gdb/
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 static struct sym_fns *symtab_fns = NULL;
151
152 /* Flag for whether user will be reloading symbols multiple times.
153 Defaults to ON for VxWorks, otherwise OFF. */
154
155 #ifdef SYMBOL_RELOADING_DEFAULT
156 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
157 #else
158 int symbol_reloading = 0;
159 #endif
160 static void
161 show_symbol_reloading (struct ui_file *file, int from_tty,
162 struct cmd_list_element *c, const char *value)
163 {
164 fprintf_filtered (file, _("\
165 Dynamic symbol table reloading multiple times in one run is %s.\n"),
166 value);
167 }
168
169 /* If non-zero, shared library symbols will be added automatically
170 when the inferior is created, new libraries are loaded, or when
171 attaching to the inferior. This is almost always what users will
172 want to have happen; but for very large programs, the startup time
173 will be excessive, and so if this is a problem, the user can clear
174 this flag and then add the shared library symbols as needed. Note
175 that there is a potential for confusion, since if the shared
176 library symbols are not loaded, commands like "info fun" will *not*
177 report all the functions that are actually present. */
178
179 int auto_solib_add = 1;
180
181 /* For systems that support it, a threshold size in megabytes. If
182 automatically adding a new library's symbol table to those already
183 known to the debugger would cause the total shared library symbol
184 size to exceed this threshhold, then the shlib's symbols are not
185 added. The threshold is ignored if the user explicitly asks for a
186 shlib to be added, such as when using the "sharedlibrary"
187 command. */
188
189 int auto_solib_limit;
190 \f
191
192 /* Make a null terminated copy of the string at PTR with SIZE characters in
193 the obstack pointed to by OBSTACKP . Returns the address of the copy.
194 Note that the string at PTR does not have to be null terminated, I.E. it
195 may be part of a larger string and we are only saving a substring. */
196
197 char *
198 obsavestring (const char *ptr, int size, struct obstack *obstackp)
199 {
200 char *p = (char *) obstack_alloc (obstackp, size + 1);
201 /* Open-coded memcpy--saves function call time. These strings are usually
202 short. FIXME: Is this really still true with a compiler that can
203 inline memcpy? */
204 {
205 const char *p1 = ptr;
206 char *p2 = p;
207 const char *end = ptr + size;
208 while (p1 != end)
209 *p2++ = *p1++;
210 }
211 p[size] = 0;
212 return p;
213 }
214
215 /* Concatenate NULL terminated variable argument list of `const char *' strings;
216 return the new string. Space is found in the OBSTACKP. Argument list must
217 be terminated by a sentinel expression `(char *) NULL'. */
218
219 char *
220 obconcat (struct obstack *obstackp, ...)
221 {
222 va_list ap;
223
224 va_start (ap, obstackp);
225 for (;;)
226 {
227 const char *s = va_arg (ap, const char *);
228
229 if (s == NULL)
230 break;
231
232 obstack_grow_str (obstackp, s);
233 }
234 va_end (ap);
235 obstack_1grow (obstackp, 0);
236
237 return obstack_finish (obstackp);
238 }
239
240 /* True if we are reading a symbol table. */
241
242 int currently_reading_symtab = 0;
243
244 static void
245 decrement_reading_symtab (void *dummy)
246 {
247 currently_reading_symtab--;
248 }
249
250 /* Increment currently_reading_symtab and return a cleanup that can be
251 used to decrement it. */
252 struct cleanup *
253 increment_reading_symtab (void)
254 {
255 ++currently_reading_symtab;
256 return make_cleanup (decrement_reading_symtab, NULL);
257 }
258
259 /* Remember the lowest-addressed loadable section we've seen.
260 This function is called via bfd_map_over_sections.
261
262 In case of equal vmas, the section with the largest size becomes the
263 lowest-addressed loadable section.
264
265 If the vmas and sizes are equal, the last section is considered the
266 lowest-addressed loadable section. */
267
268 void
269 find_lowest_section (bfd *abfd, asection *sect, void *obj)
270 {
271 asection **lowest = (asection **) obj;
272
273 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
274 return;
275 if (!*lowest)
276 *lowest = sect; /* First loadable section */
277 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
278 *lowest = sect; /* A lower loadable section */
279 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
280 && (bfd_section_size (abfd, (*lowest))
281 <= bfd_section_size (abfd, sect)))
282 *lowest = sect;
283 }
284
285 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
286
287 struct section_addr_info *
288 alloc_section_addr_info (size_t num_sections)
289 {
290 struct section_addr_info *sap;
291 size_t size;
292
293 size = (sizeof (struct section_addr_info)
294 + sizeof (struct other_sections) * (num_sections - 1));
295 sap = (struct section_addr_info *) xmalloc (size);
296 memset (sap, 0, size);
297 sap->num_sections = num_sections;
298
299 return sap;
300 }
301
302 /* Build (allocate and populate) a section_addr_info struct from
303 an existing section table. */
304
305 extern struct section_addr_info *
306 build_section_addr_info_from_section_table (const struct target_section *start,
307 const struct target_section *end)
308 {
309 struct section_addr_info *sap;
310 const struct target_section *stp;
311 int oidx;
312
313 sap = alloc_section_addr_info (end - start);
314
315 for (stp = start, oidx = 0; stp != end; stp++)
316 {
317 if (bfd_get_section_flags (stp->bfd,
318 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
319 && oidx < end - start)
320 {
321 sap->other[oidx].addr = stp->addr;
322 sap->other[oidx].name
323 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
324 sap->other[oidx].sectindex = stp->the_bfd_section->index;
325 oidx++;
326 }
327 }
328
329 return sap;
330 }
331
332 /* Create a section_addr_info from section offsets in ABFD. */
333
334 static struct section_addr_info *
335 build_section_addr_info_from_bfd (bfd *abfd)
336 {
337 struct section_addr_info *sap;
338 int i;
339 struct bfd_section *sec;
340
341 sap = alloc_section_addr_info (bfd_count_sections (abfd));
342 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
343 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
344 {
345 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
346 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
347 sap->other[i].sectindex = sec->index;
348 i++;
349 }
350 return sap;
351 }
352
353 /* Create a section_addr_info from section offsets in OBJFILE. */
354
355 struct section_addr_info *
356 build_section_addr_info_from_objfile (const struct objfile *objfile)
357 {
358 struct section_addr_info *sap;
359 int i;
360
361 /* Before reread_symbols gets rewritten it is not safe to call:
362 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
363 */
364 sap = build_section_addr_info_from_bfd (objfile->obfd);
365 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
366 {
367 int sectindex = sap->other[i].sectindex;
368
369 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
370 }
371 return sap;
372 }
373
374 /* Free all memory allocated by build_section_addr_info_from_section_table. */
375
376 extern void
377 free_section_addr_info (struct section_addr_info *sap)
378 {
379 int idx;
380
381 for (idx = 0; idx < sap->num_sections; idx++)
382 if (sap->other[idx].name)
383 xfree (sap->other[idx].name);
384 xfree (sap);
385 }
386
387
388 /* Initialize OBJFILE's sect_index_* members. */
389 static void
390 init_objfile_sect_indices (struct objfile *objfile)
391 {
392 asection *sect;
393 int i;
394
395 sect = bfd_get_section_by_name (objfile->obfd, ".text");
396 if (sect)
397 objfile->sect_index_text = sect->index;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".data");
400 if (sect)
401 objfile->sect_index_data = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
404 if (sect)
405 objfile->sect_index_bss = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
408 if (sect)
409 objfile->sect_index_rodata = sect->index;
410
411 /* This is where things get really weird... We MUST have valid
412 indices for the various sect_index_* members or gdb will abort.
413 So if for example, there is no ".text" section, we have to
414 accomodate that. First, check for a file with the standard
415 one or two segments. */
416
417 symfile_find_segment_sections (objfile);
418
419 /* Except when explicitly adding symbol files at some address,
420 section_offsets contains nothing but zeros, so it doesn't matter
421 which slot in section_offsets the individual sect_index_* members
422 index into. So if they are all zero, it is safe to just point
423 all the currently uninitialized indices to the first slot. But
424 beware: if this is the main executable, it may be relocated
425 later, e.g. by the remote qOffsets packet, and then this will
426 be wrong! That's why we try segments first. */
427
428 for (i = 0; i < objfile->num_sections; i++)
429 {
430 if (ANOFFSET (objfile->section_offsets, i) != 0)
431 {
432 break;
433 }
434 }
435 if (i == objfile->num_sections)
436 {
437 if (objfile->sect_index_text == -1)
438 objfile->sect_index_text = 0;
439 if (objfile->sect_index_data == -1)
440 objfile->sect_index_data = 0;
441 if (objfile->sect_index_bss == -1)
442 objfile->sect_index_bss = 0;
443 if (objfile->sect_index_rodata == -1)
444 objfile->sect_index_rodata = 0;
445 }
446 }
447
448 /* The arguments to place_section. */
449
450 struct place_section_arg
451 {
452 struct section_offsets *offsets;
453 CORE_ADDR lowest;
454 };
455
456 /* Find a unique offset to use for loadable section SECT if
457 the user did not provide an offset. */
458
459 static void
460 place_section (bfd *abfd, asection *sect, void *obj)
461 {
462 struct place_section_arg *arg = obj;
463 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
464 int done;
465 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
466
467 /* We are only interested in allocated sections. */
468 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
469 return;
470
471 /* If the user specified an offset, honor it. */
472 if (offsets[sect->index] != 0)
473 return;
474
475 /* Otherwise, let's try to find a place for the section. */
476 start_addr = (arg->lowest + align - 1) & -align;
477
478 do {
479 asection *cur_sec;
480
481 done = 1;
482
483 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
484 {
485 int indx = cur_sec->index;
486
487 /* We don't need to compare against ourself. */
488 if (cur_sec == sect)
489 continue;
490
491 /* We can only conflict with allocated sections. */
492 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
493 continue;
494
495 /* If the section offset is 0, either the section has not been placed
496 yet, or it was the lowest section placed (in which case LOWEST
497 will be past its end). */
498 if (offsets[indx] == 0)
499 continue;
500
501 /* If this section would overlap us, then we must move up. */
502 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
503 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
504 {
505 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
506 start_addr = (start_addr + align - 1) & -align;
507 done = 0;
508 break;
509 }
510
511 /* Otherwise, we appear to be OK. So far. */
512 }
513 }
514 while (!done);
515
516 offsets[sect->index] = start_addr;
517 arg->lowest = start_addr + bfd_get_section_size (sect);
518 }
519
520 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
521 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
522 entries. */
523
524 void
525 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
526 int num_sections,
527 struct section_addr_info *addrs)
528 {
529 int i;
530
531 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
532
533 /* Now calculate offsets for section that were specified by the caller. */
534 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
535 {
536 struct other_sections *osp;
537
538 osp = &addrs->other[i];
539 if (osp->addr == 0)
540 continue;
541
542 /* Record all sections in offsets */
543 /* The section_offsets in the objfile are here filled in using
544 the BFD index. */
545 section_offsets->offsets[osp->sectindex] = osp->addr;
546 }
547 }
548
549 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
550 their (name, sectindex) pair. sectindex makes the sort by name stable. */
551
552 static int
553 addrs_section_compar (const void *ap, const void *bp)
554 {
555 const struct other_sections *a = *((struct other_sections **) ap);
556 const struct other_sections *b = *((struct other_sections **) bp);
557 int retval, a_idx, b_idx;
558
559 retval = strcmp (a->name, b->name);
560 if (retval)
561 return retval;
562
563 /* SECTINDEX is undefined iff ADDR is zero. */
564 a_idx = a->addr == 0 ? 0 : a->sectindex;
565 b_idx = b->addr == 0 ? 0 : b->sectindex;
566 return a_idx - b_idx;
567 }
568
569 /* Provide sorted array of pointers to sections of ADDRS. The array is
570 terminated by NULL. Caller is responsible to call xfree for it. */
571
572 static struct other_sections **
573 addrs_section_sort (struct section_addr_info *addrs)
574 {
575 struct other_sections **array;
576 int i;
577
578 /* `+ 1' for the NULL terminator. */
579 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
580 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
581 array[i] = &addrs->other[i];
582 array[i] = NULL;
583
584 qsort (array, i, sizeof (*array), addrs_section_compar);
585
586 return array;
587 }
588
589 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
590 also SECTINDEXes specific to ABFD there. This function can be used to
591 rebase ADDRS to start referencing different BFD than before. */
592
593 void
594 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
595 {
596 asection *lower_sect;
597 CORE_ADDR lower_offset;
598 int i;
599 struct cleanup *my_cleanup;
600 struct section_addr_info *abfd_addrs;
601 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
602 struct other_sections **addrs_to_abfd_addrs;
603
604 /* Find lowest loadable section to be used as starting point for
605 continguous sections. */
606 lower_sect = NULL;
607 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
608 if (lower_sect == NULL)
609 {
610 warning (_("no loadable sections found in added symbol-file %s"),
611 bfd_get_filename (abfd));
612 lower_offset = 0;
613 }
614 else
615 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
616
617 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
618 in ABFD. Section names are not unique - there can be multiple sections of
619 the same name. Also the sections of the same name do not have to be
620 adjacent to each other. Some sections may be present only in one of the
621 files. Even sections present in both files do not have to be in the same
622 order.
623
624 Use stable sort by name for the sections in both files. Then linearly
625 scan both lists matching as most of the entries as possible. */
626
627 addrs_sorted = addrs_section_sort (addrs);
628 my_cleanup = make_cleanup (xfree, addrs_sorted);
629
630 abfd_addrs = build_section_addr_info_from_bfd (abfd);
631 make_cleanup_free_section_addr_info (abfd_addrs);
632 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
633 make_cleanup (xfree, abfd_addrs_sorted);
634
635 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
636
637 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
638 * addrs->num_sections);
639 make_cleanup (xfree, addrs_to_abfd_addrs);
640
641 while (*addrs_sorted)
642 {
643 const char *sect_name = (*addrs_sorted)->name;
644
645 while (*abfd_addrs_sorted
646 && strcmp ((*abfd_addrs_sorted)->name, sect_name) < 0)
647 abfd_addrs_sorted++;
648
649 if (*abfd_addrs_sorted
650 && strcmp ((*abfd_addrs_sorted)->name, sect_name) == 0)
651 {
652 int index_in_addrs;
653
654 /* Make the found item directly addressable from ADDRS. */
655 index_in_addrs = *addrs_sorted - addrs->other;
656 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
657 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
658
659 /* Never use the same ABFD entry twice. */
660 abfd_addrs_sorted++;
661 }
662
663 addrs_sorted++;
664 }
665
666 /* Calculate offsets for the loadable sections.
