2010-02-18 Harald Koenig <H.Koenig@science-computing.de>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 bfd *symfile_bfd_open (char *);
101
102 int get_section_index (struct objfile *, char *);
103
104 static struct sym_fns *find_sym_fns (bfd *);
105
106 static void decrement_reading_symtab (void *);
107
108 static void overlay_invalidate_all (void);
109
110 void list_overlays_command (char *, int);
111
112 void map_overlay_command (char *, int);
113
114 void unmap_overlay_command (char *, int);
115
116 static void overlay_auto_command (char *, int);
117
118 static void overlay_manual_command (char *, int);
119
120 static void overlay_off_command (char *, int);
121
122 static void overlay_load_command (char *, int);
123
124 static void overlay_command (char *, int);
125
126 static void simple_free_overlay_table (void);
127
128 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
129 enum bfd_endian);
130
131 static int simple_read_overlay_table (void);
132
133 static int simple_overlay_update_1 (struct obj_section *);
134
135 static void add_filename_language (char *ext, enum language lang);
136
137 static void info_ext_lang_command (char *args, int from_tty);
138
139 static void init_filename_language_table (void);
140
141 static void symfile_find_segment_sections (struct objfile *objfile);
142
143 void _initialize_symfile (void);
144
145 /* List of all available sym_fns. On gdb startup, each object file reader
146 calls add_symtab_fns() to register information on each format it is
147 prepared to read. */
148
149 static struct sym_fns *symtab_fns = NULL;
150
151 /* Flag for whether user will be reloading symbols multiple times.
152 Defaults to ON for VxWorks, otherwise OFF. */
153
154 #ifdef SYMBOL_RELOADING_DEFAULT
155 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
156 #else
157 int symbol_reloading = 0;
158 #endif
159 static void
160 show_symbol_reloading (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("\
164 Dynamic symbol table reloading multiple times in one run is %s.\n"),
165 value);
166 }
167
168 /* If non-zero, shared library symbols will be added automatically
169 when the inferior is created, new libraries are loaded, or when
170 attaching to the inferior. This is almost always what users will
171 want to have happen; but for very large programs, the startup time
172 will be excessive, and so if this is a problem, the user can clear
173 this flag and then add the shared library symbols as needed. Note
174 that there is a potential for confusion, since if the shared
175 library symbols are not loaded, commands like "info fun" will *not*
176 report all the functions that are actually present. */
177
178 int auto_solib_add = 1;
179
180 /* For systems that support it, a threshold size in megabytes. If
181 automatically adding a new library's symbol table to those already
182 known to the debugger would cause the total shared library symbol
183 size to exceed this threshhold, then the shlib's symbols are not
184 added. The threshold is ignored if the user explicitly asks for a
185 shlib to be added, such as when using the "sharedlibrary"
186 command. */
187
188 int auto_solib_limit;
189 \f
190
191 /* This compares two partial symbols by names, using strcmp_iw_ordered
192 for the comparison. */
193
194 static int
195 compare_psymbols (const void *s1p, const void *s2p)
196 {
197 struct partial_symbol *const *s1 = s1p;
198 struct partial_symbol *const *s2 = s2p;
199
200 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
201 SYMBOL_SEARCH_NAME (*s2));
202 }
203
204 void
205 sort_pst_symbols (struct partial_symtab *pst)
206 {
207 /* Sort the global list; don't sort the static list */
208
209 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
210 pst->n_global_syms, sizeof (struct partial_symbol *),
211 compare_psymbols);
212 }
213
214 /* Make a null terminated copy of the string at PTR with SIZE characters in
215 the obstack pointed to by OBSTACKP . Returns the address of the copy.
216 Note that the string at PTR does not have to be null terminated, I.E. it
217 may be part of a larger string and we are only saving a substring. */
218
219 char *
220 obsavestring (const char *ptr, int size, struct obstack *obstackp)
221 {
222 char *p = (char *) obstack_alloc (obstackp, size + 1);
223 /* Open-coded memcpy--saves function call time. These strings are usually
224 short. FIXME: Is this really still true with a compiler that can
225 inline memcpy? */
226 {
227 const char *p1 = ptr;
228 char *p2 = p;
229 const char *end = ptr + size;
230 while (p1 != end)
231 *p2++ = *p1++;
232 }
233 p[size] = 0;
234 return p;
235 }
236
237 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
238 in the obstack pointed to by OBSTACKP. */
239
240 char *
241 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
242 const char *s3)
243 {
244 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
245 char *val = (char *) obstack_alloc (obstackp, len);
246 strcpy (val, s1);
247 strcat (val, s2);
248 strcat (val, s3);
249 return val;
250 }
251
252 /* True if we are nested inside psymtab_to_symtab. */
253
254 int currently_reading_symtab = 0;
255
256 static void
257 decrement_reading_symtab (void *dummy)
258 {
259 currently_reading_symtab--;
260 }
261
262 /* Get the symbol table that corresponds to a partial_symtab.
263 This is fast after the first time you do it. In fact, there
264 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
265 case inline. */
266
267 struct symtab *
268 psymtab_to_symtab (struct partial_symtab *pst)
269 {
270 /* If it's been looked up before, return it. */
271 if (pst->symtab)
272 return pst->symtab;
273
274 /* If it has not yet been read in, read it. */
275 if (!pst->readin)
276 {
277 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
278 currently_reading_symtab++;
279 (*pst->read_symtab) (pst);
280 do_cleanups (back_to);
281 }
282
283 return pst->symtab;
284 }
285
286 /* Remember the lowest-addressed loadable section we've seen.
287 This function is called via bfd_map_over_sections.
288
289 In case of equal vmas, the section with the largest size becomes the
290 lowest-addressed loadable section.
291
292 If the vmas and sizes are equal, the last section is considered the
293 lowest-addressed loadable section. */
294
295 void
296 find_lowest_section (bfd *abfd, asection *sect, void *obj)
297 {
298 asection **lowest = (asection **) obj;
299
300 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
301 return;
302 if (!*lowest)
303 *lowest = sect; /* First loadable section */
304 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
305 *lowest = sect; /* A lower loadable section */
306 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
307 && (bfd_section_size (abfd, (*lowest))
308 <= bfd_section_size (abfd, sect)))
309 *lowest = sect;
310 }
311
312 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
313
314 struct section_addr_info *
315 alloc_section_addr_info (size_t num_sections)
316 {
317 struct section_addr_info *sap;
318 size_t size;
319
320 size = (sizeof (struct section_addr_info)
321 + sizeof (struct other_sections) * (num_sections - 1));
322 sap = (struct section_addr_info *) xmalloc (size);
323 memset (sap, 0, size);
324 sap->num_sections = num_sections;
325
326 return sap;
327 }
328
329 /* Build (allocate and populate) a section_addr_info struct from
330 an existing section table. */
331
332 extern struct section_addr_info *
333 build_section_addr_info_from_section_table (const struct target_section *start,
334 const struct target_section *end)
335 {
336 struct section_addr_info *sap;
337 const struct target_section *stp;
338 int oidx;
339
340 sap = alloc_section_addr_info (end - start);
341
342 for (stp = start, oidx = 0; stp != end; stp++)
343 {
344 if (bfd_get_section_flags (stp->bfd,
345 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
346 && oidx < end - start)
347 {
348 sap->other[oidx].addr = stp->addr;
349 sap->other[oidx].name
350 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
351 sap->other[oidx].sectindex = stp->the_bfd_section->index;
352 oidx++;
353 }
354 }
355
356 return sap;
357 }
358
359 /* Create a section_addr_info from section offsets in OBJFILE. */
360
361 struct section_addr_info *
362 build_section_addr_info_from_objfile (const struct objfile *objfile)
363 {
364 struct section_addr_info *sap;
365 int i;
366 struct bfd_section *sec;
367 int addr_bit = gdbarch_addr_bit (objfile->gdbarch);
368 CORE_ADDR mask = CORE_ADDR_MAX;
369
370 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
371 mask = ((CORE_ADDR) 1 << addr_bit) - 1;
372
373 sap = alloc_section_addr_info (objfile->num_sections);
374 for (i = 0, sec = objfile->obfd->sections; sec != NULL; sec = sec->next)
375 if (bfd_get_section_flags (objfile->obfd, sec) & (SEC_ALLOC | SEC_LOAD))
376 {
377 sap->other[i].addr = (bfd_get_section_vma (objfile->obfd, sec)
378 + objfile->section_offsets->offsets[i]) & mask;
379 sap->other[i].name = xstrdup (bfd_get_section_name (objfile->obfd,
380 sec));
381 sap->other[i].sectindex = sec->index;
382 i++;
383 }
384 return sap;
385 }
386
387
388 /* Free all memory allocated by build_section_addr_info_from_section_table. */
389
390 extern void
391 free_section_addr_info (struct section_addr_info *sap)
392 {
393 int idx;
394
395 for (idx = 0; idx < sap->num_sections; idx++)
396 if (sap->other[idx].name)
397 xfree (sap->other[idx].name);
398 xfree (sap);
399 }
400
401
402 /* Initialize OBJFILE's sect_index_* members. */
403 static void
404 init_objfile_sect_indices (struct objfile *objfile)
405 {
406 asection *sect;
407 int i;
408
409 sect = bfd_get_section_by_name (objfile->obfd, ".text");
410 if (sect)
411 objfile->sect_index_text = sect->index;
412
413 sect = bfd_get_section_by_name (objfile->obfd, ".data");
414 if (sect)
415 objfile->sect_index_data = sect->index;
416
417 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
418 if (sect)
419 objfile->sect_index_bss = sect->index;
420
421 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
422 if (sect)
423 objfile->sect_index_rodata = sect->index;
424
425 /* This is where things get really weird... We MUST have valid
426 indices for the various sect_index_* members or gdb will abort.
427 So if for example, there is no ".text" section, we have to
428 accomodate that. First, check for a file with the standard
429 one or two segments. */
430
431 symfile_find_segment_sections (objfile);
432
433 /* Except when explicitly adding symbol files at some address,
434 section_offsets contains nothing but zeros, so it doesn't matter
435 which slot in section_offsets the individual sect_index_* members
436 index into. So if they are all zero, it is safe to just point
437 all the currently uninitialized indices to the first slot. But
438 beware: if this is the main executable, it may be relocated
439 later, e.g. by the remote qOffsets packet, and then this will
440 be wrong! That's why we try segments first. */
441
442 for (i = 0; i < objfile->num_sections; i++)
443 {
444 if (ANOFFSET (objfile->section_offsets, i) != 0)
445 {
446 break;
447 }
448 }
449 if (i == objfile->num_sections)
450 {
451 if (objfile->sect_index_text == -1)
452 objfile->sect_index_text = 0;
453 if (objfile->sect_index_data == -1)
454 objfile->sect_index_data = 0;
455 if (objfile->sect_index_bss == -1)
456 objfile->sect_index_bss = 0;
457 if (objfile->sect_index_rodata == -1)
458 objfile->sect_index_rodata = 0;
459 }
460 }
461
462 /* The arguments to place_section. */
463
464 struct place_section_arg
465 {
466 struct section_offsets *offsets;
467 CORE_ADDR lowest;
468 };
469
470 /* Find a unique offset to use for loadable section SECT if
471 the user did not provide an offset. */
472
473 static void
474 place_section (bfd *abfd, asection *sect, void *obj)
475 {
476 struct place_section_arg *arg = obj;
477 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
478 int done;
479 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
480
481 /* We are only interested in allocated sections. */
482 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
483 return;
484
485 /* If the user specified an offset, honor it. */
486 if (offsets[sect->index] != 0)
487 return;
488
489 /* Otherwise, let's try to find a place for the section. */
490 start_addr = (arg->lowest + align - 1) & -align;
491
492 do {
493 asection *cur_sec;
494
495 done = 1;
496
497 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
498 {
499 int indx = cur_sec->index;
500 CORE_ADDR cur_offset;
501
502 /* We don't need to compare against ourself. */
503 if (cur_sec == sect)
504 continue;
505
506 /* We can only conflict with allocated sections. */
507 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
508 continue;
509
510 /* If the section offset is 0, either the section has not been placed
511 yet, or it was the lowest section placed (in which case LOWEST
512 will be past its end). */
513 if (offsets[indx] == 0)
514 continue;
515
516 /* If this section would overlap us, then we must move up. */
517 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
518 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
519 {
520 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
521 start_addr = (start_addr + align - 1) & -align;
522 done = 0;
523 break;
524 }
525
526 /* Otherwise, we appear to be OK. So far. */
527 }
528 }
529 while (!done);
530
531 offsets[sect->index] = start_addr;
532 arg->lowest = start_addr + bfd_get_section_size (sect);
533 }
534
535 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
536 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
537 entries. */
538
539 void
540 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
541 int num_sections,
542 struct section_addr_info *addrs)
543 {
544 int i;
545
546 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
547
548 /* Now calculate offsets for section that were specified by the caller. */
549 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
550 {
551 struct other_sections *osp;
552
553 osp = &addrs->other[i];
554 if (osp->addr == 0)
555 continue;
556
557 /* Record all sections in offsets */
558 /* The section_offsets in the objfile are here filled in using
559 the BFD index. */
560 section_offsets->offsets[osp->sectindex] = osp->addr;
561 }
562 }
563
564 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
565 also SECTINDEXes there. */
566
567 void
568 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
569 {
570 asection *lower_sect;
571 asection *sect;
572 CORE_ADDR lower_offset;
573 int i;
574
575 /* Find lowest loadable section to be used as starting point for
576 continguous sections. */
577 lower_sect = NULL;
578 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
579 if (lower_sect == NULL)
580 {
581 warning (_("no loadable sections found in added symbol-file %s"),
582 bfd_get_filename (abfd));
583 lower_offset = 0;
584 }
585 else
586 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
587
588 /* Calculate offsets for the loadable sections.
589 FIXME! Sections must be in order of increasing loadable section
590 so that contiguous sections can use the lower-offset!!!
591
592 Adjust offsets if the segments are not contiguous.
593 If the section is contiguous, its offset should be set to
594 the offset of the highest loadable section lower than it
595 (the loadable section directly below it in memory).
596 this_offset = lower_offset = lower_addr - lower_orig_addr */
597
598 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
599 {
600 if (addrs->other[i].addr != 0)
601 {
602 sect = bfd_get_section_by_name (abfd, addrs->other[i].name);
603 if (sect)
604 {
605 addrs->other[i].addr -= bfd_section_vma (abfd, sect);
606 lower_offset = addrs->other[i].addr;
607 /* This is the index used by BFD. */
608 addrs->other[i].sectindex = sect->index;
609 }
610 else
611 {
612 warning (_("section %s not found in %s"), addrs->other[i].name,
613 bfd_get_filename (abfd));
614 addrs->other[i].addr = 0;
615 }
616 }
617 else
618 addrs->other[i].addr = lower_offset;
619 }
620 }
621
622 /* Parse the user's idea of an offset for dynamic linking, into our idea
623 of how to represent it for fast symbol reading. This is the default
624 version of the sym_fns.sym_offsets function for symbol readers that
625 don't need to do anything special. It allocates a section_offsets table
626 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
627
628 void
629 default_symfile_offsets (struct objfile *objfile,
630 struct section_addr_info *addrs)
631 {
632 objfile->num_sections = bfd_count_sections (objfile->obfd);
633 objfile->section_offsets = (struct section_offsets *)
634 obstack_alloc (&objfile->objfile_obstack,
635 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
636 relative_addr_info_to_section_offsets (objfile->section_offsets,
637 objfile->num_sections, addrs);
638
639 /* For relocatable files, all loadable sections will start at zero.
