2000-06-02 Michael Snyder <msnyder@seadog.cygnus.com>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990-1996, 1998, 2000 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "breakpoint.h"
33 #include "language.h"
34 #include "complaints.h"
35 #include "demangle.h"
36 #include "inferior.h" /* for write_pc */
37 #include "gdb-stabs.h"
38 #include "obstack.h"
39
40 #include <assert.h>
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) (char *);
72 void (*post_add_symbol_hook) (void);
73 void (*target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 struct complaint oldsyms_complaint =
81 {
82 "Replacing old symbols for `%s'", 0, 0
83 };
84
85 struct complaint empty_symtab_complaint =
86 {
87 "Empty symbol table found for `%s'", 0, 0
88 };
89
90 struct complaint unknown_option_complaint =
91 {
92 "Unknown option `%s' ignored", 0, 0
93 };
94
95 /* External variables and functions referenced. */
96
97 extern int info_verbose;
98
99 extern void report_transfer_performance (unsigned long, time_t, time_t);
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table (void);
105 static void simple_free_overlay_region_table (void);
106 #endif
107
108 static void set_initial_language (void);
109
110 static void load_command (char *, int);
111
112 static void add_symbol_file_command (char *, int);
113
114 static void add_shared_symbol_files_command (char *, int);
115
116 static void cashier_psymtab (struct partial_symtab *);
117
118 static int compare_psymbols (const void *, const void *);
119
120 static int compare_symbols (const void *, const void *);
121
122 bfd *symfile_bfd_open (char *);
123
124 static void find_sym_fns (struct objfile *);
125
126 static void decrement_reading_symtab (void *);
127
128 static void overlay_invalidate_all (void);
129
130 static int overlay_is_mapped (struct obj_section *);
131
132 void list_overlays_command (char *, int);
133
134 void map_overlay_command (char *, int);
135
136 void unmap_overlay_command (char *, int);
137
138 static void overlay_auto_command (char *, int);
139
140 static void overlay_manual_command (char *, int);
141
142 static void overlay_off_command (char *, int);
143
144 static void overlay_load_command (char *, int);
145
146 static void overlay_command (char *, int);
147
148 static void simple_free_overlay_table (void);
149
150 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
151
152 static int simple_read_overlay_table (void);
153
154 static int simple_overlay_update_1 (struct obj_section *);
155
156 static void add_filename_language (char *ext, enum language lang);
157
158 static void set_ext_lang_command (char *args, int from_tty);
159
160 static void info_ext_lang_command (char *args, int from_tty);
161
162 static void init_filename_language_table (void);
163
164 void _initialize_symfile (void);
165
166 /* List of all available sym_fns. On gdb startup, each object file reader
167 calls add_symtab_fns() to register information on each format it is
168 prepared to read. */
169
170 static struct sym_fns *symtab_fns = NULL;
171
172 /* Flag for whether user will be reloading symbols multiple times.
173 Defaults to ON for VxWorks, otherwise OFF. */
174
175 #ifdef SYMBOL_RELOADING_DEFAULT
176 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
177 #else
178 int symbol_reloading = 0;
179 #endif
180
181 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
182 this variable is interpreted as a threshhold. If adding a new
183 library's symbol table to those already known to the debugger would
184 exceed this threshhold, then the shlib's symbols are not added.
185
186 If non-zero on other platforms, shared library symbols will be added
187 automatically when the inferior is created, new libraries are loaded,
188 or when attaching to the inferior. This is almost always what users
189 will want to have happen; but for very large programs, the startup
190 time will be excessive, and so if this is a problem, the user can
191 clear this flag and then add the shared library symbols as needed.
192 Note that there is a potential for confusion, since if the shared
193 library symbols are not loaded, commands like "info fun" will *not*
194 report all the functions that are actually present.
195
196 Note that HP-UX interprets this variable to mean, "threshhold size
197 in megabytes, where zero means never add". Other platforms interpret
198 this variable to mean, "always add if non-zero, never add if zero."
199 */
200
201 int auto_solib_add = 1;
202 \f
203
204 /* Since this function is called from within qsort, in an ANSI environment
205 it must conform to the prototype for qsort, which specifies that the
206 comparison function takes two "void *" pointers. */
207
208 static int
209 compare_symbols (s1p, s2p)
210 const PTR s1p;
211 const PTR s2p;
212 {
213 register struct symbol **s1, **s2;
214
215 s1 = (struct symbol **) s1p;
216 s2 = (struct symbol **) s2p;
217
218 return (STRCMP (SYMBOL_NAME (*s1), SYMBOL_NAME (*s2)));
219 }
220
221 /*
222
223 LOCAL FUNCTION
224
225 compare_psymbols -- compare two partial symbols by name
226
227 DESCRIPTION
228
229 Given pointers to pointers to two partial symbol table entries,
230 compare them by name and return -N, 0, or +N (ala strcmp).
231 Typically used by sorting routines like qsort().
232
233 NOTES
234
235 Does direct compare of first two characters before punting
236 and passing to strcmp for longer compares. Note that the
237 original version had a bug whereby two null strings or two
238 identically named one character strings would return the
239 comparison of memory following the null byte.
240
241 */
242
243 static int
244 compare_psymbols (s1p, s2p)
245 const PTR s1p;
246 const PTR s2p;
247 {
248 register char *st1 = SYMBOL_NAME (*(struct partial_symbol **) s1p);
249 register char *st2 = SYMBOL_NAME (*(struct partial_symbol **) s2p);
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 /* Note: I replaced the STRCMP line (commented out below)
262 * with a simpler "strcmp()" which compares the 2 strings
263 * from the beginning. (STRCMP is a macro which first compares
264 * the initial characters, then falls back on strcmp).
265 * The reason is that the STRCMP line was tickling a C compiler
266 * bug on HP-UX 10.30, which is avoided with the simpler
267 * code. The performance gain from the more complicated code
268 * is negligible, given that we have already checked the
269 * initial 2 characters above. I reported the compiler bug,
270 * and once it is fixed the original line can be put back. RT
271 */
272 /* return ( STRCMP (st1 + 2, st2 + 2)); */
273 return (strcmp (st1, st2));
274 }
275 }
276
277 void
278 sort_pst_symbols (pst)
279 struct partial_symtab *pst;
280 {
281 /* Sort the global list; don't sort the static list */
282
283 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
284 pst->n_global_syms, sizeof (struct partial_symbol *),
285 compare_psymbols);
286 }
287
288 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
289
290 void
291 sort_block_syms (b)
292 register struct block *b;
293 {
294 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
295 sizeof (struct symbol *), compare_symbols);
296 }
297
298 /* Call sort_symtab_syms to sort alphabetically
299 the symbols of each block of one symtab. */
300
301 void
302 sort_symtab_syms (s)
303 register struct symtab *s;
304 {
305 register struct blockvector *bv;
306 int nbl;
307 int i;
308 register struct block *b;
309
310 if (s == 0)
311 return;
312 bv = BLOCKVECTOR (s);
313 nbl = BLOCKVECTOR_NBLOCKS (bv);
314 for (i = 0; i < nbl; i++)
315 {
316 b = BLOCKVECTOR_BLOCK (bv, i);
317 if (BLOCK_SHOULD_SORT (b))
318 sort_block_syms (b);
319 }
320 }
321
322 /* Make a null terminated copy of the string at PTR with SIZE characters in
323 the obstack pointed to by OBSTACKP . Returns the address of the copy.
324 Note that the string at PTR does not have to be null terminated, I.E. it
325 may be part of a larger string and we are only saving a substring. */
326
327 char *
328 obsavestring (ptr, size, obstackp)
329 char *ptr;
330 int size;
331 struct obstack *obstackp;
332 {
333 register char *p = (char *) obstack_alloc (obstackp, size + 1);
334 /* Open-coded memcpy--saves function call time. These strings are usually
335 short. FIXME: Is this really still true with a compiler that can
336 inline memcpy? */
337 {
338 register char *p1 = ptr;
339 register char *p2 = p;
340 char *end = ptr + size;
341 while (p1 != end)
342 *p2++ = *p1++;
343 }
344 p[size] = 0;
345 return p;
346 }
347
348 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
349 in the obstack pointed to by OBSTACKP. */
350
351 char *
352 obconcat (obstackp, s1, s2, s3)
353 struct obstack *obstackp;
354 const char *s1, *s2, *s3;
355 {
356 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
357 register char *val = (char *) obstack_alloc (obstackp, len);
358 strcpy (val, s1);
359 strcat (val, s2);
360 strcat (val, s3);
361 return val;
362 }
363
364 /* True if we are nested inside psymtab_to_symtab. */
365
366 int currently_reading_symtab = 0;
367
368 static void
369 decrement_reading_symtab (dummy)
370 void *dummy;
371 {
372 currently_reading_symtab--;
373 }
374
375 /* Get the symbol table that corresponds to a partial_symtab.
376 This is fast after the first time you do it. In fact, there
377 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
378 case inline. */
379
380 struct symtab *
381 psymtab_to_symtab (pst)
382 register struct partial_symtab *pst;
383 {
384 /* If it's been looked up before, return it. */
385 if (pst->symtab)
386 return pst->symtab;
387
388 /* If it has not yet been read in, read it. */
389 if (!pst->readin)
390 {
391 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
392 currently_reading_symtab++;
393 (*pst->read_symtab) (pst);
394 do_cleanups (back_to);
395 }
396
397 return pst->symtab;
398 }
399
400 /* Initialize entry point information for this objfile. */
401
402 void
403 init_entry_point_info (objfile)
404 struct objfile *objfile;
405 {
406 /* Save startup file's range of PC addresses to help blockframe.c
407 decide where the bottom of the stack is. */
408
409 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
410 {
411 /* Executable file -- record its entry point so we'll recognize
412 the startup file because it contains the entry point. */
413 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
414 }
415 else
416 {
417 /* Examination of non-executable.o files. Short-circuit this stuff. */
418 objfile->ei.entry_point = INVALID_ENTRY_POINT;
419 }
420 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
421 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
422 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
423 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
424 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
425 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
426 }
427
428 /* Get current entry point address. */
429
430 CORE_ADDR
431 entry_point_address ()
432 {
433 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
434 }
435
436 /* Remember the lowest-addressed loadable section we've seen.
437 This function is called via bfd_map_over_sections.
438
439 In case of equal vmas, the section with the largest size becomes the
440 lowest-addressed loadable section.
441
442 If the vmas and sizes are equal, the last section is considered the
443 lowest-addressed loadable section. */
444
445 void
446 find_lowest_section (abfd, sect, obj)
447 bfd *abfd;
448 asection *sect;
449 PTR obj;
450 {
451 asection **lowest = (asection **) obj;
452
453 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
454 return;
455 if (!*lowest)
456 *lowest = sect; /* First loadable section */
457 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
458 *lowest = sect; /* A lower loadable section */
459 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
460 && (bfd_section_size (abfd, (*lowest))
461 <= bfd_section_size (abfd, sect)))
462 *lowest = sect;
463 }
464
465
466 /* Build (allocate and populate) a section_addr_info struct from
467 an existing section table. */
468
469 extern struct section_addr_info *
470 build_section_addr_info_from_section_table (const struct section_table *start,
471 const struct section_table *end)
472 {
473 struct section_addr_info *sap;
474 const struct section_table *stp;
475 int oidx;
476
477 sap = xmalloc (sizeof (struct section_addr_info));
478 memset (sap, 0, sizeof (struct section_addr_info));
479
480 for (stp = start, oidx = 0; stp != end; stp++)
481 {
482 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
483 && oidx < MAX_SECTIONS)
484 {
485 sap->other[oidx].addr = stp->addr;
486 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
487 sap->other[oidx].sectindex = stp->the_bfd_section->index;
488 oidx++;
489 }
490 }
491
492 return sap;
493 }
494
495
496 /* Free all memory allocated by build_section_addr_info_from_section_table. */
497
498 extern void
499 free_section_addr_info (struct section_addr_info *sap)
500 {
501 int idx;
502
503 for (idx = 0; idx < MAX_SECTIONS; idx++)
504 if (sap->other[idx].name)
505 free (sap->other[idx].name);
506 free (sap);
507 }
508
509
510 /* Parse the user's idea of an offset for dynamic linking, into our idea
511 of how to represent it for fast symbol reading. This is the default
512 version of the sym_fns.sym_offsets function for symbol readers that
513 don't need to do anything special. It allocates a section_offsets table
514 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
515
516 void
517 default_symfile_offsets (objfile, addrs)
518 struct objfile *objfile;
519 struct section_addr_info *addrs;
520 {
521 int i;
522 asection *sect = NULL;
523
524 objfile->num_sections = SECT_OFF_MAX;
525 objfile->section_offsets = (struct section_offsets *)
526 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
527 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
528
529 /* Now calculate offsets for section that were specified by the
530 caller. */
531 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
532 {
533 struct other_sections *osp ;
534
535 osp = &addrs->other[i] ;
536 if (osp->addr == 0)
537 continue;
538
539 /* Record all sections in offsets */
540 /* The section_offsets in the objfile are here filled in using
541 the BFD index. */
542 ANOFFSET (objfile->section_offsets, osp->sectindex) = osp->addr;
543 }
544
545 /* Remember the bfd indexes for the .text, .data, .bss and
546 .rodata sections. */
547
548 sect = bfd_get_section_by_name (objfile->obfd, ".text");
549 if (sect)
550 objfile->sect_index_text = sect->index;
551
552 sect = bfd_get_section_by_name (objfile->obfd, ".data");
553 if (sect)
554 objfile->sect_index_data = sect->index;
555
556 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
557 if (sect)
558 objfile->sect_index_bss = sect->index;
559
560 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
561 if (sect)
562 objfile->sect_index_rodata = sect->index;
563
564 }
565
566 /* Process a symbol file, as either the main file or as a dynamically
567 loaded file.
