* Makefile.am (eelf32m32c.c): Fix dependencies.
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include "gdb_string.h"
57 #include "gdb_stat.h"
58 #include <ctype.h>
59 #include <time.h>
60 #include <sys/time.h>
61
62 #ifndef O_BINARY
63 #define O_BINARY 0
64 #endif
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74 void (*deprecated_target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void set_initial_language (void);
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void add_shared_symbol_files_command (char *, int);
101
102 static void reread_separate_symbols (struct objfile *objfile);
103
104 static void cashier_psymtab (struct partial_symtab *);
105
106 bfd *symfile_bfd_open (char *);
107
108 int get_section_index (struct objfile *, char *);
109
110 static void find_sym_fns (struct objfile *);
111
112 static void decrement_reading_symtab (void *);
113
114 static void overlay_invalidate_all (void);
115
116 static int overlay_is_mapped (struct obj_section *);
117
118 void list_overlays_command (char *, int);
119
120 void map_overlay_command (char *, int);
121
122 void unmap_overlay_command (char *, int);
123
124 static void overlay_auto_command (char *, int);
125
126 static void overlay_manual_command (char *, int);
127
128 static void overlay_off_command (char *, int);
129
130 static void overlay_load_command (char *, int);
131
132 static void overlay_command (char *, int);
133
134 static void simple_free_overlay_table (void);
135
136 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
137
138 static int simple_read_overlay_table (void);
139
140 static int simple_overlay_update_1 (struct obj_section *);
141
142 static void add_filename_language (char *ext, enum language lang);
143
144 static void info_ext_lang_command (char *args, int from_tty);
145
146 static char *find_separate_debug_file (struct objfile *objfile);
147
148 static void init_filename_language_table (void);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
459 }
460
461 /* The arguments to place_section. */
462
463 struct place_section_arg
464 {
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467 };
468
469 /* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472 void
473 place_section (bfd *abfd, asection *sect, void *obj)
474 {
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 do {
489 asection *cur_sec;
490 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
491
492 start_addr = (arg->lowest + align - 1) & -align;
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 continue;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && !query ("Discard symbol table from `%s'? ",
1089 symfile_objfile->name))
1090 error (_("Not confirmed."));
1091 free_all_objfiles ();
1092
1093 /* solib descriptors may have handles to objfiles. Since their
1094 storage has just been released, we'd better wipe the solib
1095 descriptors as well.
1096 */
1097 #if defined(SOLIB_RESTART)
1098 SOLIB_RESTART ();
1099 #endif
1100
1101 symfile_objfile = NULL;
1102 if (from_tty)
1103 printf_unfiltered (_("No symbol file now.\n"));
1104 }
1105
1106 static char *
1107 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1108 {
1109 asection *sect;
1110 bfd_size_type debuglink_size;
1111 unsigned long crc32;
1112 char *contents;
1113 int crc_offset;
1114 unsigned char *p;
1115
1116 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1117
1118 if (sect == NULL)
1119 return NULL;
1120
1121 debuglink_size = bfd_section_size (objfile->obfd, sect);
1122
1123 contents = xmalloc (debuglink_size);
1124 bfd_get_section_contents (objfile->obfd, sect, contents,
1125 (file_ptr)0, (bfd_size_type)debuglink_size);
1126
1127 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1128 crc_offset = strlen (contents) + 1;
1129 crc_offset = (crc_offset + 3) & ~3;
1130
1131 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1132
1133 *crc32_out = crc32;
1134 return contents;
1135 }
1136
1137 static int
1138 separate_debug_file_exists (const char *name, unsigned long crc)
1139 {
1140 unsigned long file_crc = 0;
1141 int fd;
1142 char buffer[8*1024];
1143 int count;
1144
1145 fd = open (name, O_RDONLY | O_BINARY);
1146 if (fd < 0)
1147 return 0;
1148
1149 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1150 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1151
1152 close (fd);
1153
1154 return crc == file_crc;
1155 }
1156
1157 static char *debug_file_directory = NULL;
1158 static void
1159 show_debug_file_directory (struct ui_file *file, int from_tty,
1160 struct cmd_list_element *c, const char *value)
1161 {
1162 fprintf_filtered (file, _("\
1163 The directory where separate debug symbols are searched for is \"%s\".\n"),
1164 value);
1165 }
1166
1167 #if ! defined (DEBUG_SUBDIRECTORY)
1168 #define DEBUG_SUBDIRECTORY ".debug"
1169 #endif
1170
1171 static char *
1172 find_separate_debug_file (struct objfile *objfile)
1173 {
1174 asection *sect;
1175 char *basename;
1176 char *dir;
1177 char *debugfile;
1178 char *name_copy;
1179 bfd_size_type debuglink_size;
1180 unsigned long crc32;
1181 int i;
1182
1183 basename = get_debug_link_info (objfile, &crc32);
1184
1185 if (basename == NULL)
1186 return NULL;
1187
1188 dir = xstrdup (objfile->name);
1189
1190 /* Strip off the final filename part, leaving the directory name,
1191 followed by a slash. Objfile names should always be absolute and
1192 tilde-expanded, so there should always be a slash in there
1193 somewhere. */
1194 for (i = strlen(dir) - 1; i >= 0; i--)
1195 {
1196 if (IS_DIR_SEPARATOR (dir[i]))
1197 break;
1198 }
1199 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1200 dir[i+1] = '\0';
1201
1202 debugfile = alloca (strlen (debug_file_directory) + 1
1203 + strlen (dir)
1204 + strlen (DEBUG_SUBDIRECTORY)
1205 + strlen ("/")
1206 + strlen (basename)
1207 + 1);
1208
1209 /* First try in the same directory as the original file. */
1210 strcpy (debugfile, dir);
1211 strcat (debugfile, basename);
1212
1213 if (separate_debug_file_exists (debugfile, crc32))
1214 {
1215 xfree (basename);
1216 xfree (dir);
1217 return xstrdup (debugfile);
1218 }
1219
1220 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1221 strcpy (debugfile, dir);
1222 strcat (debugfile, DEBUG_SUBDIRECTORY);
1223 strcat (debugfile, "/");
1224 strcat (debugfile, basename);
1225
1226 if (separate_debug_file_exists (debugfile, crc32))
1227 {
1228 xfree (basename);
1229 xfree (dir);
1230 return xstrdup (debugfile);
1231 }
1232
1233 /* Then try in the global debugfile directory. */
1234 strcpy (debugfile, debug_file_directory);
1235 strcat (debugfile, "/");
1236 strcat (debugfile, dir);
1237 strcat (debugfile, basename);
1238
1239 if (separate_debug_file_exists (debugfile, crc32))
1240 {
1241 xfree (basename);
1242 xfree (dir);
1243 return xstrdup (debugfile);
1244 }
1245
1246 xfree (basename);
1247 xfree (dir);
1248 return NULL;
1249 }
1250
1251
1252 /* This is the symbol-file command. Read the file, analyze its
1253 symbols, and add a struct symtab to a symtab list. The syntax of
1254 the command is rather bizarre--(1) buildargv implements various
1255 quoting conventions which are undocumented and have little or
1256 nothing in common with the way things are quoted (or not quoted)
1257 elsewhere in GDB, (2) options are used, which are not generally
1258 used in GDB (perhaps "set mapped on", "set readnow on" would be
1259 better), (3) the order of options matters, which is contrary to GNU
1260 conventions (because it is confusing and inconvenient). */
1261
1262 void
1263 symbol_file_command (char *args, int from_tty)
1264 {
1265 char **argv;
1266 char *name = NULL;
1267 struct cleanup *cleanups;
1268 int flags = OBJF_USERLOADED;
1269
1270 dont_repeat ();
1271
1272 if (args == NULL)
1273 {
1274 symbol_file_clear (from_tty);
1275 }
1276 else
1277 {
1278 if ((argv = buildargv (args)) == NULL)
1279 {
1280 nomem (0);
1281 }
1282 cleanups = make_cleanup_freeargv (argv);
1283 while (*argv != NULL)
1284 {
1285 if (strcmp (*argv, "-readnow") == 0)
1286 flags |= OBJF_READNOW;
1287 else if (**argv == '-')
1288 error (_("unknown option `%s'"), *argv);
1289 else
1290 {
1291 name = *argv;
1292
1293 symbol_file_add_main_1 (name, from_tty, flags);
1294 }
1295 argv++;
1296 }
1297
1298 if (name == NULL)
1299 {
1300 error (_("no symbol file name was specified"));
1301 }
1302 do_cleanups (cleanups);
1303 }
1304 }
1305
1306 /* Set the initial language.
1307
1308 A better solution would be to record the language in the psymtab when reading
1309 partial symbols, and then use it (if known) to set the language. This would
1310 be a win for formats that encode the language in an easily discoverable place,
1311 such as DWARF. For stabs, we can jump through hoops looking for specially
1312 named symbols or try to intuit the language from the specific type of stabs
1313 we find, but we can't do that until later when we read in full symbols.
1314 FIXME. */
1315
1316 static void
1317 set_initial_language (void)
1318 {
1319 struct partial_symtab *pst;
1320 enum language lang = language_unknown;
1321
1322 pst = find_main_psymtab ();
1323 if (pst != NULL)
1324 {
1325 if (pst->filename != NULL)
1326 {
1327 lang = deduce_language_from_filename (pst->filename);
1328 }
1329 if (lang == language_unknown)
1330 {
1331 /* Make C the default language */
1332 lang = language_c;
1333 }
1334 set_language (lang);
1335 expected_language = current_language; /* Don't warn the user */
1336 }
1337 }
1338
1339 /* Open file specified by NAME and hand it off to BFD for preliminary
1340 analysis. Result is a newly initialized bfd *, which includes a newly
1341 malloc'd` copy of NAME (tilde-expanded and made absolute).