640 The zero is meaningless, so try to pick arbitrary addresses such
641 that no loadable sections overlap. This algorithm is quadratic,
642 but the number of sections in a single object file is generally
643 small. */
644 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
645 {
646 struct place_section_arg arg;
647 bfd *abfd = objfile->obfd;
648 asection *cur_sec;
649 CORE_ADDR lowest = 0;
650
651 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
652 /* We do not expect this to happen; just skip this step if the
653 relocatable file has a section with an assigned VMA. */
654 if (bfd_section_vma (abfd, cur_sec) != 0)
655 break;
656
657 if (cur_sec == NULL)
658 {
659 CORE_ADDR *offsets = objfile->section_offsets->offsets;
660
661 /* Pick non-overlapping offsets for sections the user did not
662 place explicitly. */
663 arg.offsets = objfile->section_offsets;
664 arg.lowest = 0;
665 bfd_map_over_sections (objfile->obfd, place_section, &arg);
666
667 /* Correctly filling in the section offsets is not quite
668 enough. Relocatable files have two properties that
669 (most) shared objects do not:
670
671 - Their debug information will contain relocations. Some
672 shared libraries do also, but many do not, so this can not
673 be assumed.
674
675 - If there are multiple code sections they will be loaded
676 at different relative addresses in memory than they are
677 in the objfile, since all sections in the file will start
678 at address zero.
679
680 Because GDB has very limited ability to map from an
681 address in debug info to the correct code section,
682 it relies on adding SECT_OFF_TEXT to things which might be
683 code. If we clear all the section offsets, and set the
684 section VMAs instead, then symfile_relocate_debug_section
685 will return meaningful debug information pointing at the
686 correct sections.
687
688 GDB has too many different data structures for section
689 addresses - a bfd, objfile, and so_list all have section
690 tables, as does exec_ops. Some of these could probably
691 be eliminated. */
692
693 for (cur_sec = abfd->sections; cur_sec != NULL;
694 cur_sec = cur_sec->next)
695 {
696 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
697 continue;
698
699 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
700 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
701 offsets[cur_sec->index]);
702 offsets[cur_sec->index] = 0;
703 }
704 }
705 }
706
707 /* Remember the bfd indexes for the .text, .data, .bss and
708 .rodata sections. */
709 init_objfile_sect_indices (objfile);
710 }
711
712
713 /* Divide the file into segments, which are individual relocatable units.
714 This is the default version of the sym_fns.sym_segments function for
715 symbol readers that do not have an explicit representation of segments.
716 It assumes that object files do not have segments, and fully linked
717 files have a single segment. */
718
719 struct symfile_segment_data *
720 default_symfile_segments (bfd *abfd)
721 {
722 int num_sections, i;
723 asection *sect;
724 struct symfile_segment_data *data;
725 CORE_ADDR low, high;
726
727 /* Relocatable files contain enough information to position each
728 loadable section independently; they should not be relocated
729 in segments. */
730 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
731 return NULL;
732
733 /* Make sure there is at least one loadable section in the file. */
734 for (sect = abfd->sections; sect != NULL; sect = sect->next)
735 {
736 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
737 continue;
738
739 break;
740 }
741 if (sect == NULL)
742 return NULL;
743
744 low = bfd_get_section_vma (abfd, sect);
745 high = low + bfd_get_section_size (sect);
746
747 data = XZALLOC (struct symfile_segment_data);
748 data->num_segments = 1;
749 data->segment_bases = XCALLOC (1, CORE_ADDR);
750 data->segment_sizes = XCALLOC (1, CORE_ADDR);
751
752 num_sections = bfd_count_sections (abfd);
753 data->segment_info = XCALLOC (num_sections, int);
754
755 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
756 {
757 CORE_ADDR vma;
758
759 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
760 continue;
761
762 vma = bfd_get_section_vma (abfd, sect);
763 if (vma < low)
764 low = vma;
765 if (vma + bfd_get_section_size (sect) > high)
766 high = vma + bfd_get_section_size (sect);
767
768 data->segment_info[i] = 1;
769 }
770
771 data->segment_bases[0] = low;
772 data->segment_sizes[0] = high - low;
773
774 return data;
775 }
776
777 /* Process a symbol file, as either the main file or as a dynamically
778 loaded file.
779
780 OBJFILE is where the symbols are to be read from.
781
782 ADDRS is the list of section load addresses. If the user has given
783 an 'add-symbol-file' command, then this is the list of offsets and
784 addresses he or she provided as arguments to the command; or, if
785 we're handling a shared library, these are the actual addresses the
786 sections are loaded at, according to the inferior's dynamic linker
787 (as gleaned by GDB's shared library code). We convert each address
788 into an offset from the section VMA's as it appears in the object
789 file, and then call the file's sym_offsets function to convert this
790 into a format-specific offset table --- a `struct section_offsets'.
791 If ADDRS is non-zero, OFFSETS must be zero.
792
793 OFFSETS is a table of section offsets already in the right
794 format-specific representation. NUM_OFFSETS is the number of
795 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
796 assume this is the proper table the call to sym_offsets described
797 above would produce. Instead of calling sym_offsets, we just dump
798 it right into objfile->section_offsets. (When we're re-reading
799 symbols from an objfile, we don't have the original load address
800 list any more; all we have is the section offset table.) If
801 OFFSETS is non-zero, ADDRS must be zero.
802
803 ADD_FLAGS encodes verbosity level, whether this is main symbol or
804 an extra symbol file such as dynamically loaded code, and wether
805 breakpoint reset should be deferred. */
806
807 void
808 syms_from_objfile (struct objfile *objfile,
809 struct section_addr_info *addrs,
810 struct section_offsets *offsets,
811 int num_offsets,
812 int add_flags)
813 {
814 struct section_addr_info *local_addr = NULL;
815 struct cleanup *old_chain;
816 const int mainline = add_flags & SYMFILE_MAINLINE;
817
818 gdb_assert (! (addrs && offsets));
819
820 init_entry_point_info (objfile);
821 objfile->sf = find_sym_fns (objfile->obfd);
822
823 if (objfile->sf == NULL)
824 return; /* No symbols. */
825
826 /* Make sure that partially constructed symbol tables will be cleaned up
827 if an error occurs during symbol reading. */
828 old_chain = make_cleanup_free_objfile (objfile);
829
830 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
831 list. We now establish the convention that an addr of zero means
832 no load address was specified. */
833 if (! addrs && ! offsets)
834 {
835 local_addr
836 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
837 make_cleanup (xfree, local_addr);
838 addrs = local_addr;
839 }
840
841 /* Now either addrs or offsets is non-zero. */
842
843 if (mainline)
844 {
845 /* We will modify the main symbol table, make sure that all its users
846 will be cleaned up if an error occurs during symbol reading. */
847 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
848
849 /* Since no error yet, throw away the old symbol table. */
850
851 if (symfile_objfile != NULL)
852 {
853 free_objfile (symfile_objfile);
854 gdb_assert (symfile_objfile == NULL);
855 }
856
857 /* Currently we keep symbols from the add-symbol-file command.
858 If the user wants to get rid of them, they should do "symbol-file"
859 without arguments first. Not sure this is the best behavior
860 (PR 2207). */
861
862 (*objfile->sf->sym_new_init) (objfile);
863 }
864
865 /* Convert addr into an offset rather than an absolute address.
866 We find the lowest address of a loaded segment in the objfile,
867 and assume that <addr> is where that got loaded.
868
869 We no longer warn if the lowest section is not a text segment (as
870 happens for the PA64 port. */
871 if (addrs && addrs->other[0].name)
872 addr_info_make_relative (addrs, objfile->obfd);
873
874 /* Initialize symbol reading routines for this objfile, allow complaints to
875 appear for this new file, and record how verbose to be, then do the
876 initial symbol reading for this file. */
877
878 (*objfile->sf->sym_init) (objfile);
879 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
880
881 if (addrs)
882 (*objfile->sf->sym_offsets) (objfile, addrs);
883 else
884 {
885 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
886
887 /* Just copy in the offset table directly as given to us. */
888 objfile->num_sections = num_offsets;
889 objfile->section_offsets
890 = ((struct section_offsets *)
891 obstack_alloc (&objfile->objfile_obstack, size));
892 memcpy (objfile->section_offsets, offsets, size);
893
894 init_objfile_sect_indices (objfile);
895 }
896
897 (*objfile->sf->sym_read) (objfile, add_flags);
898
899 /* Discard cleanups as symbol reading was successful. */
900
901 discard_cleanups (old_chain);
902 xfree (local_addr);
903 }
904
905 /* Perform required actions after either reading in the initial
906 symbols for a new objfile, or mapping in the symbols from a reusable
907 objfile. */
908
909 void
910 new_symfile_objfile (struct objfile *objfile, int add_flags)
911 {
912
913 /* If this is the main symbol file we have to clean up all users of the
914 old main symbol file. Otherwise it is sufficient to fixup all the
915 breakpoints that may have been redefined by this symbol file. */
916 if (add_flags & SYMFILE_MAINLINE)
917 {
918 /* OK, make it the "real" symbol file. */
919 symfile_objfile = objfile;
920
921 clear_symtab_users ();
922 }
923 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
924 {
925 breakpoint_re_set ();
926 }
927
928 /* We're done reading the symbol file; finish off complaints. */
929 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
930 }
931
932 /* Process a symbol file, as either the main file or as a dynamically
933 loaded file.
934
935 ABFD is a BFD already open on the file, as from symfile_bfd_open.
936 This BFD will be closed on error, and is always consumed by this function.
937
938 ADD_FLAGS encodes verbosity, whether this is main symbol file or
939 extra, such as dynamically loaded code, and what to do with breakpoins.
940
941 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
942 syms_from_objfile, above.
943 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
944
945 Upon success, returns a pointer to the objfile that was added.
946 Upon failure, jumps back to command level (never returns). */
947
948 static struct objfile *
949 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
950 int add_flags,
951 struct section_addr_info *addrs,
952 struct section_offsets *offsets,
953 int num_offsets,
954 int flags)
955 {
956 struct objfile *objfile;
957 struct partial_symtab *psymtab;
958 struct cleanup *my_cleanups;
959 const char *name = bfd_get_filename (abfd);
960 const int from_tty = add_flags & SYMFILE_VERBOSE;
961
962 my_cleanups = make_cleanup_bfd_close (abfd);
963
964 /* Give user a chance to burp if we'd be
965 interactively wiping out any existing symbols. */
966
967 if ((have_full_symbols () || have_partial_symbols ())
968 && (add_flags & SYMFILE_MAINLINE)
969 && from_tty
970 && !query (_("Load new symbol table from \"%s\"? "), name))
971 error (_("Not confirmed."));
972
973 objfile = allocate_objfile (abfd, flags);
974 discard_cleanups (my_cleanups);
975
976 /* We either created a new mapped symbol table, mapped an existing
977 symbol table file which has not had initial symbol reading
978 performed, or need to read an unmapped symbol table. */
979 if (from_tty || info_verbose)
980 {
981 if (deprecated_pre_add_symbol_hook)
982 deprecated_pre_add_symbol_hook (name);
983 else
984 {
985 printf_unfiltered (_("Reading symbols from %s..."), name);
986 wrap_here ("");
987 gdb_flush (gdb_stdout);
988 }
989 }
990 syms_from_objfile (objfile, addrs, offsets, num_offsets,
991 add_flags);
992
993 /* We now have at least a partial symbol table. Check to see if the
994 user requested that all symbols be read on initial access via either
995 the gdb startup command line or on a per symbol file basis. Expand
996 all partial symbol tables for this objfile if so. */
997
998 if ((flags & OBJF_READNOW) || readnow_symbol_files)
999 {
1000 if (from_tty || info_verbose)
1001 {
1002 printf_unfiltered (_("expanding to full symbols..."));
1003 wrap_here ("");
1004 gdb_flush (gdb_stdout);
1005 }
1006
1007 for (psymtab = objfile->psymtabs;
1008 psymtab != NULL;
1009 psymtab = psymtab->next)
1010 {
1011 psymtab_to_symtab (psymtab);
1012 }
1013 }
1014
1015 if ((from_tty || info_verbose)
1016 && !objfile_has_symbols (objfile))
1017 {
1018 wrap_here ("");
1019 printf_unfiltered (_("(no debugging symbols found)..."));
1020 wrap_here ("");
1021 }
1022
1023 if (from_tty || info_verbose)
1024 {
1025 if (deprecated_post_add_symbol_hook)
1026 deprecated_post_add_symbol_hook ();
1027 else
1028 printf_unfiltered (_("done.\n"));
1029 }
1030
1031 /* We print some messages regardless of whether 'from_tty ||
1032 info_verbose' is true, so make sure they go out at the right
1033 time. */
1034 gdb_flush (gdb_stdout);
1035
1036 do_cleanups (my_cleanups);
1037
1038 if (objfile->sf == NULL)
1039 {
1040 observer_notify_new_objfile (objfile);
1041 return objfile; /* No symbols. */
1042 }
1043
1044 new_symfile_objfile (objfile, add_flags);
1045
1046 observer_notify_new_objfile (objfile);
1047
1048 bfd_cache_close_all ();
1049 return (objfile);
1050 }
1051
1052 /* Add BFD as a separate debug file for OBJFILE. */
1053
1054 void
1055 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1056 {
1057 struct objfile *new_objfile;
1058 struct section_addr_info *sap;
1059 struct cleanup *my_cleanup;
1060
1061 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1062 because sections of BFD may not match sections of OBJFILE and because
1063 vma may have been modified by tools such as prelink. */
1064 sap = build_section_addr_info_from_objfile (objfile);
1065 my_cleanup = make_cleanup_free_section_addr_info (sap);
1066
1067 new_objfile = symbol_file_add_with_addrs_or_offsets
1068 (bfd, symfile_flags,
1069 sap, NULL, 0,
1070 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1071 | OBJF_USERLOADED));
1072
1073 do_cleanups (my_cleanup);
1074
1075 add_separate_debug_objfile (new_objfile, objfile);
1076 }
1077
1078 /* Process the symbol file ABFD, as either the main file or as a
1079 dynamically loaded file.
1080
1081 See symbol_file_add_with_addrs_or_offsets's comments for
1082 details. */
1083 struct objfile *
1084 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1085 struct section_addr_info *addrs,
1086 int flags)
1087 {
1088 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1089 flags);
1090 }
1091
1092
1093 /* Process a symbol file, as either the main file or as a dynamically
1094 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1095 for details. */
1096 struct objfile *
1097 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1098 int flags)
1099 {
1100 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1101 flags);
1102 }
1103
1104
1105 /* Call symbol_file_add() with default values and update whatever is
1106 affected by the loading of a new main().