568
569 OBJFILE is where the symbols are to be read from.
570
571 ADDR is the address where the text segment was loaded, unless the
572 objfile is the main symbol file, in which case it is zero.
573
574 MAINLINE is nonzero if this is the main symbol file, or zero if
575 it's an extra symbol file such as dynamically loaded code.
576
577 VERBO is nonzero if the caller has printed a verbose message about
578 the symbol reading (and complaints can be more terse about it). */
579
580 void
581 syms_from_objfile (objfile, addrs, mainline, verbo)
582 struct objfile *objfile;
583 struct section_addr_info *addrs;
584 int mainline;
585 int verbo;
586 {
587 asection *lower_sect;
588 asection *sect;
589 CORE_ADDR lower_offset;
590 struct section_addr_info local_addr;
591 struct cleanup *old_chain;
592 int i;
593
594 /* If ADDRS is NULL, initialize the local section_addr_info struct and
595 point ADDRS to it. We now establish the convention that an addr of
596 zero means no load address was specified. */
597
598 if (addrs == NULL)
599 {
600 memset (&local_addr, 0, sizeof (local_addr));
601 addrs = &local_addr;
602 }
603
604 init_entry_point_info (objfile);
605 find_sym_fns (objfile);
606
607 /* Make sure that partially constructed symbol tables will be cleaned up
608 if an error occurs during symbol reading. */
609 old_chain = make_cleanup_free_objfile (objfile);
610
611 if (mainline)
612 {
613 /* We will modify the main symbol table, make sure that all its users
614 will be cleaned up if an error occurs during symbol reading. */
615 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
616
617 /* Since no error yet, throw away the old symbol table. */
618
619 if (symfile_objfile != NULL)
620 {
621 free_objfile (symfile_objfile);
622 symfile_objfile = NULL;
623 }
624
625 /* Currently we keep symbols from the add-symbol-file command.
626 If the user wants to get rid of them, they should do "symbol-file"
627 without arguments first. Not sure this is the best behavior
628 (PR 2207). */
629
630 (*objfile->sf->sym_new_init) (objfile);
631 }
632
633 /* Convert addr into an offset rather than an absolute address.
634 We find the lowest address of a loaded segment in the objfile,
635 and assume that <addr> is where that got loaded.
636
637 We no longer warn if the lowest section is not a text segment (as
638 happens for the PA64 port. */
639 if (!mainline)
640 {
641 /* Find lowest loadable section to be used as starting point for
642 continguous sections. FIXME!! won't work without call to find
643 .text first, but this assumes text is lowest section. */
644 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
645 if (lower_sect == NULL)
646 bfd_map_over_sections (objfile->obfd, find_lowest_section,
647 (PTR) &lower_sect);
648 if (lower_sect == NULL)
649 warning ("no loadable sections found in added symbol-file %s",
650 objfile->name);
651 else
652 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
653 warning ("Lowest section in %s is %s at %s",
654 objfile->name,
655 bfd_section_name (objfile->obfd, lower_sect),
656 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
657 if (lower_sect != NULL)
658 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
659 else
660 lower_offset = 0;
661
662 /* Calculate offsets for the loadable sections.
663 FIXME! Sections must be in order of increasing loadable section
664 so that contiguous sections can use the lower-offset!!!
665
666 Adjust offsets if the segments are not contiguous.
667 If the section is contiguous, its offset should be set to
668 the offset of the highest loadable section lower than it
669 (the loadable section directly below it in memory).
670 this_offset = lower_offset = lower_addr - lower_orig_addr */
671
672 /* Calculate offsets for sections. */
673 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
674 {
675 if (addrs->other[i].addr != 0)
676 {
677 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
678 if (sect)
679 {
680 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
681 lower_offset = addrs->other[i].addr;
682 /* This is the index used by BFD. */
683 addrs->other[i].sectindex = sect->index ;
684 }
685 else
686 {
687 warning ("section %s not found in %s", addrs->other[i].name,
688 objfile->name);
689 addrs->other[i].addr = 0;
690 }
691 }
692 else
693 addrs->other[i].addr = lower_offset;
694 }
695 }
696
697 /* Initialize symbol reading routines for this objfile, allow complaints to
698 appear for this new file, and record how verbose to be, then do the
699 initial symbol reading for this file. */
700
701 (*objfile->sf->sym_init) (objfile);
702 clear_complaints (1, verbo);
703
704 (*objfile->sf->sym_offsets) (objfile, addrs);
705
706 #ifndef IBM6000_TARGET
707 /* This is a SVR4/SunOS specific hack, I think. In any event, it
708 screws RS/6000. sym_offsets should be doing this sort of thing,
709 because it knows the mapping between bfd sections and
710 section_offsets. */
711 /* This is a hack. As far as I can tell, section offsets are not
712 target dependent. They are all set to addr with a couple of
713 exceptions. The exceptions are sysvr4 shared libraries, whose
714 offsets are kept in solib structures anyway and rs6000 xcoff
715 which handles shared libraries in a completely unique way.
716
717 Section offsets are built similarly, except that they are built
718 by adding addr in all cases because there is no clear mapping
719 from section_offsets into actual sections. Note that solib.c
720 has a different algorithm for finding section offsets.
721
722 These should probably all be collapsed into some target
723 independent form of shared library support. FIXME. */
724
725 if (addrs)
726 {
727 struct obj_section *s;
728
729 /* Map section offsets in "addr" back to the object's
730 sections by comparing the section names with bfd's
731 section names. Then adjust the section address by
732 the offset. */ /* for gdb/13815 */
733
734 ALL_OBJFILE_OSECTIONS (objfile, s)
735 {
736 CORE_ADDR s_addr = 0;
737 int i;
738
739 for (i = 0;
740 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
741 i++)
742 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
743 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
744
745 s->addr -= s->offset;
746 s->addr += s_addr;
747 s->endaddr -= s->offset;
748 s->endaddr += s_addr;
749 s->offset += s_addr;
750 }
751 }
752 #endif /* not IBM6000_TARGET */
753
754 (*objfile->sf->sym_read) (objfile, mainline);
755
756 if (!have_partial_symbols () && !have_full_symbols ())
757 {
758 wrap_here ("");
759 printf_filtered ("(no debugging symbols found)...");
760 wrap_here ("");
761 }
762
763 /* Don't allow char * to have a typename (else would get caddr_t).
764 Ditto void *. FIXME: Check whether this is now done by all the
765 symbol readers themselves (many of them now do), and if so remove
766 it from here. */
767
768 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
769 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
770
771 /* Mark the objfile has having had initial symbol read attempted. Note
772 that this does not mean we found any symbols... */
773
774 objfile->flags |= OBJF_SYMS;
775
776 /* Discard cleanups as symbol reading was successful. */
777
778 discard_cleanups (old_chain);
779
780 /* Call this after reading in a new symbol table to give target
781 dependant code a crack at the new symbols. For instance, this
782 could be used to update the values of target-specific symbols GDB
783 needs to keep track of (such as _sigtramp, or whatever). */
784
785 TARGET_SYMFILE_POSTREAD (objfile);
786 }
787
788 /* Perform required actions after either reading in the initial
789 symbols for a new objfile, or mapping in the symbols from a reusable
790 objfile. */
791
792 void
793 new_symfile_objfile (objfile, mainline, verbo)
794 struct objfile *objfile;
795 int mainline;
796 int verbo;
797 {
798
799 /* If this is the main symbol file we have to clean up all users of the
800 old main symbol file. Otherwise it is sufficient to fixup all the
801 breakpoints that may have been redefined by this symbol file. */
802 if (mainline)
803 {
804 /* OK, make it the "real" symbol file. */
805 symfile_objfile = objfile;
806
807 clear_symtab_users ();
808 }
809 else
810 {
811 breakpoint_re_set ();
812 }
813
814 /* We're done reading the symbol file; finish off complaints. */
815 clear_complaints (0, verbo);
816 }
817
818 /* Process a symbol file, as either the main file or as a dynamically
819 loaded file.
820
821 NAME is the file name (which will be tilde-expanded and made
822 absolute herein) (but we don't free or modify NAME itself).
823 FROM_TTY says how verbose to be. MAINLINE specifies whether this
824 is the main symbol file, or whether it's an extra symbol file such
825 as dynamically loaded code. If !mainline, ADDR is the address
826 where the text segment was loaded.
827
828 Upon success, returns a pointer to the objfile that was added.
829 Upon failure, jumps back to command level (never returns). */
830
831 struct objfile *
832 symbol_file_add (name, from_tty, addrs, mainline, flags)
833 char *name;
834 int from_tty;
835 struct section_addr_info *addrs;
836 int mainline;
837 int flags;
838 {
839 struct objfile *objfile;
840 struct partial_symtab *psymtab;
841 bfd *abfd;
842
843 /* Open a bfd for the file, and give user a chance to burp if we'd be
844 interactively wiping out any existing symbols. */
845
846 abfd = symfile_bfd_open (name);
847
848 if ((have_full_symbols () || have_partial_symbols ())
849 && mainline
850 && from_tty
851 && !query ("Load new symbol table from \"%s\"? ", name))
852 error ("Not confirmed.");
853
854 objfile = allocate_objfile (abfd, flags);
855
856 /* If the objfile uses a mapped symbol file, and we have a psymtab for
857 it, then skip reading any symbols at this time. */
858
859 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
860 {
861 /* We mapped in an existing symbol table file that already has had
862 initial symbol reading performed, so we can skip that part. Notify
863 the user that instead of reading the symbols, they have been mapped.
864 */
865 if (from_tty || info_verbose)
866 {
867 printf_filtered ("Mapped symbols for %s...", name);
868 wrap_here ("");
869 gdb_flush (gdb_stdout);
870 }
871 init_entry_point_info (objfile);
872 find_sym_fns (objfile);
873 }
874 else
875 {
876 /* We either created a new mapped symbol table, mapped an existing
877 symbol table file which has not had initial symbol reading
878 performed, or need to read an unmapped symbol table. */
879 if (from_tty || info_verbose)
880 {
881 if (pre_add_symbol_hook)
882 pre_add_symbol_hook (name);
883 else
884 {
885 printf_filtered ("Reading symbols from %s...", name);
886 wrap_here ("");
887 gdb_flush (gdb_stdout);
888 }
889 }
890 syms_from_objfile (objfile, addrs, mainline, from_tty);
891 }
892
893 /* We now have at least a partial symbol table. Check to see if the
894 user requested that all symbols be read on initial access via either
895 the gdb startup command line or on a per symbol file basis. Expand
896 all partial symbol tables for this objfile if so. */
897
898 if ((flags & OBJF_READNOW) || readnow_symbol_files)
899 {
900 if (from_tty || info_verbose)
901 {
902 printf_filtered ("expanding to full symbols...");
903 wrap_here ("");
904 gdb_flush (gdb_stdout);
905 }
906
907 for (psymtab = objfile->psymtabs;
908 psymtab != NULL;
909 psymtab = psymtab->next)
910 {
911 psymtab_to_symtab (psymtab);
912 }
913 }
914
915 if (from_tty || info_verbose)
916 {
917 if (post_add_symbol_hook)
918 post_add_symbol_hook ();
919 else
920 {
921 printf_filtered ("done.\n");
922 gdb_flush (gdb_stdout);
923 }
924 }
925
926 new_symfile_objfile (objfile, mainline, from_tty);
927
928 if (target_new_objfile_hook)
929 target_new_objfile_hook (objfile);
930
931 return (objfile);
932 }
933
934 /* This is the symbol-file command. Read the file, analyze its
935 symbols, and add a struct symtab to a symtab list. The syntax of
936 the command is rather bizarre--(1) buildargv implements various
937 quoting conventions which are undocumented and have little or
938 nothing in common with the way things are quoted (or not quoted)
939 elsewhere in GDB, (2) options are used, which are not generally
940 used in GDB (perhaps "set mapped on", "set readnow on" would be
941 better), (3) the order of options matters, which is contrary to GNU
942 conventions (because it is confusing and inconvenient). */
943 /* Note: ezannoni 2000-04-17. This function used to have support for
944 rombug (see remote-os9k.c). It consisted of a call to target_link()
945 (target.c) to get the address of the text segment from the target,
946 and pass that to symbol_file_add(). This is no longer supported. */
947
948 void
949 symbol_file_command (args, from_tty)
950 char *args;
951 int from_tty;
952 {
953 char **argv;
954 char *name = NULL;
955 struct cleanup *cleanups;
956 int flags = OBJF_USERLOADED;
957
958 dont_repeat ();
959
960 if (args == NULL)
961 {
962 if ((have_full_symbols () || have_partial_symbols ())
963 && from_tty
964 && !query ("Discard symbol table from `%s'? ",
965 symfile_objfile->name))
966 error ("Not confirmed.");
967 free_all_objfiles ();
968
969 /* solib descriptors may have handles to objfiles. Since their
970 storage has just been released, we'd better wipe the solib
971 descriptors as well.
