gdb: add doc for "set/show debug event-loop"
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190
191 In case of equal vmas, the section with the largest size becomes the
192 lowest-addressed loadable section.
193
194 If the vmas and sizes are equal, the last section is considered the
195 lowest-addressed loadable section. */
196
197 static void
198 find_lowest_section (asection *sect, asection **lowest)
199 {
200 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
201 return;
202 if (!*lowest)
203 *lowest = sect; /* First loadable section */
204 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
205 *lowest = sect; /* A lower loadable section */
206 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
207 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
208 *lowest = sect;
209 }
210
211 /* Build (allocate and populate) a section_addr_info struct from
212 an existing section table. */
213
214 section_addr_info
215 build_section_addr_info_from_section_table (const struct target_section *start,
216 const struct target_section *end)
217 {
218 const struct target_section *stp;
219
220 section_addr_info sap;
221
222 for (stp = start; stp != end; stp++)
223 {
224 struct bfd_section *asect = stp->the_bfd_section;
225 bfd *abfd = asect->owner;
226
227 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
228 && sap.size () < end - start)
229 sap.emplace_back (stp->addr,
230 bfd_section_name (asect),
231 gdb_bfd_section_index (abfd, asect));
232 }
233
234 return sap;
235 }
236
237 /* Create a section_addr_info from section offsets in ABFD. */
238
239 static section_addr_info
240 build_section_addr_info_from_bfd (bfd *abfd)
241 {
242 struct bfd_section *sec;
243
244 section_addr_info sap;
245 for (sec = abfd->sections; sec != NULL; sec = sec->next)
246 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
247 sap.emplace_back (bfd_section_vma (sec),
248 bfd_section_name (sec),
249 gdb_bfd_section_index (abfd, sec));
250
251 return sap;
252 }
253
254 /* Create a section_addr_info from section offsets in OBJFILE. */
255
256 section_addr_info
257 build_section_addr_info_from_objfile (const struct objfile *objfile)
258 {
259 int i;
260
261 /* Before reread_symbols gets rewritten it is not safe to call:
262 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
263 */
264 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
265 for (i = 0; i < sap.size (); i++)
266 {
267 int sectindex = sap[i].sectindex;
268
269 sap[i].addr += objfile->section_offsets[sectindex];
270 }
271 return sap;
272 }
273
274 /* Initialize OBJFILE's sect_index_* members. */
275
276 static void
277 init_objfile_sect_indices (struct objfile *objfile)
278 {
279 asection *sect;
280 int i;
281
282 sect = bfd_get_section_by_name (objfile->obfd, ".text");
283 if (sect)
284 objfile->sect_index_text = sect->index;
285
286 sect = bfd_get_section_by_name (objfile->obfd, ".data");
287 if (sect)
288 objfile->sect_index_data = sect->index;
289
290 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
291 if (sect)
292 objfile->sect_index_bss = sect->index;
293
294 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
295 if (sect)
296 objfile->sect_index_rodata = sect->index;
297
298 /* This is where things get really weird... We MUST have valid
299 indices for the various sect_index_* members or gdb will abort.
300 So if for example, there is no ".text" section, we have to
301 accomodate that. First, check for a file with the standard
302 one or two segments. */
303
304 symfile_find_segment_sections (objfile);
305
306 /* Except when explicitly adding symbol files at some address,
307 section_offsets contains nothing but zeros, so it doesn't matter
308 which slot in section_offsets the individual sect_index_* members
309 index into. So if they are all zero, it is safe to just point
310 all the currently uninitialized indices to the first slot. But
311 beware: if this is the main executable, it may be relocated
312 later, e.g. by the remote qOffsets packet, and then this will
313 be wrong! That's why we try segments first. */
314
315 for (i = 0; i < objfile->section_offsets.size (); i++)
316 {
317 if (objfile->section_offsets[i] != 0)
318 {
319 break;
320 }
321 }
322 if (i == objfile->section_offsets.size ())
323 {
324 if (objfile->sect_index_text == -1)
325 objfile->sect_index_text = 0;
326 if (objfile->sect_index_data == -1)
327 objfile->sect_index_data = 0;
328 if (objfile->sect_index_bss == -1)
329 objfile->sect_index_bss = 0;
330 if (objfile->sect_index_rodata == -1)
331 objfile->sect_index_rodata = 0;
332 }
333 }
334
335 /* Find a unique offset to use for loadable section SECT if
336 the user did not provide an offset. */
337
338 static void
339 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
340 CORE_ADDR &lowest)
341 {
342 CORE_ADDR start_addr;
343 int done;
344 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
345
346 /* We are only interested in allocated sections. */
347 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
348 return;
349
350 /* If the user specified an offset, honor it. */
351 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
352 return;
353
354 /* Otherwise, let's try to find a place for the section. */
355 start_addr = (lowest + align - 1) & -align;
356
357 do {
358 asection *cur_sec;
359
360 done = 1;
361
362 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
363 {
364 int indx = cur_sec->index;
365
366 /* We don't need to compare against ourself. */
367 if (cur_sec == sect)
368 continue;
369
370 /* We can only conflict with allocated sections. */
371 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
372 continue;
373
374 /* If the section offset is 0, either the section has not been placed
375 yet, or it was the lowest section placed (in which case LOWEST
376 will be past its end). */
377 if (offsets[indx] == 0)
378 continue;
379
380 /* If this section would overlap us, then we must move up. */
381 if (start_addr + bfd_section_size (sect) > offsets[indx]
382 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
383 {
384 start_addr = offsets[indx] + bfd_section_size (cur_sec);
385 start_addr = (start_addr + align - 1) & -align;
386 done = 0;
387 break;
388 }
389
390 /* Otherwise, we appear to be OK. So far. */
391 }
392 }
393 while (!done);
394
395 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
396 lowest = start_addr + bfd_section_size (sect);
397 }
398
399 /* Store section_addr_info as prepared (made relative and with SECTINDEX
400 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
401
402 void
403 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
404 const section_addr_info &addrs)
405 {
406 int i;
407
408 section_offsets.assign (section_offsets.size (), 0);
409
410 /* Now calculate offsets for section that were specified by the caller. */
411 for (i = 0; i < addrs.size (); i++)
412 {
413 const struct other_sections *osp;
414
415 osp = &addrs[i];
416 if (osp->sectindex == -1)
417 continue;
418
419 /* Record all sections in offsets. */
420 /* The section_offsets in the objfile are here filled in using
421 the BFD index. */
422 section_offsets[osp->sectindex] = osp->addr;
423 }
424 }
425
426 /* Transform section name S for a name comparison. prelink can split section
427 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
428 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
429 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
430 (`.sbss') section has invalid (increased) virtual address. */
431
432 static const char *
433 addr_section_name (const char *s)
434 {
435 if (strcmp (s, ".dynbss") == 0)
436 return ".bss";
437 if (strcmp (s, ".sdynbss") == 0)
438 return ".sbss";
439
440 return s;
441 }
442
443 /* std::sort comparator for addrs_section_sort. Sort entries in
444 ascending order by their (name, sectindex) pair. sectindex makes
445 the sort by name stable. */
446
447 static bool
448 addrs_section_compar (const struct other_sections *a,
449 const struct other_sections *b)
450 {
451 int retval;
452
453 retval = strcmp (addr_section_name (a->name.c_str ()),
454 addr_section_name (b->name.c_str ()));
455 if (retval != 0)
456 return retval < 0;
457
458 return a->sectindex < b->sectindex;
459 }
460
461 /* Provide sorted array of pointers to sections of ADDRS. */
462
463 static std::vector<const struct other_sections *>
464 addrs_section_sort (const section_addr_info &addrs)
465 {
466 int i;
467
468 std::vector<const struct other_sections *> array (addrs.size ());
469 for (i = 0; i < addrs.size (); i++)
470 array[i] = &addrs[i];
471
472 std::sort (array.begin (), array.end (), addrs_section_compar);
473
474 return array;
475 }
476
477 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
478 also SECTINDEXes specific to ABFD there. This function can be used to
479 rebase ADDRS to start referencing different BFD than before. */
480
481 void
482 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
483 {
484 asection *lower_sect;
485 CORE_ADDR lower_offset;
486 int i;
487
488 /* Find lowest loadable section to be used as starting point for
489 contiguous sections. */
490 lower_sect = NULL;
491 for (asection *iter : gdb_bfd_sections (abfd))
492 find_lowest_section (iter, &lower_sect);
493 if (lower_sect == NULL)
494 {
495 warning (_("no loadable sections found in added symbol-file %s"),
496 bfd_get_filename (abfd));
497 lower_offset = 0;
498 }
499 else
500 lower_offset = bfd_section_vma (lower_sect);
501
502 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
503 in ABFD. Section names are not unique - there can be multiple sections of
504 the same name. Also the sections of the same name do not have to be
505 adjacent to each other. Some sections may be present only in one of the
506 files. Even sections present in both files do not have to be in the same
507 order.
508
509 Use stable sort by name for the sections in both files. Then linearly
510 scan both lists matching as most of the entries as possible. */
511
512 std::vector<const struct other_sections *> addrs_sorted
513 = addrs_section_sort (*addrs);
514
515 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
516 std::vector<const struct other_sections *> abfd_addrs_sorted
517 = addrs_section_sort (abfd_addrs);
518
519 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
520 ABFD_ADDRS_SORTED. */
521
522 std::vector<const struct other_sections *>
523 addrs_to_abfd_addrs (addrs->size (), nullptr);
524
525 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
526 = abfd_addrs_sorted.begin ();
527 for (const other_sections *sect : addrs_sorted)
528 {
529 const char *sect_name = addr_section_name (sect->name.c_str ());
530
531 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
532 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
533 sect_name) < 0)
534 abfd_sorted_iter++;
535
536 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
537 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
538 sect_name) == 0)
539 {
540 int index_in_addrs;
541
542 /* Make the found item directly addressable from ADDRS. */
543 index_in_addrs = sect - addrs->data ();
544 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
545 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
546
547 /* Never use the same ABFD entry twice. */
548 abfd_sorted_iter++;
549 }
550 }
551
552 /* Calculate offsets for the loadable sections.
553 FIXME! Sections must be in order of increasing loadable section
554 so that contiguous sections can use the lower-offset!!!
555
556 Adjust offsets if the segments are not contiguous.
557 If the section is contiguous, its offset should be set to
558 the offset of the highest loadable section lower than it
559 (the loadable section directly below it in memory).
560 this_offset = lower_offset = lower_addr - lower_orig_addr */
561
562 for (i = 0; i < addrs->size (); i++)
563 {
564 const struct other_sections *sect = addrs_to_abfd_addrs[i];
565
566 if (sect)
567 {
568 /* This is the index used by BFD. */
569 (*addrs)[i].sectindex = sect->sectindex;
570
571 if ((*addrs)[i].addr != 0)
572 {
573 (*addrs)[i].addr -= sect->addr;
574 lower_offset = (*addrs)[i].addr;
575 }
576 else
577 (*addrs)[i].addr = lower_offset;
578 }
579 else
580 {
581 /* addr_section_name transformation is not used for SECT_NAME. */
582 const std::string &sect_name = (*addrs)[i].name;
583
584 /* This section does not exist in ABFD, which is normally
585 unexpected and we want to issue a warning.
586
587 However, the ELF prelinker does create a few sections which are
588 marked in the main executable as loadable (they are loaded in
589 memory from the DYNAMIC segment) and yet are not present in
590 separate debug info files. This is fine, and should not cause
591 a warning. Shared libraries contain just the section
592 ".gnu.liblist" but it is not marked as loadable there. There is
593 no other way to identify them than by their name as the sections
594 created by prelink have no special flags.
595
596 For the sections `.bss' and `.sbss' see addr_section_name. */
597
598 if (!(sect_name == ".gnu.liblist"
599 || sect_name == ".gnu.conflict"
600 || (sect_name == ".bss"
601 && i > 0
602 && (*addrs)[i - 1].name == ".dynbss"
603 && addrs_to_abfd_addrs[i - 1] != NULL)
604 || (sect_name == ".sbss"
605 && i > 0
606 && (*addrs)[i - 1].name == ".sdynbss"
607 && addrs_to_abfd_addrs[i - 1] != NULL)))
608 warning (_("section %s not found in %s"), sect_name.c_str (),
609 bfd_get_filename (abfd));
610
611 (*addrs)[i].addr = 0;
612 (*addrs)[i].sectindex = -1;
613 }
614 }
615 }
616
617 /* Parse the user's idea of an offset for dynamic linking, into our idea
618 of how to represent it for fast symbol reading. This is the default
619 version of the sym_fns.sym_offsets function for symbol readers that
620 don't need to do anything special. It allocates a section_offsets table
621 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
622
623 void
624 default_symfile_offsets (struct objfile *objfile,
625 const section_addr_info &addrs)
626 {
627 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
628 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
629
630 /* For relocatable files, all loadable sections will start at zero.
631 The zero is meaningless, so try to pick arbitrary addresses such
632 that no loadable sections overlap. This algorithm is quadratic,
633 but the number of sections in a single object file is generally
634 small. */
635 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
636 {
637 bfd *abfd = objfile->obfd;
638 asection *cur_sec;
639
640 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
641 /* We do not expect this to happen; just skip this step if the
642 relocatable file has a section with an assigned VMA. */
643 if (bfd_section_vma (cur_sec) != 0)
644 break;
645
646 if (cur_sec == NULL)
647 {
648 section_offsets &offsets = objfile->section_offsets;
649
650 /* Pick non-overlapping offsets for sections the user did not
651 place explicitly. */
652 CORE_ADDR lowest = 0;
653 for (asection *sect : gdb_bfd_sections (objfile->obfd))
654 place_section (objfile->obfd, sect, objfile->section_offsets,
655 lowest);
656
657 /* Correctly filling in the section offsets is not quite
658 enough. Relocatable files have two properties that
659 (most) shared objects do not:
660
661 - Their debug information will contain relocations. Some
662 shared libraries do also, but many do not, so this can not
663 be assumed.
664
665 - If there are multiple code sections they will be loaded
666 at different relative addresses in memory than they are
667 in the objfile, since all sections in the file will start
668 at address zero.
669
670 Because GDB has very limited ability to map from an
671 address in debug info to the correct code section,
672 it relies on adding SECT_OFF_TEXT to things which might be
673 code. If we clear all the section offsets, and set the
674 section VMAs instead, then symfile_relocate_debug_section
675 will return meaningful debug information pointing at the
676 correct sections.