1342 In case of trouble, error() is called. */
1343
1344 bfd *
1345 symfile_bfd_open (char *name)
1346 {
1347 bfd *sym_bfd;
1348 int desc;
1349 char *absolute_name;
1350
1351
1352
1353 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1354
1355 /* Look down path for it, allocate 2nd new malloc'd copy. */
1356 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name, O_RDONLY | O_BINARY,
1357 0, &absolute_name);
1358 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1359 if (desc < 0)
1360 {
1361 char *exename = alloca (strlen (name) + 5);
1362 strcat (strcpy (exename, name), ".exe");
1363 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1364 O_RDONLY | O_BINARY, 0, &absolute_name);
1365 }
1366 #endif
1367 if (desc < 0)
1368 {
1369 make_cleanup (xfree, name);
1370 perror_with_name (name);
1371 }
1372 xfree (name); /* Free 1st new malloc'd copy */
1373 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1374 /* It'll be freed in free_objfile(). */
1375
1376 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1377 if (!sym_bfd)
1378 {
1379 close (desc);
1380 make_cleanup (xfree, name);
1381 error (_("\"%s\": can't open to read symbols: %s."), name,
1382 bfd_errmsg (bfd_get_error ()));
1383 }
1384 bfd_set_cacheable (sym_bfd, 1);
1385
1386 if (!bfd_check_format (sym_bfd, bfd_object))
1387 {
1388 /* FIXME: should be checking for errors from bfd_close (for one thing,
1389 on error it does not free all the storage associated with the
1390 bfd). */
1391 bfd_close (sym_bfd); /* This also closes desc */
1392 make_cleanup (xfree, name);
1393 error (_("\"%s\": can't read symbols: %s."), name,
1394 bfd_errmsg (bfd_get_error ()));
1395 }
1396 return (sym_bfd);
1397 }
1398
1399 /* Return the section index for the given section name. Return -1 if
1400 the section was not found. */
1401 int
1402 get_section_index (struct objfile *objfile, char *section_name)
1403 {
1404 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1405 if (sect)
1406 return sect->index;
1407 else
1408 return -1;
1409 }
1410
1411 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1412 startup by the _initialize routine in each object file format reader,
1413 to register information about each format the the reader is prepared
1414 to handle. */
1415
1416 void
1417 add_symtab_fns (struct sym_fns *sf)
1418 {
1419 sf->next = symtab_fns;
1420 symtab_fns = sf;
1421 }
1422
1423
1424 /* Initialize to read symbols from the symbol file sym_bfd. It either
1425 returns or calls error(). The result is an initialized struct sym_fns
1426 in the objfile structure, that contains cached information about the
1427 symbol file. */
1428
1429 static void
1430 find_sym_fns (struct objfile *objfile)
1431 {
1432 struct sym_fns *sf;
1433 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1434 char *our_target = bfd_get_target (objfile->obfd);
1435
1436 if (our_flavour == bfd_target_srec_flavour
1437 || our_flavour == bfd_target_ihex_flavour
1438 || our_flavour == bfd_target_tekhex_flavour)
1439 return; /* No symbols. */
1440
1441 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1442 {
1443 if (our_flavour == sf->sym_flavour)
1444 {
1445 objfile->sf = sf;
1446 return;
1447 }
1448 }
1449 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1450 bfd_get_target (objfile->obfd));
1451 }
1452 \f
1453 /* This function runs the load command of our current target. */
1454
1455 static void
1456 load_command (char *arg, int from_tty)
1457 {
1458 if (arg == NULL)
1459 arg = get_exec_file (1);
1460 target_load (arg, from_tty);
1461
1462 /* After re-loading the executable, we don't really know which
1463 overlays are mapped any more. */
1464 overlay_cache_invalid = 1;
1465 }
1466
1467 /* This version of "load" should be usable for any target. Currently
1468 it is just used for remote targets, not inftarg.c or core files,
1469 on the theory that only in that case is it useful.
1470
1471 Avoiding xmodem and the like seems like a win (a) because we don't have
1472 to worry about finding it, and (b) On VMS, fork() is very slow and so
1473 we don't want to run a subprocess. On the other hand, I'm not sure how
1474 performance compares. */
1475
1476 static int download_write_size = 512;
1477 static void
1478 show_download_write_size (struct ui_file *file, int from_tty,
1479 struct cmd_list_element *c, const char *value)
1480 {
1481 fprintf_filtered (file, _("\
1482 The write size used when downloading a program is %s.\n"),
1483 value);
1484 }
1485 static int validate_download = 0;
1486
1487 /* Callback service function for generic_load (bfd_map_over_sections). */
1488
1489 static void
1490 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1491 {
1492 bfd_size_type *sum = data;
1493
1494 *sum += bfd_get_section_size (asec);
1495 }
1496
1497 /* Opaque data for load_section_callback. */
1498 struct load_section_data {
1499 unsigned long load_offset;
1500 unsigned long write_count;
1501 unsigned long data_count;
1502 bfd_size_type total_size;
1503 };
1504
1505 /* Callback service function for generic_load (bfd_map_over_sections). */
1506
1507 static void
1508 load_section_callback (bfd *abfd, asection *asec, void *data)
1509 {
1510 struct load_section_data *args = data;
1511
1512 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1513 {
1514 bfd_size_type size = bfd_get_section_size (asec);
1515 if (size > 0)
1516 {
1517 char *buffer;
1518 struct cleanup *old_chain;
1519 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1520 bfd_size_type block_size;
1521 int err;
1522 const char *sect_name = bfd_get_section_name (abfd, asec);
1523 bfd_size_type sent;
1524
1525 if (download_write_size > 0 && size > download_write_size)
1526 block_size = download_write_size;
1527 else
1528 block_size = size;
1529
1530 buffer = xmalloc (size);
1531 old_chain = make_cleanup (xfree, buffer);
1532
1533 /* Is this really necessary? I guess it gives the user something
1534 to look at during a long download. */
1535 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1536 sect_name, paddr_nz (size), paddr_nz (lma));
1537
1538 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1539
1540 sent = 0;
1541 do
1542 {
1543 int len;
1544 bfd_size_type this_transfer = size - sent;
1545
1546 if (this_transfer >= block_size)
1547 this_transfer = block_size;
1548 len = target_write_memory_partial (lma, buffer,
1549 this_transfer, &err);
1550 if (err)
1551 break;
1552 if (validate_download)
1553 {
1554 /* Broken memories and broken monitors manifest
1555 themselves here when bring new computers to
1556 life. This doubles already slow downloads. */
1557 /* NOTE: cagney/1999-10-18: A more efficient
1558 implementation might add a verify_memory()
1559 method to the target vector and then use
1560 that. remote.c could implement that method
1561 using the ``qCRC'' packet. */
1562 char *check = xmalloc (len);
1563 struct cleanup *verify_cleanups =
1564 make_cleanup (xfree, check);
1565
1566 if (target_read_memory (lma, check, len) != 0)
1567 error (_("Download verify read failed at 0x%s"),
1568 paddr (lma));
1569 if (memcmp (buffer, check, len) != 0)
1570 error (_("Download verify compare failed at 0x%s"),
1571 paddr (lma));
1572 do_cleanups (verify_cleanups);
1573 }
1574 args->data_count += len;
1575 lma += len;
1576 buffer += len;
1577 args->write_count += 1;
1578 sent += len;
1579 if (quit_flag
1580 || (deprecated_ui_load_progress_hook != NULL
1581 && deprecated_ui_load_progress_hook (sect_name, sent)))
1582 error (_("Canceled the download"));
1583
1584 if (deprecated_show_load_progress != NULL)
1585 deprecated_show_load_progress (sect_name, sent, size,
1586 args->data_count,
1587 args->total_size);
1588 }
1589 while (sent < size);
1590
1591 if (err != 0)
1592 error (_("Memory access error while loading section %s."), sect_name);
1593
1594 do_cleanups (old_chain);
1595 }
1596 }
1597 }
1598
1599 void
1600 generic_load (char *args, int from_tty)
1601 {
1602 asection *s;
1603 bfd *loadfile_bfd;
1604 struct timeval start_time, end_time;
1605 char *filename;
1606 struct cleanup *old_cleanups;
1607 char *offptr;
1608 struct load_section_data cbdata;
1609 CORE_ADDR entry;
1610
1611 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1612 cbdata.write_count = 0; /* Number of writes needed. */
1613 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1614 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1615
1616 /* Parse the input argument - the user can specify a load offset as
1617 a second argument. */
1618 filename = xmalloc (strlen (args) + 1);
1619 old_cleanups = make_cleanup (xfree, filename);
1620 strcpy (filename, args);
1621 offptr = strchr (filename, ' ');
1622 if (offptr != NULL)
1623 {
1624 char *endptr;
1625
1626 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1627 if (offptr == endptr)
1628 error (_("Invalid download offset:%s."), offptr);
1629 *offptr = '\0';
1630 }
1631 else
1632 cbdata.load_offset = 0;
1633
1634 /* Open the file for loading. */
1635 loadfile_bfd = bfd_openr (filename, gnutarget);
1636 if (loadfile_bfd == NULL)
1637 {
1638 perror_with_name (filename);
1639 return;
1640 }
1641
1642 /* FIXME: should be checking for errors from bfd_close (for one thing,
1643 on error it does not free all the storage associated with the
1644 bfd). */
1645 make_cleanup_bfd_close (loadfile_bfd);
1646
1647 if (!bfd_check_format (loadfile_bfd, bfd_object))
1648 {
1649 error (_("\"%s\" is not an object file: %s"), filename,
1650 bfd_errmsg (bfd_get_error ()));
1651 }
1652
1653 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1654 (void *) &cbdata.total_size);
1655
1656 gettimeofday (&start_time, NULL);
1657
1658 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1659
1660 gettimeofday (&end_time, NULL);
1661
1662 entry = bfd_get_start_address (loadfile_bfd);
1663 ui_out_text (uiout, "Start address ");
1664 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1665 ui_out_text (uiout, ", load size ");
1666 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1667 ui_out_text (uiout, "\n");
1668 /* We were doing this in remote-mips.c, I suspect it is right
1669 for other targets too. */
1670 write_pc (entry);
1671
1672 /* FIXME: are we supposed to call symbol_file_add or not? According
1673 to a comment from remote-mips.c (where a call to symbol_file_add
1674 was commented out), making the call confuses GDB if more than one
1675 file is loaded in. Some targets do (e.g., remote-vx.c) but
1676 others don't (or didn't - perhaps they have all been deleted). */
1677
1678 print_transfer_performance (gdb_stdout, cbdata.data_count,
1679 cbdata.write_count, &start_time, &end_time);
1680
1681 do_cleanups (old_cleanups);
1682 }
1683
1684 /* Report how fast the transfer went. */
1685
1686 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1687 replaced by print_transfer_performance (with a very different
1688 function signature). */
1689
1690 void
1691 report_transfer_performance (unsigned long data_count, time_t start_time,
1692 time_t end_time)
1693 {
1694 struct timeval start, end;
1695
1696 start.tv_sec = start_time;
1697 start.tv_usec = 0;
1698 end.tv_sec = end_time;
1699 end.tv_usec = 0;
1700
1701 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1702 }
1703
1704 void
1705 print_transfer_performance (struct ui_file *stream,
1706 unsigned long data_count,
1707 unsigned long write_count,
1708 const struct timeval *start_time,
1709 const struct timeval *end_time)
1710 {
1711 unsigned long time_count;
1712
1713 /* Compute the elapsed time in milliseconds, as a tradeoff between
1714 accuracy and overflow. */
1715 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1716 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1717
1718 ui_out_text (uiout, "Transfer rate: ");
1719 if (time_count > 0)
1720 {
1721 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1722 1000 * (data_count * 8) / time_count);
1723 ui_out_text (uiout, " bits/sec");
1724 }
1725 else
1726 {
1727 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1728 ui_out_text (uiout, " bits in <1 sec");
1729 }
1730 if (write_count > 0)
1731 {
1732 ui_out_text (uiout, ", ");
1733 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1734 ui_out_text (uiout, " bytes/write");
1735 }
1736 ui_out_text (uiout, ".\n");
1737 }
1738
1739 /* This function allows the addition of incrementally linked object files.