972 */
973 #if defined(SOLIB_RESTART)
974 SOLIB_RESTART ();
975 #endif
976
977 symfile_objfile = NULL;
978 if (from_tty)
979 printf_unfiltered ("No symbol file now.\n");
980 #ifdef HPUXHPPA
981 RESET_HP_UX_GLOBALS ();
982 #endif
983 }
984 else
985 {
986 if ((argv = buildargv (args)) == NULL)
987 {
988 nomem (0);
989 }
990 cleanups = make_cleanup_freeargv (argv);
991 while (*argv != NULL)
992 {
993 if (STREQ (*argv, "-mapped"))
994 flags |= OBJF_MAPPED;
995 else
996 if (STREQ (*argv, "-readnow"))
997 flags |= OBJF_READNOW;
998 else
999 if (**argv == '-')
1000 error ("unknown option `%s'", *argv);
1001 else
1002 {
1003 name = *argv;
1004 symbol_file_add (name, from_tty, NULL, 1, flags);
1005 #ifdef HPUXHPPA
1006 RESET_HP_UX_GLOBALS ();
1007 #endif
1008 /* Getting new symbols may change our opinion about
1009 what is frameless. */
1010 reinit_frame_cache ();
1011
1012 set_initial_language ();
1013 }
1014 argv++;
1015 }
1016
1017 if (name == NULL)
1018 {
1019 error ("no symbol file name was specified");
1020 }
1021 TUIDO (((TuiOpaqueFuncPtr) tuiDisplayMainFunction));
1022 do_cleanups (cleanups);
1023 }
1024 }
1025
1026 /* Set the initial language.
1027
1028 A better solution would be to record the language in the psymtab when reading
1029 partial symbols, and then use it (if known) to set the language. This would
1030 be a win for formats that encode the language in an easily discoverable place,
1031 such as DWARF. For stabs, we can jump through hoops looking for specially
1032 named symbols or try to intuit the language from the specific type of stabs
1033 we find, but we can't do that until later when we read in full symbols.
1034 FIXME. */
1035
1036 static void
1037 set_initial_language ()
1038 {
1039 struct partial_symtab *pst;
1040 enum language lang = language_unknown;
1041
1042 pst = find_main_psymtab ();
1043 if (pst != NULL)
1044 {
1045 if (pst->filename != NULL)
1046 {
1047 lang = deduce_language_from_filename (pst->filename);
1048 }
1049 if (lang == language_unknown)
1050 {
1051 /* Make C the default language */
1052 lang = language_c;
1053 }
1054 set_language (lang);
1055 expected_language = current_language; /* Don't warn the user */
1056 }
1057 }
1058
1059 /* Open file specified by NAME and hand it off to BFD for preliminary
1060 analysis. Result is a newly initialized bfd *, which includes a newly
1061 malloc'd` copy of NAME (tilde-expanded and made absolute).
1062 In case of trouble, error() is called. */
1063
1064 bfd *
1065 symfile_bfd_open (name)
1066 char *name;
1067 {
1068 bfd *sym_bfd;
1069 int desc;
1070 char *absolute_name;
1071
1072
1073
1074 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1075
1076 /* Look down path for it, allocate 2nd new malloc'd copy. */
1077 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1078 #if defined(__GO32__) || defined(_WIN32)
1079 if (desc < 0)
1080 {
1081 char *exename = alloca (strlen (name) + 5);
1082 strcat (strcpy (exename, name), ".exe");
1083 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1084 0, &absolute_name);
1085 }
1086 #endif
1087 if (desc < 0)
1088 {
1089 make_cleanup (free, name);
1090 perror_with_name (name);
1091 }
1092 free (name); /* Free 1st new malloc'd copy */
1093 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1094 /* It'll be freed in free_objfile(). */
1095
1096 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1097 if (!sym_bfd)
1098 {
1099 close (desc);
1100 make_cleanup (free, name);
1101 error ("\"%s\": can't open to read symbols: %s.", name,
1102 bfd_errmsg (bfd_get_error ()));
1103 }
1104 sym_bfd->cacheable = true;
1105
1106 if (!bfd_check_format (sym_bfd, bfd_object))
1107 {
1108 /* FIXME: should be checking for errors from bfd_close (for one thing,
1109 on error it does not free all the storage associated with the
1110 bfd). */
1111 bfd_close (sym_bfd); /* This also closes desc */
1112 make_cleanup (free, name);
1113 error ("\"%s\": can't read symbols: %s.", name,
1114 bfd_errmsg (bfd_get_error ()));
1115 }
1116 return (sym_bfd);
1117 }
1118
1119 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1120 startup by the _initialize routine in each object file format reader,
1121 to register information about each format the the reader is prepared
1122 to handle. */
1123
1124 void
1125 add_symtab_fns (sf)
1126 struct sym_fns *sf;
1127 {
1128 sf->next = symtab_fns;
1129 symtab_fns = sf;
1130 }
1131
1132
1133 /* Initialize to read symbols from the symbol file sym_bfd. It either
1134 returns or calls error(). The result is an initialized struct sym_fns
1135 in the objfile structure, that contains cached information about the
1136 symbol file. */
1137
1138 static void
1139 find_sym_fns (objfile)
1140 struct objfile *objfile;
1141 {
1142 struct sym_fns *sf;
1143 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1144 char *our_target = bfd_get_target (objfile->obfd);
1145
1146 /* Special kludge for RS/6000 and PowerMac. See xcoffread.c. */
1147 if (STREQ (our_target, "aixcoff-rs6000") ||
1148 STREQ (our_target, "xcoff-powermac"))
1149 our_flavour = (enum bfd_flavour) -1;
1150
1151 /* Special kludge for apollo. See dstread.c. */
1152 if (STREQN (our_target, "apollo", 6))
1153 our_flavour = (enum bfd_flavour) -2;
1154
1155 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1156 {
1157 if (our_flavour == sf->sym_flavour)
1158 {
1159 objfile->sf = sf;
1160 return;
1161 }
1162 }
1163 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1164 bfd_get_target (objfile->obfd));
1165 }
1166 \f
1167 /* This function runs the load command of our current target. */
1168
1169 static void
1170 load_command (arg, from_tty)
1171 char *arg;
1172 int from_tty;
1173 {
1174 if (arg == NULL)
1175 arg = get_exec_file (1);
1176 target_load (arg, from_tty);
1177 }
1178
1179 /* This version of "load" should be usable for any target. Currently
1180 it is just used for remote targets, not inftarg.c or core files,
1181 on the theory that only in that case is it useful.
1182
1183 Avoiding xmodem and the like seems like a win (a) because we don't have
1184 to worry about finding it, and (b) On VMS, fork() is very slow and so
1185 we don't want to run a subprocess. On the other hand, I'm not sure how
1186 performance compares. */
1187
1188 static int download_write_size = 512;
1189 static int validate_download = 0;
1190
1191 void
1192 generic_load (char *args, int from_tty)
1193 {
1194 asection *s;
1195 bfd *loadfile_bfd;
1196 time_t start_time, end_time; /* Start and end times of download */
1197 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1198 unsigned long write_count = 0; /* Number of writes needed. */
1199 unsigned long load_offset; /* offset to add to vma for each section */
1200 char *filename;
1201 struct cleanup *old_cleanups;
1202 char *offptr;
1203 CORE_ADDR total_size = 0;
1204 CORE_ADDR total_sent = 0;
1205
1206 /* Parse the input argument - the user can specify a load offset as
1207 a second argument. */
1208 filename = xmalloc (strlen (args) + 1);
1209 old_cleanups = make_cleanup (free, filename);
1210 strcpy (filename, args);
1211 offptr = strchr (filename, ' ');
1212 if (offptr != NULL)
1213 {
1214 char *endptr;
1215 load_offset = strtoul (offptr, &endptr, 0);
1216 if (offptr == endptr)
1217 error ("Invalid download offset:%s\n", offptr);
1218 *offptr = '\0';
1219 }
1220 else
1221 load_offset = 0;
1222
1223 /* Open the file for loading. */
1224 loadfile_bfd = bfd_openr (filename, gnutarget);
1225 if (loadfile_bfd == NULL)
1226 {
1227 perror_with_name (filename);
1228 return;
1229 }
1230
1231 /* FIXME: should be checking for errors from bfd_close (for one thing,
1232 on error it does not free all the storage associated with the
1233 bfd). */
1234 make_cleanup_bfd_close (loadfile_bfd);
1235
1236 if (!bfd_check_format (loadfile_bfd, bfd_object))
1237 {
1238 error ("\"%s\" is not an object file: %s", filename,
1239 bfd_errmsg (bfd_get_error ()));
1240 }
1241
1242 for (s = loadfile_bfd->sections; s; s = s->next)
1243 if (s->flags & SEC_LOAD)
1244 total_size += bfd_get_section_size_before_reloc (s);
1245
1246 start_time = time (NULL);
1247
1248 for (s = loadfile_bfd->sections; s; s = s->next)
1249 {
1250 if (s->flags & SEC_LOAD)
1251 {
1252 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1253 if (size > 0)
1254 {
1255 char *buffer;
1256 struct cleanup *old_chain;
1257 CORE_ADDR lma = s->lma + load_offset;
1258 CORE_ADDR block_size;
1259 int err;
1260 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1261 CORE_ADDR sent;
1262
1263 if (download_write_size > 0 && size > download_write_size)
1264 block_size = download_write_size;
1265 else
1266 block_size = size;
1267
1268 buffer = xmalloc (size);
1269 old_chain = make_cleanup (free, buffer);
1270
1271 /* Is this really necessary? I guess it gives the user something
1272 to look at during a long download. */
1273 #ifdef UI_OUT
1274 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1275 sect_name, paddr_nz (size), paddr_nz (lma));
1276 #else
1277 fprintf_unfiltered (gdb_stdout,
1278 "Loading section %s, size 0x%s lma 0x%s\n",
1279 sect_name, paddr_nz (size), paddr_nz (lma));
1280 #endif
1281
1282 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1283
1284 sent = 0;
1285 do
1286 {
1287 CORE_ADDR len;
1288 CORE_ADDR this_transfer = size - sent;
1289 if (this_transfer >= block_size)
1290 this_transfer = block_size;
1291 len = target_write_memory_partial (lma, buffer,
1292 this_transfer, &err);
1293 if (err)
1294 break;
1295 if (validate_download)
1296 {
1297 /* Broken memories and broken monitors manifest
1298 themselves here when bring new computers to
1299 life. This doubles already slow downloads. */
1300 /* NOTE: cagney/1999-10-18: A more efficient
1301 implementation might add a verify_memory()
1302 method to the target vector and then use
1303 that. remote.c could implement that method
1304 using the ``qCRC'' packet. */
1305 char *check = xmalloc (len);
1306 struct cleanup *verify_cleanups = make_cleanup (free, check);
1307 if (target_read_memory (lma, check, len) != 0)
1308 error ("Download verify read failed at 0x%s",
1309 paddr (lma));
1310 if (memcmp (buffer, check, len) != 0)
1311 error ("Download verify compare failed at 0x%s",
1312 paddr (lma));
1313 do_cleanups (verify_cleanups);
1314 }
1315 data_count += len;
1316 lma += len;
1317 buffer += len;
1318 write_count += 1;
1319 sent += len;
1320 total_sent += len;
1321 if (quit_flag
1322 || (ui_load_progress_hook != NULL
1323 && ui_load_progress_hook (sect_name, sent)))
1324 error ("Canceled the download");
1325
1326 if (show_load_progress != NULL)
1327 show_load_progress (sect_name, sent, size, total_sent, total_size);
1328 }
1329 while (sent < size);
1330
1331 if (err != 0)
1332 error ("Memory access error while loading section %s.", sect_name);
1333
1334 do_cleanups (old_chain);
1335 }
1336 }
1337 }
1338
1339 end_time = time (NULL);
1340 {
1341 CORE_ADDR entry;
1342 entry = bfd_get_start_address (loadfile_bfd);
1343 #ifdef UI_OUT
1344 ui_out_text (uiout, "Start address ");
1345 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1346 ui_out_text (uiout, ", load size ");
1347 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1348 ui_out_text (uiout, "\n");
1349
1350 #else
1351 fprintf_unfiltered (gdb_stdout,
1352 "Start address 0x%s , load size %ld\n",
1353 paddr_nz (entry), data_count);
1354 #endif
1355 /* We were doing this in remote-mips.c, I suspect it is right
1356 for other targets too. */
1357 write_pc (entry);
1358 }
1359
1360 /* FIXME: are we supposed to call symbol_file_add or not? According to
1361 a comment from remote-mips.c (where a call to symbol_file_add was
1362 commented out), making the call confuses GDB if more than one file is
1363 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1364 does. */
1365
1366 print_transfer_performance (gdb_stdout, data_count, write_count,
1367 end_time - start_time);
1368
1369 do_cleanups (old_cleanups);
1370 }
1371
1372 /* Report how fast the transfer went. */
1373
1374 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1375 replaced by print_transfer_performance (with a very different
1376 function signature). */
1377
1378 void
1379 report_transfer_performance (data_count, start_time, end_time)
1380 unsigned long data_count;
1381 time_t start_time, end_time;
1382 {
1383 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1384 }
1385
1386 void
1387 print_transfer_performance (struct ui_file *stream,
1388 unsigned long data_count,
1389 unsigned long write_count,
1390 unsigned long time_count)
1391 {
1392 #ifdef UI_OUT
1393 ui_out_text (uiout, "Transfer rate: ");
1394 if (time_count > 0)
1395 {
1396 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1397 (data_count * 8) / time_count);
1398 ui_out_text (uiout, " bits/sec");
1399 }
1400 else
1401 {
1402 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1403 ui_out_text (uiout, " bits in <1 sec");
1404 }
1405 if (write_count > 0)
1406 {
1407 ui_out_text (uiout, ", ");
1408 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1409 ui_out_text (uiout, " bytes/write");
1410 }
1411 ui_out_text (uiout, ".\n");
1412 #else
1413 fprintf_unfiltered (stream, "Transfer rate: ");
1414 if (time_count > 0)
1415 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1416 else
1417 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1418 if (write_count > 0)
1419 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1420 fprintf_unfiltered (stream, ".\n");
1421 #endif
1422 }
1423
1424 /* This function allows the addition of incrementally linked object files.