1107 Used when the file is supplied in the gdb command line
1108 and by some targets with special loading requirements.
1109 The auxiliary function, symbol_file_add_main_1(), has the flags
1110 argument for the switches that can only be specified in the symbol_file
1111 command itself. */
1112
1113 void
1114 symbol_file_add_main (char *args, int from_tty)
1115 {
1116 symbol_file_add_main_1 (args, from_tty, 0);
1117 }
1118
1119 static void
1120 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1121 {
1122 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1123 symbol_file_add (args, add_flags, NULL, flags);
1124
1125 /* Getting new symbols may change our opinion about
1126 what is frameless. */
1127 reinit_frame_cache ();
1128
1129 set_initial_language ();
1130 }
1131
1132 void
1133 symbol_file_clear (int from_tty)
1134 {
1135 if ((have_full_symbols () || have_partial_symbols ())
1136 && from_tty
1137 && (symfile_objfile
1138 ? !query (_("Discard symbol table from `%s'? "),
1139 symfile_objfile->name)
1140 : !query (_("Discard symbol table? "))))
1141 error (_("Not confirmed."));
1142
1143 free_all_objfiles ();
1144
1145 /* solib descriptors may have handles to objfiles. Since their
1146 storage has just been released, we'd better wipe the solib
1147 descriptors as well. */
1148 no_shared_libraries (NULL, from_tty);
1149
1150 gdb_assert (symfile_objfile == NULL);
1151 if (from_tty)
1152 printf_unfiltered (_("No symbol file now.\n"));
1153 }
1154
1155 static char *
1156 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1157 {
1158 asection *sect;
1159 bfd_size_type debuglink_size;
1160 unsigned long crc32;
1161 char *contents;
1162 int crc_offset;
1163 unsigned char *p;
1164
1165 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1166
1167 if (sect == NULL)
1168 return NULL;
1169
1170 debuglink_size = bfd_section_size (objfile->obfd, sect);
1171
1172 contents = xmalloc (debuglink_size);
1173 bfd_get_section_contents (objfile->obfd, sect, contents,
1174 (file_ptr)0, (bfd_size_type)debuglink_size);
1175
1176 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1177 crc_offset = strlen (contents) + 1;
1178 crc_offset = (crc_offset + 3) & ~3;
1179
1180 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1181
1182 *crc32_out = crc32;
1183 return contents;
1184 }
1185
1186 static int
1187 separate_debug_file_exists (const char *name, unsigned long crc,
1188 struct objfile *parent_objfile)
1189 {
1190 unsigned long file_crc = 0;
1191 bfd *abfd;
1192 gdb_byte buffer[8*1024];
1193 int count;
1194 struct stat parent_stat, abfd_stat;
1195
1196 /* Find a separate debug info file as if symbols would be present in
1197 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1198 section can contain just the basename of PARENT_OBJFILE without any
1199 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1200 the separate debug infos with the same basename can exist. */
1201
1202 if (strcmp (name, parent_objfile->name) == 0)
1203 return 0;
1204
1205 abfd = bfd_open_maybe_remote (name);
1206
1207 if (!abfd)
1208 return 0;
1209
1210 /* Verify symlinks were not the cause of strcmp name difference above.
1211
1212 Some operating systems, e.g. Windows, do not provide a meaningful
1213 st_ino; they always set it to zero. (Windows does provide a
1214 meaningful st_dev.) Do not indicate a duplicate library in that
1215 case. While there is no guarantee that a system that provides
1216 meaningful inode numbers will never set st_ino to zero, this is
1217 merely an optimization, so we do not need to worry about false
1218 negatives. */
1219
1220 if (bfd_stat (abfd, &abfd_stat) == 0
1221 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1222 && abfd_stat.st_dev == parent_stat.st_dev
1223 && abfd_stat.st_ino == parent_stat.st_ino
1224 && abfd_stat.st_ino != 0)
1225 {
1226 bfd_close (abfd);
1227 return 0;
1228 }
1229
1230 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1231 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1232
1233 bfd_close (abfd);
1234
1235 if (crc != file_crc)
1236 {
1237 warning (_("the debug information found in \"%s\""
1238 " does not match \"%s\" (CRC mismatch).\n"),
1239 name, parent_objfile->name);
1240 return 0;
1241 }
1242
1243 return 1;
1244 }
1245
1246 char *debug_file_directory = NULL;
1247 static void
1248 show_debug_file_directory (struct ui_file *file, int from_tty,
1249 struct cmd_list_element *c, const char *value)
1250 {
1251 fprintf_filtered (file, _("\
1252 The directory where separate debug symbols are searched for is \"%s\".\n"),
1253 value);
1254 }
1255
1256 #if ! defined (DEBUG_SUBDIRECTORY)
1257 #define DEBUG_SUBDIRECTORY ".debug"
1258 #endif
1259
1260 char *
1261 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1262 {
1263 asection *sect;
1264 char *basename, *name_copy, *debugdir;
1265 char *dir = NULL;
1266 char *debugfile = NULL;
1267 char *canon_name = NULL;
1268 bfd_size_type debuglink_size;
1269 unsigned long crc32;
1270 int i;
1271
1272 basename = get_debug_link_info (objfile, &crc32);
1273
1274 if (basename == NULL)
1275 /* There's no separate debug info, hence there's no way we could
1276 load it => no warning. */
1277 goto cleanup_return_debugfile;
1278
1279 dir = xstrdup (objfile->name);
1280
1281 /* Strip off the final filename part, leaving the directory name,
1282 followed by a slash. Objfile names should always be absolute and
1283 tilde-expanded, so there should always be a slash in there
1284 somewhere. */
1285 for (i = strlen(dir) - 1; i >= 0; i--)
1286 {
1287 if (IS_DIR_SEPARATOR (dir[i]))
1288 break;
1289 }
1290 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1291 dir[i+1] = '\0';
1292
1293 /* Set I to max (strlen (canon_name), strlen (dir)). */
1294 canon_name = lrealpath (dir);
1295 i = strlen (dir);
1296 if (canon_name && strlen (canon_name) > i)
1297 i = strlen (canon_name);
1298
1299 debugfile = xmalloc (strlen (debug_file_directory) + 1
1300 + i
1301 + strlen (DEBUG_SUBDIRECTORY)
1302 + strlen ("/")
1303 + strlen (basename)
1304 + 1);
1305
1306 /* First try in the same directory as the original file. */
1307 strcpy (debugfile, dir);
1308 strcat (debugfile, basename);
1309
1310 if (separate_debug_file_exists (debugfile, crc32, objfile))
1311 goto cleanup_return_debugfile;
1312
1313 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1314 strcpy (debugfile, dir);
1315 strcat (debugfile, DEBUG_SUBDIRECTORY);
1316 strcat (debugfile, "/");
1317 strcat (debugfile, basename);
1318
1319 if (separate_debug_file_exists (debugfile, crc32, objfile))
1320 goto cleanup_return_debugfile;
1321
1322 /* Then try in the global debugfile directories.
1323
1324 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1325 cause "/..." lookups. */
1326
1327 debugdir = debug_file_directory;
1328 do
1329 {
1330 char *debugdir_end;
1331
1332 while (*debugdir == DIRNAME_SEPARATOR)
1333 debugdir++;
1334
1335 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1336 if (debugdir_end == NULL)
1337 debugdir_end = &debugdir[strlen (debugdir)];
1338
1339 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1340 debugfile[debugdir_end - debugdir] = 0;
1341 strcat (debugfile, "/");
1342 strcat (debugfile, dir);
1343 strcat (debugfile, basename);
1344
1345 if (separate_debug_file_exists (debugfile, crc32, objfile))
1346 goto cleanup_return_debugfile;
1347
1348 /* If the file is in the sysroot, try using its base path in the
1349 global debugfile directory. */
1350 if (canon_name
1351 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1352 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1353 {
1354 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1355 debugfile[debugdir_end - debugdir] = 0;
1356 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1357 strcat (debugfile, "/");
1358 strcat (debugfile, basename);
1359
1360 if (separate_debug_file_exists (debugfile, crc32, objfile))
1361 goto cleanup_return_debugfile;
1362 }
1363
1364 debugdir = debugdir_end;
1365 }
1366 while (*debugdir != 0);
1367
1368 xfree (debugfile);
1369 debugfile = NULL;
1370
1371 cleanup_return_debugfile:
1372 xfree (canon_name);
1373 xfree (basename);
1374 xfree (dir);
1375 return debugfile;
1376 }
1377
1378
1379 /* This is the symbol-file command. Read the file, analyze its
1380 symbols, and add a struct symtab to a symtab list. The syntax of
1381 the command is rather bizarre:
1382
1383 1. The function buildargv implements various quoting conventions
1384 which are undocumented and have little or nothing in common with
1385 the way things are quoted (or not quoted) elsewhere in GDB.
1386
1387 2. Options are used, which are not generally used in GDB (perhaps
1388 "set mapped on", "set readnow on" would be better)
1389
1390 3. The order of options matters, which is contrary to GNU
1391 conventions (because it is confusing and inconvenient). */
1392
1393 void
1394 symbol_file_command (char *args, int from_tty)
1395 {
1396 dont_repeat ();
1397
1398 if (args == NULL)
1399 {
1400 symbol_file_clear (from_tty);
1401 }
1402 else
1403 {
1404 char **argv = gdb_buildargv (args);
1405 int flags = OBJF_USERLOADED;
1406 struct cleanup *cleanups;
1407 char *name = NULL;
1408
1409 cleanups = make_cleanup_freeargv (argv);
1410 while (*argv != NULL)
1411 {
1412 if (strcmp (*argv, "-readnow") == 0)
1413 flags |= OBJF_READNOW;
1414 else if (**argv == '-')
1415 error (_("unknown option `%s'"), *argv);
1416 else
1417 {
1418 symbol_file_add_main_1 (*argv, from_tty, flags);
1419 name = *argv;
1420 }
1421
1422 argv++;
1423 }
1424
1425 if (name == NULL)
1426 error (_("no symbol file name was specified"));
1427
1428 do_cleanups (cleanups);
1429 }
1430 }
1431
1432 /* Set the initial language.
1433
1434 FIXME: A better solution would be to record the language in the
1435 psymtab when reading partial symbols, and then use it (if known) to
1436 set the language. This would be a win for formats that encode the
1437 language in an easily discoverable place, such as DWARF. For
1438 stabs, we can jump through hoops looking for specially named
1439 symbols or try to intuit the language from the specific type of
1440 stabs we find, but we can't do that until later when we read in
1441 full symbols. */
1442
1443 void
1444 set_initial_language (void)
1445 {
1446 struct partial_symtab *pst;
1447 enum language lang = language_unknown;
1448
1449 pst = find_main_psymtab ();
1450 if (pst != NULL)
1451 {
1452 if (pst->filename != NULL)
1453 lang = deduce_language_from_filename (pst->filename);
1454
1455 if (lang == language_unknown)
1456 {
1457 /* Make C the default language */
1458 lang = language_c;
1459 }
1460
1461 set_language (lang);
1462 expected_language = current_language; /* Don't warn the user. */
1463 }
1464 }
1465
1466 /* If NAME is a remote name open the file using remote protocol, otherwise
1467 open it normally. */
1468
1469 bfd *
1470 bfd_open_maybe_remote (const char *name)
1471 {
1472 if (remote_filename_p (name))
1473 return remote_bfd_open (name, gnutarget);
1474 else
1475 return bfd_openr (name, gnutarget);
1476 }
1477
1478
1479 /* Open the file specified by NAME and hand it off to BFD for
1480 preliminary analysis. Return a newly initialized bfd *, which
1481 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1482 absolute). In case of trouble, error() is called. */
1483
1484 bfd *
1485 symfile_bfd_open (char *name)
1486 {
1487 bfd *sym_bfd;
1488 int desc;
1489 char *absolute_name;
1490
1491 if (remote_filename_p (name))
1492 {
1493 name = xstrdup (name);
1494 sym_bfd = remote_bfd_open (name, gnutarget);
1495 if (!sym_bfd)
1496 {
1497 make_cleanup (xfree, name);
1498 error (_("`%s': can't open to read symbols: %s."), name,
1499 bfd_errmsg (bfd_get_error ()));
1500 }
1501
1502 if (!bfd_check_format (sym_bfd, bfd_object))
1503 {
1504 bfd_close (sym_bfd);
1505 make_cleanup (xfree, name);
1506 error (_("`%s': can't read symbols: %s."), name,
1507 bfd_errmsg (bfd_get_error ()));
1508 }
1509
1510 return sym_bfd;
1511 }
1512
1513 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1514
1515 /* Look down path for it, allocate 2nd new malloc'd copy. */
1516 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1517 O_RDONLY | O_BINARY, &absolute_name);
1518 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1519 if (desc < 0)
1520 {
1521 char *exename = alloca (strlen (name) + 5);
1522 strcat (strcpy (exename, name), ".exe");
1523 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1524 O_RDONLY | O_BINARY, &absolute_name);
1525 }
1526 #endif
1527 if (desc < 0)
1528 {
1529 make_cleanup (xfree, name);
1530 perror_with_name (name);
1531 }
1532
1533 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1534 bfd. It'll be freed in free_objfile(). */
1535 xfree (name);
1536 name = absolute_name;
1537
1538 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1539 if (!sym_bfd)
1540 {
1541 close (desc);
1542 make_cleanup (xfree, name);
1543 error (_("`%s': can't open to read symbols: %s."), name,
1544 bfd_errmsg (bfd_get_error ()));
1545 }
1546 bfd_set_cacheable (sym_bfd, 1);
1547
1548 if (!bfd_check_format (sym_bfd, bfd_object))
1549 {
1550 /* FIXME: should be checking for errors from bfd_close (for one
1551 thing, on error it does not free all the storage associated
1552 with the bfd). */
1553 bfd_close (sym_bfd); /* This also closes desc. */
1554 make_cleanup (xfree, name);
1555 error (_("`%s': can't read symbols: %s."), name,
1556 bfd_errmsg (bfd_get_error ()));
1557 }
1558
1559 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1560 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1561
1562 return sym_bfd;
1563 }
1564
1565 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1566 the section was not found. */
1567
1568 int
1569 get_section_index (struct objfile *objfile, char *section_name)
1570 {
1571 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1572
1573 if (sect)
1574 return sect->index;
1575 else
1576 return -1;
1577 }
1578
1579 /* Link SF into the global symtab_fns list. Called on startup by the
1580 _initialize routine in each object file format reader, to register
1581 information about each format the the reader is prepared to
1582 handle. */
1583
1584 void
1585 add_symtab_fns (struct sym_fns *sf)
1586 {
1587 sf->next = symtab_fns;
1588 symtab_fns = sf;
1589 }
1590
1591 /* Initialize OBJFILE to read symbols from its associated BFD. It
1592 either returns or calls error(). The result is an initialized
1593 struct sym_fns in the objfile structure, that contains cached
1594 information about the symbol file. */
1595
1596 static struct sym_fns *
1597 find_sym_fns (bfd *abfd)
1598 {
1599 struct sym_fns *sf;
1600 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1601
1602 if (our_flavour == bfd_target_srec_flavour
1603 || our_flavour == bfd_target_ihex_flavour
1604 || our_flavour == bfd_target_tekhex_flavour)
1605 return NULL; /* No symbols. */
1606
1607 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1608 if (our_flavour == sf->sym_flavour)
1609 return sf;
1610
1611 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1612 bfd_get_target (abfd));
1613 }
1614 \f
1615
1616 /* This function runs the load command of our current target. */
1617
1618 static void
1619 load_command (char *arg, int from_tty)
1620 {
1621 /* The user might be reloading because the binary has changed. Take
1622 this opportunity to check. */
1623 reopen_exec_file ();
1624 reread_symbols ();
1625
1626 if (arg == NULL)
1627 {
1628 char *parg;
1629 int count = 0;
1630
1631 parg = arg = get_exec_file (1);
1632
1633 /* Count how many \ " ' tab space there are in the name. */
1634 while ((parg = strpbrk (parg, "\\\"'\t ")))
1635 {
1636 parg++;
1637 count++;
1638 }
1639
1640 if (count)
1641 {
1642 /* We need to quote this string so buildargv can pull it apart. */
1643 char *temp = xmalloc (strlen (arg) + count + 1 );
1644 char *ptemp = temp;
1645 char *prev;
1646
1647 make_cleanup (xfree, temp);
1648
1649 prev = parg = arg;
1650 while ((parg = strpbrk (parg, "\\\"'\t ")))
1651 {
1652 strncpy (ptemp, prev, parg - prev);
1653 ptemp += parg - prev;
1654 prev = parg++;
1655 *ptemp++ = '\\';
1656 }
1657 strcpy (ptemp, prev);
1658
1659 arg = temp;
1660 }
1661 }
1662
1663 target_load (arg, from_tty);
1664
1665 /* After re-loading the executable, we don't really know which
1666 overlays are mapped any more. */
1667 overlay_cache_invalid = 1;
1668 }
1669
1670 /* This version of "load" should be usable for any target. Currently
1671 it is just used for remote targets, not inftarg.c or core files,
1672 on the theory that only in that case is it useful.