1740 It does not modify any state in the target, only in the debugger. */
1741 /* Note: ezannoni 2000-04-13 This function/command used to have a
1742 special case syntax for the rombug target (Rombug is the boot
1743 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1744 rombug case, the user doesn't need to supply a text address,
1745 instead a call to target_link() (in target.c) would supply the
1746 value to use. We are now discontinuing this type of ad hoc syntax. */
1747
1748 static void
1749 add_symbol_file_command (char *args, int from_tty)
1750 {
1751 char *filename = NULL;
1752 int flags = OBJF_USERLOADED;
1753 char *arg;
1754 int expecting_option = 0;
1755 int section_index = 0;
1756 int argcnt = 0;
1757 int sec_num = 0;
1758 int i;
1759 int expecting_sec_name = 0;
1760 int expecting_sec_addr = 0;
1761
1762 struct sect_opt
1763 {
1764 char *name;
1765 char *value;
1766 };
1767
1768 struct section_addr_info *section_addrs;
1769 struct sect_opt *sect_opts = NULL;
1770 size_t num_sect_opts = 0;
1771 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1772
1773 num_sect_opts = 16;
1774 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1775 * sizeof (struct sect_opt));
1776
1777 dont_repeat ();
1778
1779 if (args == NULL)
1780 error (_("add-symbol-file takes a file name and an address"));
1781
1782 /* Make a copy of the string that we can safely write into. */
1783 args = xstrdup (args);
1784
1785 while (*args != '\000')
1786 {
1787 /* Any leading spaces? */
1788 while (isspace (*args))
1789 args++;
1790
1791 /* Point arg to the beginning of the argument. */
1792 arg = args;
1793
1794 /* Move args pointer over the argument. */
1795 while ((*args != '\000') && !isspace (*args))
1796 args++;
1797
1798 /* If there are more arguments, terminate arg and
1799 proceed past it. */
1800 if (*args != '\000')
1801 *args++ = '\000';
1802
1803 /* Now process the argument. */
1804 if (argcnt == 0)
1805 {
1806 /* The first argument is the file name. */
1807 filename = tilde_expand (arg);
1808 make_cleanup (xfree, filename);
1809 }
1810 else
1811 if (argcnt == 1)
1812 {
1813 /* The second argument is always the text address at which
1814 to load the program. */
1815 sect_opts[section_index].name = ".text";
1816 sect_opts[section_index].value = arg;
1817 if (++section_index > num_sect_opts)
1818 {
1819 num_sect_opts *= 2;
1820 sect_opts = ((struct sect_opt *)
1821 xrealloc (sect_opts,
1822 num_sect_opts
1823 * sizeof (struct sect_opt)));
1824 }
1825 }
1826 else
1827 {
1828 /* It's an option (starting with '-') or it's an argument
1829 to an option */
1830
1831 if (*arg == '-')
1832 {
1833 if (strcmp (arg, "-readnow") == 0)
1834 flags |= OBJF_READNOW;
1835 else if (strcmp (arg, "-s") == 0)
1836 {
1837 expecting_sec_name = 1;
1838 expecting_sec_addr = 1;
1839 }
1840 }
1841 else
1842 {
1843 if (expecting_sec_name)
1844 {
1845 sect_opts[section_index].name = arg;
1846 expecting_sec_name = 0;
1847 }
1848 else
1849 if (expecting_sec_addr)
1850 {
1851 sect_opts[section_index].value = arg;
1852 expecting_sec_addr = 0;
1853 if (++section_index > num_sect_opts)
1854 {
1855 num_sect_opts *= 2;
1856 sect_opts = ((struct sect_opt *)
1857 xrealloc (sect_opts,
1858 num_sect_opts
1859 * sizeof (struct sect_opt)));
1860 }
1861 }
1862 else
1863 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1864 }
1865 }
1866 argcnt++;
1867 }
1868
1869 /* Print the prompt for the query below. And save the arguments into
1870 a sect_addr_info structure to be passed around to other
1871 functions. We have to split this up into separate print
1872 statements because hex_string returns a local static
1873 string. */
1874
1875 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1876 section_addrs = alloc_section_addr_info (section_index);
1877 make_cleanup (xfree, section_addrs);
1878 for (i = 0; i < section_index; i++)
1879 {
1880 CORE_ADDR addr;
1881 char *val = sect_opts[i].value;
1882 char *sec = sect_opts[i].name;
1883
1884 addr = parse_and_eval_address (val);
1885
1886 /* Here we store the section offsets in the order they were
1887 entered on the command line. */
1888 section_addrs->other[sec_num].name = sec;
1889 section_addrs->other[sec_num].addr = addr;
1890 printf_unfiltered ("\t%s_addr = %s\n",
1891 sec, hex_string ((unsigned long)addr));
1892 sec_num++;
1893
1894 /* The object's sections are initialized when a
1895 call is made to build_objfile_section_table (objfile).
1896 This happens in reread_symbols.
1897 At this point, we don't know what file type this is,
1898 so we can't determine what section names are valid. */
1899 }
1900
1901 if (from_tty && (!query ("%s", "")))
1902 error (_("Not confirmed."));
1903
1904 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1905
1906 /* Getting new symbols may change our opinion about what is
1907 frameless. */
1908 reinit_frame_cache ();
1909 do_cleanups (my_cleanups);
1910 }
1911 \f
1912 static void
1913 add_shared_symbol_files_command (char *args, int from_tty)
1914 {
1915 #ifdef ADD_SHARED_SYMBOL_FILES
1916 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1917 #else
1918 error (_("This command is not available in this configuration of GDB."));
1919 #endif
1920 }
1921 \f
1922 /* Re-read symbols if a symbol-file has changed. */
1923 void
1924 reread_symbols (void)
1925 {
1926 struct objfile *objfile;
1927 long new_modtime;
1928 int reread_one = 0;
1929 struct stat new_statbuf;
1930 int res;
1931
1932 /* With the addition of shared libraries, this should be modified,
1933 the load time should be saved in the partial symbol tables, since
1934 different tables may come from different source files. FIXME.
1935 This routine should then walk down each partial symbol table
1936 and see if the symbol table that it originates from has been changed */
1937
1938 for (objfile = object_files; objfile; objfile = objfile->next)
1939 {
1940 if (objfile->obfd)
1941 {
1942 #ifdef DEPRECATED_IBM6000_TARGET
1943 /* If this object is from a shared library, then you should
1944 stat on the library name, not member name. */
1945
1946 if (objfile->obfd->my_archive)
1947 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1948 else
1949 #endif
1950 res = stat (objfile->name, &new_statbuf);
1951 if (res != 0)
1952 {
1953 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1954 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1955 objfile->name);
1956 continue;
1957 }
1958 new_modtime = new_statbuf.st_mtime;
1959 if (new_modtime != objfile->mtime)
1960 {
1961 struct cleanup *old_cleanups;
1962 struct section_offsets *offsets;
1963 int num_offsets;
1964 char *obfd_filename;
1965
1966 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1967 objfile->name);
1968
1969 /* There are various functions like symbol_file_add,
1970 symfile_bfd_open, syms_from_objfile, etc., which might
1971 appear to do what we want. But they have various other
1972 effects which we *don't* want. So we just do stuff
1973 ourselves. We don't worry about mapped files (for one thing,
1974 any mapped file will be out of date). */
1975
1976 /* If we get an error, blow away this objfile (not sure if
1977 that is the correct response for things like shared
1978 libraries). */
1979 old_cleanups = make_cleanup_free_objfile (objfile);
1980 /* We need to do this whenever any symbols go away. */
1981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1982
1983 /* Clean up any state BFD has sitting around. We don't need
1984 to close the descriptor but BFD lacks a way of closing the
1985 BFD without closing the descriptor. */
1986 obfd_filename = bfd_get_filename (objfile->obfd);
1987 if (!bfd_close (objfile->obfd))
1988 error (_("Can't close BFD for %s: %s"), objfile->name,
1989 bfd_errmsg (bfd_get_error ()));
1990 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1991 if (objfile->obfd == NULL)
1992 error (_("Can't open %s to read symbols."), objfile->name);
1993 /* bfd_openr sets cacheable to true, which is what we want. */
1994 if (!bfd_check_format (objfile->obfd, bfd_object))
1995 error (_("Can't read symbols from %s: %s."), objfile->name,
1996 bfd_errmsg (bfd_get_error ()));
1997
1998 /* Save the offsets, we will nuke them with the rest of the
1999 objfile_obstack. */
2000 num_offsets = objfile->num_sections;
2001 offsets = ((struct section_offsets *)
2002 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2003 memcpy (offsets, objfile->section_offsets,
2004 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2005
2006 /* Nuke all the state that we will re-read. Much of the following
2007 code which sets things to NULL really is necessary to tell
2008 other parts of GDB that there is nothing currently there. */
2009
2010 /* FIXME: Do we have to free a whole linked list, or is this
2011 enough? */
2012 if (objfile->global_psymbols.list)
2013 xfree (objfile->global_psymbols.list);
2014 memset (&objfile->global_psymbols, 0,
2015 sizeof (objfile->global_psymbols));
2016 if (objfile->static_psymbols.list)
2017 xfree (objfile->static_psymbols.list);
2018 memset (&objfile->static_psymbols, 0,
2019 sizeof (objfile->static_psymbols));
2020
2021 /* Free the obstacks for non-reusable objfiles */
2022 bcache_xfree (objfile->psymbol_cache);
2023 objfile->psymbol_cache = bcache_xmalloc ();
2024 bcache_xfree (objfile->macro_cache);
2025 objfile->macro_cache = bcache_xmalloc ();
2026 if (objfile->demangled_names_hash != NULL)
2027 {
2028 htab_delete (objfile->demangled_names_hash);
2029 objfile->demangled_names_hash = NULL;
2030 }
2031 obstack_free (&objfile->objfile_obstack, 0);
2032 objfile->sections = NULL;
2033 objfile->symtabs = NULL;
2034 objfile->psymtabs = NULL;
2035 objfile->free_psymtabs = NULL;
2036 objfile->cp_namespace_symtab = NULL;
2037 objfile->msymbols = NULL;
2038 objfile->deprecated_sym_private = NULL;
2039 objfile->minimal_symbol_count = 0;
2040 memset (&objfile->msymbol_hash, 0,
2041 sizeof (objfile->msymbol_hash));
2042 memset (&objfile->msymbol_demangled_hash, 0,
2043 sizeof (objfile->msymbol_demangled_hash));
2044 objfile->fundamental_types = NULL;
2045 clear_objfile_data (objfile);
2046 if (objfile->sf != NULL)
2047 {
2048 (*objfile->sf->sym_finish) (objfile);
2049 }
2050
2051 /* We never make this a mapped file. */
2052 objfile->md = NULL;
2053 objfile->psymbol_cache = bcache_xmalloc ();
2054 objfile->macro_cache = bcache_xmalloc ();
2055 /* obstack_init also initializes the obstack so it is
2056 empty. We could use obstack_specify_allocation but
2057 gdb_obstack.h specifies the alloc/dealloc
2058 functions. */
2059 obstack_init (&objfile->objfile_obstack);
2060 if (build_objfile_section_table (objfile))
2061 {
2062 error (_("Can't find the file sections in `%s': %s"),
2063 objfile->name, bfd_errmsg (bfd_get_error ()));
2064 }
2065 terminate_minimal_symbol_table (objfile);
2066
2067 /* We use the same section offsets as from last time. I'm not
2068 sure whether that is always correct for shared libraries. */
2069 objfile->section_offsets = (struct section_offsets *)
2070 obstack_alloc (&objfile->objfile_obstack,
2071 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2072 memcpy (objfile->section_offsets, offsets,
2073 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2074 objfile->num_sections = num_offsets;
2075
2076 /* What the hell is sym_new_init for, anyway? The concept of
2077 distinguishing between the main file and additional files
2078 in this way seems rather dubious. */
2079 if (objfile == symfile_objfile)
2080 {
2081 (*objfile->sf->sym_new_init) (objfile);
2082 }
2083
2084 (*objfile->sf->sym_init) (objfile);
2085 clear_complaints (&symfile_complaints, 1, 1);
2086 /* The "mainline" parameter is a hideous hack; I think leaving it
2087 zero is OK since dbxread.c also does what it needs to do if
2088 objfile->global_psymbols.size is 0. */
2089 (*objfile->sf->sym_read) (objfile, 0);
2090 if (!have_partial_symbols () && !have_full_symbols ())
2091 {
2092 wrap_here ("");
2093 printf_unfiltered (_("(no debugging symbols found)\n"));
2094 wrap_here ("");
2095 }
2096 objfile->flags |= OBJF_SYMS;
2097
2098 /* We're done reading the symbol file; finish off complaints. */
2099 clear_complaints (&symfile_complaints, 0, 1);
2100
2101 /* Getting new symbols may change our opinion about what is
2102 frameless. */
2103
2104 reinit_frame_cache ();
2105
2106 /* Discard cleanups as symbol reading was successful. */
2107 discard_cleanups (old_cleanups);
2108
2109 /* If the mtime has changed between the time we set new_modtime
2110 and now, we *want* this to be out of date, so don't call stat
2111 again now. */
2112 objfile->mtime = new_modtime;
2113 reread_one = 1;
2114 reread_separate_symbols (objfile);
2115 }
2116 }
2117 }
2118
2119 if (reread_one)
2120 {
2121 clear_symtab_users ();
2122 /* At least one objfile has changed, so we can consider that
2123 the executable we're debugging has changed too. */
2124 observer_notify_executable_changed (NULL);
2125 }
2126
2127 }
2128
2129
2130 /* Handle separate debug info for OBJFILE, which has just been
2131 re-read:
2132 - If we had separate debug info before, but now we don't, get rid
2133 of the separated objfile.
