2005-12-02 Andrew Stubbs <andrew.stubbs@st.com>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h" /* for write_pc */
42 #include "filenames.h" /* for DOSish file names */
43 #include "gdb-stabs.h"
44 #include "gdb_obstack.h"
45 #include "completer.h"
46 #include "bcache.h"
47 #include "hashtab.h"
48 #include "readline/readline.h"
49 #include "gdb_assert.h"
50 #include "block.h"
51 #include "observer.h"
52 #include "exec.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include "gdb_string.h"
57 #include "gdb_stat.h"
58 #include <ctype.h>
59 #include <time.h>
60 #include <sys/time.h>
61
62 #ifndef O_BINARY
63 #define O_BINARY 0
64 #endif
65
66 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*deprecated_show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*deprecated_pre_add_symbol_hook) (const char *);
73 void (*deprecated_post_add_symbol_hook) (void);
74 void (*deprecated_target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 /* External variables and functions referenced. */
82
83 extern void report_transfer_performance (unsigned long, time_t, time_t);
84
85 /* Functions this file defines */
86
87 #if 0
88 static int simple_read_overlay_region_table (void);
89 static void simple_free_overlay_region_table (void);
90 #endif
91
92 static void set_initial_language (void);
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void add_shared_symbol_files_command (char *, int);
101
102 static void reread_separate_symbols (struct objfile *objfile);
103
104 static void cashier_psymtab (struct partial_symtab *);
105
106 bfd *symfile_bfd_open (char *);
107
108 int get_section_index (struct objfile *, char *);
109
110 static void find_sym_fns (struct objfile *);
111
112 static void decrement_reading_symtab (void *);
113
114 static void overlay_invalidate_all (void);
115
116 static int overlay_is_mapped (struct obj_section *);
117
118 void list_overlays_command (char *, int);
119
120 void map_overlay_command (char *, int);
121
122 void unmap_overlay_command (char *, int);
123
124 static void overlay_auto_command (char *, int);
125
126 static void overlay_manual_command (char *, int);
127
128 static void overlay_off_command (char *, int);
129
130 static void overlay_load_command (char *, int);
131
132 static void overlay_command (char *, int);
133
134 static void simple_free_overlay_table (void);
135
136 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
137
138 static int simple_read_overlay_table (void);
139
140 static int simple_overlay_update_1 (struct obj_section *);
141
142 static void add_filename_language (char *ext, enum language lang);
143
144 static void info_ext_lang_command (char *args, int from_tty);
145
146 static char *find_separate_debug_file (struct objfile *objfile);
147
148 static void init_filename_language_table (void);
149
150 void _initialize_symfile (void);
151
152 /* List of all available sym_fns. On gdb startup, each object file reader
153 calls add_symtab_fns() to register information on each format it is
154 prepared to read. */
155
156 static struct sym_fns *symtab_fns = NULL;
157
158 /* Flag for whether user will be reloading symbols multiple times.
159 Defaults to ON for VxWorks, otherwise OFF. */
160
161 #ifdef SYMBOL_RELOADING_DEFAULT
162 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
163 #else
164 int symbol_reloading = 0;
165 #endif
166 static void
167 show_symbol_reloading (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("\
171 Dynamic symbol table reloading multiple times in one run is %s.\n"),
172 value);
173 }
174
175
176 /* If non-zero, shared library symbols will be added automatically
177 when the inferior is created, new libraries are loaded, or when
178 attaching to the inferior. This is almost always what users will
179 want to have happen; but for very large programs, the startup time
180 will be excessive, and so if this is a problem, the user can clear
181 this flag and then add the shared library symbols as needed. Note
182 that there is a potential for confusion, since if the shared
183 library symbols are not loaded, commands like "info fun" will *not*
184 report all the functions that are actually present. */
185
186 int auto_solib_add = 1;
187
188 /* For systems that support it, a threshold size in megabytes. If
189 automatically adding a new library's symbol table to those already
190 known to the debugger would cause the total shared library symbol
191 size to exceed this threshhold, then the shlib's symbols are not
192 added. The threshold is ignored if the user explicitly asks for a
193 shlib to be added, such as when using the "sharedlibrary"
194 command. */
195
196 int auto_solib_limit;
197 \f
198
199 /* This compares two partial symbols by names, using strcmp_iw_ordered
200 for the comparison. */
201
202 static int
203 compare_psymbols (const void *s1p, const void *s2p)
204 {
205 struct partial_symbol *const *s1 = s1p;
206 struct partial_symbol *const *s2 = s2p;
207
208 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
209 SYMBOL_SEARCH_NAME (*s2));
210 }
211
212 void
213 sort_pst_symbols (struct partial_symtab *pst)
214 {
215 /* Sort the global list; don't sort the static list */
216
217 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
218 pst->n_global_syms, sizeof (struct partial_symbol *),
219 compare_psymbols);
220 }
221
222 /* Make a null terminated copy of the string at PTR with SIZE characters in
223 the obstack pointed to by OBSTACKP . Returns the address of the copy.
224 Note that the string at PTR does not have to be null terminated, I.E. it
225 may be part of a larger string and we are only saving a substring. */
226
227 char *
228 obsavestring (const char *ptr, int size, struct obstack *obstackp)
229 {
230 char *p = (char *) obstack_alloc (obstackp, size + 1);
231 /* Open-coded memcpy--saves function call time. These strings are usually
232 short. FIXME: Is this really still true with a compiler that can
233 inline memcpy? */
234 {
235 const char *p1 = ptr;
236 char *p2 = p;
237 const char *end = ptr + size;
238 while (p1 != end)
239 *p2++ = *p1++;
240 }
241 p[size] = 0;
242 return p;
243 }
244
245 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
246 in the obstack pointed to by OBSTACKP. */
247
248 char *
249 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
250 const char *s3)
251 {
252 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
253 char *val = (char *) obstack_alloc (obstackp, len);
254 strcpy (val, s1);
255 strcat (val, s2);
256 strcat (val, s3);
257 return val;
258 }
259
260 /* True if we are nested inside psymtab_to_symtab. */
261
262 int currently_reading_symtab = 0;
263
264 static void
265 decrement_reading_symtab (void *dummy)
266 {
267 currently_reading_symtab--;
268 }
269
270 /* Get the symbol table that corresponds to a partial_symtab.
271 This is fast after the first time you do it. In fact, there
272 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
273 case inline. */
274
275 struct symtab *
276 psymtab_to_symtab (struct partial_symtab *pst)
277 {
278 /* If it's been looked up before, return it. */
279 if (pst->symtab)
280 return pst->symtab;
281
282 /* If it has not yet been read in, read it. */
283 if (!pst->readin)
284 {
285 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
286 currently_reading_symtab++;
287 (*pst->read_symtab) (pst);
288 do_cleanups (back_to);
289 }
290
291 return pst->symtab;
292 }
293
294 /* Remember the lowest-addressed loadable section we've seen.
295 This function is called via bfd_map_over_sections.
296
297 In case of equal vmas, the section with the largest size becomes the
298 lowest-addressed loadable section.
299
300 If the vmas and sizes are equal, the last section is considered the
301 lowest-addressed loadable section. */
302
303 void
304 find_lowest_section (bfd *abfd, asection *sect, void *obj)
305 {
306 asection **lowest = (asection **) obj;
307
308 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
309 return;
310 if (!*lowest)
311 *lowest = sect; /* First loadable section */
312 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
313 *lowest = sect; /* A lower loadable section */
314 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
315 && (bfd_section_size (abfd, (*lowest))
316 <= bfd_section_size (abfd, sect)))
317 *lowest = sect;
318 }
319
320 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
321
322 struct section_addr_info *
323 alloc_section_addr_info (size_t num_sections)
324 {
325 struct section_addr_info *sap;
326 size_t size;
327
328 size = (sizeof (struct section_addr_info)
329 + sizeof (struct other_sections) * (num_sections - 1));
330 sap = (struct section_addr_info *) xmalloc (size);
331 memset (sap, 0, size);
332 sap->num_sections = num_sections;
333
334 return sap;
335 }
336
337
338 /* Return a freshly allocated copy of ADDRS. The section names, if
339 any, are also freshly allocated copies of those in ADDRS. */
340 struct section_addr_info *
341 copy_section_addr_info (struct section_addr_info *addrs)
342 {
343 struct section_addr_info *copy
344 = alloc_section_addr_info (addrs->num_sections);
345 int i;
346
347 copy->num_sections = addrs->num_sections;
348 for (i = 0; i < addrs->num_sections; i++)
349 {
350 copy->other[i].addr = addrs->other[i].addr;
351 if (addrs->other[i].name)
352 copy->other[i].name = xstrdup (addrs->other[i].name);
353 else
354 copy->other[i].name = NULL;
355 copy->other[i].sectindex = addrs->other[i].sectindex;
356 }
357
358 return copy;
359 }
360
361
362
363 /* Build (allocate and populate) a section_addr_info struct from
364 an existing section table. */
365
366 extern struct section_addr_info *
367 build_section_addr_info_from_section_table (const struct section_table *start,
368 const struct section_table *end)
369 {
370 struct section_addr_info *sap;
371 const struct section_table *stp;
372 int oidx;
373
374 sap = alloc_section_addr_info (end - start);
375
376 for (stp = start, oidx = 0; stp != end; stp++)
377 {
378 if (bfd_get_section_flags (stp->bfd,
379 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
380 && oidx < end - start)
381 {
382 sap->other[oidx].addr = stp->addr;
383 sap->other[oidx].name
384 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
385 sap->other[oidx].sectindex = stp->the_bfd_section->index;
386 oidx++;
387 }
388 }
389
390 return sap;
391 }
392
393
394 /* Free all memory allocated by build_section_addr_info_from_section_table. */
395
396 extern void
397 free_section_addr_info (struct section_addr_info *sap)
398 {
399 int idx;
400
401 for (idx = 0; idx < sap->num_sections; idx++)
402 if (sap->other[idx].name)
403 xfree (sap->other[idx].name);
404 xfree (sap);
405 }
406
407
408 /* Initialize OBJFILE's sect_index_* members. */
409 static void
410 init_objfile_sect_indices (struct objfile *objfile)
411 {
412 asection *sect;
413 int i;
414
415 sect = bfd_get_section_by_name (objfile->obfd, ".text");
416 if (sect)
417 objfile->sect_index_text = sect->index;
418
419 sect = bfd_get_section_by_name (objfile->obfd, ".data");
420 if (sect)
421 objfile->sect_index_data = sect->index;
422
423 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
424 if (sect)
425 objfile->sect_index_bss = sect->index;
426
427 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
428 if (sect)
429 objfile->sect_index_rodata = sect->index;
430
431 /* This is where things get really weird... We MUST have valid
432 indices for the various sect_index_* members or gdb will abort.
433 So if for example, there is no ".text" section, we have to
434 accomodate that. Except when explicitly adding symbol files at
435 some address, section_offsets contains nothing but zeros, so it
436 doesn't matter which slot in section_offsets the individual
437 sect_index_* members index into. So if they are all zero, it is
438 safe to just point all the currently uninitialized indices to the
439 first slot. */
440
441 for (i = 0; i < objfile->num_sections; i++)
442 {
443 if (ANOFFSET (objfile->section_offsets, i) != 0)
444 {
445 break;
446 }
447 }
448 if (i == objfile->num_sections)
449 {
450 if (objfile->sect_index_text == -1)
451 objfile->sect_index_text = 0;
452 if (objfile->sect_index_data == -1)
453 objfile->sect_index_data = 0;
454 if (objfile->sect_index_bss == -1)
455 objfile->sect_index_bss = 0;
456 if (objfile->sect_index_rodata == -1)
457 objfile->sect_index_rodata = 0;
458 }
459 }
460
461 /* The arguments to place_section. */
462
463 struct place_section_arg
464 {
465 struct section_offsets *offsets;
466 CORE_ADDR lowest;
467 };
468
469 /* Find a unique offset to use for loadable section SECT if
470 the user did not provide an offset. */
471
472 void
473 place_section (bfd *abfd, asection *sect, void *obj)
474 {
475 struct place_section_arg *arg = obj;
476 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
477 int done;
478
479 /* We are only interested in loadable sections. */
480 if ((bfd_get_section_flags (abfd, sect) & SEC_LOAD) == 0)
481 return;
482
483 /* If the user specified an offset, honor it. */
484 if (offsets[sect->index] != 0)
485 return;
486
487 /* Otherwise, let's try to find a place for the section. */
488 do {
489 asection *cur_sec;
490 ULONGEST align = 1 << bfd_get_section_alignment (abfd, sect);
491
492 start_addr = (arg->lowest + align - 1) & -align;
493 done = 1;
494
495 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
496 {
497 int indx = cur_sec->index;
498 CORE_ADDR cur_offset;
499
500 /* We don't need to compare against ourself. */
501 if (cur_sec == sect)
502 continue;
503
504 /* We can only conflict with loadable sections. */
505 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_LOAD) == 0)
506 continue;
507
508 /* We do not expect this to happen; just ignore sections in a
509 relocatable file with an assigned VMA. */
510 if (bfd_section_vma (abfd, cur_sec) != 0)
511 continue;
512
513 /* If the section offset is 0, either the section has not been placed
514 yet, or it was the lowest section placed (in which case LOWEST
515 will be past its end). */
516 if (offsets[indx] == 0)
517 continue;
518
519 /* If this section would overlap us, then we must move up. */
520 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
521 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
522 {
523 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
524 start_addr = (start_addr + align - 1) & -align;
525 done = 0;
526 continue;
527 }
528
529 /* Otherwise, we appear to be OK. So far. */
530 }
531 }
532 while (!done);
533
534 offsets[sect->index] = start_addr;
535 arg->lowest = start_addr + bfd_get_section_size (sect);
536
537 exec_set_section_address (bfd_get_filename (abfd), sect->index, start_addr);
538 }
539
540 /* Parse the user's idea of an offset for dynamic linking, into our idea
541 of how to represent it for fast symbol reading. This is the default
542 version of the sym_fns.sym_offsets function for symbol readers that
543 don't need to do anything special. It allocates a section_offsets table
544 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
545
546 void
547 default_symfile_offsets (struct objfile *objfile,
548 struct section_addr_info *addrs)
549 {
550 int i;
551
552 objfile->num_sections = bfd_count_sections (objfile->obfd);
553 objfile->section_offsets = (struct section_offsets *)
554 obstack_alloc (&objfile->objfile_obstack,
555 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
556 memset (objfile->section_offsets, 0,
557 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
558
559 /* Now calculate offsets for section that were specified by the
560 caller. */
561 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
562 {
563 struct other_sections *osp ;
564
565 osp = &addrs->other[i] ;
566 if (osp->addr == 0)
567 continue;
568
569 /* Record all sections in offsets */
570 /* The section_offsets in the objfile are here filled in using
571 the BFD index. */
572 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
573 }
574
575 /* For relocatable files, all loadable sections will start at zero.
