Convert "remote:" sysroots to "target:" and remove "remote:"
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include <sys/time.h>
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
618 * addrs->num_sections);
619 make_cleanup (xfree, addrs_to_abfd_addrs);
620
621 while (*addrs_sorted)
622 {
623 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
624
625 while (*abfd_addrs_sorted
626 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
627 sect_name) < 0)
628 abfd_addrs_sorted++;
629
630 if (*abfd_addrs_sorted
631 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
632 sect_name) == 0)
633 {
634 int index_in_addrs;
635
636 /* Make the found item directly addressable from ADDRS. */
637 index_in_addrs = *addrs_sorted - addrs->other;
638 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
639 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
640
641 /* Never use the same ABFD entry twice. */
642 abfd_addrs_sorted++;
643 }
644
645 addrs_sorted++;
646 }
647
648 /* Calculate offsets for the loadable sections.
649 FIXME! Sections must be in order of increasing loadable section
650 so that contiguous sections can use the lower-offset!!!
651
652 Adjust offsets if the segments are not contiguous.
653 If the section is contiguous, its offset should be set to
654 the offset of the highest loadable section lower than it
655 (the loadable section directly below it in memory).
656 this_offset = lower_offset = lower_addr - lower_orig_addr */
657
658 for (i = 0; i < addrs->num_sections; i++)
659 {
660 struct other_sections *sect = addrs_to_abfd_addrs[i];
661
662 if (sect)
663 {
664 /* This is the index used by BFD. */
665 addrs->other[i].sectindex = sect->sectindex;
666
667 if (addrs->other[i].addr != 0)
668 {
669 addrs->other[i].addr -= sect->addr;
670 lower_offset = addrs->other[i].addr;
671 }
672 else
673 addrs->other[i].addr = lower_offset;
674 }
675 else
676 {
677 /* addr_section_name transformation is not used for SECT_NAME. */
678 const char *sect_name = addrs->other[i].name;
679
680 /* This section does not exist in ABFD, which is normally
681 unexpected and we want to issue a warning.
682
683 However, the ELF prelinker does create a few sections which are
684 marked in the main executable as loadable (they are loaded in
685 memory from the DYNAMIC segment) and yet are not present in
686 separate debug info files. This is fine, and should not cause
687 a warning. Shared libraries contain just the section
688 ".gnu.liblist" but it is not marked as loadable there. There is
689 no other way to identify them than by their name as the sections
690 created by prelink have no special flags.
691
692 For the sections `.bss' and `.sbss' see addr_section_name. */
693
694 if (!(strcmp (sect_name, ".gnu.liblist") == 0
695 || strcmp (sect_name, ".gnu.conflict") == 0
696 || (strcmp (sect_name, ".bss") == 0
697 && i > 0
698 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
699 && addrs_to_abfd_addrs[i - 1] != NULL)
700 || (strcmp (sect_name, ".sbss") == 0
701 && i > 0
702 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
703 && addrs_to_abfd_addrs[i - 1] != NULL)))
704 warning (_("section %s not found in %s"), sect_name,
705 bfd_get_filename (abfd));
706
707 addrs->other[i].addr = 0;
708 addrs->other[i].sectindex = -1;
709 }
710 }
711
712 do_cleanups (my_cleanup);
713 }
714
715 /* Parse the user's idea of an offset for dynamic linking, into our idea
716 of how to represent it for fast symbol reading. This is the default
717 version of the sym_fns.sym_offsets function for symbol readers that
718 don't need to do anything special. It allocates a section_offsets table
719 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
720
721 void
722 default_symfile_offsets (struct objfile *objfile,
723 const struct section_addr_info *addrs)
724 {
725 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
726 objfile->section_offsets = (struct section_offsets *)
727 obstack_alloc (&objfile->objfile_obstack,
728 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
729 relative_addr_info_to_section_offsets (objfile->section_offsets,
730 objfile->num_sections, addrs);
731
732 /* For relocatable files, all loadable sections will start at zero.
733 The zero is meaningless, so try to pick arbitrary addresses such
734 that no loadable sections overlap. This algorithm is quadratic,
735 but the number of sections in a single object file is generally
736 small. */
737 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
738 {
739 struct place_section_arg arg;
740 bfd *abfd = objfile->obfd;
741 asection *cur_sec;
742
743 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
744 /* We do not expect this to happen; just skip this step if the
745 relocatable file has a section with an assigned VMA. */
746 if (bfd_section_vma (abfd, cur_sec) != 0)
747 break;
748
749 if (cur_sec == NULL)
750 {
751 CORE_ADDR *offsets = objfile->section_offsets->offsets;
752
753 /* Pick non-overlapping offsets for sections the user did not
754 place explicitly. */
755 arg.offsets = objfile->section_offsets;
756 arg.lowest = 0;
757 bfd_map_over_sections (objfile->obfd, place_section, &arg);
758
759 /* Correctly filling in the section offsets is not quite
760 enough. Relocatable files have two properties that
761 (most) shared objects do not:
762
763 - Their debug information will contain relocations. Some
764 shared libraries do also, but many do not, so this can not
765 be assumed.
766
767 - If there are multiple code sections they will be loaded
768 at different relative addresses in memory than they are
769 in the objfile, since all sections in the file will start
770 at address zero.
771
772 Because GDB has very limited ability to map from an
773 address in debug info to the correct code section,
774 it relies on adding SECT_OFF_TEXT to things which might be
775 code. If we clear all the section offsets, and set the
776 section VMAs instead, then symfile_relocate_debug_section
777 will return meaningful debug information pointing at the
778 correct sections.
779
780 GDB has too many different data structures for section
781 addresses - a bfd, objfile, and so_list all have section
782 tables, as does exec_ops. Some of these could probably
783 be eliminated. */
784
785 for (cur_sec = abfd->sections; cur_sec != NULL;
786 cur_sec = cur_sec->next)
787 {
788 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
789 continue;
790
791 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
792 exec_set_section_address (bfd_get_filename (abfd),
793 cur_sec->index,
794 offsets[cur_sec->index]);
795 offsets[cur_sec->index] = 0;
796 }
797 }
798 }
799
800 /* Remember the bfd indexes for the .text, .data, .bss and
801 .rodata sections. */
802 init_objfile_sect_indices (objfile);
803 }
804
805 /* Divide the file into segments, which are individual relocatable units.
806 This is the default version of the sym_fns.sym_segments function for
807 symbol readers that do not have an explicit representation of segments.
