* gdb.base/annota3.exp: Add missing newline.
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include <readline/readline.h>
49 #include "gdb_assert.h"
50 #include "block.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include <time.h>
58
59 #ifndef O_BINARY
60 #define O_BINARY 0
61 #endif
62
63 #ifdef HPUXHPPA
64
65 /* Some HP-UX related globals to clear when a new "main"
66 symbol file is loaded. HP-specific. */
67
68 extern int hp_som_som_object_present;
69 extern int hp_cxx_exception_support_initialized;
70 #define RESET_HP_UX_GLOBALS() do {\
71 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
72 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
73 } while (0)
74 #endif
75
76 int (*ui_load_progress_hook) (const char *section, unsigned long num);
77 void (*show_load_progress) (const char *section,
78 unsigned long section_sent,
79 unsigned long section_size,
80 unsigned long total_sent,
81 unsigned long total_size);
82 void (*pre_add_symbol_hook) (char *);
83 void (*post_add_symbol_hook) (void);
84 void (*target_new_objfile_hook) (struct objfile *);
85
86 static void clear_symtab_users_cleanup (void *ignore);
87
88 /* Global variables owned by this file */
89 int readnow_symbol_files; /* Read full symbols immediately */
90
91 /* External variables and functions referenced. */
92
93 extern void report_transfer_performance (unsigned long, time_t, time_t);
94
95 /* Functions this file defines */
96
97 #if 0
98 static int simple_read_overlay_region_table (void);
99 static void simple_free_overlay_region_table (void);
100 #endif
101
102 static void set_initial_language (void);
103
104 static void load_command (char *, int);
105
106 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
107
108 static void add_symbol_file_command (char *, int);
109
110 static void add_shared_symbol_files_command (char *, int);
111
112 static void reread_separate_symbols (struct objfile *objfile);
113
114 static void cashier_psymtab (struct partial_symtab *);
115
116 bfd *symfile_bfd_open (char *);
117
118 int get_section_index (struct objfile *, char *);
119
120 static void find_sym_fns (struct objfile *);
121
122 static void decrement_reading_symtab (void *);
123
124 static void overlay_invalidate_all (void);
125
126 static int overlay_is_mapped (struct obj_section *);
127
128 void list_overlays_command (char *, int);
129
130 void map_overlay_command (char *, int);
131
132 void unmap_overlay_command (char *, int);
133
134 static void overlay_auto_command (char *, int);
135
136 static void overlay_manual_command (char *, int);
137
138 static void overlay_off_command (char *, int);
139
140 static void overlay_load_command (char *, int);
141
142 static void overlay_command (char *, int);
143
144 static void simple_free_overlay_table (void);
145
146 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
147
148 static int simple_read_overlay_table (void);
149
150 static int simple_overlay_update_1 (struct obj_section *);
151
152 static void add_filename_language (char *ext, enum language lang);
153
154 static void set_ext_lang_command (char *args, int from_tty);
155
156 static void info_ext_lang_command (char *args, int from_tty);
157
158 static char *find_separate_debug_file (struct objfile *objfile);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, shared library symbols will be added automatically
180 when the inferior is created, new libraries are loaded, or when
181 attaching to the inferior. This is almost always what users will
182 want to have happen; but for very large programs, the startup time
183 will be excessive, and so if this is a problem, the user can clear
184 this flag and then add the shared library symbols as needed. Note
185 that there is a potential for confusion, since if the shared
186 library symbols are not loaded, commands like "info fun" will *not*
187 report all the functions that are actually present. */
188
189 int auto_solib_add = 1;
190
191 /* For systems that support it, a threshold size in megabytes. If
192 automatically adding a new library's symbol table to those already
193 known to the debugger would cause the total shared library symbol
194 size to exceed this threshhold, then the shlib's symbols are not
195 added. The threshold is ignored if the user explicitly asks for a
196 shlib to be added, such as when using the "sharedlibrary"
197 command. */
198
199 int auto_solib_limit;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_NATURAL_NAME (*s1), SYMBOL_NATURAL_NAME (*s2)));
214 }
215
216 /* This compares two partial symbols by names, using strcmp_iw_ordered
217 for the comparison. */
218
219 static int
220 compare_psymbols (const void *s1p, const void *s2p)
221 {
222 struct partial_symbol *const *s1 = s1p;
223 struct partial_symbol *const *s2 = s2p;
224
225 return strcmp_iw_ordered (SYMBOL_NATURAL_NAME (*s1),
226 SYMBOL_NATURAL_NAME (*s2));
227 }
228
229 void
230 sort_pst_symbols (struct partial_symtab *pst)
231 {
232 /* Sort the global list; don't sort the static list */
233
234 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
235 pst->n_global_syms, sizeof (struct partial_symbol *),
236 compare_psymbols);
237 }
238
239 /* Make a null terminated copy of the string at PTR with SIZE characters in
240 the obstack pointed to by OBSTACKP . Returns the address of the copy.
241 Note that the string at PTR does not have to be null terminated, I.E. it
242 may be part of a larger string and we are only saving a substring. */
243
244 char *
245 obsavestring (const char *ptr, int size, struct obstack *obstackp)
246 {
247 register char *p = (char *) obstack_alloc (obstackp, size + 1);
248 /* Open-coded memcpy--saves function call time. These strings are usually
249 short. FIXME: Is this really still true with a compiler that can
250 inline memcpy? */
251 {
252 register const char *p1 = ptr;
253 register char *p2 = p;
254 const char *end = ptr + size;
255 while (p1 != end)
256 *p2++ = *p1++;
257 }
258 p[size] = 0;
259 return p;
260 }
261
262 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
263 in the obstack pointed to by OBSTACKP. */
264
265 char *
266 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
267 const char *s3)
268 {
269 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
270 register char *val = (char *) obstack_alloc (obstackp, len);
271 strcpy (val, s1);
272 strcat (val, s2);
273 strcat (val, s3);
274 return val;
275 }
276
277 /* True if we are nested inside psymtab_to_symtab. */
278
279 int currently_reading_symtab = 0;
280
281 static void
282 decrement_reading_symtab (void *dummy)
283 {
284 currently_reading_symtab--;
285 }
286
287 /* Get the symbol table that corresponds to a partial_symtab.
288 This is fast after the first time you do it. In fact, there
289 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
290 case inline. */
291
292 struct symtab *
293 psymtab_to_symtab (register struct partial_symtab *pst)
294 {
295 /* If it's been looked up before, return it. */
296 if (pst->symtab)
297 return pst->symtab;
298
299 /* If it has not yet been read in, read it. */
300 if (!pst->readin)
301 {
302 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
303 currently_reading_symtab++;
304 (*pst->read_symtab) (pst);
305 do_cleanups (back_to);
306 }
307
308 return pst->symtab;
309 }
310
311 /* Initialize entry point information for this objfile. */
312
313 void
314 init_entry_point_info (struct objfile *objfile)
315 {
316 /* Save startup file's range of PC addresses to help blockframe.c
317 decide where the bottom of the stack is. */
318
319 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
320 {
321 /* Executable file -- record its entry point so we'll recognize
322 the startup file because it contains the entry point. */
323 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
324 }
325 else
326 {
327 /* Examination of non-executable.o files. Short-circuit this stuff. */
328 objfile->ei.entry_point = INVALID_ENTRY_POINT;
329 }
330 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
331 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
332 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
333 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
334 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
335 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
336 }
337
338 /* Get current entry point address. */
339
340 CORE_ADDR
341 entry_point_address (void)
342 {
343 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
344 }
345
346 /* Remember the lowest-addressed loadable section we've seen.
347 This function is called via bfd_map_over_sections.
348
349 In case of equal vmas, the section with the largest size becomes the
350 lowest-addressed loadable section.
351
352 If the vmas and sizes are equal, the last section is considered the
353 lowest-addressed loadable section. */
354
355 void
356 find_lowest_section (bfd *abfd, asection *sect, void *obj)
357 {
358 asection **lowest = (asection **) obj;
359
360 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
361 return;
362 if (!*lowest)
363 *lowest = sect; /* First loadable section */
364 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
365 *lowest = sect; /* A lower loadable section */
366 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
367 && (bfd_section_size (abfd, (*lowest))
368 <= bfd_section_size (abfd, sect)))
369 *lowest = sect;
370 }
371
372 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
373
374 struct section_addr_info *
375 alloc_section_addr_info (size_t num_sections)
376 {
377 struct section_addr_info *sap;
378 size_t size;
379
380 size = (sizeof (struct section_addr_info)
381 + sizeof (struct other_sections) * (num_sections - 1));
382 sap = (struct section_addr_info *) xmalloc (size);
383 memset (sap, 0, size);
384 sap->num_sections = num_sections;
385
386 return sap;
387 }
388
389 /* Build (allocate and populate) a section_addr_info struct from
390 an existing section table. */
391
392 extern struct section_addr_info *
393 build_section_addr_info_from_section_table (const struct section_table *start,
394 const struct section_table *end)
395 {
396 struct section_addr_info *sap;
397 const struct section_table *stp;
398 int oidx;
399
400 sap = alloc_section_addr_info (end - start);
401
402 for (stp = start, oidx = 0; stp != end; stp++)
403 {
404 if (bfd_get_section_flags (stp->bfd,
405 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
406 && oidx < end - start)
407 {
408 sap->other[oidx].addr = stp->addr;
409 sap->other[oidx].name
410 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
411 sap->other[oidx].sectindex = stp->the_bfd_section->index;
412 oidx++;
413 }
414 }
415
416 return sap;
417 }
418
419
420 /* Free all memory allocated by build_section_addr_info_from_section_table. */
421
422 extern void
423 free_section_addr_info (struct section_addr_info *sap)
424 {
425 int idx;
426
427 for (idx = 0; idx < sap->num_sections; idx++)
428 if (sap->other[idx].name)
429 xfree (sap->other[idx].name);
430 xfree (sap);
431 }
432
433
434 /* Initialize OBJFILE's sect_index_* members. */
435 static void
436 init_objfile_sect_indices (struct objfile *objfile)
437 {
438 asection *sect;
439 int i;
440
441 sect = bfd_get_section_by_name (objfile->obfd, ".text");
442 if (sect)
443 objfile->sect_index_text = sect->index;
444
445 sect = bfd_get_section_by_name (objfile->obfd, ".data");
446 if (sect)
447 objfile->sect_index_data = sect->index;
448
449 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
450 if (sect)
451 objfile->sect_index_bss = sect->index;
452
453 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
454 if (sect)
455 objfile->sect_index_rodata = sect->index;
456
457 /* This is where things get really weird... We MUST have valid
458 indices for the various sect_index_* members or gdb will abort.
459 So if for example, there is no ".text" section, we have to
460 accomodate that. Except when explicitly adding symbol files at
461 some address, section_offsets contains nothing but zeros, so it
462 doesn't matter which slot in section_offsets the individual
463 sect_index_* members index into. So if they are all zero, it is
464 safe to just point all the currently uninitialized indices to the
465 first slot. */
466
467 for (i = 0; i < objfile->num_sections; i++)
468 {
469 if (ANOFFSET (objfile->section_offsets, i) != 0)
470 {
471 break;
472 }
473 }
474 if (i == objfile->num_sections)
475 {
476 if (objfile->sect_index_text == -1)
477 objfile->sect_index_text = 0;
478 if (objfile->sect_index_data == -1)
479 objfile->sect_index_data = 0;
480 if (objfile->sect_index_bss == -1)
481 objfile->sect_index_bss = 0;
482 if (objfile->sect_index_rodata == -1)
483 objfile->sect_index_rodata = 0;
484 }
485 }
486
487
488 /* Parse the user's idea of an offset for dynamic linking, into our idea
489 of how to represent it for fast symbol reading. This is the default
490 version of the sym_fns.sym_offsets function for symbol readers that
491 don't need to do anything special. It allocates a section_offsets table
492 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
493
494 void
495 default_symfile_offsets (struct objfile *objfile,
496 struct section_addr_info *addrs)
497 {
498 int i;
499
500 objfile->num_sections = bfd_count_sections (objfile->obfd);
501 objfile->section_offsets = (struct section_offsets *)
502 obstack_alloc (&objfile->psymbol_obstack,
503 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
504 memset (objfile->section_offsets, 0,
505 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
506
507 /* Now calculate offsets for section that were specified by the
508 caller. */
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 {
511 struct other_sections *osp ;
512
513 osp = &addrs->other[i] ;
514 if (osp->addr == 0)
515 continue;
516
517 /* Record all sections in offsets */
518 /* The section_offsets in the objfile are here filled in using
519 the BFD index. */
520 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
521 }
522
523 /* Remember the bfd indexes for the .text, .data, .bss and
524 .rodata sections. */
525 init_objfile_sect_indices (objfile);
526 }
527
528
529 /* Process a symbol file, as either the main file or as a dynamically
530 loaded file.
531
532 OBJFILE is where the symbols are to be read from.
533
534 ADDRS is the list of section load addresses. If the user has given
535 an 'add-symbol-file' command, then this is the list of offsets and
536 addresses he or she provided as arguments to the command; or, if
537 we're handling a shared library, these are the actual addresses the
538 sections are loaded at, according to the inferior's dynamic linker
539 (as gleaned by GDB's shared library code). We convert each address
540 into an offset from the section VMA's as it appears in the object
541 file, and then call the file's sym_offsets function to convert this
542 into a format-specific offset table --- a `struct section_offsets'.
543 If ADDRS is non-zero, OFFSETS must be zero.
544
545 OFFSETS is a table of section offsets already in the right
546 format-specific representation. NUM_OFFSETS is the number of
547 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
548 assume this is the proper table the call to sym_offsets described
549 above would produce. Instead of calling sym_offsets, we just dump
550 it right into objfile->section_offsets. (When we're re-reading
551 symbols from an objfile, we don't have the original load address
552 list any more; all we have is the section offset table.) If
553 OFFSETS is non-zero, ADDRS must be zero.
554
555 MAINLINE is nonzero if this is the main symbol file, or zero if
556 it's an extra symbol file such as dynamically loaded code.