677
678 GDB has too many different data structures for section
679 addresses - a bfd, objfile, and so_list all have section
680 tables, as does exec_ops. Some of these could probably
681 be eliminated. */
682
683 for (cur_sec = abfd->sections; cur_sec != NULL;
684 cur_sec = cur_sec->next)
685 {
686 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
687 continue;
688
689 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
690 exec_set_section_address (bfd_get_filename (abfd),
691 cur_sec->index,
692 offsets[cur_sec->index]);
693 offsets[cur_sec->index] = 0;
694 }
695 }
696 }
697
698 /* Remember the bfd indexes for the .text, .data, .bss and
699 .rodata sections. */
700 init_objfile_sect_indices (objfile);
701 }
702
703 /* Divide the file into segments, which are individual relocatable units.
704 This is the default version of the sym_fns.sym_segments function for
705 symbol readers that do not have an explicit representation of segments.
706 It assumes that object files do not have segments, and fully linked
707 files have a single segment. */
708
709 symfile_segment_data_up
710 default_symfile_segments (bfd *abfd)
711 {
712 int num_sections, i;
713 asection *sect;
714 CORE_ADDR low, high;
715
716 /* Relocatable files contain enough information to position each
717 loadable section independently; they should not be relocated
718 in segments. */
719 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
720 return NULL;
721
722 /* Make sure there is at least one loadable section in the file. */
723 for (sect = abfd->sections; sect != NULL; sect = sect->next)
724 {
725 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
726 continue;
727
728 break;
729 }
730 if (sect == NULL)
731 return NULL;
732
733 low = bfd_section_vma (sect);
734 high = low + bfd_section_size (sect);
735
736 symfile_segment_data_up data (new symfile_segment_data);
737
738 num_sections = bfd_count_sections (abfd);
739
740 /* All elements are initialized to 0 (map to no segment). */
741 data->segment_info.resize (num_sections);
742
743 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
744 {
745 CORE_ADDR vma;
746
747 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
748 continue;
749
750 vma = bfd_section_vma (sect);
751 if (vma < low)
752 low = vma;
753 if (vma + bfd_section_size (sect) > high)
754 high = vma + bfd_section_size (sect);
755
756 data->segment_info[i] = 1;
757 }
758
759 data->segments.emplace_back (low, high - low);
760
761 return data;
762 }
763
764 /* This is a convenience function to call sym_read for OBJFILE and
765 possibly force the partial symbols to be read. */
766
767 static void
768 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
769 {
770 (*objfile->sf->sym_read) (objfile, add_flags);
771 objfile->per_bfd->minsyms_read = true;
772
773 /* find_separate_debug_file_in_section should be called only if there is
774 single binary with no existing separate debug info file. */
775 if (!objfile_has_partial_symbols (objfile)
776 && objfile->separate_debug_objfile == NULL
777 && objfile->separate_debug_objfile_backlink == NULL)
778 {
779 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
780
781 if (abfd != NULL)
782 {
783 /* find_separate_debug_file_in_section uses the same filename for the
784 virtual section-as-bfd like the bfd filename containing the
785 section. Therefore use also non-canonical name form for the same
786 file containing the section. */
787 symbol_file_add_separate (abfd.get (),
788 bfd_get_filename (abfd.get ()),
789 add_flags | SYMFILE_NOT_FILENAME, objfile);
790 }
791 }
792 if ((add_flags & SYMFILE_NO_READ) == 0)
793 require_partial_symbols (objfile, false);
794 }
795
796 /* Initialize entry point information for this objfile. */
797
798 static void
799 init_entry_point_info (struct objfile *objfile)
800 {
801 struct entry_info *ei = &objfile->per_bfd->ei;
802
803 if (ei->initialized)
804 return;
805 ei->initialized = 1;
806
807 /* Save startup file's range of PC addresses to help blockframe.c
808 decide where the bottom of the stack is. */
809
810 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
811 {
812 /* Executable file -- record its entry point so we'll recognize
813 the startup file because it contains the entry point. */
814 ei->entry_point = bfd_get_start_address (objfile->obfd);
815 ei->entry_point_p = 1;
816 }
817 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
818 && bfd_get_start_address (objfile->obfd) != 0)
819 {
820 /* Some shared libraries may have entry points set and be
821 runnable. There's no clear way to indicate this, so just check
822 for values other than zero. */
823 ei->entry_point = bfd_get_start_address (objfile->obfd);
824 ei->entry_point_p = 1;
825 }
826 else
827 {
828 /* Examination of non-executable.o files. Short-circuit this stuff. */
829 ei->entry_point_p = 0;
830 }
831
832 if (ei->entry_point_p)
833 {
834 struct obj_section *osect;
835 CORE_ADDR entry_point = ei->entry_point;
836 int found;
837
838 /* Make certain that the address points at real code, and not a
839 function descriptor. */
840 entry_point
841 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
842 entry_point,
843 current_top_target ());
844
845 /* Remove any ISA markers, so that this matches entries in the
846 symbol table. */
847 ei->entry_point
848 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
849
850 found = 0;
851 ALL_OBJFILE_OSECTIONS (objfile, osect)
852 {
853 struct bfd_section *sect = osect->the_bfd_section;
854
855 if (entry_point >= bfd_section_vma (sect)
856 && entry_point < (bfd_section_vma (sect)
857 + bfd_section_size (sect)))
858 {
859 ei->the_bfd_section_index
860 = gdb_bfd_section_index (objfile->obfd, sect);
861 found = 1;
862 break;
863 }
864 }
865
866 if (!found)
867 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
868 }
869 }
870
871 /* Process a symbol file, as either the main file or as a dynamically
872 loaded file.
873
874 This function does not set the OBJFILE's entry-point info.
875
876 OBJFILE is where the symbols are to be read from.
877
878 ADDRS is the list of section load addresses. If the user has given
879 an 'add-symbol-file' command, then this is the list of offsets and
880 addresses he or she provided as arguments to the command; or, if
881 we're handling a shared library, these are the actual addresses the
882 sections are loaded at, according to the inferior's dynamic linker
883 (as gleaned by GDB's shared library code). We convert each address
884 into an offset from the section VMA's as it appears in the object
885 file, and then call the file's sym_offsets function to convert this
886 into a format-specific offset table --- a `section_offsets'.
887 The sectindex field is used to control the ordering of sections
888 with the same name. Upon return, it is updated to contain the
889 corresponding BFD section index, or -1 if the section was not found.
890
891 ADD_FLAGS encodes verbosity level, whether this is main symbol or
892 an extra symbol file such as dynamically loaded code, and whether
893 breakpoint reset should be deferred. */
894
895 static void
896 syms_from_objfile_1 (struct objfile *objfile,
897 section_addr_info *addrs,
898 symfile_add_flags add_flags)
899 {
900 section_addr_info local_addr;
901 const int mainline = add_flags & SYMFILE_MAINLINE;
902
903 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
904
905 if (objfile->sf == NULL)
906 {
907 /* No symbols to load, but we still need to make sure
908 that the section_offsets table is allocated. */
909 int num_sections = gdb_bfd_count_sections (objfile->obfd);
910
911 objfile->section_offsets.assign (num_sections, 0);
912 return;
913 }
914
915 /* Make sure that partially constructed symbol tables will be cleaned up
916 if an error occurs during symbol reading. */
917 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
918
919 objfile_up objfile_holder (objfile);
920
921 /* If ADDRS is NULL, put together a dummy address list.
922 We now establish the convention that an addr of zero means
923 no load address was specified. */
924 if (! addrs)
925 addrs = &local_addr;
926
927 if (mainline)
928 {
929 /* We will modify the main symbol table, make sure that all its users
930 will be cleaned up if an error occurs during symbol reading. */
931 defer_clear_users.emplace ((symfile_add_flag) 0);
932
933 /* Since no error yet, throw away the old symbol table. */
934
935 if (symfile_objfile != NULL)
936 {
937 symfile_objfile->unlink ();
938 gdb_assert (symfile_objfile == NULL);
939 }
940
941 /* Currently we keep symbols from the add-symbol-file command.
942 If the user wants to get rid of them, they should do "symbol-file"
943 without arguments first. Not sure this is the best behavior
944 (PR 2207). */
945
946 (*objfile->sf->sym_new_init) (objfile);
947 }
948
949 /* Convert addr into an offset rather than an absolute address.
950 We find the lowest address of a loaded segment in the objfile,
951 and assume that <addr> is where that got loaded.
952
953 We no longer warn if the lowest section is not a text segment (as
954 happens for the PA64 port. */
955 if (addrs->size () > 0)
956 addr_info_make_relative (addrs, objfile->obfd);
957
958 /* Initialize symbol reading routines for this objfile, allow complaints to
959 appear for this new file, and record how verbose to be, then do the
960 initial symbol reading for this file. */
961
962 (*objfile->sf->sym_init) (objfile);
963 clear_complaints ();
964
965 (*objfile->sf->sym_offsets) (objfile, *addrs);
966
967 read_symbols (objfile, add_flags);
968
969 /* Discard cleanups as symbol reading was successful. */
970
971 objfile_holder.release ();
972 if (defer_clear_users)
973 defer_clear_users->release ();
974 }
975
976 /* Same as syms_from_objfile_1, but also initializes the objfile
977 entry-point info. */
978
979 static void
980 syms_from_objfile (struct objfile *objfile,
981 section_addr_info *addrs,
982 symfile_add_flags add_flags)
983 {
984 syms_from_objfile_1 (objfile, addrs, add_flags);
985 init_entry_point_info (objfile);
986 }
987
988 /* Perform required actions after either reading in the initial
989 symbols for a new objfile, or mapping in the symbols from a reusable
990 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
991
992 static void
993 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
994 {
995 /* If this is the main symbol file we have to clean up all users of the
996 old main symbol file. Otherwise it is sufficient to fixup all the
997 breakpoints that may have been redefined by this symbol file. */
998 if (add_flags & SYMFILE_MAINLINE)
999 {
1000 /* OK, make it the "real" symbol file. */
1001 symfile_objfile = objfile;
1002
1003 clear_symtab_users (add_flags);
1004 }
1005 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1006 {
1007 breakpoint_re_set ();
1008 }
1009
1010 /* We're done reading the symbol file; finish off complaints. */
1011 clear_complaints ();
1012 }
1013
1014 /* Process a symbol file, as either the main file or as a dynamically
1015 loaded file.
1016
1017 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1018 A new reference is acquired by this function.
1019
1020 For NAME description see the objfile constructor.
1021
1022 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1023 extra, such as dynamically loaded code, and what to do with breakpoints.
1024
1025 ADDRS is as described for syms_from_objfile_1, above.
1026 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1027
1028 PARENT is the original objfile if ABFD is a separate debug info file.
1029 Otherwise PARENT is NULL.
1030
1031 Upon success, returns a pointer to the objfile that was added.
1032 Upon failure, jumps back to command level (never returns). */
1033
1034 static struct objfile *
1035 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1036 symfile_add_flags add_flags,
1037 section_addr_info *addrs,
1038 objfile_flags flags, struct objfile *parent)
1039 {
1040 struct objfile *objfile;
1041 const int from_tty = add_flags & SYMFILE_VERBOSE;
1042 const int mainline = add_flags & SYMFILE_MAINLINE;
1043 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1044 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1045 && (readnow_symbol_files
1046 || (add_flags & SYMFILE_NO_READ) == 0));
1047
1048 if (readnow_symbol_files)
1049 {
1050 flags |= OBJF_READNOW;
1051 add_flags &= ~SYMFILE_NO_READ;
1052 }
1053 else if (readnever_symbol_files
1054 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1055 {
1056 flags |= OBJF_READNEVER;
1057 add_flags |= SYMFILE_NO_READ;
1058 }
1059 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1060 flags |= OBJF_NOT_FILENAME;
1061
1062 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1063 interactively wiping out any existing symbols. */
1064
1065 if (from_tty
1066 && (always_confirm
1067 || ((have_full_symbols () || have_partial_symbols ())
1068 && mainline))
1069 && !query (_("Load new symbol table from \"%s\"? "), name))
1070 error (_("Not confirmed."));
1071
1072 if (mainline)
1073 flags |= OBJF_MAINLINE;
1074 objfile = objfile::make (abfd, name, flags, parent);
1075
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (should_print)
1080 {
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1083 else
1084 printf_filtered (_("Reading symbols from %ps...\n"),
1085 styled_string (file_name_style.style (), name));
1086 }
1087 syms_from_objfile (objfile, addrs, add_flags);
1088
1089 /* We now have at least a partial symbol table. Check to see if the
1090 user requested that all symbols be read on initial access via either
1091 the gdb startup command line or on a per symbol file basis. Expand
1092 all partial symbol tables for this objfile if so. */
1093
1094 if ((flags & OBJF_READNOW))
1095 {
1096 if (should_print)
1097 printf_filtered (_("Expanding full symbols from %ps...\n"),
1098 styled_string (file_name_style.style (), name));
1099
1100 if (objfile->sf)
1101 objfile->sf->qf->expand_all_symtabs (objfile);
1102 }
1103
1104 /* Note that we only print a message if we have no symbols and have
1105 no separate debug file. If there is a separate debug file which
1106 does not have symbols, we'll have emitted this message for that
1107 file, and so printing it twice is just redundant. */
1108 if (should_print && !objfile_has_symbols (objfile)
1109 && objfile->separate_debug_objfile == nullptr)
1110 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1111 styled_string (file_name_style.style (), name));
1112
1113 if (should_print)
1114 {
1115 if (deprecated_post_add_symbol_hook)
1116 deprecated_post_add_symbol_hook ();
1117 }
1118
1119 /* We print some messages regardless of whether 'from_tty ||
1120 info_verbose' is true, so make sure they go out at the right
1121 time. */
1122 gdb_flush (gdb_stdout);
1123
1124 if (objfile->sf == NULL)
1125 {
1126 gdb::observers::new_objfile.notify (objfile);
1127 return objfile; /* No symbols. */
1128 }
1129
1130 finish_new_objfile (objfile, add_flags);
1131
1132 gdb::observers::new_objfile.notify (objfile);
1133
1134 bfd_cache_close_all ();
1135 return (objfile);
1136 }
1137
1138 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1139 see the objfile constructor. */
1140
1141 void
1142 symbol_file_add_separate (bfd *bfd, const char *name,
1143 symfile_add_flags symfile_flags,
1144 struct objfile *objfile)
1145 {
1146 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1147 because sections of BFD may not match sections of OBJFILE and because
1148 vma may have been modified by tools such as prelink. */
1149 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1150
1151 symbol_file_add_with_addrs
1152 (bfd, name, symfile_flags, &sap,
1153 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1154 | OBJF_USERLOADED | OBJF_MAINLINE),
1155 objfile);
1156 }
1157
1158 /* Process the symbol file ABFD, as either the main file or as a
1159 dynamically loaded file.