808 It assumes that object files do not have segments, and fully linked
809 files have a single segment. */
810
811 struct symfile_segment_data *
812 default_symfile_segments (bfd *abfd)
813 {
814 int num_sections, i;
815 asection *sect;
816 struct symfile_segment_data *data;
817 CORE_ADDR low, high;
818
819 /* Relocatable files contain enough information to position each
820 loadable section independently; they should not be relocated
821 in segments. */
822 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
823 return NULL;
824
825 /* Make sure there is at least one loadable section in the file. */
826 for (sect = abfd->sections; sect != NULL; sect = sect->next)
827 {
828 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
829 continue;
830
831 break;
832 }
833 if (sect == NULL)
834 return NULL;
835
836 low = bfd_get_section_vma (abfd, sect);
837 high = low + bfd_get_section_size (sect);
838
839 data = XCNEW (struct symfile_segment_data);
840 data->num_segments = 1;
841 data->segment_bases = XCNEW (CORE_ADDR);
842 data->segment_sizes = XCNEW (CORE_ADDR);
843
844 num_sections = bfd_count_sections (abfd);
845 data->segment_info = XCNEWVEC (int, num_sections);
846
847 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
848 {
849 CORE_ADDR vma;
850
851 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
852 continue;
853
854 vma = bfd_get_section_vma (abfd, sect);
855 if (vma < low)
856 low = vma;
857 if (vma + bfd_get_section_size (sect) > high)
858 high = vma + bfd_get_section_size (sect);
859
860 data->segment_info[i] = 1;
861 }
862
863 data->segment_bases[0] = low;
864 data->segment_sizes[0] = high - low;
865
866 return data;
867 }
868
869 /* This is a convenience function to call sym_read for OBJFILE and
870 possibly force the partial symbols to be read. */
871
872 static void
873 read_symbols (struct objfile *objfile, int add_flags)
874 {
875 (*objfile->sf->sym_read) (objfile, add_flags);
876 objfile->per_bfd->minsyms_read = 1;
877
878 /* find_separate_debug_file_in_section should be called only if there is
879 single binary with no existing separate debug info file. */
880 if (!objfile_has_partial_symbols (objfile)
881 && objfile->separate_debug_objfile == NULL
882 && objfile->separate_debug_objfile_backlink == NULL)
883 {
884 bfd *abfd = find_separate_debug_file_in_section (objfile);
885 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
886
887 if (abfd != NULL)
888 {
889 /* find_separate_debug_file_in_section uses the same filename for the
890 virtual section-as-bfd like the bfd filename containing the
891 section. Therefore use also non-canonical name form for the same
892 file containing the section. */
893 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
894 objfile);
895 }
896
897 do_cleanups (cleanup);
898 }
899 if ((add_flags & SYMFILE_NO_READ) == 0)
900 require_partial_symbols (objfile, 0);
901 }
902
903 /* Initialize entry point information for this objfile. */
904
905 static void
906 init_entry_point_info (struct objfile *objfile)
907 {
908 struct entry_info *ei = &objfile->per_bfd->ei;
909
910 if (ei->initialized)
911 return;
912 ei->initialized = 1;
913
914 /* Save startup file's range of PC addresses to help blockframe.c
915 decide where the bottom of the stack is. */
916
917 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
918 {
919 /* Executable file -- record its entry point so we'll recognize
920 the startup file because it contains the entry point. */
921 ei->entry_point = bfd_get_start_address (objfile->obfd);
922 ei->entry_point_p = 1;
923 }
924 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
925 && bfd_get_start_address (objfile->obfd) != 0)
926 {
927 /* Some shared libraries may have entry points set and be
928 runnable. There's no clear way to indicate this, so just check
929 for values other than zero. */
930 ei->entry_point = bfd_get_start_address (objfile->obfd);
931 ei->entry_point_p = 1;
932 }
933 else
934 {
935 /* Examination of non-executable.o files. Short-circuit this stuff. */
936 ei->entry_point_p = 0;
937 }
938
939 if (ei->entry_point_p)
940 {
941 struct obj_section *osect;
942 CORE_ADDR entry_point = ei->entry_point;
943 int found;
944
945 /* Make certain that the address points at real code, and not a
946 function descriptor. */
947 entry_point
948 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
949 entry_point,
950 &current_target);
951
952 /* Remove any ISA markers, so that this matches entries in the
953 symbol table. */
954 ei->entry_point
955 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
956
957 found = 0;
958 ALL_OBJFILE_OSECTIONS (objfile, osect)
959 {
960 struct bfd_section *sect = osect->the_bfd_section;
961
962 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
963 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
964 + bfd_get_section_size (sect)))
965 {
966 ei->the_bfd_section_index
967 = gdb_bfd_section_index (objfile->obfd, sect);
968 found = 1;
969 break;
970 }
971 }
972
973 if (!found)
974 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
975 }
976 }
977
978 /* Process a symbol file, as either the main file or as a dynamically
979 loaded file.
980
981 This function does not set the OBJFILE's entry-point info.
982
983 OBJFILE is where the symbols are to be read from.
984
985 ADDRS is the list of section load addresses. If the user has given
986 an 'add-symbol-file' command, then this is the list of offsets and
987 addresses he or she provided as arguments to the command; or, if
988 we're handling a shared library, these are the actual addresses the
989 sections are loaded at, according to the inferior's dynamic linker
990 (as gleaned by GDB's shared library code). We convert each address
991 into an offset from the section VMA's as it appears in the object
992 file, and then call the file's sym_offsets function to convert this
993 into a format-specific offset table --- a `struct section_offsets'.
994
995 ADD_FLAGS encodes verbosity level, whether this is main symbol or
996 an extra symbol file such as dynamically loaded code, and wether
997 breakpoint reset should be deferred. */
998
999 static void
1000 syms_from_objfile_1 (struct objfile *objfile,
1001 struct section_addr_info *addrs,
1002 int add_flags)
1003 {
1004 struct section_addr_info *local_addr = NULL;
1005 struct cleanup *old_chain;
1006 const int mainline = add_flags & SYMFILE_MAINLINE;
1007
1008 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1009
1010 if (objfile->sf == NULL)
1011 {
1012 /* No symbols to load, but we still need to make sure
1013 that the section_offsets table is allocated. */
1014 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1015 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1016
1017 objfile->num_sections = num_sections;
1018 objfile->section_offsets
1019 = obstack_alloc (&objfile->objfile_obstack, size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 static void
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 finish_new_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct objfile *new_objfile;
1253 struct section_addr_info *sap;
1254 struct cleanup *my_cleanup;
1255
1256 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1257 because sections of BFD may not match sections of OBJFILE and because
1258 vma may have been modified by tools such as prelink. */
1259 sap = build_section_addr_info_from_objfile (objfile);
1260 my_cleanup = make_cleanup_free_section_addr_info (sap);
1261
1262 new_objfile = symbol_file_add_with_addrs
1263 (bfd, name, symfile_flags, sap,
1264 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1265 | OBJF_USERLOADED),
1266 objfile);
1267
1268 do_cleanups (my_cleanup);
1269 }
1270
1271 /* Process the symbol file ABFD, as either the main file or as a
1272 dynamically loaded file.
