (objfile2, sec2)
2880 if (sec2->ovly_mapped &&
2881 sec != sec2 &&
2882 sec->the_bfd_section != sec2->the_bfd_section &&
2883 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2884 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2885 {
2886 if (info_verbose)
2887 printf_filtered ("Note: section %s unmapped by overlap\n",
2888 bfd_section_name (objfile->obfd,
2889 sec2->the_bfd_section));
2890 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2891 }
2892 return;
2893 }
2894 error ("No overlay section called %s", args);
2895 }
2896
2897 /* Function: unmap_overlay_command
2898 Mark the overlay section as unmapped
2899 (ie. resident in its LMA address range, rather than the VMA range). */
2900
2901 void
2902 unmap_overlay_command (args, from_tty)
2903 char *args;
2904 int from_tty;
2905 {
2906 struct objfile *objfile;
2907 struct obj_section *sec;
2908
2909 if (!overlay_debugging)
2910 error ("\
2911 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2912 the 'overlay manual' command.");
2913
2914 if (args == 0 || *args == 0)
2915 error ("Argument required: name of an overlay section");
2916
2917 /* First, find a section matching the user supplied argument */
2918 ALL_OBJSECTIONS (objfile, sec)
2919 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2920 {
2921 if (!sec->ovly_mapped)
2922 error ("Section %s is not mapped", args);
2923 sec->ovly_mapped = 0;
2924 return;
2925 }
2926 error ("No overlay section called %s", args);
2927 }
2928
2929 /* Function: overlay_auto_command
2930 A utility command to turn on overlay debugging.
2931 Possibly this should be done via a set/show command. */
2932
2933 static void
2934 overlay_auto_command (args, from_tty)
2935 char *args;
2936 int from_tty;
2937 {
2938 overlay_debugging = -1;
2939 if (info_verbose)
2940 printf_filtered ("Automatic overlay debugging enabled.");
2941 }
2942
2943 /* Function: overlay_manual_command
2944 A utility command to turn on overlay debugging.
2945 Possibly this should be done via a set/show command. */
2946
2947 static void
2948 overlay_manual_command (args, from_tty)
2949 char *args;
2950 int from_tty;
2951 {
2952 overlay_debugging = 1;
2953 if (info_verbose)
2954 printf_filtered ("Overlay debugging enabled.");
2955 }
2956
2957 /* Function: overlay_off_command
2958 A utility command to turn on overlay debugging.
2959 Possibly this should be done via a set/show command. */
2960
2961 static void
2962 overlay_off_command (args, from_tty)
2963 char *args;
2964 int from_tty;
2965 {
2966 overlay_debugging = 0;
2967 if (info_verbose)
2968 printf_filtered ("Overlay debugging disabled.");
2969 }
2970
2971 static void
2972 overlay_load_command (args, from_tty)
2973 char *args;
2974 int from_tty;
2975 {
2976 if (target_overlay_update)
2977 (*target_overlay_update) (NULL);
2978 else
2979 error ("This target does not know how to read its overlay state.");
2980 }
2981
2982 /* Function: overlay_command
2983 A place-holder for a mis-typed command */
2984
2985 /* Command list chain containing all defined "overlay" subcommands. */
2986 struct cmd_list_element *overlaylist;
2987
2988 static void
2989 overlay_command (args, from_tty)
2990 char *args;
2991 int from_tty;
2992 {
2993 printf_unfiltered
2994 ("\"overlay\" must be followed by the name of an overlay command.\n");
2995 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2996 }
2997
2998
2999 /* Target Overlays for the "Simplest" overlay manager:
3000
3001 This is GDB's default target overlay layer. It works with the
3002 minimal overlay manager supplied as an example by Cygnus. The
3003 entry point is via a function pointer "target_overlay_update",
3004 so targets that use a different runtime overlay manager can
3005 substitute their own overlay_update function and take over the
3006 function pointer.
3007
3008 The overlay_update function pokes around in the target's data structures
3009 to see what overlays are mapped, and updates GDB's overlay mapping with
3010 this information.
3011
3012 In this simple implementation, the target data structures are as follows:
3013 unsigned _novlys; /# number of overlay sections #/
3014 unsigned _ovly_table[_novlys][4] = {
3015 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3016 {..., ..., ..., ...},
3017 }
3018 unsigned _novly_regions; /# number of overlay regions #/
3019 unsigned _ovly_region_table[_novly_regions][3] = {
3020 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3021 {..., ..., ...},
3022 }
3023 These functions will attempt to update GDB's mappedness state in the
3024 symbol section table, based on the target's mappedness state.
3025
3026 To do this, we keep a cached copy of the target's _ovly_table, and
3027 attempt to detect when the cached copy is invalidated. The main
3028 entry point is "simple_overlay_update(SECT), which looks up SECT in
3029 the cached table and re-reads only the entry for that section from
3030 the target (whenever possible).