2134 - If we didn't have separated debug info before, but now we do,
2135 read in the new separated debug info file.
2136 - If the debug link points to a different file, toss the old one
2137 and read the new one.
2138 This function does *not* handle the case where objfile is still
2139 using the same separate debug info file, but that file's timestamp
2140 has changed. That case should be handled by the loop in
2141 reread_symbols already. */
2142 static void
2143 reread_separate_symbols (struct objfile *objfile)
2144 {
2145 char *debug_file;
2146 unsigned long crc32;
2147
2148 /* Does the updated objfile's debug info live in a
2149 separate file? */
2150 debug_file = find_separate_debug_file (objfile);
2151
2152 if (objfile->separate_debug_objfile)
2153 {
2154 /* There are two cases where we need to get rid of
2155 the old separated debug info objfile:
2156 - if the new primary objfile doesn't have
2157 separated debug info, or
2158 - if the new primary objfile has separate debug
2159 info, but it's under a different filename.
2160
2161 If the old and new objfiles both have separate
2162 debug info, under the same filename, then we're
2163 okay --- if the separated file's contents have
2164 changed, we will have caught that when we
2165 visited it in this function's outermost
2166 loop. */
2167 if (! debug_file
2168 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2169 free_objfile (objfile->separate_debug_objfile);
2170 }
2171
2172 /* If the new objfile has separate debug info, and we
2173 haven't loaded it already, do so now. */
2174 if (debug_file
2175 && ! objfile->separate_debug_objfile)
2176 {
2177 /* Use the same section offset table as objfile itself.
2178 Preserve the flags from objfile that make sense. */
2179 objfile->separate_debug_objfile
2180 = (symbol_file_add_with_addrs_or_offsets
2181 (symfile_bfd_open (debug_file),
2182 info_verbose, /* from_tty: Don't override the default. */
2183 0, /* No addr table. */
2184 objfile->section_offsets, objfile->num_sections,
2185 0, /* Not mainline. See comments about this above. */
2186 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2187 | OBJF_USERLOADED)));
2188 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2189 = objfile;
2190 }
2191 }
2192
2193
2194 \f
2195
2196
2197 typedef struct
2198 {
2199 char *ext;
2200 enum language lang;
2201 }
2202 filename_language;
2203
2204 static filename_language *filename_language_table;
2205 static int fl_table_size, fl_table_next;
2206
2207 static void
2208 add_filename_language (char *ext, enum language lang)
2209 {
2210 if (fl_table_next >= fl_table_size)
2211 {
2212 fl_table_size += 10;
2213 filename_language_table =
2214 xrealloc (filename_language_table,
2215 fl_table_size * sizeof (*filename_language_table));
2216 }
2217
2218 filename_language_table[fl_table_next].ext = xstrdup (ext);
2219 filename_language_table[fl_table_next].lang = lang;
2220 fl_table_next++;
2221 }
2222
2223 static char *ext_args;
2224 static void
2225 show_ext_args (struct ui_file *file, int from_tty,
2226 struct cmd_list_element *c, const char *value)
2227 {
2228 fprintf_filtered (file, _("\
2229 Mapping between filename extension and source language is \"%s\".\n"),
2230 value);
2231 }
2232
2233 static void
2234 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2235 {
2236 int i;
2237 char *cp = ext_args;
2238 enum language lang;
2239
2240 /* First arg is filename extension, starting with '.' */
2241 if (*cp != '.')
2242 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2243
2244 /* Find end of first arg. */
2245 while (*cp && !isspace (*cp))
2246 cp++;
2247
2248 if (*cp == '\0')
2249 error (_("'%s': two arguments required -- filename extension and language"),
2250 ext_args);
2251
2252 /* Null-terminate first arg */
2253 *cp++ = '\0';
2254
2255 /* Find beginning of second arg, which should be a source language. */
2256 while (*cp && isspace (*cp))
2257 cp++;
2258
2259 if (*cp == '\0')
2260 error (_("'%s': two arguments required -- filename extension and language"),
2261 ext_args);
2262
2263 /* Lookup the language from among those we know. */
2264 lang = language_enum (cp);
2265
2266 /* Now lookup the filename extension: do we already know it? */
2267 for (i = 0; i < fl_table_next; i++)
2268 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2269 break;
2270
2271 if (i >= fl_table_next)
2272 {
2273 /* new file extension */
2274 add_filename_language (ext_args, lang);
2275 }
2276 else
2277 {
2278 /* redefining a previously known filename extension */
2279
2280 /* if (from_tty) */
2281 /* query ("Really make files of type %s '%s'?", */
2282 /* ext_args, language_str (lang)); */
2283
2284 xfree (filename_language_table[i].ext);
2285 filename_language_table[i].ext = xstrdup (ext_args);
2286 filename_language_table[i].lang = lang;
2287 }
2288 }
2289
2290 static void
2291 info_ext_lang_command (char *args, int from_tty)
2292 {
2293 int i;
2294
2295 printf_filtered (_("Filename extensions and the languages they represent:"));
2296 printf_filtered ("\n\n");
2297 for (i = 0; i < fl_table_next; i++)
2298 printf_filtered ("\t%s\t- %s\n",
2299 filename_language_table[i].ext,
2300 language_str (filename_language_table[i].lang));
2301 }
2302
2303 static void
2304 init_filename_language_table (void)
2305 {
2306 if (fl_table_size == 0) /* protect against repetition */
2307 {
2308 fl_table_size = 20;
2309 fl_table_next = 0;
2310 filename_language_table =
2311 xmalloc (fl_table_size * sizeof (*filename_language_table));
2312 add_filename_language (".c", language_c);
2313 add_filename_language (".C", language_cplus);
2314 add_filename_language (".cc", language_cplus);
2315 add_filename_language (".cp", language_cplus);
2316 add_filename_language (".cpp", language_cplus);
2317 add_filename_language (".cxx", language_cplus);
2318 add_filename_language (".c++", language_cplus);
2319 add_filename_language (".java", language_java);
2320 add_filename_language (".class", language_java);
2321 add_filename_language (".m", language_objc);
2322 add_filename_language (".f", language_fortran);
2323 add_filename_language (".F", language_fortran);
2324 add_filename_language (".s", language_asm);
2325 add_filename_language (".S", language_asm);
2326 add_filename_language (".pas", language_pascal);
2327 add_filename_language (".p", language_pascal);
2328 add_filename_language (".pp", language_pascal);
2329 add_filename_language (".adb", language_ada);
2330 add_filename_language (".ads", language_ada);
2331 add_filename_language (".a", language_ada);
2332 add_filename_language (".ada", language_ada);
2333 }
2334 }
2335
2336 enum language
2337 deduce_language_from_filename (char *filename)
2338 {
2339 int i;
2340 char *cp;
2341
2342 if (filename != NULL)
2343 if ((cp = strrchr (filename, '.')) != NULL)
2344 for (i = 0; i < fl_table_next; i++)
2345 if (strcmp (cp, filename_language_table[i].ext) == 0)
2346 return filename_language_table[i].lang;
2347
2348 return language_unknown;
2349 }
2350 \f
2351 /* allocate_symtab:
2352
2353 Allocate and partly initialize a new symbol table. Return a pointer
2354 to it. error() if no space.
2355
2356 Caller must set these fields:
2357 LINETABLE(symtab)
2358 symtab->blockvector
2359 symtab->dirname
2360 symtab->free_code
2361 symtab->free_ptr
2362 possibly free_named_symtabs (symtab->filename);
2363 */
2364
2365 struct symtab *
2366 allocate_symtab (char *filename, struct objfile *objfile)
2367 {
2368 struct symtab *symtab;
2369
2370 symtab = (struct symtab *)
2371 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2372 memset (symtab, 0, sizeof (*symtab));
2373 symtab->filename = obsavestring (filename, strlen (filename),
2374 &objfile->objfile_obstack);
2375 symtab->fullname = NULL;
2376 symtab->language = deduce_language_from_filename (filename);
2377 symtab->debugformat = obsavestring ("unknown", 7,
2378 &objfile->objfile_obstack);
2379
2380 /* Hook it to the objfile it comes from */
2381
2382 symtab->objfile = objfile;
2383 symtab->next = objfile->symtabs;
2384 objfile->symtabs = symtab;
2385
2386 /* FIXME: This should go away. It is only defined for the Z8000,
2387 and the Z8000 definition of this macro doesn't have anything to
2388 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2389 here for convenience. */
2390 #ifdef INIT_EXTRA_SYMTAB_INFO
2391 INIT_EXTRA_SYMTAB_INFO (symtab);
2392 #endif
2393
2394 return (symtab);
2395 }
2396
2397 struct partial_symtab *
2398 allocate_psymtab (char *filename, struct objfile *objfile)
2399 {
2400 struct partial_symtab *psymtab;
2401
2402 if (objfile->free_psymtabs)
2403 {
2404 psymtab = objfile->free_psymtabs;
2405 objfile->free_psymtabs = psymtab->next;
2406 }
2407 else
2408 psymtab = (struct partial_symtab *)
2409 obstack_alloc (&objfile->objfile_obstack,
2410 sizeof (struct partial_symtab));
2411
2412 memset (psymtab, 0, sizeof (struct partial_symtab));
2413 psymtab->filename = obsavestring (filename, strlen (filename),
2414 &objfile->objfile_obstack);
2415 psymtab->symtab = NULL;
2416
2417 /* Prepend it to the psymtab list for the objfile it belongs to.