1273 See symbol_file_add_with_addrs's comments for details. */
1274
1275 struct objfile *
1276 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1277 struct section_addr_info *addrs,
1278 int flags, struct objfile *parent)
1279 {
1280 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1281 parent);
1282 }
1283
1284 /* Process a symbol file, as either the main file or as a dynamically
1285 loaded file. See symbol_file_add_with_addrs's comments for details. */
1286
1287 struct objfile *
1288 symbol_file_add (const char *name, int add_flags,
1289 struct section_addr_info *addrs, int flags)
1290 {
1291 bfd *bfd = symfile_bfd_open (name);
1292 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1293 struct objfile *objf;
1294
1295 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1296 do_cleanups (cleanup);
1297 return objf;
1298 }
1299
1300 /* Call symbol_file_add() with default values and update whatever is
1301 affected by the loading of a new main().
1302 Used when the file is supplied in the gdb command line
1303 and by some targets with special loading requirements.
1304 The auxiliary function, symbol_file_add_main_1(), has the flags
1305 argument for the switches that can only be specified in the symbol_file
1306 command itself. */
1307
1308 void
1309 symbol_file_add_main (const char *args, int from_tty)
1310 {
1311 symbol_file_add_main_1 (args, from_tty, 0);
1312 }
1313
1314 static void
1315 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1316 {
1317 const int add_flags = (current_inferior ()->symfile_flags
1318 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1319
1320 symbol_file_add (args, add_flags, NULL, flags);
1321
1322 /* Getting new symbols may change our opinion about
1323 what is frameless. */
1324 reinit_frame_cache ();
1325
1326 if ((flags & SYMFILE_NO_READ) == 0)
1327 set_initial_language ();
1328 }
1329
1330 void
1331 symbol_file_clear (int from_tty)
1332 {
1333 if ((have_full_symbols () || have_partial_symbols ())
1334 && from_tty
1335 && (symfile_objfile
1336 ? !query (_("Discard symbol table from `%s'? "),
1337 objfile_name (symfile_objfile))
1338 : !query (_("Discard symbol table? "))))
1339 error (_("Not confirmed."));
1340
1341 /* solib descriptors may have handles to objfiles. Wipe them before their
1342 objfiles get stale by free_all_objfiles. */
1343 no_shared_libraries (NULL, from_tty);
1344
1345 free_all_objfiles ();
1346
1347 gdb_assert (symfile_objfile == NULL);
1348 if (from_tty)
1349 printf_unfiltered (_("No symbol file now.\n"));
1350 }
1351
1352 static int
1353 separate_debug_file_exists (const char *name, unsigned long crc,
1354 struct objfile *parent_objfile)
1355 {
1356 unsigned long file_crc;
1357 int file_crc_p;
1358 bfd *abfd;
1359 struct stat parent_stat, abfd_stat;
1360 int verified_as_different;
1361
1362 /* Find a separate debug info file as if symbols would be present in
1363 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1364 section can contain just the basename of PARENT_OBJFILE without any
1365 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1366 the separate debug infos with the same basename can exist. */
1367
1368 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1369 return 0;
1370
1371 abfd = gdb_bfd_open (name, gnutarget, -1);
1372
1373 if (!abfd)
1374 return 0;
1375
1376 /* Verify symlinks were not the cause of filename_cmp name difference above.
1377
1378 Some operating systems, e.g. Windows, do not provide a meaningful
1379 st_ino; they always set it to zero. (Windows does provide a
1380 meaningful st_dev.) Files accessed from gdbservers that do not
1381 support the vFile:fstat packet will also have st_ino set to zero.
1382 Do not indicate a duplicate library in either case. While there
1383 is no guarantee that a system that provides meaningful inode
1384 numbers will never set st_ino to zero, this is merely an
1385 optimization, so we do not need to worry about false negatives. */
1386
1387 if (bfd_stat (abfd, &abfd_stat) == 0
1388 && abfd_stat.st_ino != 0
1389 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1390 {
1391 if (abfd_stat.st_dev == parent_stat.st_dev
1392 && abfd_stat.st_ino == parent_stat.st_ino)
1393 {
1394 gdb_bfd_unref (abfd);
1395 return 0;
1396 }
1397 verified_as_different = 1;
1398 }
1399 else
1400 verified_as_different = 0;
1401
1402 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1403
1404 gdb_bfd_unref (abfd);
1405
1406 if (!file_crc_p)
1407 return 0;
1408
1409 if (crc != file_crc)
1410 {
1411 unsigned long parent_crc;
1412
1413 /* If the files could not be verified as different with
1414 bfd_stat then we need to calculate the parent's CRC
1415 to verify whether the files are different or not. */
1416
1417 if (!verified_as_different)
1418 {
1419 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1420 return 0;
1421 }
1422
1423 if (verified_as_different || parent_crc != file_crc)
1424 warning (_("the debug information found in \"%s\""
1425 " does not match \"%s\" (CRC mismatch).\n"),
1426 name, objfile_name (parent_objfile));
1427
1428 return 0;
1429 }
1430
1431 return 1;
1432 }
1433
1434 char *debug_file_directory = NULL;
1435 static void
1436 show_debug_file_directory (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file,
1440 _("The directory where separate debug "
1441 "symbols are searched for is \"%s\".\n"),
1442 value);
1443 }
1444
1445 #if ! defined (DEBUG_SUBDIRECTORY)
1446 #define DEBUG_SUBDIRECTORY ".debug"
1447 #endif
1448
1449 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1450 where the original file resides (may not be the same as
1451 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1452 looking for. CANON_DIR is the "realpath" form of DIR.
1453 DIR must contain a trailing '/'.
1454 Returns the path of the file with separate debug info, of NULL. */
1455
1456 static char *
1457 find_separate_debug_file (const char *dir,
1458 const char *canon_dir,
1459 const char *debuglink,
1460 unsigned long crc32, struct objfile *objfile)
1461 {
1462 char *debugdir;
1463 char *debugfile;
1464 int i;
1465 VEC (char_ptr) *debugdir_vec;
1466 struct cleanup *back_to;
1467 int ix;
1468
1469 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1470 i = strlen (dir);
1471 if (canon_dir != NULL && strlen (canon_dir) > i)
1472 i = strlen (canon_dir);
1473
1474 debugfile = xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 return debugfile;
1487
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* Then try in the global debugfile directories.