1673
1674 Avoiding xmodem and the like seems like a win (a) because we don't have
1675 to worry about finding it, and (b) On VMS, fork() is very slow and so
1676 we don't want to run a subprocess. On the other hand, I'm not sure how
1677 performance compares. */
1678
1679 static int validate_download = 0;
1680
1681 /* Callback service function for generic_load (bfd_map_over_sections). */
1682
1683 static void
1684 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1685 {
1686 bfd_size_type *sum = data;
1687
1688 *sum += bfd_get_section_size (asec);
1689 }
1690
1691 /* Opaque data for load_section_callback. */
1692 struct load_section_data {
1693 unsigned long load_offset;
1694 struct load_progress_data *progress_data;
1695 VEC(memory_write_request_s) *requests;
1696 };
1697
1698 /* Opaque data for load_progress. */
1699 struct load_progress_data {
1700 /* Cumulative data. */
1701 unsigned long write_count;
1702 unsigned long data_count;
1703 bfd_size_type total_size;
1704 };
1705
1706 /* Opaque data for load_progress for a single section. */
1707 struct load_progress_section_data {
1708 struct load_progress_data *cumulative;
1709
1710 /* Per-section data. */
1711 const char *section_name;
1712 ULONGEST section_sent;
1713 ULONGEST section_size;
1714 CORE_ADDR lma;
1715 gdb_byte *buffer;
1716 };
1717
1718 /* Target write callback routine for progress reporting. */
1719
1720 static void
1721 load_progress (ULONGEST bytes, void *untyped_arg)
1722 {
1723 struct load_progress_section_data *args = untyped_arg;
1724 struct load_progress_data *totals;
1725
1726 if (args == NULL)
1727 /* Writing padding data. No easy way to get at the cumulative
1728 stats, so just ignore this. */
1729 return;
1730
1731 totals = args->cumulative;
1732
1733 if (bytes == 0 && args->section_sent == 0)
1734 {
1735 /* The write is just starting. Let the user know we've started
1736 this section. */
1737 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1738 args->section_name, hex_string (args->section_size),
1739 paddress (target_gdbarch, args->lma));
1740 return;
1741 }
1742
1743 if (validate_download)
1744 {
1745 /* Broken memories and broken monitors manifest themselves here
1746 when bring new computers to life. This doubles already slow
1747 downloads. */
1748 /* NOTE: cagney/1999-10-18: A more efficient implementation
1749 might add a verify_memory() method to the target vector and
1750 then use that. remote.c could implement that method using
1751 the ``qCRC'' packet. */
1752 gdb_byte *check = xmalloc (bytes);
1753 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1754
1755 if (target_read_memory (args->lma, check, bytes) != 0)
1756 error (_("Download verify read failed at %s"),
1757 paddress (target_gdbarch, args->lma));
1758 if (memcmp (args->buffer, check, bytes) != 0)
1759 error (_("Download verify compare failed at %s"),
1760 paddress (target_gdbarch, args->lma));
1761 do_cleanups (verify_cleanups);
1762 }
1763 totals->data_count += bytes;
1764 args->lma += bytes;
1765 args->buffer += bytes;
1766 totals->write_count += 1;
1767 args->section_sent += bytes;
1768 if (quit_flag
1769 || (deprecated_ui_load_progress_hook != NULL
1770 && deprecated_ui_load_progress_hook (args->section_name,
1771 args->section_sent)))
1772 error (_("Canceled the download"));
1773
1774 if (deprecated_show_load_progress != NULL)
1775 deprecated_show_load_progress (args->section_name,
1776 args->section_sent,
1777 args->section_size,
1778 totals->data_count,
1779 totals->total_size);
1780 }
1781
1782 /* Callback service function for generic_load (bfd_map_over_sections). */
1783
1784 static void
1785 load_section_callback (bfd *abfd, asection *asec, void *data)
1786 {
1787 struct memory_write_request *new_request;
1788 struct load_section_data *args = data;
1789 struct load_progress_section_data *section_data;
1790 bfd_size_type size = bfd_get_section_size (asec);
1791 gdb_byte *buffer;
1792 const char *sect_name = bfd_get_section_name (abfd, asec);
1793
1794 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1795 return;
1796
1797 if (size == 0)
1798 return;
1799
1800 new_request = VEC_safe_push (memory_write_request_s,
1801 args->requests, NULL);
1802 memset (new_request, 0, sizeof (struct memory_write_request));
1803 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1804 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1805 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1806 new_request->data = xmalloc (size);
1807 new_request->baton = section_data;
1808
1809 buffer = new_request->data;
1810
1811 section_data->cumulative = args->progress_data;
1812 section_data->section_name = sect_name;
1813 section_data->section_size = size;
1814 section_data->lma = new_request->begin;
1815 section_data->buffer = buffer;
1816
1817 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1818 }
1819
1820 /* Clean up an entire memory request vector, including load
1821 data and progress records. */
1822
1823 static void
1824 clear_memory_write_data (void *arg)
1825 {
1826 VEC(memory_write_request_s) **vec_p = arg;
1827 VEC(memory_write_request_s) *vec = *vec_p;
1828 int i;
1829 struct memory_write_request *mr;
1830
1831 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1832 {
1833 xfree (mr->data);
1834 xfree (mr->baton);
1835 }
1836 VEC_free (memory_write_request_s, vec);
1837 }
1838
1839 void
1840 generic_load (char *args, int from_tty)
1841 {
1842 bfd *loadfile_bfd;
1843 struct timeval start_time, end_time;
1844 char *filename;
1845 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1846 struct load_section_data cbdata;
1847 struct load_progress_data total_progress;
1848
1849 CORE_ADDR entry;
1850 char **argv;
1851
1852 memset (&cbdata, 0, sizeof (cbdata));
1853 memset (&total_progress, 0, sizeof (total_progress));
1854 cbdata.progress_data = &total_progress;
1855
1856 make_cleanup (clear_memory_write_data, &cbdata.requests);
1857
1858 if (args == NULL)
1859 error_no_arg (_("file to load"));
1860
1861 argv = gdb_buildargv (args);
1862 make_cleanup_freeargv (argv);
1863
1864 filename = tilde_expand (argv[0]);
1865 make_cleanup (xfree, filename);
1866
1867 if (argv[1] != NULL)
1868 {
1869 char *endptr;
1870
1871 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1872
1873 /* If the last word was not a valid number then
1874 treat it as a file name with spaces in. */
1875 if (argv[1] == endptr)
1876 error (_("Invalid download offset:%s."), argv[1]);
1877
1878 if (argv[2] != NULL)
1879 error (_("Too many parameters."));
1880 }
1881
1882 /* Open the file for loading. */
1883 loadfile_bfd = bfd_openr (filename, gnutarget);
1884 if (loadfile_bfd == NULL)
1885 {
1886 perror_with_name (filename);
1887 return;
1888 }
1889
1890 /* FIXME: should be checking for errors from bfd_close (for one thing,
1891 on error it does not free all the storage associated with the
1892 bfd). */
1893 make_cleanup_bfd_close (loadfile_bfd);
1894
1895 if (!bfd_check_format (loadfile_bfd, bfd_object))
1896 {
1897 error (_("\"%s\" is not an object file: %s"), filename,
1898 bfd_errmsg (bfd_get_error ()));
1899 }
1900
1901 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1902 (void *) &total_progress.total_size);
1903
1904 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1905
1906 gettimeofday (&start_time, NULL);
1907
1908 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1909 load_progress) != 0)
1910 error (_("Load failed"));
1911
1912 gettimeofday (&end_time, NULL);
1913
1914 entry = bfd_get_start_address (loadfile_bfd);
1915 ui_out_text (uiout, "Start address ");
1916 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1917 ui_out_text (uiout, ", load size ");
1918 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
1919 ui_out_text (uiout, "\n");
1920 /* We were doing this in remote-mips.c, I suspect it is right
1921 for other targets too. */
1922 regcache_write_pc (get_current_regcache (), entry);
1923
1924 /* FIXME: are we supposed to call symbol_file_add or not? According
1925 to a comment from remote-mips.c (where a call to symbol_file_add
1926 was commented out), making the call confuses GDB if more than one
1927 file is loaded in. Some targets do (e.g., remote-vx.c) but
1928 others don't (or didn't - perhaps they have all been deleted). */
1929
1930 print_transfer_performance (gdb_stdout, total_progress.data_count,
1931 total_progress.write_count,
1932 &start_time, &end_time);
1933
1934 do_cleanups (old_cleanups);
1935 }
1936
1937 /* Report how fast the transfer went. */
1938
1939 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1940 replaced by print_transfer_performance (with a very different
1941 function signature). */
1942
1943 void
1944 report_transfer_performance (unsigned long data_count, time_t start_time,
1945 time_t end_time)
1946 {
1947 struct timeval start, end;
1948
1949 start.tv_sec = start_time;
1950 start.tv_usec = 0;
1951 end.tv_sec = end_time;
1952 end.tv_usec = 0;
1953
1954 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
1955 }
1956
1957 void
1958 print_transfer_performance (struct ui_file *stream,
1959 unsigned long data_count,
1960 unsigned long write_count,
1961 const struct timeval *start_time,
1962 const struct timeval *end_time)
1963 {
1964 ULONGEST time_count;
1965
1966 /* Compute the elapsed time in milliseconds, as a tradeoff between
1967 accuracy and overflow. */
1968 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
1969 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
1970
1971 ui_out_text (uiout, "Transfer rate: ");
1972 if (time_count > 0)
1973 {
1974 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
1975
1976 if (ui_out_is_mi_like_p (uiout))
1977 {
1978 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
1979 ui_out_text (uiout, " bits/sec");
1980 }
1981 else if (rate < 1024)
1982 {
1983 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
1984 ui_out_text (uiout, " bytes/sec");
1985 }
1986 else
1987 {
1988 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
1989 ui_out_text (uiout, " KB/sec");
1990 }
1991 }
1992 else
1993 {
1994 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1995 ui_out_text (uiout, " bits in <1 sec");
1996 }
1997 if (write_count > 0)
1998 {
1999 ui_out_text (uiout, ", ");
2000 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2001 ui_out_text (uiout, " bytes/write");
2002 }
2003 ui_out_text (uiout, ".\n");
2004 }
2005
2006 /* This function allows the addition of incrementally linked object files.
2007 It does not modify any state in the target, only in the debugger. */
2008 /* Note: ezannoni 2000-04-13 This function/command used to have a
2009 special case syntax for the rombug target (Rombug is the boot
2010 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2011 rombug case, the user doesn't need to supply a text address,
2012 instead a call to target_link() (in target.c) would supply the
2013 value to use. We are now discontinuing this type of ad hoc syntax. */
2014
2015 static void
2016 add_symbol_file_command (char *args, int from_tty)
2017 {
2018 struct gdbarch *gdbarch = get_current_arch ();
2019 char *filename = NULL;
2020 int flags = OBJF_USERLOADED;
2021 char *arg;
2022 int expecting_option = 0;
2023 int section_index = 0;
2024 int argcnt = 0;
2025 int sec_num = 0;
2026 int i;
2027 int expecting_sec_name = 0;
2028 int expecting_sec_addr = 0;
2029 char **argv;
2030
2031 struct sect_opt
2032 {
2033 char *name;
2034 char *value;
2035 };
2036
2037 struct section_addr_info *section_addrs;
2038 struct sect_opt *sect_opts = NULL;
2039 size_t num_sect_opts = 0;
2040 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2041
2042 num_sect_opts = 16;
2043 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2044 * sizeof (struct sect_opt));
2045
2046 dont_repeat ();
2047
2048 if (args == NULL)
2049 error (_("add-symbol-file takes a file name and an address"));
2050
2051 argv = gdb_buildargv (args);
2052 make_cleanup_freeargv (argv);
2053
2054 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2055 {
2056 /* Process the argument. */
2057 if (argcnt == 0)
2058 {
2059 /* The first argument is the file name. */
2060 filename = tilde_expand (arg);
2061 make_cleanup (xfree, filename);
2062 }
2063 else
2064 if (argcnt == 1)
2065 {
2066 /* The second argument is always the text address at which
2067 to load the program. */
2068 sect_opts[section_index].name = ".text";
2069 sect_opts[section_index].value = arg;
2070 if (++section_index >= num_sect_opts)
2071 {
2072 num_sect_opts *= 2;
2073 sect_opts = ((struct sect_opt *)
2074 xrealloc (sect_opts,
2075 num_sect_opts
2076 * sizeof (struct sect_opt)));
2077 }
2078 }
2079 else
2080 {
2081 /* It's an option (starting with '-') or it's an argument
2082 to an option */
2083
2084 if (*arg == '-')
2085 {
2086 if (strcmp (arg, "-readnow") == 0)
2087 flags |= OBJF_READNOW;
2088 else if (strcmp (arg, "-s") == 0)
2089 {
2090 expecting_sec_name = 1;
2091 expecting_sec_addr = 1;
2092 }
2093 }
2094 else
2095 {
2096 if (expecting_sec_name)
2097 {
2098 sect_opts[section_index].name = arg;
2099 expecting_sec_name = 0;
2100 }
2101 else
2102 if (expecting_sec_addr)
2103 {
2104 sect_opts[section_index].value = arg;
2105 expecting_sec_addr = 0;
2106 if (++section_index >= num_sect_opts)
2107 {
2108 num_sect_opts *= 2;
2109 sect_opts = ((struct sect_opt *)
2110 xrealloc (sect_opts,
2111 num_sect_opts
2112 * sizeof (struct sect_opt)));
2113 }
2114 }
2115 else
2116 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2117 }
2118 }
2119 }
2120
2121 /* This command takes at least two arguments. The first one is a
2122 filename, and the second is the address where this file has been
2123 loaded. Abort now if this address hasn't been provided by the
2124 user. */
2125 if (section_index < 1)
2126 error (_("The address where %s has been loaded is missing"), filename);
2127
2128 /* Print the prompt for the query below. And save the arguments into
2129 a sect_addr_info structure to be passed around to other
2130 functions. We have to split this up into separate print
2131 statements because hex_string returns a local static
2132 string. */
2133
2134 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2135 section_addrs = alloc_section_addr_info (section_index);
2136 make_cleanup (xfree, section_addrs);
2137 for (i = 0; i < section_index; i++)
2138 {
2139 CORE_ADDR addr;
2140 char *val = sect_opts[i].value;
2141 char *sec = sect_opts[i].name;
2142
2143 addr = parse_and_eval_address (val);
2144
2145 /* Here we store the section offsets in the order they were
2146 entered on the command line. */
2147 section_addrs->other[sec_num].name = sec;
2148 section_addrs->other[sec_num].addr = addr;
2149 printf_unfiltered ("\t%s_addr = %s\n", sec,
2150 paddress (gdbarch, addr));
2151 sec_num++;
2152
2153 /* The object's sections are initialized when a
2154 call is made to build_objfile_section_table (objfile).