667 FIXME! Sections must be in order of increasing loadable section
668 so that contiguous sections can use the lower-offset!!!
669
670 Adjust offsets if the segments are not contiguous.
671 If the section is contiguous, its offset should be set to
672 the offset of the highest loadable section lower than it
673 (the loadable section directly below it in memory).
674 this_offset = lower_offset = lower_addr - lower_orig_addr */
675
676 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
677 {
678 const char *sect_name = addrs->other[i].name;
679 struct other_sections *sect = addrs_to_abfd_addrs[i];
680
681 if (sect)
682 {
683 /* This is the index used by BFD. */
684 addrs->other[i].sectindex = sect->sectindex;
685
686 if (addrs->other[i].addr != 0)
687 {
688 addrs->other[i].addr -= sect->addr;
689 lower_offset = addrs->other[i].addr;
690 }
691 else
692 addrs->other[i].addr = lower_offset;
693 }
694 else
695 {
696 /* This section does not exist in ABFD, which is normally
697 unexpected and we want to issue a warning.
698
699 However, the ELF prelinker does create a few sections which are
700 marked in the main executable as loadable (they are loaded in
701 memory from the DYNAMIC segment) and yet are not present in
702 separate debug info files. This is fine, and should not cause
703 a warning. Shared libraries contain just the section
704 ".gnu.liblist" but it is not marked as loadable there. There is
705 no other way to identify them than by their name as the sections
706 created by prelink have no special flags. */
707
708 if (!(strcmp (sect_name, ".gnu.liblist") == 0
709 || strcmp (sect_name, ".gnu.conflict") == 0
710 || strcmp (sect_name, ".dynbss") == 0
711 || strcmp (sect_name, ".sdynbss") == 0))
712 warning (_("section %s not found in %s"), sect_name,
713 bfd_get_filename (abfd));
714
715 addrs->other[i].addr = 0;
716
717 /* SECTINDEX is invalid if ADDR is zero. */
718 }
719 }
720
721 do_cleanups (my_cleanup);
722 }
723
724 /* Parse the user's idea of an offset for dynamic linking, into our idea
725 of how to represent it for fast symbol reading. This is the default
726 version of the sym_fns.sym_offsets function for symbol readers that
727 don't need to do anything special. It allocates a section_offsets table
728 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
729
730 void
731 default_symfile_offsets (struct objfile *objfile,
732 struct section_addr_info *addrs)
733 {
734 objfile->num_sections = bfd_count_sections (objfile->obfd);
735 objfile->section_offsets = (struct section_offsets *)
736 obstack_alloc (&objfile->objfile_obstack,
737 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
738 relative_addr_info_to_section_offsets (objfile->section_offsets,
739 objfile->num_sections, addrs);
740
741 /* For relocatable files, all loadable sections will start at zero.
742 The zero is meaningless, so try to pick arbitrary addresses such
743 that no loadable sections overlap. This algorithm is quadratic,
744 but the number of sections in a single object file is generally
745 small. */
746 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
747 {
748 struct place_section_arg arg;
749 bfd *abfd = objfile->obfd;
750 asection *cur_sec;
751
752 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
753 /* We do not expect this to happen; just skip this step if the
754 relocatable file has a section with an assigned VMA. */
755 if (bfd_section_vma (abfd, cur_sec) != 0)
756 break;
757
758 if (cur_sec == NULL)
759 {
760 CORE_ADDR *offsets = objfile->section_offsets->offsets;
761
762 /* Pick non-overlapping offsets for sections the user did not
763 place explicitly. */
764 arg.offsets = objfile->section_offsets;
765 arg.lowest = 0;
766 bfd_map_over_sections (objfile->obfd, place_section, &arg);
767
768 /* Correctly filling in the section offsets is not quite
769 enough. Relocatable files have two properties that
770 (most) shared objects do not:
771
772 - Their debug information will contain relocations. Some
773 shared libraries do also, but many do not, so this can not
774 be assumed.
775
776 - If there are multiple code sections they will be loaded
777 at different relative addresses in memory than they are
778 in the objfile, since all sections in the file will start
779 at address zero.
780
781 Because GDB has very limited ability to map from an
782 address in debug info to the correct code section,
783 it relies on adding SECT_OFF_TEXT to things which might be
784 code. If we clear all the section offsets, and set the
785 section VMAs instead, then symfile_relocate_debug_section
786 will return meaningful debug information pointing at the
787 correct sections.
788
789 GDB has too many different data structures for section
790 addresses - a bfd, objfile, and so_list all have section
791 tables, as does exec_ops. Some of these could probably
792 be eliminated. */
793
794 for (cur_sec = abfd->sections; cur_sec != NULL;
795 cur_sec = cur_sec->next)
796 {
797 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
798 continue;
799
800 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
801 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
802 offsets[cur_sec->index]);
803 offsets[cur_sec->index] = 0;
804 }
805 }
806 }
807
808 /* Remember the bfd indexes for the .text, .data, .bss and
809 .rodata sections. */
810 init_objfile_sect_indices (objfile);
811 }
812
813
814 /* Divide the file into segments, which are individual relocatable units.
815 This is the default version of the sym_fns.sym_segments function for
816 symbol readers that do not have an explicit representation of segments.
817 It assumes that object files do not have segments, and fully linked
818 files have a single segment. */
819
820 struct symfile_segment_data *
821 default_symfile_segments (bfd *abfd)
822 {
823 int num_sections, i;
824 asection *sect;
825 struct symfile_segment_data *data;
826 CORE_ADDR low, high;
827
828 /* Relocatable files contain enough information to position each
829 loadable section independently; they should not be relocated
830 in segments. */
831 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
832 return NULL;
833
834 /* Make sure there is at least one loadable section in the file. */
835 for (sect = abfd->sections; sect != NULL; sect = sect->next)
836 {
837 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
838 continue;
839
840 break;
841 }
842 if (sect == NULL)
843 return NULL;
844
845 low = bfd_get_section_vma (abfd, sect);
846 high = low + bfd_get_section_size (sect);
847
848 data = XZALLOC (struct symfile_segment_data);
849 data->num_segments = 1;
850 data->segment_bases = XCALLOC (1, CORE_ADDR);
851 data->segment_sizes = XCALLOC (1, CORE_ADDR);
852
853 num_sections = bfd_count_sections (abfd);
854 data->segment_info = XCALLOC (num_sections, int);
855
856 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
857 {
858 CORE_ADDR vma;
859
860 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
861 continue;
862
863 vma = bfd_get_section_vma (abfd, sect);
864 if (vma < low)
865 low = vma;
866 if (vma + bfd_get_section_size (sect) > high)
867 high = vma + bfd_get_section_size (sect);
868
869 data->segment_info[i] = 1;
870 }
871
872 data->segment_bases[0] = low;
873 data->segment_sizes[0] = high - low;
874
875 return data;
876 }
877
878 /* Process a symbol file, as either the main file or as a dynamically
879 loaded file.
880
881 OBJFILE is where the symbols are to be read from.
882
883 ADDRS is the list of section load addresses. If the user has given
884 an 'add-symbol-file' command, then this is the list of offsets and
885 addresses he or she provided as arguments to the command; or, if
886 we're handling a shared library, these are the actual addresses the
887 sections are loaded at, according to the inferior's dynamic linker
888 (as gleaned by GDB's shared library code). We convert each address
889 into an offset from the section VMA's as it appears in the object
890 file, and then call the file's sym_offsets function to convert this
891 into a format-specific offset table --- a `struct section_offsets'.
892 If ADDRS is non-zero, OFFSETS must be zero.
893
894 OFFSETS is a table of section offsets already in the right
895 format-specific representation. NUM_OFFSETS is the number of
896 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
897 assume this is the proper table the call to sym_offsets described
898 above would produce. Instead of calling sym_offsets, we just dump
899 it right into objfile->section_offsets. (When we're re-reading
900 symbols from an objfile, we don't have the original load address
901 list any more; all we have is the section offset table.) If
902 OFFSETS is non-zero, ADDRS must be zero.
903
904 ADD_FLAGS encodes verbosity level, whether this is main symbol or
905 an extra symbol file such as dynamically loaded code, and wether
906 breakpoint reset should be deferred. */
907
908 void
909 syms_from_objfile (struct objfile *objfile,
910 struct section_addr_info *addrs,
911 struct section_offsets *offsets,
912 int num_offsets,
913 int add_flags)
914 {
915 struct section_addr_info *local_addr = NULL;
916 struct cleanup *old_chain;
917 const int mainline = add_flags & SYMFILE_MAINLINE;
918
919 gdb_assert (! (addrs && offsets));
920
921 init_entry_point_info (objfile);
922 objfile->sf = find_sym_fns (objfile->obfd);
923
924 if (objfile->sf == NULL)
925 return; /* No symbols. */
926
927 /* Make sure that partially constructed symbol tables will be cleaned up
928 if an error occurs during symbol reading. */
929 old_chain = make_cleanup_free_objfile (objfile);
930
931 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
932 list. We now establish the convention that an addr of zero means
933 no load address was specified. */
934 if (! addrs && ! offsets)
935 {
936 local_addr
937 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
938 make_cleanup (xfree, local_addr);
939 addrs = local_addr;
940 }
941
942 /* Now either addrs or offsets is non-zero. */
943
944 if (mainline)
945 {
946 /* We will modify the main symbol table, make sure that all its users
947 will be cleaned up if an error occurs during symbol reading. */
948 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
949
950 /* Since no error yet, throw away the old symbol table. */
951
952 if (symfile_objfile != NULL)
953 {
954 free_objfile (symfile_objfile);
955 gdb_assert (symfile_objfile == NULL);
956 }
957
958 /* Currently we keep symbols from the add-symbol-file command.
959 If the user wants to get rid of them, they should do "symbol-file"
960 without arguments first. Not sure this is the best behavior
961 (PR 2207). */
962
963 (*objfile->sf->sym_new_init) (objfile);
964 }
965
966 /* Convert addr into an offset rather than an absolute address.
967 We find the lowest address of a loaded segment in the objfile,
968 and assume that <addr> is where that got loaded.
969
970 We no longer warn if the lowest section is not a text segment (as
971 happens for the PA64 port. */
972 if (addrs && addrs->other[0].name)
973 addr_info_make_relative (addrs, objfile->obfd);
974
975 /* Initialize symbol reading routines for this objfile, allow complaints to
976 appear for this new file, and record how verbose to be, then do the
977 initial symbol reading for this file. */
978
979 (*objfile->sf->sym_init) (objfile);
980 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
981
982 if (addrs)
983 (*objfile->sf->sym_offsets) (objfile, addrs);
984 else
985 {
986 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
987
988 /* Just copy in the offset table directly as given to us. */
989 objfile->num_sections = num_offsets;
990 objfile->section_offsets
991 = ((struct section_offsets *)
992 obstack_alloc (&objfile->objfile_obstack, size));
993 memcpy (objfile->section_offsets, offsets, size);
994
995 init_objfile_sect_indices (objfile);
996 }
997
998 (*objfile->sf->sym_read) (objfile, add_flags);
999
1000 /* Discard cleanups as symbol reading was successful. */
1001
1002 discard_cleanups (old_chain);
1003 xfree (local_addr);
1004 }
1005
1006 /* Perform required actions after either reading in the initial
1007 symbols for a new objfile, or mapping in the symbols from a reusable
1008 objfile. */
1009
1010 void
1011 new_symfile_objfile (struct objfile *objfile, int add_flags)
1012 {
1013
1014 /* If this is the main symbol file we have to clean up all users of the
1015 old main symbol file. Otherwise it is sufficient to fixup all the
1016 breakpoints that may have been redefined by this symbol file. */
1017 if (add_flags & SYMFILE_MAINLINE)
1018 {
1019 /* OK, make it the "real" symbol file. */
1020 symfile_objfile = objfile;
1021
1022 clear_symtab_users ();
1023 }
1024 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1025 {
1026 breakpoint_re_set ();
1027 }
1028
1029 /* We're done reading the symbol file; finish off complaints. */
1030 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1031 }
1032
1033 /* Process a symbol file, as either the main file or as a dynamically
1034 loaded file.
1035
1036 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1037 This BFD will be closed on error, and is always consumed by this function.
1038
1039 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1040 extra, such as dynamically loaded code, and what to do with breakpoins.
1041
1042 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1043 syms_from_objfile, above.