1425 It does not modify any state in the target, only in the debugger. */
1426 /* Note: ezannoni 2000-04-13 This function/command used to have a
1427 special case syntax for the rombug target (Rombug is the boot
1428 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1429 rombug case, the user doesn't need to supply a text address,
1430 instead a call to target_link() (in target.c) would supply the
1431 value to use. We are now discontinuing this type of ad hoc syntax. */
1432
1433 /* ARGSUSED */
1434 static void
1435 add_symbol_file_command (args, from_tty)
1436 char *args;
1437 int from_tty;
1438 {
1439 char *filename = NULL;
1440 int flags = OBJF_USERLOADED;
1441 char *arg;
1442 int expecting_option = 0;
1443 int section_index = 0;
1444 int argcnt = 0;
1445 int sec_num = 0;
1446 int i;
1447 int expecting_sec_name = 0;
1448 int expecting_sec_addr = 0;
1449
1450 struct
1451 {
1452 char *name;
1453 char *value;
1454 } sect_opts[SECT_OFF_MAX];
1455
1456 struct section_addr_info section_addrs;
1457 struct cleanup *my_cleanups;
1458
1459 dont_repeat ();
1460
1461 if (args == NULL)
1462 error ("add-symbol-file takes a file name and an address");
1463
1464 /* Make a copy of the string that we can safely write into. */
1465 args = xstrdup (args);
1466
1467 /* Ensure section_addrs is initialized */
1468 memset (&section_addrs, 0, sizeof (section_addrs));
1469
1470 while (*args != '\000')
1471 {
1472 /* Any leading spaces? */
1473 while (isspace (*args))
1474 args++;
1475
1476 /* Point arg to the beginning of the argument. */
1477 arg = args;
1478
1479 /* Move args pointer over the argument. */
1480 while ((*args != '\000') && !isspace (*args))
1481 args++;
1482
1483 /* If there are more arguments, terminate arg and
1484 proceed past it. */
1485 if (*args != '\000')
1486 *args++ = '\000';
1487
1488 /* Now process the argument. */
1489 if (argcnt == 0)
1490 {
1491 /* The first argument is the file name. */
1492 filename = tilde_expand (arg);
1493 my_cleanups = make_cleanup (free, filename);
1494 }
1495 else if (argcnt == 1)
1496 {
1497 /* The second argument is always the text address at which
1498 to load the program. */
1499 sect_opts[section_index].name = ".text";
1500 sect_opts[section_index].value = arg;
1501 section_index++;
1502 }
1503 else
1504 {
1505 /* It's an option (starting with '-') or it's an argument
1506 to an option */
1507
1508 if (*arg == '-')
1509 {
1510 if (strcmp (arg, "-mapped") == 0)
1511 flags |= OBJF_MAPPED;
1512 else if (strcmp (arg, "-readnow") == 0)
1513 flags |= OBJF_READNOW;
1514 else if (strcmp (arg, "-s") == 0)
1515 {
1516 if (section_index >= SECT_OFF_MAX)
1517 error ("Too many sections specified.");
1518 expecting_sec_name = 1;
1519 expecting_sec_addr = 1;
1520 }
1521 }
1522 else
1523 {
1524 if (expecting_sec_name)
1525 {
1526 sect_opts[section_index].name = arg;
1527 expecting_sec_name = 0;
1528 }
1529 else
1530 if (expecting_sec_addr)
1531 {
1532 sect_opts[section_index].value = arg;
1533 expecting_sec_addr = 0;
1534 section_index++;
1535 }
1536 else
1537 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1538 }
1539 }
1540 argcnt++;
1541 }
1542
1543 /* Print the prompt for the query below. And save the arguments into
1544 a sect_addr_info structure to be passed around to other
1545 functions. We have to split this up into separate print
1546 statements because local_hex_string returns a local static
1547 string. */
1548
1549 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1550 for (i = 0; i < section_index; i++)
1551 {
1552 CORE_ADDR addr;
1553 char *val = sect_opts[i].value;
1554 char *sec = sect_opts[i].name;
1555
1556 val = sect_opts[i].value;
1557 if (val[0] == '0' && val[1] == 'x')
1558 addr = strtoul (val+2, NULL, 16);
1559 else
1560 addr = strtoul (val, NULL, 10);
1561
1562 /* Here we store the section offsets in the order they were
1563 entered on the command line. */
1564 section_addrs.other[sec_num].name = sec;
1565 section_addrs.other[sec_num].addr = addr;
1566 printf_filtered ("\t%s_addr = %s\n",
1567 sec,
1568 local_hex_string ((unsigned long)addr));
1569 sec_num++;
1570
1571 /* The object's sections are initialized when a
1572 call is made to build_objfile_section_table (objfile).
1573 This happens in reread_symbols.
1574 At this point, we don't know what file type this is,
1575 so we can't determine what section names are valid. */
1576 }
1577
1578 if (from_tty && (!query ("%s", "")))
1579 error ("Not confirmed.");
1580
1581 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1582
1583 /* Getting new symbols may change our opinion about what is
1584 frameless. */
1585 reinit_frame_cache ();
1586 do_cleanups (my_cleanups);
1587 }
1588 \f
1589 static void
1590 add_shared_symbol_files_command (args, from_tty)
1591 char *args;
1592 int from_tty;
1593 {
1594 #ifdef ADD_SHARED_SYMBOL_FILES
1595 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1596 #else
1597 error ("This command is not available in this configuration of GDB.");
1598 #endif
1599 }
1600 \f
1601 /* Re-read symbols if a symbol-file has changed. */
1602 void
1603 reread_symbols ()
1604 {
1605 struct objfile *objfile;
1606 long new_modtime;
1607 int reread_one = 0;
1608 struct stat new_statbuf;
1609 int res;
1610
1611 /* With the addition of shared libraries, this should be modified,
1612 the load time should be saved in the partial symbol tables, since
1613 different tables may come from different source files. FIXME.
1614 This routine should then walk down each partial symbol table
1615 and see if the symbol table that it originates from has been changed */
1616
1617 for (objfile = object_files; objfile; objfile = objfile->next)
1618 {
1619 if (objfile->obfd)
1620 {
1621 #ifdef IBM6000_TARGET
1622 /* If this object is from a shared library, then you should
1623 stat on the library name, not member name. */
1624
1625 if (objfile->obfd->my_archive)
1626 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1627 else
1628 #endif
1629 res = stat (objfile->name, &new_statbuf);
1630 if (res != 0)
1631 {
1632 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1633 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1634 objfile->name);
1635 continue;
1636 }
1637 new_modtime = new_statbuf.st_mtime;
1638 if (new_modtime != objfile->mtime)
1639 {
1640 struct cleanup *old_cleanups;
1641 struct section_offsets *offsets;
1642 int num_offsets;
1643 char *obfd_filename;
1644
1645 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1646 objfile->name);
1647
1648 /* There are various functions like symbol_file_add,
1649 symfile_bfd_open, syms_from_objfile, etc., which might
1650 appear to do what we want. But they have various other
1651 effects which we *don't* want. So we just do stuff
1652 ourselves. We don't worry about mapped files (for one thing,
1653 any mapped file will be out of date). */
1654
1655 /* If we get an error, blow away this objfile (not sure if
1656 that is the correct response for things like shared
1657 libraries). */
1658 old_cleanups = make_cleanup_free_objfile (objfile);
1659 /* We need to do this whenever any symbols go away. */
1660 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1661
1662 /* Clean up any state BFD has sitting around. We don't need
1663 to close the descriptor but BFD lacks a way of closing the
1664 BFD without closing the descriptor. */
1665 obfd_filename = bfd_get_filename (objfile->obfd);
1666 if (!bfd_close (objfile->obfd))
1667 error ("Can't close BFD for %s: %s", objfile->name,
1668 bfd_errmsg (bfd_get_error ()));
1669 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1670 if (objfile->obfd == NULL)
1671 error ("Can't open %s to read symbols.", objfile->name);
1672 /* bfd_openr sets cacheable to true, which is what we want. */
1673 if (!bfd_check_format (objfile->obfd, bfd_object))
1674 error ("Can't read symbols from %s: %s.", objfile->name,
1675 bfd_errmsg (bfd_get_error ()));
1676
1677 /* Save the offsets, we will nuke them with the rest of the
1678 psymbol_obstack. */
1679 num_offsets = objfile->num_sections;
1680 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1681 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1682
1683 /* Nuke all the state that we will re-read. Much of the following
1684 code which sets things to NULL really is necessary to tell
1685 other parts of GDB that there is nothing currently there. */
1686
1687 /* FIXME: Do we have to free a whole linked list, or is this
1688 enough? */
1689 if (objfile->global_psymbols.list)
1690 mfree (objfile->md, objfile->global_psymbols.list);
1691 memset (&objfile->global_psymbols, 0,
1692 sizeof (objfile->global_psymbols));
1693 if (objfile->static_psymbols.list)
1694 mfree (objfile->md, objfile->static_psymbols.list);
1695 memset (&objfile->static_psymbols, 0,
1696 sizeof (objfile->static_psymbols));
1697
1698 /* Free the obstacks for non-reusable objfiles */
1699 free_bcache (&objfile->psymbol_cache);
1700 obstack_free (&objfile->psymbol_obstack, 0);
1701 obstack_free (&objfile->symbol_obstack, 0);
1702 obstack_free (&objfile->type_obstack, 0);
1703 objfile->sections = NULL;
1704 objfile->symtabs = NULL;
1705 objfile->psymtabs = NULL;
1706 objfile->free_psymtabs = NULL;
1707 objfile->msymbols = NULL;
1708 objfile->minimal_symbol_count = 0;
1709 memset (&objfile->msymbol_hash, 0,
1710 sizeof (objfile->msymbol_hash));
1711 memset (&objfile->msymbol_demangled_hash, 0,
1712 sizeof (objfile->msymbol_demangled_hash));
1713 objfile->fundamental_types = NULL;
1714 if (objfile->sf != NULL)
1715 {
1716 (*objfile->sf->sym_finish) (objfile);
1717 }
1718
1719 /* We never make this a mapped file. */
1720 objfile->md = NULL;
1721 /* obstack_specify_allocation also initializes the obstack so
1722 it is empty. */
1723 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1724 xmalloc, free);
1725 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1726 xmalloc, free);
1727 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1728 xmalloc, free);
1729 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1730 xmalloc, free);
1731 if (build_objfile_section_table (objfile))
1732 {
1733 error ("Can't find the file sections in `%s': %s",
1734 objfile->name, bfd_errmsg (bfd_get_error ()));
1735 }
1736
1737 /* We use the same section offsets as from last time. I'm not
1738 sure whether that is always correct for shared libraries. */
1739 objfile->section_offsets = (struct section_offsets *)
1740 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1741 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1742 objfile->num_sections = num_offsets;
1743
1744 /* What the hell is sym_new_init for, anyway? The concept of
1745 distinguishing between the main file and additional files
1746 in this way seems rather dubious. */
1747 if (objfile == symfile_objfile)
1748 {
1749 (*objfile->sf->sym_new_init) (objfile);
1750 #ifdef HPUXHPPA
1751 RESET_HP_UX_GLOBALS ();
1752 #endif
1753 }
1754
1755 (*objfile->sf->sym_init) (objfile);
1756 clear_complaints (1, 1);
1757 /* The "mainline" parameter is a hideous hack; I think leaving it
1758 zero is OK since dbxread.c also does what it needs to do if
1759 objfile->global_psymbols.size is 0. */
1760 (*objfile->sf->sym_read) (objfile, 0);
1761 if (!have_partial_symbols () && !have_full_symbols ())
1762 {
1763 wrap_here ("");
1764 printf_filtered ("(no debugging symbols found)\n");
1765 wrap_here ("");
1766 }
1767 objfile->flags |= OBJF_SYMS;
1768
1769 /* We're done reading the symbol file; finish off complaints. */
1770 clear_complaints (0, 1);
1771
1772 /* Getting new symbols may change our opinion about what is
1773 frameless. */
1774
1775 reinit_frame_cache ();
1776
1777 /* Discard cleanups as symbol reading was successful. */
1778 discard_cleanups (old_cleanups);
1779
1780 /* If the mtime has changed between the time we set new_modtime
1781 and now, we *want* this to be out of date, so don't call stat
1782 again now. */
1783 objfile->mtime = new_modtime;
1784 reread_one = 1;
1785
1786 /* Call this after reading in a new symbol table to give target
1787 dependant code a crack at the new symbols. For instance, this
1788 could be used to update the values of target-specific symbols GDB
1789 needs to keep track of (such as _sigtramp, or whatever). */
1790
1791 TARGET_SYMFILE_POSTREAD (objfile);
1792 }
1793 }
1794 }
1795
1796 if (reread_one)
1797 clear_symtab_users ();
1798 }
1799 \f
1800
1801
1802 typedef struct
1803 {
1804 char *ext;
1805 enum language lang;
1806 }
1807 filename_language;
1808
1809 static filename_language *filename_language_table;
1810 static int fl_table_size, fl_table_next;
1811
1812 static void
1813 add_filename_language (ext, lang)
1814 char *ext;
1815 enum language lang;
1816 {
1817 if (fl_table_next >= fl_table_size)
1818 {
1819 fl_table_size += 10;
1820 filename_language_table = realloc (filename_language_table,
1821 fl_table_size);
1822 }
1823
1824 filename_language_table[fl_table_next].ext = strsave (ext);
1825 filename_language_table[fl_table_next].lang = lang;
1826 fl_table_next++;
1827 }
1828
1829 static char *ext_args;
1830
1831 static void
1832 set_ext_lang_command (args, from_tty)
1833 char *args;
1834 int from_tty;
1835 {
1836 int i;
1837 char *cp = ext_args;
1838 enum language lang;
1839
1840 /* First arg is filename extension, starting with '.' */
1841 if (*cp != '.')