557
558 VERBO is nonzero if the caller has printed a verbose message about
559 the symbol reading (and complaints can be more terse about it). */
560
561 void
562 syms_from_objfile (struct objfile *objfile,
563 struct section_addr_info *addrs,
564 struct section_offsets *offsets,
565 int num_offsets,
566 int mainline,
567 int verbo)
568 {
569 struct section_addr_info *local_addr = NULL;
570 struct cleanup *old_chain;
571
572 gdb_assert (! (addrs && offsets));
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 if (objfile->sf == NULL)
578 return; /* No symbols. */
579
580 /* Make sure that partially constructed symbol tables will be cleaned up
581 if an error occurs during symbol reading. */
582 old_chain = make_cleanup_free_objfile (objfile);
583
584 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
585 list. We now establish the convention that an addr of zero means
586 no load address was specified. */
587 if (! addrs && ! offsets)
588 {
589 local_addr
590 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
591 make_cleanup (xfree, local_addr);
592 addrs = local_addr;
593 }
594
595 /* Now either addrs or offsets is non-zero. */
596
597 if (mainline)
598 {
599 /* We will modify the main symbol table, make sure that all its users
600 will be cleaned up if an error occurs during symbol reading. */
601 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
602
603 /* Since no error yet, throw away the old symbol table. */
604
605 if (symfile_objfile != NULL)
606 {
607 free_objfile (symfile_objfile);
608 symfile_objfile = NULL;
609 }
610
611 /* Currently we keep symbols from the add-symbol-file command.
612 If the user wants to get rid of them, they should do "symbol-file"
613 without arguments first. Not sure this is the best behavior
614 (PR 2207). */
615
616 (*objfile->sf->sym_new_init) (objfile);
617 }
618
619 /* Convert addr into an offset rather than an absolute address.
620 We find the lowest address of a loaded segment in the objfile,
621 and assume that <addr> is where that got loaded.
622
623 We no longer warn if the lowest section is not a text segment (as
624 happens for the PA64 port. */
625 if (!mainline && addrs && addrs->other[0].name)
626 {
627 asection *lower_sect;
628 asection *sect;
629 CORE_ADDR lower_offset;
630 int i;
631
632 /* Find lowest loadable section to be used as starting point for
633 continguous sections. FIXME!! won't work without call to find
634 .text first, but this assumes text is lowest section. */
635 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
636 if (lower_sect == NULL)
637 bfd_map_over_sections (objfile->obfd, find_lowest_section,
638 &lower_sect);
639 if (lower_sect == NULL)
640 warning ("no loadable sections found in added symbol-file %s",
641 objfile->name);
642 else
643 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
644 warning ("Lowest section in %s is %s at %s",
645 objfile->name,
646 bfd_section_name (objfile->obfd, lower_sect),
647 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
648 if (lower_sect != NULL)
649 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
650 else
651 lower_offset = 0;
652
653 /* Calculate offsets for the loadable sections.
654 FIXME! Sections must be in order of increasing loadable section
655 so that contiguous sections can use the lower-offset!!!
656
657 Adjust offsets if the segments are not contiguous.
658 If the section is contiguous, its offset should be set to
659 the offset of the highest loadable section lower than it
660 (the loadable section directly below it in memory).
661 this_offset = lower_offset = lower_addr - lower_orig_addr */
662
663 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
664 {
665 if (addrs->other[i].addr != 0)
666 {
667 sect = bfd_get_section_by_name (objfile->obfd,
668 addrs->other[i].name);
669 if (sect)
670 {
671 addrs->other[i].addr
672 -= bfd_section_vma (objfile->obfd, sect);
673 lower_offset = addrs->other[i].addr;
674 /* This is the index used by BFD. */
675 addrs->other[i].sectindex = sect->index ;
676 }
677 else
678 {
679 warning ("section %s not found in %s",
680 addrs->other[i].name,
681 objfile->name);
682 addrs->other[i].addr = 0;
683 }
684 }
685 else
686 addrs->other[i].addr = lower_offset;
687 }
688 }
689
690 /* Initialize symbol reading routines for this objfile, allow complaints to
691 appear for this new file, and record how verbose to be, then do the
692 initial symbol reading for this file. */
693
694 (*objfile->sf->sym_init) (objfile);
695 clear_complaints (&symfile_complaints, 1, verbo);
696
697 if (addrs)
698 (*objfile->sf->sym_offsets) (objfile, addrs);
699 else
700 {
701 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
702
703 /* Just copy in the offset table directly as given to us. */
704 objfile->num_sections = num_offsets;
705 objfile->section_offsets
706 = ((struct section_offsets *)
707 obstack_alloc (&objfile->psymbol_obstack, size));
708 memcpy (objfile->section_offsets, offsets, size);
709
710 init_objfile_sect_indices (objfile);
711 }
712
713 #ifndef IBM6000_TARGET
714 /* This is a SVR4/SunOS specific hack, I think. In any event, it
715 screws RS/6000. sym_offsets should be doing this sort of thing,
716 because it knows the mapping between bfd sections and
717 section_offsets. */
718 /* This is a hack. As far as I can tell, section offsets are not
719 target dependent. They are all set to addr with a couple of
720 exceptions. The exceptions are sysvr4 shared libraries, whose
721 offsets are kept in solib structures anyway and rs6000 xcoff
722 which handles shared libraries in a completely unique way.
723
724 Section offsets are built similarly, except that they are built
725 by adding addr in all cases because there is no clear mapping
726 from section_offsets into actual sections. Note that solib.c
727 has a different algorithm for finding section offsets.
728
729 These should probably all be collapsed into some target
730 independent form of shared library support. FIXME. */
731
732 if (addrs)
733 {
734 struct obj_section *s;
735
736 /* Map section offsets in "addr" back to the object's
737 sections by comparing the section names with bfd's
738 section names. Then adjust the section address by
739 the offset. */ /* for gdb/13815 */
740
741 ALL_OBJFILE_OSECTIONS (objfile, s)
742 {
743 CORE_ADDR s_addr = 0;
744 int i;
745
746 for (i = 0;
747 !s_addr && i < addrs->num_sections && addrs->other[i].name;
748 i++)
749 if (strcmp (bfd_section_name (s->objfile->obfd,
750 s->the_bfd_section),
751 addrs->other[i].name) == 0)
752 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
753
754 s->addr -= s->offset;
755 s->addr += s_addr;
756 s->endaddr -= s->offset;
757 s->endaddr += s_addr;
758 s->offset += s_addr;
759 }
760 }
761 #endif /* not IBM6000_TARGET */
762
763 (*objfile->sf->sym_read) (objfile, mainline);
764
765 /* Don't allow char * to have a typename (else would get caddr_t).
766 Ditto void *. FIXME: Check whether this is now done by all the
767 symbol readers themselves (many of them now do), and if so remove
768 it from here. */
769
770 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
771 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
772
773 /* Mark the objfile has having had initial symbol read attempted. Note
774 that this does not mean we found any symbols... */
775
776 objfile->flags |= OBJF_SYMS;
777
778 /* Discard cleanups as symbol reading was successful. */
779
780 discard_cleanups (old_chain);
781 }
782
783 /* Perform required actions after either reading in the initial
784 symbols for a new objfile, or mapping in the symbols from a reusable
785 objfile. */
786
787 void
788 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
789 {
790
791 /* If this is the main symbol file we have to clean up all users of the
792 old main symbol file. Otherwise it is sufficient to fixup all the
793 breakpoints that may have been redefined by this symbol file. */
794 if (mainline)
795 {
796 /* OK, make it the "real" symbol file. */
797 symfile_objfile = objfile;
798
799 clear_symtab_users ();
800 }
801 else
802 {
803 breakpoint_re_set ();
804 }
805
806 /* We're done reading the symbol file; finish off complaints. */
807 clear_complaints (&symfile_complaints, 0, verbo);
808 }
809
810 /* Process a symbol file, as either the main file or as a dynamically
811 loaded file.
812
813 NAME is the file name (which will be tilde-expanded and made
814 absolute herein) (but we don't free or modify NAME itself).
815
816 FROM_TTY says how verbose to be.
817
818 MAINLINE specifies whether this is the main symbol file, or whether
819 it's an extra symbol file such as dynamically loaded code.
820
821 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
822 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
823 non-zero.
824
825 Upon success, returns a pointer to the objfile that was added.
826 Upon failure, jumps back to command level (never returns). */
827 static struct objfile *
828 symbol_file_add_with_addrs_or_offsets (char *name, int from_tty,
829 struct section_addr_info *addrs,
830 struct section_offsets *offsets,
831 int num_offsets,
832 int mainline, int flags)
833 {
834 struct objfile *objfile;
835 struct partial_symtab *psymtab;
836 char *debugfile;
837 bfd *abfd;
838 struct section_addr_info *orig_addrs;
839 struct cleanup *my_cleanups;
840
841 /* Open a bfd for the file, and give user a chance to burp if we'd be
842 interactively wiping out any existing symbols. */
843
844 abfd = symfile_bfd_open (name);
845
846 if ((have_full_symbols () || have_partial_symbols ())
847 && mainline
848 && from_tty
849 && !query ("Load new symbol table from \"%s\"? ", name))
850 error ("Not confirmed.");
851
852 objfile = allocate_objfile (abfd, flags);
853
854 orig_addrs = alloc_section_addr_info (bfd_count_sections (abfd));
855 my_cleanups = make_cleanup (xfree, orig_addrs);
856 if (addrs)
857 *orig_addrs = *addrs;
858
859 /* If the objfile uses a mapped symbol file, and we have a psymtab for
860 it, then skip reading any symbols at this time. */
861
862 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
863 {
864 /* We mapped in an existing symbol table file that already has had
865 initial symbol reading performed, so we can skip that part. Notify
866 the user that instead of reading the symbols, they have been mapped.
867 */
868 if (from_tty || info_verbose)
869 {
870 printf_filtered ("Mapped symbols for %s...", name);
871 wrap_here ("");
872 gdb_flush (gdb_stdout);
873 }
874 init_entry_point_info (objfile);
875 find_sym_fns (objfile);
876 }
877 else
878 {
879 /* We either created a new mapped symbol table, mapped an existing
880 symbol table file which has not had initial symbol reading
881 performed, or need to read an unmapped symbol table. */
882 if (from_tty || info_verbose)
883 {
884 if (pre_add_symbol_hook)
885 pre_add_symbol_hook (name);
886 else
887 {
888 printf_filtered ("Reading symbols from %s...", name);
889 wrap_here ("");
890 gdb_flush (gdb_stdout);
891 }
892 }
893 syms_from_objfile (objfile, addrs, offsets, num_offsets,
894 mainline, from_tty);
895 }
896
897 /* We now have at least a partial symbol table. Check to see if the
898 user requested that all symbols be read on initial access via either
899 the gdb startup command line or on a per symbol file basis. Expand
900 all partial symbol tables for this objfile if so. */
901
902 if ((flags & OBJF_READNOW) || readnow_symbol_files)
903 {
904 if (from_tty || info_verbose)
905 {
906 printf_filtered ("expanding to full symbols...");
907 wrap_here ("");
908 gdb_flush (gdb_stdout);
909 }
910
911 for (psymtab = objfile->psymtabs;
912 psymtab != NULL;
913 psymtab = psymtab->next)
914 {
915 psymtab_to_symtab (psymtab);
916 }
917 }
918
919 debugfile = find_separate_debug_file (objfile);
920 if (debugfile)
921 {
922 if (addrs != NULL)
923 {
924 objfile->separate_debug_objfile
925 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
926 }
927 else
928 {
929 objfile->separate_debug_objfile
930 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
931 }
932 objfile->separate_debug_objfile->separate_debug_objfile_backlink
933 = objfile;
934
935 /* Put the separate debug object before the normal one, this is so that
936 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
937 put_objfile_before (objfile->separate_debug_objfile, objfile);
938
939 xfree (debugfile);
940 }
941
942 if (!have_partial_symbols () && !have_full_symbols ())
943 {
944 wrap_here ("");
945 printf_filtered ("(no debugging symbols found)...");
946 wrap_here ("");
947 }
948
949 if (from_tty || info_verbose)
950 {
951 if (post_add_symbol_hook)
952 post_add_symbol_hook ();
953 else
954 {
955 printf_filtered ("done.\n");
956 }
957 }
958
959 /* We print some messages regardless of whether 'from_tty ||
960 info_verbose' is true, so make sure they go out at the right
961 time. */
962 gdb_flush (gdb_stdout);
963
964 do_cleanups (my_cleanups);
965
966 if (objfile->sf == NULL)
967 return objfile; /* No symbols. */
968
969 new_symfile_objfile (objfile, mainline, from_tty);
970
971 if (target_new_objfile_hook)
972 target_new_objfile_hook (objfile);
973
974 return (objfile);
975 }
976
977
978 /* Process a symbol file, as either the main file or as a dynamically
979 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
980 for details. */
981 struct objfile *
982 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
983 int mainline, int flags)
984 {
985 return symbol_file_add_with_addrs_or_offsets (name, from_tty, addrs, 0, 0,
986 mainline, flags);
987 }
988
989
990 /* Call symbol_file_add() with default values and update whatever is
991 affected by the loading of a new main().
992 Used when the file is supplied in the gdb command line
993 and by some targets with special loading requirements.
994 The auxiliary function, symbol_file_add_main_1(), has the flags
995 argument for the switches that can only be specified in the symbol_file
996 command itself. */
997
998 void
999 symbol_file_add_main (char *args, int from_tty)
1000 {
1001 symbol_file_add_main_1 (args, from_tty, 0);
1002 }
1003
1004 static void
1005 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1006 {
1007 symbol_file_add (args, from_tty, NULL, 1, flags);
1008
1009 #ifdef HPUXHPPA
1010 RESET_HP_UX_GLOBALS ();
1011 #endif
1012
1013 /* Getting new symbols may change our opinion about
1014 what is frameless. */
1015 reinit_frame_cache ();
1016
1017 set_initial_language ();
1018 }
1019
1020 void
1021 symbol_file_clear (int from_tty)
1022 {
1023 if ((have_full_symbols () || have_partial_symbols ())
1024 && from_tty
1025 && !query ("Discard symbol table from `%s'? ",
1026 symfile_objfile->name))
1027 error ("Not confirmed.");
1028 free_all_objfiles ();
1029
1030 /* solib descriptors may have handles to objfiles. Since their
1031 storage has just been released, we'd better wipe the solib
1032 descriptors as well.