1044 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1045
1046 Upon success, returns a pointer to the objfile that was added.
1047 Upon failure, jumps back to command level (never returns). */
1048
1049 static struct objfile *
1050 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1051 int add_flags,
1052 struct section_addr_info *addrs,
1053 struct section_offsets *offsets,
1054 int num_offsets,
1055 int flags)
1056 {
1057 struct objfile *objfile;
1058 struct cleanup *my_cleanups;
1059 const char *name = bfd_get_filename (abfd);
1060 const int from_tty = add_flags & SYMFILE_VERBOSE;
1061
1062 my_cleanups = make_cleanup_bfd_close (abfd);
1063
1064 /* Give user a chance to burp if we'd be
1065 interactively wiping out any existing symbols. */
1066
1067 if ((have_full_symbols () || have_partial_symbols ())
1068 && (add_flags & SYMFILE_MAINLINE)
1069 && from_tty
1070 && !query (_("Load new symbol table from \"%s\"? "), name))
1071 error (_("Not confirmed."));
1072
1073 objfile = allocate_objfile (abfd, flags);
1074 discard_cleanups (my_cleanups);
1075
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (from_tty || info_verbose)
1080 {
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1083 else
1084 {
1085 printf_unfiltered (_("Reading symbols from %s..."), name);
1086 wrap_here ("");
1087 gdb_flush (gdb_stdout);
1088 }
1089 }
1090 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1091 add_flags);
1092
1093 /* We now have at least a partial symbol table. Check to see if the
1094 user requested that all symbols be read on initial access via either
1095 the gdb startup command line or on a per symbol file basis. Expand
1096 all partial symbol tables for this objfile if so. */
1097
1098 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1099 {
1100 if (from_tty || info_verbose)
1101 {
1102 printf_unfiltered (_("expanding to full symbols..."));
1103 wrap_here ("");
1104 gdb_flush (gdb_stdout);
1105 }
1106
1107 if (objfile->sf)
1108 objfile->sf->qf->expand_all_symtabs (objfile);
1109 }
1110
1111 if ((from_tty || info_verbose)
1112 && !objfile_has_symbols (objfile))
1113 {
1114 wrap_here ("");
1115 printf_unfiltered (_("(no debugging symbols found)..."));
1116 wrap_here ("");
1117 }
1118
1119 if (from_tty || info_verbose)
1120 {
1121 if (deprecated_post_add_symbol_hook)
1122 deprecated_post_add_symbol_hook ();
1123 else
1124 printf_unfiltered (_("done.\n"));
1125 }
1126
1127 /* We print some messages regardless of whether 'from_tty ||
1128 info_verbose' is true, so make sure they go out at the right
1129 time. */
1130 gdb_flush (gdb_stdout);
1131
1132 do_cleanups (my_cleanups);
1133
1134 if (objfile->sf == NULL)
1135 {
1136 observer_notify_new_objfile (objfile);
1137 return objfile; /* No symbols. */
1138 }
1139
1140 new_symfile_objfile (objfile, add_flags);
1141
1142 observer_notify_new_objfile (objfile);
1143
1144 bfd_cache_close_all ();
1145 return (objfile);
1146 }
1147
1148 /* Add BFD as a separate debug file for OBJFILE. */
1149
1150 void
1151 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1152 {
1153 struct objfile *new_objfile;
1154 struct section_addr_info *sap;
1155 struct cleanup *my_cleanup;
1156
1157 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1158 because sections of BFD may not match sections of OBJFILE and because
1159 vma may have been modified by tools such as prelink. */
1160 sap = build_section_addr_info_from_objfile (objfile);
1161 my_cleanup = make_cleanup_free_section_addr_info (sap);
1162
1163 new_objfile = symbol_file_add_with_addrs_or_offsets
1164 (bfd, symfile_flags,
1165 sap, NULL, 0,
1166 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1167 | OBJF_USERLOADED));
1168
1169 do_cleanups (my_cleanup);
1170
1171 add_separate_debug_objfile (new_objfile, objfile);
1172 }
1173
1174 /* Process the symbol file ABFD, as either the main file or as a
1175 dynamically loaded file.
1176
1177 See symbol_file_add_with_addrs_or_offsets's comments for
1178 details. */
1179 struct objfile *
1180 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1181 struct section_addr_info *addrs,
1182 int flags)
1183 {
1184 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1185 flags);
1186 }
1187
1188
1189 /* Process a symbol file, as either the main file or as a dynamically
1190 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1191 for details. */
1192 struct objfile *
1193 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1194 int flags)
1195 {
1196 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1197 flags);
1198 }
1199
1200
1201 /* Call symbol_file_add() with default values and update whatever is
1202 affected by the loading of a new main().
1203 Used when the file is supplied in the gdb command line
1204 and by some targets with special loading requirements.
1205 The auxiliary function, symbol_file_add_main_1(), has the flags
1206 argument for the switches that can only be specified in the symbol_file
1207 command itself. */
1208
1209 void
1210 symbol_file_add_main (char *args, int from_tty)
1211 {
1212 symbol_file_add_main_1 (args, from_tty, 0);
1213 }
1214
1215 static void
1216 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1217 {
1218 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1219 symbol_file_add (args, add_flags, NULL, flags);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 set_initial_language ();
1226 }
1227
1228 void
1229 symbol_file_clear (int from_tty)
1230 {
1231 if ((have_full_symbols () || have_partial_symbols ())
1232 && from_tty
1233 && (symfile_objfile
1234 ? !query (_("Discard symbol table from `%s'? "),
1235 symfile_objfile->name)
1236 : !query (_("Discard symbol table? "))))
1237 error (_("Not confirmed."));
1238
1239 /* solib descriptors may have handles to objfiles. Wipe them before their
1240 objfiles get stale by free_all_objfiles. */
1241 no_shared_libraries (NULL, from_tty);
1242
1243 free_all_objfiles ();
1244
1245 gdb_assert (symfile_objfile == NULL);
1246 if (from_tty)
1247 printf_unfiltered (_("No symbol file now.\n"));
1248 }
1249
1250 static char *
1251 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1252 {
1253 asection *sect;
1254 bfd_size_type debuglink_size;
1255 unsigned long crc32;
1256 char *contents;
1257 int crc_offset;
1258
1259 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1260
1261 if (sect == NULL)
1262 return NULL;
1263
1264 debuglink_size = bfd_section_size (objfile->obfd, sect);
1265
1266 contents = xmalloc (debuglink_size);
1267 bfd_get_section_contents (objfile->obfd, sect, contents,
1268 (file_ptr)0, (bfd_size_type)debuglink_size);
1269
1270 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1271 crc_offset = strlen (contents) + 1;
1272 crc_offset = (crc_offset + 3) & ~3;
1273
1274 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1275
1276 *crc32_out = crc32;
1277 return contents;
1278 }
1279
1280 static int
1281 separate_debug_file_exists (const char *name, unsigned long crc,
1282 struct objfile *parent_objfile)
1283 {
1284 unsigned long file_crc = 0;
1285 bfd *abfd;
1286 gdb_byte buffer[8*1024];
1287 int count;
1288 struct stat parent_stat, abfd_stat;
1289
1290 /* Find a separate debug info file as if symbols would be present in
1291 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1292 section can contain just the basename of PARENT_OBJFILE without any
1293 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1294 the separate debug infos with the same basename can exist. */
1295
1296 if (strcmp (name, parent_objfile->name) == 0)
1297 return 0;
1298
1299 abfd = bfd_open_maybe_remote (name);
1300
1301 if (!abfd)
1302 return 0;
1303
1304 /* Verify symlinks were not the cause of strcmp name difference above.
1305
1306 Some operating systems, e.g. Windows, do not provide a meaningful
1307 st_ino; they always set it to zero. (Windows does provide a
1308 meaningful st_dev.) Do not indicate a duplicate library in that
1309 case. While there is no guarantee that a system that provides
1310 meaningful inode numbers will never set st_ino to zero, this is
1311 merely an optimization, so we do not need to worry about false
1312 negatives. */
1313
1314 if (bfd_stat (abfd, &abfd_stat) == 0
1315 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1316 && abfd_stat.st_dev == parent_stat.st_dev
1317 && abfd_stat.st_ino == parent_stat.st_ino
1318 && abfd_stat.st_ino != 0)
1319 {
1320 bfd_close (abfd);
1321 return 0;
1322 }
1323
1324 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1325 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1326
1327 bfd_close (abfd);
1328
1329 if (crc != file_crc)
1330 {
1331 warning (_("the debug information found in \"%s\""
1332 " does not match \"%s\" (CRC mismatch).\n"),
1333 name, parent_objfile->name);
1334 return 0;
1335 }
1336
1337 return 1;
1338 }
1339
1340 char *debug_file_directory = NULL;
1341 static void
1342 show_debug_file_directory (struct ui_file *file, int from_tty,
1343 struct cmd_list_element *c, const char *value)
1344 {
1345 fprintf_filtered (file, _("\
1346 The directory where separate debug symbols are searched for is \"%s\".\n"),
1347 value);
1348 }
1349
1350 #if ! defined (DEBUG_SUBDIRECTORY)
1351 #define DEBUG_SUBDIRECTORY ".debug"
1352 #endif
1353
1354 char *
1355 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1356 {
1357 char *basename, *debugdir;
1358 char *dir = NULL;
1359 char *debugfile = NULL;
1360 char *canon_name = NULL;
1361 unsigned long crc32;
1362 int i;
1363
1364 basename = get_debug_link_info (objfile, &crc32);
1365
1366 if (basename == NULL)
1367 /* There's no separate debug info, hence there's no way we could
1368 load it => no warning. */
1369 goto cleanup_return_debugfile;
1370
1371 dir = xstrdup (objfile->name);
1372
1373 /* Strip off the final filename part, leaving the directory name,
1374 followed by a slash. Objfile names should always be absolute and
1375 tilde-expanded, so there should always be a slash in there
1376 somewhere. */
1377 for (i = strlen(dir) - 1; i >= 0; i--)
1378 {
1379 if (IS_DIR_SEPARATOR (dir[i]))
1380 break;
1381 }
1382 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1383 dir[i+1] = '\0';
1384
1385 /* Set I to max (strlen (canon_name), strlen (dir)). */
1386 canon_name = lrealpath (dir);
1387 i = strlen (dir);
1388 if (canon_name && strlen (canon_name) > i)
1389 i = strlen (canon_name);
1390
1391 debugfile = xmalloc (strlen (debug_file_directory) + 1
1392 + i
1393 + strlen (DEBUG_SUBDIRECTORY)
1394 + strlen ("/")
1395 + strlen (basename)
1396 + 1);
1397
1398 /* First try in the same directory as the original file. */
1399 strcpy (debugfile, dir);
1400 strcat (debugfile, basename);
1401
1402 if (separate_debug_file_exists (debugfile, crc32, objfile))
1403 goto cleanup_return_debugfile;
1404
1405 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1406 strcpy (debugfile, dir);
1407 strcat (debugfile, DEBUG_SUBDIRECTORY);
1408 strcat (debugfile, "/");
1409 strcat (debugfile, basename);
1410
1411 if (separate_debug_file_exists (debugfile, crc32, objfile))
1412 goto cleanup_return_debugfile;
1413
1414 /* Then try in the global debugfile directories.
1415
1416 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1417 cause "/..." lookups. */
1418
1419 debugdir = debug_file_directory;
1420 do
1421 {
1422 char *debugdir_end;
1423
1424 while (*debugdir == DIRNAME_SEPARATOR)
1425 debugdir++;
1426
1427 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1428 if (debugdir_end == NULL)
1429 debugdir_end = &debugdir[strlen (debugdir)];
1430
1431 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1432 debugfile[debugdir_end - debugdir] = 0;
1433 strcat (debugfile, "/");
1434 strcat (debugfile, dir);
1435 strcat (debugfile, basename);
1436
1437 if (separate_debug_file_exists (debugfile, crc32, objfile))
1438 goto cleanup_return_debugfile;
1439
1440 /* If the file is in the sysroot, try using its base path in the
1441 global debugfile directory. */
1442 if (canon_name
1443 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1444 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1445 {
1446 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1447 debugfile[debugdir_end - debugdir] = 0;
1448 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1449 strcat (debugfile, "/");
1450 strcat (debugfile, basename);
1451
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 goto cleanup_return_debugfile;
1454 }
1455
1456 debugdir = debugdir_end;
1457 }
1458 while (*debugdir != 0);
1459
1460 xfree (debugfile);
1461 debugfile = NULL;
1462
1463 cleanup_return_debugfile:
1464 xfree (canon_name);
1465 xfree (basename);
1466 xfree (dir);
1467 return debugfile;
1468 }
1469
1470
1471 /* This is the symbol-file command. Read the file, analyze its
1472 symbols, and add a struct symtab to a symtab list. The syntax of
1473 the command is rather bizarre:
1474
1475 1. The function buildargv implements various quoting conventions
1476 which are undocumented and have little or nothing in common with
1477 the way things are quoted (or not quoted) elsewhere in GDB.
1478
1479 2. Options are used, which are not generally used in GDB (perhaps
1480 "set mapped on", "set readnow on" would be better)
1481
1482 3. The order of options matters, which is contrary to GNU
1483 conventions (because it is confusing and inconvenient). */
1484
1485 void
1486 symbol_file_command (char *args, int from_tty)
1487 {
1488 dont_repeat ();
1489
1490 if (args == NULL)
1491 {
1492 symbol_file_clear (from_tty);
1493 }
1494 else
1495 {
1496 char **argv = gdb_buildargv (args);
1497 int flags = OBJF_USERLOADED;
1498 struct cleanup *cleanups;
1499 char *name = NULL;
1500
1501 cleanups = make_cleanup_freeargv (argv);
1502 while (*argv != NULL)
1503 {
1504 if (strcmp (*argv, "-readnow") == 0)
1505 flags |= OBJF_READNOW;
1506 else if (**argv == '-')
1507 error (_("unknown option `%s'"), *argv);
1508 else
1509 {
1510 symbol_file_add_main_1 (*argv, from_tty, flags);
1511 name = *argv;
1512 }
1513
1514 argv++;
1515 }
1516
1517 if (name == NULL)
1518 error (_("no symbol file name was specified"));
1519
1520 do_cleanups (cleanups);
1521 }
1522 }
1523
1524 /* Set the initial language.