1498
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1501
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1504
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
1535 }
1536 }
1537
1538 do_cleanups (back_to);
1539 xfree (debugfile);
1540 return NULL;
1541 }
1542
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547 static void
1548 terminate_after_last_dir_separator (char *path)
1549 {
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560 }
1561
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565 char *
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567 {
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 }
1622
1623 do_cleanups (cleanups);
1624 return debugfile;
1625 }
1626
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1640
1641 void
1642 symbol_file_command (char *args, int from_tty)
1643 {
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1648 symbol_file_clear (from_tty);
1649 }
1650 else
1651 {
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1659 {
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1664 else
1665 {
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1667 name = *argv;
1668 }
1669
1670 argv++;
1671 }
1672
1673 if (name == NULL)
1674 error (_("no symbol file name was specified"));
1675
1676 do_cleanups (cleanups);
1677 }
1678 }
1679
1680 /* Set the initial language.
1681
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
1690
1691 void
1692 set_initial_language (void)
1693 {
1694 enum language lang = main_language ();
1695
1696 if (lang == language_unknown)
1697 {
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL);
1700
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
1703 }
1704
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
1709 }
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1713 }
1714
1715 /* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
1719
1720 bfd *
1721 symfile_bfd_open (const char *cname)
1722 {
1723 bfd *sym_bfd;
1724 int desc;
1725 char *name, *absolute_name;
1726 struct cleanup *back_to;
1727
1728 if (is_target_filename (cname))
1729 {
1730 sym_bfd = gdb_bfd_open (cname, gnutarget, -1);
1731 if (!sym_bfd)
1732 error (_("`%s': can't open to read symbols: %s."), cname,
1733 bfd_errmsg (bfd_get_error ()));
1734
1735 if (!bfd_check_format (sym_bfd, bfd_object))
1736 {
1737 make_cleanup_bfd_unref (sym_bfd);
1738 error (_("`%s': can't read symbols: %s."), cname,
1739 bfd_errmsg (bfd_get_error ()));
1740 }
1741
1742 return sym_bfd;
1743 }
1744
1745 name = tilde_expand (cname); /* Returns 1st new malloc'd copy. */
1746
1747 /* Look down path for it, allocate 2nd new malloc'd copy. */
1748 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH, name,
1749 O_RDONLY | O_BINARY, &absolute_name);
1750 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1751 if (desc < 0)
1752 {
1753 char *exename = alloca (strlen (name) + 5);
1754
1755 strcat (strcpy (exename, name), ".exe");
1756 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1757 exename, O_RDONLY | O_BINARY, &absolute_name);
1758 }
1759 #endif
1760 if (desc < 0)
1761 {
1762 make_cleanup (xfree, name);
1763 perror_with_name (name);
1764 }
1765
1766 xfree (name);
1767 name = absolute_name;
1768 back_to = make_cleanup (xfree, name);
1769
1770 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1771 if (!sym_bfd)
1772 error (_("`%s': can't open to read symbols: %s."), name,
1773 bfd_errmsg (bfd_get_error ()));
1774 bfd_set_cacheable (sym_bfd, 1);
1775
1776 if (!bfd_check_format (sym_bfd, bfd_object))
1777 {
1778 make_cleanup_bfd_unref (sym_bfd);
1779 error (_("`%s': can't read symbols: %s."), name,
1780 bfd_errmsg (bfd_get_error ()));
1781 }
1782
1783 do_cleanups (back_to);
1784
1785 return sym_bfd;
1786 }
1787
1788 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1789 the section was not found. */
1790
1791 int
1792 get_section_index (struct objfile *objfile, char *section_name)
1793 {
1794 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1795
1796 if (sect)
1797 return sect->index;
1798 else
1799 return -1;
1800 }
1801
1802 /* Link SF into the global symtab_fns list.
1803 FLAVOUR is the file format that SF handles.
1804 Called on startup by the _initialize routine in each object file format
1805 reader, to register information about each format the reader is prepared
1806 to handle. */
1807
1808 void
1809 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1810 {
1811 registered_sym_fns fns = { flavour, sf };
1812
1813 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1814 }
1815
1816 /* Initialize OBJFILE to read symbols from its associated BFD. It
1817 either returns or calls error(). The result is an initialized
1818 struct sym_fns in the objfile structure, that contains cached
1819 information about the symbol file. */
1820
1821 static const struct sym_fns *
1822 find_sym_fns (bfd *abfd)
1823 {
1824 registered_sym_fns *rsf;
1825 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1826 int i;
1827
1828 if (our_flavour == bfd_target_srec_flavour
1829 || our_flavour == bfd_target_ihex_flavour
1830 || our_flavour == bfd_target_tekhex_flavour)
1831 return NULL; /* No symbols. */
1832
1833 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1834 if (our_flavour == rsf->sym_flavour)
1835 return rsf->sym_fns;
1836
1837 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1838 bfd_get_target (abfd));
1839 }
1840 \f
1841
1842 /* This function runs the load command of our current target. */
1843
1844 static void
1845 load_command (char *arg, int from_tty)
1846 {
1847 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1848
1849 dont_repeat ();
1850
1851 /* The user might be reloading because the binary has changed. Take
1852 this opportunity to check. */
1853 reopen_exec_file ();
1854 reread_symbols ();
1855
1856 if (arg == NULL)
1857 {
1858 char *parg;
1859 int count = 0;
1860
1861 parg = arg = get_exec_file (1);
1862
1863 /* Count how many \ " ' tab space there are in the name. */
1864 while ((parg = strpbrk (parg, "\\\"'\t ")))
1865 {
1866 parg++;
1867 count++;
1868 }
1869
1870 if (count)
1871 {
1872 /* We need to quote this string so buildargv can pull it apart. */
1873 char *temp = xmalloc (strlen (arg) + count + 1 );
1874 char *ptemp = temp;
1875 char *prev;
1876
1877 make_cleanup (xfree, temp);
1878
1879 prev = parg = arg;
1880 while ((parg = strpbrk (parg, "\\\"'\t ")))
1881 {
1882 strncpy (ptemp, prev, parg - prev);
1883 ptemp += parg - prev;
1884 prev = parg++;
1885 *ptemp++ = '\\';
1886 }
1887 strcpy (ptemp, prev);
1888
1889 arg = temp;
1890 }
1891 }
1892
1893 target_load (arg, from_tty);
1894
1895 /* After re-loading the executable, we don't really know which
1896 overlays are mapped any more. */
1897 overlay_cache_invalid = 1;
1898
1899 do_cleanups (cleanup);
1900 }
1901
1902 /* This version of "load" should be usable for any target. Currently
1903 it is just used for remote targets, not inftarg.c or core files,
1904 on the theory that only in that case is it useful.