1842 error ("'%s': Filename extension must begin with '.'", ext_args);
1843
1844 /* Find end of first arg. */
1845 while (*cp && !isspace (*cp))
1846 cp++;
1847
1848 if (*cp == '\0')
1849 error ("'%s': two arguments required -- filename extension and language",
1850 ext_args);
1851
1852 /* Null-terminate first arg */
1853 *cp++ = '\0';
1854
1855 /* Find beginning of second arg, which should be a source language. */
1856 while (*cp && isspace (*cp))
1857 cp++;
1858
1859 if (*cp == '\0')
1860 error ("'%s': two arguments required -- filename extension and language",
1861 ext_args);
1862
1863 /* Lookup the language from among those we know. */
1864 lang = language_enum (cp);
1865
1866 /* Now lookup the filename extension: do we already know it? */
1867 for (i = 0; i < fl_table_next; i++)
1868 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1869 break;
1870
1871 if (i >= fl_table_next)
1872 {
1873 /* new file extension */
1874 add_filename_language (ext_args, lang);
1875 }
1876 else
1877 {
1878 /* redefining a previously known filename extension */
1879
1880 /* if (from_tty) */
1881 /* query ("Really make files of type %s '%s'?", */
1882 /* ext_args, language_str (lang)); */
1883
1884 free (filename_language_table[i].ext);
1885 filename_language_table[i].ext = strsave (ext_args);
1886 filename_language_table[i].lang = lang;
1887 }
1888 }
1889
1890 static void
1891 info_ext_lang_command (args, from_tty)
1892 char *args;
1893 int from_tty;
1894 {
1895 int i;
1896
1897 printf_filtered ("Filename extensions and the languages they represent:");
1898 printf_filtered ("\n\n");
1899 for (i = 0; i < fl_table_next; i++)
1900 printf_filtered ("\t%s\t- %s\n",
1901 filename_language_table[i].ext,
1902 language_str (filename_language_table[i].lang));
1903 }
1904
1905 static void
1906 init_filename_language_table ()
1907 {
1908 if (fl_table_size == 0) /* protect against repetition */
1909 {
1910 fl_table_size = 20;
1911 fl_table_next = 0;
1912 filename_language_table =
1913 xmalloc (fl_table_size * sizeof (*filename_language_table));
1914 add_filename_language (".c", language_c);
1915 add_filename_language (".C", language_cplus);
1916 add_filename_language (".cc", language_cplus);
1917 add_filename_language (".cp", language_cplus);
1918 add_filename_language (".cpp", language_cplus);
1919 add_filename_language (".cxx", language_cplus);
1920 add_filename_language (".c++", language_cplus);
1921 add_filename_language (".java", language_java);
1922 add_filename_language (".class", language_java);
1923 add_filename_language (".ch", language_chill);
1924 add_filename_language (".c186", language_chill);
1925 add_filename_language (".c286", language_chill);
1926 add_filename_language (".f", language_fortran);
1927 add_filename_language (".F", language_fortran);
1928 add_filename_language (".s", language_asm);
1929 add_filename_language (".S", language_asm);
1930 }
1931 }
1932
1933 enum language
1934 deduce_language_from_filename (filename)
1935 char *filename;
1936 {
1937 int i;
1938 char *cp;
1939
1940 if (filename != NULL)
1941 if ((cp = strrchr (filename, '.')) != NULL)
1942 for (i = 0; i < fl_table_next; i++)
1943 if (strcmp (cp, filename_language_table[i].ext) == 0)
1944 return filename_language_table[i].lang;
1945
1946 return language_unknown;
1947 }
1948 \f
1949 /* allocate_symtab:
1950
1951 Allocate and partly initialize a new symbol table. Return a pointer
1952 to it. error() if no space.
1953
1954 Caller must set these fields:
1955 LINETABLE(symtab)
1956 symtab->blockvector
1957 symtab->dirname
1958 symtab->free_code
1959 symtab->free_ptr
1960 possibly free_named_symtabs (symtab->filename);
1961 */
1962
1963 struct symtab *
1964 allocate_symtab (filename, objfile)
1965 char *filename;
1966 struct objfile *objfile;
1967 {
1968 register struct symtab *symtab;
1969
1970 symtab = (struct symtab *)
1971 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1972 memset (symtab, 0, sizeof (*symtab));
1973 symtab->filename = obsavestring (filename, strlen (filename),
1974 &objfile->symbol_obstack);
1975 symtab->fullname = NULL;
1976 symtab->language = deduce_language_from_filename (filename);
1977 symtab->debugformat = obsavestring ("unknown", 7,
1978 &objfile->symbol_obstack);
1979
1980 /* Hook it to the objfile it comes from */
1981
1982 symtab->objfile = objfile;
1983 symtab->next = objfile->symtabs;
1984 objfile->symtabs = symtab;
1985
1986 /* FIXME: This should go away. It is only defined for the Z8000,
1987 and the Z8000 definition of this macro doesn't have anything to
1988 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1989 here for convenience. */
1990 #ifdef INIT_EXTRA_SYMTAB_INFO
1991 INIT_EXTRA_SYMTAB_INFO (symtab);
1992 #endif
1993
1994 return (symtab);
1995 }
1996
1997 struct partial_symtab *
1998 allocate_psymtab (filename, objfile)
1999 char *filename;
2000 struct objfile *objfile;
2001 {
2002 struct partial_symtab *psymtab;
2003
2004 if (objfile->free_psymtabs)
2005 {
2006 psymtab = objfile->free_psymtabs;
2007 objfile->free_psymtabs = psymtab->next;
2008 }
2009 else
2010 psymtab = (struct partial_symtab *)
2011 obstack_alloc (&objfile->psymbol_obstack,
2012 sizeof (struct partial_symtab));
2013
2014 memset (psymtab, 0, sizeof (struct partial_symtab));
2015 psymtab->filename = obsavestring (filename, strlen (filename),
2016 &objfile->psymbol_obstack);
2017 psymtab->symtab = NULL;
2018
2019 /* Prepend it to the psymtab list for the objfile it belongs to.
2020 Psymtabs are searched in most recent inserted -> least recent
2021 inserted order. */
2022
2023 psymtab->objfile = objfile;
2024 psymtab->next = objfile->psymtabs;
2025 objfile->psymtabs = psymtab;
2026 #if 0
2027 {
2028 struct partial_symtab **prev_pst;
2029 psymtab->objfile = objfile;
2030 psymtab->next = NULL;
2031 prev_pst = &(objfile->psymtabs);
2032 while ((*prev_pst) != NULL)
2033 prev_pst = &((*prev_pst)->next);
2034 (*prev_pst) = psymtab;
2035 }
2036 #endif
2037
2038 return (psymtab);
2039 }
2040
2041 void
2042 discard_psymtab (pst)
2043 struct partial_symtab *pst;
2044 {
2045 struct partial_symtab **prev_pst;
2046
2047 /* From dbxread.c:
2048 Empty psymtabs happen as a result of header files which don't
2049 have any symbols in them. There can be a lot of them. But this
2050 check is wrong, in that a psymtab with N_SLINE entries but
2051 nothing else is not empty, but we don't realize that. Fixing
2052 that without slowing things down might be tricky. */
2053
2054 /* First, snip it out of the psymtab chain */
2055
2056 prev_pst = &(pst->objfile->psymtabs);
2057 while ((*prev_pst) != pst)
2058 prev_pst = &((*prev_pst)->next);
2059 (*prev_pst) = pst->next;
2060
2061 /* Next, put it on a free list for recycling */
2062
2063 pst->next = pst->objfile->free_psymtabs;
2064 pst->objfile->free_psymtabs = pst;
2065 }
2066 \f
2067
2068 /* Reset all data structures in gdb which may contain references to symbol
2069 table data. */
2070
2071 void
2072 clear_symtab_users ()
2073 {
2074 /* Someday, we should do better than this, by only blowing away
2075 the things that really need to be blown. */
2076 clear_value_history ();
2077 clear_displays ();
2078 clear_internalvars ();
2079 breakpoint_re_set ();
2080 set_default_breakpoint (0, 0, 0, 0);
2081 current_source_symtab = 0;
2082 current_source_line = 0;
2083 clear_pc_function_cache ();
2084 if (target_new_objfile_hook)
2085 target_new_objfile_hook (NULL);
2086 }
2087
2088 static void
2089 clear_symtab_users_cleanup (void *ignore)
2090 {
2091 clear_symtab_users ();
2092 }
2093
2094 /* clear_symtab_users_once:
2095
2096 This function is run after symbol reading, or from a cleanup.
2097 If an old symbol table was obsoleted, the old symbol table
2098 has been blown away, but the other GDB data structures that may
2099 reference it have not yet been cleared or re-directed. (The old
2100 symtab was zapped, and the cleanup queued, in free_named_symtab()
2101 below.)
2102
2103 This function can be queued N times as a cleanup, or called
2104 directly; it will do all the work the first time, and then will be a
2105 no-op until the next time it is queued. This works by bumping a
2106 counter at queueing time. Much later when the cleanup is run, or at
2107 the end of symbol processing (in case the cleanup is discarded), if
2108 the queued count is greater than the "done-count", we do the work
2109 and set the done-count to the queued count. If the queued count is
2110 less than or equal to the done-count, we just ignore the call. This
2111 is needed because reading a single .o file will often replace many
2112 symtabs (one per .h file, for example), and we don't want to reset
2113 the breakpoints N times in the user's face.