1525
1526 FIXME: A better solution would be to record the language in the
1527 psymtab when reading partial symbols, and then use it (if known) to
1528 set the language. This would be a win for formats that encode the
1529 language in an easily discoverable place, such as DWARF. For
1530 stabs, we can jump through hoops looking for specially named
1531 symbols or try to intuit the language from the specific type of
1532 stabs we find, but we can't do that until later when we read in
1533 full symbols. */
1534
1535 void
1536 set_initial_language (void)
1537 {
1538 char *filename;
1539 enum language lang = language_unknown;
1540
1541 filename = find_main_filename ();
1542 if (filename != NULL)
1543 lang = deduce_language_from_filename (filename);
1544
1545 if (lang == language_unknown)
1546 {
1547 /* Make C the default language */
1548 lang = language_c;
1549 }
1550
1551 set_language (lang);
1552 expected_language = current_language; /* Don't warn the user. */
1553 }
1554
1555 /* If NAME is a remote name open the file using remote protocol, otherwise
1556 open it normally. */
1557
1558 bfd *
1559 bfd_open_maybe_remote (const char *name)
1560 {
1561 if (remote_filename_p (name))
1562 return remote_bfd_open (name, gnutarget);
1563 else
1564 return bfd_openr (name, gnutarget);
1565 }
1566
1567
1568 /* Open the file specified by NAME and hand it off to BFD for
1569 preliminary analysis. Return a newly initialized bfd *, which
1570 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1571 absolute). In case of trouble, error() is called. */
1572
1573 bfd *
1574 symfile_bfd_open (char *name)
1575 {
1576 bfd *sym_bfd;
1577 int desc;
1578 char *absolute_name;
1579
1580 if (remote_filename_p (name))
1581 {
1582 name = xstrdup (name);
1583 sym_bfd = remote_bfd_open (name, gnutarget);
1584 if (!sym_bfd)
1585 {
1586 make_cleanup (xfree, name);
1587 error (_("`%s': can't open to read symbols: %s."), name,
1588 bfd_errmsg (bfd_get_error ()));
1589 }
1590
1591 if (!bfd_check_format (sym_bfd, bfd_object))
1592 {
1593 bfd_close (sym_bfd);
1594 make_cleanup (xfree, name);
1595 error (_("`%s': can't read symbols: %s."), name,
1596 bfd_errmsg (bfd_get_error ()));
1597 }
1598
1599 return sym_bfd;
1600 }
1601
1602 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1603
1604 /* Look down path for it, allocate 2nd new malloc'd copy. */
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1608 if (desc < 0)
1609 {
1610 char *exename = alloca (strlen (name) + 5);
1611 strcat (strcpy (exename, name), ".exe");
1612 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1613 O_RDONLY | O_BINARY, &absolute_name);
1614 }
1615 #endif
1616 if (desc < 0)
1617 {
1618 make_cleanup (xfree, name);
1619 perror_with_name (name);
1620 }
1621
1622 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1623 bfd. It'll be freed in free_objfile(). */
1624 xfree (name);
1625 name = absolute_name;
1626
1627 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1628 if (!sym_bfd)
1629 {
1630 close (desc);
1631 make_cleanup (xfree, name);
1632 error (_("`%s': can't open to read symbols: %s."), name,
1633 bfd_errmsg (bfd_get_error ()));
1634 }
1635 bfd_set_cacheable (sym_bfd, 1);
1636
1637 if (!bfd_check_format (sym_bfd, bfd_object))
1638 {
1639 /* FIXME: should be checking for errors from bfd_close (for one
1640 thing, on error it does not free all the storage associated
1641 with the bfd). */
1642 bfd_close (sym_bfd); /* This also closes desc. */
1643 make_cleanup (xfree, name);
1644 error (_("`%s': can't read symbols: %s."), name,
1645 bfd_errmsg (bfd_get_error ()));
1646 }
1647
1648 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1649 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1650
1651 return sym_bfd;
1652 }
1653
1654 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1655 the section was not found. */
1656
1657 int
1658 get_section_index (struct objfile *objfile, char *section_name)
1659 {
1660 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1661
1662 if (sect)
1663 return sect->index;
1664 else
1665 return -1;
1666 }
1667
1668 /* Link SF into the global symtab_fns list. Called on startup by the
1669 _initialize routine in each object file format reader, to register
1670 information about each format the the reader is prepared to
1671 handle. */
1672
1673 void
1674 add_symtab_fns (struct sym_fns *sf)
1675 {
1676 sf->next = symtab_fns;
1677 symtab_fns = sf;
1678 }
1679
1680 /* Initialize OBJFILE to read symbols from its associated BFD. It
1681 either returns or calls error(). The result is an initialized
1682 struct sym_fns in the objfile structure, that contains cached
1683 information about the symbol file. */
1684
1685 static struct sym_fns *
1686 find_sym_fns (bfd *abfd)
1687 {
1688 struct sym_fns *sf;
1689 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1690
1691 if (our_flavour == bfd_target_srec_flavour
1692 || our_flavour == bfd_target_ihex_flavour
1693 || our_flavour == bfd_target_tekhex_flavour)
1694 return NULL; /* No symbols. */
1695
1696 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1697 if (our_flavour == sf->sym_flavour)
1698 return sf;
1699
1700 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1701 bfd_get_target (abfd));
1702 }
1703 \f
1704
1705 /* This function runs the load command of our current target. */
1706
1707 static void
1708 load_command (char *arg, int from_tty)
1709 {
1710 /* The user might be reloading because the binary has changed. Take
1711 this opportunity to check. */
1712 reopen_exec_file ();
1713 reread_symbols ();
1714
1715 if (arg == NULL)
1716 {
1717 char *parg;
1718 int count = 0;
1719
1720 parg = arg = get_exec_file (1);
1721
1722 /* Count how many \ " ' tab space there are in the name. */
1723 while ((parg = strpbrk (parg, "\\\"'\t ")))
1724 {
1725 parg++;
1726 count++;
1727 }
1728
1729 if (count)
1730 {
1731 /* We need to quote this string so buildargv can pull it apart. */
1732 char *temp = xmalloc (strlen (arg) + count + 1 );
1733 char *ptemp = temp;
1734 char *prev;
1735
1736 make_cleanup (xfree, temp);
1737
1738 prev = parg = arg;
1739 while ((parg = strpbrk (parg, "\\\"'\t ")))
1740 {
1741 strncpy (ptemp, prev, parg - prev);
1742 ptemp += parg - prev;
1743 prev = parg++;
1744 *ptemp++ = '\\';
1745 }
1746 strcpy (ptemp, prev);
1747
1748 arg = temp;
1749 }
1750 }
1751
1752 target_load (arg, from_tty);
1753
1754 /* After re-loading the executable, we don't really know which
1755 overlays are mapped any more. */
1756 overlay_cache_invalid = 1;
1757 }
1758
1759 /* This version of "load" should be usable for any target. Currently
1760 it is just used for remote targets, not inftarg.c or core files,
1761 on the theory that only in that case is it useful.
1762
1763 Avoiding xmodem and the like seems like a win (a) because we don't have
1764 to worry about finding it, and (b) On VMS, fork() is very slow and so
1765 we don't want to run a subprocess. On the other hand, I'm not sure how
1766 performance compares. */
1767
1768 static int validate_download = 0;
1769
1770 /* Callback service function for generic_load (bfd_map_over_sections). */
1771
1772 static void
1773 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1774 {
1775 bfd_size_type *sum = data;
1776
1777 *sum += bfd_get_section_size (asec);
1778 }
1779
1780 /* Opaque data for load_section_callback. */
1781 struct load_section_data {
1782 unsigned long load_offset;
1783 struct load_progress_data *progress_data;
1784 VEC(memory_write_request_s) *requests;
1785 };
1786
1787 /* Opaque data for load_progress. */
1788 struct load_progress_data {
1789 /* Cumulative data. */
1790 unsigned long write_count;
1791 unsigned long data_count;
1792 bfd_size_type total_size;
1793 };
1794
1795 /* Opaque data for load_progress for a single section. */
1796 struct load_progress_section_data {
1797 struct load_progress_data *cumulative;
1798
1799 /* Per-section data. */
1800 const char *section_name;
1801 ULONGEST section_sent;
1802 ULONGEST section_size;
1803 CORE_ADDR lma;
1804 gdb_byte *buffer;
1805 };
1806
1807 /* Target write callback routine for progress reporting. */
1808
1809 static void
1810 load_progress (ULONGEST bytes, void *untyped_arg)
1811 {
1812 struct load_progress_section_data *args = untyped_arg;
1813 struct load_progress_data *totals;
1814
1815 if (args == NULL)
1816 /* Writing padding data. No easy way to get at the cumulative
1817 stats, so just ignore this. */
1818 return;
1819
1820 totals = args->cumulative;
1821
1822 if (bytes == 0 && args->section_sent == 0)
1823 {
1824 /* The write is just starting. Let the user know we've started
1825 this section. */
1826 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1827 args->section_name, hex_string (args->section_size),
1828 paddress (target_gdbarch, args->lma));
1829 return;
1830 }
1831
1832 if (validate_download)
1833 {
1834 /* Broken memories and broken monitors manifest themselves here
1835 when bring new computers to life. This doubles already slow
1836 downloads. */
1837 /* NOTE: cagney/1999-10-18: A more efficient implementation
1838 might add a verify_memory() method to the target vector and
1839 then use that. remote.c could implement that method using
1840 the ``qCRC'' packet. */
1841 gdb_byte *check = xmalloc (bytes);
1842 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1843
1844 if (target_read_memory (args->lma, check, bytes) != 0)
1845 error (_("Download verify read failed at %s"),
1846 paddress (target_gdbarch, args->lma));
1847 if (memcmp (args->buffer, check, bytes) != 0)
1848 error (_("Download verify compare failed at %s"),
1849 paddress (target_gdbarch, args->lma));
1850 do_cleanups (verify_cleanups);
1851 }
1852 totals->data_count += bytes;
1853 args->lma += bytes;
1854 args->buffer += bytes;
1855 totals->write_count += 1;
1856 args->section_sent += bytes;
1857 if (quit_flag
1858 || (deprecated_ui_load_progress_hook != NULL
1859 && deprecated_ui_load_progress_hook (args->section_name,
1860 args->section_sent)))
1861 error (_("Canceled the download"));
1862
1863 if (deprecated_show_load_progress != NULL)
1864 deprecated_show_load_progress (args->section_name,
1865 args->section_sent,
1866 args->section_size,
1867 totals->data_count,
1868 totals->total_size);
1869 }
1870
1871 /* Callback service function for generic_load (bfd_map_over_sections). */
1872
1873 static void
1874 load_section_callback (bfd *abfd, asection *asec, void *data)
1875 {
1876 struct memory_write_request *new_request;
1877 struct load_section_data *args = data;
1878 struct load_progress_section_data *section_data;
1879 bfd_size_type size = bfd_get_section_size (asec);
1880 gdb_byte *buffer;
1881 const char *sect_name = bfd_get_section_name (abfd, asec);
1882
1883 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1884 return;
1885
1886 if (size == 0)
1887 return;
1888
1889 new_request = VEC_safe_push (memory_write_request_s,
1890 args->requests, NULL);
1891 memset (new_request, 0, sizeof (struct memory_write_request));
1892 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1893 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1894 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1895 new_request->data = xmalloc (size);
1896 new_request->baton = section_data;
1897
1898 buffer = new_request->data;
1899
1900 section_data->cumulative = args->progress_data;
1901 section_data->section_name = sect_name;
1902 section_data->section_size = size;
1903 section_data->lma = new_request->begin;
1904 section_data->buffer = buffer;
1905
1906 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1907 }
1908
1909 /* Clean up an entire memory request vector, including load
1910 data and progress records. */
1911
1912 static void
1913 clear_memory_write_data (void *arg)
1914 {
1915 VEC(memory_write_request_s) **vec_p = arg;
1916 VEC(memory_write_request_s) *vec = *vec_p;
1917 int i;
1918 struct memory_write_request *mr;
1919
1920 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1921 {
1922 xfree (mr->data);
1923 xfree (mr->baton);
1924 }
1925 VEC_free (memory_write_request_s, vec);
1926 }
1927
1928 void
1929 generic_load (char *args, int from_tty)
1930 {
1931 bfd *loadfile_bfd;
1932 struct timeval start_time, end_time;
1933 char *filename;
1934 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1935 struct load_section_data cbdata;
1936 struct load_progress_data total_progress;
1937
1938 CORE_ADDR entry;
1939 char **argv;
1940
1941 memset (&cbdata, 0, sizeof (cbdata));
1942 memset (&total_progress, 0, sizeof (total_progress));
1943 cbdata.progress_data = &total_progress;
1944
1945 make_cleanup (clear_memory_write_data, &cbdata.requests);
1946
1947 if (args == NULL)
1948 error_no_arg (_("file to load"));
1949
1950 argv = gdb_buildargv (args);
1951 make_cleanup_freeargv (argv);
1952
1953 filename = tilde_expand (argv[0]);
1954 make_cleanup (xfree, filename);
1955
1956 if (argv[1] != NULL)
1957 {
1958 char *endptr;
1959
1960 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1961
1962 /* If the last word was not a valid number then
1963 treat it as a file name with spaces in. */
1964 if (argv[1] == endptr)
1965 error (_("Invalid download offset:%s."), argv[1]);
1966
1967 if (argv[2] != NULL)
1968 error (_("Too many parameters."));
1969 }
1970
1971 /* Open the file for loading. */
1972 loadfile_bfd = bfd_openr (filename, gnutarget);
1973 if (loadfile_bfd == NULL)
1974 {
1975 perror_with_name (filename);
1976 return;
1977 }
1978
1979 /* FIXME: should be checking for errors from bfd_close (for one thing,
1980 on error it does not free all the storage associated with the
1981 bfd). */
1982 make_cleanup_bfd_close (loadfile_bfd);
1983
1984 if (!bfd_check_format (loadfile_bfd, bfd_object))
1985 {
1986 error (_("\"%s\" is not an object file: %s"), filename,
1987 bfd_errmsg (bfd_get_error ()));
1988 }
1989
1990 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1991 (void *) &total_progress.total_size);
1992
1993 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1994
1995 gettimeofday (&start_time, NULL);
1996
1997 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1998 load_progress) != 0)
1999 error (_("Load failed"));
2000
2001 gettimeofday (&end_time, NULL);
2002
2003 entry = bfd_get_start_address (loadfile_bfd);
2004 ui_out_text (uiout, "Start address ");
2005 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2006 ui_out_text (uiout, ", load size ");
2007 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2008 ui_out_text (uiout, "\n");
2009 /* We were doing this in remote-mips.c, I suspect it is right
2010 for other targets too. */
2011 regcache_write_pc (get_current_regcache (), entry);
2012
2013 /* Reset breakpoints, now that we have changed the load image. For
2014 instance, breakpoints may have been set (or reset, by
2015 post_create_inferior) while connected to the target but before we
2016 loaded the program. In that case, the prologue analyzer could
2017 have read instructions from the target to find the right
2018 breakpoint locations. Loading has changed the contents of that
2019 memory. */
2020
2021 breakpoint_re_set ();
2022
2023 /* FIXME: are we supposed to call symbol_file_add or not? According
2024 to a comment from remote-mips.c (where a call to symbol_file_add
2025 was commented out), making the call confuses GDB if more than one
2026 file is loaded in. Some targets do (e.g., remote-vx.c) but
2027 others don't (or didn't - perhaps they have all been deleted). */
2028
2029 print_transfer_performance (gdb_stdout, total_progress.data_count,
2030 total_progress.write_count,
2031 &start_time, &end_time);
2032
2033 do_cleanups (old_cleanups);
2034 }
2035
2036 /* Report how fast the transfer went. */
2037
2038 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2039 replaced by print_transfer_performance (with a very different
2040 function signature). */
2041
2042 void
2043 report_transfer_performance (unsigned long data_count, time_t start_time,
2044 time_t end_time)
2045 {
2046 struct timeval start, end;
2047
2048 start.tv_sec = start_time;
2049 start.tv_usec = 0;
2050 end.tv_sec = end_time;
2051 end.tv_usec = 0;
2052
2053 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2054 }
2055
2056 void
2057 print_transfer_performance (struct ui_file *stream,
2058 unsigned long data_count,
2059 unsigned long write_count,
2060 const struct timeval *start_time,
2061 const struct timeval *end_time)
2062 {
2063 ULONGEST time_count;
2064
2065 /* Compute the elapsed time in milliseconds, as a tradeoff between
2066 accuracy and overflow. */
2067 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2068 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2069
2070 ui_out_text (uiout, "Transfer rate: ");
2071 if (time_count > 0)
2072 {
2073 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2074
2075 if (ui_out_is_mi_like_p (uiout))
2076 {
2077 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2078 ui_out_text (uiout, " bits/sec");
2079 }
2080 else if (rate < 1024)
2081 {
2082 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2083 ui_out_text (uiout, " bytes/sec");
2084 }
2085 else
2086 {
2087 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2088 ui_out_text (uiout, " KB/sec");
2089 }
2090 }
2091 else
2092 {
2093 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2094 ui_out_text (uiout, " bits in <1 sec");
2095 }
2096 if (write_count > 0)
2097 {
2098 ui_out_text (uiout, ", ");
2099 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2100 ui_out_text (uiout, " bytes/write");
2101 }
2102 ui_out_text (uiout, ".\n");
2103 }
2104
2105 /* This function allows the addition of incrementally linked object files.