576 The zero is meaningless, so try to pick arbitrary addresses such
577 that no loadable sections overlap. This algorithm is quadratic,
578 but the number of sections in a single object file is generally
579 small. */
580 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
581 {
582 struct place_section_arg arg;
583 arg.offsets = objfile->section_offsets;
584 arg.lowest = 0;
585 bfd_map_over_sections (objfile->obfd, place_section, &arg);
586 }
587
588 /* Remember the bfd indexes for the .text, .data, .bss and
589 .rodata sections. */
590 init_objfile_sect_indices (objfile);
591 }
592
593
594 /* Process a symbol file, as either the main file or as a dynamically
595 loaded file.
596
597 OBJFILE is where the symbols are to be read from.
598
599 ADDRS is the list of section load addresses. If the user has given
600 an 'add-symbol-file' command, then this is the list of offsets and
601 addresses he or she provided as arguments to the command; or, if
602 we're handling a shared library, these are the actual addresses the
603 sections are loaded at, according to the inferior's dynamic linker
604 (as gleaned by GDB's shared library code). We convert each address
605 into an offset from the section VMA's as it appears in the object
606 file, and then call the file's sym_offsets function to convert this
607 into a format-specific offset table --- a `struct section_offsets'.
608 If ADDRS is non-zero, OFFSETS must be zero.
609
610 OFFSETS is a table of section offsets already in the right
611 format-specific representation. NUM_OFFSETS is the number of
612 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
613 assume this is the proper table the call to sym_offsets described
614 above would produce. Instead of calling sym_offsets, we just dump
615 it right into objfile->section_offsets. (When we're re-reading
616 symbols from an objfile, we don't have the original load address
617 list any more; all we have is the section offset table.) If
618 OFFSETS is non-zero, ADDRS must be zero.
619
620 MAINLINE is nonzero if this is the main symbol file, or zero if
621 it's an extra symbol file such as dynamically loaded code.
622
623 VERBO is nonzero if the caller has printed a verbose message about
624 the symbol reading (and complaints can be more terse about it). */
625
626 void
627 syms_from_objfile (struct objfile *objfile,
628 struct section_addr_info *addrs,
629 struct section_offsets *offsets,
630 int num_offsets,
631 int mainline,
632 int verbo)
633 {
634 struct section_addr_info *local_addr = NULL;
635 struct cleanup *old_chain;
636
637 gdb_assert (! (addrs && offsets));
638
639 init_entry_point_info (objfile);
640 find_sym_fns (objfile);
641
642 if (objfile->sf == NULL)
643 return; /* No symbols. */
644
645 /* Make sure that partially constructed symbol tables will be cleaned up
646 if an error occurs during symbol reading. */
647 old_chain = make_cleanup_free_objfile (objfile);
648
649 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
650 list. We now establish the convention that an addr of zero means
651 no load address was specified. */
652 if (! addrs && ! offsets)
653 {
654 local_addr
655 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
656 make_cleanup (xfree, local_addr);
657 addrs = local_addr;
658 }
659
660 /* Now either addrs or offsets is non-zero. */
661
662 if (mainline)
663 {
664 /* We will modify the main symbol table, make sure that all its users
665 will be cleaned up if an error occurs during symbol reading. */
666 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
667
668 /* Since no error yet, throw away the old symbol table. */
669
670 if (symfile_objfile != NULL)
671 {
672 free_objfile (symfile_objfile);
673 symfile_objfile = NULL;
674 }
675
676 /* Currently we keep symbols from the add-symbol-file command.
677 If the user wants to get rid of them, they should do "symbol-file"
678 without arguments first. Not sure this is the best behavior
679 (PR 2207). */
680
681 (*objfile->sf->sym_new_init) (objfile);
682 }
683
684 /* Convert addr into an offset rather than an absolute address.
685 We find the lowest address of a loaded segment in the objfile,
686 and assume that <addr> is where that got loaded.
687
688 We no longer warn if the lowest section is not a text segment (as
689 happens for the PA64 port. */
690 if (!mainline && addrs && addrs->other[0].name)
691 {
692 asection *lower_sect;
693 asection *sect;
694 CORE_ADDR lower_offset;
695 int i;
696
697 /* Find lowest loadable section to be used as starting point for
698 continguous sections. FIXME!! won't work without call to find
699 .text first, but this assumes text is lowest section. */
700 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
701 if (lower_sect == NULL)
702 bfd_map_over_sections (objfile->obfd, find_lowest_section,
703 &lower_sect);
704 if (lower_sect == NULL)
705 warning (_("no loadable sections found in added symbol-file %s"),
706 objfile->name);
707 else
708 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
709 warning (_("Lowest section in %s is %s at %s"),
710 objfile->name,
711 bfd_section_name (objfile->obfd, lower_sect),
712 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
713 if (lower_sect != NULL)
714 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
715 else
716 lower_offset = 0;
717
718 /* Calculate offsets for the loadable sections.
719 FIXME! Sections must be in order of increasing loadable section
720 so that contiguous sections can use the lower-offset!!!
721
722 Adjust offsets if the segments are not contiguous.
723 If the section is contiguous, its offset should be set to
724 the offset of the highest loadable section lower than it
725 (the loadable section directly below it in memory).
726 this_offset = lower_offset = lower_addr - lower_orig_addr */
727
728 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
729 {
730 if (addrs->other[i].addr != 0)
731 {
732 sect = bfd_get_section_by_name (objfile->obfd,
733 addrs->other[i].name);
734 if (sect)
735 {
736 addrs->other[i].addr
737 -= bfd_section_vma (objfile->obfd, sect);
738 lower_offset = addrs->other[i].addr;
739 /* This is the index used by BFD. */
740 addrs->other[i].sectindex = sect->index ;
741 }
742 else
743 {
744 warning (_("section %s not found in %s"),
745 addrs->other[i].name,
746 objfile->name);
747 addrs->other[i].addr = 0;
748 }
749 }
750 else
751 addrs->other[i].addr = lower_offset;
752 }
753 }
754
755 /* Initialize symbol reading routines for this objfile, allow complaints to
756 appear for this new file, and record how verbose to be, then do the
757 initial symbol reading for this file. */
758
759 (*objfile->sf->sym_init) (objfile);
760 clear_complaints (&symfile_complaints, 1, verbo);
761
762 if (addrs)
763 (*objfile->sf->sym_offsets) (objfile, addrs);
764 else
765 {
766 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
767
768 /* Just copy in the offset table directly as given to us. */
769 objfile->num_sections = num_offsets;
770 objfile->section_offsets
771 = ((struct section_offsets *)
772 obstack_alloc (&objfile->objfile_obstack, size));
773 memcpy (objfile->section_offsets, offsets, size);
774
775 init_objfile_sect_indices (objfile);
776 }
777
778 #ifndef DEPRECATED_IBM6000_TARGET
779 /* This is a SVR4/SunOS specific hack, I think. In any event, it
780 screws RS/6000. sym_offsets should be doing this sort of thing,
781 because it knows the mapping between bfd sections and
782 section_offsets. */
783 /* This is a hack. As far as I can tell, section offsets are not
784 target dependent. They are all set to addr with a couple of
785 exceptions. The exceptions are sysvr4 shared libraries, whose
786 offsets are kept in solib structures anyway and rs6000 xcoff
787 which handles shared libraries in a completely unique way.
788
789 Section offsets are built similarly, except that they are built
790 by adding addr in all cases because there is no clear mapping
791 from section_offsets into actual sections. Note that solib.c
792 has a different algorithm for finding section offsets.
793
794 These should probably all be collapsed into some target
795 independent form of shared library support. FIXME. */
796
797 if (addrs)
798 {
799 struct obj_section *s;
800
801 /* Map section offsets in "addr" back to the object's
802 sections by comparing the section names with bfd's
803 section names. Then adjust the section address by
804 the offset. */ /* for gdb/13815 */
805
806 ALL_OBJFILE_OSECTIONS (objfile, s)
807 {
808 CORE_ADDR s_addr = 0;
809 int i;
810
811 for (i = 0;
812 !s_addr && i < addrs->num_sections && addrs->other[i].name;
813 i++)
814 if (strcmp (bfd_section_name (s->objfile->obfd,
815 s->the_bfd_section),
816 addrs->other[i].name) == 0)
817 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
818
819 s->addr -= s->offset;
820 s->addr += s_addr;
821 s->endaddr -= s->offset;
822 s->endaddr += s_addr;
823 s->offset += s_addr;
824 }
825 }
826 #endif /* not DEPRECATED_IBM6000_TARGET */
827
828 (*objfile->sf->sym_read) (objfile, mainline);
829
830 /* Don't allow char * to have a typename (else would get caddr_t).
831 Ditto void *. FIXME: Check whether this is now done by all the
832 symbol readers themselves (many of them now do), and if so remove
833 it from here. */
834
835 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
836 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
837
838 /* Mark the objfile has having had initial symbol read attempted. Note
839 that this does not mean we found any symbols... */
840
841 objfile->flags |= OBJF_SYMS;
842
843 /* Discard cleanups as symbol reading was successful. */
844
845 discard_cleanups (old_chain);
846 }
847
848 /* Perform required actions after either reading in the initial
849 symbols for a new objfile, or mapping in the symbols from a reusable
850 objfile. */
851
852 void
853 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
854 {
855
856 /* If this is the main symbol file we have to clean up all users of the
857 old main symbol file. Otherwise it is sufficient to fixup all the
858 breakpoints that may have been redefined by this symbol file. */
859 if (mainline)
860 {
861 /* OK, make it the "real" symbol file. */
862 symfile_objfile = objfile;
863
864 clear_symtab_users ();
865 }
866 else
867 {
868 breakpoint_re_set ();
869 }
870
871 /* We're done reading the symbol file; finish off complaints. */
872 clear_complaints (&symfile_complaints, 0, verbo);
873 }
874
875 /* Process a symbol file, as either the main file or as a dynamically
876 loaded file.
877
878 ABFD is a BFD already open on the file, as from symfile_bfd_open.
879 This BFD will be closed on error, and is always consumed by this function.
880
881 FROM_TTY says how verbose to be.
882
883 MAINLINE specifies whether this is the main symbol file, or whether
884 it's an extra symbol file such as dynamically loaded code.
885
886 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
887 syms_from_objfile, above. ADDRS is ignored when MAINLINE is
888 non-zero.
889
890 Upon success, returns a pointer to the objfile that was added.
891 Upon failure, jumps back to command level (never returns). */
892 static struct objfile *
893 symbol_file_add_with_addrs_or_offsets (bfd *abfd, int from_tty,
894 struct section_addr_info *addrs,
895 struct section_offsets *offsets,
896 int num_offsets,
897 int mainline, int flags)
898 {
899 struct objfile *objfile;
900 struct partial_symtab *psymtab;
901 char *debugfile;
902 struct section_addr_info *orig_addrs = NULL;
903 struct cleanup *my_cleanups;
904 const char *name = bfd_get_filename (abfd);
905
906 my_cleanups = make_cleanup_bfd_close (abfd);
907
908 /* Give user a chance to burp if we'd be
909 interactively wiping out any existing symbols. */
910
911 if ((have_full_symbols () || have_partial_symbols ())
912 && mainline
913 && from_tty
914 && !query ("Load new symbol table from \"%s\"? ", name))
915 error (_("Not confirmed."));
916
917 objfile = allocate_objfile (abfd, flags);
918 discard_cleanups (my_cleanups);
919
920 if (addrs)
921 {
922 orig_addrs = copy_section_addr_info (addrs);
923 make_cleanup_free_section_addr_info (orig_addrs);
924 }
925
926 /* We either created a new mapped symbol table, mapped an existing
927 symbol table file which has not had initial symbol reading
928 performed, or need to read an unmapped symbol table. */
929 if (from_tty || info_verbose)
930 {
931 if (deprecated_pre_add_symbol_hook)
932 deprecated_pre_add_symbol_hook (name);
933 else
934 {
935 printf_unfiltered (_("Reading symbols from %s..."), name);
936 wrap_here ("");
937 gdb_flush (gdb_stdout);
938 }
939 }
940 syms_from_objfile (objfile, addrs, offsets, num_offsets,
941 mainline, from_tty);
942
943 /* We now have at least a partial symbol table. Check to see if the
944 user requested that all symbols be read on initial access via either
945 the gdb startup command line or on a per symbol file basis. Expand
946 all partial symbol tables for this objfile if so. */
947
948 if ((flags & OBJF_READNOW) || readnow_symbol_files)
949 {
950 if (from_tty || info_verbose)
951 {
952 printf_unfiltered (_("expanding to full symbols..."));
953 wrap_here ("");
954 gdb_flush (gdb_stdout);
955 }
956
957 for (psymtab = objfile->psymtabs;
958 psymtab != NULL;
959 psymtab = psymtab->next)
960 {
961 psymtab_to_symtab (psymtab);
962 }
963 }
964
965 debugfile = find_separate_debug_file (objfile);
966 if (debugfile)
967 {
968 if (addrs != NULL)
969 {
970 objfile->separate_debug_objfile
971 = symbol_file_add (debugfile, from_tty, orig_addrs, 0, flags);
972 }
973 else
974 {
975 objfile->separate_debug_objfile
976 = symbol_file_add (debugfile, from_tty, NULL, 0, flags);
977 }
978 objfile->separate_debug_objfile->separate_debug_objfile_backlink
979 = objfile;
980
981 /* Put the separate debug object before the normal one, this is so that
982 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
983 put_objfile_before (objfile->separate_debug_objfile, objfile);
984
985 xfree (debugfile);
986 }
987
988 if (!have_partial_symbols () && !have_full_symbols ())
989 {
990 wrap_here ("");
991 printf_filtered (_("(no debugging symbols found)"));
992 if (from_tty || info_verbose)
993 printf_filtered ("...");
994 else
995 printf_filtered ("\n");
996 wrap_here ("");
997 }
998
999 if (from_tty || info_verbose)
1000 {
1001 if (deprecated_post_add_symbol_hook)
1002 deprecated_post_add_symbol_hook ();
1003 else
1004 {
1005 printf_unfiltered (_("done.\n"));
1006 }
1007 }
1008
1009 /* We print some messages regardless of whether 'from_tty ||
1010 info_verbose' is true, so make sure they go out at the right
1011 time. */
1012 gdb_flush (gdb_stdout);
1013
1014 do_cleanups (my_cleanups);
1015
1016 if (objfile->sf == NULL)
1017 return objfile; /* No symbols. */
1018
1019 new_symfile_objfile (objfile, mainline, from_tty);
1020
1021 if (deprecated_target_new_objfile_hook)
1022 deprecated_target_new_objfile_hook (objfile);
1023
1024 bfd_cache_close_all ();
1025 return (objfile);
1026 }
1027
1028
1029 /* Process the symbol file ABFD, as either the main file or as a
1030 dynamically loaded file.
1031
1032 See symbol_file_add_with_addrs_or_offsets's comments for
1033 details. */
1034 struct objfile *
1035 symbol_file_add_from_bfd (bfd *abfd, int from_tty,
1036 struct section_addr_info *addrs,
1037 int mainline, int flags)
1038 {
1039 return symbol_file_add_with_addrs_or_offsets (abfd,
1040 from_tty, addrs, 0, 0,
1041 mainline, flags);
1042 }
1043
1044
1045 /* Process a symbol file, as either the main file or as a dynamically
1046 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1047 for details. */
1048 struct objfile *
1049 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
1050 int mainline, int flags)
1051 {
1052 return symbol_file_add_from_bfd (symfile_bfd_open (name), from_tty,
1053 addrs, mainline, flags);
1054 }
1055
1056
1057 /* Call symbol_file_add() with default values and update whatever is
1058 affected by the loading of a new main().