2155 This happens in reread_symbols.
2156 At this point, we don't know what file type this is,
2157 so we can't determine what section names are valid. */
2158 }
2159
2160 if (from_tty && (!query ("%s", "")))
2161 error (_("Not confirmed."));
2162
2163 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2164 section_addrs, flags);
2165
2166 /* Getting new symbols may change our opinion about what is
2167 frameless. */
2168 reinit_frame_cache ();
2169 do_cleanups (my_cleanups);
2170 }
2171 \f
2172
2173 /* Re-read symbols if a symbol-file has changed. */
2174 void
2175 reread_symbols (void)
2176 {
2177 struct objfile *objfile;
2178 long new_modtime;
2179 int reread_one = 0;
2180 struct stat new_statbuf;
2181 int res;
2182
2183 /* With the addition of shared libraries, this should be modified,
2184 the load time should be saved in the partial symbol tables, since
2185 different tables may come from different source files. FIXME.
2186 This routine should then walk down each partial symbol table
2187 and see if the symbol table that it originates from has been changed */
2188
2189 for (objfile = object_files; objfile; objfile = objfile->next)
2190 {
2191 /* solib-sunos.c creates one objfile with obfd. */
2192 if (objfile->obfd == NULL)
2193 continue;
2194
2195 /* Separate debug objfiles are handled in the main objfile. */
2196 if (objfile->separate_debug_objfile_backlink)
2197 continue;
2198
2199 #ifdef DEPRECATED_IBM6000_TARGET
2200 /* If this object is from a shared library, then you should
2201 stat on the library name, not member name. */
2202
2203 if (objfile->obfd->my_archive)
2204 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2205 else
2206 #endif
2207 res = stat (objfile->name, &new_statbuf);
2208 if (res != 0)
2209 {
2210 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2211 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2212 objfile->name);
2213 continue;
2214 }
2215 new_modtime = new_statbuf.st_mtime;
2216 if (new_modtime != objfile->mtime)
2217 {
2218 struct cleanup *old_cleanups;
2219 struct section_offsets *offsets;
2220 int num_offsets;
2221 char *obfd_filename;
2222
2223 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2224 objfile->name);
2225
2226 /* There are various functions like symbol_file_add,
2227 symfile_bfd_open, syms_from_objfile, etc., which might
2228 appear to do what we want. But they have various other
2229 effects which we *don't* want. So we just do stuff
2230 ourselves. We don't worry about mapped files (for one thing,
2231 any mapped file will be out of date). */
2232
2233 /* If we get an error, blow away this objfile (not sure if
2234 that is the correct response for things like shared
2235 libraries). */
2236 old_cleanups = make_cleanup_free_objfile (objfile);
2237 /* We need to do this whenever any symbols go away. */
2238 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2239
2240 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2241 bfd_get_filename (exec_bfd)) == 0)
2242 {
2243 /* Reload EXEC_BFD without asking anything. */
2244
2245 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2246 }
2247
2248 /* Clean up any state BFD has sitting around. We don't need
2249 to close the descriptor but BFD lacks a way of closing the
2250 BFD without closing the descriptor. */
2251 obfd_filename = bfd_get_filename (objfile->obfd);
2252 if (!bfd_close (objfile->obfd))
2253 error (_("Can't close BFD for %s: %s"), objfile->name,
2254 bfd_errmsg (bfd_get_error ()));
2255 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2256 if (objfile->obfd == NULL)
2257 error (_("Can't open %s to read symbols."), objfile->name);
2258 else
2259 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2260 /* bfd_openr sets cacheable to true, which is what we want. */
2261 if (!bfd_check_format (objfile->obfd, bfd_object))
2262 error (_("Can't read symbols from %s: %s."), objfile->name,
2263 bfd_errmsg (bfd_get_error ()));
2264
2265 /* Save the offsets, we will nuke them with the rest of the
2266 objfile_obstack. */
2267 num_offsets = objfile->num_sections;
2268 offsets = ((struct section_offsets *)
2269 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2270 memcpy (offsets, objfile->section_offsets,
2271 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2272
2273 /* Remove any references to this objfile in the global
2274 value lists. */
2275 preserve_values (objfile);
2276
2277 /* Nuke all the state that we will re-read. Much of the following
2278 code which sets things to NULL really is necessary to tell
2279 other parts of GDB that there is nothing currently there.
2280
2281 Try to keep the freeing order compatible with free_objfile. */
2282
2283 if (objfile->sf != NULL)
2284 {
2285 (*objfile->sf->sym_finish) (objfile);
2286 }
2287
2288 clear_objfile_data (objfile);
2289
2290 /* Free the separate debug objfiles. It will be
2291 automatically recreated by sym_read. */
2292 free_objfile_separate_debug (objfile);
2293
2294 /* FIXME: Do we have to free a whole linked list, or is this
2295 enough? */
2296 if (objfile->global_psymbols.list)
2297 xfree (objfile->global_psymbols.list);
2298 memset (&objfile->global_psymbols, 0,
2299 sizeof (objfile->global_psymbols));
2300 if (objfile->static_psymbols.list)
2301 xfree (objfile->static_psymbols.list);
2302 memset (&objfile->static_psymbols, 0,
2303 sizeof (objfile->static_psymbols));
2304
2305 /* Free the obstacks for non-reusable objfiles */
2306 bcache_xfree (objfile->psymbol_cache);
2307 objfile->psymbol_cache = bcache_xmalloc ();
2308 bcache_xfree (objfile->macro_cache);
2309 objfile->macro_cache = bcache_xmalloc ();
2310 bcache_xfree (objfile->filename_cache);
2311 objfile->filename_cache = bcache_xmalloc ();
2312 if (objfile->demangled_names_hash != NULL)
2313 {
2314 htab_delete (objfile->demangled_names_hash);
2315 objfile->demangled_names_hash = NULL;
2316 }
2317 obstack_free (&objfile->objfile_obstack, 0);
2318 objfile->sections = NULL;
2319 objfile->symtabs = NULL;
2320 objfile->psymtabs = NULL;
2321 objfile->psymtabs_addrmap = NULL;
2322 objfile->free_psymtabs = NULL;
2323 objfile->cp_namespace_symtab = NULL;
2324 objfile->msymbols = NULL;
2325 objfile->deprecated_sym_private = NULL;
2326 objfile->minimal_symbol_count = 0;
2327 memset (&objfile->msymbol_hash, 0,
2328 sizeof (objfile->msymbol_hash));
2329 memset (&objfile->msymbol_demangled_hash, 0,
2330 sizeof (objfile->msymbol_demangled_hash));
2331
2332 objfile->psymbol_cache = bcache_xmalloc ();
2333 objfile->macro_cache = bcache_xmalloc ();
2334 objfile->filename_cache = bcache_xmalloc ();
2335 /* obstack_init also initializes the obstack so it is
2336 empty. We could use obstack_specify_allocation but
2337 gdb_obstack.h specifies the alloc/dealloc
2338 functions. */
2339 obstack_init (&objfile->objfile_obstack);
2340 if (build_objfile_section_table (objfile))
2341 {
2342 error (_("Can't find the file sections in `%s': %s"),
2343 objfile->name, bfd_errmsg (bfd_get_error ()));
2344 }
2345 terminate_minimal_symbol_table (objfile);
2346
2347 /* We use the same section offsets as from last time. I'm not
2348 sure whether that is always correct for shared libraries. */
2349 objfile->section_offsets = (struct section_offsets *)
2350 obstack_alloc (&objfile->objfile_obstack,
2351 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2352 memcpy (objfile->section_offsets, offsets,
2353 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2354 objfile->num_sections = num_offsets;
2355
2356 /* What the hell is sym_new_init for, anyway? The concept of
2357 distinguishing between the main file and additional files
2358 in this way seems rather dubious. */
2359 if (objfile == symfile_objfile)
2360 {
2361 (*objfile->sf->sym_new_init) (objfile);
2362 }
2363
2364 (*objfile->sf->sym_init) (objfile);
2365 clear_complaints (&symfile_complaints, 1, 1);
2366 /* Do not set flags as this is safe and we don't want to be
2367 verbose. */
2368 (*objfile->sf->sym_read) (objfile, 0);
2369 if (!objfile_has_symbols (objfile))
2370 {
2371 wrap_here ("");
2372 printf_unfiltered (_("(no debugging symbols found)\n"));
2373 wrap_here ("");
2374 }
2375
2376 /* We're done reading the symbol file; finish off complaints. */
2377 clear_complaints (&symfile_complaints, 0, 1);
2378
2379 /* Getting new symbols may change our opinion about what is
2380 frameless. */
2381
2382 reinit_frame_cache ();
2383
2384 /* Discard cleanups as symbol reading was successful. */
2385 discard_cleanups (old_cleanups);
2386
2387 /* If the mtime has changed between the time we set new_modtime
2388 and now, we *want* this to be out of date, so don't call stat
2389 again now. */
2390 objfile->mtime = new_modtime;
2391 reread_one = 1;
2392 init_entry_point_info (objfile);
2393 }
2394 }
2395
2396 if (reread_one)
2397 {
2398 /* Notify objfiles that we've modified objfile sections. */
2399 objfiles_changed ();
2400
2401 clear_symtab_users ();
2402 /* At least one objfile has changed, so we can consider that
2403 the executable we're debugging has changed too. */
2404 observer_notify_executable_changed ();
2405 }
2406 }
2407 \f
2408
2409
2410 typedef struct
2411 {
2412 char *ext;
2413 enum language lang;
2414 }
2415 filename_language;
2416
2417 static filename_language *filename_language_table;
2418 static int fl_table_size, fl_table_next;
2419
2420 static void
2421 add_filename_language (char *ext, enum language lang)
2422 {
2423 if (fl_table_next >= fl_table_size)
2424 {
2425 fl_table_size += 10;
2426 filename_language_table =
2427 xrealloc (filename_language_table,
2428 fl_table_size * sizeof (*filename_language_table));
2429 }
2430
2431 filename_language_table[fl_table_next].ext = xstrdup (ext);
2432 filename_language_table[fl_table_next].lang = lang;
2433 fl_table_next++;
2434 }
2435
2436 static char *ext_args;
2437 static void
2438 show_ext_args (struct ui_file *file, int from_tty,
2439 struct cmd_list_element *c, const char *value)
2440 {
2441 fprintf_filtered (file, _("\
2442 Mapping between filename extension and source language is \"%s\".\n"),
2443 value);
2444 }
2445
2446 static void
2447 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2448 {
2449 int i;
2450 char *cp = ext_args;
2451 enum language lang;
2452
2453 /* First arg is filename extension, starting with '.' */
2454 if (*cp != '.')
2455 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2456
2457 /* Find end of first arg. */
2458 while (*cp && !isspace (*cp))
2459 cp++;
2460
2461 if (*cp == '\0')
2462 error (_("'%s': two arguments required -- filename extension and language"),
2463 ext_args);
2464
2465 /* Null-terminate first arg */
2466 *cp++ = '\0';
2467
2468 /* Find beginning of second arg, which should be a source language. */
2469 while (*cp && isspace (*cp))
2470 cp++;
2471
2472 if (*cp == '\0')
2473 error (_("'%s': two arguments required -- filename extension and language"),
2474 ext_args);
2475
2476 /* Lookup the language from among those we know. */
2477 lang = language_enum (cp);
2478
2479 /* Now lookup the filename extension: do we already know it? */
2480 for (i = 0; i < fl_table_next; i++)
2481 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2482 break;
2483
2484 if (i >= fl_table_next)
2485 {
2486 /* new file extension */
2487 add_filename_language (ext_args, lang);
2488 }
2489 else
2490 {
2491 /* redefining a previously known filename extension */
2492
2493 /* if (from_tty) */
2494 /* query ("Really make files of type %s '%s'?", */
2495 /* ext_args, language_str (lang)); */
2496
2497 xfree (filename_language_table[i].ext);
2498 filename_language_table[i].ext = xstrdup (ext_args);
2499 filename_language_table[i].lang = lang;
2500 }
2501 }
2502
2503 static void
2504 info_ext_lang_command (char *args, int from_tty)
2505 {
2506 int i;
2507
2508 printf_filtered (_("Filename extensions and the languages they represent:"));
2509 printf_filtered ("\n\n");
2510 for (i = 0; i < fl_table_next; i++)
2511 printf_filtered ("\t%s\t- %s\n",
2512 filename_language_table[i].ext,
2513 language_str (filename_language_table[i].lang));
2514 }
2515
2516 static void
2517 init_filename_language_table (void)
2518 {
2519 if (fl_table_size == 0) /* protect against repetition */
2520 {
2521 fl_table_size = 20;
2522 fl_table_next = 0;
2523 filename_language_table =
2524 xmalloc (fl_table_size * sizeof (*filename_language_table));
2525 add_filename_language (".c", language_c);
2526 add_filename_language (".C", language_cplus);
2527 add_filename_language (".cc", language_cplus);
2528 add_filename_language (".cp", language_cplus);
2529 add_filename_language (".cpp", language_cplus);
2530 add_filename_language (".cxx", language_cplus);
2531 add_filename_language (".c++", language_cplus);
2532 add_filename_language (".java", language_java);
2533 add_filename_language (".class", language_java);
2534 add_filename_language (".m", language_objc);
2535 add_filename_language (".f", language_fortran);
2536 add_filename_language (".F", language_fortran);
2537 add_filename_language (".s", language_asm);
2538 add_filename_language (".sx", language_asm);
2539 add_filename_language (".S", language_asm);
2540 add_filename_language (".pas", language_pascal);
2541 add_filename_language (".p", language_pascal);
2542 add_filename_language (".pp", language_pascal);
2543 add_filename_language (".adb", language_ada);
2544 add_filename_language (".ads", language_ada);
2545 add_filename_language (".a", language_ada);
2546 add_filename_language (".ada", language_ada);
2547 }
2548 }
2549
2550 enum language
2551 deduce_language_from_filename (char *filename)
2552 {
2553 int i;
2554 char *cp;
2555
2556 if (filename != NULL)
2557 if ((cp = strrchr (filename, '.')) != NULL)
2558 for (i = 0; i < fl_table_next; i++)
2559 if (strcmp (cp, filename_language_table[i].ext) == 0)
2560 return filename_language_table[i].lang;
2561
2562 return language_unknown;
2563 }
2564 \f
2565 /* allocate_symtab:
2566
2567 Allocate and partly initialize a new symbol table. Return a pointer
2568 to it. error() if no space.