2106 It does not modify any state in the target, only in the debugger. */
2107 /* Note: ezannoni 2000-04-13 This function/command used to have a
2108 special case syntax for the rombug target (Rombug is the boot
2109 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2110 rombug case, the user doesn't need to supply a text address,
2111 instead a call to target_link() (in target.c) would supply the
2112 value to use. We are now discontinuing this type of ad hoc syntax. */
2113
2114 static void
2115 add_symbol_file_command (char *args, int from_tty)
2116 {
2117 struct gdbarch *gdbarch = get_current_arch ();
2118 char *filename = NULL;
2119 int flags = OBJF_USERLOADED;
2120 char *arg;
2121 int section_index = 0;
2122 int argcnt = 0;
2123 int sec_num = 0;
2124 int i;
2125 int expecting_sec_name = 0;
2126 int expecting_sec_addr = 0;
2127 char **argv;
2128
2129 struct sect_opt
2130 {
2131 char *name;
2132 char *value;
2133 };
2134
2135 struct section_addr_info *section_addrs;
2136 struct sect_opt *sect_opts = NULL;
2137 size_t num_sect_opts = 0;
2138 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2139
2140 num_sect_opts = 16;
2141 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2142 * sizeof (struct sect_opt));
2143
2144 dont_repeat ();
2145
2146 if (args == NULL)
2147 error (_("add-symbol-file takes a file name and an address"));
2148
2149 argv = gdb_buildargv (args);
2150 make_cleanup_freeargv (argv);
2151
2152 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2153 {
2154 /* Process the argument. */
2155 if (argcnt == 0)
2156 {
2157 /* The first argument is the file name. */
2158 filename = tilde_expand (arg);
2159 make_cleanup (xfree, filename);
2160 }
2161 else
2162 if (argcnt == 1)
2163 {
2164 /* The second argument is always the text address at which
2165 to load the program. */
2166 sect_opts[section_index].name = ".text";
2167 sect_opts[section_index].value = arg;
2168 if (++section_index >= num_sect_opts)
2169 {
2170 num_sect_opts *= 2;
2171 sect_opts = ((struct sect_opt *)
2172 xrealloc (sect_opts,
2173 num_sect_opts
2174 * sizeof (struct sect_opt)));
2175 }
2176 }
2177 else
2178 {
2179 /* It's an option (starting with '-') or it's an argument
2180 to an option */
2181
2182 if (*arg == '-')
2183 {
2184 if (strcmp (arg, "-readnow") == 0)
2185 flags |= OBJF_READNOW;
2186 else if (strcmp (arg, "-s") == 0)
2187 {
2188 expecting_sec_name = 1;
2189 expecting_sec_addr = 1;
2190 }
2191 }
2192 else
2193 {
2194 if (expecting_sec_name)
2195 {
2196 sect_opts[section_index].name = arg;
2197 expecting_sec_name = 0;
2198 }
2199 else
2200 if (expecting_sec_addr)
2201 {
2202 sect_opts[section_index].value = arg;
2203 expecting_sec_addr = 0;
2204 if (++section_index >= num_sect_opts)
2205 {
2206 num_sect_opts *= 2;
2207 sect_opts = ((struct sect_opt *)
2208 xrealloc (sect_opts,
2209 num_sect_opts
2210 * sizeof (struct sect_opt)));
2211 }
2212 }
2213 else
2214 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2215 }
2216 }
2217 }
2218
2219 /* This command takes at least two arguments. The first one is a
2220 filename, and the second is the address where this file has been
2221 loaded. Abort now if this address hasn't been provided by the
2222 user. */
2223 if (section_index < 1)
2224 error (_("The address where %s has been loaded is missing"), filename);
2225
2226 /* Print the prompt for the query below. And save the arguments into
2227 a sect_addr_info structure to be passed around to other
2228 functions. We have to split this up into separate print
2229 statements because hex_string returns a local static
2230 string. */
2231
2232 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2233 section_addrs = alloc_section_addr_info (section_index);
2234 make_cleanup (xfree, section_addrs);
2235 for (i = 0; i < section_index; i++)
2236 {
2237 CORE_ADDR addr;
2238 char *val = sect_opts[i].value;
2239 char *sec = sect_opts[i].name;
2240
2241 addr = parse_and_eval_address (val);
2242
2243 /* Here we store the section offsets in the order they were
2244 entered on the command line. */
2245 section_addrs->other[sec_num].name = sec;
2246 section_addrs->other[sec_num].addr = addr;
2247 printf_unfiltered ("\t%s_addr = %s\n", sec,
2248 paddress (gdbarch, addr));
2249 sec_num++;
2250
2251 /* The object's sections are initialized when a
2252 call is made to build_objfile_section_table (objfile).
2253 This happens in reread_symbols.
2254 At this point, we don't know what file type this is,
2255 so we can't determine what section names are valid. */
2256 }
2257
2258 if (from_tty && (!query ("%s", "")))
2259 error (_("Not confirmed."));
2260
2261 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2262 section_addrs, flags);
2263
2264 /* Getting new symbols may change our opinion about what is
2265 frameless. */
2266 reinit_frame_cache ();
2267 do_cleanups (my_cleanups);
2268 }
2269 \f
2270
2271 /* Re-read symbols if a symbol-file has changed. */
2272 void
2273 reread_symbols (void)
2274 {
2275 struct objfile *objfile;
2276 long new_modtime;
2277 int reread_one = 0;
2278 struct stat new_statbuf;
2279 int res;
2280
2281 /* With the addition of shared libraries, this should be modified,
2282 the load time should be saved in the partial symbol tables, since
2283 different tables may come from different source files. FIXME.
2284 This routine should then walk down each partial symbol table
2285 and see if the symbol table that it originates from has been changed */
2286
2287 for (objfile = object_files; objfile; objfile = objfile->next)
2288 {
2289 /* solib-sunos.c creates one objfile with obfd. */
2290 if (objfile->obfd == NULL)
2291 continue;
2292
2293 /* Separate debug objfiles are handled in the main objfile. */
2294 if (objfile->separate_debug_objfile_backlink)
2295 continue;
2296
2297 /* If this object is from an archive (what you usually create with
2298 `ar', often called a `static library' on most systems, though
2299 a `shared library' on AIX is also an archive), then you should
2300 stat on the archive name, not member name. */
2301 if (objfile->obfd->my_archive)
2302 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2303 else
2304 res = stat (objfile->name, &new_statbuf);
2305 if (res != 0)
2306 {
2307 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2308 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2309 objfile->name);
2310 continue;
2311 }
2312 new_modtime = new_statbuf.st_mtime;
2313 if (new_modtime != objfile->mtime)
2314 {
2315 struct cleanup *old_cleanups;
2316 struct section_offsets *offsets;
2317 int num_offsets;
2318 char *obfd_filename;
2319
2320 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2321 objfile->name);
2322
2323 /* There are various functions like symbol_file_add,
2324 symfile_bfd_open, syms_from_objfile, etc., which might
2325 appear to do what we want. But they have various other
2326 effects which we *don't* want. So we just do stuff
2327 ourselves. We don't worry about mapped files (for one thing,
2328 any mapped file will be out of date). */
2329
2330 /* If we get an error, blow away this objfile (not sure if
2331 that is the correct response for things like shared
2332 libraries). */
2333 old_cleanups = make_cleanup_free_objfile (objfile);
2334 /* We need to do this whenever any symbols go away. */
2335 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2336
2337 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2338 bfd_get_filename (exec_bfd)) == 0)
2339 {
2340 /* Reload EXEC_BFD without asking anything. */
2341
2342 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2343 }
2344
2345 /* Clean up any state BFD has sitting around. We don't need
2346 to close the descriptor but BFD lacks a way of closing the
2347 BFD without closing the descriptor. */
2348 obfd_filename = bfd_get_filename (objfile->obfd);
2349 if (!bfd_close (objfile->obfd))
2350 error (_("Can't close BFD for %s: %s"), objfile->name,
2351 bfd_errmsg (bfd_get_error ()));
2352 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2353 if (objfile->obfd == NULL)
2354 error (_("Can't open %s to read symbols."), objfile->name);
2355 else
2356 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2357 /* bfd_openr sets cacheable to true, which is what we want. */
2358 if (!bfd_check_format (objfile->obfd, bfd_object))
2359 error (_("Can't read symbols from %s: %s."), objfile->name,
2360 bfd_errmsg (bfd_get_error ()));
2361
2362 /* Save the offsets, we will nuke them with the rest of the
2363 objfile_obstack. */
2364 num_offsets = objfile->num_sections;
2365 offsets = ((struct section_offsets *)
2366 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2367 memcpy (offsets, objfile->section_offsets,
2368 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2369
2370 /* Remove any references to this objfile in the global
2371 value lists. */
2372 preserve_values (objfile);
2373
2374 /* Nuke all the state that we will re-read. Much of the following
2375 code which sets things to NULL really is necessary to tell
2376 other parts of GDB that there is nothing currently there.