3031 */
3032
3033 /* Cached, dynamically allocated copies of the target data structures: */
3034 static unsigned (*cache_ovly_table)[4] = 0;
3035 #if 0
3036 static unsigned (*cache_ovly_region_table)[3] = 0;
3037 #endif
3038 static unsigned cache_novlys = 0;
3039 #if 0
3040 static unsigned cache_novly_regions = 0;
3041 #endif
3042 static CORE_ADDR cache_ovly_table_base = 0;
3043 #if 0
3044 static CORE_ADDR cache_ovly_region_table_base = 0;
3045 #endif
3046 enum ovly_index
3047 {
3048 VMA, SIZE, LMA, MAPPED
3049 };
3050 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3051
3052 /* Throw away the cached copy of _ovly_table */
3053 static void
3054 simple_free_overlay_table ()
3055 {
3056 if (cache_ovly_table)
3057 free (cache_ovly_table);
3058 cache_novlys = 0;
3059 cache_ovly_table = NULL;
3060 cache_ovly_table_base = 0;
3061 }
3062
3063 #if 0
3064 /* Throw away the cached copy of _ovly_region_table */
3065 static void
3066 simple_free_overlay_region_table ()
3067 {
3068 if (cache_ovly_region_table)
3069 free (cache_ovly_region_table);
3070 cache_novly_regions = 0;
3071 cache_ovly_region_table = NULL;
3072 cache_ovly_region_table_base = 0;
3073 }
3074 #endif
3075
3076 /* Read an array of ints from the target into a local buffer.
3077 Convert to host order. int LEN is number of ints */
3078 static void
3079 read_target_long_array (memaddr, myaddr, len)
3080 CORE_ADDR memaddr;
3081 unsigned int *myaddr;
3082 int len;
3083 {
3084 char *buf = alloca (len * TARGET_LONG_BYTES);
3085 int i;
3086
3087 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3088 for (i = 0; i < len; i++)
3089 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3090 TARGET_LONG_BYTES);
3091 }
3092
3093 /* Find and grab a copy of the target _ovly_table
3094 (and _novlys, which is needed for the table's size) */
3095 static int
3096 simple_read_overlay_table ()
3097 {
3098 struct minimal_symbol *msym;
3099
3100 simple_free_overlay_table ();
3101 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3102 if (msym != NULL)
3103 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3104 else
3105 return 0; /* failure */
3106 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3107 if (cache_ovly_table != NULL)
3108 {
3109 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3110 if (msym != NULL)
3111 {
3112 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3113 read_target_long_array (cache_ovly_table_base,
3114 (int *) cache_ovly_table,
3115 cache_novlys * 4);
3116 }
3117 else
3118 return 0; /* failure */
3119 }
3120 else
3121 return 0; /* failure */
3122 return 1; /* SUCCESS */
3123 }
3124
3125 #if 0
3126 /* Find and grab a copy of the target _ovly_region_table
3127 (and _novly_regions, which is needed for the table's size) */
3128 static int
3129 simple_read_overlay_region_table ()
3130 {
3131 struct minimal_symbol *msym;
3132
3133 simple_free_overlay_region_table ();
3134 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3135 if (msym != NULL)
3136 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3137 else
3138 return 0; /* failure */
3139 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3140 if (cache_ovly_region_table != NULL)
3141 {
3142 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3143 if (msym != NULL)
3144 {
3145 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3146 read_target_long_array (cache_ovly_region_table_base,
3147 (int *) cache_ovly_region_table,
3148 cache_novly_regions * 3);
3149 }
3150 else
3151 return 0; /* failure */
3152 }
3153 else
3154 return 0; /* failure */
3155 return 1; /* SUCCESS */
3156 }
3157 #endif
3158
3159 /* Function: simple_overlay_update_1
3160 A helper function for simple_overlay_update. Assuming a cached copy
3161 of _ovly_table exists, look through it to find an entry whose vma,
3162 lma and size match those of OSECT. Re-read the entry and make sure
3163 it still matches OSECT (else the table may no longer be valid).
3164 Set OSECT's mapped state to match the entry. Return: 1 for
3165 success, 0 for failure. */
3166
3167 static int
3168 simple_overlay_update_1 (osect)
3169 struct obj_section *osect;
3170 {
3171 int i, size;
3172
3173 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3174 for (i = 0; i < cache_novlys; i++)
3175 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3176 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3177 cache_ovly_table[i][SIZE] == size */ )
3178 {
3179 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3180 (int *) cache_ovly_table[i], 4);
3181 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3182 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3183 cache_ovly_table[i][SIZE] == size */ )
3184 {
3185 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3186 return 1;
3187 }
3188 else /* Warning! Warning! Target's ovly table has changed! */
3189 return 0;
3190 }
3191 return 0;
3192 }
3193
3194 /* Function: simple_overlay_update
3195 If OSECT is NULL, then update all sections' mapped state
3196 (after re-reading the entire target _ovly_table).
3197 If OSECT is non-NULL, then try to find a matching entry in the
3198 cached ovly_table and update only OSECT's mapped state.