1033 */
1034 #if defined(SOLIB_RESTART)
1035 SOLIB_RESTART ();
1036 #endif
1037
1038 symfile_objfile = NULL;
1039 if (from_tty)
1040 printf_unfiltered ("No symbol file now.\n");
1041 #ifdef HPUXHPPA
1042 RESET_HP_UX_GLOBALS ();
1043 #endif
1044 }
1045
1046 static char *
1047 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1048 {
1049 asection *sect;
1050 bfd_size_type debuglink_size;
1051 unsigned long crc32;
1052 char *contents;
1053 int crc_offset;
1054 unsigned char *p;
1055
1056 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1057
1058 if (sect == NULL)
1059 return NULL;
1060
1061 debuglink_size = bfd_section_size (objfile->obfd, sect);
1062
1063 contents = xmalloc (debuglink_size);
1064 bfd_get_section_contents (objfile->obfd, sect, contents,
1065 (file_ptr)0, (bfd_size_type)debuglink_size);
1066
1067 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1068 crc_offset = strlen (contents) + 1;
1069 crc_offset = (crc_offset + 3) & ~3;
1070
1071 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1072
1073 *crc32_out = crc32;
1074 return contents;
1075 }
1076
1077 static int
1078 separate_debug_file_exists (const char *name, unsigned long crc)
1079 {
1080 unsigned long file_crc = 0;
1081 int fd;
1082 char buffer[8*1024];
1083 int count;
1084
1085 fd = open (name, O_RDONLY | O_BINARY);
1086 if (fd < 0)
1087 return 0;
1088
1089 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1090 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1091
1092 close (fd);
1093
1094 return crc == file_crc;
1095 }
1096
1097 static char *debug_file_directory = NULL;
1098
1099 #if ! defined (DEBUG_SUBDIRECTORY)
1100 #define DEBUG_SUBDIRECTORY ".debug"
1101 #endif
1102
1103 static char *
1104 find_separate_debug_file (struct objfile *objfile)
1105 {
1106 asection *sect;
1107 char *basename;
1108 char *dir;
1109 char *debugfile;
1110 char *name_copy;
1111 bfd_size_type debuglink_size;
1112 unsigned long crc32;
1113 int i;
1114
1115 basename = get_debug_link_info (objfile, &crc32);
1116
1117 if (basename == NULL)
1118 return NULL;
1119
1120 dir = xstrdup (objfile->name);
1121
1122 /* Strip off the final filename part, leaving the directory name,
1123 followed by a slash. Objfile names should always be absolute and
1124 tilde-expanded, so there should always be a slash in there
1125 somewhere. */
1126 for (i = strlen(dir) - 1; i >= 0; i--)
1127 {
1128 if (IS_DIR_SEPARATOR (dir[i]))
1129 break;
1130 }
1131 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1132 dir[i+1] = '\0';
1133
1134 debugfile = alloca (strlen (debug_file_directory) + 1
1135 + strlen (dir)
1136 + strlen (DEBUG_SUBDIRECTORY)
1137 + strlen ("/")
1138 + strlen (basename)
1139 + 1);
1140
1141 /* First try in the same directory as the original file. */
1142 strcpy (debugfile, dir);
1143 strcat (debugfile, basename);
1144
1145 if (separate_debug_file_exists (debugfile, crc32))
1146 {
1147 xfree (basename);
1148 xfree (dir);
1149 return xstrdup (debugfile);
1150 }
1151
1152 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1153 strcpy (debugfile, dir);
1154 strcat (debugfile, DEBUG_SUBDIRECTORY);
1155 strcat (debugfile, "/");
1156 strcat (debugfile, basename);
1157
1158 if (separate_debug_file_exists (debugfile, crc32))
1159 {
1160 xfree (basename);
1161 xfree (dir);
1162 return xstrdup (debugfile);
1163 }
1164
1165 /* Then try in the global debugfile directory. */
1166 strcpy (debugfile, debug_file_directory);
1167 strcat (debugfile, "/");
1168 strcat (debugfile, dir);
1169 strcat (debugfile, basename);
1170
1171 if (separate_debug_file_exists (debugfile, crc32))
1172 {
1173 xfree (basename);
1174 xfree (dir);
1175 return xstrdup (debugfile);
1176 }
1177
1178 xfree (basename);
1179 xfree (dir);
1180 return NULL;
1181 }
1182
1183
1184 /* This is the symbol-file command. Read the file, analyze its
1185 symbols, and add a struct symtab to a symtab list. The syntax of
1186 the command is rather bizarre--(1) buildargv implements various
1187 quoting conventions which are undocumented and have little or
1188 nothing in common with the way things are quoted (or not quoted)
1189 elsewhere in GDB, (2) options are used, which are not generally
1190 used in GDB (perhaps "set mapped on", "set readnow on" would be
1191 better), (3) the order of options matters, which is contrary to GNU
1192 conventions (because it is confusing and inconvenient). */
1193 /* Note: ezannoni 2000-04-17. This function used to have support for
1194 rombug (see remote-os9k.c). It consisted of a call to target_link()
1195 (target.c) to get the address of the text segment from the target,
1196 and pass that to symbol_file_add(). This is no longer supported. */
1197
1198 void
1199 symbol_file_command (char *args, int from_tty)
1200 {
1201 char **argv;
1202 char *name = NULL;
1203 struct cleanup *cleanups;
1204 int flags = OBJF_USERLOADED;
1205
1206 dont_repeat ();
1207
1208 if (args == NULL)
1209 {
1210 symbol_file_clear (from_tty);
1211 }
1212 else
1213 {
1214 if ((argv = buildargv (args)) == NULL)
1215 {
1216 nomem (0);
1217 }
1218 cleanups = make_cleanup_freeargv (argv);
1219 while (*argv != NULL)
1220 {
1221 if (STREQ (*argv, "-mapped"))
1222 flags |= OBJF_MAPPED;
1223 else
1224 if (STREQ (*argv, "-readnow"))
1225 flags |= OBJF_READNOW;
1226 else
1227 if (**argv == '-')
1228 error ("unknown option `%s'", *argv);
1229 else
1230 {
1231 name = *argv;
1232
1233 symbol_file_add_main_1 (name, from_tty, flags);
1234 }
1235 argv++;
1236 }
1237
1238 if (name == NULL)
1239 {
1240 error ("no symbol file name was specified");
1241 }
1242 do_cleanups (cleanups);
1243 }
1244 }
1245
1246 /* Set the initial language.
1247
1248 A better solution would be to record the language in the psymtab when reading
1249 partial symbols, and then use it (if known) to set the language. This would
1250 be a win for formats that encode the language in an easily discoverable place,
1251 such as DWARF. For stabs, we can jump through hoops looking for specially
1252 named symbols or try to intuit the language from the specific type of stabs
1253 we find, but we can't do that until later when we read in full symbols.
1254 FIXME. */
1255
1256 static void
1257 set_initial_language (void)
1258 {
1259 struct partial_symtab *pst;
1260 enum language lang = language_unknown;
1261
1262 pst = find_main_psymtab ();
1263 if (pst != NULL)
1264 {
1265 if (pst->filename != NULL)
1266 {
1267 lang = deduce_language_from_filename (pst->filename);
1268 }
1269 if (lang == language_unknown)
1270 {
1271 /* Make C the default language */
1272 lang = language_c;
1273 }
1274 set_language (lang);
1275 expected_language = current_language; /* Don't warn the user */
1276 }
1277 }
1278
1279 /* Open file specified by NAME and hand it off to BFD for preliminary
1280 analysis. Result is a newly initialized bfd *, which includes a newly
1281 malloc'd` copy of NAME (tilde-expanded and made absolute).
1282 In case of trouble, error() is called. */
1283
1284 bfd *
1285 symfile_bfd_open (char *name)
1286 {
1287 bfd *sym_bfd;
1288 int desc;
1289 char *absolute_name;
1290
1291
1292
1293 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1294
1295 /* Look down path for it, allocate 2nd new malloc'd copy. */
1296 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1297 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1298 if (desc < 0)
1299 {
1300 char *exename = alloca (strlen (name) + 5);
1301 strcat (strcpy (exename, name), ".exe");
1302 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1303 0, &absolute_name);
1304 }
1305 #endif
1306 if (desc < 0)
1307 {
1308 make_cleanup (xfree, name);
1309 perror_with_name (name);
1310 }
1311 xfree (name); /* Free 1st new malloc'd copy */
1312 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1313 /* It'll be freed in free_objfile(). */
1314
1315 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1316 if (!sym_bfd)
1317 {
1318 close (desc);
1319 make_cleanup (xfree, name);
1320 error ("\"%s\": can't open to read symbols: %s.", name,
1321 bfd_errmsg (bfd_get_error ()));
1322 }
1323 sym_bfd->cacheable = 1;
1324
1325 if (!bfd_check_format (sym_bfd, bfd_object))
1326 {
1327 /* FIXME: should be checking for errors from bfd_close (for one thing,
1328 on error it does not free all the storage associated with the
1329 bfd). */
1330 bfd_close (sym_bfd); /* This also closes desc */
1331 make_cleanup (xfree, name);
1332 error ("\"%s\": can't read symbols: %s.", name,
1333 bfd_errmsg (bfd_get_error ()));
1334 }
1335 return (sym_bfd);
1336 }
1337
1338 /* Return the section index for the given section name. Return -1 if
1339 the section was not found. */
1340 int
1341 get_section_index (struct objfile *objfile, char *section_name)
1342 {
1343 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1344 if (sect)
1345 return sect->index;
1346 else
1347 return -1;
1348 }
1349
1350 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1351 startup by the _initialize routine in each object file format reader,
1352 to register information about each format the the reader is prepared
1353 to handle. */
1354
1355 void
1356 add_symtab_fns (struct sym_fns *sf)
1357 {
1358 sf->next = symtab_fns;
1359 symtab_fns = sf;
1360 }
1361
1362
1363 /* Initialize to read symbols from the symbol file sym_bfd. It either
1364 returns or calls error(). The result is an initialized struct sym_fns
1365 in the objfile structure, that contains cached information about the
1366 symbol file. */
1367
1368 static void
1369 find_sym_fns (struct objfile *objfile)
1370 {
1371 struct sym_fns *sf;
1372 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1373 char *our_target = bfd_get_target (objfile->obfd);
1374
1375 if (our_flavour == bfd_target_srec_flavour
1376 || our_flavour == bfd_target_ihex_flavour
1377 || our_flavour == bfd_target_tekhex_flavour)
1378 return; /* No symbols. */
1379
1380 /* Special kludge for apollo. See dstread.c. */
1381 if (STREQN (our_target, "apollo", 6))
1382 our_flavour = (enum bfd_flavour) -2;
1383
1384 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1385 {
1386 if (our_flavour == sf->sym_flavour)
1387 {
1388 objfile->sf = sf;
1389 return;
1390 }
1391 }
1392 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1393 bfd_get_target (objfile->obfd));
1394 }
1395 \f
1396 /* This function runs the load command of our current target. */
1397
1398 static void
1399 load_command (char *arg, int from_tty)
1400 {
1401 if (arg == NULL)
1402 arg = get_exec_file (1);
1403 target_load (arg, from_tty);
1404
1405 /* After re-loading the executable, we don't really know which
1406 overlays are mapped any more. */
1407 overlay_cache_invalid = 1;
1408 }
1409
1410 /* This version of "load" should be usable for any target. Currently
1411 it is just used for remote targets, not inftarg.c or core files,
1412 on the theory that only in that case is it useful.