2377
2378 Try to keep the freeing order compatible with free_objfile. */
2379
2380 if (objfile->sf != NULL)
2381 {
2382 (*objfile->sf->sym_finish) (objfile);
2383 }
2384
2385 clear_objfile_data (objfile);
2386
2387 /* Free the separate debug objfiles. It will be
2388 automatically recreated by sym_read. */
2389 free_objfile_separate_debug (objfile);
2390
2391 /* FIXME: Do we have to free a whole linked list, or is this
2392 enough? */
2393 if (objfile->global_psymbols.list)
2394 xfree (objfile->global_psymbols.list);
2395 memset (&objfile->global_psymbols, 0,
2396 sizeof (objfile->global_psymbols));
2397 if (objfile->static_psymbols.list)
2398 xfree (objfile->static_psymbols.list);
2399 memset (&objfile->static_psymbols, 0,
2400 sizeof (objfile->static_psymbols));
2401
2402 /* Free the obstacks for non-reusable objfiles */
2403 bcache_xfree (objfile->psymbol_cache);
2404 objfile->psymbol_cache = bcache_xmalloc ();
2405 bcache_xfree (objfile->macro_cache);
2406 objfile->macro_cache = bcache_xmalloc ();
2407 bcache_xfree (objfile->filename_cache);
2408 objfile->filename_cache = bcache_xmalloc ();
2409 if (objfile->demangled_names_hash != NULL)
2410 {
2411 htab_delete (objfile->demangled_names_hash);
2412 objfile->demangled_names_hash = NULL;
2413 }
2414 obstack_free (&objfile->objfile_obstack, 0);
2415 objfile->sections = NULL;
2416 objfile->symtabs = NULL;
2417 objfile->psymtabs = NULL;
2418 objfile->psymtabs_addrmap = NULL;
2419 objfile->free_psymtabs = NULL;
2420 objfile->cp_namespace_symtab = NULL;
2421 objfile->msymbols = NULL;
2422 objfile->deprecated_sym_private = NULL;
2423 objfile->minimal_symbol_count = 0;
2424 memset (&objfile->msymbol_hash, 0,
2425 sizeof (objfile->msymbol_hash));
2426 memset (&objfile->msymbol_demangled_hash, 0,
2427 sizeof (objfile->msymbol_demangled_hash));
2428
2429 objfile->psymbol_cache = bcache_xmalloc ();
2430 objfile->macro_cache = bcache_xmalloc ();
2431 objfile->filename_cache = bcache_xmalloc ();
2432 /* obstack_init also initializes the obstack so it is
2433 empty. We could use obstack_specify_allocation but
2434 gdb_obstack.h specifies the alloc/dealloc
2435 functions. */
2436 obstack_init (&objfile->objfile_obstack);
2437 if (build_objfile_section_table (objfile))
2438 {
2439 error (_("Can't find the file sections in `%s': %s"),
2440 objfile->name, bfd_errmsg (bfd_get_error ()));
2441 }
2442 terminate_minimal_symbol_table (objfile);
2443
2444 /* We use the same section offsets as from last time. I'm not
2445 sure whether that is always correct for shared libraries. */
2446 objfile->section_offsets = (struct section_offsets *)
2447 obstack_alloc (&objfile->objfile_obstack,
2448 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2449 memcpy (objfile->section_offsets, offsets,
2450 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2451 objfile->num_sections = num_offsets;
2452
2453 /* What the hell is sym_new_init for, anyway? The concept of
2454 distinguishing between the main file and additional files
2455 in this way seems rather dubious. */
2456 if (objfile == symfile_objfile)
2457 {
2458 (*objfile->sf->sym_new_init) (objfile);
2459 }
2460
2461 (*objfile->sf->sym_init) (objfile);
2462 clear_complaints (&symfile_complaints, 1, 1);
2463 /* Do not set flags as this is safe and we don't want to be
2464 verbose. */
2465 (*objfile->sf->sym_read) (objfile, 0);
2466 if (!objfile_has_symbols (objfile))
2467 {
2468 wrap_here ("");
2469 printf_unfiltered (_("(no debugging symbols found)\n"));
2470 wrap_here ("");
2471 }
2472
2473 /* We're done reading the symbol file; finish off complaints. */
2474 clear_complaints (&symfile_complaints, 0, 1);
2475
2476 /* Getting new symbols may change our opinion about what is
2477 frameless. */
2478
2479 reinit_frame_cache ();
2480
2481 /* Discard cleanups as symbol reading was successful. */
2482 discard_cleanups (old_cleanups);
2483
2484 /* If the mtime has changed between the time we set new_modtime
2485 and now, we *want* this to be out of date, so don't call stat
2486 again now. */
2487 objfile->mtime = new_modtime;
2488 reread_one = 1;
2489 init_entry_point_info (objfile);
2490 }
2491 }
2492
2493 if (reread_one)
2494 {
2495 /* Notify objfiles that we've modified objfile sections. */
2496 objfiles_changed ();
2497
2498 clear_symtab_users ();
2499 /* At least one objfile has changed, so we can consider that
2500 the executable we're debugging has changed too. */
2501 observer_notify_executable_changed ();
2502 }
2503 }
2504 \f
2505
2506
2507 typedef struct
2508 {
2509 char *ext;
2510 enum language lang;
2511 }
2512 filename_language;
2513
2514 static filename_language *filename_language_table;
2515 static int fl_table_size, fl_table_next;
2516
2517 static void
2518 add_filename_language (char *ext, enum language lang)
2519 {
2520 if (fl_table_next >= fl_table_size)
2521 {
2522 fl_table_size += 10;
2523 filename_language_table =
2524 xrealloc (filename_language_table,
2525 fl_table_size * sizeof (*filename_language_table));
2526 }
2527
2528 filename_language_table[fl_table_next].ext = xstrdup (ext);
2529 filename_language_table[fl_table_next].lang = lang;
2530 fl_table_next++;
2531 }
2532
2533 static char *ext_args;
2534 static void
2535 show_ext_args (struct ui_file *file, int from_tty,
2536 struct cmd_list_element *c, const char *value)
2537 {
2538 fprintf_filtered (file, _("\
2539 Mapping between filename extension and source language is \"%s\".\n"),
2540 value);
2541 }
2542
2543 static void
2544 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2545 {
2546 int i;
2547 char *cp = ext_args;
2548 enum language lang;
2549
2550 /* First arg is filename extension, starting with '.' */
2551 if (*cp != '.')
2552 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2553
2554 /* Find end of first arg. */
2555 while (*cp && !isspace (*cp))
2556 cp++;
2557
2558 if (*cp == '\0')
2559 error (_("'%s': two arguments required -- filename extension and language"),
2560 ext_args);
2561
2562 /* Null-terminate first arg */
2563 *cp++ = '\0';
2564
2565 /* Find beginning of second arg, which should be a source language. */
2566 while (*cp && isspace (*cp))
2567 cp++;
2568
2569 if (*cp == '\0')
2570 error (_("'%s': two arguments required -- filename extension and language"),
2571 ext_args);
2572
2573 /* Lookup the language from among those we know. */
2574 lang = language_enum (cp);
2575
2576 /* Now lookup the filename extension: do we already know it? */
2577 for (i = 0; i < fl_table_next; i++)
2578 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2579 break;
2580
2581 if (i >= fl_table_next)
2582 {
2583 /* new file extension */
2584 add_filename_language (ext_args, lang);
2585 }
2586 else
2587 {
2588 /* redefining a previously known filename extension */
2589
2590 /* if (from_tty) */
2591 /* query ("Really make files of type %s '%s'?", */
2592 /* ext_args, language_str (lang)); */
2593
2594 xfree (filename_language_table[i].ext);
2595 filename_language_table[i].ext = xstrdup (ext_args);
2596 filename_language_table[i].lang = lang;
2597 }
2598 }
2599
2600 static void
2601 info_ext_lang_command (char *args, int from_tty)
2602 {
2603 int i;
2604
2605 printf_filtered (_("Filename extensions and the languages they represent:"));
2606 printf_filtered ("\n\n");
2607 for (i = 0; i < fl_table_next; i++)
2608 printf_filtered ("\t%s\t- %s\n",
2609 filename_language_table[i].ext,
2610 language_str (filename_language_table[i].lang));
2611 }
2612
2613 static void
2614 init_filename_language_table (void)
2615 {
2616 if (fl_table_size == 0) /* protect against repetition */
2617 {
2618 fl_table_size = 20;
2619 fl_table_next = 0;
2620 filename_language_table =
2621 xmalloc (fl_table_size * sizeof (*filename_language_table));
2622 add_filename_language (".c", language_c);
2623 add_filename_language (".d", language_d);
2624 add_filename_language (".C", language_cplus);
2625 add_filename_language (".cc", language_cplus);
2626 add_filename_language (".cp", language_cplus);
2627 add_filename_language (".cpp", language_cplus);
2628 add_filename_language (".cxx", language_cplus);
2629 add_filename_language (".c++", language_cplus);
2630 add_filename_language (".java", language_java);
2631 add_filename_language (".class", language_java);
2632 add_filename_language (".m", language_objc);
2633 add_filename_language (".f", language_fortran);
2634 add_filename_language (".F", language_fortran);
2635 add_filename_language (".s", language_asm);
2636 add_filename_language (".sx", language_asm);
2637 add_filename_language (".S", language_asm);
2638 add_filename_language (".pas", language_pascal);
2639 add_filename_language (".p", language_pascal);
2640 add_filename_language (".pp", language_pascal);
2641 add_filename_language (".adb", language_ada);
2642 add_filename_language (".ads", language_ada);
2643 add_filename_language (".a", language_ada);
2644 add_filename_language (".ada", language_ada);
2645 add_filename_language (".dg", language_ada);
2646 }
2647 }
2648
2649 enum language
2650 deduce_language_from_filename (char *filename)
2651 {
2652 int i;
2653 char *cp;
2654
2655 if (filename != NULL)
2656 if ((cp = strrchr (filename, '.')) != NULL)
2657 for (i = 0; i < fl_table_next; i++)
2658 if (strcmp (cp, filename_language_table[i].ext) == 0)
2659 return filename_language_table[i].lang;
2660
2661 return language_unknown;
2662 }
2663 \f
2664 /* allocate_symtab:
2665
2666 Allocate and partly initialize a new symbol table. Return a pointer
2667 to it. error() if no space.
2668
2669 Caller must set these fields:
2670 LINETABLE(symtab)
2671 symtab->blockvector
2672 symtab->dirname
2673 symtab->free_code
2674 symtab->free_ptr
2675 */
2676
2677 struct symtab *
2678 allocate_symtab (char *filename, struct objfile *objfile)
2679 {
2680 struct symtab *symtab;
2681
2682 symtab = (struct symtab *)
2683 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2684 memset (symtab, 0, sizeof (*symtab));
2685 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2686 objfile->filename_cache);
2687 symtab->fullname = NULL;
2688 symtab->language = deduce_language_from_filename (filename);
2689 symtab->debugformat = "unknown";
2690
2691 /* Hook it to the objfile it comes from */
2692
2693 symtab->objfile = objfile;
2694 symtab->next = objfile->symtabs;
2695 objfile->symtabs = symtab;
2696
2697 return (symtab);
2698 }
2699 \f
2700
2701 /* Reset all data structures in gdb which may contain references to symbol
2702 table data. */
2703
2704 void
2705 clear_symtab_users (void)
2706 {
2707 /* Someday, we should do better than this, by only blowing away
2708 the things that really need to be blown. */
2709
2710 /* Clear the "current" symtab first, because it is no longer valid.
2711 breakpoint_re_set may try to access the current symtab. */
2712 clear_current_source_symtab_and_line ();
2713
2714 clear_displays ();
2715 breakpoint_re_set ();
2716 set_default_breakpoint (0, NULL, 0, 0, 0);
2717 clear_pc_function_cache ();
2718 observer_notify_new_objfile (NULL);
2719
2720 /* Clear globals which might have pointed into a removed objfile.
2721 FIXME: It's not clear which of these are supposed to persist
2722 between expressions and which ought to be reset each time. */
2723 expression_context_block = NULL;
2724 innermost_block = NULL;
2725
2726 /* Varobj may refer to old symbols, perform a cleanup. */
2727 varobj_invalidate ();
2728
2729 }
2730
2731 static void
2732 clear_symtab_users_cleanup (void *ignore)
2733 {
2734 clear_symtab_users ();
2735 }
2736 \f
2737 /* OVERLAYS:
2738 The following code implements an abstraction for debugging overlay sections.
2739
2740 The target model is as follows:
2741 1) The gnu linker will permit multiple sections to be mapped into the
2742 same VMA, each with its own unique LMA (or load address).
2743 2) It is assumed that some runtime mechanism exists for mapping the
2744 sections, one by one, from the load address into the VMA address.
2745 3) This code provides a mechanism for gdb to keep track of which
2746 sections should be considered to be mapped from the VMA to the LMA.
2747 This information is used for symbol lookup, and memory read/write.
2748 For instance, if a section has been mapped then its contents
2749 should be read from the VMA, otherwise from the LMA.
2750
2751 Two levels of debugger support for overlays are available. One is
2752 "manual", in which the debugger relies on the user to tell it which
2753 overlays are currently mapped. This level of support is
2754 implemented entirely in the core debugger, and the information about
2755 whether a section is mapped is kept in the objfile->obj_section table.
2756
2757 The second level of support is "automatic", and is only available if
2758 the target-specific code provides functionality to read the target's
2759 overlay mapping table, and translate its contents for the debugger
2760 (by updating the mapped state information in the obj_section tables).
2761
2762 The interface is as follows:
2763 User commands:
2764 overlay map <name> -- tell gdb to consider this section mapped
2765 overlay unmap <name> -- tell gdb to consider this section unmapped
2766 overlay list -- list the sections that GDB thinks are mapped
2767 overlay read-target -- get the target's state of what's mapped
2768 overlay off/manual/auto -- set overlay debugging state
2769 Functional interface:
2770 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2771 section, return that section.
2772 find_pc_overlay(pc): find any overlay section that contains
2773 the pc, either in its VMA or its LMA
2774 section_is_mapped(sect): true if overlay is marked as mapped
2775 section_is_overlay(sect): true if section's VMA != LMA
2776 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2777 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2778 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2779 overlay_mapped_address(...): map an address from section's LMA to VMA
2780 overlay_unmapped_address(...): map an address from section's VMA to LMA
2781 symbol_overlayed_address(...): Return a "current" address for symbol:
2782 either in VMA or LMA depending on whether
2783 the symbol's section is currently mapped
2784 */
2785
2786 /* Overlay debugging state: */
2787
2788 enum overlay_debugging_state overlay_debugging = ovly_off;
2789 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2790
2791 /* Function: section_is_overlay (SECTION)
2792 Returns true if SECTION has VMA not equal to LMA, ie.
2793 SECTION is loaded at an address different from where it will "run". */
2794
2795 int
2796 section_is_overlay (struct obj_section *section)
2797 {
2798 if (overlay_debugging && section)
2799 {
2800 bfd *abfd = section->objfile->obfd;
2801 asection *bfd_section = section->the_bfd_section;
2802
2803 if (bfd_section_lma (abfd, bfd_section) != 0
2804 && bfd_section_lma (abfd, bfd_section)
2805 != bfd_section_vma (abfd, bfd_section))
2806 return 1;
2807 }
2808
2809 return 0;
2810 }
2811
2812 /* Function: overlay_invalidate_all (void)
2813 Invalidate the mapped state of all overlay sections (mark it as stale). */
2814
2815 static void
2816 overlay_invalidate_all (void)
2817 {
2818 struct objfile *objfile;
2819 struct obj_section *sect;
2820
2821 ALL_OBJSECTIONS (objfile, sect)
2822 if (section_is_overlay (sect))
2823 sect->ovly_mapped = -1;
2824 }
2825
2826 /* Function: section_is_mapped (SECTION)