1160 See symbol_file_add_with_addrs's comments for details. */
1161
1162 struct objfile *
1163 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1164 symfile_add_flags add_flags,
1165 section_addr_info *addrs,
1166 objfile_flags flags, struct objfile *parent)
1167 {
1168 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1169 parent);
1170 }
1171
1172 /* Process a symbol file, as either the main file or as a dynamically
1173 loaded file. See symbol_file_add_with_addrs's comments for details. */
1174
1175 struct objfile *
1176 symbol_file_add (const char *name, symfile_add_flags add_flags,
1177 section_addr_info *addrs, objfile_flags flags)
1178 {
1179 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1180
1181 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1182 flags, NULL);
1183 }
1184
1185 /* Call symbol_file_add() with default values and update whatever is
1186 affected by the loading of a new main().
1187 Used when the file is supplied in the gdb command line
1188 and by some targets with special loading requirements.
1189 The auxiliary function, symbol_file_add_main_1(), has the flags
1190 argument for the switches that can only be specified in the symbol_file
1191 command itself. */
1192
1193 void
1194 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1195 {
1196 symbol_file_add_main_1 (args, add_flags, 0, 0);
1197 }
1198
1199 static void
1200 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1201 objfile_flags flags, CORE_ADDR reloff)
1202 {
1203 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1204
1205 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1206 if (reloff != 0)
1207 objfile_rebase (objfile, reloff);
1208
1209 /* Getting new symbols may change our opinion about
1210 what is frameless. */
1211 reinit_frame_cache ();
1212
1213 if ((add_flags & SYMFILE_NO_READ) == 0)
1214 set_initial_language ();
1215 }
1216
1217 void
1218 symbol_file_clear (int from_tty)
1219 {
1220 if ((have_full_symbols () || have_partial_symbols ())
1221 && from_tty
1222 && (symfile_objfile
1223 ? !query (_("Discard symbol table from `%s'? "),
1224 objfile_name (symfile_objfile))
1225 : !query (_("Discard symbol table? "))))
1226 error (_("Not confirmed."));
1227
1228 /* solib descriptors may have handles to objfiles. Wipe them before their
1229 objfiles get stale by free_all_objfiles. */
1230 no_shared_libraries (NULL, from_tty);
1231
1232 current_program_space->free_all_objfiles ();
1233
1234 clear_symtab_users (0);
1235
1236 gdb_assert (symfile_objfile == NULL);
1237 if (from_tty)
1238 printf_filtered (_("No symbol file now.\n"));
1239 }
1240
1241 /* See symfile.h. */
1242
1243 bool separate_debug_file_debug = false;
1244
1245 static int
1246 separate_debug_file_exists (const std::string &name, unsigned long crc,
1247 struct objfile *parent_objfile)
1248 {
1249 unsigned long file_crc;
1250 int file_crc_p;
1251 struct stat parent_stat, abfd_stat;
1252 int verified_as_different;
1253
1254 /* Find a separate debug info file as if symbols would be present in
1255 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1256 section can contain just the basename of PARENT_OBJFILE without any
1257 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1258 the separate debug infos with the same basename can exist. */
1259
1260 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1261 return 0;
1262
1263 if (separate_debug_file_debug)
1264 {
1265 printf_filtered (_(" Trying %s..."), name.c_str ());
1266 gdb_flush (gdb_stdout);
1267 }
1268
1269 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1270
1271 if (abfd == NULL)
1272 {
1273 if (separate_debug_file_debug)
1274 printf_filtered (_(" no, unable to open.\n"));
1275
1276 return 0;
1277 }
1278
1279 /* Verify symlinks were not the cause of filename_cmp name difference above.
1280
1281 Some operating systems, e.g. Windows, do not provide a meaningful
1282 st_ino; they always set it to zero. (Windows does provide a
1283 meaningful st_dev.) Files accessed from gdbservers that do not
1284 support the vFile:fstat packet will also have st_ino set to zero.
1285 Do not indicate a duplicate library in either case. While there
1286 is no guarantee that a system that provides meaningful inode
1287 numbers will never set st_ino to zero, this is merely an
1288 optimization, so we do not need to worry about false negatives. */
1289
1290 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1291 && abfd_stat.st_ino != 0
1292 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1293 {
1294 if (abfd_stat.st_dev == parent_stat.st_dev
1295 && abfd_stat.st_ino == parent_stat.st_ino)
1296 {
1297 if (separate_debug_file_debug)
1298 printf_filtered (_(" no, same file as the objfile.\n"));
1299
1300 return 0;
1301 }
1302 verified_as_different = 1;
1303 }
1304 else
1305 verified_as_different = 0;
1306
1307 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1308
1309 if (!file_crc_p)
1310 {
1311 if (separate_debug_file_debug)
1312 printf_filtered (_(" no, error computing CRC.\n"));
1313
1314 return 0;
1315 }
1316
1317 if (crc != file_crc)
1318 {
1319 unsigned long parent_crc;
1320
1321 /* If the files could not be verified as different with
1322 bfd_stat then we need to calculate the parent's CRC
1323 to verify whether the files are different or not. */
1324
1325 if (!verified_as_different)
1326 {
1327 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1328 {
1329 if (separate_debug_file_debug)
1330 printf_filtered (_(" no, error computing CRC.\n"));
1331
1332 return 0;
1333 }
1334 }
1335
1336 if (verified_as_different || parent_crc != file_crc)
1337 warning (_("the debug information found in \"%s\""
1338 " does not match \"%s\" (CRC mismatch).\n"),
1339 name.c_str (), objfile_name (parent_objfile));
1340
1341 if (separate_debug_file_debug)
1342 printf_filtered (_(" no, CRC doesn't match.\n"));
1343
1344 return 0;
1345 }
1346
1347 if (separate_debug_file_debug)
1348 printf_filtered (_(" yes!\n"));
1349
1350 return 1;
1351 }
1352
1353 char *debug_file_directory = NULL;
1354 static void
1355 show_debug_file_directory (struct ui_file *file, int from_tty,
1356 struct cmd_list_element *c, const char *value)
1357 {
1358 fprintf_filtered (file,
1359 _("The directory where separate debug "
1360 "symbols are searched for is \"%s\".\n"),
1361 value);
1362 }
1363
1364 #if ! defined (DEBUG_SUBDIRECTORY)
1365 #define DEBUG_SUBDIRECTORY ".debug"
1366 #endif
1367
1368 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1369 where the original file resides (may not be the same as
1370 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1371 looking for. CANON_DIR is the "realpath" form of DIR.
1372 DIR must contain a trailing '/'.
1373 Returns the path of the file with separate debug info, or an empty
1374 string. */
1375
1376 static std::string
1377 find_separate_debug_file (const char *dir,
1378 const char *canon_dir,
1379 const char *debuglink,
1380 unsigned long crc32, struct objfile *objfile)
1381 {
1382 if (separate_debug_file_debug)
1383 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1384 "%s\n"), objfile_name (objfile));
1385
1386 /* First try in the same directory as the original file. */
1387 std::string debugfile = dir;
1388 debugfile += debuglink;
1389
1390 if (separate_debug_file_exists (debugfile, crc32, objfile))
1391 return debugfile;
1392
1393 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1394 debugfile = dir;
1395 debugfile += DEBUG_SUBDIRECTORY;
1396 debugfile += "/";
1397 debugfile += debuglink;
1398
1399 if (separate_debug_file_exists (debugfile, crc32, objfile))
1400 return debugfile;
1401
1402 /* Then try in the global debugfile directories.
1403
1404 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1405 cause "/..." lookups. */
1406
1407 bool target_prefix = startswith (dir, "target:");
1408 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1409 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1410 = dirnames_to_char_ptr_vec (debug_file_directory);
1411 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1412
1413 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1414 convert the drive letter into a one-letter directory, so that the
1415 file name resulting from splicing below will be valid.
1416
1417 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1418 There are various remote-debugging scenarios where such a
1419 transformation of the drive letter might be required when GDB runs
1420 on a Posix host, see
1421
1422 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1423
1424 If some of those scenarios need to be supported, we will need to
1425 use a different condition for HAS_DRIVE_SPEC and a different macro
1426 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1427 std::string drive;
1428 if (HAS_DRIVE_SPEC (dir_notarget))
1429 {
1430 drive = dir_notarget[0];
1431 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1432 }
1433
1434 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1435 {
1436 debugfile = target_prefix ? "target:" : "";
1437 debugfile += debugdir.get ();
1438 debugfile += "/";
1439 debugfile += drive;
1440 debugfile += dir_notarget;
1441 debugfile += debuglink;
1442
1443 if (separate_debug_file_exists (debugfile, crc32, objfile))
1444 return debugfile;
1445
1446 const char *base_path = NULL;
1447 if (canon_dir != NULL)
1448 {
1449 if (canon_sysroot.get () != NULL)
1450 base_path = child_path (canon_sysroot.get (), canon_dir);
1451 else
1452 base_path = child_path (gdb_sysroot, canon_dir);
1453 }
1454 if (base_path != NULL)
1455 {
1456 /* If the file is in the sysroot, try using its base path in
1457 the global debugfile directory. */
1458 debugfile = target_prefix ? "target:" : "";
1459 debugfile += debugdir.get ();
1460 debugfile += "/";
1461 debugfile += base_path;
1462 debugfile += "/";
1463 debugfile += debuglink;
1464
1465 if (separate_debug_file_exists (debugfile, crc32, objfile))
1466 return debugfile;
1467
1468 /* If the file is in the sysroot, try using its base path in
1469 the sysroot's global debugfile directory. */
1470 debugfile = target_prefix ? "target:" : "";
1471 debugfile += gdb_sysroot;
1472 debugfile += debugdir.get ();
1473 debugfile += "/";
1474 debugfile += base_path;
1475 debugfile += "/";
1476 debugfile += debuglink;
1477
1478 if (separate_debug_file_exists (debugfile, crc32, objfile))
1479 return debugfile;
1480 }
1481
1482 }
1483
1484 return std::string ();
1485 }
1486
1487 /* Modify PATH to contain only "[/]directory/" part of PATH.
1488 If there were no directory separators in PATH, PATH will be empty
1489 string on return. */
1490
1491 static void
1492 terminate_after_last_dir_separator (char *path)
1493 {
1494 int i;
1495
1496 /* Strip off the final filename part, leaving the directory name,
1497 followed by a slash. The directory can be relative or absolute. */
1498 for (i = strlen(path) - 1; i >= 0; i--)
1499 if (IS_DIR_SEPARATOR (path[i]))
1500 break;
1501
1502 /* If I is -1 then no directory is present there and DIR will be "". */
1503 path[i + 1] = '\0';
1504 }
1505
1506 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1507 Returns pathname, or an empty string. */
1508
1509 std::string
1510 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1511 {
1512 unsigned long crc32;
1513
1514 gdb::unique_xmalloc_ptr<char> debuglink
1515 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1516
1517 if (debuglink == NULL)
1518 {
1519 /* There's no separate debug info, hence there's no way we could
1520 load it => no warning. */
1521 return std::string ();
1522 }
1523
1524 std::string dir = objfile_name (objfile);
1525 terminate_after_last_dir_separator (&dir[0]);
1526 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1527
1528 std::string debugfile
1529 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1530 debuglink.get (), crc32, objfile);
1531
1532 if (debugfile.empty ())
1533 {
1534 /* For PR gdb/9538, try again with realpath (if different from the
1535 original). */
1536
1537 struct stat st_buf;
1538
1539 if (lstat (objfile_name (objfile), &st_buf) == 0
1540 && S_ISLNK (st_buf.st_mode))
1541 {
1542 gdb::unique_xmalloc_ptr<char> symlink_dir
1543 (lrealpath (objfile_name (objfile)));
1544 if (symlink_dir != NULL)
1545 {
1546 terminate_after_last_dir_separator (symlink_dir.get ());
1547 if (dir != symlink_dir.get ())
1548 {
1549 /* Different directory, so try using it. */
1550 debugfile = find_separate_debug_file (symlink_dir.get (),
1551 symlink_dir.get (),
1552 debuglink.get (),
1553 crc32,
1554 objfile);
1555 }
1556 }
1557 }
1558 }
1559
1560 return debugfile;
1561 }
1562
1563 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1564 simultaneously. */
1565
1566 static void
1567 validate_readnow_readnever (objfile_flags flags)
1568 {
1569 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1570 error (_("-readnow and -readnever cannot be used simultaneously"));
1571 }
1572
1573 /* This is the symbol-file command. Read the file, analyze its
1574 symbols, and add a struct symtab to a symtab list. The syntax of
1575 the command is rather bizarre:
1576
1577 1. The function buildargv implements various quoting conventions
1578 which are undocumented and have little or nothing in common with
1579 the way things are quoted (or not quoted) elsewhere in GDB.