1413
1414 Avoiding xmodem and the like seems like a win (a) because we don't have
1415 to worry about finding it, and (b) On VMS, fork() is very slow and so
1416 we don't want to run a subprocess. On the other hand, I'm not sure how
1417 performance compares. */
1418
1419 static int download_write_size = 512;
1420 static int validate_download = 0;
1421
1422 /* Callback service function for generic_load (bfd_map_over_sections). */
1423
1424 static void
1425 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1426 {
1427 bfd_size_type *sum = data;
1428
1429 *sum += bfd_get_section_size_before_reloc (asec);
1430 }
1431
1432 /* Opaque data for load_section_callback. */
1433 struct load_section_data {
1434 unsigned long load_offset;
1435 unsigned long write_count;
1436 unsigned long data_count;
1437 bfd_size_type total_size;
1438 };
1439
1440 /* Callback service function for generic_load (bfd_map_over_sections). */
1441
1442 static void
1443 load_section_callback (bfd *abfd, asection *asec, void *data)
1444 {
1445 struct load_section_data *args = data;
1446
1447 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1448 {
1449 bfd_size_type size = bfd_get_section_size_before_reloc (asec);
1450 if (size > 0)
1451 {
1452 char *buffer;
1453 struct cleanup *old_chain;
1454 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1455 bfd_size_type block_size;
1456 int err;
1457 const char *sect_name = bfd_get_section_name (abfd, asec);
1458 bfd_size_type sent;
1459
1460 if (download_write_size > 0 && size > download_write_size)
1461 block_size = download_write_size;
1462 else
1463 block_size = size;
1464
1465 buffer = xmalloc (size);
1466 old_chain = make_cleanup (xfree, buffer);
1467
1468 /* Is this really necessary? I guess it gives the user something
1469 to look at during a long download. */
1470 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1471 sect_name, paddr_nz (size), paddr_nz (lma));
1472
1473 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1474
1475 sent = 0;
1476 do
1477 {
1478 int len;
1479 bfd_size_type this_transfer = size - sent;
1480
1481 if (this_transfer >= block_size)
1482 this_transfer = block_size;
1483 len = target_write_memory_partial (lma, buffer,
1484 this_transfer, &err);
1485 if (err)
1486 break;
1487 if (validate_download)
1488 {
1489 /* Broken memories and broken monitors manifest
1490 themselves here when bring new computers to
1491 life. This doubles already slow downloads. */
1492 /* NOTE: cagney/1999-10-18: A more efficient
1493 implementation might add a verify_memory()
1494 method to the target vector and then use
1495 that. remote.c could implement that method
1496 using the ``qCRC'' packet. */
1497 char *check = xmalloc (len);
1498 struct cleanup *verify_cleanups =
1499 make_cleanup (xfree, check);
1500
1501 if (target_read_memory (lma, check, len) != 0)
1502 error ("Download verify read failed at 0x%s",
1503 paddr (lma));
1504 if (memcmp (buffer, check, len) != 0)
1505 error ("Download verify compare failed at 0x%s",
1506 paddr (lma));
1507 do_cleanups (verify_cleanups);
1508 }
1509 args->data_count += len;
1510 lma += len;
1511 buffer += len;
1512 args->write_count += 1;
1513 sent += len;
1514 if (quit_flag
1515 || (ui_load_progress_hook != NULL
1516 && ui_load_progress_hook (sect_name, sent)))
1517 error ("Canceled the download");
1518
1519 if (show_load_progress != NULL)
1520 show_load_progress (sect_name, sent, size,
1521 args->data_count, args->total_size);
1522 }
1523 while (sent < size);
1524
1525 if (err != 0)
1526 error ("Memory access error while loading section %s.", sect_name);
1527
1528 do_cleanups (old_chain);
1529 }
1530 }
1531 }
1532
1533 void
1534 generic_load (char *args, int from_tty)
1535 {
1536 asection *s;
1537 bfd *loadfile_bfd;
1538 time_t start_time, end_time; /* Start and end times of download */
1539 char *filename;
1540 struct cleanup *old_cleanups;
1541 char *offptr;
1542 struct load_section_data cbdata;
1543 CORE_ADDR entry;
1544
1545 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1546 cbdata.write_count = 0; /* Number of writes needed. */
1547 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1548 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1549
1550 /* Parse the input argument - the user can specify a load offset as
1551 a second argument. */
1552 filename = xmalloc (strlen (args) + 1);
1553 old_cleanups = make_cleanup (xfree, filename);
1554 strcpy (filename, args);
1555 offptr = strchr (filename, ' ');
1556 if (offptr != NULL)
1557 {
1558 char *endptr;
1559
1560 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1561 if (offptr == endptr)
1562 error ("Invalid download offset:%s\n", offptr);
1563 *offptr = '\0';
1564 }
1565 else
1566 cbdata.load_offset = 0;
1567
1568 /* Open the file for loading. */
1569 loadfile_bfd = bfd_openr (filename, gnutarget);
1570 if (loadfile_bfd == NULL)
1571 {
1572 perror_with_name (filename);
1573 return;
1574 }
1575
1576 /* FIXME: should be checking for errors from bfd_close (for one thing,
1577 on error it does not free all the storage associated with the
1578 bfd). */
1579 make_cleanup_bfd_close (loadfile_bfd);
1580
1581 if (!bfd_check_format (loadfile_bfd, bfd_object))
1582 {
1583 error ("\"%s\" is not an object file: %s", filename,
1584 bfd_errmsg (bfd_get_error ()));
1585 }
1586
1587 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1588 (void *) &cbdata.total_size);
1589
1590 start_time = time (NULL);
1591
1592 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1593
1594 end_time = time (NULL);
1595
1596 entry = bfd_get_start_address (loadfile_bfd);
1597 ui_out_text (uiout, "Start address ");
1598 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1599 ui_out_text (uiout, ", load size ");
1600 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1601 ui_out_text (uiout, "\n");
1602 /* We were doing this in remote-mips.c, I suspect it is right
1603 for other targets too. */
1604 write_pc (entry);
1605
1606 /* FIXME: are we supposed to call symbol_file_add or not? According
1607 to a comment from remote-mips.c (where a call to symbol_file_add
1608 was commented out), making the call confuses GDB if more than one
1609 file is loaded in. Some targets do (e.g., remote-vx.c) but
1610 others don't (or didn't - perhaphs they have all been deleted). */
1611
1612 print_transfer_performance (gdb_stdout, cbdata.data_count,
1613 cbdata.write_count, end_time - start_time);
1614
1615 do_cleanups (old_cleanups);
1616 }
1617
1618 /* Report how fast the transfer went. */
1619
1620 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1621 replaced by print_transfer_performance (with a very different
1622 function signature). */
1623
1624 void
1625 report_transfer_performance (unsigned long data_count, time_t start_time,
1626 time_t end_time)
1627 {
1628 print_transfer_performance (gdb_stdout, data_count,
1629 end_time - start_time, 0);
1630 }
1631
1632 void
1633 print_transfer_performance (struct ui_file *stream,
1634 unsigned long data_count,
1635 unsigned long write_count,
1636 unsigned long time_count)
1637 {
1638 ui_out_text (uiout, "Transfer rate: ");
1639 if (time_count > 0)
1640 {
1641 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1642 (data_count * 8) / time_count);
1643 ui_out_text (uiout, " bits/sec");
1644 }
1645 else
1646 {
1647 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1648 ui_out_text (uiout, " bits in <1 sec");
1649 }
1650 if (write_count > 0)
1651 {
1652 ui_out_text (uiout, ", ");
1653 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1654 ui_out_text (uiout, " bytes/write");
1655 }
1656 ui_out_text (uiout, ".\n");
1657 }
1658
1659 /* This function allows the addition of incrementally linked object files.
1660 It does not modify any state in the target, only in the debugger. */
1661 /* Note: ezannoni 2000-04-13 This function/command used to have a
1662 special case syntax for the rombug target (Rombug is the boot
1663 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1664 rombug case, the user doesn't need to supply a text address,
1665 instead a call to target_link() (in target.c) would supply the
1666 value to use. We are now discontinuing this type of ad hoc syntax. */
1667
1668 /* ARGSUSED */
1669 static void
1670 add_symbol_file_command (char *args, int from_tty)
1671 {
1672 char *filename = NULL;
1673 int flags = OBJF_USERLOADED;
1674 char *arg;
1675 int expecting_option = 0;
1676 int section_index = 0;
1677 int argcnt = 0;
1678 int sec_num = 0;
1679 int i;
1680 int expecting_sec_name = 0;
1681 int expecting_sec_addr = 0;
1682
1683 struct sect_opt
1684 {
1685 char *name;
1686 char *value;
1687 };
1688
1689 struct section_addr_info *section_addrs;
1690 struct sect_opt *sect_opts = NULL;
1691 size_t num_sect_opts = 0;
1692 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1693
1694 num_sect_opts = 16;
1695 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1696 * sizeof (struct sect_opt));
1697
1698 dont_repeat ();
1699
1700 if (args == NULL)
1701 error ("add-symbol-file takes a file name and an address");
1702
1703 /* Make a copy of the string that we can safely write into. */
1704 args = xstrdup (args);
1705
1706 while (*args != '\000')
1707 {
1708 /* Any leading spaces? */
1709 while (isspace (*args))
1710 args++;
1711
1712 /* Point arg to the beginning of the argument. */
1713 arg = args;
1714
1715 /* Move args pointer over the argument. */
1716 while ((*args != '\000') && !isspace (*args))
1717 args++;
1718
1719 /* If there are more arguments, terminate arg and
1720 proceed past it. */
1721 if (*args != '\000')
1722 *args++ = '\000';
1723
1724 /* Now process the argument. */
1725 if (argcnt == 0)
1726 {
1727 /* The first argument is the file name. */
1728 filename = tilde_expand (arg);
1729 make_cleanup (xfree, filename);
1730 }
1731 else
1732 if (argcnt == 1)
1733 {
1734 /* The second argument is always the text address at which
1735 to load the program. */
1736 sect_opts[section_index].name = ".text";
1737 sect_opts[section_index].value = arg;
1738 if (++section_index > num_sect_opts)
1739 {
1740 num_sect_opts *= 2;
1741 sect_opts = ((struct sect_opt *)
1742 xrealloc (sect_opts,
1743 num_sect_opts
1744 * sizeof (struct sect_opt)));
1745 }
1746 }
1747 else
1748 {
1749 /* It's an option (starting with '-') or it's an argument
1750 to an option */
1751
1752 if (*arg == '-')
1753 {
1754 if (strcmp (arg, "-mapped") == 0)
1755 flags |= OBJF_MAPPED;
1756 else
1757 if (strcmp (arg, "-readnow") == 0)
1758 flags |= OBJF_READNOW;
1759 else
1760 if (strcmp (arg, "-s") == 0)
1761 {
1762 expecting_sec_name = 1;
1763 expecting_sec_addr = 1;
1764 }
1765 }
1766 else
1767 {
1768 if (expecting_sec_name)
1769 {
1770 sect_opts[section_index].name = arg;
1771 expecting_sec_name = 0;
1772 }
1773 else
1774 if (expecting_sec_addr)
1775 {
1776 sect_opts[section_index].value = arg;
1777 expecting_sec_addr = 0;
1778 if (++section_index > num_sect_opts)
1779 {
1780 num_sect_opts *= 2;
1781 sect_opts = ((struct sect_opt *)
1782 xrealloc (sect_opts,
1783 num_sect_opts
1784 * sizeof (struct sect_opt)));
1785 }
1786 }
1787 else
1788 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1789 }
1790 }
1791 argcnt++;
1792 }
1793
1794 /* Print the prompt for the query below. And save the arguments into
1795 a sect_addr_info structure to be passed around to other
1796 functions. We have to split this up into separate print
1797 statements because local_hex_string returns a local static
1798 string. */
1799
1800 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1801 section_addrs = alloc_section_addr_info (section_index);
1802 make_cleanup (xfree, section_addrs);
1803 for (i = 0; i < section_index; i++)
1804 {
1805 CORE_ADDR addr;
1806 char *val = sect_opts[i].value;
1807 char *sec = sect_opts[i].name;
1808
1809 addr = parse_and_eval_address (val);
1810
1811 /* Here we store the section offsets in the order they were
1812 entered on the command line. */
1813 section_addrs->other[sec_num].name = sec;
1814 section_addrs->other[sec_num].addr = addr;
1815 printf_filtered ("\t%s_addr = %s\n",
1816 sec,
1817 local_hex_string ((unsigned long)addr));
1818 sec_num++;
1819
1820 /* The object's sections are initialized when a
1821 call is made to build_objfile_section_table (objfile).
1822 This happens in reread_symbols.
1823 At this point, we don't know what file type this is,
1824 so we can't determine what section names are valid. */
1825 }
1826
1827 if (from_tty && (!query ("%s", "")))
1828 error ("Not confirmed.");
1829
1830 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1831
1832 /* Getting new symbols may change our opinion about what is
1833 frameless. */
1834 reinit_frame_cache ();
1835 do_cleanups (my_cleanups);
1836 }
1837 \f
1838 static void
1839 add_shared_symbol_files_command (char *args, int from_tty)
1840 {
1841 #ifdef ADD_SHARED_SYMBOL_FILES
1842 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1843 #else
1844 error ("This command is not available in this configuration of GDB.");
1845 #endif
1846 }
1847 \f
1848 /* Re-read symbols if a symbol-file has changed. */
1849 void
1850 reread_symbols (void)
1851 {
1852 struct objfile *objfile;
1853 long new_modtime;
1854 int reread_one = 0;
1855 struct stat new_statbuf;
1856 int res;
1857
1858 /* With the addition of shared libraries, this should be modified,
1859 the load time should be saved in the partial symbol tables, since
1860 different tables may come from different source files. FIXME.