2827 Returns true if section is an overlay, and is currently mapped.
2828
2829 Access to the ovly_mapped flag is restricted to this function, so
2830 that we can do automatic update. If the global flag
2831 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2832 overlay_invalidate_all. If the mapped state of the particular
2833 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2834
2835 int
2836 section_is_mapped (struct obj_section *osect)
2837 {
2838 struct gdbarch *gdbarch;
2839
2840 if (osect == 0 || !section_is_overlay (osect))
2841 return 0;
2842
2843 switch (overlay_debugging)
2844 {
2845 default:
2846 case ovly_off:
2847 return 0; /* overlay debugging off */
2848 case ovly_auto: /* overlay debugging automatic */
2849 /* Unles there is a gdbarch_overlay_update function,
2850 there's really nothing useful to do here (can't really go auto) */
2851 gdbarch = get_objfile_arch (osect->objfile);
2852 if (gdbarch_overlay_update_p (gdbarch))
2853 {
2854 if (overlay_cache_invalid)
2855 {
2856 overlay_invalidate_all ();
2857 overlay_cache_invalid = 0;
2858 }
2859 if (osect->ovly_mapped == -1)
2860 gdbarch_overlay_update (gdbarch, osect);
2861 }
2862 /* fall thru to manual case */
2863 case ovly_on: /* overlay debugging manual */
2864 return osect->ovly_mapped == 1;
2865 }
2866 }
2867
2868 /* Function: pc_in_unmapped_range
2869 If PC falls into the lma range of SECTION, return true, else false. */
2870
2871 CORE_ADDR
2872 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2873 {
2874 if (section_is_overlay (section))
2875 {
2876 bfd *abfd = section->objfile->obfd;
2877 asection *bfd_section = section->the_bfd_section;
2878
2879 /* We assume the LMA is relocated by the same offset as the VMA. */
2880 bfd_vma size = bfd_get_section_size (bfd_section);
2881 CORE_ADDR offset = obj_section_offset (section);
2882
2883 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2884 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2885 return 1;
2886 }
2887
2888 return 0;
2889 }
2890
2891 /* Function: pc_in_mapped_range
2892 If PC falls into the vma range of SECTION, return true, else false. */
2893
2894 CORE_ADDR
2895 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2896 {
2897 if (section_is_overlay (section))
2898 {
2899 if (obj_section_addr (section) <= pc
2900 && pc < obj_section_endaddr (section))
2901 return 1;
2902 }
2903
2904 return 0;
2905 }
2906
2907
2908 /* Return true if the mapped ranges of sections A and B overlap, false
2909 otherwise. */
2910 static int
2911 sections_overlap (struct obj_section *a, struct obj_section *b)
2912 {
2913 CORE_ADDR a_start = obj_section_addr (a);
2914 CORE_ADDR a_end = obj_section_endaddr (a);
2915 CORE_ADDR b_start = obj_section_addr (b);
2916 CORE_ADDR b_end = obj_section_endaddr (b);
2917
2918 return (a_start < b_end && b_start < a_end);
2919 }
2920
2921 /* Function: overlay_unmapped_address (PC, SECTION)
2922 Returns the address corresponding to PC in the unmapped (load) range.
2923 May be the same as PC. */
2924
2925 CORE_ADDR
2926 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2927 {
2928 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2929 {
2930 bfd *abfd = section->objfile->obfd;
2931 asection *bfd_section = section->the_bfd_section;
2932
2933 return pc + bfd_section_lma (abfd, bfd_section)
2934 - bfd_section_vma (abfd, bfd_section);
2935 }
2936
2937 return pc;
2938 }
2939
2940 /* Function: overlay_mapped_address (PC, SECTION)
2941 Returns the address corresponding to PC in the mapped (runtime) range.
2942 May be the same as PC. */
2943
2944 CORE_ADDR
2945 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2946 {
2947 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2948 {
2949 bfd *abfd = section->objfile->obfd;
2950 asection *bfd_section = section->the_bfd_section;
2951
2952 return pc + bfd_section_vma (abfd, bfd_section)
2953 - bfd_section_lma (abfd, bfd_section);
2954 }
2955
2956 return pc;
2957 }
2958
2959
2960 /* Function: symbol_overlayed_address
2961 Return one of two addresses (relative to the VMA or to the LMA),
2962 depending on whether the section is mapped or not. */
2963
2964 CORE_ADDR
2965 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
2966 {
2967 if (overlay_debugging)
2968 {
2969 /* If the symbol has no section, just return its regular address. */
2970 if (section == 0)
2971 return address;
2972 /* If the symbol's section is not an overlay, just return its address */
2973 if (!section_is_overlay (section))
2974 return address;
2975 /* If the symbol's section is mapped, just return its address */
2976 if (section_is_mapped (section))
2977 return address;
2978 /*
2979 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2980 * then return its LOADED address rather than its vma address!!
2981 */
2982 return overlay_unmapped_address (address, section);
2983 }
2984 return address;
2985 }
2986
2987 /* Function: find_pc_overlay (PC)
2988 Return the best-match overlay section for PC:
2989 If PC matches a mapped overlay section's VMA, return that section.
2990 Else if PC matches an unmapped section's VMA, return that section.
2991 Else if PC matches an unmapped section's LMA, return that section. */
2992
2993 struct obj_section *
2994 find_pc_overlay (CORE_ADDR pc)
2995 {
2996 struct objfile *objfile;
2997 struct obj_section *osect, *best_match = NULL;
2998
2999 if (overlay_debugging)
3000 ALL_OBJSECTIONS (objfile, osect)
3001 if (section_is_overlay (osect))
3002 {
3003 if (pc_in_mapped_range (pc, osect))
3004 {
3005 if (section_is_mapped (osect))
3006 return osect;
3007 else
3008 best_match = osect;
3009 }
3010 else if (pc_in_unmapped_range (pc, osect))
3011 best_match = osect;
3012 }
3013 return best_match;
3014 }
3015
3016 /* Function: find_pc_mapped_section (PC)
3017 If PC falls into the VMA address range of an overlay section that is
3018 currently marked as MAPPED, return that section. Else return NULL. */
3019
3020 struct obj_section *
3021 find_pc_mapped_section (CORE_ADDR pc)
3022 {
3023 struct objfile *objfile;
3024 struct obj_section *osect;
3025
3026 if (overlay_debugging)
3027 ALL_OBJSECTIONS (objfile, osect)
3028 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3029 return osect;
3030
3031 return NULL;
3032 }
3033
3034 /* Function: list_overlays_command
3035 Print a list of mapped sections and their PC ranges */
3036
3037 void
3038 list_overlays_command (char *args, int from_tty)
3039 {
3040 int nmapped = 0;
3041 struct objfile *objfile;
3042 struct obj_section *osect;
3043
3044 if (overlay_debugging)
3045 ALL_OBJSECTIONS (objfile, osect)
3046 if (section_is_mapped (osect))
3047 {
3048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3049 const char *name;
3050 bfd_vma lma, vma;
3051 int size;
3052
3053 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3054 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3055 size = bfd_get_section_size (osect->the_bfd_section);
3056 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3057
3058 printf_filtered ("Section %s, loaded at ", name);
3059 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3060 puts_filtered (" - ");
3061 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3062 printf_filtered (", mapped at ");
3063 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3064 puts_filtered (" - ");
3065 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3066 puts_filtered ("\n");
3067
3068 nmapped++;
3069 }
3070 if (nmapped == 0)
3071 printf_filtered (_("No sections are mapped.\n"));
3072 }
3073
3074 /* Function: map_overlay_command
3075 Mark the named section as mapped (ie. residing at its VMA address). */
3076
3077 void
3078 map_overlay_command (char *args, int from_tty)
3079 {
3080 struct objfile *objfile, *objfile2;
3081 struct obj_section *sec, *sec2;
3082
3083 if (!overlay_debugging)
3084 error (_("\
3085 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3086 the 'overlay manual' command."));
3087
3088 if (args == 0 || *args == 0)
3089 error (_("Argument required: name of an overlay section"));
3090
3091 /* First, find a section matching the user supplied argument */
3092 ALL_OBJSECTIONS (objfile, sec)
3093 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3094 {
3095 /* Now, check to see if the section is an overlay. */
3096 if (!section_is_overlay (sec))
3097 continue; /* not an overlay section */
3098
3099 /* Mark the overlay as "mapped" */
3100 sec->ovly_mapped = 1;
3101
3102 /* Next, make a pass and unmap any sections that are
3103 overlapped by this new section: */
3104 ALL_OBJSECTIONS (objfile2, sec2)
3105 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3106 {
3107 if (info_verbose)
3108 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3109 bfd_section_name (objfile->obfd,
3110 sec2->the_bfd_section));
3111 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3112 }
3113 return;
3114 }
3115 error (_("No overlay section called %s"), args);
3116 }
3117
3118 /* Function: unmap_overlay_command
3119 Mark the overlay section as unmapped
3120 (ie. resident in its LMA address range, rather than the VMA range). */
3121
3122 void
3123 unmap_overlay_command (char *args, int from_tty)
3124 {
3125 struct objfile *objfile;
3126 struct obj_section *sec;
3127
3128 if (!overlay_debugging)
3129 error (_("\
3130 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3131 the 'overlay manual' command."));
3132
3133 if (args == 0 || *args == 0)
3134 error (_("Argument required: name of an overlay section"));
3135
3136 /* First, find a section matching the user supplied argument */
3137 ALL_OBJSECTIONS (objfile, sec)
3138 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3139 {
3140 if (!sec->ovly_mapped)
3141 error (_("Section %s is not mapped"), args);
3142 sec->ovly_mapped = 0;
3143 return;
3144 }
3145 error (_("No overlay section called %s"), args);
3146 }
3147
3148 /* Function: overlay_auto_command
3149 A utility command to turn on overlay debugging.
3150 Possibly this should be done via a set/show command. */
3151
3152 static void
3153 overlay_auto_command (char *args, int from_tty)
3154 {
3155 overlay_debugging = ovly_auto;
3156 enable_overlay_breakpoints ();
3157 if (info_verbose)
3158 printf_unfiltered (_("Automatic overlay debugging enabled."));
3159 }
3160
3161 /* Function: overlay_manual_command
3162 A utility command to turn on overlay debugging.
3163 Possibly this should be done via a set/show command. */
3164
3165 static void
3166 overlay_manual_command (char *args, int from_tty)
3167 {
3168 overlay_debugging = ovly_on;
3169 disable_overlay_breakpoints ();
3170 if (info_verbose)
3171 printf_unfiltered (_("Overlay debugging enabled."));
3172 }
3173
3174 /* Function: overlay_off_command
3175 A utility command to turn on overlay debugging.
3176 Possibly this should be done via a set/show command. */
3177
3178 static void
3179 overlay_off_command (char *args, int from_tty)
3180 {
3181 overlay_debugging = ovly_off;
3182 disable_overlay_breakpoints ();
3183 if (info_verbose)
3184 printf_unfiltered (_("Overlay debugging disabled."));
3185 }
3186
3187 static void
3188 overlay_load_command (char *args, int from_tty)
3189 {
3190 struct gdbarch *gdbarch = get_current_arch ();
3191
3192 if (gdbarch_overlay_update_p (gdbarch))
3193 gdbarch_overlay_update (gdbarch, NULL);
3194 else
3195 error (_("This target does not know how to read its overlay state."));
3196 }
3197
3198 /* Function: overlay_command
3199 A place-holder for a mis-typed command */
3200
3201 /* Command list chain containing all defined "overlay" subcommands. */
3202 struct cmd_list_element *overlaylist;
3203
3204 static void
3205 overlay_command (char *args, int from_tty)
3206 {
3207 printf_unfiltered
3208 ("\"overlay\" must be followed by the name of an overlay command.\n");
3209 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3210 }
3211
3212
3213 /* Target Overlays for the "Simplest" overlay manager:
3214
3215 This is GDB's default target overlay layer. It works with the
3216 minimal overlay manager supplied as an example by Cygnus. The
3217 entry point is via a function pointer "gdbarch_overlay_update",
3218 so targets that use a different runtime overlay manager can
3219 substitute their own overlay_update function and take over the
3220 function pointer.
3221
3222 The overlay_update function pokes around in the target's data structures
3223 to see what overlays are mapped, and updates GDB's overlay mapping with
3224 this information.
3225
3226 In this simple implementation, the target data structures are as follows:
3227 unsigned _novlys; /# number of overlay sections #/
3228 unsigned _ovly_table[_novlys][4] = {
3229 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3230 {..., ..., ..., ...},
3231 }
3232 unsigned _novly_regions; /# number of overlay regions #/
3233 unsigned _ovly_region_table[_novly_regions][3] = {
3234 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3235 {..., ..., ...},
3236 }
3237 These functions will attempt to update GDB's mappedness state in the
3238 symbol section table, based on the target's mappedness state.
3239
3240 To do this, we keep a cached copy of the target's _ovly_table, and
3241 attempt to detect when the cached copy is invalidated. The main
3242 entry point is "simple_overlay_update(SECT), which looks up SECT in
3243 the cached table and re-reads only the entry for that section from
3244 the target (whenever possible).
3245 */
3246
3247 /* Cached, dynamically allocated copies of the target data structures: */
3248 static unsigned (*cache_ovly_table)[4] = 0;
3249 #if 0
3250 static unsigned (*cache_ovly_region_table)[3] = 0;
3251 #endif
3252 static unsigned cache_novlys = 0;
3253 #if 0
3254 static unsigned cache_novly_regions = 0;
3255 #endif
3256 static CORE_ADDR cache_ovly_table_base = 0;
3257 #if 0
3258 static CORE_ADDR cache_ovly_region_table_base = 0;
3259 #endif
3260 enum ovly_index
3261 {
3262 VMA, SIZE, LMA, MAPPED
3263 };
3264
3265 /* Throw away the cached copy of _ovly_table */
3266 static void
3267 simple_free_overlay_table (void)
3268 {
3269 if (cache_ovly_table)
3270 xfree (cache_ovly_table);
3271 cache_novlys = 0;
3272 cache_ovly_table = NULL;
3273 cache_ovly_table_base = 0;
3274 }
3275
3276 #if 0
3277 /* Throw away the cached copy of _ovly_region_table */
3278 static void
3279 simple_free_overlay_region_table (void)
3280 {
3281 if (cache_ovly_region_table)
3282 xfree (cache_ovly_region_table);
3283 cache_novly_regions = 0;
3284 cache_ovly_region_table = NULL;
3285 cache_ovly_region_table_base = 0;
3286 }
3287 #endif
3288
3289 /* Read an array of ints of size SIZE from the target into a local buffer.