1580
1581 2. Options are used, which are not generally used in GDB (perhaps
1582 "set mapped on", "set readnow on" would be better)
1583
1584 3. The order of options matters, which is contrary to GNU
1585 conventions (because it is confusing and inconvenient). */
1586
1587 void
1588 symbol_file_command (const char *args, int from_tty)
1589 {
1590 dont_repeat ();
1591
1592 if (args == NULL)
1593 {
1594 symbol_file_clear (from_tty);
1595 }
1596 else
1597 {
1598 objfile_flags flags = OBJF_USERLOADED;
1599 symfile_add_flags add_flags = 0;
1600 char *name = NULL;
1601 bool stop_processing_options = false;
1602 CORE_ADDR offset = 0;
1603 int idx;
1604 char *arg;
1605
1606 if (from_tty)
1607 add_flags |= SYMFILE_VERBOSE;
1608
1609 gdb_argv built_argv (args);
1610 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1611 {
1612 if (stop_processing_options || *arg != '-')
1613 {
1614 if (name == NULL)
1615 name = arg;
1616 else
1617 error (_("Unrecognized argument \"%s\""), arg);
1618 }
1619 else if (strcmp (arg, "-readnow") == 0)
1620 flags |= OBJF_READNOW;
1621 else if (strcmp (arg, "-readnever") == 0)
1622 flags |= OBJF_READNEVER;
1623 else if (strcmp (arg, "-o") == 0)
1624 {
1625 arg = built_argv[++idx];
1626 if (arg == NULL)
1627 error (_("Missing argument to -o"));
1628
1629 offset = parse_and_eval_address (arg);
1630 }
1631 else if (strcmp (arg, "--") == 0)
1632 stop_processing_options = true;
1633 else
1634 error (_("Unrecognized argument \"%s\""), arg);
1635 }
1636
1637 if (name == NULL)
1638 error (_("no symbol file name was specified"));
1639
1640 validate_readnow_readnever (flags);
1641
1642 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1643 (Position Independent Executable) main symbol file will only be
1644 computed by the solib_create_inferior_hook below. Without it,
1645 breakpoint_re_set would fail to insert the breakpoints with the zero
1646 displacement. */
1647 add_flags |= SYMFILE_DEFER_BP_RESET;
1648
1649 symbol_file_add_main_1 (name, add_flags, flags, offset);
1650
1651 solib_create_inferior_hook (from_tty);
1652
1653 /* Now it's safe to re-add the breakpoints. */
1654 breakpoint_re_set ();
1655 }
1656 }
1657
1658 /* Set the initial language. */
1659
1660 void
1661 set_initial_language (void)
1662 {
1663 if (language_mode == language_mode_manual)
1664 return;
1665 enum language lang = main_language ();
1666 /* Make C the default language. */
1667 enum language default_lang = language_c;
1668
1669 if (lang == language_unknown)
1670 {
1671 const char *name = main_name ();
1672 struct symbol *sym
1673 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1674 NULL).symbol;
1675
1676 if (sym != NULL)
1677 lang = sym->language ();
1678 }
1679
1680 if (lang == language_unknown)
1681 {
1682 lang = default_lang;
1683 }
1684
1685 set_language (lang);
1686 expected_language = current_language; /* Don't warn the user. */
1687 }
1688
1689 /* Open the file specified by NAME and hand it off to BFD for
1690 preliminary analysis. Return a newly initialized bfd *, which
1691 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1692 absolute). In case of trouble, error() is called. */
1693
1694 gdb_bfd_ref_ptr
1695 symfile_bfd_open (const char *name)
1696 {
1697 int desc = -1;
1698
1699 gdb::unique_xmalloc_ptr<char> absolute_name;
1700 if (!is_target_filename (name))
1701 {
1702 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1703
1704 /* Look down path for it, allocate 2nd new malloc'd copy. */
1705 desc = openp (getenv ("PATH"),
1706 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1707 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1708 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1709 if (desc < 0)
1710 {
1711 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1712
1713 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1714 desc = openp (getenv ("PATH"),
1715 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1716 exename, O_RDONLY | O_BINARY, &absolute_name);
1717 }
1718 #endif
1719 if (desc < 0)
1720 perror_with_name (expanded_name.get ());
1721
1722 name = absolute_name.get ();
1723 }
1724
1725 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1726 if (sym_bfd == NULL)
1727 error (_("`%s': can't open to read symbols: %s."), name,
1728 bfd_errmsg (bfd_get_error ()));
1729
1730 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1731 bfd_set_cacheable (sym_bfd.get (), 1);
1732
1733 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1734 error (_("`%s': can't read symbols: %s."), name,
1735 bfd_errmsg (bfd_get_error ()));
1736
1737 return sym_bfd;
1738 }
1739
1740 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1741 the section was not found. */
1742
1743 int
1744 get_section_index (struct objfile *objfile, const char *section_name)
1745 {
1746 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1747
1748 if (sect)
1749 return sect->index;
1750 else
1751 return -1;
1752 }
1753
1754 /* Link SF into the global symtab_fns list.
1755 FLAVOUR is the file format that SF handles.
1756 Called on startup by the _initialize routine in each object file format
1757 reader, to register information about each format the reader is prepared
1758 to handle. */
1759
1760 void
1761 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1762 {
1763 symtab_fns.emplace_back (flavour, sf);
1764 }
1765
1766 /* Initialize OBJFILE to read symbols from its associated BFD. It
1767 either returns or calls error(). The result is an initialized
1768 struct sym_fns in the objfile structure, that contains cached
1769 information about the symbol file. */
1770
1771 static const struct sym_fns *
1772 find_sym_fns (bfd *abfd)
1773 {
1774 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1775
1776 if (our_flavour == bfd_target_srec_flavour
1777 || our_flavour == bfd_target_ihex_flavour
1778 || our_flavour == bfd_target_tekhex_flavour)
1779 return NULL; /* No symbols. */
1780
1781 for (const registered_sym_fns &rsf : symtab_fns)
1782 if (our_flavour == rsf.sym_flavour)
1783 return rsf.sym_fns;
1784
1785 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1786 bfd_get_target (abfd));
1787 }
1788 \f
1789
1790 /* This function runs the load command of our current target. */
1791
1792 static void
1793 load_command (const char *arg, int from_tty)
1794 {
1795 dont_repeat ();
1796
1797 /* The user might be reloading because the binary has changed. Take
1798 this opportunity to check. */
1799 reopen_exec_file ();
1800 reread_symbols ();
1801
1802 std::string temp;
1803 if (arg == NULL)
1804 {
1805 const char *parg, *prev;
1806
1807 arg = get_exec_file (1);
1808
1809 /* We may need to quote this string so buildargv can pull it
1810 apart. */
1811 prev = parg = arg;
1812 while ((parg = strpbrk (parg, "\\\"'\t ")))
1813 {
1814 temp.append (prev, parg - prev);
1815 prev = parg++;
1816 temp.push_back ('\\');
1817 }
1818 /* If we have not copied anything yet, then we didn't see a
1819 character to quote, and we can just leave ARG unchanged. */
1820 if (!temp.empty ())
1821 {
1822 temp.append (prev);
1823 arg = temp.c_str ();
1824 }
1825 }
1826
1827 target_load (arg, from_tty);
1828
1829 /* After re-loading the executable, we don't really know which
1830 overlays are mapped any more. */
1831 overlay_cache_invalid = 1;
1832 }
1833
1834 /* This version of "load" should be usable for any target. Currently
1835 it is just used for remote targets, not inftarg.c or core files,
1836 on the theory that only in that case is it useful.
1837
1838 Avoiding xmodem and the like seems like a win (a) because we don't have
1839 to worry about finding it, and (b) On VMS, fork() is very slow and so
1840 we don't want to run a subprocess. On the other hand, I'm not sure how
1841 performance compares. */
1842
1843 static int validate_download = 0;
1844
1845 /* Opaque data for load_progress. */
1846 struct load_progress_data
1847 {
1848 /* Cumulative data. */
1849 unsigned long write_count = 0;
1850 unsigned long data_count = 0;
1851 bfd_size_type total_size = 0;
1852 };
1853
1854 /* Opaque data for load_progress for a single section. */
1855 struct load_progress_section_data
1856 {
1857 load_progress_section_data (load_progress_data *cumulative_,
1858 const char *section_name_, ULONGEST section_size_,
1859 CORE_ADDR lma_, gdb_byte *buffer_)
1860 : cumulative (cumulative_), section_name (section_name_),
1861 section_size (section_size_), lma (lma_), buffer (buffer_)
1862 {}
1863
1864 struct load_progress_data *cumulative;
1865
1866 /* Per-section data. */
1867 const char *section_name;
1868 ULONGEST section_sent = 0;
1869 ULONGEST section_size;
1870 CORE_ADDR lma;
1871 gdb_byte *buffer;
1872 };
1873
1874 /* Opaque data for load_section_callback. */
1875 struct load_section_data
1876 {
1877 load_section_data (load_progress_data *progress_data_)
1878 : progress_data (progress_data_)
1879 {}
1880
1881 ~load_section_data ()
1882 {
1883 for (auto &&request : requests)
1884 {
1885 xfree (request.data);
1886 delete ((load_progress_section_data *) request.baton);
1887 }
1888 }
1889
1890 CORE_ADDR load_offset = 0;
1891 struct load_progress_data *progress_data;
1892 std::vector<struct memory_write_request> requests;
1893 };
1894
1895 /* Target write callback routine for progress reporting. */
1896
1897 static void
1898 load_progress (ULONGEST bytes, void *untyped_arg)
1899 {
1900 struct load_progress_section_data *args
1901 = (struct load_progress_section_data *) untyped_arg;
1902 struct load_progress_data *totals;
1903
1904 if (args == NULL)
1905 /* Writing padding data. No easy way to get at the cumulative
1906 stats, so just ignore this. */
1907 return;
1908
1909 totals = args->cumulative;
1910
1911 if (bytes == 0 && args->section_sent == 0)
1912 {
1913 /* The write is just starting. Let the user know we've started
1914 this section. */
1915 current_uiout->message ("Loading section %s, size %s lma %s\n",
1916 args->section_name,
1917 hex_string (args->section_size),
1918 paddress (target_gdbarch (), args->lma));
1919 return;
1920 }
1921
1922 if (validate_download)
1923 {
1924 /* Broken memories and broken monitors manifest themselves here
1925 when bring new computers to life. This doubles already slow
1926 downloads. */
1927 /* NOTE: cagney/1999-10-18: A more efficient implementation
1928 might add a verify_memory() method to the target vector and
1929 then use that. remote.c could implement that method using
1930 the ``qCRC'' packet. */
1931 gdb::byte_vector check (bytes);
1932
1933 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1934 error (_("Download verify read failed at %s"),
1935 paddress (target_gdbarch (), args->lma));
1936 if (memcmp (args->buffer, check.data (), bytes) != 0)
1937 error (_("Download verify compare failed at %s"),
1938 paddress (target_gdbarch (), args->lma));
1939 }
1940 totals->data_count += bytes;
1941 args->lma += bytes;
1942 args->buffer += bytes;
1943 totals->write_count += 1;
1944 args->section_sent += bytes;
1945 if (check_quit_flag ()
1946 || (deprecated_ui_load_progress_hook != NULL
1947 && deprecated_ui_load_progress_hook (args->section_name,
1948 args->section_sent)))
1949 error (_("Canceled the download"));
1950
1951 if (deprecated_show_load_progress != NULL)
1952 deprecated_show_load_progress (args->section_name,
1953 args->section_sent,
1954 args->section_size,
1955 totals->data_count,
1956 totals->total_size);
1957 }
1958
1959 /* Service function for generic_load. */
1960
1961 static void
1962 load_one_section (bfd *abfd, asection *asec,
1963 struct load_section_data *args)
1964 {
1965 bfd_size_type size = bfd_section_size (asec);
1966 const char *sect_name = bfd_section_name (asec);
1967
1968 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1969 return;
1970
1971 if (size == 0)
1972 return;
1973
1974 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1975 ULONGEST end = begin + size;
1976 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1977 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1978
1979 load_progress_section_data *section_data
1980 = new load_progress_section_data (args->progress_data, sect_name, size,
1981 begin, buffer);
1982
1983 args->requests.emplace_back (begin, end, buffer, section_data);
1984 }
1985
1986 static void print_transfer_performance (struct ui_file *stream,
1987 unsigned long data_count,
1988 unsigned long write_count,
1989 std::chrono::steady_clock::duration d);
1990
1991 /* See symfile.h. */
1992
1993 void
1994 generic_load (const char *args, int from_tty)
1995 {
1996 struct load_progress_data total_progress;
1997 struct load_section_data cbdata (&total_progress);
1998 struct ui_out *uiout = current_uiout;
1999
2000 if (args == NULL)
2001 error_no_arg (_("file to load"));
2002
2003 gdb_argv argv (args);
2004
2005 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2006
2007 if (argv[1] != NULL)
2008 {
2009 const char *endptr;
2010
2011 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2012
2013 /* If the last word was not a valid number then
2014 treat it as a file name with spaces in. */
2015 if (argv[1] == endptr)
2016 error (_("Invalid download offset:%s."), argv[1]);
2017
2018 if (argv[2] != NULL)
2019 error (_("Too many parameters."));
2020 }
2021
2022 /* Open the file for loading. */
2023 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2024 if (loadfile_bfd == NULL)
2025 perror_with_name (filename.get ());
2026
2027 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2028 {
2029 error (_("\"%s\" is not an object file: %s"), filename.get (),
2030 bfd_errmsg (bfd_get_error ()));
2031 }
2032
2033 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2034 total_progress.total_size += bfd_section_size (asec);
2035
2036 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2037 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2038
2039 using namespace std::chrono;
2040
2041 steady_clock::time_point start_time = steady_clock::now ();
2042
2043 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2044 load_progress) != 0)
2045 error (_("Load failed"));
2046
2047 steady_clock::time_point end_time = steady_clock::now ();
2048
2049 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2050 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2051 uiout->text ("Start address ");
2052 uiout->field_core_addr ("address", target_gdbarch (), entry);
2053 uiout->text (", load size ");
2054 uiout->field_unsigned ("load-size", total_progress.data_count);
2055 uiout->text ("\n");
2056 regcache_write_pc (get_current_regcache (), entry);
2057
2058 /* Reset breakpoints, now that we have changed the load image. For
2059 instance, breakpoints may have been set (or reset, by
2060 post_create_inferior) while connected to the target but before we
2061 loaded the program. In that case, the prologue analyzer could
2062 have read instructions from the target to find the right
2063 breakpoint locations. Loading has changed the contents of that
2064 memory. */
2065
2066 breakpoint_re_set ();
2067
2068 print_transfer_performance (gdb_stdout, total_progress.data_count,
2069 total_progress.write_count,
2070 end_time - start_time);
2071 }
2072
2073 /* Report on STREAM the performance of a memory transfer operation,
2074 such as 'load'. DATA_COUNT is the number of bytes transferred.
2075 WRITE_COUNT is the number of separate write operations, or 0, if
2076 that information is not available. TIME is how long the operation
2077 lasted. */
2078
2079 static void
2080 print_transfer_performance (struct ui_file *stream,
2081 unsigned long data_count,
2082 unsigned long write_count,
2083 std::chrono::steady_clock::duration time)
2084 {
2085 using namespace std::chrono;
2086 struct ui_out *uiout = current_uiout;
2087
2088 milliseconds ms = duration_cast<milliseconds> (time);
2089
2090 uiout->text ("Transfer rate: ");
2091 if (ms.count () > 0)
2092 {
2093 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2094
2095 if (uiout->is_mi_like_p ())
2096 {
2097 uiout->field_unsigned ("transfer-rate", rate * 8);
2098 uiout->text (" bits/sec");
2099 }
2100 else if (rate < 1024)
2101 {
2102 uiout->field_unsigned ("transfer-rate", rate);
2103 uiout->text (" bytes/sec");
2104 }
2105 else
2106 {
2107 uiout->field_unsigned ("transfer-rate", rate / 1024);
2108 uiout->text (" KB/sec");
2109 }
2110 }
2111 else
2112 {
2113 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2114 uiout->text (" bits in <1 sec");
2115 }
2116 if (write_count > 0)
2117 {
2118 uiout->text (", ");
2119 uiout->field_unsigned ("write-rate", data_count / write_count);
2120 uiout->text (" bytes/write");
2121 }
2122 uiout->text (".\n");
2123 }
2124
2125 /* Add an OFFSET to the start address of each section in OBJF, except
2126 sections that were specified in ADDRS. */
2127
2128 static void
2129 set_objfile_default_section_offset (struct objfile *objf,
2130 const section_addr_info &addrs,
2131 CORE_ADDR offset)
2132 {
2133 /* Add OFFSET to all sections by default. */
2134 section_offsets offsets (objf->section_offsets.size (), offset);
2135
2136 /* Create sorted lists of all sections in ADDRS as well as all
2137 sections in OBJF. */
2138
2139 std::vector<const struct other_sections *> addrs_sorted
2140 = addrs_section_sort (addrs);
2141
2142 section_addr_info objf_addrs
2143 = build_section_addr_info_from_objfile (objf);
2144 std::vector<const struct other_sections *> objf_addrs_sorted
2145 = addrs_section_sort (objf_addrs);
2146
2147 /* Walk the BFD section list, and if a matching section is found in
2148 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2149 unchanged.