3199 If a cached entry can't be found or the cache isn't valid, then
3200 re-read the entire cache, and go ahead and update all sections. */
3201
3202 static void
3203 simple_overlay_update (osect)
3204 struct obj_section *osect;
3205 {
3206 struct objfile *objfile;
3207
3208 /* Were we given an osect to look up? NULL means do all of them. */
3209 if (osect)
3210 /* Have we got a cached copy of the target's overlay table? */
3211 if (cache_ovly_table != NULL)
3212 /* Does its cached location match what's currently in the symtab? */
3213 if (cache_ovly_table_base ==
3214 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3215 /* Then go ahead and try to look up this single section in the cache */
3216 if (simple_overlay_update_1 (osect))
3217 /* Found it! We're done. */
3218 return;
3219
3220 /* Cached table no good: need to read the entire table anew.
3221 Or else we want all the sections, in which case it's actually
3222 more efficient to read the whole table in one block anyway. */
3223
3224 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3225 {
3226 warning ("Failed to read the target overlay mapping table.");
3227 return;
3228 }
3229 /* Now may as well update all sections, even if only one was requested. */
3230 ALL_OBJSECTIONS (objfile, osect)
3231 if (section_is_overlay (osect->the_bfd_section))
3232 {
3233 int i, size;
3234
3235 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3236 for (i = 0; i < cache_novlys; i++)
3237 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3238 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3239 cache_ovly_table[i][SIZE] == size */ )
3240 { /* obj_section matches i'th entry in ovly_table */
3241 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3242 break; /* finished with inner for loop: break out */
3243 }
3244 }
3245 }
3246
3247
3248 void
3249 _initialize_symfile ()
3250 {
3251 struct cmd_list_element *c;
3252
3253 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3254 "Load symbol table from executable file FILE.\n\
3255 The `file' command can also load symbol tables, as well as setting the file\n\
3256 to execute.", &cmdlist);
3257 c->completer = filename_completer;
3258
3259 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3260 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3261 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3262 ADDR is the starting address of the file's text.\n\
3263 The optional arguments are section-name section-address pairs and\n\
3264 should be specified if the data and bss segments are not contiguous\n\
3265 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3266 &cmdlist);
3267 c->completer = filename_completer;
3268
3269 c = add_cmd ("add-shared-symbol-files", class_files,
3270 add_shared_symbol_files_command,
3271 "Load the symbols from shared objects in the dynamic linker's link map.",
3272 &cmdlist);
3273 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3274 &cmdlist);
3275
3276 c = add_cmd ("load", class_files, load_command,
3277 "Dynamically load FILE into the running program, and record its symbols\n\
3278 for access from GDB.", &cmdlist);
3279 c->completer = filename_completer;
3280
3281 add_show_from_set
3282 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3283 (char *) &symbol_reloading,
3284 "Set dynamic symbol table reloading multiple times in one run.",
3285 &setlist),
3286 &showlist);
3287
3288 add_prefix_cmd ("overlay", class_support, overlay_command,
3289 "Commands for debugging overlays.", &overlaylist,
3290 "overlay ", 0, &cmdlist);
3291
3292 add_com_alias ("ovly", "overlay", class_alias, 1);
3293 add_com_alias ("ov", "overlay", class_alias, 1);
3294
3295 add_cmd ("map-overlay", class_support, map_overlay_command,
3296 "Assert that an overlay section is mapped.", &overlaylist);
3297
3298 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3299 "Assert that an overlay section is unmapped.", &overlaylist);
3300
3301 add_cmd ("list-overlays", class_support, list_overlays_command,
3302 "List mappings of overlay sections.", &overlaylist);
3303
3304 add_cmd ("manual", class_support, overlay_manual_command,
3305 "Enable overlay debugging.", &overlaylist);
3306 add_cmd ("off", class_support, overlay_off_command,
3307 "Disable overlay debugging.", &overlaylist);
3308 add_cmd ("auto", class_support, overlay_auto_command,
3309 "Enable automatic overlay debugging.", &overlaylist);
3310 add_cmd ("load-target", class_support, overlay_load_command,
3311 "Read the overlay mapping state from the target.", &overlaylist);
3312
3313 /* Filename extension to source language lookup table: */
3314 init_filename_language_table ();
3315 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3316 (char *) &ext_args,
3317 "Set mapping between filename extension and source language.\n\
3318 Usage: set extension-language .foo bar",
3319 &setlist);
3320 c->function.cfunc = set_ext_lang_command;
3321
3322 add_info ("extensions", info_ext_lang_command,
3323 "All filename extensions associated with a source language.");
3324
3325 add_show_from_set
3326 (add_set_cmd ("download-write-size", class_obscure,
3327 var_integer, (char *) &download_write_size,
3328 "Set the write size used when downloading a program.\n"
3329 "Only used when downloading a program onto a remote\n"
3330 "target. Specify zero, or a negative value, to disable\n"
3331 "blocked writes. The actual size of each transfer is also\n"
3332 "limited by the size of the target packet and the memory\n"
3333 "cache.\n",
3334 &setlist),
3335 &showlist);
3336 }