1059 Used when the file is supplied in the gdb command line
1060 and by some targets with special loading requirements.
1061 The auxiliary function, symbol_file_add_main_1(), has the flags
1062 argument for the switches that can only be specified in the symbol_file
1063 command itself. */
1064
1065 void
1066 symbol_file_add_main (char *args, int from_tty)
1067 {
1068 symbol_file_add_main_1 (args, from_tty, 0);
1069 }
1070
1071 static void
1072 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1073 {
1074 symbol_file_add (args, from_tty, NULL, 1, flags);
1075
1076 /* Getting new symbols may change our opinion about
1077 what is frameless. */
1078 reinit_frame_cache ();
1079
1080 set_initial_language ();
1081 }
1082
1083 void
1084 symbol_file_clear (int from_tty)
1085 {
1086 if ((have_full_symbols () || have_partial_symbols ())
1087 && from_tty
1088 && (symfile_objfile
1089 ? !query (_("Discard symbol table from `%s'? "),
1090 symfile_objfile->name)
1091 : !query (_("Discard symbol table? "))))
1092 error (_("Not confirmed."));
1093 free_all_objfiles ();
1094
1095 /* solib descriptors may have handles to objfiles. Since their
1096 storage has just been released, we'd better wipe the solib
1097 descriptors as well.
1098 */
1099 #if defined(SOLIB_RESTART)
1100 SOLIB_RESTART ();
1101 #endif
1102
1103 symfile_objfile = NULL;
1104 if (from_tty)
1105 printf_unfiltered (_("No symbol file now.\n"));
1106 }
1107
1108 static char *
1109 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1110 {
1111 asection *sect;
1112 bfd_size_type debuglink_size;
1113 unsigned long crc32;
1114 char *contents;
1115 int crc_offset;
1116 unsigned char *p;
1117
1118 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1119
1120 if (sect == NULL)
1121 return NULL;
1122
1123 debuglink_size = bfd_section_size (objfile->obfd, sect);
1124
1125 contents = xmalloc (debuglink_size);
1126 bfd_get_section_contents (objfile->obfd, sect, contents,
1127 (file_ptr)0, (bfd_size_type)debuglink_size);
1128
1129 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1130 crc_offset = strlen (contents) + 1;
1131 crc_offset = (crc_offset + 3) & ~3;
1132
1133 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1134
1135 *crc32_out = crc32;
1136 return contents;
1137 }
1138
1139 static int
1140 separate_debug_file_exists (const char *name, unsigned long crc)
1141 {
1142 unsigned long file_crc = 0;
1143 int fd;
1144 char buffer[8*1024];
1145 int count;
1146
1147 fd = open (name, O_RDONLY | O_BINARY);
1148 if (fd < 0)
1149 return 0;
1150
1151 while ((count = read (fd, buffer, sizeof (buffer))) > 0)
1152 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1153
1154 close (fd);
1155
1156 return crc == file_crc;
1157 }
1158
1159 static char *debug_file_directory = NULL;
1160 static void
1161 show_debug_file_directory (struct ui_file *file, int from_tty,
1162 struct cmd_list_element *c, const char *value)
1163 {
1164 fprintf_filtered (file, _("\
1165 The directory where separate debug symbols are searched for is \"%s\".\n"),
1166 value);
1167 }
1168
1169 #if ! defined (DEBUG_SUBDIRECTORY)
1170 #define DEBUG_SUBDIRECTORY ".debug"
1171 #endif
1172
1173 static char *
1174 find_separate_debug_file (struct objfile *objfile)
1175 {
1176 asection *sect;
1177 char *basename;
1178 char *dir;
1179 char *debugfile;
1180 char *name_copy;
1181 bfd_size_type debuglink_size;
1182 unsigned long crc32;
1183 int i;
1184
1185 basename = get_debug_link_info (objfile, &crc32);
1186
1187 if (basename == NULL)
1188 return NULL;
1189
1190 dir = xstrdup (objfile->name);
1191
1192 /* Strip off the final filename part, leaving the directory name,
1193 followed by a slash. Objfile names should always be absolute and
1194 tilde-expanded, so there should always be a slash in there
1195 somewhere. */
1196 for (i = strlen(dir) - 1; i >= 0; i--)
1197 {
1198 if (IS_DIR_SEPARATOR (dir[i]))
1199 break;
1200 }
1201 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1202 dir[i+1] = '\0';
1203
1204 debugfile = alloca (strlen (debug_file_directory) + 1
1205 + strlen (dir)
1206 + strlen (DEBUG_SUBDIRECTORY)
1207 + strlen ("/")
1208 + strlen (basename)
1209 + 1);
1210
1211 /* First try in the same directory as the original file. */
1212 strcpy (debugfile, dir);
1213 strcat (debugfile, basename);
1214
1215 if (separate_debug_file_exists (debugfile, crc32))
1216 {
1217 xfree (basename);
1218 xfree (dir);
1219 return xstrdup (debugfile);
1220 }
1221
1222 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1223 strcpy (debugfile, dir);
1224 strcat (debugfile, DEBUG_SUBDIRECTORY);
1225 strcat (debugfile, "/");
1226 strcat (debugfile, basename);
1227
1228 if (separate_debug_file_exists (debugfile, crc32))
1229 {
1230 xfree (basename);
1231 xfree (dir);
1232 return xstrdup (debugfile);
1233 }
1234
1235 /* Then try in the global debugfile directory. */
1236 strcpy (debugfile, debug_file_directory);
1237 strcat (debugfile, "/");
1238 strcat (debugfile, dir);
1239 strcat (debugfile, basename);
1240
1241 if (separate_debug_file_exists (debugfile, crc32))
1242 {
1243 xfree (basename);
1244 xfree (dir);
1245 return xstrdup (debugfile);
1246 }
1247
1248 xfree (basename);
1249 xfree (dir);
1250 return NULL;
1251 }
1252
1253
1254 /* This is the symbol-file command. Read the file, analyze its
1255 symbols, and add a struct symtab to a symtab list. The syntax of
1256 the command is rather bizarre:
1257
1258 1. The function buildargv implements various quoting conventions
1259 which are undocumented and have little or nothing in common with
1260 the way things are quoted (or not quoted) elsewhere in GDB.
1261
1262 2. Options are used, which are not generally used in GDB (perhaps
1263 "set mapped on", "set readnow on" would be better)
1264
1265 3. The order of options matters, which is contrary to GNU
1266 conventions (because it is confusing and inconvenient). */
1267
1268 void
1269 symbol_file_command (char *args, int from_tty)
1270 {
1271 dont_repeat ();
1272
1273 if (args == NULL)
1274 {
1275 symbol_file_clear (from_tty);
1276 }
1277 else
1278 {
1279 char **argv = buildargv (args);
1280 int flags = OBJF_USERLOADED;
1281 struct cleanup *cleanups;
1282 char *name = NULL;
1283
1284 if (argv == NULL)
1285 nomem (0);
1286
1287 cleanups = make_cleanup_freeargv (argv);
1288 while (*argv != NULL)
1289 {
1290 if (strcmp (*argv, "-readnow") == 0)
1291 flags |= OBJF_READNOW;
1292 else if (**argv == '-')
1293 error (_("unknown option `%s'"), *argv);
1294 else
1295 {
1296 symbol_file_add_main_1 (*argv, from_tty, flags);
1297 name = *argv;
1298 }
1299
1300 argv++;
1301 }
1302
1303 if (name == NULL)
1304 error (_("no symbol file name was specified"));
1305
1306 do_cleanups (cleanups);
1307 }
1308 }
1309
1310 /* Set the initial language.
1311
1312 FIXME: A better solution would be to record the language in the
1313 psymtab when reading partial symbols, and then use it (if known) to
1314 set the language. This would be a win for formats that encode the
1315 language in an easily discoverable place, such as DWARF. For
1316 stabs, we can jump through hoops looking for specially named
1317 symbols or try to intuit the language from the specific type of
1318 stabs we find, but we can't do that until later when we read in
1319 full symbols. */
1320
1321 static void
1322 set_initial_language (void)
1323 {
1324 struct partial_symtab *pst;
1325 enum language lang = language_unknown;
1326
1327 pst = find_main_psymtab ();
1328 if (pst != NULL)
1329 {
1330 if (pst->filename != NULL)
1331 lang = deduce_language_from_filename (pst->filename);
1332
1333 if (lang == language_unknown)
1334 {
1335 /* Make C the default language */
1336 lang = language_c;
1337 }
1338
1339 set_language (lang);
1340 expected_language = current_language; /* Don't warn the user. */
1341 }
1342 }
1343
1344 /* Open the file specified by NAME and hand it off to BFD for
1345 preliminary analysis. Return a newly initialized bfd *, which
1346 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1347 absolute). In case of trouble, error() is called. */
1348
1349 bfd *
1350 symfile_bfd_open (char *name)
1351 {
1352 bfd *sym_bfd;
1353 int desc;
1354 char *absolute_name;
1355
1356 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1357
1358 /* Look down path for it, allocate 2nd new malloc'd copy. */
1359 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1360 O_RDONLY | O_BINARY, 0, &absolute_name);
1361 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1362 if (desc < 0)
1363 {
1364 char *exename = alloca (strlen (name) + 5);
1365 strcat (strcpy (exename, name), ".exe");
1366 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1367 O_RDONLY | O_BINARY, 0, &absolute_name);
1368 }
1369 #endif
1370 if (desc < 0)
1371 {
1372 make_cleanup (xfree, name);
1373 perror_with_name (name);
1374 }
1375
1376 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1377 bfd. It'll be freed in free_objfile(). */
1378 xfree (name);
1379 name = absolute_name;
1380
1381 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1382 if (!sym_bfd)
1383 {
1384 close (desc);
1385 make_cleanup (xfree, name);
1386 error (_("\"%s\": can't open to read symbols: %s."), name,
1387 bfd_errmsg (bfd_get_error ()));
1388 }
1389 bfd_set_cacheable (sym_bfd, 1);
1390
1391 if (!bfd_check_format (sym_bfd, bfd_object))
1392 {
1393 /* FIXME: should be checking for errors from bfd_close (for one
1394 thing, on error it does not free all the storage associated
1395 with the bfd). */
1396 bfd_close (sym_bfd); /* This also closes desc. */
1397 make_cleanup (xfree, name);
1398 error (_("\"%s\": can't read symbols: %s."), name,
1399 bfd_errmsg (bfd_get_error ()));
1400 }
1401
1402 return sym_bfd;
1403 }
1404
1405 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1406 the section was not found. */
1407
1408 int
1409 get_section_index (struct objfile *objfile, char *section_name)
1410 {
1411 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1412
1413 if (sect)
1414 return sect->index;
1415 else
1416 return -1;
1417 }
1418
1419 /* Link SF into the global symtab_fns list. Called on startup by the
1420 _initialize routine in each object file format reader, to register
1421 information about each format the the reader is prepared to
1422 handle. */
1423
1424 void
1425 add_symtab_fns (struct sym_fns *sf)
1426 {
1427 sf->next = symtab_fns;
1428 symtab_fns = sf;
1429 }
1430
1431 /* Initialize OBJFILE to read symbols from its associated BFD. It
1432 either returns or calls error(). The result is an initialized
1433 struct sym_fns in the objfile structure, that contains cached
1434 information about the symbol file. */
1435
1436 static void
1437 find_sym_fns (struct objfile *objfile)
1438 {
1439 struct sym_fns *sf;
1440 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1441 char *our_target = bfd_get_target (objfile->obfd);
1442
1443 if (our_flavour == bfd_target_srec_flavour
1444 || our_flavour == bfd_target_ihex_flavour
1445 || our_flavour == bfd_target_tekhex_flavour)
1446 return; /* No symbols. */
1447
1448 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1449 {
1450 if (our_flavour == sf->sym_flavour)
1451 {
1452 objfile->sf = sf;
1453 return;
1454 }
1455 }
1456
1457 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1458 bfd_get_target (objfile->obfd));
1459 }
1460 \f
1461
1462 /* This function runs the load command of our current target. */
1463
1464 static void
1465 load_command (char *arg, int from_tty)
1466 {
1467 if (arg == NULL)
1468 arg = get_exec_file (1);
1469 target_load (arg, from_tty);
1470
1471 /* After re-loading the executable, we don't really know which
1472 overlays are mapped any more. */
1473 overlay_cache_invalid = 1;
1474 }
1475
1476 /* This version of "load" should be usable for any target. Currently
1477 it is just used for remote targets, not inftarg.c or core files,
1478 on the theory that only in that case is it useful.