2150
2151 Note that both lists may contain multiple sections with the same
2152 name, and then the sections from ADDRS are matched in BFD order
2153 (thanks to sectindex). */
2154
2155 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2156 = addrs_sorted.begin ();
2157 for (const other_sections *objf_sect : objf_addrs_sorted)
2158 {
2159 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2160 int cmp = -1;
2161
2162 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2163 {
2164 const struct other_sections *sect = *addrs_sorted_iter;
2165 const char *sect_name = addr_section_name (sect->name.c_str ());
2166 cmp = strcmp (sect_name, objf_name);
2167 if (cmp <= 0)
2168 ++addrs_sorted_iter;
2169 }
2170
2171 if (cmp == 0)
2172 offsets[objf_sect->sectindex] = 0;
2173 }
2174
2175 /* Apply the new section offsets. */
2176 objfile_relocate (objf, offsets);
2177 }
2178
2179 /* This function allows the addition of incrementally linked object files.
2180 It does not modify any state in the target, only in the debugger. */
2181
2182 static void
2183 add_symbol_file_command (const char *args, int from_tty)
2184 {
2185 struct gdbarch *gdbarch = get_current_arch ();
2186 gdb::unique_xmalloc_ptr<char> filename;
2187 char *arg;
2188 int argcnt = 0;
2189 struct objfile *objf;
2190 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2191 symfile_add_flags add_flags = 0;
2192
2193 if (from_tty)
2194 add_flags |= SYMFILE_VERBOSE;
2195
2196 struct sect_opt
2197 {
2198 const char *name;
2199 const char *value;
2200 };
2201
2202 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2203 bool stop_processing_options = false;
2204 CORE_ADDR offset = 0;
2205
2206 dont_repeat ();
2207
2208 if (args == NULL)
2209 error (_("add-symbol-file takes a file name and an address"));
2210
2211 bool seen_addr = false;
2212 bool seen_offset = false;
2213 gdb_argv argv (args);
2214
2215 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2216 {
2217 if (stop_processing_options || *arg != '-')
2218 {
2219 if (filename == NULL)
2220 {
2221 /* First non-option argument is always the filename. */
2222 filename.reset (tilde_expand (arg));
2223 }
2224 else if (!seen_addr)
2225 {
2226 /* The second non-option argument is always the text
2227 address at which to load the program. */
2228 sect_opts[0].value = arg;
2229 seen_addr = true;
2230 }
2231 else
2232 error (_("Unrecognized argument \"%s\""), arg);
2233 }
2234 else if (strcmp (arg, "-readnow") == 0)
2235 flags |= OBJF_READNOW;
2236 else if (strcmp (arg, "-readnever") == 0)
2237 flags |= OBJF_READNEVER;
2238 else if (strcmp (arg, "-s") == 0)
2239 {
2240 if (argv[argcnt + 1] == NULL)
2241 error (_("Missing section name after \"-s\""));
2242 else if (argv[argcnt + 2] == NULL)
2243 error (_("Missing section address after \"-s\""));
2244
2245 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2246
2247 sect_opts.push_back (sect);
2248 argcnt += 2;
2249 }
2250 else if (strcmp (arg, "-o") == 0)
2251 {
2252 arg = argv[++argcnt];
2253 if (arg == NULL)
2254 error (_("Missing argument to -o"));
2255
2256 offset = parse_and_eval_address (arg);
2257 seen_offset = true;
2258 }
2259 else if (strcmp (arg, "--") == 0)
2260 stop_processing_options = true;
2261 else
2262 error (_("Unrecognized argument \"%s\""), arg);
2263 }
2264
2265 if (filename == NULL)
2266 error (_("You must provide a filename to be loaded."));
2267
2268 validate_readnow_readnever (flags);
2269
2270 /* Print the prompt for the query below. And save the arguments into
2271 a sect_addr_info structure to be passed around to other
2272 functions. We have to split this up into separate print
2273 statements because hex_string returns a local static
2274 string. */
2275
2276 printf_unfiltered (_("add symbol table from file \"%s\""),
2277 filename.get ());
2278 section_addr_info section_addrs;
2279 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2280 if (!seen_addr)
2281 ++it;
2282 for (; it != sect_opts.end (); ++it)
2283 {
2284 CORE_ADDR addr;
2285 const char *val = it->value;
2286 const char *sec = it->name;
2287
2288 if (section_addrs.empty ())
2289 printf_unfiltered (_(" at\n"));
2290 addr = parse_and_eval_address (val);
2291
2292 /* Here we store the section offsets in the order they were
2293 entered on the command line. Every array element is
2294 assigned an ascending section index to preserve the above
2295 order over an unstable sorting algorithm. This dummy
2296 index is not used for any other purpose.
2297 */
2298 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2299 printf_filtered ("\t%s_addr = %s\n", sec,
2300 paddress (gdbarch, addr));
2301
2302 /* The object's sections are initialized when a
2303 call is made to build_objfile_section_table (objfile).
2304 This happens in reread_symbols.
2305 At this point, we don't know what file type this is,
2306 so we can't determine what section names are valid. */
2307 }
2308 if (seen_offset)
2309 printf_unfiltered (_("%s offset by %s\n"),
2310 (section_addrs.empty ()
2311 ? _(" with all sections")
2312 : _("with other sections")),
2313 paddress (gdbarch, offset));
2314 else if (section_addrs.empty ())
2315 printf_unfiltered ("\n");
2316
2317 if (from_tty && (!query ("%s", "")))
2318 error (_("Not confirmed."));
2319
2320 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2321 flags);
2322 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2323 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2324 filename.get ());
2325
2326 if (seen_offset)
2327 set_objfile_default_section_offset (objf, section_addrs, offset);
2328
2329 add_target_sections_of_objfile (objf);
2330
2331 /* Getting new symbols may change our opinion about what is
2332 frameless. */
2333 reinit_frame_cache ();
2334 }
2335 \f
2336
2337 /* This function removes a symbol file that was added via add-symbol-file. */
2338
2339 static void
2340 remove_symbol_file_command (const char *args, int from_tty)
2341 {
2342 struct objfile *objf = NULL;
2343 struct program_space *pspace = current_program_space;
2344
2345 dont_repeat ();
2346
2347 if (args == NULL)
2348 error (_("remove-symbol-file: no symbol file provided"));
2349
2350 gdb_argv argv (args);
2351
2352 if (strcmp (argv[0], "-a") == 0)
2353 {
2354 /* Interpret the next argument as an address. */
2355 CORE_ADDR addr;
2356
2357 if (argv[1] == NULL)
2358 error (_("Missing address argument"));
2359
2360 if (argv[2] != NULL)
2361 error (_("Junk after %s"), argv[1]);
2362
2363 addr = parse_and_eval_address (argv[1]);
2364
2365 for (objfile *objfile : current_program_space->objfiles ())
2366 {
2367 if ((objfile->flags & OBJF_USERLOADED) != 0
2368 && (objfile->flags & OBJF_SHARED) != 0
2369 && objfile->pspace == pspace
2370 && is_addr_in_objfile (addr, objfile))
2371 {
2372 objf = objfile;
2373 break;
2374 }
2375 }
2376 }
2377 else if (argv[0] != NULL)
2378 {
2379 /* Interpret the current argument as a file name. */
2380
2381 if (argv[1] != NULL)
2382 error (_("Junk after %s"), argv[0]);
2383
2384 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2385
2386 for (objfile *objfile : current_program_space->objfiles ())
2387 {
2388 if ((objfile->flags & OBJF_USERLOADED) != 0
2389 && (objfile->flags & OBJF_SHARED) != 0
2390 && objfile->pspace == pspace
2391 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2392 {
2393 objf = objfile;
2394 break;
2395 }
2396 }
2397 }
2398
2399 if (objf == NULL)
2400 error (_("No symbol file found"));
2401
2402 if (from_tty
2403 && !query (_("Remove symbol table from file \"%s\"? "),
2404 objfile_name (objf)))
2405 error (_("Not confirmed."));
2406
2407 objf->unlink ();
2408 clear_symtab_users (0);
2409 }
2410
2411 /* Re-read symbols if a symbol-file has changed. */
2412
2413 void
2414 reread_symbols (void)
2415 {
2416 long new_modtime;
2417 struct stat new_statbuf;
2418 int res;
2419 std::vector<struct objfile *> new_objfiles;
2420
2421 for (objfile *objfile : current_program_space->objfiles ())
2422 {
2423 if (objfile->obfd == NULL)
2424 continue;
2425
2426 /* Separate debug objfiles are handled in the main objfile. */
2427 if (objfile->separate_debug_objfile_backlink)
2428 continue;
2429
2430 /* If this object is from an archive (what you usually create with
2431 `ar', often called a `static library' on most systems, though
2432 a `shared library' on AIX is also an archive), then you should
2433 stat on the archive name, not member name. */
2434 if (objfile->obfd->my_archive)
2435 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2436 else
2437 res = stat (objfile_name (objfile), &new_statbuf);
2438 if (res != 0)
2439 {
2440 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2441 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2442 objfile_name (objfile));
2443 continue;
2444 }
2445 new_modtime = new_statbuf.st_mtime;
2446 if (new_modtime != objfile->mtime)
2447 {
2448 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2449 objfile_name (objfile));
2450
2451 /* There are various functions like symbol_file_add,
2452 symfile_bfd_open, syms_from_objfile, etc., which might
2453 appear to do what we want. But they have various other
2454 effects which we *don't* want. So we just do stuff
2455 ourselves. We don't worry about mapped files (for one thing,
2456 any mapped file will be out of date). */
2457
2458 /* If we get an error, blow away this objfile (not sure if
2459 that is the correct response for things like shared
2460 libraries). */
2461 objfile_up objfile_holder (objfile);
2462
2463 /* We need to do this whenever any symbols go away. */
2464 clear_symtab_users_cleanup defer_clear_users (0);
2465
2466 if (exec_bfd != NULL
2467 && filename_cmp (bfd_get_filename (objfile->obfd),
2468 bfd_get_filename (exec_bfd)) == 0)
2469 {
2470 /* Reload EXEC_BFD without asking anything. */
2471
2472 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2473 }
2474
2475 /* Keep the calls order approx. the same as in free_objfile. */
2476
2477 /* Free the separate debug objfiles. It will be
2478 automatically recreated by sym_read. */
2479 free_objfile_separate_debug (objfile);
2480
2481 /* Clear the stale source cache. */
2482 forget_cached_source_info ();
2483
2484 /* Remove any references to this objfile in the global
2485 value lists. */
2486 preserve_values (objfile);
2487
2488 /* Nuke all the state that we will re-read. Much of the following
2489 code which sets things to NULL really is necessary to tell
2490 other parts of GDB that there is nothing currently there.
2491
2492 Try to keep the freeing order compatible with free_objfile. */
2493
2494 if (objfile->sf != NULL)
2495 {
2496 (*objfile->sf->sym_finish) (objfile);
2497 }
2498
2499 clear_objfile_data (objfile);
2500
2501 /* Clean up any state BFD has sitting around. */
2502 {
2503 gdb_bfd_ref_ptr obfd (objfile->obfd);
2504 const char *obfd_filename;
2505
2506 obfd_filename = bfd_get_filename (objfile->obfd);
2507 /* Open the new BFD before freeing the old one, so that
2508 the filename remains live. */
2509 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2510 objfile->obfd = temp.release ();
2511 if (objfile->obfd == NULL)
2512 error (_("Can't open %s to read symbols."), obfd_filename);
2513 }
2514
2515 std::string original_name = objfile->original_name;
2516
2517 /* bfd_openr sets cacheable to true, which is what we want. */
2518 if (!bfd_check_format (objfile->obfd, bfd_object))
2519 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2520 bfd_errmsg (bfd_get_error ()));
2521
2522 objfile->reset_psymtabs ();
2523
2524 /* NB: after this call to obstack_free, objfiles_changed
2525 will need to be called (see discussion below). */
2526 obstack_free (&objfile->objfile_obstack, 0);
2527 objfile->sections = NULL;
2528 objfile->section_offsets.clear ();
2529 objfile->sect_index_bss = -1;
2530 objfile->sect_index_data = -1;
2531 objfile->sect_index_rodata = -1;
2532 objfile->sect_index_text = -1;
2533 objfile->compunit_symtabs = NULL;
2534 objfile->template_symbols = NULL;
2535 objfile->static_links.reset (nullptr);
2536
2537 /* obstack_init also initializes the obstack so it is
2538 empty. We could use obstack_specify_allocation but
2539 gdb_obstack.h specifies the alloc/dealloc functions. */
2540 obstack_init (&objfile->objfile_obstack);
2541
2542 /* set_objfile_per_bfd potentially allocates the per-bfd
2543 data on the objfile's obstack (if sharing data across
2544 multiple users is not possible), so it's important to
2545 do it *after* the obstack has been initialized. */
2546 set_objfile_per_bfd (objfile);
2547
2548 objfile->original_name
2549 = obstack_strdup (&objfile->objfile_obstack, original_name);
2550
2551 /* Reset the sym_fns pointer. The ELF reader can change it
2552 based on whether .gdb_index is present, and we need it to
2553 start over. PR symtab/15885 */
2554 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2555
2556 build_objfile_section_table (objfile);
2557
2558 /* What the hell is sym_new_init for, anyway? The concept of
2559 distinguishing between the main file and additional files
2560 in this way seems rather dubious. */
2561 if (objfile == symfile_objfile)
2562 {
2563 (*objfile->sf->sym_new_init) (objfile);
2564 }
2565
2566 (*objfile->sf->sym_init) (objfile);
2567 clear_complaints ();
2568
2569 objfile->flags &= ~OBJF_PSYMTABS_READ;
2570
2571 /* We are about to read new symbols and potentially also
2572 DWARF information. Some targets may want to pass addresses
2573 read from DWARF DIE's through an adjustment function before
2574 saving them, like MIPS, which may call into
2575 "find_pc_section". When called, that function will make
2576 use of per-objfile program space data.