2418 Psymtabs are searched in most recent inserted -> least recent
2419 inserted order. */
2420
2421 psymtab->objfile = objfile;
2422 psymtab->next = objfile->psymtabs;
2423 objfile->psymtabs = psymtab;
2424 #if 0
2425 {
2426 struct partial_symtab **prev_pst;
2427 psymtab->objfile = objfile;
2428 psymtab->next = NULL;
2429 prev_pst = &(objfile->psymtabs);
2430 while ((*prev_pst) != NULL)
2431 prev_pst = &((*prev_pst)->next);
2432 (*prev_pst) = psymtab;
2433 }
2434 #endif
2435
2436 return (psymtab);
2437 }
2438
2439 void
2440 discard_psymtab (struct partial_symtab *pst)
2441 {
2442 struct partial_symtab **prev_pst;
2443
2444 /* From dbxread.c:
2445 Empty psymtabs happen as a result of header files which don't
2446 have any symbols in them. There can be a lot of them. But this
2447 check is wrong, in that a psymtab with N_SLINE entries but
2448 nothing else is not empty, but we don't realize that. Fixing
2449 that without slowing things down might be tricky. */
2450
2451 /* First, snip it out of the psymtab chain */
2452
2453 prev_pst = &(pst->objfile->psymtabs);
2454 while ((*prev_pst) != pst)
2455 prev_pst = &((*prev_pst)->next);
2456 (*prev_pst) = pst->next;
2457
2458 /* Next, put it on a free list for recycling */
2459
2460 pst->next = pst->objfile->free_psymtabs;
2461 pst->objfile->free_psymtabs = pst;
2462 }
2463 \f
2464
2465 /* Reset all data structures in gdb which may contain references to symbol
2466 table data. */
2467
2468 void
2469 clear_symtab_users (void)
2470 {
2471 /* Someday, we should do better than this, by only blowing away
2472 the things that really need to be blown. */
2473
2474 /* Clear the "current" symtab first, because it is no longer valid.
2475 breakpoint_re_set may try to access the current symtab. */
2476 clear_current_source_symtab_and_line ();
2477
2478 clear_value_history ();
2479 clear_displays ();
2480 clear_internalvars ();
2481 breakpoint_re_set ();
2482 set_default_breakpoint (0, 0, 0, 0);
2483 clear_pc_function_cache ();
2484 if (deprecated_target_new_objfile_hook)
2485 deprecated_target_new_objfile_hook (NULL);
2486 }
2487
2488 static void
2489 clear_symtab_users_cleanup (void *ignore)
2490 {
2491 clear_symtab_users ();
2492 }
2493
2494 /* clear_symtab_users_once:
2495
2496 This function is run after symbol reading, or from a cleanup.
2497 If an old symbol table was obsoleted, the old symbol table
2498 has been blown away, but the other GDB data structures that may
2499 reference it have not yet been cleared or re-directed. (The old
2500 symtab was zapped, and the cleanup queued, in free_named_symtab()
2501 below.)
2502
2503 This function can be queued N times as a cleanup, or called
2504 directly; it will do all the work the first time, and then will be a
2505 no-op until the next time it is queued. This works by bumping a
2506 counter at queueing time. Much later when the cleanup is run, or at
2507 the end of symbol processing (in case the cleanup is discarded), if
2508 the queued count is greater than the "done-count", we do the work
2509 and set the done-count to the queued count. If the queued count is
2510 less than or equal to the done-count, we just ignore the call. This
2511 is needed because reading a single .o file will often replace many
2512 symtabs (one per .h file, for example), and we don't want to reset
2513 the breakpoints N times in the user's face.
2514
2515 The reason we both queue a cleanup, and call it directly after symbol
2516 reading, is because the cleanup protects us in case of errors, but is
2517 discarded if symbol reading is successful. */
2518
2519 #if 0
2520 /* FIXME: As free_named_symtabs is currently a big noop this function
2521 is no longer needed. */
2522 static void clear_symtab_users_once (void);
2523
2524 static int clear_symtab_users_queued;
2525 static int clear_symtab_users_done;
2526
2527 static void
2528 clear_symtab_users_once (void)
2529 {
2530 /* Enforce once-per-`do_cleanups'-semantics */
2531 if (clear_symtab_users_queued <= clear_symtab_users_done)
2532 return;
2533 clear_symtab_users_done = clear_symtab_users_queued;
2534
2535 clear_symtab_users ();
2536 }
2537 #endif
2538
2539 /* Delete the specified psymtab, and any others that reference it. */
2540
2541 static void
2542 cashier_psymtab (struct partial_symtab *pst)
2543 {
2544 struct partial_symtab *ps, *pprev = NULL;
2545 int i;
2546
2547 /* Find its previous psymtab in the chain */
2548 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2549 {
2550 if (ps == pst)
2551 break;
2552 pprev = ps;
2553 }
2554
2555 if (ps)
2556 {
2557 /* Unhook it from the chain. */
2558 if (ps == pst->objfile->psymtabs)
2559 pst->objfile->psymtabs = ps->next;
2560 else
2561 pprev->next = ps->next;
2562
2563 /* FIXME, we can't conveniently deallocate the entries in the
2564 partial_symbol lists (global_psymbols/static_psymbols) that
2565 this psymtab points to. These just take up space until all
2566 the psymtabs are reclaimed. Ditto the dependencies list and
2567 filename, which are all in the objfile_obstack. */
2568
2569 /* We need to cashier any psymtab that has this one as a dependency... */
2570 again:
2571 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2572 {
2573 for (i = 0; i < ps->number_of_dependencies; i++)
2574 {
2575 if (ps->dependencies[i] == pst)
2576 {
2577 cashier_psymtab (ps);
2578 goto again; /* Must restart, chain has been munged. */
2579 }
2580 }
2581 }
2582 }
2583 }
2584
2585 /* If a symtab or psymtab for filename NAME is found, free it along
2586 with any dependent breakpoints, displays, etc.
2587 Used when loading new versions of object modules with the "add-file"
2588 command. This is only called on the top-level symtab or psymtab's name;
2589 it is not called for subsidiary files such as .h files.
2590
2591 Return value is 1 if we blew away the environment, 0 if not.
2592 FIXME. The return value appears to never be used.
2593
2594 FIXME. I think this is not the best way to do this. We should
2595 work on being gentler to the environment while still cleaning up
2596 all stray pointers into the freed symtab. */
2597
2598 int
2599 free_named_symtabs (char *name)
2600 {
2601 #if 0
2602 /* FIXME: With the new method of each objfile having it's own
2603 psymtab list, this function needs serious rethinking. In particular,
2604 why was it ever necessary to toss psymtabs with specific compilation
2605 unit filenames, as opposed to all psymtabs from a particular symbol
2606 file? -- fnf
2607 Well, the answer is that some systems permit reloading of particular
2608 compilation units. We want to blow away any old info about these
2609 compilation units, regardless of which objfiles they arrived in. --gnu. */
2610
2611 struct symtab *s;
2612 struct symtab *prev;
2613 struct partial_symtab *ps;
2614 struct blockvector *bv;
2615 int blewit = 0;
2616
2617 /* We only wack things if the symbol-reload switch is set. */
2618 if (!symbol_reloading)
2619 return 0;
2620
2621 /* Some symbol formats have trouble providing file names... */
2622 if (name == 0 || *name == '\0')
2623 return 0;
2624
2625 /* Look for a psymtab with the specified name. */
2626
2627 again2:
2628 for (ps = partial_symtab_list; ps; ps = ps->next)
2629 {
2630 if (strcmp (name, ps->filename) == 0)
2631 {
2632 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2633 goto again2; /* Must restart, chain has been munged */
2634 }
2635 }
2636
2637 /* Look for a symtab with the specified name. */
2638
2639 for (s = symtab_list; s; s = s->next)
2640 {
2641 if (strcmp (name, s->filename) == 0)
2642 break;
2643 prev = s;
2644 }
2645
2646 if (s)
2647 {
2648 if (s == symtab_list)
2649 symtab_list = s->next;
2650 else
2651 prev->next = s->next;
2652
2653 /* For now, queue a delete for all breakpoints, displays, etc., whether
2654 or not they depend on the symtab being freed. This should be
2655 changed so that only those data structures affected are deleted. */
2656
2657 /* But don't delete anything if the symtab is empty.
2658 This test is necessary due to a bug in "dbxread.c" that
2659 causes empty symtabs to be created for N_SO symbols that
2660 contain the pathname of the object file. (This problem
2661 has been fixed in GDB 3.9x). */
2662
2663 bv = BLOCKVECTOR (s);
2664 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2665 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2666 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2667 {
2668 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2669 name);
2670 clear_symtab_users_queued++;
2671 make_cleanup (clear_symtab_users_once, 0);
2672 blewit = 1;
2673 }
2674 else
2675 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2676 name);
2677
2678 free_symtab (s);
2679 }
2680 else
2681 {
2682 /* It is still possible that some breakpoints will be affected
2683 even though no symtab was found, since the file might have
2684 been compiled without debugging, and hence not be associated
2685 with a symtab. In order to handle this correctly, we would need
2686 to keep a list of text address ranges for undebuggable files.
2687 For now, we do nothing, since this is a fairly obscure case. */
2688 ;
2689 }
2690
2691 /* FIXME, what about the minimal symbol table? */
2692 return blewit;
2693 #else
2694 return (0);
2695 #endif
2696 }
2697 \f
2698 /* Allocate and partially fill a partial symtab. It will be
2699 completely filled at the end of the symbol list.
2700
2701 FILENAME is the name of the symbol-file we are reading from. */
2702
2703 struct partial_symtab *
2704 start_psymtab_common (struct objfile *objfile,
2705 struct section_offsets *section_offsets, char *filename,
2706 CORE_ADDR textlow, struct partial_symbol **global_syms,
2707 struct partial_symbol **static_syms)
2708 {
2709 struct partial_symtab *psymtab;
2710
2711 psymtab = allocate_psymtab (filename, objfile);
2712 psymtab->section_offsets = section_offsets;
2713 psymtab->textlow = textlow;
2714 psymtab->texthigh = psymtab->textlow; /* default */
2715 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2716 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2717 return (psymtab);
2718 }
2719 \f
2720 /* Add a symbol with a long value to a psymtab.
2721 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2722 Return the partial symbol that has been added. */
2723
2724 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2725 symbol is so that callers can get access to the symbol's demangled
2726 name, which they don't have any cheap way to determine otherwise.
2727 (Currenly, dwarf2read.c is the only file who uses that information,
2728 though it's possible that other readers might in the future.)