1479
1480 Avoiding xmodem and the like seems like a win (a) because we don't have
1481 to worry about finding it, and (b) On VMS, fork() is very slow and so
1482 we don't want to run a subprocess. On the other hand, I'm not sure how
1483 performance compares. */
1484
1485 static int download_write_size = 512;
1486 static void
1487 show_download_write_size (struct ui_file *file, int from_tty,
1488 struct cmd_list_element *c, const char *value)
1489 {
1490 fprintf_filtered (file, _("\
1491 The write size used when downloading a program is %s.\n"),
1492 value);
1493 }
1494 static int validate_download = 0;
1495
1496 /* Callback service function for generic_load (bfd_map_over_sections). */
1497
1498 static void
1499 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1500 {
1501 bfd_size_type *sum = data;
1502
1503 *sum += bfd_get_section_size (asec);
1504 }
1505
1506 /* Opaque data for load_section_callback. */
1507 struct load_section_data {
1508 unsigned long load_offset;
1509 unsigned long write_count;
1510 unsigned long data_count;
1511 bfd_size_type total_size;
1512 };
1513
1514 /* Callback service function for generic_load (bfd_map_over_sections). */
1515
1516 static void
1517 load_section_callback (bfd *abfd, asection *asec, void *data)
1518 {
1519 struct load_section_data *args = data;
1520
1521 if (bfd_get_section_flags (abfd, asec) & SEC_LOAD)
1522 {
1523 bfd_size_type size = bfd_get_section_size (asec);
1524 if (size > 0)
1525 {
1526 char *buffer;
1527 struct cleanup *old_chain;
1528 CORE_ADDR lma = bfd_section_lma (abfd, asec) + args->load_offset;
1529 bfd_size_type block_size;
1530 int err;
1531 const char *sect_name = bfd_get_section_name (abfd, asec);
1532 bfd_size_type sent;
1533
1534 if (download_write_size > 0 && size > download_write_size)
1535 block_size = download_write_size;
1536 else
1537 block_size = size;
1538
1539 buffer = xmalloc (size);
1540 old_chain = make_cleanup (xfree, buffer);
1541
1542 /* Is this really necessary? I guess it gives the user something
1543 to look at during a long download. */
1544 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1545 sect_name, paddr_nz (size), paddr_nz (lma));
1546
1547 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1548
1549 sent = 0;
1550 do
1551 {
1552 int len;
1553 bfd_size_type this_transfer = size - sent;
1554
1555 if (this_transfer >= block_size)
1556 this_transfer = block_size;
1557 len = target_write_memory_partial (lma, buffer,
1558 this_transfer, &err);
1559 if (err)
1560 break;
1561 if (validate_download)
1562 {
1563 /* Broken memories and broken monitors manifest
1564 themselves here when bring new computers to
1565 life. This doubles already slow downloads. */
1566 /* NOTE: cagney/1999-10-18: A more efficient
1567 implementation might add a verify_memory()
1568 method to the target vector and then use
1569 that. remote.c could implement that method
1570 using the ``qCRC'' packet. */
1571 char *check = xmalloc (len);
1572 struct cleanup *verify_cleanups =
1573 make_cleanup (xfree, check);
1574
1575 if (target_read_memory (lma, check, len) != 0)
1576 error (_("Download verify read failed at 0x%s"),
1577 paddr (lma));
1578 if (memcmp (buffer, check, len) != 0)
1579 error (_("Download verify compare failed at 0x%s"),
1580 paddr (lma));
1581 do_cleanups (verify_cleanups);
1582 }
1583 args->data_count += len;
1584 lma += len;
1585 buffer += len;
1586 args->write_count += 1;
1587 sent += len;
1588 if (quit_flag
1589 || (deprecated_ui_load_progress_hook != NULL
1590 && deprecated_ui_load_progress_hook (sect_name, sent)))
1591 error (_("Canceled the download"));
1592
1593 if (deprecated_show_load_progress != NULL)
1594 deprecated_show_load_progress (sect_name, sent, size,
1595 args->data_count,
1596 args->total_size);
1597 }
1598 while (sent < size);
1599
1600 if (err != 0)
1601 error (_("Memory access error while loading section %s."), sect_name);
1602
1603 do_cleanups (old_chain);
1604 }
1605 }
1606 }
1607
1608 void
1609 generic_load (char *args, int from_tty)
1610 {
1611 asection *s;
1612 bfd *loadfile_bfd;
1613 struct timeval start_time, end_time;
1614 char *filename;
1615 struct cleanup *old_cleanups;
1616 char *offptr;
1617 struct load_section_data cbdata;
1618 CORE_ADDR entry;
1619
1620 cbdata.load_offset = 0; /* Offset to add to vma for each section. */
1621 cbdata.write_count = 0; /* Number of writes needed. */
1622 cbdata.data_count = 0; /* Number of bytes written to target memory. */
1623 cbdata.total_size = 0; /* Total size of all bfd sectors. */
1624
1625 /* Parse the input argument - the user can specify a load offset as
1626 a second argument. */
1627 filename = xmalloc (strlen (args) + 1);
1628 old_cleanups = make_cleanup (xfree, filename);
1629 strcpy (filename, args);
1630 offptr = strchr (filename, ' ');
1631 if (offptr != NULL)
1632 {
1633 char *endptr;
1634
1635 cbdata.load_offset = strtoul (offptr, &endptr, 0);
1636 if (offptr == endptr)
1637 error (_("Invalid download offset:%s."), offptr);
1638 *offptr = '\0';
1639 }
1640 else
1641 cbdata.load_offset = 0;
1642
1643 /* Open the file for loading. */
1644 loadfile_bfd = bfd_openr (filename, gnutarget);
1645 if (loadfile_bfd == NULL)
1646 {
1647 perror_with_name (filename);
1648 return;
1649 }
1650
1651 /* FIXME: should be checking for errors from bfd_close (for one thing,
1652 on error it does not free all the storage associated with the
1653 bfd). */
1654 make_cleanup_bfd_close (loadfile_bfd);
1655
1656 if (!bfd_check_format (loadfile_bfd, bfd_object))
1657 {
1658 error (_("\"%s\" is not an object file: %s"), filename,
1659 bfd_errmsg (bfd_get_error ()));
1660 }
1661
1662 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1663 (void *) &cbdata.total_size);
1664
1665 gettimeofday (&start_time, NULL);
1666
1667 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1668
1669 gettimeofday (&end_time, NULL);
1670
1671 entry = bfd_get_start_address (loadfile_bfd);
1672 ui_out_text (uiout, "Start address ");
1673 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1674 ui_out_text (uiout, ", load size ");
1675 ui_out_field_fmt (uiout, "load-size", "%lu", cbdata.data_count);
1676 ui_out_text (uiout, "\n");
1677 /* We were doing this in remote-mips.c, I suspect it is right
1678 for other targets too. */
1679 write_pc (entry);
1680
1681 /* FIXME: are we supposed to call symbol_file_add or not? According
1682 to a comment from remote-mips.c (where a call to symbol_file_add
1683 was commented out), making the call confuses GDB if more than one
1684 file is loaded in. Some targets do (e.g., remote-vx.c) but
1685 others don't (or didn't - perhaps they have all been deleted). */
1686
1687 print_transfer_performance (gdb_stdout, cbdata.data_count,
1688 cbdata.write_count, &start_time, &end_time);
1689
1690 do_cleanups (old_cleanups);
1691 }
1692
1693 /* Report how fast the transfer went. */
1694
1695 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1696 replaced by print_transfer_performance (with a very different
1697 function signature). */
1698
1699 void
1700 report_transfer_performance (unsigned long data_count, time_t start_time,
1701 time_t end_time)
1702 {
1703 struct timeval start, end;
1704
1705 start.tv_sec = start_time;
1706 start.tv_usec = 0;
1707 end.tv_sec = end_time;
1708 end.tv_usec = 0;
1709
1710 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1711 }
1712
1713 void
1714 print_transfer_performance (struct ui_file *stream,
1715 unsigned long data_count,
1716 unsigned long write_count,
1717 const struct timeval *start_time,
1718 const struct timeval *end_time)
1719 {
1720 unsigned long time_count;
1721
1722 /* Compute the elapsed time in milliseconds, as a tradeoff between
1723 accuracy and overflow. */
1724 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1725 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1726
1727 ui_out_text (uiout, "Transfer rate: ");
1728 if (time_count > 0)
1729 {
1730 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1731 1000 * (data_count * 8) / time_count);
1732 ui_out_text (uiout, " bits/sec");
1733 }
1734 else
1735 {
1736 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1737 ui_out_text (uiout, " bits in <1 sec");
1738 }
1739 if (write_count > 0)
1740 {
1741 ui_out_text (uiout, ", ");
1742 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1743 ui_out_text (uiout, " bytes/write");
1744 }
1745 ui_out_text (uiout, ".\n");
1746 }
1747
1748 /* This function allows the addition of incrementally linked object files.
1749 It does not modify any state in the target, only in the debugger. */
1750 /* Note: ezannoni 2000-04-13 This function/command used to have a
1751 special case syntax for the rombug target (Rombug is the boot
1752 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1753 rombug case, the user doesn't need to supply a text address,
1754 instead a call to target_link() (in target.c) would supply the
1755 value to use. We are now discontinuing this type of ad hoc syntax. */
1756
1757 static void
1758 add_symbol_file_command (char *args, int from_tty)
1759 {
1760 char *filename = NULL;
1761 int flags = OBJF_USERLOADED;
1762 char *arg;
1763 int expecting_option = 0;
1764 int section_index = 0;
1765 int argcnt = 0;
1766 int sec_num = 0;
1767 int i;
1768 int expecting_sec_name = 0;
1769 int expecting_sec_addr = 0;
1770
1771 struct sect_opt
1772 {
1773 char *name;
1774 char *value;
1775 };
1776
1777 struct section_addr_info *section_addrs;
1778 struct sect_opt *sect_opts = NULL;
1779 size_t num_sect_opts = 0;
1780 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1781
1782 num_sect_opts = 16;
1783 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
1784 * sizeof (struct sect_opt));
1785
1786 dont_repeat ();
1787
1788 if (args == NULL)
1789 error (_("add-symbol-file takes a file name and an address"));
1790
1791 /* Make a copy of the string that we can safely write into. */
1792 args = xstrdup (args);
1793
1794 while (*args != '\000')
1795 {
1796 /* Any leading spaces? */
1797 while (isspace (*args))
1798 args++;
1799
1800 /* Point arg to the beginning of the argument. */
1801 arg = args;
1802
1803 /* Move args pointer over the argument. */
1804 while ((*args != '\000') && !isspace (*args))
1805 args++;
1806
1807 /* If there are more arguments, terminate arg and
1808 proceed past it. */
1809 if (*args != '\000')
1810 *args++ = '\000';
1811
1812 /* Now process the argument. */
1813 if (argcnt == 0)
1814 {
1815 /* The first argument is the file name. */
1816 filename = tilde_expand (arg);
1817 make_cleanup (xfree, filename);
1818 }
1819 else
1820 if (argcnt == 1)
1821 {
1822 /* The second argument is always the text address at which
1823 to load the program. */
1824 sect_opts[section_index].name = ".text";
1825 sect_opts[section_index].value = arg;
1826 if (++section_index > num_sect_opts)
1827 {
1828 num_sect_opts *= 2;
1829 sect_opts = ((struct sect_opt *)
1830 xrealloc (sect_opts,
1831 num_sect_opts
1832 * sizeof (struct sect_opt)));
1833 }
1834 }
1835 else
1836 {
1837 /* It's an option (starting with '-') or it's an argument
1838 to an option */
1839
1840 if (*arg == '-')
1841 {
1842 if (strcmp (arg, "-readnow") == 0)
1843 flags |= OBJF_READNOW;
1844 else if (strcmp (arg, "-s") == 0)
1845 {
1846 expecting_sec_name = 1;
1847 expecting_sec_addr = 1;
1848 }
1849 }
1850 else
1851 {
1852 if (expecting_sec_name)
1853 {
1854 sect_opts[section_index].name = arg;
1855 expecting_sec_name = 0;
1856 }
1857 else
1858 if (expecting_sec_addr)
1859 {
1860 sect_opts[section_index].value = arg;
1861 expecting_sec_addr = 0;
1862 if (++section_index > num_sect_opts)
1863 {
1864 num_sect_opts *= 2;
1865 sect_opts = ((struct sect_opt *)
1866 xrealloc (sect_opts,
1867 num_sect_opts
1868 * sizeof (struct sect_opt)));
1869 }
1870 }
1871 else
1872 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
1873 }
1874 }
1875 argcnt++;
1876 }
1877
1878 /* Print the prompt for the query below. And save the arguments into
1879 a sect_addr_info structure to be passed around to other
1880 functions. We have to split this up into separate print
1881 statements because hex_string returns a local static
1882 string. */
1883
1884 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
1885 section_addrs = alloc_section_addr_info (section_index);
1886 make_cleanup (xfree, section_addrs);
1887 for (i = 0; i < section_index; i++)
1888 {
1889 CORE_ADDR addr;
1890 char *val = sect_opts[i].value;
1891 char *sec = sect_opts[i].name;
1892
1893 addr = parse_and_eval_address (val);
1894
1895 /* Here we store the section offsets in the order they were
1896 entered on the command line. */
1897 section_addrs->other[sec_num].name = sec;
1898 section_addrs->other[sec_num].addr = addr;
1899 printf_unfiltered ("\t%s_addr = %s\n",
1900 sec, hex_string ((unsigned long)addr));
1901 sec_num++;
1902
1903 /* The object's sections are initialized when a
1904 call is made to build_objfile_section_table (objfile).
1905 This happens in reread_symbols.
1906 At this point, we don't know what file type this is,
1907 so we can't determine what section names are valid. */
1908 }
1909
1910 if (from_tty && (!query ("%s", "")))
1911 error (_("Not confirmed."));
1912
1913 symbol_file_add (filename, from_tty, section_addrs, 0, flags);
1914
1915 /* Getting new symbols may change our opinion about what is
1916 frameless. */
1917 reinit_frame_cache ();
1918 do_cleanups (my_cleanups);
1919 }
1920 \f
1921 static void
1922 add_shared_symbol_files_command (char *args, int from_tty)
1923 {
1924 #ifdef ADD_SHARED_SYMBOL_FILES
1925 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1926 #else
1927 error (_("This command is not available in this configuration of GDB."));
1928 #endif
1929 }
1930 \f
1931 /* Re-read symbols if a symbol-file has changed. */
1932 void
1933 reread_symbols (void)
1934 {
1935 struct objfile *objfile;
1936 long new_modtime;
1937 int reread_one = 0;
1938 struct stat new_statbuf;
1939 int res;
1940
1941 /* With the addition of shared libraries, this should be modified,
1942 the load time should be saved in the partial symbol tables, since
1943 different tables may come from different source files. FIXME.