2577
2578 Since we discarded our section information above, we have
2579 dangling pointers in the per-objfile program space data
2580 structure. Force GDB to update the section mapping
2581 information by letting it know the objfile has changed,
2582 making the dangling pointers point to correct data
2583 again. */
2584
2585 objfiles_changed ();
2586
2587 /* Recompute section offsets and section indices. */
2588 objfile->sf->sym_offsets (objfile, {});
2589
2590 read_symbols (objfile, 0);
2591
2592 if (!objfile_has_symbols (objfile))
2593 {
2594 wrap_here ("");
2595 printf_filtered (_("(no debugging symbols found)\n"));
2596 wrap_here ("");
2597 }
2598
2599 /* We're done reading the symbol file; finish off complaints. */
2600 clear_complaints ();
2601
2602 /* Getting new symbols may change our opinion about what is
2603 frameless. */
2604
2605 reinit_frame_cache ();
2606
2607 /* Discard cleanups as symbol reading was successful. */
2608 objfile_holder.release ();
2609 defer_clear_users.release ();
2610
2611 /* If the mtime has changed between the time we set new_modtime
2612 and now, we *want* this to be out of date, so don't call stat
2613 again now. */
2614 objfile->mtime = new_modtime;
2615 init_entry_point_info (objfile);
2616
2617 new_objfiles.push_back (objfile);
2618 }
2619 }
2620
2621 if (!new_objfiles.empty ())
2622 {
2623 clear_symtab_users (0);
2624
2625 /* clear_objfile_data for each objfile was called before freeing it and
2626 gdb::observers::new_objfile.notify (NULL) has been called by
2627 clear_symtab_users above. Notify the new files now. */
2628 for (auto iter : new_objfiles)
2629 gdb::observers::new_objfile.notify (iter);
2630
2631 /* At least one objfile has changed, so we can consider that
2632 the executable we're debugging has changed too. */
2633 gdb::observers::executable_changed.notify ();
2634 }
2635 }
2636 \f
2637
2638 struct filename_language
2639 {
2640 filename_language (const std::string &ext_, enum language lang_)
2641 : ext (ext_), lang (lang_)
2642 {}
2643
2644 std::string ext;
2645 enum language lang;
2646 };
2647
2648 static std::vector<filename_language> filename_language_table;
2649
2650 /* See symfile.h. */
2651
2652 void
2653 add_filename_language (const char *ext, enum language lang)
2654 {
2655 gdb_assert (ext != nullptr);
2656 filename_language_table.emplace_back (ext, lang);
2657 }
2658
2659 static char *ext_args;
2660 static void
2661 show_ext_args (struct ui_file *file, int from_tty,
2662 struct cmd_list_element *c, const char *value)
2663 {
2664 fprintf_filtered (file,
2665 _("Mapping between filename extension "
2666 "and source language is \"%s\".\n"),
2667 value);
2668 }
2669
2670 static void
2671 set_ext_lang_command (const char *args,
2672 int from_tty, struct cmd_list_element *e)
2673 {
2674 char *cp = ext_args;
2675 enum language lang;
2676
2677 /* First arg is filename extension, starting with '.' */
2678 if (*cp != '.')
2679 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2680
2681 /* Find end of first arg. */
2682 while (*cp && !isspace (*cp))
2683 cp++;
2684
2685 if (*cp == '\0')
2686 error (_("'%s': two arguments required -- "
2687 "filename extension and language"),
2688 ext_args);
2689
2690 /* Null-terminate first arg. */
2691 *cp++ = '\0';
2692
2693 /* Find beginning of second arg, which should be a source language. */
2694 cp = skip_spaces (cp);
2695
2696 if (*cp == '\0')
2697 error (_("'%s': two arguments required -- "
2698 "filename extension and language"),
2699 ext_args);
2700
2701 /* Lookup the language from among those we know. */
2702 lang = language_enum (cp);
2703
2704 auto it = filename_language_table.begin ();
2705 /* Now lookup the filename extension: do we already know it? */
2706 for (; it != filename_language_table.end (); it++)
2707 {
2708 if (it->ext == ext_args)
2709 break;
2710 }
2711
2712 if (it == filename_language_table.end ())
2713 {
2714 /* New file extension. */
2715 add_filename_language (ext_args, lang);
2716 }
2717 else
2718 {
2719 /* Redefining a previously known filename extension. */
2720
2721 /* if (from_tty) */
2722 /* query ("Really make files of type %s '%s'?", */
2723 /* ext_args, language_str (lang)); */
2724
2725 it->lang = lang;
2726 }
2727 }
2728
2729 static void
2730 info_ext_lang_command (const char *args, int from_tty)
2731 {
2732 printf_filtered (_("Filename extensions and the languages they represent:"));
2733 printf_filtered ("\n\n");
2734 for (const filename_language &entry : filename_language_table)
2735 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2736 language_str (entry.lang));
2737 }
2738
2739 enum language
2740 deduce_language_from_filename (const char *filename)
2741 {
2742 const char *cp;
2743
2744 if (filename != NULL)
2745 if ((cp = strrchr (filename, '.')) != NULL)
2746 {
2747 for (const filename_language &entry : filename_language_table)
2748 if (entry.ext == cp)
2749 return entry.lang;
2750 }
2751
2752 return language_unknown;
2753 }
2754 \f
2755 /* Allocate and initialize a new symbol table.
2756 CUST is from the result of allocate_compunit_symtab. */
2757
2758 struct symtab *
2759 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2760 {
2761 struct objfile *objfile = cust->objfile;
2762 struct symtab *symtab
2763 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2764
2765 symtab->filename = objfile->intern (filename);
2766 symtab->fullname = NULL;
2767 symtab->language = deduce_language_from_filename (filename);
2768
2769 /* This can be very verbose with lots of headers.
2770 Only print at higher debug levels. */
2771 if (symtab_create_debug >= 2)
2772 {
2773 /* Be a bit clever with debugging messages, and don't print objfile
2774 every time, only when it changes. */
2775 static char *last_objfile_name = NULL;
2776
2777 if (last_objfile_name == NULL
2778 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2779 {
2780 xfree (last_objfile_name);
2781 last_objfile_name = xstrdup (objfile_name (objfile));
2782 fprintf_filtered (gdb_stdlog,
2783 "Creating one or more symtabs for objfile %s ...\n",
2784 last_objfile_name);
2785 }
2786 fprintf_filtered (gdb_stdlog,
2787 "Created symtab %s for module %s.\n",
2788 host_address_to_string (symtab), filename);
2789 }
2790
2791 /* Add it to CUST's list of symtabs. */
2792 if (cust->filetabs == NULL)
2793 {
2794 cust->filetabs = symtab;
2795 cust->last_filetab = symtab;
2796 }
2797 else
2798 {
2799 cust->last_filetab->next = symtab;
2800 cust->last_filetab = symtab;
2801 }
2802
2803 /* Backlink to the containing compunit symtab. */
2804 symtab->compunit_symtab = cust;
2805
2806 return symtab;
2807 }
2808
2809 /* Allocate and initialize a new compunit.
2810 NAME is the name of the main source file, if there is one, or some
2811 descriptive text if there are no source files. */
2812
2813 struct compunit_symtab *
2814 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2815 {
2816 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2817 struct compunit_symtab);
2818 const char *saved_name;
2819
2820 cu->objfile = objfile;
2821
2822 /* The name we record here is only for display/debugging purposes.
2823 Just save the basename to avoid path issues (too long for display,
2824 relative vs absolute, etc.). */
2825 saved_name = lbasename (name);
2826 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2827
2828 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2829
2830 if (symtab_create_debug)
2831 {
2832 fprintf_filtered (gdb_stdlog,
2833 "Created compunit symtab %s for %s.\n",
2834 host_address_to_string (cu),
2835 cu->name);
2836 }
2837
2838 return cu;
2839 }
2840
2841 /* Hook CU to the objfile it comes from. */
2842
2843 void
2844 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2845 {
2846 cu->next = cu->objfile->compunit_symtabs;
2847 cu->objfile->compunit_symtabs = cu;
2848 }
2849 \f
2850
2851 /* Reset all data structures in gdb which may contain references to
2852 symbol table data. */
2853
2854 void
2855 clear_symtab_users (symfile_add_flags add_flags)
2856 {
2857 /* Someday, we should do better than this, by only blowing away
2858 the things that really need to be blown. */
2859
2860 /* Clear the "current" symtab first, because it is no longer valid.
2861 breakpoint_re_set may try to access the current symtab. */
2862 clear_current_source_symtab_and_line ();
2863
2864 clear_displays ();
2865 clear_last_displayed_sal ();
2866 clear_pc_function_cache ();
2867 gdb::observers::new_objfile.notify (NULL);
2868
2869 /* Varobj may refer to old symbols, perform a cleanup. */
2870 varobj_invalidate ();
2871
2872 /* Now that the various caches have been cleared, we can re_set
2873 our breakpoints without risking it using stale data. */
2874 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2875 breakpoint_re_set ();
2876 }
2877 \f
2878 /* OVERLAYS:
2879 The following code implements an abstraction for debugging overlay sections.
2880
2881 The target model is as follows:
2882 1) The gnu linker will permit multiple sections to be mapped into the
2883 same VMA, each with its own unique LMA (or load address).
2884 2) It is assumed that some runtime mechanism exists for mapping the
2885 sections, one by one, from the load address into the VMA address.
2886 3) This code provides a mechanism for gdb to keep track of which
2887 sections should be considered to be mapped from the VMA to the LMA.
2888 This information is used for symbol lookup, and memory read/write.
2889 For instance, if a section has been mapped then its contents
2890 should be read from the VMA, otherwise from the LMA.
2891
2892 Two levels of debugger support for overlays are available. One is
2893 "manual", in which the debugger relies on the user to tell it which
2894 overlays are currently mapped. This level of support is
2895 implemented entirely in the core debugger, and the information about
2896 whether a section is mapped is kept in the objfile->obj_section table.
2897
2898 The second level of support is "automatic", and is only available if
2899 the target-specific code provides functionality to read the target's
2900 overlay mapping table, and translate its contents for the debugger
2901 (by updating the mapped state information in the obj_section tables).
2902
2903 The interface is as follows:
2904 User commands:
2905 overlay map <name> -- tell gdb to consider this section mapped
2906 overlay unmap <name> -- tell gdb to consider this section unmapped
2907 overlay list -- list the sections that GDB thinks are mapped
2908 overlay read-target -- get the target's state of what's mapped
2909 overlay off/manual/auto -- set overlay debugging state
2910 Functional interface:
2911 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2912 section, return that section.
2913 find_pc_overlay(pc): find any overlay section that contains
2914 the pc, either in its VMA or its LMA
2915 section_is_mapped(sect): true if overlay is marked as mapped
2916 section_is_overlay(sect): true if section's VMA != LMA
2917 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2918 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2919 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2920 overlay_mapped_address(...): map an address from section's LMA to VMA
2921 overlay_unmapped_address(...): map an address from section's VMA to LMA
2922 symbol_overlayed_address(...): Return a "current" address for symbol:
2923 either in VMA or LMA depending on whether
2924 the symbol's section is currently mapped. */
2925
2926 /* Overlay debugging state: */
2927
2928 enum overlay_debugging_state overlay_debugging = ovly_off;
2929 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2930
2931 /* Function: section_is_overlay (SECTION)
2932 Returns true if SECTION has VMA not equal to LMA, ie.
2933 SECTION is loaded at an address different from where it will "run". */
2934
2935 int
2936 section_is_overlay (struct obj_section *section)
2937 {
2938 if (overlay_debugging && section)
2939 {
2940 asection *bfd_section = section->the_bfd_section;
2941
2942 if (bfd_section_lma (bfd_section) != 0
2943 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2944 return 1;
2945 }
2946
2947 return 0;
2948 }
2949
2950 /* Function: overlay_invalidate_all (void)
2951 Invalidate the mapped state of all overlay sections (mark it as stale). */
2952
2953 static void
2954 overlay_invalidate_all (void)
2955 {
2956 struct obj_section *sect;
2957
2958 for (objfile *objfile : current_program_space->objfiles ())
2959 ALL_OBJFILE_OSECTIONS (objfile, sect)
2960 if (section_is_overlay (sect))
2961 sect->ovly_mapped = -1;
2962 }
2963
2964 /* Function: section_is_mapped (SECTION)
2965 Returns true if section is an overlay, and is currently mapped.
2966
2967 Access to the ovly_mapped flag is restricted to this function, so
2968 that we can do automatic update. If the global flag
2969 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2970 overlay_invalidate_all. If the mapped state of the particular
2971 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2972
2973 int
2974 section_is_mapped (struct obj_section *osect)
2975 {
2976 struct gdbarch *gdbarch;
2977
2978 if (osect == 0 || !section_is_overlay (osect))
2979 return 0;
2980
2981 switch (overlay_debugging)
2982 {
2983 default:
2984 case ovly_off:
2985 return 0; /* overlay debugging off */
2986 case ovly_auto: /* overlay debugging automatic */
2987 /* Unles there is a gdbarch_overlay_update function,
2988 there's really nothing useful to do here (can't really go auto). */
2989 gdbarch = osect->objfile->arch ();
2990 if (gdbarch_overlay_update_p (gdbarch))
2991 {
2992 if (overlay_cache_invalid)
2993 {
2994 overlay_invalidate_all ();
2995 overlay_cache_invalid = 0;
2996 }
2997 if (osect->ovly_mapped == -1)
2998 gdbarch_overlay_update (gdbarch, osect);
2999 }
3000 /* fall thru */
3001 case ovly_on: /* overlay debugging manual */
3002 return osect->ovly_mapped == 1;
3003 }
3004 }
3005
3006 /* Function: pc_in_unmapped_range
3007 If PC falls into the lma range of SECTION, return true, else false. */
3008
3009 CORE_ADDR
3010 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3011 {
3012 if (section_is_overlay (section))
3013 {
3014 asection *bfd_section = section->the_bfd_section;
3015
3016 /* We assume the LMA is relocated by the same offset as the VMA. */
3017 bfd_vma size = bfd_section_size (bfd_section);
3018 CORE_ADDR offset = obj_section_offset (section);
3019
3020 if (bfd_section_lma (bfd_section) + offset <= pc
3021 && pc < bfd_section_lma (bfd_section) + offset + size)
3022 return 1;
3023 }
3024
3025 return 0;
3026 }
3027
3028 /* Function: pc_in_mapped_range
3029 If PC falls into the vma range of SECTION, return true, else false. */
3030
3031 CORE_ADDR
3032 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3033 {
3034 if (section_is_overlay (section))
3035 {
3036 if (obj_section_addr (section) <= pc
3037 && pc < obj_section_endaddr (section))
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /* Return true if the mapped ranges of sections A and B overlap, false
3045 otherwise. */
3046
3047 static int
3048 sections_overlap (struct obj_section *a, struct obj_section *b)
3049 {
3050 CORE_ADDR a_start = obj_section_addr (a);
3051 CORE_ADDR a_end = obj_section_endaddr (a);
3052 CORE_ADDR b_start = obj_section_addr (b);
3053 CORE_ADDR b_end = obj_section_endaddr (b);
3054
3055 return (a_start < b_end && b_start < a_end);
3056 }
3057
3058 /* Function: overlay_unmapped_address (PC, SECTION)
3059 Returns the address corresponding to PC in the unmapped (load) range.
3060 May be the same as PC. */
3061
3062 CORE_ADDR
3063 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3064 {
3065 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3066 {
3067 asection *bfd_section = section->the_bfd_section;
3068
3069 return (pc + bfd_section_lma (bfd_section)
3070 - bfd_section_vma (bfd_section));
3071 }
3072
3073 return pc;
3074 }
3075
3076 /* Function: overlay_mapped_address (PC, SECTION)
3077 Returns the address corresponding to PC in the mapped (runtime) range.
3078 May be the same as PC. */
3079
3080 CORE_ADDR
3081 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3082 {
3083 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3084 {
3085 asection *bfd_section = section->the_bfd_section;
3086
3087 return (pc + bfd_section_vma (bfd_section)
3088 - bfd_section_lma (bfd_section));
3089 }
3090
3091 return pc;
3092 }
3093
3094 /* Function: symbol_overlayed_address
3095 Return one of two addresses (relative to the VMA or to the LMA),
3096 depending on whether the section is mapped or not. */
3097
3098 CORE_ADDR
3099 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3100 {
3101 if (overlay_debugging)
3102 {
3103 /* If the symbol has no section, just return its regular address. */
3104 if (section == 0)
3105 return address;
3106 /* If the symbol's section is not an overlay, just return its
3107 address. */
3108 if (!section_is_overlay (section))
3109 return address;
3110 /* If the symbol's section is mapped, just return its address. */
3111 if (section_is_mapped (section))
3112 return address;
3113 /*
3114 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3115 * then return its LOADED address rather than its vma address!!