2729 Elena wasn't thrilled about that, and I don't blame her, but we
2730 couldn't come up with a better way to get that information. If
2731 it's needed in other situations, we could consider breaking up
2732 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2733 cache. */
2734
2735 const struct partial_symbol *
2736 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2737 enum address_class class,
2738 struct psymbol_allocation_list *list, long val, /* Value as a long */
2739 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2740 enum language language, struct objfile *objfile)
2741 {
2742 struct partial_symbol *psym;
2743 char *buf = alloca (namelength + 1);
2744 /* psymbol is static so that there will be no uninitialized gaps in the
2745 structure which might contain random data, causing cache misses in
2746 bcache. */
2747 static struct partial_symbol psymbol;
2748
2749 /* Create local copy of the partial symbol */
2750 memcpy (buf, name, namelength);
2751 buf[namelength] = '\0';
2752 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2753 if (val != 0)
2754 {
2755 SYMBOL_VALUE (&psymbol) = val;
2756 }
2757 else
2758 {
2759 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2760 }
2761 SYMBOL_SECTION (&psymbol) = 0;
2762 SYMBOL_LANGUAGE (&psymbol) = language;
2763 PSYMBOL_DOMAIN (&psymbol) = domain;
2764 PSYMBOL_CLASS (&psymbol) = class;
2765
2766 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2767
2768 /* Stash the partial symbol away in the cache */
2769 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2770 objfile->psymbol_cache);
2771
2772 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2773 if (list->next >= list->list + list->size)
2774 {
2775 extend_psymbol_list (list, objfile);
2776 }
2777 *list->next++ = psym;
2778 OBJSTAT (objfile, n_psyms++);
2779
2780 return psym;
2781 }
2782
2783 /* Add a symbol with a long value to a psymtab. This differs from
2784 * add_psymbol_to_list above in taking both a mangled and a demangled
2785 * name. */
2786
2787 void
2788 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2789 int dem_namelength, domain_enum domain,
2790 enum address_class class,
2791 struct psymbol_allocation_list *list, long val, /* Value as a long */
2792 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2793 enum language language,
2794 struct objfile *objfile)
2795 {
2796 struct partial_symbol *psym;
2797 char *buf = alloca (namelength + 1);
2798 /* psymbol is static so that there will be no uninitialized gaps in the
2799 structure which might contain random data, causing cache misses in
2800 bcache. */
2801 static struct partial_symbol psymbol;
2802
2803 /* Create local copy of the partial symbol */
2804
2805 memcpy (buf, name, namelength);
2806 buf[namelength] = '\0';
2807 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2808 objfile->psymbol_cache);
2809
2810 buf = alloca (dem_namelength + 1);
2811 memcpy (buf, dem_name, dem_namelength);
2812 buf[dem_namelength] = '\0';
2813
2814 switch (language)
2815 {
2816 case language_c:
2817 case language_cplus:
2818 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2819 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2820 break;
2821 /* FIXME What should be done for the default case? Ignoring for now. */
2822 }
2823
2824 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2825 if (val != 0)
2826 {
2827 SYMBOL_VALUE (&psymbol) = val;
2828 }
2829 else
2830 {
2831 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2832 }
2833 SYMBOL_SECTION (&psymbol) = 0;
2834 SYMBOL_LANGUAGE (&psymbol) = language;
2835 PSYMBOL_DOMAIN (&psymbol) = domain;
2836 PSYMBOL_CLASS (&psymbol) = class;
2837 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2838
2839 /* Stash the partial symbol away in the cache */
2840 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2841 objfile->psymbol_cache);
2842
2843 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2844 if (list->next >= list->list + list->size)
2845 {
2846 extend_psymbol_list (list, objfile);
2847 }
2848 *list->next++ = psym;
2849 OBJSTAT (objfile, n_psyms++);
2850 }
2851
2852 /* Initialize storage for partial symbols. */
2853
2854 void
2855 init_psymbol_list (struct objfile *objfile, int total_symbols)
2856 {
2857 /* Free any previously allocated psymbol lists. */
2858
2859 if (objfile->global_psymbols.list)
2860 {
2861 xfree (objfile->global_psymbols.list);
2862 }
2863 if (objfile->static_psymbols.list)
2864 {
2865 xfree (objfile->static_psymbols.list);
2866 }
2867
2868 /* Current best guess is that approximately a twentieth
2869 of the total symbols (in a debugging file) are global or static
2870 oriented symbols */
2871
2872 objfile->global_psymbols.size = total_symbols / 10;
2873 objfile->static_psymbols.size = total_symbols / 10;
2874
2875 if (objfile->global_psymbols.size > 0)
2876 {
2877 objfile->global_psymbols.next =
2878 objfile->global_psymbols.list = (struct partial_symbol **)
2879 xmalloc ((objfile->global_psymbols.size
2880 * sizeof (struct partial_symbol *)));
2881 }
2882 if (objfile->static_psymbols.size > 0)
2883 {
2884 objfile->static_psymbols.next =
2885 objfile->static_psymbols.list = (struct partial_symbol **)
2886 xmalloc ((objfile->static_psymbols.size
2887 * sizeof (struct partial_symbol *)));
2888 }
2889 }
2890
2891 /* OVERLAYS:
2892 The following code implements an abstraction for debugging overlay sections.
2893
2894 The target model is as follows:
2895 1) The gnu linker will permit multiple sections to be mapped into the
2896 same VMA, each with its own unique LMA (or load address).
2897 2) It is assumed that some runtime mechanism exists for mapping the
2898 sections, one by one, from the load address into the VMA address.
2899 3) This code provides a mechanism for gdb to keep track of which
2900 sections should be considered to be mapped from the VMA to the LMA.
2901 This information is used for symbol lookup, and memory read/write.
2902 For instance, if a section has been mapped then its contents
2903 should be read from the VMA, otherwise from the LMA.
2904
2905 Two levels of debugger support for overlays are available. One is
2906 "manual", in which the debugger relies on the user to tell it which
2907 overlays are currently mapped. This level of support is
2908 implemented entirely in the core debugger, and the information about
2909 whether a section is mapped is kept in the objfile->obj_section table.
2910
2911 The second level of support is "automatic", and is only available if
2912 the target-specific code provides functionality to read the target's
2913 overlay mapping table, and translate its contents for the debugger
2914 (by updating the mapped state information in the obj_section tables).
2915
2916 The interface is as follows:
2917 User commands:
2918 overlay map <name> -- tell gdb to consider this section mapped
2919 overlay unmap <name> -- tell gdb to consider this section unmapped
2920 overlay list -- list the sections that GDB thinks are mapped
2921 overlay read-target -- get the target's state of what's mapped
2922 overlay off/manual/auto -- set overlay debugging state
2923 Functional interface:
2924 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2925 section, return that section.
2926 find_pc_overlay(pc): find any overlay section that contains
2927 the pc, either in its VMA or its LMA
2928 overlay_is_mapped(sect): true if overlay is marked as mapped
2929 section_is_overlay(sect): true if section's VMA != LMA
2930 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2931 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2932 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2933 overlay_mapped_address(...): map an address from section's LMA to VMA
2934 overlay_unmapped_address(...): map an address from section's VMA to LMA
2935 symbol_overlayed_address(...): Return a "current" address for symbol:
2936 either in VMA or LMA depending on whether
2937 the symbol's section is currently mapped
2938 */
2939
2940 /* Overlay debugging state: */
2941
2942 enum overlay_debugging_state overlay_debugging = ovly_off;
2943 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2944
2945 /* Target vector for refreshing overlay mapped state */
2946 static void simple_overlay_update (struct obj_section *);
2947 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2948
2949 /* Function: section_is_overlay (SECTION)
2950 Returns true if SECTION has VMA not equal to LMA, ie.
2951 SECTION is loaded at an address different from where it will "run". */
2952
2953 int
2954 section_is_overlay (asection *section)
2955 {
2956 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2957
2958 if (overlay_debugging)
2959 if (section && section->lma != 0 &&
2960 section->vma != section->lma)
2961 return 1;
2962
2963 return 0;
2964 }
2965
2966 /* Function: overlay_invalidate_all (void)
2967 Invalidate the mapped state of all overlay sections (mark it as stale). */
2968
2969 static void
2970 overlay_invalidate_all (void)
2971 {
2972 struct objfile *objfile;
2973 struct obj_section *sect;
2974
2975 ALL_OBJSECTIONS (objfile, sect)
2976 if (section_is_overlay (sect->the_bfd_section))
2977 sect->ovly_mapped = -1;
2978 }
2979
2980 /* Function: overlay_is_mapped (SECTION)
2981 Returns true if section is an overlay, and is currently mapped.
2982 Private: public access is thru function section_is_mapped.
2983
2984 Access to the ovly_mapped flag is restricted to this function, so
2985 that we can do automatic update. If the global flag
2986 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2987 overlay_invalidate_all. If the mapped state of the particular
2988 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2989
2990 static int
2991 overlay_is_mapped (struct obj_section *osect)
2992 {
2993 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2994 return 0;
2995
2996 switch (overlay_debugging)
2997 {
2998 default:
2999 case ovly_off:
3000 return 0; /* overlay debugging off */
3001 case ovly_auto: /* overlay debugging automatic */
3002 /* Unles there is a target_overlay_update function,
3003 there's really nothing useful to do here (can't really go auto) */
3004 if (target_overlay_update)
3005 {
3006 if (overlay_cache_invalid)
3007 {
3008 overlay_invalidate_all ();
3009 overlay_cache_invalid = 0;
3010 }
3011 if (osect->ovly_mapped == -1)
3012 (*target_overlay_update) (osect);
3013 }
3014 /* fall thru to manual case */
3015 case ovly_on: /* overlay debugging manual */
3016 return osect->ovly_mapped == 1;
3017 }
3018 }
3019
3020 /* Function: section_is_mapped
3021 Returns true if section is an overlay, and is currently mapped. */
3022
3023 int
3024 section_is_mapped (asection *section)
3025 {
3026 struct objfile *objfile;
3027 struct obj_section *osect;
3028
3029 if (overlay_debugging)
3030 if (section && section_is_overlay (section))
3031 ALL_OBJSECTIONS (objfile, osect)
3032 if (osect->the_bfd_section == section)
3033 return overlay_is_mapped (osect);
3034
3035 return 0;
3036 }
3037
3038 /* Function: pc_in_unmapped_range
3039 If PC falls into the lma range of SECTION, return true, else false. */
3040
3041 CORE_ADDR
3042 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3043 {
3044 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3045
3046 int size;
3047
3048 if (overlay_debugging)
3049 if (section && section_is_overlay (section))
3050 {
3051 size = bfd_get_section_size (section);
3052 if (section->lma <= pc && pc < section->lma + size)
3053 return 1;
3054 }
3055 return 0;
3056 }
3057
3058 /* Function: pc_in_mapped_range
3059 If PC falls into the vma range of SECTION, return true, else false. */
3060
3061 CORE_ADDR
3062 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3063 {
3064 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3065
3066 int size;
3067
3068 if (overlay_debugging)
3069 if (section && section_is_overlay (section))
3070 {
3071 size = bfd_get_section_size (section);
3072 if (section->vma <= pc && pc < section->vma + size)
3073 return 1;
3074 }
3075 return 0;
3076 }
3077
3078
3079 /* Return true if the mapped ranges of sections A and B overlap, false
3080 otherwise. */
3081 static int
3082 sections_overlap (asection *a, asection *b)
3083 {
3084 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3085
3086 CORE_ADDR a_start = a->vma;
3087 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3088 CORE_ADDR b_start = b->vma;
3089 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3090
3091 return (a_start < b_end && b_start < a_end);
3092 }
3093
3094 /* Function: overlay_unmapped_address (PC, SECTION)
3095 Returns the address corresponding to PC in the unmapped (load) range.
3096 May be the same as PC. */
3097
3098 CORE_ADDR
3099 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3100 {
3101 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3102
3103 if (overlay_debugging)
3104 if (section && section_is_overlay (section) &&
3105 pc_in_mapped_range (pc, section))
3106 return pc + section->lma - section->vma;
3107
3108 return pc;
3109 }
3110
3111 /* Function: overlay_mapped_address (PC, SECTION)
3112 Returns the address corresponding to PC in the mapped (runtime) range.
3113 May be the same as PC. */
3114
3115 CORE_ADDR
3116 overlay_mapped_address (CORE_ADDR pc, asection *section)
3117 {
3118 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3119
3120 if (overlay_debugging)
3121 if (section && section_is_overlay (section) &&
3122 pc_in_unmapped_range (pc, section))
3123 return pc + section->vma - section->lma;
3124
3125 return pc;
3126 }
3127
3128
3129 /* Function: symbol_overlayed_address
3130 Return one of two addresses (relative to the VMA or to the LMA),
3131 depending on whether the section is mapped or not. */
3132
3133 CORE_ADDR
3134 symbol_overlayed_address (CORE_ADDR address, asection *section)
3135 {
3136 if (overlay_debugging)
3137 {
3138 /* If the symbol has no section, just return its regular address. */
3139 if (section == 0)
3140 return address;
3141 /* If the symbol's section is not an overlay, just return its address */
3142 if (!section_is_overlay (section))
3143 return address;
3144 /* If the symbol's section is mapped, just return its address */
3145 if (section_is_mapped (section))
3146 return address;
3147 /*
3148 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3149 * then return its LOADED address rather than its vma address!!