1944 This routine should then walk down each partial symbol table
1945 and see if the symbol table that it originates from has been changed */
1946
1947 for (objfile = object_files; objfile; objfile = objfile->next)
1948 {
1949 if (objfile->obfd)
1950 {
1951 #ifdef DEPRECATED_IBM6000_TARGET
1952 /* If this object is from a shared library, then you should
1953 stat on the library name, not member name. */
1954
1955 if (objfile->obfd->my_archive)
1956 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1957 else
1958 #endif
1959 res = stat (objfile->name, &new_statbuf);
1960 if (res != 0)
1961 {
1962 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1963 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
1964 objfile->name);
1965 continue;
1966 }
1967 new_modtime = new_statbuf.st_mtime;
1968 if (new_modtime != objfile->mtime)
1969 {
1970 struct cleanup *old_cleanups;
1971 struct section_offsets *offsets;
1972 int num_offsets;
1973 char *obfd_filename;
1974
1975 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
1976 objfile->name);
1977
1978 /* There are various functions like symbol_file_add,
1979 symfile_bfd_open, syms_from_objfile, etc., which might
1980 appear to do what we want. But they have various other
1981 effects which we *don't* want. So we just do stuff
1982 ourselves. We don't worry about mapped files (for one thing,
1983 any mapped file will be out of date). */
1984
1985 /* If we get an error, blow away this objfile (not sure if
1986 that is the correct response for things like shared
1987 libraries). */
1988 old_cleanups = make_cleanup_free_objfile (objfile);
1989 /* We need to do this whenever any symbols go away. */
1990 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1991
1992 /* Clean up any state BFD has sitting around. We don't need
1993 to close the descriptor but BFD lacks a way of closing the
1994 BFD without closing the descriptor. */
1995 obfd_filename = bfd_get_filename (objfile->obfd);
1996 if (!bfd_close (objfile->obfd))
1997 error (_("Can't close BFD for %s: %s"), objfile->name,
1998 bfd_errmsg (bfd_get_error ()));
1999 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2000 if (objfile->obfd == NULL)
2001 error (_("Can't open %s to read symbols."), objfile->name);
2002 /* bfd_openr sets cacheable to true, which is what we want. */
2003 if (!bfd_check_format (objfile->obfd, bfd_object))
2004 error (_("Can't read symbols from %s: %s."), objfile->name,
2005 bfd_errmsg (bfd_get_error ()));
2006
2007 /* Save the offsets, we will nuke them with the rest of the
2008 objfile_obstack. */
2009 num_offsets = objfile->num_sections;
2010 offsets = ((struct section_offsets *)
2011 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2012 memcpy (offsets, objfile->section_offsets,
2013 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2014
2015 /* Nuke all the state that we will re-read. Much of the following
2016 code which sets things to NULL really is necessary to tell
2017 other parts of GDB that there is nothing currently there. */
2018
2019 /* FIXME: Do we have to free a whole linked list, or is this
2020 enough? */
2021 if (objfile->global_psymbols.list)
2022 xfree (objfile->global_psymbols.list);
2023 memset (&objfile->global_psymbols, 0,
2024 sizeof (objfile->global_psymbols));
2025 if (objfile->static_psymbols.list)
2026 xfree (objfile->static_psymbols.list);
2027 memset (&objfile->static_psymbols, 0,
2028 sizeof (objfile->static_psymbols));
2029
2030 /* Free the obstacks for non-reusable objfiles */
2031 bcache_xfree (objfile->psymbol_cache);
2032 objfile->psymbol_cache = bcache_xmalloc ();
2033 bcache_xfree (objfile->macro_cache);
2034 objfile->macro_cache = bcache_xmalloc ();
2035 if (objfile->demangled_names_hash != NULL)
2036 {
2037 htab_delete (objfile->demangled_names_hash);
2038 objfile->demangled_names_hash = NULL;
2039 }
2040 obstack_free (&objfile->objfile_obstack, 0);
2041 objfile->sections = NULL;
2042 objfile->symtabs = NULL;
2043 objfile->psymtabs = NULL;
2044 objfile->free_psymtabs = NULL;
2045 objfile->cp_namespace_symtab = NULL;
2046 objfile->msymbols = NULL;
2047 objfile->deprecated_sym_private = NULL;
2048 objfile->minimal_symbol_count = 0;
2049 memset (&objfile->msymbol_hash, 0,
2050 sizeof (objfile->msymbol_hash));
2051 memset (&objfile->msymbol_demangled_hash, 0,
2052 sizeof (objfile->msymbol_demangled_hash));
2053 objfile->fundamental_types = NULL;
2054 clear_objfile_data (objfile);
2055 if (objfile->sf != NULL)
2056 {
2057 (*objfile->sf->sym_finish) (objfile);
2058 }
2059
2060 /* We never make this a mapped file. */
2061 objfile->md = NULL;
2062 objfile->psymbol_cache = bcache_xmalloc ();
2063 objfile->macro_cache = bcache_xmalloc ();
2064 /* obstack_init also initializes the obstack so it is
2065 empty. We could use obstack_specify_allocation but
2066 gdb_obstack.h specifies the alloc/dealloc
2067 functions. */
2068 obstack_init (&objfile->objfile_obstack);
2069 if (build_objfile_section_table (objfile))
2070 {
2071 error (_("Can't find the file sections in `%s': %s"),
2072 objfile->name, bfd_errmsg (bfd_get_error ()));
2073 }
2074 terminate_minimal_symbol_table (objfile);
2075
2076 /* We use the same section offsets as from last time. I'm not
2077 sure whether that is always correct for shared libraries. */
2078 objfile->section_offsets = (struct section_offsets *)
2079 obstack_alloc (&objfile->objfile_obstack,
2080 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2081 memcpy (objfile->section_offsets, offsets,
2082 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2083 objfile->num_sections = num_offsets;
2084
2085 /* What the hell is sym_new_init for, anyway? The concept of
2086 distinguishing between the main file and additional files
2087 in this way seems rather dubious. */
2088 if (objfile == symfile_objfile)
2089 {
2090 (*objfile->sf->sym_new_init) (objfile);
2091 }
2092
2093 (*objfile->sf->sym_init) (objfile);
2094 clear_complaints (&symfile_complaints, 1, 1);
2095 /* The "mainline" parameter is a hideous hack; I think leaving it
2096 zero is OK since dbxread.c also does what it needs to do if
2097 objfile->global_psymbols.size is 0. */
2098 (*objfile->sf->sym_read) (objfile, 0);
2099 if (!have_partial_symbols () && !have_full_symbols ())
2100 {
2101 wrap_here ("");
2102 printf_unfiltered (_("(no debugging symbols found)\n"));
2103 wrap_here ("");
2104 }
2105 objfile->flags |= OBJF_SYMS;
2106
2107 /* We're done reading the symbol file; finish off complaints. */
2108 clear_complaints (&symfile_complaints, 0, 1);
2109
2110 /* Getting new symbols may change our opinion about what is
2111 frameless. */
2112
2113 reinit_frame_cache ();
2114
2115 /* Discard cleanups as symbol reading was successful. */
2116 discard_cleanups (old_cleanups);
2117
2118 /* If the mtime has changed between the time we set new_modtime
2119 and now, we *want* this to be out of date, so don't call stat
2120 again now. */
2121 objfile->mtime = new_modtime;
2122 reread_one = 1;
2123 reread_separate_symbols (objfile);
2124 }
2125 }
2126 }
2127
2128 if (reread_one)
2129 {
2130 clear_symtab_users ();
2131 /* At least one objfile has changed, so we can consider that
2132 the executable we're debugging has changed too. */
2133 observer_notify_executable_changed (NULL);
2134 }
2135
2136 }
2137
2138
2139 /* Handle separate debug info for OBJFILE, which has just been
2140 re-read:
2141 - If we had separate debug info before, but now we don't, get rid
2142 of the separated objfile.
2143 - If we didn't have separated debug info before, but now we do,
2144 read in the new separated debug info file.
2145 - If the debug link points to a different file, toss the old one
2146 and read the new one.
2147 This function does *not* handle the case where objfile is still
2148 using the same separate debug info file, but that file's timestamp
2149 has changed. That case should be handled by the loop in
2150 reread_symbols already. */
2151 static void
2152 reread_separate_symbols (struct objfile *objfile)
2153 {
2154 char *debug_file;
2155 unsigned long crc32;
2156
2157 /* Does the updated objfile's debug info live in a
2158 separate file? */
2159 debug_file = find_separate_debug_file (objfile);
2160
2161 if (objfile->separate_debug_objfile)
2162 {
2163 /* There are two cases where we need to get rid of
2164 the old separated debug info objfile:
2165 - if the new primary objfile doesn't have
2166 separated debug info, or
2167 - if the new primary objfile has separate debug
2168 info, but it's under a different filename.
2169
2170 If the old and new objfiles both have separate
2171 debug info, under the same filename, then we're
2172 okay --- if the separated file's contents have
2173 changed, we will have caught that when we
2174 visited it in this function's outermost
2175 loop. */
2176 if (! debug_file
2177 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2178 free_objfile (objfile->separate_debug_objfile);
2179 }
2180
2181 /* If the new objfile has separate debug info, and we
2182 haven't loaded it already, do so now. */
2183 if (debug_file
2184 && ! objfile->separate_debug_objfile)
2185 {
2186 /* Use the same section offset table as objfile itself.
2187 Preserve the flags from objfile that make sense. */
2188 objfile->separate_debug_objfile
2189 = (symbol_file_add_with_addrs_or_offsets
2190 (symfile_bfd_open (debug_file),
2191 info_verbose, /* from_tty: Don't override the default. */
2192 0, /* No addr table. */
2193 objfile->section_offsets, objfile->num_sections,
2194 0, /* Not mainline. See comments about this above. */
2195 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2196 | OBJF_USERLOADED)));
2197 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2198 = objfile;
2199 }
2200 }
2201
2202
2203 \f
2204
2205
2206 typedef struct
2207 {
2208 char *ext;
2209 enum language lang;
2210 }
2211 filename_language;
2212
2213 static filename_language *filename_language_table;
2214 static int fl_table_size, fl_table_next;
2215
2216 static void
2217 add_filename_language (char *ext, enum language lang)
2218 {
2219 if (fl_table_next >= fl_table_size)
2220 {
2221 fl_table_size += 10;
2222 filename_language_table =
2223 xrealloc (filename_language_table,
2224 fl_table_size * sizeof (*filename_language_table));
2225 }
2226
2227 filename_language_table[fl_table_next].ext = xstrdup (ext);
2228 filename_language_table[fl_table_next].lang = lang;
2229 fl_table_next++;
2230 }
2231
2232 static char *ext_args;
2233 static void
2234 show_ext_args (struct ui_file *file, int from_tty,
2235 struct cmd_list_element *c, const char *value)
2236 {
2237 fprintf_filtered (file, _("\
2238 Mapping between filename extension and source language is \"%s\".\n"),
2239 value);
2240 }
2241
2242 static void
2243 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2244 {
2245 int i;
2246 char *cp = ext_args;
2247 enum language lang;
2248
2249 /* First arg is filename extension, starting with '.' */
2250 if (*cp != '.')
2251 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2252
2253 /* Find end of first arg. */
2254 while (*cp && !isspace (*cp))
2255 cp++;
2256
2257 if (*cp == '\0')
2258 error (_("'%s': two arguments required -- filename extension and language"),
2259 ext_args);
2260
2261 /* Null-terminate first arg */
2262 *cp++ = '\0';
2263
2264 /* Find beginning of second arg, which should be a source language. */
2265 while (*cp && isspace (*cp))
2266 cp++;
2267
2268 if (*cp == '\0')
2269 error (_("'%s': two arguments required -- filename extension and language"),
2270 ext_args);
2271
2272 /* Lookup the language from among those we know. */
2273 lang = language_enum (cp);
2274
2275 /* Now lookup the filename extension: do we already know it? */
2276 for (i = 0; i < fl_table_next; i++)
2277 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2278 break;
2279
2280 if (i >= fl_table_next)
2281 {
2282 /* new file extension */
2283 add_filename_language (ext_args, lang);
2284 }
2285 else
2286 {
2287 /* redefining a previously known filename extension */
2288
2289 /* if (from_tty) */
2290 /* query ("Really make files of type %s '%s'?", */
2291 /* ext_args, language_str (lang)); */
2292
2293 xfree (filename_language_table[i].ext);
2294 filename_language_table[i].ext = xstrdup (ext_args);
2295 filename_language_table[i].lang = lang;
2296 }
2297 }
2298
2299 static void
2300 info_ext_lang_command (char *args, int from_tty)
2301 {
2302 int i;
2303
2304 printf_filtered (_("Filename extensions and the languages they represent:"));
2305 printf_filtered ("\n\n");
2306 for (i = 0; i < fl_table_next; i++)
2307 printf_filtered ("\t%s\t- %s\n",
2308 filename_language_table[i].ext,
2309 language_str (filename_language_table[i].lang));
2310 }
2311
2312 static void
2313 init_filename_language_table (void)
2314 {
2315 if (fl_table_size == 0) /* protect against repetition */
2316 {
2317 fl_table_size = 20;
2318 fl_table_next = 0;
2319 filename_language_table =
2320 xmalloc (fl_table_size * sizeof (*filename_language_table));
2321 add_filename_language (".c", language_c);
2322 add_filename_language (".C", language_cplus);
2323 add_filename_language (".cc", language_cplus);
2324 add_filename_language (".cp", language_cplus);
2325 add_filename_language (".cpp", language_cplus);
2326 add_filename_language (".cxx", language_cplus);
2327 add_filename_language (".c++", language_cplus);
2328 add_filename_language (".java", language_java);
2329 add_filename_language (".class", language_java);
2330 add_filename_language (".m", language_objc);
2331 add_filename_language (".f", language_fortran);
2332 add_filename_language (".F", language_fortran);
2333 add_filename_language (".s", language_asm);
2334 add_filename_language (".S", language_asm);
2335 add_filename_language (".pas", language_pascal);
2336 add_filename_language (".p", language_pascal);
2337 add_filename_language (".pp", language_pascal);
2338 add_filename_language (".adb", language_ada);
2339 add_filename_language (".ads", language_ada);
2340 add_filename_language (".a", language_ada);
2341 add_filename_language (".ada", language_ada);
2342 }
2343 }
2344
2345 enum language
2346 deduce_language_from_filename (char *filename)
2347 {
2348 int i;
2349 char *cp;
2350
2351 if (filename != NULL)
2352 if ((cp = strrchr (filename, '.')) != NULL)
2353 for (i = 0; i < fl_table_next; i++)
2354 if (strcmp (cp, filename_language_table[i].ext) == 0)
2355 return filename_language_table[i].lang;
2356
2357 return language_unknown;
2358 }
2359 \f
2360 /* allocate_symtab:
2361
2362 Allocate and partly initialize a new symbol table. Return a pointer
2363 to it. error() if no space.
2364
2365 Caller must set these fields:
2366 LINETABLE(symtab)
2367 symtab->blockvector
2368 symtab->dirname
2369 symtab->free_code
2370 symtab->free_ptr
2371 possibly free_named_symtabs (symtab->filename);
2372 */
2373
2374 struct symtab *
2375 allocate_symtab (char *filename, struct objfile *objfile)
2376 {
2377 struct symtab *symtab;
2378
2379 symtab = (struct symtab *)
2380 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2381 memset (symtab, 0, sizeof (*symtab));
2382 symtab->filename = obsavestring (filename, strlen (filename),
2383 &objfile->objfile_obstack);
2384 symtab->fullname = NULL;
2385 symtab->language = deduce_language_from_filename (filename);
2386 symtab->debugformat = obsavestring ("unknown", 7,
2387 &objfile->objfile_obstack);
2388
2389 /* Hook it to the objfile it comes from */
2390
2391 symtab->objfile = objfile;
2392 symtab->next = objfile->symtabs;
2393 objfile->symtabs = symtab;
2394
2395 /* FIXME: This should go away. It is only defined for the Z8000,
2396 and the Z8000 definition of this macro doesn't have anything to
2397 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
2398 here for convenience. */
2399 #ifdef INIT_EXTRA_SYMTAB_INFO
2400 INIT_EXTRA_SYMTAB_INFO (symtab);
2401 #endif
2402
2403 return (symtab);
2404 }
2405
2406 struct partial_symtab *
2407 allocate_psymtab (char *filename, struct objfile *objfile)
2408 {
2409 struct partial_symtab *psymtab;
2410
2411 if (objfile->free_psymtabs)
2412 {
2413 psymtab = objfile->free_psymtabs;
2414 objfile->free_psymtabs = psymtab->next;
2415 }
2416 else
2417 psymtab = (struct partial_symtab *)
2418 obstack_alloc (&objfile->objfile_obstack,
2419 sizeof (struct partial_symtab));
2420
2421 memset (psymtab, 0, sizeof (struct partial_symtab));
2422 psymtab->filename = obsavestring (filename, strlen (filename),
2423 &objfile->objfile_obstack);
2424 psymtab->symtab = NULL;
2425
2426 /* Prepend it to the psymtab list for the objfile it belongs to.