1905
1906 Avoiding xmodem and the like seems like a win (a) because we don't have
1907 to worry about finding it, and (b) On VMS, fork() is very slow and so
1908 we don't want to run a subprocess. On the other hand, I'm not sure how
1909 performance compares. */
1910
1911 static int validate_download = 0;
1912
1913 /* Callback service function for generic_load (bfd_map_over_sections). */
1914
1915 static void
1916 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1917 {
1918 bfd_size_type *sum = data;
1919
1920 *sum += bfd_get_section_size (asec);
1921 }
1922
1923 /* Opaque data for load_section_callback. */
1924 struct load_section_data {
1925 CORE_ADDR load_offset;
1926 struct load_progress_data *progress_data;
1927 VEC(memory_write_request_s) *requests;
1928 };
1929
1930 /* Opaque data for load_progress. */
1931 struct load_progress_data {
1932 /* Cumulative data. */
1933 unsigned long write_count;
1934 unsigned long data_count;
1935 bfd_size_type total_size;
1936 };
1937
1938 /* Opaque data for load_progress for a single section. */
1939 struct load_progress_section_data {
1940 struct load_progress_data *cumulative;
1941
1942 /* Per-section data. */
1943 const char *section_name;
1944 ULONGEST section_sent;
1945 ULONGEST section_size;
1946 CORE_ADDR lma;
1947 gdb_byte *buffer;
1948 };
1949
1950 /* Target write callback routine for progress reporting. */
1951
1952 static void
1953 load_progress (ULONGEST bytes, void *untyped_arg)
1954 {
1955 struct load_progress_section_data *args = untyped_arg;
1956 struct load_progress_data *totals;
1957
1958 if (args == NULL)
1959 /* Writing padding data. No easy way to get at the cumulative
1960 stats, so just ignore this. */
1961 return;
1962
1963 totals = args->cumulative;
1964
1965 if (bytes == 0 && args->section_sent == 0)
1966 {
1967 /* The write is just starting. Let the user know we've started
1968 this section. */
1969 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1970 args->section_name, hex_string (args->section_size),
1971 paddress (target_gdbarch (), args->lma));
1972 return;
1973 }
1974
1975 if (validate_download)
1976 {
1977 /* Broken memories and broken monitors manifest themselves here
1978 when bring new computers to life. This doubles already slow
1979 downloads. */
1980 /* NOTE: cagney/1999-10-18: A more efficient implementation
1981 might add a verify_memory() method to the target vector and
1982 then use that. remote.c could implement that method using
1983 the ``qCRC'' packet. */
1984 gdb_byte *check = xmalloc (bytes);
1985 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1986
1987 if (target_read_memory (args->lma, check, bytes) != 0)
1988 error (_("Download verify read failed at %s"),
1989 paddress (target_gdbarch (), args->lma));
1990 if (memcmp (args->buffer, check, bytes) != 0)
1991 error (_("Download verify compare failed at %s"),
1992 paddress (target_gdbarch (), args->lma));
1993 do_cleanups (verify_cleanups);
1994 }
1995 totals->data_count += bytes;
1996 args->lma += bytes;
1997 args->buffer += bytes;
1998 totals->write_count += 1;
1999 args->section_sent += bytes;
2000 if (check_quit_flag ()
2001 || (deprecated_ui_load_progress_hook != NULL
2002 && deprecated_ui_load_progress_hook (args->section_name,
2003 args->section_sent)))
2004 error (_("Canceled the download"));
2005
2006 if (deprecated_show_load_progress != NULL)
2007 deprecated_show_load_progress (args->section_name,
2008 args->section_sent,
2009 args->section_size,
2010 totals->data_count,
2011 totals->total_size);
2012 }
2013
2014 /* Callback service function for generic_load (bfd_map_over_sections). */
2015
2016 static void
2017 load_section_callback (bfd *abfd, asection *asec, void *data)
2018 {
2019 struct memory_write_request *new_request;
2020 struct load_section_data *args = data;
2021 struct load_progress_section_data *section_data;
2022 bfd_size_type size = bfd_get_section_size (asec);
2023 gdb_byte *buffer;
2024 const char *sect_name = bfd_get_section_name (abfd, asec);
2025
2026 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2027 return;
2028
2029 if (size == 0)
2030 return;
2031
2032 new_request = VEC_safe_push (memory_write_request_s,
2033 args->requests, NULL);
2034 memset (new_request, 0, sizeof (struct memory_write_request));
2035 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2036 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2037 new_request->end = new_request->begin + size; /* FIXME Should size
2038 be in instead? */
2039 new_request->data = xmalloc (size);
2040 new_request->baton = section_data;
2041
2042 buffer = new_request->data;
2043
2044 section_data->cumulative = args->progress_data;
2045 section_data->section_name = sect_name;
2046 section_data->section_size = size;
2047 section_data->lma = new_request->begin;
2048 section_data->buffer = buffer;
2049
2050 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2051 }
2052
2053 /* Clean up an entire memory request vector, including load
2054 data and progress records. */
2055
2056 static void
2057 clear_memory_write_data (void *arg)
2058 {
2059 VEC(memory_write_request_s) **vec_p = arg;
2060 VEC(memory_write_request_s) *vec = *vec_p;
2061 int i;
2062 struct memory_write_request *mr;
2063
2064 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2065 {
2066 xfree (mr->data);
2067 xfree (mr->baton);
2068 }
2069 VEC_free (memory_write_request_s, vec);
2070 }
2071
2072 void
2073 generic_load (const char *args, int from_tty)
2074 {
2075 bfd *loadfile_bfd;
2076 struct timeval start_time, end_time;
2077 char *filename;
2078 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2079 struct load_section_data cbdata;
2080 struct load_progress_data total_progress;
2081 struct ui_out *uiout = current_uiout;
2082
2083 CORE_ADDR entry;
2084 char **argv;
2085
2086 memset (&cbdata, 0, sizeof (cbdata));
2087 memset (&total_progress, 0, sizeof (total_progress));
2088 cbdata.progress_data = &total_progress;
2089
2090 make_cleanup (clear_memory_write_data, &cbdata.requests);