3150 */
3151 return overlay_unmapped_address (address, section);
3152 }
3153 return address;
3154 }
3155
3156 /* Function: find_pc_overlay (PC)
3157 Return the best-match overlay section for PC:
3158 If PC matches a mapped overlay section's VMA, return that section.
3159 Else if PC matches an unmapped section's VMA, return that section.
3160 Else if PC matches an unmapped section's LMA, return that section. */
3161
3162 asection *
3163 find_pc_overlay (CORE_ADDR pc)
3164 {
3165 struct objfile *objfile;
3166 struct obj_section *osect, *best_match = NULL;
3167
3168 if (overlay_debugging)
3169 ALL_OBJSECTIONS (objfile, osect)
3170 if (section_is_overlay (osect->the_bfd_section))
3171 {
3172 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3173 {
3174 if (overlay_is_mapped (osect))
3175 return osect->the_bfd_section;
3176 else
3177 best_match = osect;
3178 }
3179 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3180 best_match = osect;
3181 }
3182 return best_match ? best_match->the_bfd_section : NULL;
3183 }
3184
3185 /* Function: find_pc_mapped_section (PC)
3186 If PC falls into the VMA address range of an overlay section that is
3187 currently marked as MAPPED, return that section. Else return NULL. */
3188
3189 asection *
3190 find_pc_mapped_section (CORE_ADDR pc)
3191 {
3192 struct objfile *objfile;
3193 struct obj_section *osect;
3194
3195 if (overlay_debugging)
3196 ALL_OBJSECTIONS (objfile, osect)
3197 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3198 overlay_is_mapped (osect))
3199 return osect->the_bfd_section;
3200
3201 return NULL;
3202 }
3203
3204 /* Function: list_overlays_command
3205 Print a list of mapped sections and their PC ranges */
3206
3207 void
3208 list_overlays_command (char *args, int from_tty)
3209 {
3210 int nmapped = 0;
3211 struct objfile *objfile;
3212 struct obj_section *osect;
3213
3214 if (overlay_debugging)
3215 ALL_OBJSECTIONS (objfile, osect)
3216 if (overlay_is_mapped (osect))
3217 {
3218 const char *name;
3219 bfd_vma lma, vma;
3220 int size;
3221
3222 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3223 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3224 size = bfd_get_section_size (osect->the_bfd_section);
3225 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3226
3227 printf_filtered ("Section %s, loaded at ", name);
3228 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3229 puts_filtered (" - ");
3230 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3231 printf_filtered (", mapped at ");
3232 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3233 puts_filtered (" - ");
3234 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3235 puts_filtered ("\n");
3236
3237 nmapped++;
3238 }
3239 if (nmapped == 0)
3240 printf_filtered (_("No sections are mapped.\n"));
3241 }
3242
3243 /* Function: map_overlay_command
3244 Mark the named section as mapped (ie. residing at its VMA address). */
3245
3246 void
3247 map_overlay_command (char *args, int from_tty)
3248 {
3249 struct objfile *objfile, *objfile2;
3250 struct obj_section *sec, *sec2;
3251 asection *bfdsec;
3252
3253 if (!overlay_debugging)
3254 error (_("\
3255 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3256 the 'overlay manual' command."));
3257
3258 if (args == 0 || *args == 0)
3259 error (_("Argument required: name of an overlay section"));
3260
3261 /* First, find a section matching the user supplied argument */
3262 ALL_OBJSECTIONS (objfile, sec)
3263 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3264 {
3265 /* Now, check to see if the section is an overlay. */
3266 bfdsec = sec->the_bfd_section;
3267 if (!section_is_overlay (bfdsec))
3268 continue; /* not an overlay section */
3269
3270 /* Mark the overlay as "mapped" */
3271 sec->ovly_mapped = 1;
3272
3273 /* Next, make a pass and unmap any sections that are
3274 overlapped by this new section: */
3275 ALL_OBJSECTIONS (objfile2, sec2)
3276 if (sec2->ovly_mapped
3277 && sec != sec2
3278 && sec->the_bfd_section != sec2->the_bfd_section
3279 && sections_overlap (sec->the_bfd_section,
3280 sec2->the_bfd_section))
3281 {
3282 if (info_verbose)
3283 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3284 bfd_section_name (objfile->obfd,
3285 sec2->the_bfd_section));
3286 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3287 }
3288 return;
3289 }
3290 error (_("No overlay section called %s"), args);
3291 }
3292
3293 /* Function: unmap_overlay_command
3294 Mark the overlay section as unmapped
3295 (ie. resident in its LMA address range, rather than the VMA range). */
3296
3297 void
3298 unmap_overlay_command (char *args, int from_tty)
3299 {
3300 struct objfile *objfile;
3301 struct obj_section *sec;
3302
3303 if (!overlay_debugging)
3304 error (_("\
3305 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3306 the 'overlay manual' command."));
3307
3308 if (args == 0 || *args == 0)
3309 error (_("Argument required: name of an overlay section"));
3310
3311 /* First, find a section matching the user supplied argument */
3312 ALL_OBJSECTIONS (objfile, sec)
3313 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3314 {
3315 if (!sec->ovly_mapped)
3316 error (_("Section %s is not mapped"), args);
3317 sec->ovly_mapped = 0;
3318 return;
3319 }
3320 error (_("No overlay section called %s"), args);
3321 }
3322
3323 /* Function: overlay_auto_command
3324 A utility command to turn on overlay debugging.
3325 Possibly this should be done via a set/show command. */
3326
3327 static void
3328 overlay_auto_command (char *args, int from_tty)
3329 {
3330 overlay_debugging = ovly_auto;
3331 enable_overlay_breakpoints ();
3332 if (info_verbose)
3333 printf_unfiltered (_("Automatic overlay debugging enabled."));
3334 }
3335
3336 /* Function: overlay_manual_command
3337 A utility command to turn on overlay debugging.
3338 Possibly this should be done via a set/show command. */
3339
3340 static void
3341 overlay_manual_command (char *args, int from_tty)
3342 {
3343 overlay_debugging = ovly_on;
3344 disable_overlay_breakpoints ();
3345 if (info_verbose)
3346 printf_unfiltered (_("Overlay debugging enabled."));
3347 }
3348
3349 /* Function: overlay_off_command
3350 A utility command to turn on overlay debugging.
3351 Possibly this should be done via a set/show command. */
3352
3353 static void
3354 overlay_off_command (char *args, int from_tty)
3355 {
3356 overlay_debugging = ovly_off;
3357 disable_overlay_breakpoints ();
3358 if (info_verbose)
3359 printf_unfiltered (_("Overlay debugging disabled."));
3360 }
3361
3362 static void
3363 overlay_load_command (char *args, int from_tty)
3364 {
3365 if (target_overlay_update)
3366 (*target_overlay_update) (NULL);
3367 else
3368 error (_("This target does not know how to read its overlay state."));
3369 }
3370
3371 /* Function: overlay_command
3372 A place-holder for a mis-typed command */
3373
3374 /* Command list chain containing all defined "overlay" subcommands. */
3375 struct cmd_list_element *overlaylist;
3376
3377 static void
3378 overlay_command (char *args, int from_tty)
3379 {
3380 printf_unfiltered
3381 ("\"overlay\" must be followed by the name of an overlay command.\n");
3382 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3383 }
3384
3385
3386 /* Target Overlays for the "Simplest" overlay manager:
3387
3388 This is GDB's default target overlay layer. It works with the
3389 minimal overlay manager supplied as an example by Cygnus. The
3390 entry point is via a function pointer "target_overlay_update",
3391 so targets that use a different runtime overlay manager can
3392 substitute their own overlay_update function and take over the
3393 function pointer.
3394
3395 The overlay_update function pokes around in the target's data structures
3396 to see what overlays are mapped, and updates GDB's overlay mapping with
3397 this information.
3398
3399 In this simple implementation, the target data structures are as follows:
3400 unsigned _novlys; /# number of overlay sections #/
3401 unsigned _ovly_table[_novlys][4] = {
3402 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3403 {..., ..., ..., ...},
3404 }
3405 unsigned _novly_regions; /# number of overlay regions #/
3406 unsigned _ovly_region_table[_novly_regions][3] = {
3407 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3408 {..., ..., ...},
3409 }
3410 These functions will attempt to update GDB's mappedness state in the
3411 symbol section table, based on the target's mappedness state.
3412
3413 To do this, we keep a cached copy of the target's _ovly_table, and
3414 attempt to detect when the cached copy is invalidated. The main
3415 entry point is "simple_overlay_update(SECT), which looks up SECT in
3416 the cached table and re-reads only the entry for that section from
3417 the target (whenever possible).
3418 */
3419
3420 /* Cached, dynamically allocated copies of the target data structures: */
3421 static unsigned (*cache_ovly_table)[4] = 0;
3422 #if 0
3423 static unsigned (*cache_ovly_region_table)[3] = 0;
3424 #endif
3425 static unsigned cache_novlys = 0;
3426 #if 0
3427 static unsigned cache_novly_regions = 0;
3428 #endif
3429 static CORE_ADDR cache_ovly_table_base = 0;
3430 #if 0
3431 static CORE_ADDR cache_ovly_region_table_base = 0;
3432 #endif
3433 enum ovly_index
3434 {
3435 VMA, SIZE, LMA, MAPPED
3436 };
3437 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3438
3439 /* Throw away the cached copy of _ovly_table */
3440 static void
3441 simple_free_overlay_table (void)
3442 {
3443 if (cache_ovly_table)
3444 xfree (cache_ovly_table);
3445 cache_novlys = 0;
3446 cache_ovly_table = NULL;
3447 cache_ovly_table_base = 0;
3448 }
3449
3450 #if 0
3451 /* Throw away the cached copy of _ovly_region_table */
3452 static void
3453 simple_free_overlay_region_table (void)
3454 {
3455 if (cache_ovly_region_table)
3456 xfree (cache_ovly_region_table);
3457 cache_novly_regions = 0;
3458 cache_ovly_region_table = NULL;
3459 cache_ovly_region_table_base = 0;
3460 }
3461 #endif
3462
3463 /* Read an array of ints from the target into a local buffer.