2427 Psymtabs are searched in most recent inserted -> least recent
2428 inserted order. */
2429
2430 psymtab->objfile = objfile;
2431 psymtab->next = objfile->psymtabs;
2432 objfile->psymtabs = psymtab;
2433 #if 0
2434 {
2435 struct partial_symtab **prev_pst;
2436 psymtab->objfile = objfile;
2437 psymtab->next = NULL;
2438 prev_pst = &(objfile->psymtabs);
2439 while ((*prev_pst) != NULL)
2440 prev_pst = &((*prev_pst)->next);
2441 (*prev_pst) = psymtab;
2442 }
2443 #endif
2444
2445 return (psymtab);
2446 }
2447
2448 void
2449 discard_psymtab (struct partial_symtab *pst)
2450 {
2451 struct partial_symtab **prev_pst;
2452
2453 /* From dbxread.c:
2454 Empty psymtabs happen as a result of header files which don't
2455 have any symbols in them. There can be a lot of them. But this
2456 check is wrong, in that a psymtab with N_SLINE entries but
2457 nothing else is not empty, but we don't realize that. Fixing
2458 that without slowing things down might be tricky. */
2459
2460 /* First, snip it out of the psymtab chain */
2461
2462 prev_pst = &(pst->objfile->psymtabs);
2463 while ((*prev_pst) != pst)
2464 prev_pst = &((*prev_pst)->next);
2465 (*prev_pst) = pst->next;
2466
2467 /* Next, put it on a free list for recycling */
2468
2469 pst->next = pst->objfile->free_psymtabs;
2470 pst->objfile->free_psymtabs = pst;
2471 }
2472 \f
2473
2474 /* Reset all data structures in gdb which may contain references to symbol
2475 table data. */
2476
2477 void
2478 clear_symtab_users (void)
2479 {
2480 /* Someday, we should do better than this, by only blowing away
2481 the things that really need to be blown. */
2482
2483 /* Clear the "current" symtab first, because it is no longer valid.
2484 breakpoint_re_set may try to access the current symtab. */
2485 clear_current_source_symtab_and_line ();
2486
2487 clear_value_history ();
2488 clear_displays ();
2489 clear_internalvars ();
2490 breakpoint_re_set ();
2491 set_default_breakpoint (0, 0, 0, 0);
2492 clear_pc_function_cache ();
2493 if (deprecated_target_new_objfile_hook)
2494 deprecated_target_new_objfile_hook (NULL);
2495 }
2496
2497 static void
2498 clear_symtab_users_cleanup (void *ignore)
2499 {
2500 clear_symtab_users ();
2501 }
2502
2503 /* clear_symtab_users_once:
2504
2505 This function is run after symbol reading, or from a cleanup.
2506 If an old symbol table was obsoleted, the old symbol table
2507 has been blown away, but the other GDB data structures that may
2508 reference it have not yet been cleared or re-directed. (The old
2509 symtab was zapped, and the cleanup queued, in free_named_symtab()
2510 below.)
2511
2512 This function can be queued N times as a cleanup, or called
2513 directly; it will do all the work the first time, and then will be a
2514 no-op until the next time it is queued. This works by bumping a
2515 counter at queueing time. Much later when the cleanup is run, or at
2516 the end of symbol processing (in case the cleanup is discarded), if
2517 the queued count is greater than the "done-count", we do the work
2518 and set the done-count to the queued count. If the queued count is
2519 less than or equal to the done-count, we just ignore the call. This
2520 is needed because reading a single .o file will often replace many
2521 symtabs (one per .h file, for example), and we don't want to reset
2522 the breakpoints N times in the user's face.
2523
2524 The reason we both queue a cleanup, and call it directly after symbol
2525 reading, is because the cleanup protects us in case of errors, but is
2526 discarded if symbol reading is successful. */
2527
2528 #if 0
2529 /* FIXME: As free_named_symtabs is currently a big noop this function
2530 is no longer needed. */
2531 static void clear_symtab_users_once (void);
2532
2533 static int clear_symtab_users_queued;
2534 static int clear_symtab_users_done;
2535
2536 static void
2537 clear_symtab_users_once (void)
2538 {
2539 /* Enforce once-per-`do_cleanups'-semantics */
2540 if (clear_symtab_users_queued <= clear_symtab_users_done)
2541 return;
2542 clear_symtab_users_done = clear_symtab_users_queued;
2543
2544 clear_symtab_users ();
2545 }
2546 #endif
2547
2548 /* Delete the specified psymtab, and any others that reference it. */
2549
2550 static void
2551 cashier_psymtab (struct partial_symtab *pst)
2552 {
2553 struct partial_symtab *ps, *pprev = NULL;
2554 int i;
2555
2556 /* Find its previous psymtab in the chain */
2557 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2558 {
2559 if (ps == pst)
2560 break;
2561 pprev = ps;
2562 }
2563
2564 if (ps)
2565 {
2566 /* Unhook it from the chain. */
2567 if (ps == pst->objfile->psymtabs)
2568 pst->objfile->psymtabs = ps->next;
2569 else
2570 pprev->next = ps->next;
2571
2572 /* FIXME, we can't conveniently deallocate the entries in the
2573 partial_symbol lists (global_psymbols/static_psymbols) that
2574 this psymtab points to. These just take up space until all
2575 the psymtabs are reclaimed. Ditto the dependencies list and
2576 filename, which are all in the objfile_obstack. */
2577
2578 /* We need to cashier any psymtab that has this one as a dependency... */
2579 again:
2580 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2581 {
2582 for (i = 0; i < ps->number_of_dependencies; i++)
2583 {
2584 if (ps->dependencies[i] == pst)
2585 {
2586 cashier_psymtab (ps);
2587 goto again; /* Must restart, chain has been munged. */
2588 }
2589 }
2590 }
2591 }
2592 }
2593
2594 /* If a symtab or psymtab for filename NAME is found, free it along
2595 with any dependent breakpoints, displays, etc.
2596 Used when loading new versions of object modules with the "add-file"
2597 command. This is only called on the top-level symtab or psymtab's name;
2598 it is not called for subsidiary files such as .h files.
2599
2600 Return value is 1 if we blew away the environment, 0 if not.
2601 FIXME. The return value appears to never be used.
2602
2603 FIXME. I think this is not the best way to do this. We should
2604 work on being gentler to the environment while still cleaning up
2605 all stray pointers into the freed symtab. */
2606
2607 int
2608 free_named_symtabs (char *name)
2609 {
2610 #if 0
2611 /* FIXME: With the new method of each objfile having it's own
2612 psymtab list, this function needs serious rethinking. In particular,
2613 why was it ever necessary to toss psymtabs with specific compilation
2614 unit filenames, as opposed to all psymtabs from a particular symbol
2615 file? -- fnf
2616 Well, the answer is that some systems permit reloading of particular
2617 compilation units. We want to blow away any old info about these
2618 compilation units, regardless of which objfiles they arrived in. --gnu. */
2619
2620 struct symtab *s;
2621 struct symtab *prev;
2622 struct partial_symtab *ps;
2623 struct blockvector *bv;
2624 int blewit = 0;
2625
2626 /* We only wack things if the symbol-reload switch is set. */
2627 if (!symbol_reloading)
2628 return 0;
2629
2630 /* Some symbol formats have trouble providing file names... */
2631 if (name == 0 || *name == '\0')
2632 return 0;
2633
2634 /* Look for a psymtab with the specified name. */
2635
2636 again2:
2637 for (ps = partial_symtab_list; ps; ps = ps->next)
2638 {
2639 if (strcmp (name, ps->filename) == 0)
2640 {
2641 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2642 goto again2; /* Must restart, chain has been munged */
2643 }
2644 }
2645
2646 /* Look for a symtab with the specified name. */
2647
2648 for (s = symtab_list; s; s = s->next)
2649 {
2650 if (strcmp (name, s->filename) == 0)
2651 break;
2652 prev = s;
2653 }
2654
2655 if (s)
2656 {
2657 if (s == symtab_list)
2658 symtab_list = s->next;
2659 else
2660 prev->next = s->next;
2661
2662 /* For now, queue a delete for all breakpoints, displays, etc., whether
2663 or not they depend on the symtab being freed. This should be
2664 changed so that only those data structures affected are deleted. */
2665
2666 /* But don't delete anything if the symtab is empty.
2667 This test is necessary due to a bug in "dbxread.c" that
2668 causes empty symtabs to be created for N_SO symbols that
2669 contain the pathname of the object file. (This problem
2670 has been fixed in GDB 3.9x). */
2671
2672 bv = BLOCKVECTOR (s);
2673 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2674 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2675 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2676 {
2677 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
2678 name);
2679 clear_symtab_users_queued++;
2680 make_cleanup (clear_symtab_users_once, 0);
2681 blewit = 1;
2682 }
2683 else
2684 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
2685 name);
2686
2687 free_symtab (s);
2688 }
2689 else
2690 {
2691 /* It is still possible that some breakpoints will be affected
2692 even though no symtab was found, since the file might have
2693 been compiled without debugging, and hence not be associated
2694 with a symtab. In order to handle this correctly, we would need
2695 to keep a list of text address ranges for undebuggable files.
2696 For now, we do nothing, since this is a fairly obscure case. */
2697 ;
2698 }
2699
2700 /* FIXME, what about the minimal symbol table? */
2701 return blewit;
2702 #else
2703 return (0);
2704 #endif
2705 }
2706 \f
2707 /* Allocate and partially fill a partial symtab. It will be
2708 completely filled at the end of the symbol list.
2709
2710 FILENAME is the name of the symbol-file we are reading from. */
2711
2712 struct partial_symtab *
2713 start_psymtab_common (struct objfile *objfile,
2714 struct section_offsets *section_offsets, char *filename,
2715 CORE_ADDR textlow, struct partial_symbol **global_syms,
2716 struct partial_symbol **static_syms)
2717 {
2718 struct partial_symtab *psymtab;
2719
2720 psymtab = allocate_psymtab (filename, objfile);
2721 psymtab->section_offsets = section_offsets;
2722 psymtab->textlow = textlow;
2723 psymtab->texthigh = psymtab->textlow; /* default */
2724 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2725 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2726 return (psymtab);
2727 }
2728 \f
2729 /* Add a symbol with a long value to a psymtab.
2730 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2731 Return the partial symbol that has been added. */
2732
2733 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2734 symbol is so that callers can get access to the symbol's demangled
2735 name, which they don't have any cheap way to determine otherwise.
2736 (Currenly, dwarf2read.c is the only file who uses that information,
2737 though it's possible that other readers might in the future.)
2738 Elena wasn't thrilled about that, and I don't blame her, but we
2739 couldn't come up with a better way to get that information. If
2740 it's needed in other situations, we could consider breaking up
2741 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2742 cache. */
2743
2744 const struct partial_symbol *
2745 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
2746 enum address_class class,
2747 struct psymbol_allocation_list *list, long val, /* Value as a long */
2748 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2749 enum language language, struct objfile *objfile)
2750 {
2751 struct partial_symbol *psym;
2752 char *buf = alloca (namelength + 1);
2753 /* psymbol is static so that there will be no uninitialized gaps in the
2754 structure which might contain random data, causing cache misses in
2755 bcache. */
2756 static struct partial_symbol psymbol;
2757
2758 /* Create local copy of the partial symbol */
2759 memcpy (buf, name, namelength);
2760 buf[namelength] = '\0';
2761 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2762 if (val != 0)
2763 {
2764 SYMBOL_VALUE (&psymbol) = val;
2765 }
2766 else
2767 {
2768 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2769 }
2770 SYMBOL_SECTION (&psymbol) = 0;
2771 SYMBOL_LANGUAGE (&psymbol) = language;
2772 PSYMBOL_DOMAIN (&psymbol) = domain;
2773 PSYMBOL_CLASS (&psymbol) = class;
2774
2775 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
2776
2777 /* Stash the partial symbol away in the cache */
2778 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2779 objfile->psymbol_cache);
2780
2781 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2782 if (list->next >= list->list + list->size)
2783 {
2784 extend_psymbol_list (list, objfile);
2785 }
2786 *list->next++ = psym;
2787 OBJSTAT (objfile, n_psyms++);
2788
2789 return psym;
2790 }
2791
2792 /* Add a symbol with a long value to a psymtab. This differs from
2793 * add_psymbol_to_list above in taking both a mangled and a demangled
2794 * name. */
2795
2796 void
2797 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2798 int dem_namelength, domain_enum domain,
2799 enum address_class class,
2800 struct psymbol_allocation_list *list, long val, /* Value as a long */
2801 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2802 enum language language,
2803 struct objfile *objfile)
2804 {
2805 struct partial_symbol *psym;
2806 char *buf = alloca (namelength + 1);
2807 /* psymbol is static so that there will be no uninitialized gaps in the
2808 structure which might contain random data, causing cache misses in
2809 bcache. */
2810 static struct partial_symbol psymbol;
2811
2812 /* Create local copy of the partial symbol */
2813
2814 memcpy (buf, name, namelength);
2815 buf[namelength] = '\0';
2816 DEPRECATED_SYMBOL_NAME (&psymbol) = deprecated_bcache (buf, namelength + 1,
2817 objfile->psymbol_cache);
2818
2819 buf = alloca (dem_namelength + 1);
2820 memcpy (buf, dem_name, dem_namelength);
2821 buf[dem_namelength] = '\0';
2822
2823 switch (language)
2824 {
2825 case language_c:
2826 case language_cplus:
2827 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2828 deprecated_bcache (buf, dem_namelength + 1, objfile->psymbol_cache);
2829 break;
2830 /* FIXME What should be done for the default case? Ignoring for now. */
2831 }
2832
2833 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2834 if (val != 0)
2835 {
2836 SYMBOL_VALUE (&psymbol) = val;
2837 }
2838 else
2839 {
2840 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2841 }
2842 SYMBOL_SECTION (&psymbol) = 0;
2843 SYMBOL_LANGUAGE (&psymbol) = language;
2844 PSYMBOL_DOMAIN (&psymbol) = domain;
2845 PSYMBOL_CLASS (&psymbol) = class;
2846 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2847
2848 /* Stash the partial symbol away in the cache */
2849 psym = deprecated_bcache (&psymbol, sizeof (struct partial_symbol),
2850 objfile->psymbol_cache);
2851
2852 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2853 if (list->next >= list->list + list->size)
2854 {
2855 extend_psymbol_list (list, objfile);
2856 }
2857 *list->next++ = psym;
2858 OBJSTAT (objfile, n_psyms++);
2859 }
2860
2861 /* Initialize storage for partial symbols. */
2862
2863 void
2864 init_psymbol_list (struct objfile *objfile, int total_symbols)
2865 {
2866 /* Free any previously allocated psymbol lists. */
2867
2868 if (objfile->global_psymbols.list)
2869 {
2870 xfree (objfile->global_psymbols.list);
2871 }
2872 if (objfile->static_psymbols.list)
2873 {
2874 xfree (objfile->static_psymbols.list);
2875 }
2876
2877 /* Current best guess is that approximately a twentieth
2878 of the total symbols (in a debugging file) are global or static
2879 oriented symbols */
2880
2881 objfile->global_psymbols.size = total_symbols / 10;
2882 objfile->static_psymbols.size = total_symbols / 10;
2883
2884 if (objfile->global_psymbols.size > 0)
2885 {
2886 objfile->global_psymbols.next =
2887 objfile->global_psymbols.list = (struct partial_symbol **)
2888 xmalloc ((objfile->global_psymbols.size
2889 * sizeof (struct partial_symbol *)));
2890 }
2891 if (objfile->static_psymbols.size > 0)
2892 {
2893 objfile->static_psymbols.next =
2894 objfile->static_psymbols.list = (struct partial_symbol **)
2895 xmalloc ((objfile->static_psymbols.size
2896 * sizeof (struct partial_symbol *)));
2897 }
2898 }
2899
2900 /* OVERLAYS:
2901 The following code implements an abstraction for debugging overlay sections.
2902
2903 The target model is as follows:
2904 1) The gnu linker will permit multiple sections to be mapped into the
2905 same VMA, each with its own unique LMA (or load address).