2114
2115 The reason we both queue a cleanup, and call it directly after symbol
2116 reading, is because the cleanup protects us in case of errors, but is
2117 discarded if symbol reading is successful. */
2118
2119 #if 0
2120 /* FIXME: As free_named_symtabs is currently a big noop this function
2121 is no longer needed. */
2122 static void clear_symtab_users_once (void);
2123
2124 static int clear_symtab_users_queued;
2125 static int clear_symtab_users_done;
2126
2127 static void
2128 clear_symtab_users_once ()
2129 {
2130 /* Enforce once-per-`do_cleanups'-semantics */
2131 if (clear_symtab_users_queued <= clear_symtab_users_done)
2132 return;
2133 clear_symtab_users_done = clear_symtab_users_queued;
2134
2135 clear_symtab_users ();
2136 }
2137 #endif
2138
2139 /* Delete the specified psymtab, and any others that reference it. */
2140
2141 static void
2142 cashier_psymtab (pst)
2143 struct partial_symtab *pst;
2144 {
2145 struct partial_symtab *ps, *pprev = NULL;
2146 int i;
2147
2148 /* Find its previous psymtab in the chain */
2149 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2150 {
2151 if (ps == pst)
2152 break;
2153 pprev = ps;
2154 }
2155
2156 if (ps)
2157 {
2158 /* Unhook it from the chain. */
2159 if (ps == pst->objfile->psymtabs)
2160 pst->objfile->psymtabs = ps->next;
2161 else
2162 pprev->next = ps->next;
2163
2164 /* FIXME, we can't conveniently deallocate the entries in the
2165 partial_symbol lists (global_psymbols/static_psymbols) that
2166 this psymtab points to. These just take up space until all
2167 the psymtabs are reclaimed. Ditto the dependencies list and
2168 filename, which are all in the psymbol_obstack. */
2169
2170 /* We need to cashier any psymtab that has this one as a dependency... */
2171 again:
2172 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2173 {
2174 for (i = 0; i < ps->number_of_dependencies; i++)
2175 {
2176 if (ps->dependencies[i] == pst)
2177 {
2178 cashier_psymtab (ps);
2179 goto again; /* Must restart, chain has been munged. */
2180 }
2181 }
2182 }
2183 }
2184 }
2185
2186 /* If a symtab or psymtab for filename NAME is found, free it along
2187 with any dependent breakpoints, displays, etc.
2188 Used when loading new versions of object modules with the "add-file"
2189 command. This is only called on the top-level symtab or psymtab's name;
2190 it is not called for subsidiary files such as .h files.
2191
2192 Return value is 1 if we blew away the environment, 0 if not.
2193 FIXME. The return valu appears to never be used.
2194
2195 FIXME. I think this is not the best way to do this. We should
2196 work on being gentler to the environment while still cleaning up
2197 all stray pointers into the freed symtab. */
2198
2199 int
2200 free_named_symtabs (name)
2201 char *name;
2202 {
2203 #if 0
2204 /* FIXME: With the new method of each objfile having it's own
2205 psymtab list, this function needs serious rethinking. In particular,
2206 why was it ever necessary to toss psymtabs with specific compilation
2207 unit filenames, as opposed to all psymtabs from a particular symbol
2208 file? -- fnf
2209 Well, the answer is that some systems permit reloading of particular
2210 compilation units. We want to blow away any old info about these
2211 compilation units, regardless of which objfiles they arrived in. --gnu. */
2212
2213 register struct symtab *s;
2214 register struct symtab *prev;
2215 register struct partial_symtab *ps;
2216 struct blockvector *bv;
2217 int blewit = 0;
2218
2219 /* We only wack things if the symbol-reload switch is set. */
2220 if (!symbol_reloading)
2221 return 0;
2222
2223 /* Some symbol formats have trouble providing file names... */
2224 if (name == 0 || *name == '\0')
2225 return 0;
2226
2227 /* Look for a psymtab with the specified name. */
2228
2229 again2:
2230 for (ps = partial_symtab_list; ps; ps = ps->next)
2231 {
2232 if (STREQ (name, ps->filename))
2233 {
2234 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2235 goto again2; /* Must restart, chain has been munged */
2236 }
2237 }
2238
2239 /* Look for a symtab with the specified name. */
2240
2241 for (s = symtab_list; s; s = s->next)
2242 {
2243 if (STREQ (name, s->filename))
2244 break;
2245 prev = s;
2246 }
2247
2248 if (s)
2249 {
2250 if (s == symtab_list)
2251 symtab_list = s->next;
2252 else
2253 prev->next = s->next;
2254
2255 /* For now, queue a delete for all breakpoints, displays, etc., whether
2256 or not they depend on the symtab being freed. This should be
2257 changed so that only those data structures affected are deleted. */
2258
2259 /* But don't delete anything if the symtab is empty.
2260 This test is necessary due to a bug in "dbxread.c" that
2261 causes empty symtabs to be created for N_SO symbols that
2262 contain the pathname of the object file. (This problem
2263 has been fixed in GDB 3.9x). */
2264
2265 bv = BLOCKVECTOR (s);
2266 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2267 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2268 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2269 {
2270 complain (&oldsyms_complaint, name);
2271
2272 clear_symtab_users_queued++;
2273 make_cleanup (clear_symtab_users_once, 0);
2274 blewit = 1;
2275 }
2276 else
2277 {
2278 complain (&empty_symtab_complaint, name);
2279 }
2280
2281 free_symtab (s);
2282 }
2283 else
2284 {
2285 /* It is still possible that some breakpoints will be affected
2286 even though no symtab was found, since the file might have
2287 been compiled without debugging, and hence not be associated
2288 with a symtab. In order to handle this correctly, we would need
2289 to keep a list of text address ranges for undebuggable files.
2290 For now, we do nothing, since this is a fairly obscure case. */
2291 ;
2292 }
2293
2294 /* FIXME, what about the minimal symbol table? */
2295 return blewit;
2296 #else
2297 return (0);
2298 #endif
2299 }
2300 \f
2301 /* Allocate and partially fill a partial symtab. It will be
2302 completely filled at the end of the symbol list.
2303
2304 FILENAME is the name of the symbol-file we are reading from. */
2305
2306 struct partial_symtab *
2307 start_psymtab_common (objfile, section_offsets,
2308 filename, textlow, global_syms, static_syms)
2309 struct objfile *objfile;
2310 struct section_offsets *section_offsets;
2311 char *filename;
2312 CORE_ADDR textlow;
2313 struct partial_symbol **global_syms;
2314 struct partial_symbol **static_syms;
2315 {
2316 struct partial_symtab *psymtab;
2317
2318 psymtab = allocate_psymtab (filename, objfile);
2319 psymtab->section_offsets = section_offsets;
2320 psymtab->textlow = textlow;
2321 psymtab->texthigh = psymtab->textlow; /* default */
2322 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2323 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2324 return (psymtab);
2325 }
2326 \f
2327 /* Add a symbol with a long value to a psymtab.
2328 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2329
2330 void
2331 add_psymbol_to_list (name, namelength, namespace, class, list, val, coreaddr,
2332 language, objfile)
2333 char *name;
2334 int namelength;
2335 namespace_enum namespace;
2336 enum address_class class;
2337 struct psymbol_allocation_list *list;
2338 long val; /* Value as a long */
2339 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2340 enum language language;
2341 struct objfile *objfile;
2342 {
2343 register struct partial_symbol *psym;
2344 char *buf = alloca (namelength + 1);
2345 /* psymbol is static so that there will be no uninitialized gaps in the
2346 structure which might contain random data, causing cache misses in
2347 bcache. */
2348 static struct partial_symbol psymbol;
2349
2350 /* Create local copy of the partial symbol */
2351 memcpy (buf, name, namelength);
2352 buf[namelength] = '\0';
2353 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2354 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2355 if (val != 0)
2356 {
2357 SYMBOL_VALUE (&psymbol) = val;
2358 }
2359 else
2360 {
2361 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2362 }
2363 SYMBOL_SECTION (&psymbol) = 0;
2364 SYMBOL_LANGUAGE (&psymbol) = language;
2365 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2366 PSYMBOL_CLASS (&psymbol) = class;
2367 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2368
2369 /* Stash the partial symbol away in the cache */
2370 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2371
2372 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2373 if (list->next >= list->list + list->size)
2374 {
2375 extend_psymbol_list (list, objfile);
2376 }
2377 *list->next++ = psym;
2378 OBJSTAT (objfile, n_psyms++);
2379 }
2380
2381 /* Add a symbol with a long value to a psymtab. This differs from
2382 * add_psymbol_to_list above in taking both a mangled and a demangled
2383 * name. */
2384
2385 void
2386 add_psymbol_with_dem_name_to_list (name, namelength, dem_name, dem_namelength,
2387 namespace, class, list, val, coreaddr, language, objfile)
2388 char *name;
2389 int namelength;
2390 char *dem_name;
2391 int dem_namelength;
2392 namespace_enum namespace;
2393 enum address_class class;
2394 struct psymbol_allocation_list *list;
2395 long val; /* Value as a long */
2396 CORE_ADDR coreaddr; /* Value as a CORE_ADDR */
2397 enum language language;
2398 struct objfile *objfile;
2399 {
2400 register struct partial_symbol *psym;
2401 char *buf = alloca (namelength + 1);
2402 /* psymbol is static so that there will be no uninitialized gaps in the
2403 structure which might contain random data, causing cache misses in
2404 bcache. */
2405 static struct partial_symbol psymbol;
2406
2407 /* Create local copy of the partial symbol */
2408
2409 memcpy (buf, name, namelength);
2410 buf[namelength] = '\0';
2411 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2412
2413 buf = alloca (dem_namelength + 1);
2414 memcpy (buf, dem_name, dem_namelength);
2415 buf[dem_namelength] = '\0';
2416
2417 switch (language)
2418 {
2419 case language_c:
2420 case language_cplus:
2421 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2422 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2423 break;
2424 case language_chill:
2425 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2426 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2427
2428 /* FIXME What should be done for the default case? Ignoring for now. */
2429 }
2430
2431 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2432 if (val != 0)
2433 {
2434 SYMBOL_VALUE (&psymbol) = val;
2435 }
2436 else
2437 {
2438 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2439 }
2440 SYMBOL_SECTION (&psymbol) = 0;
2441 SYMBOL_LANGUAGE (&psymbol) = language;
2442 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2443 PSYMBOL_CLASS (&psymbol) = class;
2444 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2445
2446 /* Stash the partial symbol away in the cache */
2447 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2448
2449 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2450 if (list->next >= list->list + list->size)
2451 {
2452 extend_psymbol_list (list, objfile);
2453 }
2454 *list->next++ = psym;
2455 OBJSTAT (objfile, n_psyms++);
2456 }
2457
2458 /* Initialize storage for partial symbols. */
2459
2460 void
2461 init_psymbol_list (objfile, total_symbols)
2462 struct objfile *objfile;
2463 int total_symbols;
2464 {
2465 /* Free any previously allocated psymbol lists. */
2466
2467 if (objfile->global_psymbols.list)
2468 {
2469 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2470 }
2471 if (objfile->static_psymbols.list)
2472 {
2473 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2474 }
2475
2476 /* Current best guess is that approximately a twentieth
2477 of the total symbols (in a debugging file) are global or static
2478 oriented symbols */
2479
2480 objfile->global_psymbols.size = total_symbols / 10;
2481 objfile->static_psymbols.size = total_symbols / 10;
2482
2483 if (objfile->global_psymbols.size > 0)
2484 {
2485 objfile->global_psymbols.next =
2486 objfile->global_psymbols.list = (struct partial_symbol **)
2487 xmmalloc (objfile->md, (objfile->global_psymbols.size
2488 * sizeof (struct partial_symbol *)));
2489 }
2490 if (objfile->static_psymbols.size > 0)
2491 {
2492 objfile->static_psymbols.next =
2493 objfile->static_psymbols.list = (struct partial_symbol **)
2494 xmmalloc (objfile->md, (objfile->static_psymbols.size
2495 * sizeof (struct partial_symbol *)));
2496 }
2497 }
2498
2499 /* OVERLAYS:
2500 The following code implements an abstraction for debugging overlay sections.
2501
2502 The target model is as follows:
2503 1) The gnu linker will permit multiple sections to be mapped into the
2504 same VMA, each with its own unique LMA (or load address).
2505 2) It is assumed that some runtime mechanism exists for mapping the
2506 sections, one by one, from the load address into the VMA address.
2507 3) This code provides a mechanism for gdb to keep track of which
2508 sections should be considered to be mapped from the VMA to the LMA.
2509 This information is used for symbol lookup, and memory read/write.
2510 For instance, if a section has been mapped then its contents
2511 should be read from the VMA, otherwise from the LMA.
2512
2513 Two levels of debugger support for overlays are available. One is
2514 "manual", in which the debugger relies on the user to tell it which
2515 overlays are currently mapped. This level of support is
2516 implemented entirely in the core debugger, and the information about
2517 whether a section is mapped is kept in the objfile->obj_section table.
2518
2519 The second level of support is "automatic", and is only available if
2520 the target-specific code provides functionality to read the target's
2521 overlay mapping table, and translate its contents for the debugger
2522 (by updating the mapped state information in the obj_section tables).