2569
2570 Caller must set these fields:
2571 LINETABLE(symtab)
2572 symtab->blockvector
2573 symtab->dirname
2574 symtab->free_code
2575 symtab->free_ptr
2576 */
2577
2578 struct symtab *
2579 allocate_symtab (char *filename, struct objfile *objfile)
2580 {
2581 struct symtab *symtab;
2582
2583 symtab = (struct symtab *)
2584 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2585 memset (symtab, 0, sizeof (*symtab));
2586 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2587 objfile->filename_cache);
2588 symtab->fullname = NULL;
2589 symtab->language = deduce_language_from_filename (filename);
2590 symtab->debugformat = "unknown";
2591
2592 /* Hook it to the objfile it comes from */
2593
2594 symtab->objfile = objfile;
2595 symtab->next = objfile->symtabs;
2596 objfile->symtabs = symtab;
2597
2598 return (symtab);
2599 }
2600
2601 struct partial_symtab *
2602 allocate_psymtab (const char *filename, struct objfile *objfile)
2603 {
2604 struct partial_symtab *psymtab;
2605
2606 if (objfile->free_psymtabs)
2607 {
2608 psymtab = objfile->free_psymtabs;
2609 objfile->free_psymtabs = psymtab->next;
2610 }
2611 else
2612 psymtab = (struct partial_symtab *)
2613 obstack_alloc (&objfile->objfile_obstack,
2614 sizeof (struct partial_symtab));
2615
2616 memset (psymtab, 0, sizeof (struct partial_symtab));
2617 psymtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2618 objfile->filename_cache);
2619 psymtab->symtab = NULL;
2620
2621 /* Prepend it to the psymtab list for the objfile it belongs to.
2622 Psymtabs are searched in most recent inserted -> least recent
2623 inserted order. */
2624
2625 psymtab->objfile = objfile;
2626 psymtab->next = objfile->psymtabs;
2627 objfile->psymtabs = psymtab;
2628 #if 0
2629 {
2630 struct partial_symtab **prev_pst;
2631 psymtab->objfile = objfile;
2632 psymtab->next = NULL;
2633 prev_pst = &(objfile->psymtabs);
2634 while ((*prev_pst) != NULL)
2635 prev_pst = &((*prev_pst)->next);
2636 (*prev_pst) = psymtab;
2637 }
2638 #endif
2639
2640 return (psymtab);
2641 }
2642
2643 void
2644 discard_psymtab (struct partial_symtab *pst)
2645 {
2646 struct partial_symtab **prev_pst;
2647
2648 /* From dbxread.c:
2649 Empty psymtabs happen as a result of header files which don't
2650 have any symbols in them. There can be a lot of them. But this
2651 check is wrong, in that a psymtab with N_SLINE entries but
2652 nothing else is not empty, but we don't realize that. Fixing
2653 that without slowing things down might be tricky. */
2654
2655 /* First, snip it out of the psymtab chain */
2656
2657 prev_pst = &(pst->objfile->psymtabs);
2658 while ((*prev_pst) != pst)
2659 prev_pst = &((*prev_pst)->next);
2660 (*prev_pst) = pst->next;
2661
2662 /* Next, put it on a free list for recycling */
2663
2664 pst->next = pst->objfile->free_psymtabs;
2665 pst->objfile->free_psymtabs = pst;
2666 }
2667 \f
2668
2669 /* Reset all data structures in gdb which may contain references to symbol
2670 table data. */
2671
2672 void
2673 clear_symtab_users (void)
2674 {
2675 /* Someday, we should do better than this, by only blowing away
2676 the things that really need to be blown. */
2677
2678 /* Clear the "current" symtab first, because it is no longer valid.
2679 breakpoint_re_set may try to access the current symtab. */
2680 clear_current_source_symtab_and_line ();
2681
2682 clear_displays ();
2683 breakpoint_re_set ();
2684 set_default_breakpoint (0, NULL, 0, 0, 0);
2685 clear_pc_function_cache ();
2686 observer_notify_new_objfile (NULL);
2687
2688 /* Clear globals which might have pointed into a removed objfile.
2689 FIXME: It's not clear which of these are supposed to persist
2690 between expressions and which ought to be reset each time. */
2691 expression_context_block = NULL;
2692 innermost_block = NULL;
2693
2694 /* Varobj may refer to old symbols, perform a cleanup. */
2695 varobj_invalidate ();
2696
2697 }
2698
2699 static void
2700 clear_symtab_users_cleanup (void *ignore)
2701 {
2702 clear_symtab_users ();
2703 }
2704 \f
2705 /* Allocate and partially fill a partial symtab. It will be
2706 completely filled at the end of the symbol list.
2707
2708 FILENAME is the name of the symbol-file we are reading from. */
2709
2710 struct partial_symtab *
2711 start_psymtab_common (struct objfile *objfile,
2712 struct section_offsets *section_offsets,
2713 const char *filename,
2714 CORE_ADDR textlow, struct partial_symbol **global_syms,
2715 struct partial_symbol **static_syms)
2716 {
2717 struct partial_symtab *psymtab;
2718
2719 psymtab = allocate_psymtab (filename, objfile);
2720 psymtab->section_offsets = section_offsets;
2721 psymtab->textlow = textlow;
2722 psymtab->texthigh = psymtab->textlow; /* default */
2723 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2724 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2725 return (psymtab);
2726 }
2727 \f
2728 /* Helper function, initialises partial symbol structure and stashes
2729 it into objfile's bcache. Note that our caching mechanism will
2730 use all fields of struct partial_symbol to determine hash value of the
2731 structure. In other words, having two symbols with the same name but
2732 different domain (or address) is possible and correct. */
2733
2734 static const struct partial_symbol *
2735 add_psymbol_to_bcache (char *name, int namelength, int copy_name,
2736 domain_enum domain,
2737 enum address_class class,
2738 long val, /* Value as a long */
2739 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2740 enum language language, struct objfile *objfile,
2741 int *added)
2742 {
2743 /* psymbol is static so that there will be no uninitialized gaps in the
2744 structure which might contain random data, causing cache misses in
2745 bcache. */
2746 static struct partial_symbol psymbol;
2747
2748 /* However, we must ensure that the entire 'value' field has been
2749 zeroed before assigning to it, because an assignment may not
2750 write the entire field. */
2751 memset (&psymbol.ginfo.value, 0, sizeof (psymbol.ginfo.value));
2752 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2753 if (val != 0)
2754 {
2755 SYMBOL_VALUE (&psymbol) = val;
2756 }
2757 else
2758 {
2759 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2760 }
2761 SYMBOL_SECTION (&psymbol) = 0;
2762 SYMBOL_LANGUAGE (&psymbol) = language;
2763 PSYMBOL_DOMAIN (&psymbol) = domain;
2764 PSYMBOL_CLASS (&psymbol) = class;
2765
2766 SYMBOL_SET_NAMES (&psymbol, name, namelength, copy_name, objfile);
2767
2768 /* Stash the partial symbol away in the cache */
2769 return bcache_full (&psymbol, sizeof (struct partial_symbol),
2770 objfile->psymbol_cache, added);
2771 }
2772
2773 /* Helper function, adds partial symbol to the given partial symbol
2774 list. */
2775
2776 static void
2777 append_psymbol_to_list (struct psymbol_allocation_list *list,
2778 const struct partial_symbol *psym,
2779 struct objfile *objfile)
2780 {
2781 if (list->next >= list->list + list->size)
2782 extend_psymbol_list (list, objfile);
2783 *list->next++ = (struct partial_symbol *) psym;
2784 OBJSTAT (objfile, n_psyms++);
2785 }
2786
2787 /* Add a symbol with a long value to a psymtab.
2788 Since one arg is a struct, we pass in a ptr and deref it (sigh).
2789 Return the partial symbol that has been added. */
2790
2791 /* NOTE: carlton/2003-09-11: The reason why we return the partial
2792 symbol is so that callers can get access to the symbol's demangled
2793 name, which they don't have any cheap way to determine otherwise.
2794 (Currenly, dwarf2read.c is the only file who uses that information,
2795 though it's possible that other readers might in the future.)
2796 Elena wasn't thrilled about that, and I don't blame her, but we
2797 couldn't come up with a better way to get that information. If
2798 it's needed in other situations, we could consider breaking up
2799 SYMBOL_SET_NAMES to provide access to the demangled name lookup
2800 cache. */
2801
2802 const struct partial_symbol *
2803 add_psymbol_to_list (char *name, int namelength, int copy_name,
2804 domain_enum domain,
2805 enum address_class class,
2806 struct psymbol_allocation_list *list,
2807 long val, /* Value as a long */
2808 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2809 enum language language, struct objfile *objfile)
2810 {
2811 const struct partial_symbol *psym;
2812
2813 int added;
2814
2815 /* Stash the partial symbol away in the cache */
2816 psym = add_psymbol_to_bcache (name, namelength, copy_name, domain, class,
2817 val, coreaddr, language, objfile, &added);
2818
2819 /* Do not duplicate global partial symbols. */
2820 if (list == &objfile->global_psymbols
2821 && !added)
2822 return psym;
2823
2824 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2825 append_psymbol_to_list (list, psym, objfile);
2826 return psym;
2827 }
2828
2829 /* Initialize storage for partial symbols. */
2830
2831 void
2832 init_psymbol_list (struct objfile *objfile, int total_symbols)
2833 {
2834 /* Free any previously allocated psymbol lists. */
2835
2836 if (objfile->global_psymbols.list)
2837 {
2838 xfree (objfile->global_psymbols.list);
2839 }
2840 if (objfile->static_psymbols.list)
2841 {
2842 xfree (objfile->static_psymbols.list);
2843 }
2844
2845 /* Current best guess is that approximately a twentieth
2846 of the total symbols (in a debugging file) are global or static
2847 oriented symbols */
2848
2849 objfile->global_psymbols.size = total_symbols / 10;
2850 objfile->static_psymbols.size = total_symbols / 10;
2851
2852 if (objfile->global_psymbols.size > 0)
2853 {
2854 objfile->global_psymbols.next =
2855 objfile->global_psymbols.list = (struct partial_symbol **)
2856 xmalloc ((objfile->global_psymbols.size
2857 * sizeof (struct partial_symbol *)));
2858 }
2859 if (objfile->static_psymbols.size > 0)
2860 {
2861 objfile->static_psymbols.next =
2862 objfile->static_psymbols.list = (struct partial_symbol **)
2863 xmalloc ((objfile->static_psymbols.size
2864 * sizeof (struct partial_symbol *)));
2865 }
2866 }
2867
2868 /* OVERLAYS:
2869 The following code implements an abstraction for debugging overlay sections.
2870
2871 The target model is as follows:
2872 1) The gnu linker will permit multiple sections to be mapped into the
2873 same VMA, each with its own unique LMA (or load address).
2874 2) It is assumed that some runtime mechanism exists for mapping the
2875 sections, one by one, from the load address into the VMA address.
2876 3) This code provides a mechanism for gdb to keep track of which
2877 sections should be considered to be mapped from the VMA to the LMA.
2878 This information is used for symbol lookup, and memory read/write.
2879 For instance, if a section has been mapped then its contents
2880 should be read from the VMA, otherwise from the LMA.
2881
2882 Two levels of debugger support for overlays are available. One is
2883 "manual", in which the debugger relies on the user to tell it which
2884 overlays are currently mapped. This level of support is
2885 implemented entirely in the core debugger, and the information about
2886 whether a section is mapped is kept in the objfile->obj_section table.
2887
2888 The second level of support is "automatic", and is only available if
2889 the target-specific code provides functionality to read the target's
2890 overlay mapping table, and translate its contents for the debugger
2891 (by updating the mapped state information in the obj_section tables).
2892
2893 The interface is as follows:
2894 User commands:
2895 overlay map <name> -- tell gdb to consider this section mapped
2896 overlay unmap <name> -- tell gdb to consider this section unmapped
2897 overlay list -- list the sections that GDB thinks are mapped
2898 overlay read-target -- get the target's state of what's mapped
2899 overlay off/manual/auto -- set overlay debugging state
2900 Functional interface:
2901 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2902 section, return that section.