3464 Convert to host order. int LEN is number of ints */
3465 static void
3466 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3467 {
3468 /* FIXME (alloca): Not safe if array is very large. */
3469 char *buf = alloca (len * TARGET_LONG_BYTES);
3470 int i;
3471
3472 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3473 for (i = 0; i < len; i++)
3474 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3475 TARGET_LONG_BYTES);
3476 }
3477
3478 /* Find and grab a copy of the target _ovly_table
3479 (and _novlys, which is needed for the table's size) */
3480 static int
3481 simple_read_overlay_table (void)
3482 {
3483 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3484
3485 simple_free_overlay_table ();
3486 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3487 if (! novlys_msym)
3488 {
3489 error (_("Error reading inferior's overlay table: "
3490 "couldn't find `_novlys' variable\n"
3491 "in inferior. Use `overlay manual' mode."));
3492 return 0;
3493 }
3494
3495 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3496 if (! ovly_table_msym)
3497 {
3498 error (_("Error reading inferior's overlay table: couldn't find "
3499 "`_ovly_table' array\n"
3500 "in inferior. Use `overlay manual' mode."));
3501 return 0;
3502 }
3503
3504 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3505 cache_ovly_table
3506 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3507 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3508 read_target_long_array (cache_ovly_table_base,
3509 (int *) cache_ovly_table,
3510 cache_novlys * 4);
3511
3512 return 1; /* SUCCESS */
3513 }
3514
3515 #if 0
3516 /* Find and grab a copy of the target _ovly_region_table
3517 (and _novly_regions, which is needed for the table's size) */
3518 static int
3519 simple_read_overlay_region_table (void)
3520 {
3521 struct minimal_symbol *msym;
3522
3523 simple_free_overlay_region_table ();
3524 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3525 if (msym != NULL)
3526 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3527 else
3528 return 0; /* failure */
3529 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3530 if (cache_ovly_region_table != NULL)
3531 {
3532 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3533 if (msym != NULL)
3534 {
3535 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3536 read_target_long_array (cache_ovly_region_table_base,
3537 (int *) cache_ovly_region_table,
3538 cache_novly_regions * 3);
3539 }
3540 else
3541 return 0; /* failure */
3542 }
3543 else
3544 return 0; /* failure */
3545 return 1; /* SUCCESS */
3546 }
3547 #endif
3548
3549 /* Function: simple_overlay_update_1
3550 A helper function for simple_overlay_update. Assuming a cached copy
3551 of _ovly_table exists, look through it to find an entry whose vma,
3552 lma and size match those of OSECT. Re-read the entry and make sure
3553 it still matches OSECT (else the table may no longer be valid).
3554 Set OSECT's mapped state to match the entry. Return: 1 for
3555 success, 0 for failure. */
3556
3557 static int
3558 simple_overlay_update_1 (struct obj_section *osect)
3559 {
3560 int i, size;
3561 bfd *obfd = osect->objfile->obfd;
3562 asection *bsect = osect->the_bfd_section;
3563
3564 size = bfd_get_section_size (osect->the_bfd_section);
3565 for (i = 0; i < cache_novlys; i++)
3566 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3567 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3568 /* && cache_ovly_table[i][SIZE] == size */ )
3569 {
3570 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3571 (int *) cache_ovly_table[i], 4);
3572 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3573 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3574 /* && cache_ovly_table[i][SIZE] == size */ )
3575 {
3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3577 return 1;
3578 }
3579 else /* Warning! Warning! Target's ovly table has changed! */
3580 return 0;
3581 }
3582 return 0;
3583 }
3584
3585 /* Function: simple_overlay_update
3586 If OSECT is NULL, then update all sections' mapped state
3587 (after re-reading the entire target _ovly_table).
3588 If OSECT is non-NULL, then try to find a matching entry in the
3589 cached ovly_table and update only OSECT's mapped state.
3590 If a cached entry can't be found or the cache isn't valid, then
3591 re-read the entire cache, and go ahead and update all sections. */
3592
3593 static void
3594 simple_overlay_update (struct obj_section *osect)
3595 {
3596 struct objfile *objfile;
3597
3598 /* Were we given an osect to look up? NULL means do all of them. */
3599 if (osect)
3600 /* Have we got a cached copy of the target's overlay table? */
3601 if (cache_ovly_table != NULL)
3602 /* Does its cached location match what's currently in the symtab? */
3603 if (cache_ovly_table_base ==
3604 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3605 /* Then go ahead and try to look up this single section in the cache */
3606 if (simple_overlay_update_1 (osect))
3607 /* Found it! We're done. */
3608 return;
3609
3610 /* Cached table no good: need to read the entire table anew.
3611 Or else we want all the sections, in which case it's actually
3612 more efficient to read the whole table in one block anyway. */
3613
3614 if (! simple_read_overlay_table ())
3615 return;
3616
3617 /* Now may as well update all sections, even if only one was requested. */
3618 ALL_OBJSECTIONS (objfile, osect)
3619 if (section_is_overlay (osect->the_bfd_section))
3620 {
3621 int i, size;
3622 bfd *obfd = osect->objfile->obfd;
3623 asection *bsect = osect->the_bfd_section;
3624
3625 size = bfd_get_section_size (bsect);
3626 for (i = 0; i < cache_novlys; i++)
3627 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3628 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3629 /* && cache_ovly_table[i][SIZE] == size */ )
3630 { /* obj_section matches i'th entry in ovly_table */
3631 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3632 break; /* finished with inner for loop: break out */
3633 }
3634 }
3635 }
3636
3637 /* Set the output sections and output offsets for section SECTP in
3638 ABFD. The relocation code in BFD will read these offsets, so we
3639 need to be sure they're initialized. We map each section to itself,
3640 with no offset; this means that SECTP->vma will be honored. */
3641
3642 static void
3643 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3644 {
3645 sectp->output_section = sectp;
3646 sectp->output_offset = 0;
3647 }
3648
3649 /* Relocate the contents of a debug section SECTP in ABFD. The
3650 contents are stored in BUF if it is non-NULL, or returned in a
3651 malloc'd buffer otherwise.
3652
3653 For some platforms and debug info formats, shared libraries contain
3654 relocations against the debug sections (particularly for DWARF-2;
3655 one affected platform is PowerPC GNU/Linux, although it depends on
3656 the version of the linker in use). Also, ELF object files naturally
3657 have unresolved relocations for their debug sections. We need to apply
3658 the relocations in order to get the locations of symbols correct. */
3659
3660 bfd_byte *
3661 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3662 {
3663 /* We're only interested in debugging sections with relocation
3664 information. */
3665 if ((sectp->flags & SEC_RELOC) == 0)
3666 return NULL;
3667 if ((sectp->flags & SEC_DEBUGGING) == 0)
3668 return NULL;
3669
3670 /* We will handle section offsets properly elsewhere, so relocate as if
3671 all sections begin at 0. */
3672 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3673
3674 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3675 }
3676
3677 void
3678 _initialize_symfile (void)
3679 {
3680 struct cmd_list_element *c;
3681
3682 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3683 Load symbol table from executable file FILE.\n\
3684 The `file' command can also load symbol tables, as well as setting the file\n\
3685 to execute."), &cmdlist);
3686 set_cmd_completer (c, filename_completer);
3687
3688 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3689 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3690 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3691 ADDR is the starting address of the file's text.\n\
3692 The optional arguments are section-name section-address pairs and\n\
3693 should be specified if the data and bss segments are not contiguous\n\
3694 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3695 &cmdlist);
3696 set_cmd_completer (c, filename_completer);
3697
3698 c = add_cmd ("add-shared-symbol-files", class_files,
3699 add_shared_symbol_files_command, _("\
3700 Load the symbols from shared objects in the dynamic linker's link map."),
3701 &cmdlist);
3702 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3703 &cmdlist);
3704
3705 c = add_cmd ("load", class_files, load_command, _("\
3706 Dynamically load FILE into the running program, and record its symbols\n\
3707 for access from GDB."), &cmdlist);
3708 set_cmd_completer (c, filename_completer);
3709
3710 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3711 &symbol_reloading, _("\
3712 Set dynamic symbol table reloading multiple times in one run."), _("\
3713 Show dynamic symbol table reloading multiple times in one run."), NULL,
3714 NULL,
3715 show_symbol_reloading,
3716 &setlist, &showlist);
3717
3718 add_prefix_cmd ("overlay", class_support, overlay_command,
3719 _("Commands for debugging overlays."), &overlaylist,
3720 "overlay ", 0, &cmdlist);
3721
3722 add_com_alias ("ovly", "overlay", class_alias, 1);
3723 add_com_alias ("ov", "overlay", class_alias, 1);
3724
3725 add_cmd ("map-overlay", class_support, map_overlay_command,
3726 _("Assert that an overlay section is mapped."), &overlaylist);
3727
3728 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3729 _("Assert that an overlay section is unmapped."), &overlaylist);
3730
3731 add_cmd ("list-overlays", class_support, list_overlays_command,
3732 _("List mappings of overlay sections."), &overlaylist);
3733
3734 add_cmd ("manual", class_support, overlay_manual_command,
3735 _("Enable overlay debugging."), &overlaylist);
3736 add_cmd ("off", class_support, overlay_off_command,
3737 _("Disable overlay debugging."), &overlaylist);
3738 add_cmd ("auto", class_support, overlay_auto_command,
3739 _("Enable automatic overlay debugging."), &overlaylist);
3740 add_cmd ("load-target", class_support, overlay_load_command,
3741 _("Read the overlay mapping state from the target."), &overlaylist);
3742
3743 /* Filename extension to source language lookup table: */
3744 init_filename_language_table ();
3745 add_setshow_string_noescape_cmd ("extension-language", class_files,
3746 &ext_args, _("\
3747 Set mapping between filename extension and source language."), _("\
3748 Show mapping between filename extension and source language."), _("\
3749 Usage: set extension-language .foo bar"),
3750 set_ext_lang_command,
3751 show_ext_args,
3752 &setlist, &showlist);
3753
3754 add_info ("extensions", info_ext_lang_command,
3755 _("All filename extensions associated with a source language."));
3756
3757 add_setshow_integer_cmd ("download-write-size", class_obscure,
3758 &download_write_size, _("\
3759 Set the write size used when downloading a program."), _("\
3760 Show the write size used when downloading a program."), _("\
3761 Only used when downloading a program onto a remote\n\
3762 target. Specify zero, or a negative value, to disable\n\
3763 blocked writes. The actual size of each transfer is also\n\
3764 limited by the size of the target packet and the memory\n\
3765 cache."),
3766 NULL,
3767 show_download_write_size,
3768 &setlist, &showlist);
3769
3770 debug_file_directory = xstrdup (DEBUGDIR);
3771 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3772 &debug_file_directory, _("\
3773 Set the directory where separate debug symbols are searched for."), _("\
3774 Show the directory where separate debug symbols are searched for."), _("\
3775 Separate debug symbols are first searched for in the same\n\
3776 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3777 and lastly at the path of the directory of the binary with\n\
3778 the global debug-file directory prepended."),
3779 NULL,
3780 show_debug_file_directory,
3781 &setlist, &showlist);
3782 }