2091
2092 if (args == NULL)
2093 error_no_arg (_("file to load"));
2094
2095 argv = gdb_buildargv (args);
2096 make_cleanup_freeargv (argv);
2097
2098 filename = tilde_expand (argv[0]);
2099 make_cleanup (xfree, filename);
2100
2101 if (argv[1] != NULL)
2102 {
2103 const char *endptr;
2104
2105 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2106
2107 /* If the last word was not a valid number then
2108 treat it as a file name with spaces in. */
2109 if (argv[1] == endptr)
2110 error (_("Invalid download offset:%s."), argv[1]);
2111
2112 if (argv[2] != NULL)
2113 error (_("Too many parameters."));
2114 }
2115
2116 /* Open the file for loading. */
2117 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2118 if (loadfile_bfd == NULL)
2119 {
2120 perror_with_name (filename);
2121 return;
2122 }
2123
2124 make_cleanup_bfd_unref (loadfile_bfd);
2125
2126 if (!bfd_check_format (loadfile_bfd, bfd_object))
2127 {
2128 error (_("\"%s\" is not an object file: %s"), filename,
2129 bfd_errmsg (bfd_get_error ()));
2130 }
2131
2132 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2133 (void *) &total_progress.total_size);
2134
2135 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2136
2137 gettimeofday (&start_time, NULL);
2138
2139 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2140 load_progress) != 0)
2141 error (_("Load failed"));
2142
2143 gettimeofday (&end_time, NULL);
2144
2145 entry = bfd_get_start_address (loadfile_bfd);
2146 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2147 ui_out_text (uiout, "Start address ");
2148 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2149 ui_out_text (uiout, ", load size ");
2150 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2151 ui_out_text (uiout, "\n");
2152 /* We were doing this in remote-mips.c, I suspect it is right
2153 for other targets too. */
2154 regcache_write_pc (get_current_regcache (), entry);
2155
2156 /* Reset breakpoints, now that we have changed the load image. For
2157 instance, breakpoints may have been set (or reset, by
2158 post_create_inferior) while connected to the target but before we
2159 loaded the program. In that case, the prologue analyzer could
2160 have read instructions from the target to find the right
2161 breakpoint locations. Loading has changed the contents of that
2162 memory. */
2163
2164 breakpoint_re_set ();
2165
2166 /* FIXME: are we supposed to call symbol_file_add or not? According
2167 to a comment from remote-mips.c (where a call to symbol_file_add
2168 was commented out), making the call confuses GDB if more than one
2169 file is loaded in. Some targets do (e.g., remote-vx.c) but
2170 others don't (or didn't - perhaps they have all been deleted). */
2171
2172 print_transfer_performance (gdb_stdout, total_progress.data_count,
2173 total_progress.write_count,
2174 &start_time, &end_time);
2175
2176 do_cleanups (old_cleanups);
2177 }
2178
2179 /* Report how fast the transfer went. */
2180
2181 void
2182 print_transfer_performance (struct ui_file *stream,
2183 unsigned long data_count,
2184 unsigned long write_count,
2185 const struct timeval *start_time,
2186 const struct timeval *end_time)
2187 {
2188 ULONGEST time_count;
2189 struct ui_out *uiout = current_uiout;
2190
2191 /* Compute the elapsed time in milliseconds, as a tradeoff between
2192 accuracy and overflow. */
2193 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2194 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2195
2196 ui_out_text (uiout, "Transfer rate: ");
2197 if (time_count > 0)
2198 {
2199 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2200
2201 if (ui_out_is_mi_like_p (uiout))
2202 {
2203 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2204 ui_out_text (uiout, " bits/sec");
2205 }
2206 else if (rate < 1024)
2207 {
2208 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2209 ui_out_text (uiout, " bytes/sec");
2210 }
2211 else
2212 {
2213 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2214 ui_out_text (uiout, " KB/sec");
2215 }
2216 }
2217 else
2218 {
2219 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2220 ui_out_text (uiout, " bits in <1 sec");
2221 }
2222 if (write_count > 0)
2223 {
2224 ui_out_text (uiout, ", ");
2225 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2226 ui_out_text (uiout, " bytes/write");
2227 }
2228 ui_out_text (uiout, ".\n");
2229 }
2230
2231 /* This function allows the addition of incrementally linked object files.
2232 It does not modify any state in the target, only in the debugger. */
2233 /* Note: ezannoni 2000-04-13 This function/command used to have a
2234 special case syntax for the rombug target (Rombug is the boot
2235 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2236 rombug case, the user doesn't need to supply a text address,
2237 instead a call to target_link() (in target.c) would supply the
2238 value to use. We are now discontinuing this type of ad hoc syntax. */
2239
2240 static void
2241 add_symbol_file_command (char *args, int from_tty)
2242 {
2243 struct gdbarch *gdbarch = get_current_arch ();
2244 char *filename = NULL;
2245 int flags = OBJF_USERLOADED | OBJF_SHARED;
2246 char *arg;
2247 int section_index = 0;
2248 int argcnt = 0;
2249 int sec_num = 0;
2250 int i;
2251 int expecting_sec_name = 0;
2252 int expecting_sec_addr = 0;
2253 char **argv;
2254 struct objfile *objf;
2255
2256 struct sect_opt
2257 {
2258 char *name;
2259 char *value;
2260 };
2261
2262 struct section_addr_info *section_addrs;
2263 struct sect_opt *sect_opts = NULL;
2264 size_t num_sect_opts = 0;
2265 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2266
2267 num_sect_opts = 16;
2268 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2269 * sizeof (struct sect_opt));
2270
2271 dont_repeat ();
2272
2273 if (args == NULL)
2274 error (_("add-symbol-file takes a file name and an address"));
2275
2276 argv = gdb_buildargv (args);
2277 make_cleanup_freeargv (argv);
2278
2279 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2280 {