2903 find_pc_overlay(pc): find any overlay section that contains
2904 the pc, either in its VMA or its LMA
2905 section_is_mapped(sect): true if overlay is marked as mapped
2906 section_is_overlay(sect): true if section's VMA != LMA
2907 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2908 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2909 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2910 overlay_mapped_address(...): map an address from section's LMA to VMA
2911 overlay_unmapped_address(...): map an address from section's VMA to LMA
2912 symbol_overlayed_address(...): Return a "current" address for symbol:
2913 either in VMA or LMA depending on whether
2914 the symbol's section is currently mapped
2915 */
2916
2917 /* Overlay debugging state: */
2918
2919 enum overlay_debugging_state overlay_debugging = ovly_off;
2920 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2921
2922 /* Function: section_is_overlay (SECTION)
2923 Returns true if SECTION has VMA not equal to LMA, ie.
2924 SECTION is loaded at an address different from where it will "run". */
2925
2926 int
2927 section_is_overlay (struct obj_section *section)
2928 {
2929 if (overlay_debugging && section)
2930 {
2931 bfd *abfd = section->objfile->obfd;
2932 asection *bfd_section = section->the_bfd_section;
2933
2934 if (bfd_section_lma (abfd, bfd_section) != 0
2935 && bfd_section_lma (abfd, bfd_section)
2936 != bfd_section_vma (abfd, bfd_section))
2937 return 1;
2938 }
2939
2940 return 0;
2941 }
2942
2943 /* Function: overlay_invalidate_all (void)
2944 Invalidate the mapped state of all overlay sections (mark it as stale). */
2945
2946 static void
2947 overlay_invalidate_all (void)
2948 {
2949 struct objfile *objfile;
2950 struct obj_section *sect;
2951
2952 ALL_OBJSECTIONS (objfile, sect)
2953 if (section_is_overlay (sect))
2954 sect->ovly_mapped = -1;
2955 }
2956
2957 /* Function: section_is_mapped (SECTION)
2958 Returns true if section is an overlay, and is currently mapped.
2959
2960 Access to the ovly_mapped flag is restricted to this function, so
2961 that we can do automatic update. If the global flag
2962 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2963 overlay_invalidate_all. If the mapped state of the particular
2964 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2965
2966 int
2967 section_is_mapped (struct obj_section *osect)
2968 {
2969 struct gdbarch *gdbarch;
2970
2971 if (osect == 0 || !section_is_overlay (osect))
2972 return 0;
2973
2974 switch (overlay_debugging)
2975 {
2976 default:
2977 case ovly_off:
2978 return 0; /* overlay debugging off */
2979 case ovly_auto: /* overlay debugging automatic */
2980 /* Unles there is a gdbarch_overlay_update function,
2981 there's really nothing useful to do here (can't really go auto) */
2982 gdbarch = get_objfile_arch (osect->objfile);
2983 if (gdbarch_overlay_update_p (gdbarch))
2984 {
2985 if (overlay_cache_invalid)
2986 {
2987 overlay_invalidate_all ();
2988 overlay_cache_invalid = 0;
2989 }
2990 if (osect->ovly_mapped == -1)
2991 gdbarch_overlay_update (gdbarch, osect);
2992 }
2993 /* fall thru to manual case */
2994 case ovly_on: /* overlay debugging manual */
2995 return osect->ovly_mapped == 1;
2996 }
2997 }
2998
2999 /* Function: pc_in_unmapped_range
3000 If PC falls into the lma range of SECTION, return true, else false. */
3001
3002 CORE_ADDR
3003 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3004 {
3005 if (section_is_overlay (section))
3006 {
3007 bfd *abfd = section->objfile->obfd;
3008 asection *bfd_section = section->the_bfd_section;
3009
3010 /* We assume the LMA is relocated by the same offset as the VMA. */
3011 bfd_vma size = bfd_get_section_size (bfd_section);
3012 CORE_ADDR offset = obj_section_offset (section);
3013
3014 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3015 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3016 return 1;
3017 }
3018
3019 return 0;
3020 }
3021
3022 /* Function: pc_in_mapped_range
3023 If PC falls into the vma range of SECTION, return true, else false. */
3024
3025 CORE_ADDR
3026 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3027 {
3028 if (section_is_overlay (section))
3029 {
3030 if (obj_section_addr (section) <= pc
3031 && pc < obj_section_endaddr (section))
3032 return 1;
3033 }
3034
3035 return 0;
3036 }
3037
3038
3039 /* Return true if the mapped ranges of sections A and B overlap, false
3040 otherwise. */
3041 static int
3042 sections_overlap (struct obj_section *a, struct obj_section *b)
3043 {
3044 CORE_ADDR a_start = obj_section_addr (a);
3045 CORE_ADDR a_end = obj_section_endaddr (a);
3046 CORE_ADDR b_start = obj_section_addr (b);
3047 CORE_ADDR b_end = obj_section_endaddr (b);
3048
3049 return (a_start < b_end && b_start < a_end);
3050 }
3051
3052 /* Function: overlay_unmapped_address (PC, SECTION)
3053 Returns the address corresponding to PC in the unmapped (load) range.
3054 May be the same as PC. */
3055
3056 CORE_ADDR
3057 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3058 {
3059 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3060 {
3061 bfd *abfd = section->objfile->obfd;
3062 asection *bfd_section = section->the_bfd_section;
3063
3064 return pc + bfd_section_lma (abfd, bfd_section)
3065 - bfd_section_vma (abfd, bfd_section);
3066 }
3067
3068 return pc;
3069 }
3070
3071 /* Function: overlay_mapped_address (PC, SECTION)
3072 Returns the address corresponding to PC in the mapped (runtime) range.
3073 May be the same as PC. */
3074
3075 CORE_ADDR
3076 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3077 {
3078 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3079 {
3080 bfd *abfd = section->objfile->obfd;
3081 asection *bfd_section = section->the_bfd_section;
3082
3083 return pc + bfd_section_vma (abfd, bfd_section)
3084 - bfd_section_lma (abfd, bfd_section);
3085 }
3086
3087 return pc;
3088 }
3089
3090
3091 /* Function: symbol_overlayed_address
3092 Return one of two addresses (relative to the VMA or to the LMA),
3093 depending on whether the section is mapped or not. */
3094
3095 CORE_ADDR
3096 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3097 {
3098 if (overlay_debugging)
3099 {
3100 /* If the symbol has no section, just return its regular address. */
3101 if (section == 0)
3102 return address;
3103 /* If the symbol's section is not an overlay, just return its address */
3104 if (!section_is_overlay (section))
3105 return address;
3106 /* If the symbol's section is mapped, just return its address */
3107 if (section_is_mapped (section))
3108 return address;
3109 /*
3110 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3111 * then return its LOADED address rather than its vma address!!
3112 */
3113 return overlay_unmapped_address (address, section);
3114 }
3115 return address;
3116 }
3117
3118 /* Function: find_pc_overlay (PC)
3119 Return the best-match overlay section for PC:
3120 If PC matches a mapped overlay section's VMA, return that section.
3121 Else if PC matches an unmapped section's VMA, return that section.
3122 Else if PC matches an unmapped section's LMA, return that section. */
3123
3124 struct obj_section *
3125 find_pc_overlay (CORE_ADDR pc)
3126 {
3127 struct objfile *objfile;
3128 struct obj_section *osect, *best_match = NULL;
3129
3130 if (overlay_debugging)
3131 ALL_OBJSECTIONS (objfile, osect)
3132 if (section_is_overlay (osect))
3133 {
3134 if (pc_in_mapped_range (pc, osect))
3135 {
3136 if (section_is_mapped (osect))
3137 return osect;
3138 else
3139 best_match = osect;
3140 }
3141 else if (pc_in_unmapped_range (pc, osect))
3142 best_match = osect;
3143 }
3144 return best_match;
3145 }
3146
3147 /* Function: find_pc_mapped_section (PC)
3148 If PC falls into the VMA address range of an overlay section that is
3149 currently marked as MAPPED, return that section. Else return NULL. */
3150
3151 struct obj_section *
3152 find_pc_mapped_section (CORE_ADDR pc)
3153 {
3154 struct objfile *objfile;
3155 struct obj_section *osect;
3156
3157 if (overlay_debugging)
3158 ALL_OBJSECTIONS (objfile, osect)
3159 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3160 return osect;
3161
3162 return NULL;
3163 }
3164
3165 /* Function: list_overlays_command
3166 Print a list of mapped sections and their PC ranges */
3167
3168 void
3169 list_overlays_command (char *args, int from_tty)
3170 {
3171 int nmapped = 0;
3172 struct objfile *objfile;
3173 struct obj_section *osect;
3174
3175 if (overlay_debugging)
3176 ALL_OBJSECTIONS (objfile, osect)
3177 if (section_is_mapped (osect))
3178 {
3179 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3180 const char *name;
3181 bfd_vma lma, vma;
3182 int size;
3183
3184 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3185 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3186 size = bfd_get_section_size (osect->the_bfd_section);
3187 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3188
3189 printf_filtered ("Section %s, loaded at ", name);
3190 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3191 puts_filtered (" - ");
3192 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3193 printf_filtered (", mapped at ");
3194 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3195 puts_filtered (" - ");
3196 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3197 puts_filtered ("\n");
3198
3199 nmapped++;
3200 }
3201 if (nmapped == 0)
3202 printf_filtered (_("No sections are mapped.\n"));
3203 }
3204
3205 /* Function: map_overlay_command
3206 Mark the named section as mapped (ie. residing at its VMA address). */
3207
3208 void
3209 map_overlay_command (char *args, int from_tty)
3210 {
3211 struct objfile *objfile, *objfile2;
3212 struct obj_section *sec, *sec2;
3213
3214 if (!overlay_debugging)
3215 error (_("\
3216 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3217 the 'overlay manual' command."));
3218
3219 if (args == 0 || *args == 0)
3220 error (_("Argument required: name of an overlay section"));
3221
3222 /* First, find a section matching the user supplied argument */
3223 ALL_OBJSECTIONS (objfile, sec)
3224 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3225 {
3226 /* Now, check to see if the section is an overlay. */
3227 if (!section_is_overlay (sec))
3228 continue; /* not an overlay section */
3229
3230 /* Mark the overlay as "mapped" */
3231 sec->ovly_mapped = 1;
3232
3233 /* Next, make a pass and unmap any sections that are
3234 overlapped by this new section: */
3235 ALL_OBJSECTIONS (objfile2, sec2)
3236 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3237 {
3238 if (info_verbose)
3239 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3240 bfd_section_name (objfile->obfd,
3241 sec2->the_bfd_section));
3242 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3243 }
3244 return;
3245 }
3246 error (_("No overlay section called %s"), args);
3247 }
3248
3249 /* Function: unmap_overlay_command
3250 Mark the overlay section as unmapped
3251 (ie. resident in its LMA address range, rather than the VMA range). */
3252
3253 void
3254 unmap_overlay_command (char *args, int from_tty)
3255 {
3256 struct objfile *objfile;
3257 struct obj_section *sec;
3258
3259 if (!overlay_debugging)
3260 error (_("\
3261 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3262 the 'overlay manual' command."));
3263
3264 if (args == 0 || *args == 0)
3265 error (_("Argument required: name of an overlay section"));
3266
3267 /* First, find a section matching the user supplied argument */
3268 ALL_OBJSECTIONS (objfile, sec)
3269 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3270 {
3271 if (!sec->ovly_mapped)
3272 error (_("Section %s is not mapped"), args);
3273 sec->ovly_mapped = 0;
3274 return;
3275 }
3276 error (_("No overlay section called %s"), args);
3277 }
3278
3279 /* Function: overlay_auto_command
3280 A utility command to turn on overlay debugging.
3281 Possibly this should be done via a set/show command. */
3282
3283 static void
3284 overlay_auto_command (char *args, int from_tty)
3285 {
3286 overlay_debugging = ovly_auto;
3287 enable_overlay_breakpoints ();
3288 if (info_verbose)
3289 printf_unfiltered (_("Automatic overlay debugging enabled."));
3290 }
3291
3292 /* Function: overlay_manual_command
3293 A utility command to turn on overlay debugging.
3294 Possibly this should be done via a set/show command. */
3295
3296 static void
3297 overlay_manual_command (char *args, int from_tty)
3298 {
3299 overlay_debugging = ovly_on;
3300 disable_overlay_breakpoints ();
3301 if (info_verbose)
3302 printf_unfiltered (_("Overlay debugging enabled."));
3303 }
3304
3305 /* Function: overlay_off_command
3306 A utility command to turn on overlay debugging.
3307 Possibly this should be done via a set/show command. */
3308
3309 static void
3310 overlay_off_command (char *args, int from_tty)
3311 {
3312 overlay_debugging = ovly_off;
3313 disable_overlay_breakpoints ();
3314 if (info_verbose)
3315 printf_unfiltered (_("Overlay debugging disabled."));
3316 }
3317
3318 static void
3319 overlay_load_command (char *args, int from_tty)
3320 {
3321 struct gdbarch *gdbarch = get_current_arch ();
3322
3323 if (gdbarch_overlay_update_p (gdbarch))
3324 gdbarch_overlay_update (gdbarch, NULL);
3325 else
3326 error (_("This target does not know how to read its overlay state."));
3327 }
3328
3329 /* Function: overlay_command
3330 A place-holder for a mis-typed command */
3331
3332 /* Command list chain containing all defined "overlay" subcommands. */
3333 struct cmd_list_element *overlaylist;
3334
3335 static void
3336 overlay_command (char *args, int from_tty)
3337 {
3338 printf_unfiltered
3339 ("\"overlay\" must be followed by the name of an overlay command.\n");
3340 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3341 }
3342
3343
3344 /* Target Overlays for the "Simplest" overlay manager:
3345
3346 This is GDB's default target overlay layer. It works with the
3347 minimal overlay manager supplied as an example by Cygnus. The
3348 entry point is via a function pointer "gdbarch_overlay_update",
3349 so targets that use a different runtime overlay manager can
3350 substitute their own overlay_update function and take over the
3351 function pointer.
3352
3353 The overlay_update function pokes around in the target's data structures
3354 to see what overlays are mapped, and updates GDB's overlay mapping with
3355 this information.
3356
3357 In this simple implementation, the target data structures are as follows:
3358 unsigned _novlys; /# number of overlay sections #/
3359 unsigned _ovly_table[_novlys][4] = {
3360 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3361 {..., ..., ..., ...},
3362 }
3363 unsigned _novly_regions; /# number of overlay regions #/
3364 unsigned _ovly_region_table[_novly_regions][3] = {
3365 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3366 {..., ..., ...},
3367 }
3368 These functions will attempt to update GDB's mappedness state in the
3369 symbol section table, based on the target's mappedness state.
3370
3371 To do this, we keep a cached copy of the target's _ovly_table, and
3372 attempt to detect when the cached copy is invalidated. The main
3373 entry point is "simple_overlay_update(SECT), which looks up SECT in
3374 the cached table and re-reads only the entry for that section from
3375 the target (whenever possible).
3376 */
3377
3378 /* Cached, dynamically allocated copies of the target data structures: */
3379 static unsigned (*cache_ovly_table)[4] = 0;
3380 #if 0
3381 static unsigned (*cache_ovly_region_table)[3] = 0;
3382 #endif
3383 static unsigned cache_novlys = 0;
3384 #if 0
3385 static unsigned cache_novly_regions = 0;
3386 #endif
3387 static CORE_ADDR cache_ovly_table_base = 0;
3388 #if 0
3389 static CORE_ADDR cache_ovly_region_table_base = 0;
3390 #endif
3391 enum ovly_index
3392 {
3393 VMA, SIZE, LMA, MAPPED
3394 };
3395
3396 /* Throw away the cached copy of _ovly_table */
3397 static void
3398 simple_free_overlay_table (void)
3399 {
3400 if (cache_ovly_table)
3401 xfree (cache_ovly_table);
3402 cache_novlys = 0;
3403 cache_ovly_table = NULL;
3404 cache_ovly_table_base = 0;
3405 }
3406
3407 #if 0
3408 /* Throw away the cached copy of _ovly_region_table */
3409 static void
3410 simple_free_overlay_region_table (void)
3411 {
3412 if (cache_ovly_region_table)
3413 xfree (cache_ovly_region_table);
3414 cache_novly_regions = 0;
3415 cache_ovly_region_table = NULL;
3416 cache_ovly_region_table_base = 0;
3417 }
3418 #endif
3419
3420 /* Read an array of ints of size SIZE from the target into a local buffer.