1861 This routine should then walk down each partial symbol table
1862 and see if the symbol table that it originates from has been changed */
1863
1864 for (objfile = object_files; objfile; objfile = objfile->next)
1865 {
1866 if (objfile->obfd)
1867 {
1868 #ifdef IBM6000_TARGET
1869 /* If this object is from a shared library, then you should
1870 stat on the library name, not member name. */
1871
1872 if (objfile->obfd->my_archive)
1873 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1874 else
1875 #endif
1876 res = stat (objfile->name, &new_statbuf);
1877 if (res != 0)
1878 {
1879 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1880 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1881 objfile->name);
1882 continue;
1883 }
1884 new_modtime = new_statbuf.st_mtime;
1885 if (new_modtime != objfile->mtime)
1886 {
1887 struct cleanup *old_cleanups;
1888 struct section_offsets *offsets;
1889 int num_offsets;
1890 char *obfd_filename;
1891
1892 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1893 objfile->name);
1894
1895 /* There are various functions like symbol_file_add,
1896 symfile_bfd_open, syms_from_objfile, etc., which might
1897 appear to do what we want. But they have various other
1898 effects which we *don't* want. So we just do stuff
1899 ourselves. We don't worry about mapped files (for one thing,
1900 any mapped file will be out of date). */
1901
1902 /* If we get an error, blow away this objfile (not sure if
1903 that is the correct response for things like shared
1904 libraries). */
1905 old_cleanups = make_cleanup_free_objfile (objfile);
1906 /* We need to do this whenever any symbols go away. */
1907 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1908
1909 /* Clean up any state BFD has sitting around. We don't need
1910 to close the descriptor but BFD lacks a way of closing the
1911 BFD without closing the descriptor. */
1912 obfd_filename = bfd_get_filename (objfile->obfd);
1913 if (!bfd_close (objfile->obfd))
1914 error ("Can't close BFD for %s: %s", objfile->name,
1915 bfd_errmsg (bfd_get_error ()));
1916 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1917 if (objfile->obfd == NULL)
1918 error ("Can't open %s to read symbols.", objfile->name);
1919 /* bfd_openr sets cacheable to true, which is what we want. */
1920 if (!bfd_check_format (objfile->obfd, bfd_object))
1921 error ("Can't read symbols from %s: %s.", objfile->name,
1922 bfd_errmsg (bfd_get_error ()));
1923
1924 /* Save the offsets, we will nuke them with the rest of the
1925 psymbol_obstack. */
1926 num_offsets = objfile->num_sections;
1927 offsets = ((struct section_offsets *)
1928 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
1929 memcpy (offsets, objfile->section_offsets,
1930 SIZEOF_N_SECTION_OFFSETS (num_offsets));
1931
1932 /* Nuke all the state that we will re-read. Much of the following
1933 code which sets things to NULL really is necessary to tell
1934 other parts of GDB that there is nothing currently there. */
1935
1936 /* FIXME: Do we have to free a whole linked list, or is this
1937 enough? */
1938 if (objfile->global_psymbols.list)
1939 xmfree (objfile->md, objfile->global_psymbols.list);
1940 memset (&objfile->global_psymbols, 0,
1941 sizeof (objfile->global_psymbols));
1942 if (objfile->static_psymbols.list)
1943 xmfree (objfile->md, objfile->static_psymbols.list);
1944 memset (&objfile->static_psymbols, 0,
1945 sizeof (objfile->static_psymbols));
1946
1947 /* Free the obstacks for non-reusable objfiles */
1948 bcache_xfree (objfile->psymbol_cache);
1949 objfile->psymbol_cache = bcache_xmalloc ();
1950 bcache_xfree (objfile->macro_cache);
1951 objfile->macro_cache = bcache_xmalloc ();
1952 if (objfile->demangled_names_hash != NULL)
1953 {
1954 htab_delete (objfile->demangled_names_hash);
1955 objfile->demangled_names_hash = NULL;
1956 }
1957 obstack_free (&objfile->psymbol_obstack, 0);
1958 obstack_free (&objfile->symbol_obstack, 0);
1959 obstack_free (&objfile->type_obstack, 0);
1960 objfile->sections = NULL;
1961 objfile->symtabs = NULL;
1962 objfile->psymtabs = NULL;
1963 objfile->free_psymtabs = NULL;
1964 objfile->msymbols = NULL;
1965 objfile->sym_private = NULL;
1966 objfile->minimal_symbol_count = 0;
1967 memset (&objfile->msymbol_hash, 0,
1968 sizeof (objfile->msymbol_hash));
1969 memset (&objfile->msymbol_demangled_hash, 0,
1970 sizeof (objfile->msymbol_demangled_hash));
1971 objfile->fundamental_types = NULL;
1972 if (objfile->sf != NULL)
1973 {
1974 (*objfile->sf->sym_finish) (objfile);
1975 }
1976
1977 /* We never make this a mapped file. */
1978 objfile->md = NULL;
1979 /* obstack_specify_allocation also initializes the obstack so
1980 it is empty. */
1981 objfile->psymbol_cache = bcache_xmalloc ();
1982 objfile->macro_cache = bcache_xmalloc ();
1983 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1984 xmalloc, xfree);
1985 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1986 xmalloc, xfree);
1987 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1988 xmalloc, xfree);
1989 if (build_objfile_section_table (objfile))
1990 {
1991 error ("Can't find the file sections in `%s': %s",
1992 objfile->name, bfd_errmsg (bfd_get_error ()));
1993 }
1994 terminate_minimal_symbol_table (objfile);
1995
1996 /* We use the same section offsets as from last time. I'm not
1997 sure whether that is always correct for shared libraries. */
1998 objfile->section_offsets = (struct section_offsets *)
1999 obstack_alloc (&objfile->psymbol_obstack,
2000 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2001 memcpy (objfile->section_offsets, offsets,
2002 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2003 objfile->num_sections = num_offsets;
2004
2005 /* What the hell is sym_new_init for, anyway? The concept of
2006 distinguishing between the main file and additional files
2007 in this way seems rather dubious. */
2008 if (objfile == symfile_objfile)
2009 {
2010 (*objfile->sf->sym_new_init) (objfile);
2011 #ifdef HPUXHPPA
2012 RESET_HP_UX_GLOBALS ();
2013 #endif
2014 }
2015
2016 (*objfile->sf->sym_init) (objfile);
2017 clear_complaints (&symfile_complaints, 1, 1);
2018 /* The "mainline" parameter is a hideous hack; I think leaving it
2019 zero is OK since dbxread.c also does what it needs to do if
2020 objfile->global_psymbols.size is 0. */
2021 (*objfile->sf->sym_read) (objfile, 0);
2022 if (!have_partial_symbols () && !have_full_symbols ())
2023 {
2024 wrap_here ("");
2025 printf_filtered ("(no debugging symbols found)\n");
2026 wrap_here ("");
2027 }
2028 objfile->flags |= OBJF_SYMS;
2029
2030 /* We're done reading the symbol file; finish off complaints. */
2031 clear_complaints (&symfile_complaints, 0, 1);
2032
2033 /* Getting new symbols may change our opinion about what is
2034 frameless. */
2035
2036 reinit_frame_cache ();
2037
2038 /* Discard cleanups as symbol reading was successful. */
2039 discard_cleanups (old_cleanups);
2040
2041 /* If the mtime has changed between the time we set new_modtime
2042 and now, we *want* this to be out of date, so don't call stat
2043 again now. */
2044 objfile->mtime = new_modtime;
2045 reread_one = 1;
2046 reread_separate_symbols (objfile);
2047 }
2048 }
2049 }
2050
2051 if (reread_one)
2052 clear_symtab_users ();
2053 }
2054
2055
2056 /* Handle separate debug info for OBJFILE, which has just been
2057 re-read:
2058 - If we had separate debug info before, but now we don't, get rid
2059 of the separated objfile.
2060 - If we didn't have separated debug info before, but now we do,
2061 read in the new separated debug info file.
2062 - If the debug link points to a different file, toss the old one
2063 and read the new one.
2064 This function does *not* handle the case where objfile is still
2065 using the same separate debug info file, but that file's timestamp
2066 has changed. That case should be handled by the loop in
2067 reread_symbols already. */
2068 static void
2069 reread_separate_symbols (struct objfile *objfile)
2070 {
2071 char *debug_file;
2072 unsigned long crc32;
2073
2074 /* Does the updated objfile's debug info live in a
2075 separate file? */
2076 debug_file = find_separate_debug_file (objfile);
2077
2078 if (objfile->separate_debug_objfile)
2079 {
2080 /* There are two cases where we need to get rid of
2081 the old separated debug info objfile:
2082 - if the new primary objfile doesn't have
2083 separated debug info, or
2084 - if the new primary objfile has separate debug
2085 info, but it's under a different filename.
2086
2087 If the old and new objfiles both have separate
2088 debug info, under the same filename, then we're
2089 okay --- if the separated file's contents have
2090 changed, we will have caught that when we
2091 visited it in this function's outermost
2092 loop. */
2093 if (! debug_file
2094 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2095 free_objfile (objfile->separate_debug_objfile);
2096 }
2097
2098 /* If the new objfile has separate debug info, and we
2099 haven't loaded it already, do so now. */
2100 if (debug_file
2101 && ! objfile->separate_debug_objfile)
2102 {
2103 /* Use the same section offset table as objfile itself.
2104 Preserve the flags from objfile that make sense. */
2105 objfile->separate_debug_objfile
2106 = (symbol_file_add_with_addrs_or_offsets
2107 (debug_file,
2108 info_verbose, /* from_tty: Don't override the default. */
2109 0, /* No addr table. */
2110 objfile->section_offsets, objfile->num_sections,
2111 0, /* Not mainline. See comments about this above. */
2112 objfile->flags & (OBJF_MAPPED | OBJF_REORDERED
2113 | OBJF_SHARED | OBJF_READNOW
2114 | OBJF_USERLOADED)));
2115 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2116 = objfile;
2117 }
2118 }
2119
2120
2121 \f
2122
2123
2124 typedef struct
2125 {
2126 char *ext;
2127 enum language lang;
2128 }
2129 filename_language;
2130
2131 static filename_language *filename_language_table;
2132 static int fl_table_size, fl_table_next;
2133
2134 static void
2135 add_filename_language (char *ext, enum language lang)
2136 {
2137 if (fl_table_next >= fl_table_size)
2138 {
2139 fl_table_size += 10;
2140 filename_language_table =
2141 xrealloc (filename_language_table,
2142 fl_table_size * sizeof (*filename_language_table));
2143 }
2144
2145 filename_language_table[fl_table_next].ext = xstrdup (ext);
2146 filename_language_table[fl_table_next].lang = lang;
2147 fl_table_next++;
2148 }
2149
2150 static char *ext_args;
2151
2152 static void
2153 set_ext_lang_command (char *args, int from_tty)
2154 {
2155 int i;
2156 char *cp = ext_args;
2157 enum language lang;
2158
2159 /* First arg is filename extension, starting with '.' */
2160 if (*cp != '.')
2161 error ("'%s': Filename extension must begin with '.'", ext_args);
2162
2163 /* Find end of first arg. */
2164 while (*cp && !isspace (*cp))
2165 cp++;
2166
2167 if (*cp == '\0')
2168 error ("'%s': two arguments required -- filename extension and language",
2169 ext_args);
2170
2171 /* Null-terminate first arg */
2172 *cp++ = '\0';
2173
2174 /* Find beginning of second arg, which should be a source language. */
2175 while (*cp && isspace (*cp))
2176 cp++;
2177
2178 if (*cp == '\0')
2179 error ("'%s': two arguments required -- filename extension and language",
2180 ext_args);
2181
2182 /* Lookup the language from among those we know. */
2183 lang = language_enum (cp);
2184
2185 /* Now lookup the filename extension: do we already know it? */
2186 for (i = 0; i < fl_table_next; i++)
2187 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2188 break;
2189
2190 if (i >= fl_table_next)
2191 {
2192 /* new file extension */
2193 add_filename_language (ext_args, lang);
2194 }
2195 else
2196 {
2197 /* redefining a previously known filename extension */
2198
2199 /* if (from_tty) */
2200 /* query ("Really make files of type %s '%s'?", */
2201 /* ext_args, language_str (lang)); */
2202
2203 xfree (filename_language_table[i].ext);
2204 filename_language_table[i].ext = xstrdup (ext_args);
2205 filename_language_table[i].lang = lang;
2206 }
2207 }
2208
2209 static void
2210 info_ext_lang_command (char *args, int from_tty)
2211 {
2212 int i;
2213
2214 printf_filtered ("Filename extensions and the languages they represent:");
2215 printf_filtered ("\n\n");
2216 for (i = 0; i < fl_table_next; i++)
2217 printf_filtered ("\t%s\t- %s\n",
2218 filename_language_table[i].ext,
2219 language_str (filename_language_table[i].lang));
2220 }
2221
2222 static void
2223 init_filename_language_table (void)
2224 {
2225 if (fl_table_size == 0) /* protect against repetition */
2226 {
2227 fl_table_size = 20;
2228 fl_table_next = 0;
2229 filename_language_table =
2230 xmalloc (fl_table_size * sizeof (*filename_language_table));
2231 add_filename_language (".c", language_c);
2232 add_filename_language (".C", language_cplus);
2233 add_filename_language (".cc", language_cplus);
2234 add_filename_language (".cp", language_cplus);
2235 add_filename_language (".cpp", language_cplus);
2236 add_filename_language (".cxx", language_cplus);
2237 add_filename_language (".c++", language_cplus);
2238 add_filename_language (".java", language_java);
2239 add_filename_language (".class", language_java);
2240 add_filename_language (".m", language_objc);
2241 add_filename_language (".f", language_fortran);
2242 add_filename_language (".F", language_fortran);
2243 add_filename_language (".s", language_asm);
2244 add_filename_language (".S", language_asm);
2245 add_filename_language (".pas", language_pascal);
2246 add_filename_language (".p", language_pascal);
2247 add_filename_language (".pp", language_pascal);
2248 }
2249 }
2250
2251 enum language
2252 deduce_language_from_filename (char *filename)
2253 {
2254 int i;
2255 char *cp;
2256
2257 if (filename != NULL)
2258 if ((cp = strrchr (filename, '.')) != NULL)
2259 for (i = 0; i < fl_table_next; i++)
2260 if (strcmp (cp, filename_language_table[i].ext) == 0)
2261 return filename_language_table[i].lang;
2262
2263 return language_unknown;
2264 }
2265 \f
2266 /* allocate_symtab:
2267
2268 Allocate and partly initialize a new symbol table. Return a pointer
2269 to it. error() if no space.
2270
2271 Caller must set these fields:
2272 LINETABLE(symtab)
2273 symtab->blockvector
2274 symtab->dirname
2275 symtab->free_code
2276 symtab->free_ptr
2277 possibly free_named_symtabs (symtab->filename);
2278 */
2279
2280 struct symtab *
2281 allocate_symtab (char *filename, struct objfile *objfile)
2282 {
2283 register struct symtab *symtab;
2284
2285 symtab = (struct symtab *)
2286 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
2287 memset (symtab, 0, sizeof (*symtab));
2288 symtab->filename = obsavestring (filename, strlen (filename),
2289 &objfile->symbol_obstack);
2290 symtab->fullname = NULL;
2291 symtab->language = deduce_language_from_filename (filename);
2292 symtab->debugformat = obsavestring ("unknown", 7,
2293 &objfile->symbol_obstack);
2294
2295 /* Hook it to the objfile it comes from */
2296
2297 symtab->objfile = objfile;
2298 symtab->next = objfile->symtabs;
2299 objfile->symtabs = symtab;
2300
2301 /* FIXME: This should go away. It is only defined for the Z8000,
2302 and the Z8000 definition of this macro doesn't have anything to
2303 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2304 here for convenience. */
2305 #ifdef INIT_EXTRA_SYMTAB_INFO
2306 INIT_EXTRA_SYMTAB_INFO (symtab);
2307 #endif
2308
2309 return (symtab);
2310 }
2311
2312 struct partial_symtab *
2313 allocate_psymtab (char *filename, struct objfile *objfile)
2314 {
2315 struct partial_symtab *psymtab;
2316
2317 if (objfile->free_psymtabs)
2318 {
2319 psymtab = objfile->free_psymtabs;
2320 objfile->free_psymtabs = psymtab->next;
2321 }
2322 else
2323 psymtab = (struct partial_symtab *)
2324 obstack_alloc (&objfile->psymbol_obstack,
2325 sizeof (struct partial_symtab));
2326
2327 memset (psymtab, 0, sizeof (struct partial_symtab));
2328 psymtab->filename = obsavestring (filename, strlen (filename),
2329 &objfile->psymbol_obstack);
2330 psymtab->symtab = NULL;
2331
2332 /* Prepend it to the psymtab list for the objfile it belongs to.
2333 Psymtabs are searched in most recent inserted -> least recent
2334 inserted order. */
2335
2336 psymtab->objfile = objfile;
2337 psymtab->next = objfile->psymtabs;
2338 objfile->psymtabs = psymtab;
2339 #if 0
2340 {
2341 struct partial_symtab **prev_pst;
2342 psymtab->objfile = objfile;
2343 psymtab->next = NULL;
2344 prev_pst = &(objfile->psymtabs);
2345 while ((*prev_pst) != NULL)
2346 prev_pst = &((*prev_pst)->next);
2347 (*prev_pst) = psymtab;
2348 }
2349 #endif
2350
2351 return (psymtab);
2352 }
2353
2354 void
2355 discard_psymtab (struct partial_symtab *pst)
2356 {
2357 struct partial_symtab **prev_pst;
2358
2359 /* From dbxread.c:
2360 Empty psymtabs happen as a result of header files which don't
2361 have any symbols in them. There can be a lot of them. But this
2362 check is wrong, in that a psymtab with N_SLINE entries but
2363 nothing else is not empty, but we don't realize that. Fixing
2364 that without slowing things down might be tricky. */
2365
2366 /* First, snip it out of the psymtab chain */
2367
2368 prev_pst = &(pst->objfile->psymtabs);
2369 while ((*prev_pst) != pst)
2370 prev_pst = &((*prev_pst)->next);
2371 (*prev_pst) = pst->next;
2372
2373 /* Next, put it on a free list for recycling */
2374
2375 pst->next = pst->objfile->free_psymtabs;
2376 pst->objfile->free_psymtabs = pst;
2377 }
2378 \f
2379
2380 /* Reset all data structures in gdb which may contain references to symbol
2381 table data. */
2382
2383 void
2384 clear_symtab_users (void)
2385 {
2386 /* Someday, we should do better than this, by only blowing away
2387 the things that really need to be blown. */
2388 clear_value_history ();
2389 clear_displays ();
2390 clear_internalvars ();
2391 breakpoint_re_set ();
2392 set_default_breakpoint (0, 0, 0, 0);
2393 clear_current_source_symtab_and_line ();
2394 clear_pc_function_cache ();
2395 if (target_new_objfile_hook)
2396 target_new_objfile_hook (NULL);
2397 }
2398
2399 static void
2400 clear_symtab_users_cleanup (void *ignore)
2401 {
2402 clear_symtab_users ();
2403 }
2404
2405 /* clear_symtab_users_once:
2406
2407 This function is run after symbol reading, or from a cleanup.
2408 If an old symbol table was obsoleted, the old symbol table
2409 has been blown away, but the other GDB data structures that may
2410 reference it have not yet been cleared or re-directed. (The old
2411 symtab was zapped, and the cleanup queued, in free_named_symtab()
2412 below.)