2906 2) It is assumed that some runtime mechanism exists for mapping the
2907 sections, one by one, from the load address into the VMA address.
2908 3) This code provides a mechanism for gdb to keep track of which
2909 sections should be considered to be mapped from the VMA to the LMA.
2910 This information is used for symbol lookup, and memory read/write.
2911 For instance, if a section has been mapped then its contents
2912 should be read from the VMA, otherwise from the LMA.
2913
2914 Two levels of debugger support for overlays are available. One is
2915 "manual", in which the debugger relies on the user to tell it which
2916 overlays are currently mapped. This level of support is
2917 implemented entirely in the core debugger, and the information about
2918 whether a section is mapped is kept in the objfile->obj_section table.
2919
2920 The second level of support is "automatic", and is only available if
2921 the target-specific code provides functionality to read the target's
2922 overlay mapping table, and translate its contents for the debugger
2923 (by updating the mapped state information in the obj_section tables).
2924
2925 The interface is as follows:
2926 User commands:
2927 overlay map <name> -- tell gdb to consider this section mapped
2928 overlay unmap <name> -- tell gdb to consider this section unmapped
2929 overlay list -- list the sections that GDB thinks are mapped
2930 overlay read-target -- get the target's state of what's mapped
2931 overlay off/manual/auto -- set overlay debugging state
2932 Functional interface:
2933 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2934 section, return that section.
2935 find_pc_overlay(pc): find any overlay section that contains
2936 the pc, either in its VMA or its LMA
2937 overlay_is_mapped(sect): true if overlay is marked as mapped
2938 section_is_overlay(sect): true if section's VMA != LMA
2939 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2940 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2941 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2942 overlay_mapped_address(...): map an address from section's LMA to VMA
2943 overlay_unmapped_address(...): map an address from section's VMA to LMA
2944 symbol_overlayed_address(...): Return a "current" address for symbol:
2945 either in VMA or LMA depending on whether
2946 the symbol's section is currently mapped
2947 */
2948
2949 /* Overlay debugging state: */
2950
2951 enum overlay_debugging_state overlay_debugging = ovly_off;
2952 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2953
2954 /* Target vector for refreshing overlay mapped state */
2955 static void simple_overlay_update (struct obj_section *);
2956 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2957
2958 /* Function: section_is_overlay (SECTION)
2959 Returns true if SECTION has VMA not equal to LMA, ie.
2960 SECTION is loaded at an address different from where it will "run". */
2961
2962 int
2963 section_is_overlay (asection *section)
2964 {
2965 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
2966
2967 if (overlay_debugging)
2968 if (section && section->lma != 0 &&
2969 section->vma != section->lma)
2970 return 1;
2971
2972 return 0;
2973 }
2974
2975 /* Function: overlay_invalidate_all (void)
2976 Invalidate the mapped state of all overlay sections (mark it as stale). */
2977
2978 static void
2979 overlay_invalidate_all (void)
2980 {
2981 struct objfile *objfile;
2982 struct obj_section *sect;
2983
2984 ALL_OBJSECTIONS (objfile, sect)
2985 if (section_is_overlay (sect->the_bfd_section))
2986 sect->ovly_mapped = -1;
2987 }
2988
2989 /* Function: overlay_is_mapped (SECTION)
2990 Returns true if section is an overlay, and is currently mapped.
2991 Private: public access is thru function section_is_mapped.
2992
2993 Access to the ovly_mapped flag is restricted to this function, so
2994 that we can do automatic update. If the global flag
2995 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2996 overlay_invalidate_all. If the mapped state of the particular
2997 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2998
2999 static int
3000 overlay_is_mapped (struct obj_section *osect)
3001 {
3002 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
3003 return 0;
3004
3005 switch (overlay_debugging)
3006 {
3007 default:
3008 case ovly_off:
3009 return 0; /* overlay debugging off */
3010 case ovly_auto: /* overlay debugging automatic */
3011 /* Unles there is a target_overlay_update function,
3012 there's really nothing useful to do here (can't really go auto) */
3013 if (target_overlay_update)
3014 {
3015 if (overlay_cache_invalid)
3016 {
3017 overlay_invalidate_all ();
3018 overlay_cache_invalid = 0;
3019 }
3020 if (osect->ovly_mapped == -1)
3021 (*target_overlay_update) (osect);
3022 }
3023 /* fall thru to manual case */
3024 case ovly_on: /* overlay debugging manual */
3025 return osect->ovly_mapped == 1;
3026 }
3027 }
3028
3029 /* Function: section_is_mapped
3030 Returns true if section is an overlay, and is currently mapped. */
3031
3032 int
3033 section_is_mapped (asection *section)
3034 {
3035 struct objfile *objfile;
3036 struct obj_section *osect;
3037
3038 if (overlay_debugging)
3039 if (section && section_is_overlay (section))
3040 ALL_OBJSECTIONS (objfile, osect)
3041 if (osect->the_bfd_section == section)
3042 return overlay_is_mapped (osect);
3043
3044 return 0;
3045 }
3046
3047 /* Function: pc_in_unmapped_range
3048 If PC falls into the lma range of SECTION, return true, else false. */
3049
3050 CORE_ADDR
3051 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
3052 {
3053 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3054
3055 int size;
3056
3057 if (overlay_debugging)
3058 if (section && section_is_overlay (section))
3059 {
3060 size = bfd_get_section_size (section);
3061 if (section->lma <= pc && pc < section->lma + size)
3062 return 1;
3063 }
3064 return 0;
3065 }
3066
3067 /* Function: pc_in_mapped_range
3068 If PC falls into the vma range of SECTION, return true, else false. */
3069
3070 CORE_ADDR
3071 pc_in_mapped_range (CORE_ADDR pc, asection *section)
3072 {
3073 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3074
3075 int size;
3076
3077 if (overlay_debugging)
3078 if (section && section_is_overlay (section))
3079 {
3080 size = bfd_get_section_size (section);
3081 if (section->vma <= pc && pc < section->vma + size)
3082 return 1;
3083 }
3084 return 0;
3085 }
3086
3087
3088 /* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
3090 static int
3091 sections_overlap (asection *a, asection *b)
3092 {
3093 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3094
3095 CORE_ADDR a_start = a->vma;
3096 CORE_ADDR a_end = a->vma + bfd_get_section_size (a);
3097 CORE_ADDR b_start = b->vma;
3098 CORE_ADDR b_end = b->vma + bfd_get_section_size (b);
3099
3100 return (a_start < b_end && b_start < a_end);
3101 }
3102
3103 /* Function: overlay_unmapped_address (PC, SECTION)
3104 Returns the address corresponding to PC in the unmapped (load) range.
3105 May be the same as PC. */
3106
3107 CORE_ADDR
3108 overlay_unmapped_address (CORE_ADDR pc, asection *section)
3109 {
3110 /* FIXME: need bfd *, so we can use bfd_section_lma methods. */
3111
3112 if (overlay_debugging)
3113 if (section && section_is_overlay (section) &&
3114 pc_in_mapped_range (pc, section))
3115 return pc + section->lma - section->vma;
3116
3117 return pc;
3118 }
3119
3120 /* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124 CORE_ADDR
3125 overlay_mapped_address (CORE_ADDR pc, asection *section)
3126 {
3127 /* FIXME: need bfd *, so we can use bfd_section_vma methods. */
3128
3129 if (overlay_debugging)
3130 if (section && section_is_overlay (section) &&
3131 pc_in_unmapped_range (pc, section))
3132 return pc + section->vma - section->lma;
3133
3134 return pc;
3135 }
3136
3137
3138 /* Function: symbol_overlayed_address
3139 Return one of two addresses (relative to the VMA or to the LMA),
3140 depending on whether the section is mapped or not. */
3141
3142 CORE_ADDR
3143 symbol_overlayed_address (CORE_ADDR address, asection *section)
3144 {
3145 if (overlay_debugging)
3146 {
3147 /* If the symbol has no section, just return its regular address. */
3148 if (section == 0)
3149 return address;
3150 /* If the symbol's section is not an overlay, just return its address */
3151 if (!section_is_overlay (section))
3152 return address;
3153 /* If the symbol's section is mapped, just return its address */
3154 if (section_is_mapped (section))
3155 return address;
3156 /*
3157 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3158 * then return its LOADED address rather than its vma address!!
3159 */
3160 return overlay_unmapped_address (address, section);
3161 }
3162 return address;
3163 }
3164
3165 /* Function: find_pc_overlay (PC)
3166 Return the best-match overlay section for PC:
3167 If PC matches a mapped overlay section's VMA, return that section.
3168 Else if PC matches an unmapped section's VMA, return that section.
3169 Else if PC matches an unmapped section's LMA, return that section. */
3170
3171 asection *
3172 find_pc_overlay (CORE_ADDR pc)
3173 {
3174 struct objfile *objfile;
3175 struct obj_section *osect, *best_match = NULL;
3176
3177 if (overlay_debugging)
3178 ALL_OBJSECTIONS (objfile, osect)
3179 if (section_is_overlay (osect->the_bfd_section))
3180 {
3181 if (pc_in_mapped_range (pc, osect->the_bfd_section))
3182 {
3183 if (overlay_is_mapped (osect))
3184 return osect->the_bfd_section;
3185 else
3186 best_match = osect;
3187 }
3188 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
3189 best_match = osect;
3190 }
3191 return best_match ? best_match->the_bfd_section : NULL;
3192 }
3193
3194 /* Function: find_pc_mapped_section (PC)
3195 If PC falls into the VMA address range of an overlay section that is
3196 currently marked as MAPPED, return that section. Else return NULL. */
3197
3198 asection *
3199 find_pc_mapped_section (CORE_ADDR pc)
3200 {
3201 struct objfile *objfile;
3202 struct obj_section *osect;
3203
3204 if (overlay_debugging)
3205 ALL_OBJSECTIONS (objfile, osect)
3206 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
3207 overlay_is_mapped (osect))
3208 return osect->the_bfd_section;
3209
3210 return NULL;
3211 }
3212
3213 /* Function: list_overlays_command
3214 Print a list of mapped sections and their PC ranges */
3215
3216 void
3217 list_overlays_command (char *args, int from_tty)
3218 {
3219 int nmapped = 0;
3220 struct objfile *objfile;
3221 struct obj_section *osect;
3222
3223 if (overlay_debugging)
3224 ALL_OBJSECTIONS (objfile, osect)
3225 if (overlay_is_mapped (osect))
3226 {
3227 const char *name;
3228 bfd_vma lma, vma;
3229 int size;
3230
3231 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3232 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3233 size = bfd_get_section_size (osect->the_bfd_section);
3234 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3235
3236 printf_filtered ("Section %s, loaded at ", name);
3237 deprecated_print_address_numeric (lma, 1, gdb_stdout);
3238 puts_filtered (" - ");
3239 deprecated_print_address_numeric (lma + size, 1, gdb_stdout);
3240 printf_filtered (", mapped at ");
3241 deprecated_print_address_numeric (vma, 1, gdb_stdout);
3242 puts_filtered (" - ");
3243 deprecated_print_address_numeric (vma + size, 1, gdb_stdout);
3244 puts_filtered ("\n");
3245
3246 nmapped++;
3247 }
3248 if (nmapped == 0)
3249 printf_filtered (_("No sections are mapped.\n"));
3250 }
3251
3252 /* Function: map_overlay_command
3253 Mark the named section as mapped (ie. residing at its VMA address). */
3254
3255 void
3256 map_overlay_command (char *args, int from_tty)
3257 {
3258 struct objfile *objfile, *objfile2;
3259 struct obj_section *sec, *sec2;
3260 asection *bfdsec;
3261
3262 if (!overlay_debugging)
3263 error (_("\
3264 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3265 the 'overlay manual' command."));
3266
3267 if (args == 0 || *args == 0)
3268 error (_("Argument required: name of an overlay section"));
3269
3270 /* First, find a section matching the user supplied argument */
3271 ALL_OBJSECTIONS (objfile, sec)
3272 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3273 {
3274 /* Now, check to see if the section is an overlay. */
3275 bfdsec = sec->the_bfd_section;
3276 if (!section_is_overlay (bfdsec))
3277 continue; /* not an overlay section */
3278
3279 /* Mark the overlay as "mapped" */
3280 sec->ovly_mapped = 1;
3281
3282 /* Next, make a pass and unmap any sections that are
3283 overlapped by this new section: */
3284 ALL_OBJSECTIONS (objfile2, sec2)
3285 if (sec2->ovly_mapped
3286 && sec != sec2
3287 && sec->the_bfd_section != sec2->the_bfd_section
3288 && sections_overlap (sec->the_bfd_section,
3289 sec2->the_bfd_section))
3290 {
3291 if (info_verbose)
3292 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3293 bfd_section_name (objfile->obfd,
3294 sec2->the_bfd_section));
3295 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3296 }
3297 return;
3298 }
3299 error (_("No overlay section called %s"), args);
3300 }
3301
3302 /* Function: unmap_overlay_command
3303 Mark the overlay section as unmapped
3304 (ie. resident in its LMA address range, rather than the VMA range). */
3305
3306 void
3307 unmap_overlay_command (char *args, int from_tty)
3308 {
3309 struct objfile *objfile;
3310 struct obj_section *sec;
3311
3312 if (!overlay_debugging)
3313 error (_("\
3314 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3315 the 'overlay manual' command."));
3316
3317 if (args == 0 || *args == 0)
3318 error (_("Argument required: name of an overlay section"));
3319
3320 /* First, find a section matching the user supplied argument */
3321 ALL_OBJSECTIONS (objfile, sec)
3322 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3323 {
3324 if (!sec->ovly_mapped)
3325 error (_("Section %s is not mapped"), args);
3326 sec->ovly_mapped = 0;
3327 return;
3328 }
3329 error (_("No overlay section called %s"), args);
3330 }
3331
3332 /* Function: overlay_auto_command
3333 A utility command to turn on overlay debugging.
3334 Possibly this should be done via a set/show command. */
3335
3336 static void
3337 overlay_auto_command (char *args, int from_tty)
3338 {
3339 overlay_debugging = ovly_auto;
3340 enable_overlay_breakpoints ();
3341 if (info_verbose)
3342 printf_unfiltered (_("Automatic overlay debugging enabled."));
3343 }
3344
3345 /* Function: overlay_manual_command
3346 A utility command to turn on overlay debugging.
3347 Possibly this should be done via a set/show command. */
3348
3349 static void
3350 overlay_manual_command (char *args, int from_tty)
3351 {
3352 overlay_debugging = ovly_on;
3353 disable_overlay_breakpoints ();
3354 if (info_verbose)
3355 printf_unfiltered (_("Overlay debugging enabled."));
3356 }
3357
3358 /* Function: overlay_off_command
3359 A utility command to turn on overlay debugging.
3360 Possibly this should be done via a set/show command. */
3361
3362 static void
3363 overlay_off_command (char *args, int from_tty)
3364 {
3365 overlay_debugging = ovly_off;
3366 disable_overlay_breakpoints ();
3367 if (info_verbose)
3368 printf_unfiltered (_("Overlay debugging disabled."));
3369 }
3370
3371 static void
3372 overlay_load_command (char *args, int from_tty)
3373 {
3374 if (target_overlay_update)
3375 (*target_overlay_update) (NULL);
3376 else
3377 error (_("This target does not know how to read its overlay state."));
3378 }
3379
3380 /* Function: overlay_command
3381 A place-holder for a mis-typed command */
3382
3383 /* Command list chain containing all defined "overlay" subcommands. */
3384 struct cmd_list_element *overlaylist;
3385
3386 static void
3387 overlay_command (char *args, int from_tty)
3388 {
3389 printf_unfiltered
3390 ("\"overlay\" must be followed by the name of an overlay command.\n");
3391 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3392 }
3393
3394
3395 /* Target Overlays for the "Simplest" overlay manager:
3396
3397 This is GDB's default target overlay layer. It works with the
3398 minimal overlay manager supplied as an example by Cygnus. The
3399 entry point is via a function pointer "target_overlay_update",
3400 so targets that use a different runtime overlay manager can
3401 substitute their own overlay_update function and take over the
3402 function pointer.