3116 */
3117 return overlay_unmapped_address (address, section);
3118 }
3119 return address;
3120 }
3121
3122 /* Function: find_pc_overlay (PC)
3123 Return the best-match overlay section for PC:
3124 If PC matches a mapped overlay section's VMA, return that section.
3125 Else if PC matches an unmapped section's VMA, return that section.
3126 Else if PC matches an unmapped section's LMA, return that section. */
3127
3128 struct obj_section *
3129 find_pc_overlay (CORE_ADDR pc)
3130 {
3131 struct obj_section *osect, *best_match = NULL;
3132
3133 if (overlay_debugging)
3134 {
3135 for (objfile *objfile : current_program_space->objfiles ())
3136 ALL_OBJFILE_OSECTIONS (objfile, osect)
3137 if (section_is_overlay (osect))
3138 {
3139 if (pc_in_mapped_range (pc, osect))
3140 {
3141 if (section_is_mapped (osect))
3142 return osect;
3143 else
3144 best_match = osect;
3145 }
3146 else if (pc_in_unmapped_range (pc, osect))
3147 best_match = osect;
3148 }
3149 }
3150 return best_match;
3151 }
3152
3153 /* Function: find_pc_mapped_section (PC)
3154 If PC falls into the VMA address range of an overlay section that is
3155 currently marked as MAPPED, return that section. Else return NULL. */
3156
3157 struct obj_section *
3158 find_pc_mapped_section (CORE_ADDR pc)
3159 {
3160 struct obj_section *osect;
3161
3162 if (overlay_debugging)
3163 {
3164 for (objfile *objfile : current_program_space->objfiles ())
3165 ALL_OBJFILE_OSECTIONS (objfile, osect)
3166 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3167 return osect;
3168 }
3169
3170 return NULL;
3171 }
3172
3173 /* Function: list_overlays_command
3174 Print a list of mapped sections and their PC ranges. */
3175
3176 static void
3177 list_overlays_command (const char *args, int from_tty)
3178 {
3179 int nmapped = 0;
3180 struct obj_section *osect;
3181
3182 if (overlay_debugging)
3183 {
3184 for (objfile *objfile : current_program_space->objfiles ())
3185 ALL_OBJFILE_OSECTIONS (objfile, osect)
3186 if (section_is_mapped (osect))
3187 {
3188 struct gdbarch *gdbarch = objfile->arch ();
3189 const char *name;
3190 bfd_vma lma, vma;
3191 int size;
3192
3193 vma = bfd_section_vma (osect->the_bfd_section);
3194 lma = bfd_section_lma (osect->the_bfd_section);
3195 size = bfd_section_size (osect->the_bfd_section);
3196 name = bfd_section_name (osect->the_bfd_section);
3197
3198 printf_filtered ("Section %s, loaded at ", name);
3199 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3200 puts_filtered (" - ");
3201 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3202 printf_filtered (", mapped at ");
3203 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3204 puts_filtered (" - ");
3205 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3206 puts_filtered ("\n");
3207
3208 nmapped++;
3209 }
3210 }
3211 if (nmapped == 0)
3212 printf_filtered (_("No sections are mapped.\n"));
3213 }
3214
3215 /* Function: map_overlay_command
3216 Mark the named section as mapped (ie. residing at its VMA address). */
3217
3218 static void
3219 map_overlay_command (const char *args, int from_tty)
3220 {
3221 struct obj_section *sec, *sec2;
3222
3223 if (!overlay_debugging)
3224 error (_("Overlay debugging not enabled. Use "
3225 "either the 'overlay auto' or\n"
3226 "the 'overlay manual' command."));
3227
3228 if (args == 0 || *args == 0)
3229 error (_("Argument required: name of an overlay section"));
3230
3231 /* First, find a section matching the user supplied argument. */
3232 for (objfile *obj_file : current_program_space->objfiles ())
3233 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3234 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3235 {
3236 /* Now, check to see if the section is an overlay. */
3237 if (!section_is_overlay (sec))
3238 continue; /* not an overlay section */
3239
3240 /* Mark the overlay as "mapped". */
3241 sec->ovly_mapped = 1;
3242
3243 /* Next, make a pass and unmap any sections that are
3244 overlapped by this new section: */
3245 for (objfile *objfile2 : current_program_space->objfiles ())
3246 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3247 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3248 sec2))
3249 {
3250 if (info_verbose)
3251 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3252 bfd_section_name (sec2->the_bfd_section));
3253 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3254 }
3255 return;
3256 }
3257 error (_("No overlay section called %s"), args);
3258 }
3259
3260 /* Function: unmap_overlay_command
3261 Mark the overlay section as unmapped
3262 (ie. resident in its LMA address range, rather than the VMA range). */
3263
3264 static void
3265 unmap_overlay_command (const char *args, int from_tty)
3266 {
3267 struct obj_section *sec = NULL;
3268
3269 if (!overlay_debugging)
3270 error (_("Overlay debugging not enabled. "
3271 "Use either the 'overlay auto' or\n"
3272 "the 'overlay manual' command."));
3273
3274 if (args == 0 || *args == 0)
3275 error (_("Argument required: name of an overlay section"));
3276
3277 /* First, find a section matching the user supplied argument. */
3278 for (objfile *objfile : current_program_space->objfiles ())
3279 ALL_OBJFILE_OSECTIONS (objfile, sec)
3280 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3281 {
3282 if (!sec->ovly_mapped)
3283 error (_("Section %s is not mapped"), args);
3284 sec->ovly_mapped = 0;
3285 return;
3286 }
3287 error (_("No overlay section called %s"), args);
3288 }
3289
3290 /* Function: overlay_auto_command
3291 A utility command to turn on overlay debugging.
3292 Possibly this should be done via a set/show command. */
3293
3294 static void
3295 overlay_auto_command (const char *args, int from_tty)
3296 {
3297 overlay_debugging = ovly_auto;
3298 enable_overlay_breakpoints ();
3299 if (info_verbose)
3300 printf_unfiltered (_("Automatic overlay debugging enabled."));
3301 }
3302
3303 /* Function: overlay_manual_command
3304 A utility command to turn on overlay debugging.
3305 Possibly this should be done via a set/show command. */
3306
3307 static void
3308 overlay_manual_command (const char *args, int from_tty)
3309 {
3310 overlay_debugging = ovly_on;
3311 disable_overlay_breakpoints ();
3312 if (info_verbose)
3313 printf_unfiltered (_("Overlay debugging enabled."));
3314 }
3315
3316 /* Function: overlay_off_command
3317 A utility command to turn on overlay debugging.
3318 Possibly this should be done via a set/show command. */
3319
3320 static void
3321 overlay_off_command (const char *args, int from_tty)
3322 {
3323 overlay_debugging = ovly_off;
3324 disable_overlay_breakpoints ();
3325 if (info_verbose)
3326 printf_unfiltered (_("Overlay debugging disabled."));
3327 }
3328
3329 static void
3330 overlay_load_command (const char *args, int from_tty)
3331 {
3332 struct gdbarch *gdbarch = get_current_arch ();
3333
3334 if (gdbarch_overlay_update_p (gdbarch))
3335 gdbarch_overlay_update (gdbarch, NULL);
3336 else
3337 error (_("This target does not know how to read its overlay state."));
3338 }
3339
3340 /* Command list chain containing all defined "overlay" subcommands. */
3341 static struct cmd_list_element *overlaylist;
3342
3343 /* Target Overlays for the "Simplest" overlay manager:
3344
3345 This is GDB's default target overlay layer. It works with the
3346 minimal overlay manager supplied as an example by Cygnus. The
3347 entry point is via a function pointer "gdbarch_overlay_update",
3348 so targets that use a different runtime overlay manager can
3349 substitute their own overlay_update function and take over the
3350 function pointer.
3351
3352 The overlay_update function pokes around in the target's data structures
3353 to see what overlays are mapped, and updates GDB's overlay mapping with
3354 this information.
3355
3356 In this simple implementation, the target data structures are as follows:
3357 unsigned _novlys; /# number of overlay sections #/
3358 unsigned _ovly_table[_novlys][4] = {
3359 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3360 {..., ..., ..., ...},
3361 }
3362 unsigned _novly_regions; /# number of overlay regions #/
3363 unsigned _ovly_region_table[_novly_regions][3] = {
3364 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3365 {..., ..., ...},
3366 }
3367 These functions will attempt to update GDB's mappedness state in the
3368 symbol section table, based on the target's mappedness state.
3369
3370 To do this, we keep a cached copy of the target's _ovly_table, and
3371 attempt to detect when the cached copy is invalidated. The main
3372 entry point is "simple_overlay_update(SECT), which looks up SECT in
3373 the cached table and re-reads only the entry for that section from
3374 the target (whenever possible). */
3375
3376 /* Cached, dynamically allocated copies of the target data structures: */
3377 static unsigned (*cache_ovly_table)[4] = 0;
3378 static unsigned cache_novlys = 0;
3379 static CORE_ADDR cache_ovly_table_base = 0;
3380 enum ovly_index
3381 {
3382 VMA, OSIZE, LMA, MAPPED
3383 };
3384
3385 /* Throw away the cached copy of _ovly_table. */
3386
3387 static void
3388 simple_free_overlay_table (void)
3389 {
3390 xfree (cache_ovly_table);
3391 cache_novlys = 0;
3392 cache_ovly_table = NULL;
3393 cache_ovly_table_base = 0;
3394 }
3395
3396 /* Read an array of ints of size SIZE from the target into a local buffer.
3397 Convert to host order. int LEN is number of ints. */
3398
3399 static void
3400 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3401 int len, int size, enum bfd_endian byte_order)
3402 {
3403 /* FIXME (alloca): Not safe if array is very large. */
3404 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3405 int i;
3406
3407 read_memory (memaddr, buf, len * size);
3408 for (i = 0; i < len; i++)
3409 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3410 }
3411
3412 /* Find and grab a copy of the target _ovly_table
3413 (and _novlys, which is needed for the table's size). */
3414
3415 static int
3416 simple_read_overlay_table (void)
3417 {
3418 struct bound_minimal_symbol novlys_msym;
3419 struct bound_minimal_symbol ovly_table_msym;
3420 struct gdbarch *gdbarch;
3421 int word_size;
3422 enum bfd_endian byte_order;
3423
3424 simple_free_overlay_table ();
3425 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3426 if (! novlys_msym.minsym)
3427 {
3428 error (_("Error reading inferior's overlay table: "
3429 "couldn't find `_novlys' variable\n"
3430 "in inferior. Use `overlay manual' mode."));
3431 return 0;
3432 }
3433
3434 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3435 if (! ovly_table_msym.minsym)
3436 {
3437 error (_("Error reading inferior's overlay table: couldn't find "
3438 "`_ovly_table' array\n"
3439 "in inferior. Use `overlay manual' mode."));
3440 return 0;
3441 }
3442
3443 gdbarch = ovly_table_msym.objfile->arch ();
3444 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3445 byte_order = gdbarch_byte_order (gdbarch);
3446
3447 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3448 4, byte_order);
3449 cache_ovly_table
3450 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3451 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3452 read_target_long_array (cache_ovly_table_base,
3453 (unsigned int *) cache_ovly_table,
3454 cache_novlys * 4, word_size, byte_order);
3455
3456 return 1; /* SUCCESS */
3457 }
3458
3459 /* Function: simple_overlay_update_1
3460 A helper function for simple_overlay_update. Assuming a cached copy
3461 of _ovly_table exists, look through it to find an entry whose vma,
3462 lma and size match those of OSECT. Re-read the entry and make sure
3463 it still matches OSECT (else the table may no longer be valid).
3464 Set OSECT's mapped state to match the entry. Return: 1 for
3465 success, 0 for failure. */
3466
3467 static int
3468 simple_overlay_update_1 (struct obj_section *osect)
3469 {
3470 int i;
3471 asection *bsect = osect->the_bfd_section;
3472 struct gdbarch *gdbarch = osect->objfile->arch ();
3473 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3474 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3475
3476 for (i = 0; i < cache_novlys; i++)
3477 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3478 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3479 {
3480 read_target_long_array (cache_ovly_table_base + i * word_size,
3481 (unsigned int *) cache_ovly_table[i],
3482 4, word_size, byte_order);
3483 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3484 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3485 {
3486 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3487 return 1;
3488 }
3489 else /* Warning! Warning! Target's ovly table has changed! */
3490 return 0;
3491 }
3492 return 0;
3493 }
3494
3495 /* Function: simple_overlay_update
3496 If OSECT is NULL, then update all sections' mapped state
3497 (after re-reading the entire target _ovly_table).
3498 If OSECT is non-NULL, then try to find a matching entry in the
3499 cached ovly_table and update only OSECT's mapped state.