2413
2414 This function can be queued N times as a cleanup, or called
2415 directly; it will do all the work the first time, and then will be a
2416 no-op until the next time it is queued. This works by bumping a
2417 counter at queueing time. Much later when the cleanup is run, or at
2418 the end of symbol processing (in case the cleanup is discarded), if
2419 the queued count is greater than the "done-count", we do the work
2420 and set the done-count to the queued count. If the queued count is
2421 less than or equal to the done-count, we just ignore the call. This
2422 is needed because reading a single .o file will often replace many
2423 symtabs (one per .h file, for example), and we don't want to reset
2424 the breakpoints N times in the user's face.
2425
2426 The reason we both queue a cleanup, and call it directly after symbol
2427 reading, is because the cleanup protects us in case of errors, but is
2428 discarded if symbol reading is successful. */
2429
2430 #if 0
2431 /* FIXME: As free_named_symtabs is currently a big noop this function
2432 is no longer needed. */
2433 static void clear_symtab_users_once (void);
2434
2435 static int clear_symtab_users_queued;
2436 static int clear_symtab_users_done;
2437
2438 static void
2439 clear_symtab_users_once (void)
2440 {
2441 /* Enforce once-per-`do_cleanups'-semantics */
2442 if (clear_symtab_users_queued <= clear_symtab_users_done)
2443 return;
2444 clear_symtab_users_done = clear_symtab_users_queued;
2445
2446 clear_symtab_users ();
2447 }
2448 #endif
2449
2450 /* Delete the specified psymtab, and any others that reference it. */
2451
2452 static void
2453 cashier_psymtab (struct partial_symtab *pst)
2454 {
2455 struct partial_symtab *ps, *pprev = NULL;
2456 int i;
2457
2458 /* Find its previous psymtab in the chain */
2459 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2460 {
2461 if (ps == pst)
2462 break;
2463 pprev = ps;
2464 }
2465
2466 if (ps)
2467 {
2468 /* Unhook it from the chain. */
2469 if (ps == pst->objfile->psymtabs)
2470 pst->objfile->psymtabs = ps->next;
2471 else
2472 pprev->next = ps->next;
2473
2474 /* FIXME, we can't conveniently deallocate the entries in the
2475 partial_symbol lists (global_psymbols/static_psymbols) that
2476 this psymtab points to. These just take up space until all
2477 the psymtabs are reclaimed. Ditto the dependencies list and
2478 filename, which are all in the psymbol_obstack. */
2479
2480 /* We need to cashier any psymtab that has this one as a dependency... */
2481 again:
2482 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2483 {
2484 for (i = 0; i < ps->number_of_dependencies; i++)
2485 {
2486 if (ps->dependencies[i] == pst)
2487 {
2488 cashier_psymtab (ps);
2489 goto again; /* Must restart, chain has been munged. */
2490 }
2491 }
2492 }
2493 }
2494 }
2495
2496 /* If a symtab or psymtab for filename NAME is found, free it along
2497 with any dependent breakpoints, displays, etc.
2498 Used when loading new versions of object modules with the "add-file"
2499 command. This is only called on the top-level symtab or psymtab's name;
2500 it is not called for subsidiary files such as .h files.
2501
2502 Return value is 1 if we blew away the environment, 0 if not.
2503 FIXME. The return value appears to never be used.
2504
2505 FIXME. I think this is not the best way to do this. We should
2506 work on being gentler to the environment while still cleaning up
2507 all stray pointers into the freed symtab. */
2508
2509 int
2510 free_named_symtabs (char *name)
2511 {
2512 #if 0
2513 /* FIXME: With the new method of each objfile having it's own
2514 psymtab list, this function needs serious rethinking. In particular,
2515 why was it ever necessary to toss psymtabs with specific compilation
2516 unit filenames, as opposed to all psymtabs from a particular symbol
2517 file? -- fnf
2518 Well, the answer is that some systems permit reloading of particular
2519 compilation units. We want to blow away any old info about these
2520 compilation units, regardless of which objfiles they arrived in. --gnu. */
2521
2522 register struct symtab *s;
2523 register struct symtab *prev;
2524 register struct partial_symtab *ps;
2525 struct blockvector *bv;
2526 int blewit = 0;
2527
2528 /* We only wack things if the symbol-reload switch is set. */
2529 if (!symbol_reloading)
2530 return 0;
2531
2532 /* Some symbol formats have trouble providing file names... */
2533 if (name == 0 || *name == '\0')
2534 return 0;
2535
2536 /* Look for a psymtab with the specified name. */
2537
2538 again2:
2539 for (ps = partial_symtab_list; ps; ps = ps->next)
2540 {
2541 if (STREQ (name, ps->filename))
2542 {
2543 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2544 goto again2; /* Must restart, chain has been munged */
2545 }
2546 }
2547
2548 /* Look for a symtab with the specified name. */
2549
2550 for (s = symtab_list; s; s = s->next)
2551 {
2552 if (STREQ (name, s->filename))
2553 break;
2554 prev = s;
2555 }
2556
2557 if (s)
2558 {
2559 if (s == symtab_list)
2560 symtab_list = s->next;
2561 else
2562 prev->next = s->next;
2563
2564 /* For now, queue a delete for all breakpoints, displays, etc., whether
2565 or not they depend on the symtab being freed. This should be
2566 changed so that only those data structures affected are deleted. */
2567
2568 /* But don't delete anything if the symtab is empty.
2569 This test is necessary due to a bug in "dbxread.c" that
2570 causes empty symtabs to be created for N_SO symbols that
2571 contain the pathname of the object file. (This problem
2572 has been fixed in GDB 3.9x). */
2573
2574 bv = BLOCKVECTOR (s);
2575 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2576 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2577 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2578 {
2579 complaint (&symfile_complaints, "Replacing old symbols for `%s'",
2580 name);
2581 clear_symtab_users_queued++;
2582 make_cleanup (clear_symtab_users_once, 0);
2583 blewit = 1;
2584 }
2585 else
2586 {
2587 complaint (&symfile_complaints, "Empty symbol table found for `%s'",
2588 name);
2589 }
2590
2591 free_symtab (s);
2592 }
2593 else
2594 {
2595 /* It is still possible that some breakpoints will be affected
2596 even though no symtab was found, since the file might have
2597 been compiled without debugging, and hence not be associated
2598 with a symtab. In order to handle this correctly, we would need
2599 to keep a list of text address ranges for undebuggable files.
2600 For now, we do nothing, since this is a fairly obscure case. */
2601 ;
2602 }
2603
2604 /* FIXME, what about the minimal symbol table? */
2605 return blewit;
2606 #else
2607 return (0);
2608 #endif
2609 }
2610 \f
2611 /* Allocate and partially fill a partial symtab. It will be
2612 completely filled at the end of the symbol list.
2613
2614 FILENAME is the name of the symbol-file we are reading from. */
2615
2616 struct partial_symtab *
2617 start_psymtab_common (struct objfile *objfile,
2618 struct section_offsets *section_offsets, char *filename,
2619 CORE_ADDR textlow, struct partial_symbol **global_syms,
2620 struct partial_symbol **static_syms)
2621 {
2622 struct partial_symtab *psymtab;
2623
2624 psymtab = allocate_psymtab (filename, objfile);
2625 psymtab->section_offsets = section_offsets;
2626 psymtab->textlow = textlow;
2627 psymtab->texthigh = psymtab->textlow; /* default */
2628 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2629 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2630 return (psymtab);
2631 }
2632 \f
2633 /* Add a symbol with a long value to a psymtab.
2634 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2635
2636 void
2637 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2638 enum address_class class,
2639 struct psymbol_allocation_list *list, long val, /* Value as a long */
2640 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2641 enum language language, struct objfile *objfile)
2642 {
2643 register struct partial_symbol *psym;
2644 char *buf = alloca (namelength + 1);
2645 /* psymbol is static so that there will be no uninitialized gaps in the
2646 structure which might contain random data, causing cache misses in
2647 bcache. */
2648 static struct partial_symbol psymbol;
2649
2650 /* Create local copy of the partial symbol */
2651 memcpy (buf, name, namelength);
2652 buf[namelength] = '\0';
2653 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2654 if (val != 0)
2655 {
2656 SYMBOL_VALUE (&psymbol) = val;
2657 }
2658 else
2659 {
2660 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2661 }
2662 SYMBOL_SECTION (&psymbol) = 0;
2663 SYMBOL_LANGUAGE (&psymbol) = language;
2664 PSYMBOL_DOMAIN (&psymbol) = domain;
2665 PSYMBOL_CLASS (&psymbol) = class;
2666
2667 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2668
2669 /* Stash the partial symbol away in the cache */
2670 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2671
2672 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2673 if (list->next >= list->list + list->size)
2674 {
2675 extend_psymbol_list (list, objfile);
2676 }
2677 *list->next++ = psym;
2678 OBJSTAT (objfile, n_psyms++);
2679 }
2680
2681 /* Add a symbol with a long value to a psymtab. This differs from
2682 * add_psymbol_to_list above in taking both a mangled and a demangled
2683 * name. */
2684
2685 void
2686 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2687 int dem_namelength, domain_enum domain,
2688 enum address_class class,
2689 struct psymbol_allocation_list *list, long val, /* Value as a long */
2690 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2691 enum language language,
2692 struct objfile *objfile)
2693 {
2694 register struct partial_symbol *psym;
2695 char *buf = alloca (namelength + 1);
2696 /* psymbol is static so that there will be no uninitialized gaps in the
2697 structure which might contain random data, causing cache misses in
2698 bcache. */
2699 static struct partial_symbol psymbol;
2700
2701 /* Create local copy of the partial symbol */
2702
2703 memcpy (buf, name, namelength);
2704 buf[namelength] = '\0';
2705 DEPRECATED_SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, objfile->psymbol_cache);
2706
2707 buf = alloca (dem_namelength + 1);
2708 memcpy (buf, dem_name, dem_namelength);
2709 buf[dem_namelength] = '\0';
2710
2711 switch (language)
2712 {
2713 case language_c:
2714 case language_cplus:
2715 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2716 bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2717 break;
2718 /* FIXME What should be done for the default case? Ignoring for now. */
2719 }
2720
2721 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2722 if (val != 0)
2723 {
2724 SYMBOL_VALUE (&psymbol) = val;
2725 }
2726 else
2727 {
2728 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2729 }
2730 SYMBOL_SECTION (&psymbol) = 0;
2731 SYMBOL_LANGUAGE (&psymbol) = language;
2732 PSYMBOL_DOMAIN (&psymbol) = domain;
2733 PSYMBOL_CLASS (&psymbol) = class;
2734 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2735
2736 /* Stash the partial symbol away in the cache */
2737 psym = bcache (&psymbol, sizeof (struct partial_symbol), objfile->psymbol_cache);
2738
2739 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2740 if (list->next >= list->list + list->size)
2741 {
2742 extend_psymbol_list (list, objfile);
2743 }
2744 *list->next++ = psym;
2745 OBJSTAT (objfile, n_psyms++);
2746 }
2747
2748 /* Initialize storage for partial symbols. */
2749
2750 void
2751 init_psymbol_list (struct objfile *objfile, int total_symbols)
2752 {
2753 /* Free any previously allocated psymbol lists. */
2754
2755 if (objfile->global_psymbols.list)
2756 {
2757 xmfree (objfile->md, objfile->global_psymbols.list);
2758 }
2759 if (objfile->static_psymbols.list)
2760 {
2761 xmfree (objfile->md, objfile->static_psymbols.list);
2762 }
2763
2764 /* Current best guess is that approximately a twentieth
2765 of the total symbols (in a debugging file) are global or static
2766 oriented symbols */
2767
2768 objfile->global_psymbols.size = total_symbols / 10;
2769 objfile->static_psymbols.size = total_symbols / 10;
2770
2771 if (objfile->global_psymbols.size > 0)
2772 {
2773 objfile->global_psymbols.next =
2774 objfile->global_psymbols.list = (struct partial_symbol **)
2775 xmmalloc (objfile->md, (objfile->global_psymbols.size
2776 * sizeof (struct partial_symbol *)));
2777 }
2778 if (objfile->static_psymbols.size > 0)
2779 {
2780 objfile->static_psymbols.next =
2781 objfile->static_psymbols.list = (struct partial_symbol **)
2782 xmmalloc (objfile->md, (objfile->static_psymbols.size
2783 * sizeof (struct partial_symbol *)));
2784 }
2785 }
2786
2787 /* OVERLAYS:
2788 The following code implements an abstraction for debugging overlay sections.
2789
2790 The target model is as follows:
2791 1) The gnu linker will permit multiple sections to be mapped into the
2792 same VMA, each with its own unique LMA (or load address).
2793 2) It is assumed that some runtime mechanism exists for mapping the
2794 sections, one by one, from the load address into the VMA address.
2795 3) This code provides a mechanism for gdb to keep track of which
2796 sections should be considered to be mapped from the VMA to the LMA.
2797 This information is used for symbol lookup, and memory read/write.
2798 For instance, if a section has been mapped then its contents
2799 should be read from the VMA, otherwise from the LMA.