3421 Convert to host order. int LEN is number of ints */
3422 static void
3423 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3424 int len, int size, enum bfd_endian byte_order)
3425 {
3426 /* FIXME (alloca): Not safe if array is very large. */
3427 gdb_byte *buf = alloca (len * size);
3428 int i;
3429
3430 read_memory (memaddr, buf, len * size);
3431 for (i = 0; i < len; i++)
3432 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3433 }
3434
3435 /* Find and grab a copy of the target _ovly_table
3436 (and _novlys, which is needed for the table's size) */
3437 static int
3438 simple_read_overlay_table (void)
3439 {
3440 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3441 struct gdbarch *gdbarch;
3442 int word_size;
3443 enum bfd_endian byte_order;
3444
3445 simple_free_overlay_table ();
3446 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3447 if (! novlys_msym)
3448 {
3449 error (_("Error reading inferior's overlay table: "
3450 "couldn't find `_novlys' variable\n"
3451 "in inferior. Use `overlay manual' mode."));
3452 return 0;
3453 }
3454
3455 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3456 if (! ovly_table_msym)
3457 {
3458 error (_("Error reading inferior's overlay table: couldn't find "
3459 "`_ovly_table' array\n"
3460 "in inferior. Use `overlay manual' mode."));
3461 return 0;
3462 }
3463
3464 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3465 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3466 byte_order = gdbarch_byte_order (gdbarch);
3467
3468 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3469 4, byte_order);
3470 cache_ovly_table
3471 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3472 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3473 read_target_long_array (cache_ovly_table_base,
3474 (unsigned int *) cache_ovly_table,
3475 cache_novlys * 4, word_size, byte_order);
3476
3477 return 1; /* SUCCESS */
3478 }
3479
3480 #if 0
3481 /* Find and grab a copy of the target _ovly_region_table
3482 (and _novly_regions, which is needed for the table's size) */
3483 static int
3484 simple_read_overlay_region_table (void)
3485 {
3486 struct minimal_symbol *msym;
3487 struct gdbarch *gdbarch;
3488 int word_size;
3489 enum bfd_endian byte_order;
3490
3491 simple_free_overlay_region_table ();
3492 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3493 if (msym == NULL)
3494 return 0; /* failure */
3495
3496 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3497 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3498 byte_order = gdbarch_byte_order (gdbarch);
3499
3500 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3501 4, byte_order);
3502
3503 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3504 if (cache_ovly_region_table != NULL)
3505 {
3506 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3507 if (msym != NULL)
3508 {
3509 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3510 read_target_long_array (cache_ovly_region_table_base,
3511 (unsigned int *) cache_ovly_region_table,
3512 cache_novly_regions * 3,
3513 word_size, byte_order);
3514 }
3515 else
3516 return 0; /* failure */
3517 }
3518 else
3519 return 0; /* failure */
3520 return 1; /* SUCCESS */
3521 }
3522 #endif
3523
3524 /* Function: simple_overlay_update_1
3525 A helper function for simple_overlay_update. Assuming a cached copy
3526 of _ovly_table exists, look through it to find an entry whose vma,
3527 lma and size match those of OSECT. Re-read the entry and make sure
3528 it still matches OSECT (else the table may no longer be valid).
3529 Set OSECT's mapped state to match the entry. Return: 1 for
3530 success, 0 for failure. */
3531
3532 static int
3533 simple_overlay_update_1 (struct obj_section *osect)
3534 {
3535 int i, size;
3536 bfd *obfd = osect->objfile->obfd;
3537 asection *bsect = osect->the_bfd_section;
3538 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3539 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3540 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3541
3542 size = bfd_get_section_size (osect->the_bfd_section);
3543 for (i = 0; i < cache_novlys; i++)
3544 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3545 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3546 /* && cache_ovly_table[i][SIZE] == size */ )
3547 {
3548 read_target_long_array (cache_ovly_table_base + i * word_size,
3549 (unsigned int *) cache_ovly_table[i],
3550 4, word_size, byte_order);
3551 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3552 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3553 /* && cache_ovly_table[i][SIZE] == size */ )
3554 {
3555 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3556 return 1;
3557 }
3558 else /* Warning! Warning! Target's ovly table has changed! */
3559 return 0;
3560 }
3561 return 0;
3562 }
3563
3564 /* Function: simple_overlay_update
3565 If OSECT is NULL, then update all sections' mapped state
3566 (after re-reading the entire target _ovly_table).
3567 If OSECT is non-NULL, then try to find a matching entry in the
3568 cached ovly_table and update only OSECT's mapped state.
3569 If a cached entry can't be found or the cache isn't valid, then
3570 re-read the entire cache, and go ahead and update all sections. */
3571
3572 void
3573 simple_overlay_update (struct obj_section *osect)
3574 {
3575 struct objfile *objfile;
3576
3577 /* Were we given an osect to look up? NULL means do all of them. */
3578 if (osect)
3579 /* Have we got a cached copy of the target's overlay table? */
3580 if (cache_ovly_table != NULL)
3581 /* Does its cached location match what's currently in the symtab? */
3582 if (cache_ovly_table_base ==
3583 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3584 /* Then go ahead and try to look up this single section in the cache */
3585 if (simple_overlay_update_1 (osect))
3586 /* Found it! We're done. */
3587 return;
3588
3589 /* Cached table no good: need to read the entire table anew.
3590 Or else we want all the sections, in which case it's actually
3591 more efficient to read the whole table in one block anyway. */
3592
3593 if (! simple_read_overlay_table ())
3594 return;
3595
3596 /* Now may as well update all sections, even if only one was requested. */
3597 ALL_OBJSECTIONS (objfile, osect)
3598 if (section_is_overlay (osect))
3599 {
3600 int i, size;
3601 bfd *obfd = osect->objfile->obfd;
3602 asection *bsect = osect->the_bfd_section;
3603
3604 size = bfd_get_section_size (bsect);
3605 for (i = 0; i < cache_novlys; i++)
3606 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3607 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3608 /* && cache_ovly_table[i][SIZE] == size */ )
3609 { /* obj_section matches i'th entry in ovly_table */
3610 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3611 break; /* finished with inner for loop: break out */
3612 }
3613 }
3614 }
3615
3616 /* Set the output sections and output offsets for section SECTP in
3617 ABFD. The relocation code in BFD will read these offsets, so we
3618 need to be sure they're initialized. We map each section to itself,
3619 with no offset; this means that SECTP->vma will be honored. */
3620
3621 static void
3622 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3623 {
3624 sectp->output_section = sectp;
3625 sectp->output_offset = 0;
3626 }
3627
3628 /* Default implementation for sym_relocate. */
3629
3630
3631 bfd_byte *
3632 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3633 bfd_byte *buf)
3634 {
3635 bfd *abfd = objfile->obfd;
3636
3637 /* We're only interested in sections with relocation
3638 information. */
3639 if ((sectp->flags & SEC_RELOC) == 0)
3640 return NULL;
3641
3642 /* We will handle section offsets properly elsewhere, so relocate as if
3643 all sections begin at 0. */
3644 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3645
3646 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3647 }
3648
3649 /* Relocate the contents of a debug section SECTP in ABFD. The
3650 contents are stored in BUF if it is non-NULL, or returned in a
3651 malloc'd buffer otherwise.
3652
3653 For some platforms and debug info formats, shared libraries contain
3654 relocations against the debug sections (particularly for DWARF-2;
3655 one affected platform is PowerPC GNU/Linux, although it depends on
3656 the version of the linker in use). Also, ELF object files naturally
3657 have unresolved relocations for their debug sections. We need to apply
3658 the relocations in order to get the locations of symbols correct.
3659 Another example that may require relocation processing, is the
3660 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3661 debug section. */
3662
3663 bfd_byte *
3664 symfile_relocate_debug_section (struct objfile *objfile,
3665 asection *sectp, bfd_byte *buf)
3666 {
3667 gdb_assert (objfile->sf->sym_relocate);
3668
3669 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3670 }
3671
3672 struct symfile_segment_data *
3673 get_symfile_segment_data (bfd *abfd)
3674 {
3675 struct sym_fns *sf = find_sym_fns (abfd);
3676
3677 if (sf == NULL)
3678 return NULL;
3679
3680 return sf->sym_segments (abfd);
3681 }
3682
3683 void
3684 free_symfile_segment_data (struct symfile_segment_data *data)
3685 {
3686 xfree (data->segment_bases);
3687 xfree (data->segment_sizes);
3688 xfree (data->segment_info);
3689 xfree (data);
3690 }
3691
3692
3693 /* Given:
3694 - DATA, containing segment addresses from the object file ABFD, and
3695 the mapping from ABFD's sections onto the segments that own them,
3696 and
3697 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3698 segment addresses reported by the target,
3699 store the appropriate offsets for each section in OFFSETS.
3700
3701 If there are fewer entries in SEGMENT_BASES than there are segments
3702 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3703
3704 If there are more entries, then ignore the extra. The target may
3705 not be able to distinguish between an empty data segment and a
3706 missing data segment; a missing text segment is less plausible. */
3707 int
3708 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3709 struct section_offsets *offsets,
3710 int num_segment_bases,
3711 const CORE_ADDR *segment_bases)
3712 {
3713 int i;
3714 asection *sect;
3715
3716 /* It doesn't make sense to call this function unless you have some
3717 segment base addresses. */
3718 gdb_assert (num_segment_bases > 0);
3719
3720 /* If we do not have segment mappings for the object file, we
3721 can not relocate it by segments. */
3722 gdb_assert (data != NULL);
3723 gdb_assert (data->num_segments > 0);
3724
3725 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3726 {
3727 int which = data->segment_info[i];
3728
3729 gdb_assert (0 <= which && which <= data->num_segments);
3730
3731 /* Don't bother computing offsets for sections that aren't
3732 loaded as part of any segment. */
3733 if (! which)
3734 continue;
3735
3736 /* Use the last SEGMENT_BASES entry as the address of any extra
3737 segments mentioned in DATA->segment_info. */
3738 if (which > num_segment_bases)
3739 which = num_segment_bases;
3740
3741 offsets->offsets[i] = (segment_bases[which - 1]
3742 - data->segment_bases[which - 1]);
3743 }
3744
3745 return 1;
3746 }
3747
3748 static void
3749 symfile_find_segment_sections (struct objfile *objfile)
3750 {
3751 bfd *abfd = objfile->obfd;
3752 int i;
3753 asection *sect;
3754 struct symfile_segment_data *data;
3755
3756 data = get_symfile_segment_data (objfile->obfd);
3757 if (data == NULL)
3758 return;
3759
3760 if (data->num_segments != 1 && data->num_segments != 2)
3761 {
3762 free_symfile_segment_data (data);
3763 return;
3764 }
3765
3766 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3767 {
3768 CORE_ADDR vma;
3769 int which = data->segment_info[i];
3770
3771 if (which == 1)
3772 {
3773 if (objfile->sect_index_text == -1)
3774 objfile->sect_index_text = sect->index;
3775
3776 if (objfile->sect_index_rodata == -1)
3777 objfile->sect_index_rodata = sect->index;
3778 }
3779 else if (which == 2)
3780 {
3781 if (objfile->sect_index_data == -1)
3782 objfile->sect_index_data = sect->index;
3783
3784 if (objfile->sect_index_bss == -1)
3785 objfile->sect_index_bss = sect->index;
3786 }
3787 }
3788
3789 free_symfile_segment_data (data);
3790 }
3791
3792 void
3793 _initialize_symfile (void)
3794 {
3795 struct cmd_list_element *c;
3796
3797 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3798 Load symbol table from executable file FILE.\n\
3799 The `file' command can also load symbol tables, as well as setting the file\n\
3800 to execute."), &cmdlist);
3801 set_cmd_completer (c, filename_completer);
3802
3803 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3804 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3805 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3806 ADDR is the starting address of the file's text.\n\
3807 The optional arguments are section-name section-address pairs and\n\
3808 should be specified if the data and bss segments are not contiguous\n\
3809 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3810 &cmdlist);
3811 set_cmd_completer (c, filename_completer);
3812
3813 c = add_cmd ("load", class_files, load_command, _("\
3814 Dynamically load FILE into the running program, and record its symbols\n\
3815 for access from GDB.\n\
3816 A load OFFSET may also be given."), &cmdlist);
3817 set_cmd_completer (c, filename_completer);
3818
3819 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3820 &symbol_reloading, _("\
3821 Set dynamic symbol table reloading multiple times in one run."), _("\
3822 Show dynamic symbol table reloading multiple times in one run."), NULL,
3823 NULL,
3824 show_symbol_reloading,
3825 &setlist, &showlist);
3826
3827 add_prefix_cmd ("overlay", class_support, overlay_command,
3828 _("Commands for debugging overlays."), &overlaylist,
3829 "overlay ", 0, &cmdlist);
3830
3831 add_com_alias ("ovly", "overlay", class_alias, 1);
3832 add_com_alias ("ov", "overlay", class_alias, 1);
3833
3834 add_cmd ("map-overlay", class_support, map_overlay_command,
3835 _("Assert that an overlay section is mapped."), &overlaylist);
3836
3837 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3838 _("Assert that an overlay section is unmapped."), &overlaylist);
3839
3840 add_cmd ("list-overlays", class_support, list_overlays_command,
3841 _("List mappings of overlay sections."), &overlaylist);
3842
3843 add_cmd ("manual", class_support, overlay_manual_command,
3844 _("Enable overlay debugging."), &overlaylist);
3845 add_cmd ("off", class_support, overlay_off_command,
3846 _("Disable overlay debugging."), &overlaylist);
3847 add_cmd ("auto", class_support, overlay_auto_command,
3848 _("Enable automatic overlay debugging."), &overlaylist);
3849 add_cmd ("load-target", class_support, overlay_load_command,
3850 _("Read the overlay mapping state from the target."), &overlaylist);
3851
3852 /* Filename extension to source language lookup table: */
3853 init_filename_language_table ();
3854 add_setshow_string_noescape_cmd ("extension-language", class_files,
3855 &ext_args, _("\
3856 Set mapping between filename extension and source language."), _("\
3857 Show mapping between filename extension and source language."), _("\
3858 Usage: set extension-language .foo bar"),
3859 set_ext_lang_command,
3860 show_ext_args,
3861 &setlist, &showlist);
3862
3863 add_info ("extensions", info_ext_lang_command,
3864 _("All filename extensions associated with a source language."));
3865
3866 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3867 &debug_file_directory, _("\
3868 Set the directories where separate debug symbols are searched for."), _("\
3869 Show the directories where separate debug symbols are searched for."), _("\
3870 Separate debug symbols are first searched for in the same\n\
3871 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3872 and lastly at the path of the directory of the binary with\n\
3873 each global debug-file-directory component prepended."),
3874 NULL,
3875 show_debug_file_directory,
3876 &setlist, &showlist);
3877 }