3500 If a cached entry can't be found or the cache isn't valid, then
3501 re-read the entire cache, and go ahead and update all sections. */
3502
3503 void
3504 simple_overlay_update (struct obj_section *osect)
3505 {
3506 /* Were we given an osect to look up? NULL means do all of them. */
3507 if (osect)
3508 /* Have we got a cached copy of the target's overlay table? */
3509 if (cache_ovly_table != NULL)
3510 {
3511 /* Does its cached location match what's currently in the
3512 symtab? */
3513 struct bound_minimal_symbol minsym
3514 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3515
3516 if (minsym.minsym == NULL)
3517 error (_("Error reading inferior's overlay table: couldn't "
3518 "find `_ovly_table' array\n"
3519 "in inferior. Use `overlay manual' mode."));
3520
3521 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3522 /* Then go ahead and try to look up this single section in
3523 the cache. */
3524 if (simple_overlay_update_1 (osect))
3525 /* Found it! We're done. */
3526 return;
3527 }
3528
3529 /* Cached table no good: need to read the entire table anew.
3530 Or else we want all the sections, in which case it's actually
3531 more efficient to read the whole table in one block anyway. */
3532
3533 if (! simple_read_overlay_table ())
3534 return;
3535
3536 /* Now may as well update all sections, even if only one was requested. */
3537 for (objfile *objfile : current_program_space->objfiles ())
3538 ALL_OBJFILE_OSECTIONS (objfile, osect)
3539 if (section_is_overlay (osect))
3540 {
3541 int i;
3542 asection *bsect = osect->the_bfd_section;
3543
3544 for (i = 0; i < cache_novlys; i++)
3545 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3546 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3547 { /* obj_section matches i'th entry in ovly_table. */
3548 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3549 break; /* finished with inner for loop: break out. */
3550 }
3551 }
3552 }
3553
3554 /* Default implementation for sym_relocate. */
3555
3556 bfd_byte *
3557 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3558 bfd_byte *buf)
3559 {
3560 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3561 DWO file. */
3562 bfd *abfd = sectp->owner;
3563
3564 /* We're only interested in sections with relocation
3565 information. */
3566 if ((sectp->flags & SEC_RELOC) == 0)
3567 return NULL;
3568
3569 /* We will handle section offsets properly elsewhere, so relocate as if
3570 all sections begin at 0. */
3571 for (asection *sect : gdb_bfd_sections (abfd))
3572 {
3573 sect->output_section = sect;
3574 sect->output_offset = 0;
3575 }
3576
3577 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3578 }
3579
3580 /* Relocate the contents of a debug section SECTP in ABFD. The
3581 contents are stored in BUF if it is non-NULL, or returned in a
3582 malloc'd buffer otherwise.
3583
3584 For some platforms and debug info formats, shared libraries contain
3585 relocations against the debug sections (particularly for DWARF-2;
3586 one affected platform is PowerPC GNU/Linux, although it depends on
3587 the version of the linker in use). Also, ELF object files naturally
3588 have unresolved relocations for their debug sections. We need to apply
3589 the relocations in order to get the locations of symbols correct.
3590 Another example that may require relocation processing, is the
3591 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3592 debug section. */
3593
3594 bfd_byte *
3595 symfile_relocate_debug_section (struct objfile *objfile,
3596 asection *sectp, bfd_byte *buf)
3597 {
3598 gdb_assert (objfile->sf->sym_relocate);
3599
3600 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3601 }
3602
3603 symfile_segment_data_up
3604 get_symfile_segment_data (bfd *abfd)
3605 {
3606 const struct sym_fns *sf = find_sym_fns (abfd);
3607
3608 if (sf == NULL)
3609 return NULL;
3610
3611 return sf->sym_segments (abfd);
3612 }
3613
3614 /* Given:
3615 - DATA, containing segment addresses from the object file ABFD, and
3616 the mapping from ABFD's sections onto the segments that own them,
3617 and
3618 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3619 segment addresses reported by the target,
3620 store the appropriate offsets for each section in OFFSETS.
3621
3622 If there are fewer entries in SEGMENT_BASES than there are segments
3623 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3624
3625 If there are more entries, then ignore the extra. The target may
3626 not be able to distinguish between an empty data segment and a
3627 missing data segment; a missing text segment is less plausible. */
3628
3629 int
3630 symfile_map_offsets_to_segments (bfd *abfd,
3631 const struct symfile_segment_data *data,
3632 section_offsets &offsets,
3633 int num_segment_bases,
3634 const CORE_ADDR *segment_bases)
3635 {
3636 int i;
3637 asection *sect;
3638
3639 /* It doesn't make sense to call this function unless you have some
3640 segment base addresses. */
3641 gdb_assert (num_segment_bases > 0);
3642
3643 /* If we do not have segment mappings for the object file, we
3644 can not relocate it by segments. */
3645 gdb_assert (data != NULL);
3646 gdb_assert (data->segments.size () > 0);
3647
3648 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3649 {
3650 int which = data->segment_info[i];
3651
3652 gdb_assert (0 <= which && which <= data->segments.size ());
3653
3654 /* Don't bother computing offsets for sections that aren't
3655 loaded as part of any segment. */
3656 if (! which)
3657 continue;
3658
3659 /* Use the last SEGMENT_BASES entry as the address of any extra
3660 segments mentioned in DATA->segment_info. */
3661 if (which > num_segment_bases)
3662 which = num_segment_bases;
3663
3664 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3665 }
3666
3667 return 1;
3668 }
3669
3670 static void
3671 symfile_find_segment_sections (struct objfile *objfile)
3672 {
3673 bfd *abfd = objfile->obfd;
3674 int i;
3675 asection *sect;
3676
3677 symfile_segment_data_up data
3678 = get_symfile_segment_data (objfile->obfd);
3679 if (data == NULL)
3680 return;
3681
3682 if (data->segments.size () != 1 && data->segments.size () != 2)
3683 return;
3684
3685 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3686 {
3687 int which = data->segment_info[i];
3688
3689 if (which == 1)
3690 {
3691 if (objfile->sect_index_text == -1)
3692 objfile->sect_index_text = sect->index;
3693
3694 if (objfile->sect_index_rodata == -1)
3695 objfile->sect_index_rodata = sect->index;
3696 }
3697 else if (which == 2)
3698 {
3699 if (objfile->sect_index_data == -1)
3700 objfile->sect_index_data = sect->index;
3701
3702 if (objfile->sect_index_bss == -1)
3703 objfile->sect_index_bss = sect->index;
3704 }
3705 }
3706 }
3707
3708 /* Listen for free_objfile events. */
3709
3710 static void
3711 symfile_free_objfile (struct objfile *objfile)
3712 {
3713 /* Remove the target sections owned by this objfile. */
3714 if (objfile != NULL)
3715 remove_target_sections ((void *) objfile);
3716 }
3717
3718 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3719 Expand all symtabs that match the specified criteria.
3720 See quick_symbol_functions.expand_symtabs_matching for details. */
3721
3722 void
3723 expand_symtabs_matching
3724 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3725 const lookup_name_info &lookup_name,
3726 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3727 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3728 enum search_domain kind)
3729 {
3730 for (objfile *objfile : current_program_space->objfiles ())
3731 {
3732 if (objfile->sf)
3733 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3734 &lookup_name,
3735 symbol_matcher,
3736 expansion_notify, kind);
3737 }
3738 }
3739
3740 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3741 Map function FUN over every file.
3742 See quick_symbol_functions.map_symbol_filenames for details. */
3743
3744 void
3745 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3746 int need_fullname)
3747 {
3748 for (objfile *objfile : current_program_space->objfiles ())
3749 {
3750 if (objfile->sf)
3751 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3752 need_fullname);
3753 }
3754 }
3755
3756 #if GDB_SELF_TEST
3757
3758 namespace selftests {
3759 namespace filename_language {
3760
3761 static void test_filename_language ()
3762 {
3763 /* This test messes up the filename_language_table global. */
3764 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3765
3766 /* Test deducing an unknown extension. */
3767 language lang = deduce_language_from_filename ("myfile.blah");
3768 SELF_CHECK (lang == language_unknown);
3769
3770 /* Test deducing a known extension. */
3771 lang = deduce_language_from_filename ("myfile.c");
3772 SELF_CHECK (lang == language_c);
3773
3774 /* Test adding a new extension using the internal API. */
3775 add_filename_language (".blah", language_pascal);
3776 lang = deduce_language_from_filename ("myfile.blah");
3777 SELF_CHECK (lang == language_pascal);
3778 }
3779
3780 static void
3781 test_set_ext_lang_command ()
3782 {
3783 /* This test messes up the filename_language_table global. */
3784 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3785
3786 /* Confirm that the .hello extension is not known. */
3787 language lang = deduce_language_from_filename ("cake.hello");
3788 SELF_CHECK (lang == language_unknown);
3789
3790 /* Test adding a new extension using the CLI command. */
3791 auto args_holder = make_unique_xstrdup (".hello rust");
3792 ext_args = args_holder.get ();
3793 set_ext_lang_command (NULL, 1, NULL);
3794
3795 lang = deduce_language_from_filename ("cake.hello");
3796 SELF_CHECK (lang == language_rust);
3797
3798 /* Test overriding an existing extension using the CLI command. */
3799 int size_before = filename_language_table.size ();
3800 args_holder.reset (xstrdup (".hello pascal"));
3801 ext_args = args_holder.get ();
3802 set_ext_lang_command (NULL, 1, NULL);
3803 int size_after = filename_language_table.size ();
3804
3805 lang = deduce_language_from_filename ("cake.hello");
3806 SELF_CHECK (lang == language_pascal);
3807 SELF_CHECK (size_before == size_after);
3808 }
3809
3810 } /* namespace filename_language */
3811 } /* namespace selftests */
3812
3813 #endif /* GDB_SELF_TEST */
3814
3815 void _initialize_symfile ();
3816 void
3817 _initialize_symfile ()
3818 {
3819 struct cmd_list_element *c;
3820
3821 gdb::observers::free_objfile.attach (symfile_free_objfile);
3822
3823 #define READNOW_READNEVER_HELP \
3824 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3825 immediately. This makes the command slower, but may make future operations\n\
3826 faster.\n\
3827 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3828 symbolic debug information."
3829
3830 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3831 Load symbol table from executable file FILE.\n\
3832 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3833 OFF is an optional offset which is added to each section address.\n\
3834 The `file' command can also load symbol tables, as well as setting the file\n\
3835 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3836 set_cmd_completer (c, filename_completer);
3837
3838 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3839 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3840 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3841 [-s SECT-NAME SECT-ADDR]...\n\
3842 ADDR is the starting address of the file's text.\n\
3843 Each '-s' argument provides a section name and address, and\n\
3844 should be specified if the data and bss segments are not contiguous\n\
3845 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3846 OFF is an optional offset which is added to the default load addresses\n\
3847 of all sections for which no other address was specified.\n"
3848 READNOW_READNEVER_HELP),
3849 &cmdlist);
3850 set_cmd_completer (c, filename_completer);
3851
3852 c = add_cmd ("remove-symbol-file", class_files,
3853 remove_symbol_file_command, _("\
3854 Remove a symbol file added via the add-symbol-file command.\n\
3855 Usage: remove-symbol-file FILENAME\n\
3856 remove-symbol-file -a ADDRESS\n\
3857 The file to remove can be identified by its filename or by an address\n\
3858 that lies within the boundaries of this symbol file in memory."),
3859 &cmdlist);
3860
3861 c = add_cmd ("load", class_files, load_command, _("\
3862 Dynamically load FILE into the running program.\n\
3863 FILE symbols are recorded for access from GDB.\n\
3864 Usage: load [FILE] [OFFSET]\n\
3865 An optional load OFFSET may also be given as a literal address.\n\
3866 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3867 on its own."), &cmdlist);
3868 set_cmd_completer (c, filename_completer);
3869
3870 add_basic_prefix_cmd ("overlay", class_support,
3871 _("Commands for debugging overlays."), &overlaylist,
3872 "overlay ", 0, &cmdlist);
3873
3874 add_com_alias ("ovly", "overlay", class_support, 1);
3875 add_com_alias ("ov", "overlay", class_support, 1);
3876
3877 add_cmd ("map-overlay", class_support, map_overlay_command,
3878 _("Assert that an overlay section is mapped."), &overlaylist);
3879
3880 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3881 _("Assert that an overlay section is unmapped."), &overlaylist);
3882
3883 add_cmd ("list-overlays", class_support, list_overlays_command,
3884 _("List mappings of overlay sections."), &overlaylist);
3885
3886 add_cmd ("manual", class_support, overlay_manual_command,
3887 _("Enable overlay debugging."), &overlaylist);
3888 add_cmd ("off", class_support, overlay_off_command,
3889 _("Disable overlay debugging."), &overlaylist);
3890 add_cmd ("auto", class_support, overlay_auto_command,
3891 _("Enable automatic overlay debugging."), &overlaylist);
3892 add_cmd ("load-target", class_support, overlay_load_command,
3893 _("Read the overlay mapping state from the target."), &overlaylist);
3894
3895 /* Filename extension to source language lookup table: */
3896 add_setshow_string_noescape_cmd ("extension-language", class_files,
3897 &ext_args, _("\
3898 Set mapping between filename extension and source language."), _("\
3899 Show mapping between filename extension and source language."), _("\
3900 Usage: set extension-language .foo bar"),
3901 set_ext_lang_command,
3902 show_ext_args,
3903 &setlist, &showlist);
3904
3905 add_info ("extensions", info_ext_lang_command,
3906 _("All filename extensions associated with a source language."));
3907
3908 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3909 &debug_file_directory, _("\
3910 Set the directories where separate debug symbols are searched for."), _("\
3911 Show the directories where separate debug symbols are searched for."), _("\
3912 Separate debug symbols are first searched for in the same\n\
3913 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3914 and lastly at the path of the directory of the binary with\n\
3915 each global debug-file-directory component prepended."),
3916 NULL,
3917 show_debug_file_directory,
3918 &setlist, &showlist);
3919
3920 add_setshow_enum_cmd ("symbol-loading", no_class,
3921 print_symbol_loading_enums, &print_symbol_loading,
3922 _("\
3923 Set printing of symbol loading messages."), _("\
3924 Show printing of symbol loading messages."), _("\
3925 off == turn all messages off\n\
3926 brief == print messages for the executable,\n\
3927 and brief messages for shared libraries\n\
3928 full == print messages for the executable,\n\
3929 and messages for each shared library."),
3930 NULL,
3931 NULL,
3932 &setprintlist, &showprintlist);
3933
3934 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3935 &separate_debug_file_debug, _("\
3936 Set printing of separate debug info file search debug."), _("\
3937 Show printing of separate debug info file search debug."), _("\
3938 When on, GDB prints the searched locations while looking for separate debug \
3939 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3940
3941 #if GDB_SELF_TEST
3942 selftests::register_test
3943 ("filename_language", selftests::filename_language::test_filename_language);
3944 selftests::register_test
3945 ("set_ext_lang_command",
3946 selftests::filename_language::test_set_ext_lang_command);
3947 #endif
3948 }