2523
2524 The interface is as follows:
2525 User commands:
2526 overlay map <name> -- tell gdb to consider this section mapped
2527 overlay unmap <name> -- tell gdb to consider this section unmapped
2528 overlay list -- list the sections that GDB thinks are mapped
2529 overlay read-target -- get the target's state of what's mapped
2530 overlay off/manual/auto -- set overlay debugging state
2531 Functional interface:
2532 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2533 section, return that section.
2534 find_pc_overlay(pc): find any overlay section that contains
2535 the pc, either in its VMA or its LMA
2536 overlay_is_mapped(sect): true if overlay is marked as mapped
2537 section_is_overlay(sect): true if section's VMA != LMA
2538 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2539 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2540 overlay_mapped_address(...): map an address from section's LMA to VMA
2541 overlay_unmapped_address(...): map an address from section's VMA to LMA
2542 symbol_overlayed_address(...): Return a "current" address for symbol:
2543 either in VMA or LMA depending on whether
2544 the symbol's section is currently mapped
2545 */
2546
2547 /* Overlay debugging state: */
2548
2549 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2550 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2551
2552 /* Target vector for refreshing overlay mapped state */
2553 static void simple_overlay_update (struct obj_section *);
2554 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2555
2556 /* Function: section_is_overlay (SECTION)
2557 Returns true if SECTION has VMA not equal to LMA, ie.
2558 SECTION is loaded at an address different from where it will "run". */
2559
2560 int
2561 section_is_overlay (section)
2562 asection *section;
2563 {
2564 if (overlay_debugging)
2565 if (section && section->lma != 0 &&
2566 section->vma != section->lma)
2567 return 1;
2568
2569 return 0;
2570 }
2571
2572 /* Function: overlay_invalidate_all (void)
2573 Invalidate the mapped state of all overlay sections (mark it as stale). */
2574
2575 static void
2576 overlay_invalidate_all ()
2577 {
2578 struct objfile *objfile;
2579 struct obj_section *sect;
2580
2581 ALL_OBJSECTIONS (objfile, sect)
2582 if (section_is_overlay (sect->the_bfd_section))
2583 sect->ovly_mapped = -1;
2584 }
2585
2586 /* Function: overlay_is_mapped (SECTION)
2587 Returns true if section is an overlay, and is currently mapped.
2588 Private: public access is thru function section_is_mapped.
2589
2590 Access to the ovly_mapped flag is restricted to this function, so
2591 that we can do automatic update. If the global flag
2592 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2593 overlay_invalidate_all. If the mapped state of the particular
2594 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2595
2596 static int
2597 overlay_is_mapped (osect)
2598 struct obj_section *osect;
2599 {
2600 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2601 return 0;
2602
2603 switch (overlay_debugging)
2604 {
2605 default:
2606 case 0:
2607 return 0; /* overlay debugging off */
2608 case -1: /* overlay debugging automatic */
2609 /* Unles there is a target_overlay_update function,
2610 there's really nothing useful to do here (can't really go auto) */
2611 if (target_overlay_update)
2612 {
2613 if (overlay_cache_invalid)
2614 {
2615 overlay_invalidate_all ();
2616 overlay_cache_invalid = 0;
2617 }
2618 if (osect->ovly_mapped == -1)
2619 (*target_overlay_update) (osect);
2620 }
2621 /* fall thru to manual case */
2622 case 1: /* overlay debugging manual */
2623 return osect->ovly_mapped == 1;
2624 }
2625 }
2626
2627 /* Function: section_is_mapped
2628 Returns true if section is an overlay, and is currently mapped. */
2629
2630 int
2631 section_is_mapped (section)
2632 asection *section;
2633 {
2634 struct objfile *objfile;
2635 struct obj_section *osect;
2636
2637 if (overlay_debugging)
2638 if (section && section_is_overlay (section))
2639 ALL_OBJSECTIONS (objfile, osect)
2640 if (osect->the_bfd_section == section)
2641 return overlay_is_mapped (osect);
2642
2643 return 0;
2644 }
2645
2646 /* Function: pc_in_unmapped_range
2647 If PC falls into the lma range of SECTION, return true, else false. */
2648
2649 CORE_ADDR
2650 pc_in_unmapped_range (pc, section)
2651 CORE_ADDR pc;
2652 asection *section;
2653 {
2654 int size;
2655
2656 if (overlay_debugging)
2657 if (section && section_is_overlay (section))
2658 {
2659 size = bfd_get_section_size_before_reloc (section);
2660 if (section->lma <= pc && pc < section->lma + size)
2661 return 1;
2662 }
2663 return 0;
2664 }
2665
2666 /* Function: pc_in_mapped_range
2667 If PC falls into the vma range of SECTION, return true, else false. */
2668
2669 CORE_ADDR
2670 pc_in_mapped_range (pc, section)
2671 CORE_ADDR pc;
2672 asection *section;
2673 {
2674 int size;
2675
2676 if (overlay_debugging)
2677 if (section && section_is_overlay (section))
2678 {
2679 size = bfd_get_section_size_before_reloc (section);
2680 if (section->vma <= pc && pc < section->vma + size)
2681 return 1;
2682 }
2683 return 0;
2684 }
2685
2686 /* Function: overlay_unmapped_address (PC, SECTION)
2687 Returns the address corresponding to PC in the unmapped (load) range.
2688 May be the same as PC. */
2689
2690 CORE_ADDR
2691 overlay_unmapped_address (pc, section)
2692 CORE_ADDR pc;
2693 asection *section;
2694 {
2695 if (overlay_debugging)
2696 if (section && section_is_overlay (section) &&
2697 pc_in_mapped_range (pc, section))
2698 return pc + section->lma - section->vma;
2699
2700 return pc;
2701 }
2702
2703 /* Function: overlay_mapped_address (PC, SECTION)
2704 Returns the address corresponding to PC in the mapped (runtime) range.
2705 May be the same as PC. */
2706
2707 CORE_ADDR
2708 overlay_mapped_address (pc, section)
2709 CORE_ADDR pc;
2710 asection *section;
2711 {
2712 if (overlay_debugging)
2713 if (section && section_is_overlay (section) &&
2714 pc_in_unmapped_range (pc, section))
2715 return pc + section->vma - section->lma;
2716
2717 return pc;
2718 }
2719
2720
2721 /* Function: symbol_overlayed_address
2722 Return one of two addresses (relative to the VMA or to the LMA),
2723 depending on whether the section is mapped or not. */
2724
2725 CORE_ADDR
2726 symbol_overlayed_address (address, section)
2727 CORE_ADDR address;
2728 asection *section;
2729 {
2730 if (overlay_debugging)
2731 {
2732 /* If the symbol has no section, just return its regular address. */
2733 if (section == 0)
2734 return address;
2735 /* If the symbol's section is not an overlay, just return its address */
2736 if (!section_is_overlay (section))
2737 return address;
2738 /* If the symbol's section is mapped, just return its address */
2739 if (section_is_mapped (section))
2740 return address;
2741 /*
2742 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2743 * then return its LOADED address rather than its vma address!!
2744 */
2745 return overlay_unmapped_address (address, section);
2746 }
2747 return address;
2748 }
2749
2750 /* Function: find_pc_overlay (PC)
2751 Return the best-match overlay section for PC:
2752 If PC matches a mapped overlay section's VMA, return that section.
2753 Else if PC matches an unmapped section's VMA, return that section.
2754 Else if PC matches an unmapped section's LMA, return that section. */
2755
2756 asection *
2757 find_pc_overlay (pc)
2758 CORE_ADDR pc;
2759 {
2760 struct objfile *objfile;
2761 struct obj_section *osect, *best_match = NULL;
2762
2763 if (overlay_debugging)
2764 ALL_OBJSECTIONS (objfile, osect)
2765 if (section_is_overlay (osect->the_bfd_section))
2766 {
2767 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2768 {
2769 if (overlay_is_mapped (osect))
2770 return osect->the_bfd_section;
2771 else
2772 best_match = osect;
2773 }
2774 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2775 best_match = osect;
2776 }
2777 return best_match ? best_match->the_bfd_section : NULL;
2778 }
2779
2780 /* Function: find_pc_mapped_section (PC)
2781 If PC falls into the VMA address range of an overlay section that is
2782 currently marked as MAPPED, return that section. Else return NULL. */
2783
2784 asection *
2785 find_pc_mapped_section (pc)
2786 CORE_ADDR pc;
2787 {
2788 struct objfile *objfile;
2789 struct obj_section *osect;
2790
2791 if (overlay_debugging)
2792 ALL_OBJSECTIONS (objfile, osect)
2793 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2794 overlay_is_mapped (osect))
2795 return osect->the_bfd_section;
2796
2797 return NULL;
2798 }
2799
2800 /* Function: list_overlays_command
2801 Print a list of mapped sections and their PC ranges */
2802
2803 void
2804 list_overlays_command (args, from_tty)
2805 char *args;
2806 int from_tty;
2807 {
2808 int nmapped = 0;
2809 struct objfile *objfile;
2810 struct obj_section *osect;
2811
2812 if (overlay_debugging)
2813 ALL_OBJSECTIONS (objfile, osect)
2814 if (overlay_is_mapped (osect))
2815 {
2816 const char *name;
2817 bfd_vma lma, vma;
2818 int size;
2819
2820 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2821 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2822 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2823 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2824
2825 printf_filtered ("Section %s, loaded at ", name);
2826 print_address_numeric (lma, 1, gdb_stdout);
2827 puts_filtered (" - ");
2828 print_address_numeric (lma + size, 1, gdb_stdout);
2829 printf_filtered (", mapped at ");
2830 print_address_numeric (vma, 1, gdb_stdout);
2831 puts_filtered (" - ");
2832 print_address_numeric (vma + size, 1, gdb_stdout);
2833 puts_filtered ("\n");
2834
2835 nmapped++;
2836 }
2837 if (nmapped == 0)
2838 printf_filtered ("No sections are mapped.\n");
2839 }
2840
2841 /* Function: map_overlay_command
2842 Mark the named section as mapped (ie. residing at its VMA address). */
2843
2844 void
2845 map_overlay_command (args, from_tty)
2846 char *args;
2847 int from_tty;
2848 {
2849 struct objfile *objfile, *objfile2;
2850 struct obj_section *sec, *sec2;
2851 asection *bfdsec;
2852
2853 if (!overlay_debugging)
2854 error ("\
2855 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2856 the 'overlay manual' command.");
2857
2858 if (args == 0 || *args == 0)
2859 error ("Argument required: name of an overlay section");
2860
2861 /* First, find a section matching the user supplied argument */
2862 ALL_OBJSECTIONS (objfile, sec)
2863 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2864 {
2865 /* Now, check to see if the section is an overlay. */
2866 bfdsec = sec->the_bfd_section;
2867 if (!section_is_overlay (bfdsec))
2868 continue; /* not an overlay section */
2869
2870 /* Mark the overlay as "mapped" */
2871 sec->ovly_mapped = 1;
2872
2873 /* Next, make a pass and unmap any sections that are
2874 overlapped by this new section: */
2875 ALL_OBJSECTIONS (objfile2, sec2)
2876 if (sec2->ovly_mapped &&
2877 sec != sec2 &&
2878 sec->the_bfd_section != sec2->the_bfd_section &&
2879 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2880 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2881 {
2882 if (info_verbose)
2883 printf_filtered ("Note: section %s unmapped by overlap\n",
2884 bfd_section_name (objfile->obfd,
2885 sec2->the_bfd_section));
2886 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2887 }
2888 return;
2889 }
2890 error ("No overlay section called %s", args);
2891 }
2892
2893 /* Function: unmap_overlay_command
2894 Mark the overlay section as unmapped
2895 (ie. resident in its LMA address range, rather than the VMA range). */
2896
2897 void
2898 unmap_overlay_command (args, from_tty)
2899 char *args;
2900 int from_tty;
2901 {
2902 struct objfile *objfile;
2903 struct obj_section *sec;
2904
2905 if (!overlay_debugging)
2906 error ("\
2907 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2908 the 'overlay manual' command.");
2909
2910 if (args == 0 || *args == 0)
2911 error ("Argument required: name of an overlay section");
2912
2913 /* First, find a section matching the user supplied argument */
2914 ALL_OBJSECTIONS (objfile, sec)
2915 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2916 {
2917 if (!sec->ovly_mapped)
2918 error ("Section %s is not mapped", args);
2919 sec->ovly_mapped = 0;
2920 return;
2921 }
2922 error ("No overlay section called %s", args);
2923 }
2924
2925 /* Function: overlay_auto_command
2926 A utility command to turn on overlay debugging.
2927 Possibly this should be done via a set/show command. */
2928
2929 static void
2930 overlay_auto_command (args, from_tty)
2931 char *args;
2932 int from_tty;
2933 {
2934 overlay_debugging = -1;
2935 if (info_verbose)
2936 printf_filtered ("Automatic overlay debugging enabled.");