3290 Convert to host order. int LEN is number of ints */
3291 static void
3292 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3293 int len, int size, enum bfd_endian byte_order)
3294 {
3295 /* FIXME (alloca): Not safe if array is very large. */
3296 gdb_byte *buf = alloca (len * size);
3297 int i;
3298
3299 read_memory (memaddr, buf, len * size);
3300 for (i = 0; i < len; i++)
3301 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3302 }
3303
3304 /* Find and grab a copy of the target _ovly_table
3305 (and _novlys, which is needed for the table's size) */
3306 static int
3307 simple_read_overlay_table (void)
3308 {
3309 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3310 struct gdbarch *gdbarch;
3311 int word_size;
3312 enum bfd_endian byte_order;
3313
3314 simple_free_overlay_table ();
3315 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3316 if (! novlys_msym)
3317 {
3318 error (_("Error reading inferior's overlay table: "
3319 "couldn't find `_novlys' variable\n"
3320 "in inferior. Use `overlay manual' mode."));
3321 return 0;
3322 }
3323
3324 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3325 if (! ovly_table_msym)
3326 {
3327 error (_("Error reading inferior's overlay table: couldn't find "
3328 "`_ovly_table' array\n"
3329 "in inferior. Use `overlay manual' mode."));
3330 return 0;
3331 }
3332
3333 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3334 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3335 byte_order = gdbarch_byte_order (gdbarch);
3336
3337 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3338 4, byte_order);
3339 cache_ovly_table
3340 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3341 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3342 read_target_long_array (cache_ovly_table_base,
3343 (unsigned int *) cache_ovly_table,
3344 cache_novlys * 4, word_size, byte_order);
3345
3346 return 1; /* SUCCESS */
3347 }
3348
3349 #if 0
3350 /* Find and grab a copy of the target _ovly_region_table
3351 (and _novly_regions, which is needed for the table's size) */
3352 static int
3353 simple_read_overlay_region_table (void)
3354 {
3355 struct minimal_symbol *msym;
3356 struct gdbarch *gdbarch;
3357 int word_size;
3358 enum bfd_endian byte_order;
3359
3360 simple_free_overlay_region_table ();
3361 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3362 if (msym == NULL)
3363 return 0; /* failure */
3364
3365 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3366 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3367 byte_order = gdbarch_byte_order (gdbarch);
3368
3369 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3370 4, byte_order);
3371
3372 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3373 if (cache_ovly_region_table != NULL)
3374 {
3375 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3376 if (msym != NULL)
3377 {
3378 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3379 read_target_long_array (cache_ovly_region_table_base,
3380 (unsigned int *) cache_ovly_region_table,
3381 cache_novly_regions * 3,
3382 word_size, byte_order);
3383 }
3384 else
3385 return 0; /* failure */
3386 }
3387 else
3388 return 0; /* failure */
3389 return 1; /* SUCCESS */
3390 }
3391 #endif
3392
3393 /* Function: simple_overlay_update_1
3394 A helper function for simple_overlay_update. Assuming a cached copy
3395 of _ovly_table exists, look through it to find an entry whose vma,
3396 lma and size match those of OSECT. Re-read the entry and make sure
3397 it still matches OSECT (else the table may no longer be valid).
3398 Set OSECT's mapped state to match the entry. Return: 1 for
3399 success, 0 for failure. */
3400
3401 static int
3402 simple_overlay_update_1 (struct obj_section *osect)
3403 {
3404 int i, size;
3405 bfd *obfd = osect->objfile->obfd;
3406 asection *bsect = osect->the_bfd_section;
3407 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3408 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3409 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3410
3411 size = bfd_get_section_size (osect->the_bfd_section);
3412 for (i = 0; i < cache_novlys; i++)
3413 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3414 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3415 /* && cache_ovly_table[i][SIZE] == size */ )
3416 {
3417 read_target_long_array (cache_ovly_table_base + i * word_size,
3418 (unsigned int *) cache_ovly_table[i],
3419 4, word_size, byte_order);
3420 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3421 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3422 /* && cache_ovly_table[i][SIZE] == size */ )
3423 {
3424 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3425 return 1;
3426 }
3427 else /* Warning! Warning! Target's ovly table has changed! */
3428 return 0;
3429 }
3430 return 0;
3431 }
3432
3433 /* Function: simple_overlay_update
3434 If OSECT is NULL, then update all sections' mapped state
3435 (after re-reading the entire target _ovly_table).
3436 If OSECT is non-NULL, then try to find a matching entry in the
3437 cached ovly_table and update only OSECT's mapped state.
3438 If a cached entry can't be found or the cache isn't valid, then
3439 re-read the entire cache, and go ahead and update all sections. */
3440
3441 void
3442 simple_overlay_update (struct obj_section *osect)
3443 {
3444 struct objfile *objfile;
3445
3446 /* Were we given an osect to look up? NULL means do all of them. */
3447 if (osect)
3448 /* Have we got a cached copy of the target's overlay table? */
3449 if (cache_ovly_table != NULL)
3450 /* Does its cached location match what's currently in the symtab? */
3451 if (cache_ovly_table_base ==
3452 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3453 /* Then go ahead and try to look up this single section in the cache */
3454 if (simple_overlay_update_1 (osect))
3455 /* Found it! We're done. */
3456 return;
3457
3458 /* Cached table no good: need to read the entire table anew.
3459 Or else we want all the sections, in which case it's actually
3460 more efficient to read the whole table in one block anyway. */
3461
3462 if (! simple_read_overlay_table ())
3463 return;
3464
3465 /* Now may as well update all sections, even if only one was requested. */
3466 ALL_OBJSECTIONS (objfile, osect)
3467 if (section_is_overlay (osect))
3468 {
3469 int i, size;
3470 bfd *obfd = osect->objfile->obfd;
3471 asection *bsect = osect->the_bfd_section;
3472
3473 size = bfd_get_section_size (bsect);
3474 for (i = 0; i < cache_novlys; i++)
3475 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3476 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3477 /* && cache_ovly_table[i][SIZE] == size */ )
3478 { /* obj_section matches i'th entry in ovly_table */
3479 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3480 break; /* finished with inner for loop: break out */
3481 }
3482 }
3483 }
3484
3485 /* Set the output sections and output offsets for section SECTP in
3486 ABFD. The relocation code in BFD will read these offsets, so we
3487 need to be sure they're initialized. We map each section to itself,
3488 with no offset; this means that SECTP->vma will be honored. */
3489
3490 static void
3491 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3492 {
3493 sectp->output_section = sectp;
3494 sectp->output_offset = 0;
3495 }
3496
3497 /* Default implementation for sym_relocate. */
3498
3499
3500 bfd_byte *
3501 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3502 bfd_byte *buf)
3503 {
3504 bfd *abfd = objfile->obfd;
3505
3506 /* We're only interested in sections with relocation
3507 information. */
3508 if ((sectp->flags & SEC_RELOC) == 0)
3509 return NULL;
3510
3511 /* We will handle section offsets properly elsewhere, so relocate as if
3512 all sections begin at 0. */
3513 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3514
3515 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3516 }
3517
3518 /* Relocate the contents of a debug section SECTP in ABFD. The
3519 contents are stored in BUF if it is non-NULL, or returned in a
3520 malloc'd buffer otherwise.
3521
3522 For some platforms and debug info formats, shared libraries contain
3523 relocations against the debug sections (particularly for DWARF-2;
3524 one affected platform is PowerPC GNU/Linux, although it depends on
3525 the version of the linker in use). Also, ELF object files naturally
3526 have unresolved relocations for their debug sections. We need to apply
3527 the relocations in order to get the locations of symbols correct.
3528 Another example that may require relocation processing, is the
3529 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3530 debug section. */
3531
3532 bfd_byte *
3533 symfile_relocate_debug_section (struct objfile *objfile,
3534 asection *sectp, bfd_byte *buf)
3535 {
3536 gdb_assert (objfile->sf->sym_relocate);
3537
3538 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3539 }
3540
3541 struct symfile_segment_data *
3542 get_symfile_segment_data (bfd *abfd)
3543 {
3544 struct sym_fns *sf = find_sym_fns (abfd);
3545
3546 if (sf == NULL)
3547 return NULL;
3548
3549 return sf->sym_segments (abfd);
3550 }
3551
3552 void
3553 free_symfile_segment_data (struct symfile_segment_data *data)
3554 {
3555 xfree (data->segment_bases);
3556 xfree (data->segment_sizes);
3557 xfree (data->segment_info);
3558 xfree (data);
3559 }
3560
3561
3562 /* Given:
3563 - DATA, containing segment addresses from the object file ABFD, and
3564 the mapping from ABFD's sections onto the segments that own them,
3565 and
3566 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3567 segment addresses reported by the target,
3568 store the appropriate offsets for each section in OFFSETS.
3569
3570 If there are fewer entries in SEGMENT_BASES than there are segments
3571 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3572
3573 If there are more entries, then ignore the extra. The target may
3574 not be able to distinguish between an empty data segment and a
3575 missing data segment; a missing text segment is less plausible. */
3576 int
3577 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3578 struct section_offsets *offsets,
3579 int num_segment_bases,
3580 const CORE_ADDR *segment_bases)
3581 {
3582 int i;
3583 asection *sect;
3584
3585 /* It doesn't make sense to call this function unless you have some
3586 segment base addresses. */
3587 gdb_assert (num_segment_bases > 0);
3588
3589 /* If we do not have segment mappings for the object file, we
3590 can not relocate it by segments. */
3591 gdb_assert (data != NULL);
3592 gdb_assert (data->num_segments > 0);
3593
3594 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3595 {
3596 int which = data->segment_info[i];
3597
3598 gdb_assert (0 <= which && which <= data->num_segments);
3599
3600 /* Don't bother computing offsets for sections that aren't
3601 loaded as part of any segment. */
3602 if (! which)
3603 continue;
3604
3605 /* Use the last SEGMENT_BASES entry as the address of any extra
3606 segments mentioned in DATA->segment_info. */
3607 if (which > num_segment_bases)
3608 which = num_segment_bases;
3609
3610 offsets->offsets[i] = (segment_bases[which - 1]
3611 - data->segment_bases[which - 1]);
3612 }
3613
3614 return 1;
3615 }
3616
3617 static void
3618 symfile_find_segment_sections (struct objfile *objfile)
3619 {
3620 bfd *abfd = objfile->obfd;
3621 int i;
3622 asection *sect;
3623 struct symfile_segment_data *data;
3624
3625 data = get_symfile_segment_data (objfile->obfd);
3626 if (data == NULL)
3627 return;
3628
3629 if (data->num_segments != 1 && data->num_segments != 2)
3630 {
3631 free_symfile_segment_data (data);
3632 return;
3633 }
3634
3635 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3636 {
3637 int which = data->segment_info[i];
3638
3639 if (which == 1)
3640 {
3641 if (objfile->sect_index_text == -1)
3642 objfile->sect_index_text = sect->index;
3643
3644 if (objfile->sect_index_rodata == -1)
3645 objfile->sect_index_rodata = sect->index;
3646 }
3647 else if (which == 2)
3648 {
3649 if (objfile->sect_index_data == -1)
3650 objfile->sect_index_data = sect->index;
3651
3652 if (objfile->sect_index_bss == -1)
3653 objfile->sect_index_bss = sect->index;
3654 }
3655 }
3656
3657 free_symfile_segment_data (data);
3658 }
3659
3660 void
3661 _initialize_symfile (void)
3662 {
3663 struct cmd_list_element *c;
3664
3665 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3666 Load symbol table from executable file FILE.\n\
3667 The `file' command can also load symbol tables, as well as setting the file\n\
3668 to execute."), &cmdlist);
3669 set_cmd_completer (c, filename_completer);
3670
3671 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3672 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3673 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3674 ADDR is the starting address of the file's text.\n\
3675 The optional arguments are section-name section-address pairs and\n\
3676 should be specified if the data and bss segments are not contiguous\n\
3677 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3678 &cmdlist);
3679 set_cmd_completer (c, filename_completer);
3680
3681 c = add_cmd ("load", class_files, load_command, _("\
3682 Dynamically load FILE into the running program, and record its symbols\n\
3683 for access from GDB.\n\
3684 A load OFFSET may also be given."), &cmdlist);
3685 set_cmd_completer (c, filename_completer);
3686
3687 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3688 &symbol_reloading, _("\
3689 Set dynamic symbol table reloading multiple times in one run."), _("\
3690 Show dynamic symbol table reloading multiple times in one run."), NULL,
3691 NULL,
3692 show_symbol_reloading,
3693 &setlist, &showlist);
3694
3695 add_prefix_cmd ("overlay", class_support, overlay_command,
3696 _("Commands for debugging overlays."), &overlaylist,
3697 "overlay ", 0, &cmdlist);
3698
3699 add_com_alias ("ovly", "overlay", class_alias, 1);
3700 add_com_alias ("ov", "overlay", class_alias, 1);
3701
3702 add_cmd ("map-overlay", class_support, map_overlay_command,
3703 _("Assert that an overlay section is mapped."), &overlaylist);
3704
3705 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3706 _("Assert that an overlay section is unmapped."), &overlaylist);
3707
3708 add_cmd ("list-overlays", class_support, list_overlays_command,
3709 _("List mappings of overlay sections."), &overlaylist);
3710
3711 add_cmd ("manual", class_support, overlay_manual_command,
3712 _("Enable overlay debugging."), &overlaylist);
3713 add_cmd ("off", class_support, overlay_off_command,
3714 _("Disable overlay debugging."), &overlaylist);
3715 add_cmd ("auto", class_support, overlay_auto_command,
3716 _("Enable automatic overlay debugging."), &overlaylist);
3717 add_cmd ("load-target", class_support, overlay_load_command,
3718 _("Read the overlay mapping state from the target."), &overlaylist);
3719
3720 /* Filename extension to source language lookup table: */
3721 init_filename_language_table ();
3722 add_setshow_string_noescape_cmd ("extension-language", class_files,
3723 &ext_args, _("\
3724 Set mapping between filename extension and source language."), _("\
3725 Show mapping between filename extension and source language."), _("\
3726 Usage: set extension-language .foo bar"),
3727 set_ext_lang_command,
3728 show_ext_args,
3729 &setlist, &showlist);
3730
3731 add_info ("extensions", info_ext_lang_command,
3732 _("All filename extensions associated with a source language."));
3733
3734 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3735 &debug_file_directory, _("\
3736 Set the directories where separate debug symbols are searched for."), _("\
3737 Show the directories where separate debug symbols are searched for."), _("\
3738 Separate debug symbols are first searched for in the same\n\
3739 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3740 and lastly at the path of the directory of the binary with\n\
3741 each global debug-file-directory component prepended."),
3742 NULL,
3743 show_debug_file_directory,
3744 &setlist, &showlist);
3745 }