2800
2801 Two levels of debugger support for overlays are available. One is
2802 "manual", in which the debugger relies on the user to tell it which
2803 overlays are currently mapped. This level of support is
2804 implemented entirely in the core debugger, and the information about
2805 whether a section is mapped is kept in the objfile->obj_section table.
2806
2807 The second level of support is "automatic", and is only available if
2808 the target-specific code provides functionality to read the target's
2809 overlay mapping table, and translate its contents for the debugger
2810 (by updating the mapped state information in the obj_section tables).
2811
2812 The interface is as follows:
2813 User commands:
2814 overlay map <name> -- tell gdb to consider this section mapped
2815 overlay unmap <name> -- tell gdb to consider this section unmapped
2816 overlay list -- list the sections that GDB thinks are mapped
2817 overlay read-target -- get the target's state of what's mapped
2818 overlay off/manual/auto -- set overlay debugging state
2819 Functional interface:
2820 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2821 section, return that section.
2822 find_pc_overlay(pc): find any overlay section that contains
2823 the pc, either in its VMA or its LMA
2824 overlay_is_mapped(sect): true if overlay is marked as mapped
2825 section_is_overlay(sect): true if section's VMA != LMA
2826 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2827 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2828 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2829 overlay_mapped_address(...): map an address from section's LMA to VMA
2830 overlay_unmapped_address(...): map an address from section's VMA to LMA
2831 symbol_overlayed_address(...): Return a "current" address for symbol:
2832 either in VMA or LMA depending on whether
2833 the symbol's section is currently mapped
2834 */
2835
2836 /* Overlay debugging state: */
2837
2838 enum overlay_debugging_state overlay_debugging = ovly_off;
2839 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2840
2841 /* Target vector for refreshing overlay mapped state */
2842 static void simple_overlay_update (struct obj_section *);
2843 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2844
2845 /* Function: section_is_overlay (SECTION)
2846 Returns true if SECTION has VMA not equal to LMA, ie.
2847 SECTION is loaded at an address different from where it will "run". */
2848
2849 int
2850 section_is_overlay (asection *section)
2851 {
2852 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2853
2854 if (overlay_debugging)
2855 if (section && section->lma != 0 &&
2856 section->vma != section->lma)
2857 return 1;
2858
2859 return 0;
2860 }
2861
2862 /* Function: overlay_invalidate_all (void)
2863 Invalidate the mapped state of all overlay sections (mark it as stale). */
2864
2865 static void
2866 overlay_invalidate_all (void)
2867 {
2868 struct objfile *objfile;
2869 struct obj_section *sect;
2870
2871 ALL_OBJSECTIONS (objfile, sect)
2872 if (section_is_overlay (sect->the_bfd_section))
2873 sect->ovly_mapped = -1;
2874 }
2875
2876 /* Function: overlay_is_mapped (SECTION)
2877 Returns true if section is an overlay, and is currently mapped.
2878 Private: public access is thru function section_is_mapped.
2879
2880 Access to the ovly_mapped flag is restricted to this function, so
2881 that we can do automatic update. If the global flag
2882 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2883 overlay_invalidate_all. If the mapped state of the particular
2884 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2885
2886 static int
2887 overlay_is_mapped (struct obj_section *osect)
2888 {
2889 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2890 return 0;
2891
2892 switch (overlay_debugging)
2893 {
2894 default:
2895 case ovly_off:
2896 return 0; /* overlay debugging off */
2897 case ovly_auto: /* overlay debugging automatic */
2898 /* Unles there is a target_overlay_update function,
2899 there's really nothing useful to do here (can't really go auto) */
2900 if (target_overlay_update)
2901 {
2902 if (overlay_cache_invalid)
2903 {
2904 overlay_invalidate_all ();
2905 overlay_cache_invalid = 0;
2906 }
2907 if (osect->ovly_mapped == -1)
2908 (*target_overlay_update) (osect);
2909 }
2910 /* fall thru to manual case */
2911 case ovly_on: /* overlay debugging manual */
2912 return osect->ovly_mapped == 1;
2913 }
2914 }
2915
2916 /* Function: section_is_mapped
2917 Returns true if section is an overlay, and is currently mapped. */
2918
2919 int
2920 section_is_mapped (asection *section)
2921 {
2922 struct objfile *objfile;
2923 struct obj_section *osect;
2924
2925 if (overlay_debugging)
2926 if (section && section_is_overlay (section))
2927 ALL_OBJSECTIONS (objfile, osect)
2928 if (osect->the_bfd_section == section)
2929 return overlay_is_mapped (osect);
2930
2931 return 0;
2932 }
2933
2934 /* Function: pc_in_unmapped_range
2935 If PC falls into the lma range of SECTION, return true, else false. */
2936
2937 CORE_ADDR
2938 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2939 {
2940 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2941
2942 int size;
2943
2944 if (overlay_debugging)
2945 if (section && section_is_overlay (section))
2946 {
2947 size = bfd_get_section_size_before_reloc (section);
2948 if (section->lma <= pc && pc < section->lma + size)
2949 return 1;
2950 }
2951 return 0;
2952 }
2953
2954 /* Function: pc_in_mapped_range
2955 If PC falls into the vma range of SECTION, return true, else false. */
2956
2957 CORE_ADDR
2958 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2959 {
2960 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2961
2962 int size;
2963
2964 if (overlay_debugging)
2965 if (section && section_is_overlay (section))
2966 {
2967 size = bfd_get_section_size_before_reloc (section);
2968 if (section->vma <= pc && pc < section->vma + size)
2969 return 1;
2970 }
2971 return 0;
2972 }
2973
2974
2975 /* Return true if the mapped ranges of sections A and B overlap, false
2976 otherwise. */
2977 static int
2978 sections_overlap (asection *a, asection *b)
2979 {
2980 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
2981
2982 CORE_ADDR a_start = a->vma;
2983 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2984 CORE_ADDR b_start = b->vma;
2985 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2986
2987 return (a_start < b_end && b_start < a_end);
2988 }
2989
2990 /* Function: overlay_unmapped_address (PC, SECTION)
2991 Returns the address corresponding to PC in the unmapped (load) range.
2992 May be the same as PC. */
2993
2994 CORE_ADDR
2995 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2996 {
2997 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2998
2999 if (overlay_debugging)
3000 if (section && section_is_overlay (section) &&
3001 pc_in_mapped_range (pc, section))
3002 return pc + section->lma - section->vma;
3003
3004 return pc;
3005 }
3006
3007 /* Function: overlay_mapped_address (PC, SECTION)
3008 Returns the address corresponding to PC in the mapped (runtime) range.
3009 May be the same as PC. */
3010
3011 CORE_ADDR
3012 overlay_mapped_address (CORE_ADDR pc, asection *section)
3013 {
3014 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3015
3016 if (overlay_debugging)
3017 if (section && section_is_overlay (section) &&
3018 pc_in_unmapped_range (pc, section))
3019 return pc + section->vma - section->lma;
3020
3021 return pc;
3022 }
3023
3024
3025 /* Function: symbol_overlayed_address
3026 Return one of two addresses (relative to the VMA or to the LMA),
3027 depending on whether the section is mapped or not. */
3028
3029 CORE_ADDR
3030 symbol_overlayed_address (CORE_ADDR address, asection *section)
3031 {
3032 if (overlay_debugging)
3033 {
3034 /* If the symbol has no section, just return its regular address. */
3035 if (section == 0)
3036 return address;
3037 /* If the symbol's section is not an overlay, just return its address */
3038 if (!section_is_overlay (section))
3039 return address;
3040 /* If the symbol's section is mapped, just return its address */
3041 if (section_is_mapped (section))
3042 return address;
3043 /*
3044 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3045 * then return its LOADED address rather than its vma address!!
3046 */
3047 return overlay_unmapped_address (address, section);
3048 }
3049 return address;
3050 }
3051
3052 /* Function: find_pc_overlay (PC)
3053 Return the best-match overlay section for PC:
3054 If PC matches a mapped overlay section's VMA, return that section.
3055 Else if PC matches an unmapped section's VMA, return that section.
3056 Else if PC matches an unmapped section's LMA, return that section. */
3057
3058 asection *
3059 find_pc_overlay (CORE_ADDR pc)
3060 {
3061 struct objfile *objfile;
3062 struct obj_section *osect, *best_match = NULL;
3063
3064 if (overlay_debugging)
3065 ALL_OBJSECTIONS (objfile, osect)
3066 if (section_is_overlay (osect->the_bfd_section))
3067 {
3068 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3069 {
3070 if (overlay_is_mapped (osect))
3071 return osect->the_bfd_section;
3072 else
3073 best_match = osect;
3074 }
3075 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3076 best_match = osect;
3077 }
3078 return best_match ? best_match->the_bfd_section : NULL;
3079 }
3080
3081 /* Function: find_pc_mapped_section (PC)
3082 If PC falls into the VMA address range of an overlay section that is
3083 currently marked as MAPPED, return that section. Else return NULL. */
3084
3085 asection *
3086 find_pc_mapped_section (CORE_ADDR pc)
3087 {
3088 struct objfile *objfile;
3089 struct obj_section *osect;
3090
3091 if (overlay_debugging)
3092 ALL_OBJSECTIONS (objfile, osect)
3093 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3094 overlay_is_mapped (osect))
3095 return osect->the_bfd_section;
3096
3097 return NULL;
3098 }
3099
3100 /* Function: list_overlays_command
3101 Print a list of mapped sections and their PC ranges */
3102
3103 void
3104 list_overlays_command (char *args, int from_tty)
3105 {
3106 int nmapped = 0;
3107 struct objfile *objfile;
3108 struct obj_section *osect;
3109
3110 if (overlay_debugging)
3111 ALL_OBJSECTIONS (objfile, osect)
3112 if (overlay_is_mapped (osect))
3113 {
3114 const char *name;
3115 bfd_vma lma, vma;
3116 int size;
3117
3118 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3119 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3120 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3121 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3122
3123 printf_filtered ("Section %s, loaded at ", name);
3124 print_address_numeric (lma, 1, gdb_stdout);
3125 puts_filtered (" - ");
3126 print_address_numeric (lma + size, 1, gdb_stdout);
3127 printf_filtered (", mapped at ");
3128 print_address_numeric (vma, 1, gdb_stdout);
3129 puts_filtered (" - ");
3130 print_address_numeric (vma + size, 1, gdb_stdout);
3131 puts_filtered ("\n");
3132
3133 nmapped++;
3134 }
3135 if (nmapped == 0)
3136 printf_filtered ("No sections are mapped.\n");
3137 }
3138
3139 /* Function: map_overlay_command
3140 Mark the named section as mapped (ie. residing at its VMA address). */
3141
3142 void
3143 map_overlay_command (char *args, int from_tty)
3144 {
3145 struct objfile *objfile, *objfile2;
3146 struct obj_section *sec, *sec2;
3147 asection *bfdsec;
3148
3149 if (!overlay_debugging)
3150 error ("\
3151 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3152 the 'overlay manual' command.");
3153
3154 if (args == 0 || *args == 0)
3155 error ("Argument required: name of an overlay section");
3156
3157 /* First, find a section matching the user supplied argument */
3158 ALL_OBJSECTIONS (objfile, sec)
3159 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3160 {
3161 /* Now, check to see if the section is an overlay. */
3162 bfdsec = sec->the_bfd_section;
3163 if (!section_is_overlay (bfdsec))
3164 continue; /* not an overlay section */
3165
3166 /* Mark the overlay as "mapped" */
3167 sec->ovly_mapped = 1;
3168
3169 /* Next, make a pass and unmap any sections that are
3170 overlapped by this new section: */
3171 ALL_OBJSECTIONS (objfile2, sec2)
3172 if (sec2->ovly_mapped
3173 && sec != sec2
3174 && sec->the_bfd_section != sec2->the_bfd_section
3175 && sections_overlap (sec->the_bfd_section,
3176 sec2->the_bfd_section))
3177 {
3178 if (info_verbose)
3179 printf_filtered ("Note: section %s unmapped by overlap\n",
3180 bfd_section_name (objfile->obfd,
3181 sec2->the_bfd_section));
3182 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3183 }
3184 return;
3185 }
3186 error ("No overlay section called %s", args);
3187 }
3188
3189 /* Function: unmap_overlay_command
3190 Mark the overlay section as unmapped
3191 (ie. resident in its LMA address range, rather than the VMA range). */
3192
3193 void
3194 unmap_overlay_command (char *args, int from_tty)
3195 {
3196 struct objfile *objfile;
3197 struct obj_section *sec;
3198
3199 if (!overlay_debugging)
3200 error ("\
3201 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3202 the 'overlay manual' command.");
3203
3204 if (args == 0 || *args == 0)
3205 error ("Argument required: name of an overlay section");
3206
3207 /* First, find a section matching the user supplied argument */
3208 ALL_OBJSECTIONS (objfile, sec)
3209 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3210 {
3211 if (!sec->ovly_mapped)
3212 error ("Section %s is not mapped", args);
3213 sec->ovly_mapped = 0;
3214 return;
3215 }
3216 error ("No overlay section called %s", args);
3217 }
3218
3219 /* Function: overlay_auto_command
3220 A utility command to turn on overlay debugging.
3221 Possibly this should be done via a set/show command. */
3222
3223 static void
3224 overlay_auto_command (char *args, int from_tty)
3225 {
3226 overlay_debugging = ovly_auto;
3227 enable_overlay_breakpoints ();
3228 if (info_verbose)
3229 printf_filtered ("Automatic overlay debugging enabled.");
3230 }
3231
3232 /* Function: overlay_manual_command
3233 A utility command to turn on overlay debugging.
3234 Possibly this should be done via a set/show command. */
3235
3236 static void
3237 overlay_manual_command (char *args, int from_tty)
3238 {
3239 overlay_debugging = ovly_on;
3240 disable_overlay_breakpoints ();
3241 if (info_verbose)
3242 printf_filtered ("Overlay debugging enabled.");
3243 }
3244
3245 /* Function: overlay_off_command
3246 A utility command to turn on overlay debugging.
3247 Possibly this should be done via a set/show command. */
3248
3249 static void
3250 overlay_off_command (char *args, int from_tty)
3251 {
3252 overlay_debugging = ovly_off;
3253 disable_overlay_breakpoints ();
3254 if (info_verbose)
3255 printf_filtered ("Overlay debugging disabled.");
3256 }
3257
3258 static void
3259 overlay_load_command (char *args, int from_tty)
3260 {
3261 if (target_overlay_update)
3262 (*target_overlay_update) (NULL);
3263 else
3264 error ("This target does not know how to read its overlay state.");
3265 }
3266
3267 /* Function: overlay_command
3268 A place-holder for a mis-typed command */
3269
3270 /* Command list chain containing all defined "overlay" subcommands. */
3271 struct cmd_list_element *overlaylist;
3272
3273 static void
3274 overlay_command (char *args, int from_tty)
3275 {
3276 printf_unfiltered
3277 ("\"overlay\" must be followed by the name of an overlay command.\n");
3278 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3279 }
3280
3281
3282 /* Target Overlays for the "Simplest" overlay manager:
3283
3284 This is GDB's default target overlay layer. It works with the
3285 minimal overlay manager supplied as an example by Cygnus. The
3286 entry point is via a function pointer "target_overlay_update",
3287 so targets that use a different runtime overlay manager can
3288 substitute their own overlay_update function and take over the
3289 function pointer.