2937 }
2938
2939 /* Function: overlay_manual_command
2940 A utility command to turn on overlay debugging.
2941 Possibly this should be done via a set/show command. */
2942
2943 static void
2944 overlay_manual_command (args, from_tty)
2945 char *args;
2946 int from_tty;
2947 {
2948 overlay_debugging = 1;
2949 if (info_verbose)
2950 printf_filtered ("Overlay debugging enabled.");
2951 }
2952
2953 /* Function: overlay_off_command
2954 A utility command to turn on overlay debugging.
2955 Possibly this should be done via a set/show command. */
2956
2957 static void
2958 overlay_off_command (args, from_tty)
2959 char *args;
2960 int from_tty;
2961 {
2962 overlay_debugging = 0;
2963 if (info_verbose)
2964 printf_filtered ("Overlay debugging disabled.");
2965 }
2966
2967 static void
2968 overlay_load_command (args, from_tty)
2969 char *args;
2970 int from_tty;
2971 {
2972 if (target_overlay_update)
2973 (*target_overlay_update) (NULL);
2974 else
2975 error ("This target does not know how to read its overlay state.");
2976 }
2977
2978 /* Function: overlay_command
2979 A place-holder for a mis-typed command */
2980
2981 /* Command list chain containing all defined "overlay" subcommands. */
2982 struct cmd_list_element *overlaylist;
2983
2984 static void
2985 overlay_command (args, from_tty)
2986 char *args;
2987 int from_tty;
2988 {
2989 printf_unfiltered
2990 ("\"overlay\" must be followed by the name of an overlay command.\n");
2991 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2992 }
2993
2994
2995 /* Target Overlays for the "Simplest" overlay manager:
2996
2997 This is GDB's default target overlay layer. It works with the
2998 minimal overlay manager supplied as an example by Cygnus. The
2999 entry point is via a function pointer "target_overlay_update",
3000 so targets that use a different runtime overlay manager can
3001 substitute their own overlay_update function and take over the
3002 function pointer.
3003
3004 The overlay_update function pokes around in the target's data structures
3005 to see what overlays are mapped, and updates GDB's overlay mapping with
3006 this information.
3007
3008 In this simple implementation, the target data structures are as follows:
3009 unsigned _novlys; /# number of overlay sections #/
3010 unsigned _ovly_table[_novlys][4] = {
3011 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3012 {..., ..., ..., ...},
3013 }
3014 unsigned _novly_regions; /# number of overlay regions #/
3015 unsigned _ovly_region_table[_novly_regions][3] = {
3016 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3017 {..., ..., ...},
3018 }
3019 These functions will attempt to update GDB's mappedness state in the
3020 symbol section table, based on the target's mappedness state.
3021
3022 To do this, we keep a cached copy of the target's _ovly_table, and
3023 attempt to detect when the cached copy is invalidated. The main
3024 entry point is "simple_overlay_update(SECT), which looks up SECT in
3025 the cached table and re-reads only the entry for that section from
3026 the target (whenever possible).
3027 */
3028
3029 /* Cached, dynamically allocated copies of the target data structures: */
3030 static unsigned (*cache_ovly_table)[4] = 0;
3031 #if 0
3032 static unsigned (*cache_ovly_region_table)[3] = 0;
3033 #endif
3034 static unsigned cache_novlys = 0;
3035 #if 0
3036 static unsigned cache_novly_regions = 0;
3037 #endif
3038 static CORE_ADDR cache_ovly_table_base = 0;
3039 #if 0
3040 static CORE_ADDR cache_ovly_region_table_base = 0;
3041 #endif
3042 enum ovly_index
3043 {
3044 VMA, SIZE, LMA, MAPPED
3045 };
3046 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3047
3048 /* Throw away the cached copy of _ovly_table */
3049 static void
3050 simple_free_overlay_table ()
3051 {
3052 if (cache_ovly_table)
3053 free (cache_ovly_table);
3054 cache_novlys = 0;
3055 cache_ovly_table = NULL;
3056 cache_ovly_table_base = 0;
3057 }
3058
3059 #if 0
3060 /* Throw away the cached copy of _ovly_region_table */
3061 static void
3062 simple_free_overlay_region_table ()
3063 {
3064 if (cache_ovly_region_table)
3065 free (cache_ovly_region_table);
3066 cache_novly_regions = 0;
3067 cache_ovly_region_table = NULL;
3068 cache_ovly_region_table_base = 0;
3069 }
3070 #endif
3071
3072 /* Read an array of ints from the target into a local buffer.
3073 Convert to host order. int LEN is number of ints */
3074 static void
3075 read_target_long_array (memaddr, myaddr, len)
3076 CORE_ADDR memaddr;
3077 unsigned int *myaddr;
3078 int len;
3079 {
3080 char *buf = alloca (len * TARGET_LONG_BYTES);
3081 int i;
3082
3083 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3084 for (i = 0; i < len; i++)
3085 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3086 TARGET_LONG_BYTES);
3087 }
3088
3089 /* Find and grab a copy of the target _ovly_table
3090 (and _novlys, which is needed for the table's size) */
3091 static int
3092 simple_read_overlay_table ()
3093 {
3094 struct minimal_symbol *msym;
3095
3096 simple_free_overlay_table ();
3097 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3098 if (msym != NULL)
3099 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3100 else
3101 return 0; /* failure */
3102 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3103 if (cache_ovly_table != NULL)
3104 {
3105 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3106 if (msym != NULL)
3107 {
3108 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3109 read_target_long_array (cache_ovly_table_base,
3110 (int *) cache_ovly_table,
3111 cache_novlys * 4);
3112 }
3113 else
3114 return 0; /* failure */
3115 }
3116 else
3117 return 0; /* failure */
3118 return 1; /* SUCCESS */
3119 }
3120
3121 #if 0
3122 /* Find and grab a copy of the target _ovly_region_table
3123 (and _novly_regions, which is needed for the table's size) */
3124 static int
3125 simple_read_overlay_region_table ()
3126 {
3127 struct minimal_symbol *msym;
3128
3129 simple_free_overlay_region_table ();
3130 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3131 if (msym != NULL)
3132 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3133 else
3134 return 0; /* failure */
3135 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3136 if (cache_ovly_region_table != NULL)
3137 {
3138 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3139 if (msym != NULL)
3140 {
3141 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3142 read_target_long_array (cache_ovly_region_table_base,
3143 (int *) cache_ovly_region_table,
3144 cache_novly_regions * 3);
3145 }
3146 else
3147 return 0; /* failure */
3148 }
3149 else
3150 return 0; /* failure */
3151 return 1; /* SUCCESS */
3152 }
3153 #endif
3154
3155 /* Function: simple_overlay_update_1
3156 A helper function for simple_overlay_update. Assuming a cached copy
3157 of _ovly_table exists, look through it to find an entry whose vma,
3158 lma and size match those of OSECT. Re-read the entry and make sure
3159 it still matches OSECT (else the table may no longer be valid).
3160 Set OSECT's mapped state to match the entry. Return: 1 for
3161 success, 0 for failure. */
3162
3163 static int
3164 simple_overlay_update_1 (osect)
3165 struct obj_section *osect;
3166 {
3167 int i, size;
3168
3169 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3170 for (i = 0; i < cache_novlys; i++)
3171 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3172 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3173 cache_ovly_table[i][SIZE] == size */ )
3174 {
3175 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3176 (int *) cache_ovly_table[i], 4);
3177 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3178 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3179 cache_ovly_table[i][SIZE] == size */ )
3180 {
3181 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3182 return 1;
3183 }
3184 else /* Warning! Warning! Target's ovly table has changed! */
3185 return 0;
3186 }
3187 return 0;
3188 }
3189
3190 /* Function: simple_overlay_update
3191 If OSECT is NULL, then update all sections' mapped state
3192 (after re-reading the entire target _ovly_table).
3193 If OSECT is non-NULL, then try to find a matching entry in the
3194 cached ovly_table and update only OSECT's mapped state.
3195 If a cached entry can't be found or the cache isn't valid, then
3196 re-read the entire cache, and go ahead and update all sections. */
3197
3198 static void
3199 simple_overlay_update (osect)
3200 struct obj_section *osect;
3201 {
3202 struct objfile *objfile;
3203
3204 /* Were we given an osect to look up? NULL means do all of them. */
3205 if (osect)
3206 /* Have we got a cached copy of the target's overlay table? */
3207 if (cache_ovly_table != NULL)
3208 /* Does its cached location match what's currently in the symtab? */
3209 if (cache_ovly_table_base ==
3210 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3211 /* Then go ahead and try to look up this single section in the cache */
3212 if (simple_overlay_update_1 (osect))
3213 /* Found it! We're done. */
3214 return;
3215
3216 /* Cached table no good: need to read the entire table anew.
3217 Or else we want all the sections, in which case it's actually
3218 more efficient to read the whole table in one block anyway. */
3219
3220 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3221 {
3222 warning ("Failed to read the target overlay mapping table.");
3223 return;
3224 }
3225 /* Now may as well update all sections, even if only one was requested. */
3226 ALL_OBJSECTIONS (objfile, osect)
3227 if (section_is_overlay (osect->the_bfd_section))
3228 {
3229 int i, size;
3230
3231 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3232 for (i = 0; i < cache_novlys; i++)
3233 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3234 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3235 cache_ovly_table[i][SIZE] == size */ )
3236 { /* obj_section matches i'th entry in ovly_table */
3237 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3238 break; /* finished with inner for loop: break out */
3239 }
3240 }
3241 }
3242
3243
3244 void
3245 _initialize_symfile ()
3246 {
3247 struct cmd_list_element *c;
3248
3249 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3250 "Load symbol table from executable file FILE.\n\
3251 The `file' command can also load symbol tables, as well as setting the file\n\
3252 to execute.", &cmdlist);
3253 c->completer = filename_completer;
3254
3255 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3256 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3257 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3258 ADDR is the starting address of the file's text.\n\
3259 The optional arguments are section-name section-address pairs and\n\
3260 should be specified if the data and bss segments are not contiguous\n\
3261 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3262 &cmdlist);
3263 c->completer = filename_completer;
3264
3265 c = add_cmd ("add-shared-symbol-files", class_files,
3266 add_shared_symbol_files_command,
3267 "Load the symbols from shared objects in the dynamic linker's link map.",
3268 &cmdlist);
3269 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3270 &cmdlist);
3271
3272 c = add_cmd ("load", class_files, load_command,
3273 "Dynamically load FILE into the running program, and record its symbols\n\
3274 for access from GDB.", &cmdlist);
3275 c->completer = filename_completer;
3276
3277 add_show_from_set
3278 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3279 (char *) &symbol_reloading,
3280 "Set dynamic symbol table reloading multiple times in one run.",
3281 &setlist),
3282 &showlist);
3283
3284 add_prefix_cmd ("overlay", class_support, overlay_command,
3285 "Commands for debugging overlays.", &overlaylist,
3286 "overlay ", 0, &cmdlist);
3287
3288 add_com_alias ("ovly", "overlay", class_alias, 1);
3289 add_com_alias ("ov", "overlay", class_alias, 1);
3290
3291 add_cmd ("map-overlay", class_support, map_overlay_command,
3292 "Assert that an overlay section is mapped.", &overlaylist);
3293
3294 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3295 "Assert that an overlay section is unmapped.", &overlaylist);
3296
3297 add_cmd ("list-overlays", class_support, list_overlays_command,
3298 "List mappings of overlay sections.", &overlaylist);
3299
3300 add_cmd ("manual", class_support, overlay_manual_command,
3301 "Enable overlay debugging.", &overlaylist);
3302 add_cmd ("off", class_support, overlay_off_command,
3303 "Disable overlay debugging.", &overlaylist);
3304 add_cmd ("auto", class_support, overlay_auto_command,
3305 "Enable automatic overlay debugging.", &overlaylist);
3306 add_cmd ("load-target", class_support, overlay_load_command,
3307 "Read the overlay mapping state from the target.", &overlaylist);
3308
3309 /* Filename extension to source language lookup table: */
3310 init_filename_language_table ();
3311 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3312 (char *) &ext_args,
3313 "Set mapping between filename extension and source language.\n\
3314 Usage: set extension-language .foo bar",
3315 &setlist);
3316 c->function.cfunc = set_ext_lang_command;
3317
3318 add_info ("extensions", info_ext_lang_command,
3319 "All filename extensions associated with a source language.");
3320
3321 add_show_from_set
3322 (add_set_cmd ("download-write-size", class_obscure,
3323 var_integer, (char *) &download_write_size,
3324 "Set the write size used when downloading a program.\n"
3325 "Only used when downloading a program onto a remote\n"
3326 "target. Specify zero, or a negative value, to disable\n"
3327 "blocked writes. The actual size of each transfer is also\n"
3328 "limited by the size of the target packet and the memory\n"
3329 "cache.\n",
3330 &setlist),
3331 &showlist);
3332 }