3403
3404 The overlay_update function pokes around in the target's data structures
3405 to see what overlays are mapped, and updates GDB's overlay mapping with
3406 this information.
3407
3408 In this simple implementation, the target data structures are as follows:
3409 unsigned _novlys; /# number of overlay sections #/
3410 unsigned _ovly_table[_novlys][4] = {
3411 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3412 {..., ..., ..., ...},
3413 }
3414 unsigned _novly_regions; /# number of overlay regions #/
3415 unsigned _ovly_region_table[_novly_regions][3] = {
3416 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3417 {..., ..., ...},
3418 }
3419 These functions will attempt to update GDB's mappedness state in the
3420 symbol section table, based on the target's mappedness state.
3421
3422 To do this, we keep a cached copy of the target's _ovly_table, and
3423 attempt to detect when the cached copy is invalidated. The main
3424 entry point is "simple_overlay_update(SECT), which looks up SECT in
3425 the cached table and re-reads only the entry for that section from
3426 the target (whenever possible).
3427 */
3428
3429 /* Cached, dynamically allocated copies of the target data structures: */
3430 static unsigned (*cache_ovly_table)[4] = 0;
3431 #if 0
3432 static unsigned (*cache_ovly_region_table)[3] = 0;
3433 #endif
3434 static unsigned cache_novlys = 0;
3435 #if 0
3436 static unsigned cache_novly_regions = 0;
3437 #endif
3438 static CORE_ADDR cache_ovly_table_base = 0;
3439 #if 0
3440 static CORE_ADDR cache_ovly_region_table_base = 0;
3441 #endif
3442 enum ovly_index
3443 {
3444 VMA, SIZE, LMA, MAPPED
3445 };
3446 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
3447
3448 /* Throw away the cached copy of _ovly_table */
3449 static void
3450 simple_free_overlay_table (void)
3451 {
3452 if (cache_ovly_table)
3453 xfree (cache_ovly_table);
3454 cache_novlys = 0;
3455 cache_ovly_table = NULL;
3456 cache_ovly_table_base = 0;
3457 }
3458
3459 #if 0
3460 /* Throw away the cached copy of _ovly_region_table */
3461 static void
3462 simple_free_overlay_region_table (void)
3463 {
3464 if (cache_ovly_region_table)
3465 xfree (cache_ovly_region_table);
3466 cache_novly_regions = 0;
3467 cache_ovly_region_table = NULL;
3468 cache_ovly_region_table_base = 0;
3469 }
3470 #endif
3471
3472 /* Read an array of ints from the target into a local buffer.
3473 Convert to host order. int LEN is number of ints */
3474 static void
3475 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3476 {
3477 /* FIXME (alloca): Not safe if array is very large. */
3478 char *buf = alloca (len * TARGET_LONG_BYTES);
3479 int i;
3480
3481 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3482 for (i = 0; i < len; i++)
3483 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3484 TARGET_LONG_BYTES);
3485 }
3486
3487 /* Find and grab a copy of the target _ovly_table
3488 (and _novlys, which is needed for the table's size) */
3489 static int
3490 simple_read_overlay_table (void)
3491 {
3492 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3493
3494 simple_free_overlay_table ();
3495 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3496 if (! novlys_msym)
3497 {
3498 error (_("Error reading inferior's overlay table: "
3499 "couldn't find `_novlys' variable\n"
3500 "in inferior. Use `overlay manual' mode."));
3501 return 0;
3502 }
3503
3504 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3505 if (! ovly_table_msym)
3506 {
3507 error (_("Error reading inferior's overlay table: couldn't find "
3508 "`_ovly_table' array\n"
3509 "in inferior. Use `overlay manual' mode."));
3510 return 0;
3511 }
3512
3513 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3514 cache_ovly_table
3515 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3516 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3517 read_target_long_array (cache_ovly_table_base,
3518 (int *) cache_ovly_table,
3519 cache_novlys * 4);
3520
3521 return 1; /* SUCCESS */
3522 }
3523
3524 #if 0
3525 /* Find and grab a copy of the target _ovly_region_table
3526 (and _novly_regions, which is needed for the table's size) */
3527 static int
3528 simple_read_overlay_region_table (void)
3529 {
3530 struct minimal_symbol *msym;
3531
3532 simple_free_overlay_region_table ();
3533 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3534 if (msym != NULL)
3535 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3536 else
3537 return 0; /* failure */
3538 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3539 if (cache_ovly_region_table != NULL)
3540 {
3541 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3542 if (msym != NULL)
3543 {
3544 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3545 read_target_long_array (cache_ovly_region_table_base,
3546 (int *) cache_ovly_region_table,
3547 cache_novly_regions * 3);
3548 }
3549 else
3550 return 0; /* failure */
3551 }
3552 else
3553 return 0; /* failure */
3554 return 1; /* SUCCESS */
3555 }
3556 #endif
3557
3558 /* Function: simple_overlay_update_1
3559 A helper function for simple_overlay_update. Assuming a cached copy
3560 of _ovly_table exists, look through it to find an entry whose vma,
3561 lma and size match those of OSECT. Re-read the entry and make sure
3562 it still matches OSECT (else the table may no longer be valid).
3563 Set OSECT's mapped state to match the entry. Return: 1 for
3564 success, 0 for failure. */
3565
3566 static int
3567 simple_overlay_update_1 (struct obj_section *osect)
3568 {
3569 int i, size;
3570 bfd *obfd = osect->objfile->obfd;
3571 asection *bsect = osect->the_bfd_section;
3572
3573 size = bfd_get_section_size (osect->the_bfd_section);
3574 for (i = 0; i < cache_novlys; i++)
3575 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3576 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3577 /* && cache_ovly_table[i][SIZE] == size */ )
3578 {
3579 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3580 (int *) cache_ovly_table[i], 4);
3581 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3582 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3583 /* && cache_ovly_table[i][SIZE] == size */ )
3584 {
3585 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3586 return 1;
3587 }
3588 else /* Warning! Warning! Target's ovly table has changed! */
3589 return 0;
3590 }
3591 return 0;
3592 }
3593
3594 /* Function: simple_overlay_update
3595 If OSECT is NULL, then update all sections' mapped state
3596 (after re-reading the entire target _ovly_table).
3597 If OSECT is non-NULL, then try to find a matching entry in the
3598 cached ovly_table and update only OSECT's mapped state.
3599 If a cached entry can't be found or the cache isn't valid, then
3600 re-read the entire cache, and go ahead and update all sections. */
3601
3602 static void
3603 simple_overlay_update (struct obj_section *osect)
3604 {
3605 struct objfile *objfile;
3606
3607 /* Were we given an osect to look up? NULL means do all of them. */
3608 if (osect)
3609 /* Have we got a cached copy of the target's overlay table? */
3610 if (cache_ovly_table != NULL)
3611 /* Does its cached location match what's currently in the symtab? */
3612 if (cache_ovly_table_base ==
3613 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3614 /* Then go ahead and try to look up this single section in the cache */
3615 if (simple_overlay_update_1 (osect))
3616 /* Found it! We're done. */
3617 return;
3618
3619 /* Cached table no good: need to read the entire table anew.
3620 Or else we want all the sections, in which case it's actually
3621 more efficient to read the whole table in one block anyway. */
3622
3623 if (! simple_read_overlay_table ())
3624 return;
3625
3626 /* Now may as well update all sections, even if only one was requested. */
3627 ALL_OBJSECTIONS (objfile, osect)
3628 if (section_is_overlay (osect->the_bfd_section))
3629 {
3630 int i, size;
3631 bfd *obfd = osect->objfile->obfd;
3632 asection *bsect = osect->the_bfd_section;
3633
3634 size = bfd_get_section_size (bsect);
3635 for (i = 0; i < cache_novlys; i++)
3636 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3637 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3638 /* && cache_ovly_table[i][SIZE] == size */ )
3639 { /* obj_section matches i'th entry in ovly_table */
3640 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3641 break; /* finished with inner for loop: break out */
3642 }
3643 }
3644 }
3645
3646 /* Set the output sections and output offsets for section SECTP in
3647 ABFD. The relocation code in BFD will read these offsets, so we
3648 need to be sure they're initialized. We map each section to itself,
3649 with no offset; this means that SECTP->vma will be honored. */
3650
3651 static void
3652 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3653 {
3654 sectp->output_section = sectp;
3655 sectp->output_offset = 0;
3656 }
3657
3658 /* Relocate the contents of a debug section SECTP in ABFD. The
3659 contents are stored in BUF if it is non-NULL, or returned in a
3660 malloc'd buffer otherwise.
3661
3662 For some platforms and debug info formats, shared libraries contain
3663 relocations against the debug sections (particularly for DWARF-2;
3664 one affected platform is PowerPC GNU/Linux, although it depends on
3665 the version of the linker in use). Also, ELF object files naturally
3666 have unresolved relocations for their debug sections. We need to apply
3667 the relocations in order to get the locations of symbols correct. */
3668
3669 bfd_byte *
3670 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3671 {
3672 /* We're only interested in debugging sections with relocation
3673 information. */
3674 if ((sectp->flags & SEC_RELOC) == 0)
3675 return NULL;
3676 if ((sectp->flags & SEC_DEBUGGING) == 0)
3677 return NULL;
3678
3679 /* We will handle section offsets properly elsewhere, so relocate as if
3680 all sections begin at 0. */
3681 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3682
3683 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3684 }
3685
3686 void
3687 _initialize_symfile (void)
3688 {
3689 struct cmd_list_element *c;
3690
3691 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3692 Load symbol table from executable file FILE.\n\
3693 The `file' command can also load symbol tables, as well as setting the file\n\
3694 to execute."), &cmdlist);
3695 set_cmd_completer (c, filename_completer);
3696
3697 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3698 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3699 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3700 ADDR is the starting address of the file's text.\n\
3701 The optional arguments are section-name section-address pairs and\n\
3702 should be specified if the data and bss segments are not contiguous\n\
3703 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3704 &cmdlist);
3705 set_cmd_completer (c, filename_completer);
3706
3707 c = add_cmd ("add-shared-symbol-files", class_files,
3708 add_shared_symbol_files_command, _("\
3709 Load the symbols from shared objects in the dynamic linker's link map."),
3710 &cmdlist);
3711 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3712 &cmdlist);
3713
3714 c = add_cmd ("load", class_files, load_command, _("\
3715 Dynamically load FILE into the running program, and record its symbols\n\
3716 for access from GDB."), &cmdlist);
3717 set_cmd_completer (c, filename_completer);
3718
3719 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3720 &symbol_reloading, _("\
3721 Set dynamic symbol table reloading multiple times in one run."), _("\
3722 Show dynamic symbol table reloading multiple times in one run."), NULL,
3723 NULL,
3724 show_symbol_reloading,
3725 &setlist, &showlist);
3726
3727 add_prefix_cmd ("overlay", class_support, overlay_command,
3728 _("Commands for debugging overlays."), &overlaylist,
3729 "overlay ", 0, &cmdlist);
3730
3731 add_com_alias ("ovly", "overlay", class_alias, 1);
3732 add_com_alias ("ov", "overlay", class_alias, 1);
3733
3734 add_cmd ("map-overlay", class_support, map_overlay_command,
3735 _("Assert that an overlay section is mapped."), &overlaylist);
3736
3737 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3738 _("Assert that an overlay section is unmapped."), &overlaylist);
3739
3740 add_cmd ("list-overlays", class_support, list_overlays_command,
3741 _("List mappings of overlay sections."), &overlaylist);
3742
3743 add_cmd ("manual", class_support, overlay_manual_command,
3744 _("Enable overlay debugging."), &overlaylist);
3745 add_cmd ("off", class_support, overlay_off_command,
3746 _("Disable overlay debugging."), &overlaylist);
3747 add_cmd ("auto", class_support, overlay_auto_command,
3748 _("Enable automatic overlay debugging."), &overlaylist);
3749 add_cmd ("load-target", class_support, overlay_load_command,
3750 _("Read the overlay mapping state from the target."), &overlaylist);
3751
3752 /* Filename extension to source language lookup table: */
3753 init_filename_language_table ();
3754 add_setshow_string_noescape_cmd ("extension-language", class_files,
3755 &ext_args, _("\
3756 Set mapping between filename extension and source language."), _("\
3757 Show mapping between filename extension and source language."), _("\
3758 Usage: set extension-language .foo bar"),
3759 set_ext_lang_command,
3760 show_ext_args,
3761 &setlist, &showlist);
3762
3763 add_info ("extensions", info_ext_lang_command,
3764 _("All filename extensions associated with a source language."));
3765
3766 add_setshow_integer_cmd ("download-write-size", class_obscure,
3767 &download_write_size, _("\
3768 Set the write size used when downloading a program."), _("\
3769 Show the write size used when downloading a program."), _("\
3770 Only used when downloading a program onto a remote\n\
3771 target. Specify zero, or a negative value, to disable\n\
3772 blocked writes. The actual size of each transfer is also\n\
3773 limited by the size of the target packet and the memory\n\
3774 cache."),
3775 NULL,
3776 show_download_write_size,
3777 &setlist, &showlist);
3778
3779 debug_file_directory = xstrdup (DEBUGDIR);
3780 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3781 &debug_file_directory, _("\
3782 Set the directory where separate debug symbols are searched for."), _("\
3783 Show the directory where separate debug symbols are searched for."), _("\
3784 Separate debug symbols are first searched for in the same\n\
3785 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3786 and lastly at the path of the directory of the binary with\n\
3787 the global debug-file directory prepended."),
3788 NULL,
3789 show_debug_file_directory,
3790 &setlist, &showlist);
3791 }