3290
3291 The overlay_update function pokes around in the target's data structures
3292 to see what overlays are mapped, and updates GDB's overlay mapping with
3293 this information.
3294
3295 In this simple implementation, the target data structures are as follows:
3296 unsigned _novlys; /# number of overlay sections #/
3297 unsigned _ovly_table[_novlys][4] = {
3298 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3299 {..., ..., ..., ...},
3300 }
3301 unsigned _novly_regions; /# number of overlay regions #/
3302 unsigned _ovly_region_table[_novly_regions][3] = {
3303 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3304 {..., ..., ...},
3305 }
3306 These functions will attempt to update GDB's mappedness state in the
3307 symbol section table, based on the target's mappedness state.
3308
3309 To do this, we keep a cached copy of the target's _ovly_table, and
3310 attempt to detect when the cached copy is invalidated. The main
3311 entry point is "simple_overlay_update(SECT), which looks up SECT in
3312 the cached table and re-reads only the entry for that section from
3313 the target (whenever possible).
3314 */
3315
3316 /* Cached, dynamically allocated copies of the target data structures: */
3317 static unsigned (*cache_ovly_table)[4] = 0;
3318 #if 0
3319 static unsigned (*cache_ovly_region_table)[3] = 0;
3320 #endif
3321 static unsigned cache_novlys = 0;
3322 #if 0
3323 static unsigned cache_novly_regions = 0;
3324 #endif
3325 static CORE_ADDR cache_ovly_table_base = 0;
3326 #if 0
3327 static CORE_ADDR cache_ovly_region_table_base = 0;
3328 #endif
3329 enum ovly_index
3330 {
3331 VMA, SIZE, LMA, MAPPED
3332 };
3333 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3334
3335 /* Throw away the cached copy of _ovly_table */
3336 static void
3337 simple_free_overlay_table (void)
3338 {
3339 if (cache_ovly_table)
3340 xfree (cache_ovly_table);
3341 cache_novlys = 0;
3342 cache_ovly_table = NULL;
3343 cache_ovly_table_base = 0;
3344 }
3345
3346 #if 0
3347 /* Throw away the cached copy of _ovly_region_table */
3348 static void
3349 simple_free_overlay_region_table (void)
3350 {
3351 if (cache_ovly_region_table)
3352 xfree (cache_ovly_region_table);
3353 cache_novly_regions = 0;
3354 cache_ovly_region_table = NULL;
3355 cache_ovly_region_table_base = 0;
3356 }
3357 #endif
3358
3359 /* Read an array of ints from the target into a local buffer.
3360 Convert to host order. int LEN is number of ints */
3361 static void
3362 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3363 {
3364 /* FIXME (alloca): Not safe if array is very large. */
3365 char *buf = alloca (len * TARGET_LONG_BYTES);
3366 int i;
3367
3368 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3369 for (i = 0; i < len; i++)
3370 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3371 TARGET_LONG_BYTES);
3372 }
3373
3374 /* Find and grab a copy of the target _ovly_table
3375 (and _novlys, which is needed for the table's size) */
3376 static int
3377 simple_read_overlay_table (void)
3378 {
3379 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3380
3381 simple_free_overlay_table ();
3382 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3383 if (! novlys_msym)
3384 {
3385 error ("Error reading inferior's overlay table: "
3386 "couldn't find `_novlys' variable\n"
3387 "in inferior. Use `overlay manual' mode.");
3388 return 0;
3389 }
3390
3391 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3392 if (! ovly_table_msym)
3393 {
3394 error ("Error reading inferior's overlay table: couldn't find "
3395 "`_ovly_table' array\n"
3396 "in inferior. Use `overlay manual' mode.");
3397 return 0;
3398 }
3399
3400 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3401 cache_ovly_table
3402 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3403 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3404 read_target_long_array (cache_ovly_table_base,
3405 (int *) cache_ovly_table,
3406 cache_novlys * 4);
3407
3408 return 1; /* SUCCESS */
3409 }
3410
3411 #if 0
3412 /* Find and grab a copy of the target _ovly_region_table
3413 (and _novly_regions, which is needed for the table's size) */
3414 static int
3415 simple_read_overlay_region_table (void)
3416 {
3417 struct minimal_symbol *msym;
3418
3419 simple_free_overlay_region_table ();
3420 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3421 if (msym != NULL)
3422 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3423 else
3424 return 0; /* failure */
3425 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3426 if (cache_ovly_region_table != NULL)
3427 {
3428 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3429 if (msym != NULL)
3430 {
3431 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3432 read_target_long_array (cache_ovly_region_table_base,
3433 (int *) cache_ovly_region_table,
3434 cache_novly_regions * 3);
3435 }
3436 else
3437 return 0; /* failure */
3438 }
3439 else
3440 return 0; /* failure */
3441 return 1; /* SUCCESS */
3442 }
3443 #endif
3444
3445 /* Function: simple_overlay_update_1
3446 A helper function for simple_overlay_update. Assuming a cached copy
3447 of _ovly_table exists, look through it to find an entry whose vma,
3448 lma and size match those of OSECT. Re-read the entry and make sure
3449 it still matches OSECT (else the table may no longer be valid).
3450 Set OSECT's mapped state to match the entry. Return: 1 for
3451 success, 0 for failure. */
3452
3453 static int
3454 simple_overlay_update_1 (struct obj_section *osect)
3455 {
3456 int i, size;
3457 bfd *obfd = osect->objfile->obfd;
3458 asection *bsect = osect->the_bfd_section;
3459
3460 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3461 for (i = 0; i < cache_novlys; i++)
3462 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3463 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3464 /* && cache_ovly_table[i][SIZE] == size */ )
3465 {
3466 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3467 (int *) cache_ovly_table[i], 4);
3468 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3469 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3470 /* && cache_ovly_table[i][SIZE] == size */ )
3471 {
3472 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3473 return 1;
3474 }
3475 else /* Warning! Warning! Target's ovly table has changed! */
3476 return 0;
3477 }
3478 return 0;
3479 }
3480
3481 /* Function: simple_overlay_update
3482 If OSECT is NULL, then update all sections' mapped state
3483 (after re-reading the entire target _ovly_table).
3484 If OSECT is non-NULL, then try to find a matching entry in the
3485 cached ovly_table and update only OSECT's mapped state.
3486 If a cached entry can't be found or the cache isn't valid, then
3487 re-read the entire cache, and go ahead and update all sections. */
3488
3489 static void
3490 simple_overlay_update (struct obj_section *osect)
3491 {
3492 struct objfile *objfile;
3493
3494 /* Were we given an osect to look up? NULL means do all of them. */
3495 if (osect)
3496 /* Have we got a cached copy of the target's overlay table? */
3497 if (cache_ovly_table != NULL)
3498 /* Does its cached location match what's currently in the symtab? */
3499 if (cache_ovly_table_base ==
3500 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3501 /* Then go ahead and try to look up this single section in the cache */
3502 if (simple_overlay_update_1 (osect))
3503 /* Found it! We're done. */
3504 return;
3505
3506 /* Cached table no good: need to read the entire table anew.
3507 Or else we want all the sections, in which case it's actually
3508 more efficient to read the whole table in one block anyway. */
3509
3510 if (! simple_read_overlay_table ())
3511 return;
3512
3513 /* Now may as well update all sections, even if only one was requested. */
3514 ALL_OBJSECTIONS (objfile, osect)
3515 if (section_is_overlay (osect->the_bfd_section))
3516 {
3517 int i, size;
3518 bfd *obfd = osect->objfile->obfd;
3519 asection *bsect = osect->the_bfd_section;
3520
3521 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3522 for (i = 0; i < cache_novlys; i++)
3523 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3524 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3525 /* && cache_ovly_table[i][SIZE] == size */ )
3526 { /* obj_section matches i'th entry in ovly_table */
3527 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3528 break; /* finished with inner for loop: break out */
3529 }
3530 }
3531 }
3532
3533 /* Set the output sections and output offsets for section SECTP in
3534 ABFD. The relocation code in BFD will read these offsets, so we
3535 need to be sure they're initialized. We map each section to itself,
3536 with no offset; this means that SECTP->vma will be honored. */
3537
3538 static void
3539 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3540 {
3541 sectp->output_section = sectp;
3542 sectp->output_offset = 0;
3543 }
3544
3545 /* Relocate the contents of a debug section SECTP in ABFD. The
3546 contents are stored in BUF if it is non-NULL, or returned in a
3547 malloc'd buffer otherwise.
3548
3549 For some platforms and debug info formats, shared libraries contain
3550 relocations against the debug sections (particularly for DWARF-2;
3551 one affected platform is PowerPC GNU/Linux, although it depends on
3552 the version of the linker in use). Also, ELF object files naturally
3553 have unresolved relocations for their debug sections. We need to apply
3554 the relocations in order to get the locations of symbols correct. */
3555
3556 bfd_byte *
3557 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3558 {
3559 /* We're only interested in debugging sections with relocation
3560 information. */
3561 if ((sectp->flags & SEC_RELOC) == 0)
3562 return NULL;
3563 if ((sectp->flags & SEC_DEBUGGING) == 0)
3564 return NULL;
3565
3566 /* We will handle section offsets properly elsewhere, so relocate as if
3567 all sections begin at 0. */
3568 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3569
3570 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3571 }
3572
3573 void
3574 _initialize_symfile (void)
3575 {
3576 struct cmd_list_element *c;
3577
3578 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3579 "Load symbol table from executable file FILE.\n\
3580 The `file' command can also load symbol tables, as well as setting the file\n\
3581 to execute.", &cmdlist);
3582 set_cmd_completer (c, filename_completer);
3583
3584 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3585 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3586 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3587 ADDR is the starting address of the file's text.\n\
3588 The optional arguments are section-name section-address pairs and\n\
3589 should be specified if the data and bss segments are not contiguous\n\
3590 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3591 &cmdlist);
3592 set_cmd_completer (c, filename_completer);
3593
3594 c = add_cmd ("add-shared-symbol-files", class_files,
3595 add_shared_symbol_files_command,
3596 "Load the symbols from shared objects in the dynamic linker's link map.",
3597 &cmdlist);
3598 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3599 &cmdlist);
3600
3601 c = add_cmd ("load", class_files, load_command,
3602 "Dynamically load FILE into the running program, and record its symbols\n\
3603 for access from GDB.", &cmdlist);
3604 set_cmd_completer (c, filename_completer);
3605
3606 add_show_from_set
3607 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3608 (char *) &symbol_reloading,
3609 "Set dynamic symbol table reloading multiple times in one run.",
3610 &setlist),
3611 &showlist);
3612
3613 add_prefix_cmd ("overlay", class_support, overlay_command,
3614 "Commands for debugging overlays.", &overlaylist,
3615 "overlay ", 0, &cmdlist);
3616
3617 add_com_alias ("ovly", "overlay", class_alias, 1);
3618 add_com_alias ("ov", "overlay", class_alias, 1);
3619
3620 add_cmd ("map-overlay", class_support, map_overlay_command,
3621 "Assert that an overlay section is mapped.", &overlaylist);
3622
3623 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3624 "Assert that an overlay section is unmapped.", &overlaylist);
3625
3626 add_cmd ("list-overlays", class_support, list_overlays_command,
3627 "List mappings of overlay sections.", &overlaylist);
3628
3629 add_cmd ("manual", class_support, overlay_manual_command,
3630 "Enable overlay debugging.", &overlaylist);
3631 add_cmd ("off", class_support, overlay_off_command,
3632 "Disable overlay debugging.", &overlaylist);
3633 add_cmd ("auto", class_support, overlay_auto_command,
3634 "Enable automatic overlay debugging.", &overlaylist);
3635 add_cmd ("load-target", class_support, overlay_load_command,
3636 "Read the overlay mapping state from the target.", &overlaylist);
3637
3638 /* Filename extension to source language lookup table: */
3639 init_filename_language_table ();
3640 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3641 (char *) &ext_args,
3642 "Set mapping between filename extension and source language.\n\
3643 Usage: set extension-language .foo bar",
3644 &setlist);
3645 set_cmd_cfunc (c, set_ext_lang_command);
3646
3647 add_info ("extensions", info_ext_lang_command,
3648 "All filename extensions associated with a source language.");
3649
3650 add_show_from_set
3651 (add_set_cmd ("download-write-size", class_obscure,
3652 var_integer, (char *) &download_write_size,
3653 "Set the write size used when downloading a program.\n"
3654 "Only used when downloading a program onto a remote\n"
3655 "target. Specify zero, or a negative value, to disable\n"
3656 "blocked writes. The actual size of each transfer is also\n"
3657 "limited by the size of the target packet and the memory\n"
3658 "cache.\n",
3659 &setlist),
3660 &showlist);
3661
3662 debug_file_directory = xstrdup (DEBUGDIR);
3663 c = (add_set_cmd
3664 ("debug-file-directory", class_support, var_string,
3665 (char *) &debug_file_directory,
3666 "Set the directory where separate debug symbols are searched for.\n"
3667 "Separate debug symbols are first searched for in the same\n"
3668 "directory as the binary, then in the `" DEBUG_SUBDIRECTORY
3669 "' subdirectory,\n"
3670 "and lastly at the path of the directory of the binary with\n"
3671 "the global debug-file directory prepended\n",
3672 &setlist));
3673 add_show_from_set (c, &showlist);
3674 set_cmd_completer (c, filename_completer);
3675 }