2281 /* Process the argument. */
2282 if (argcnt == 0)
2283 {
2284 /* The first argument is the file name. */
2285 filename = tilde_expand (arg);
2286 make_cleanup (xfree, filename);
2287 }
2288 else if (argcnt == 1)
2289 {
2290 /* The second argument is always the text address at which
2291 to load the program. */
2292 sect_opts[section_index].name = ".text";
2293 sect_opts[section_index].value = arg;
2294 if (++section_index >= num_sect_opts)
2295 {
2296 num_sect_opts *= 2;
2297 sect_opts = ((struct sect_opt *)
2298 xrealloc (sect_opts,
2299 num_sect_opts
2300 * sizeof (struct sect_opt)));
2301 }
2302 }
2303 else
2304 {
2305 /* It's an option (starting with '-') or it's an argument
2306 to an option. */
2307 if (expecting_sec_name)
2308 {
2309 sect_opts[section_index].name = arg;
2310 expecting_sec_name = 0;
2311 }
2312 else if (expecting_sec_addr)
2313 {
2314 sect_opts[section_index].value = arg;
2315 expecting_sec_addr = 0;
2316 if (++section_index >= num_sect_opts)
2317 {
2318 num_sect_opts *= 2;
2319 sect_opts = ((struct sect_opt *)
2320 xrealloc (sect_opts,
2321 num_sect_opts
2322 * sizeof (struct sect_opt)));
2323 }
2324 }
2325 else if (strcmp (arg, "-readnow") == 0)
2326 flags |= OBJF_READNOW;
2327 else if (strcmp (arg, "-s") == 0)
2328 {
2329 expecting_sec_name = 1;
2330 expecting_sec_addr = 1;
2331 }
2332 else
2333 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2334 " [-readnow] [-s <secname> <addr>]*"));
2335 }
2336 }
2337
2338 /* This command takes at least two arguments. The first one is a
2339 filename, and the second is the address where this file has been
2340 loaded. Abort now if this address hasn't been provided by the
2341 user. */
2342 if (section_index < 1)
2343 error (_("The address where %s has been loaded is missing"), filename);
2344
2345 /* Print the prompt for the query below. And save the arguments into
2346 a sect_addr_info structure to be passed around to other
2347 functions. We have to split this up into separate print
2348 statements because hex_string returns a local static
2349 string. */
2350
2351 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2352 section_addrs = alloc_section_addr_info (section_index);
2353 make_cleanup (xfree, section_addrs);
2354 for (i = 0; i < section_index; i++)
2355 {
2356 CORE_ADDR addr;
2357 char *val = sect_opts[i].value;
2358 char *sec = sect_opts[i].name;
2359
2360 addr = parse_and_eval_address (val);
2361
2362 /* Here we store the section offsets in the order they were
2363 entered on the command line. */
2364 section_addrs->other[sec_num].name = sec;
2365 section_addrs->other[sec_num].addr = addr;
2366 printf_unfiltered ("\t%s_addr = %s\n", sec,
2367 paddress (gdbarch, addr));
2368 sec_num++;
2369
2370 /* The object's sections are initialized when a
2371 call is made to build_objfile_section_table (objfile).
2372 This happens in reread_symbols.
2373 At this point, we don't know what file type this is,
2374 so we can't determine what section names are valid. */
2375 }
2376 section_addrs->num_sections = sec_num;
2377
2378 if (from_tty && (!query ("%s", "")))
2379 error (_("Not confirmed."));
2380
2381 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2382 section_addrs, flags);
2383
2384 add_target_sections_of_objfile (objf);
2385
2386 /* Getting new symbols may change our opinion about what is
2387 frameless. */
2388 reinit_frame_cache ();
2389 do_cleanups (my_cleanups);
2390 }
2391 \f
2392
2393 /* This function removes a symbol file that was added via add-symbol-file. */
2394
2395 static void
2396 remove_symbol_file_command (char *args, int from_tty)
2397 {
2398 char **argv;
2399 struct objfile *objf = NULL;
2400 struct cleanup *my_cleanups;
2401 struct program_space *pspace = current_program_space;
2402 struct gdbarch *gdbarch = get_current_arch ();
2403
2404 dont_repeat ();
2405
2406 if (args == NULL)
2407 error (_("remove-symbol-file: no symbol file provided"));
2408
2409 my_cleanups = make_cleanup (null_cleanup, NULL);
2410
2411 argv = gdb_buildargv (args);
2412
2413 if (strcmp (argv[0], "-a") == 0)
2414 {
2415 /* Interpret the next argument as an address. */
2416 CORE_ADDR addr;
2417
2418 if (argv[1] == NULL)
2419 error (_("Missing address argument"));
2420
2421 if (argv[2] != NULL)
2422 error (_("Junk after %s"), argv[1]);
2423
2424 addr = parse_and_eval_address (argv[1]);
2425
2426 ALL_OBJFILES (objf)
2427 {
2428 if ((objf->flags & OBJF_USERLOADED) != 0
2429 && (objf->flags & OBJF_SHARED) != 0
2430 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2431 break;
2432 }
2433 }
2434 else if (argv[0] != NULL)
2435 {
2436 /* Interpret the current argument as a file name. */
2437 char *filename;
2438
2439 if (argv[1] != NULL)
2440 error (_("Junk after %s"), argv[0]);
2441
2442 filename = tilde_expand (argv[0]);
2443 make_cleanup (xfree, filename);
2444
2445 ALL_OBJFILES (objf)
2446 {
2447 if ((objf->flags & OBJF_USERLOADED) != 0
2448 && (objf->flags & OBJF_SHARED) != 0
2449 && objf->pspace == pspace
2450 && filename_cmp (filename, objfile_name (objf)) == 0)
2451 break;
2452 }
2453 }
2454
2455 if (objf == NULL)
2456 error (_("No symbol file found"));
2457
2458 if (from_tty
2459 && !query (_("Remove symbol table from file \"%s\"? "),
2460 objfile_name (objf)))
2461 error (_("Not confirmed."));
2462
2463 free_objfile (objf);
2464 clear_symtab_users (0);
2465
2466 do_cleanups (my_cleanups);
2467 }
2468
2469 typedef struct objfile *objfilep;
2470
2471 DEF_VEC_P (objfilep);
2472
2473 /* Re-read symbols if a symbol-file has changed. */
2474
2475 void
2476 reread_symbols (void)
2477 {
2478 struct objfile *objfile;
2479 long new_modtime;
2480 struct stat new_statbuf;
2481 int res;
2482 VEC (objfilep) *new_objfiles = NULL;
2483 struct cleanup *all_cleanups;
2484
2485 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2486
2487 /* With the addition of shared libraries, this should be modified,
2488 the load time should be saved in the partial symbol tables, since
2489 different tables may come from different source files. FIXME.
2490 This routine should then walk down each partial symbol table
2491 and see if the symbol table that it originates from has been changed. */
2492
2493 for (objfile = object_files; objfile; objfile = objfile->next)
2494 {
2495 if (objfile->obfd == NULL)
2496 continue;
2497
2498 /* Separate debug objfiles are handled in the main objfile. */
2499 if (objfile->separate_debug_objfile_backlink)
2500 continue;
2501
2502 /* If this object is from an archive (what you usually create with
2503 `ar', often called a `static library' on most systems, though
2504 a `shared library' on AIX is also an archive), then you should
2505 stat on the archive name, not member name. */
2506 if (objfile->obfd->my_archive)
2507 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2508 else
2509 res = stat (objfile_name (objfile), &new_statbuf);
2510 if (res != 0)
2511 {
2512 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2513 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2514 objfile_name (objfile));
2515 continue;
2516 }
2517 new_modtime = new_statbuf.st_mtime;
2518 if (new_modtime != objfile->mtime)
2519 {
2520 struct cleanup *old_cleanups;
2521 struct section_offsets *offsets;
2522 int num_offsets;
2523 char *original_name;
2524
2525 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2526 objfile_name (objfile));
2527
2528 /* There are various functions like symbol_file_add,
2529 symfile_bfd_open, syms_from_objfile, etc., which might
2530 appear to do what we want. But they have various other
2531 effects which we *don't* want. So we just do stuff
2532 ourselves. We don't worry about mapped files (for one thing,
2533 any mapped file will be out of date). */
2534
2535 /* If we get an error, blow away this objfile (not sure if
2536 that is the correct response for things like shared
2537 libraries). */
2538 old_cleanups = make_cleanup_free_objfile (objfile);
2539 /* We need to do this whenever any symbols go away. */
2540 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2541
2542 if (exec_bfd != NULL
2543 && filename_cmp (bfd_get_filename (objfile->obfd),
2544 bfd_get_filename (exec_bfd)) == 0)
2545 {
2546 /* Reload EXEC_BFD without asking anything. */
2547
2548 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2549 }
2550
2551 /* Keep the calls order approx. the same as in free_objfile. */
2552
2553 /* Free the separate debug objfiles. It will be
2554 automatically recreated by sym_read. */
2555 free_objfile_separate_debug (objfile);
2556
2557 /* Remove any references to this objfile in the global
2558 value lists. */
2559 preserve_values (objfile);
2560
2561 /* Nuke all the state that we will re-read. Much of the following
2562 code which sets things to NULL really is necessary to tell
2563 other parts of GDB that there is nothing currently there.
2564
2565 Try to keep the freeing order compatible with free_objfile. */
2566
2567 if (objfile->sf != NULL)
2568 {
2569 (*objfile->sf->sym_finish) (objfile);
2570 }
2571
2572 clear_objfile_data (objfile);
2573
2574 /* Clean up any state BFD has sitting around. */
2575 {
2576 struct bfd *obfd = objfile->obfd;
2577 char *obfd_filename;
2578
2579 obfd_filename = bfd_get_filename (objfile->obfd);
2580 /* Open the new BFD before freeing the old one, so that
2581 the filename remains live. */
2582 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2583 if (objfile->obfd == NULL)
2584 {
2585 /* We have to make a cleanup and error here, rather
2586 than erroring later, because once we unref OBFD,
2587 OBFD_FILENAME will be freed. */
2588 make_cleanup_bfd_unref (obfd);
2589 error (_("Can't open %s to read symbols."), obfd_filename);
2590 }
2591 gdb_bfd_unref (obfd);
2592 }
2593
2594 original_name = xstrdup (objfile->original_name);
2595 make_cleanup (xfree, original_name);
2596
2597 /* bfd_openr sets cacheable to true, which is what we want. */
2598 if (!bfd_check_format (objfile->obfd, bfd_object))
2599 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2600 bfd_errmsg (bfd_get_error ()));
2601
2602 /* Save the offsets, we will nuke them with the rest of the
2603 objfile_obstack. */
2604 num_offsets = objfile->num_sections;
2605 offsets = ((struct section_offsets *)
2606 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2607 memcpy (offsets, objfile->section_offsets,
2608 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2609
2610 /* FIXME: Do we have to free a whole linked list, or is this
2611 enough? */
2612 if (objfile->global_psymbols.list)
2613 xfree (objfile->global_psymbols.list);
2614 memset (&objfile->global_psymbols, 0,
2615 sizeof (objfile->global_psymbols));
2616 if (objfile->static_psymbols.list)
2617 xfree (objfile->static_psymbols.list);
2618 memset (&objfile->static_psymbols, 0,
2619 sizeof (objfile->static_psymbols));
2620
2621 /* Free the obstacks for non-reusable objfiles. */
2622 psymbol_bcache_free (objfile->psymbol_cache);
2623 objfile->psymbol_cache = psymbol_bcache_init ();
2624 obstack_free (&objfile->objfile_obstack, 0);
2625 objfile->sections = NULL;
2626 objfile->compunit_symtabs = NULL;
2627 objfile->psymtabs = NULL;
2628 objfile->psymtabs_addrmap = NULL;
2629 objfile->free_psymtabs = NULL;
2630 objfile->template_symbols = NULL;
2631
2632 /* obstack_init also initializes the obstack so it is
2633 empty. We could use obstack_specify_allocation but
2634 gdb_obstack.h specifies the alloc/dealloc functions. */
2635 obstack_init (&objfile->objfile_obstack);
2636
2637 /* set_objfile_per_bfd potentially allocates the per-bfd
2638 data on the objfile's obstack (if sharing data across
2639 multiple users is not possible), so it's important to
2640 do it *after* the obstack has been initialized. */
2641 set_objfile_per_bfd (objfile);
2642
2643 objfile->original_name = obstack_copy0 (&objfile->objfile_obstack,
2644 original_name,
2645 strlen (original_name));
2646
2647 /* Reset the sym_fns pointer. The ELF reader can change it
2648 based on whether .gdb_index is present, and we need it to
2649 start over. PR symtab/15885 */
2650 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2651
2652 build_objfile_section_table (objfile);
2653 terminate_minimal_symbol_table (objfile);
2654
2655 /* We use the same section offsets as from last time. I'm not
2656 sure whether that is always correct for shared libraries. */
2657 objfile->section_offsets = (struct section_offsets *)
2658 obstack_alloc (&objfile->objfile_obstack,
2659 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2660 memcpy (objfile->section_offsets, offsets,
2661 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2662 objfile->num_sections = num_offsets;
2663
2664 /* What the hell is sym_new_init for, anyway? The concept of
2665 distinguishing between the main file and additional files
2666 in this way seems rather dubious. */
2667 if (objfile == symfile_objfile)
2668 {
2669 (*objfile->sf->sym_new_init) (objfile);
2670 }
2671
2672 (*objfile->sf->sym_init) (objfile);
2673 clear_complaints (&symfile_complaints, 1, 1);
2674
2675 objfile->flags &= ~OBJF_PSYMTABS_READ;
2676 read_symbols (objfile, 0);
2677
2678 if (!objfile_has_symbols (objfile))
2679 {
2680 wrap_here ("");
2681 printf_unfiltered (_("(no debugging symbols found)\n"));
2682 wrap_here ("");
2683 }
2684
2685 /* We're done reading the symbol file; finish off complaints. */
2686 clear_complaints (&symfile_complaints, 0, 1);
2687
2688 /* Getting new symbols may change our opinion about what is
2689 frameless. */
2690
2691 reinit_frame_cache ();
2692
2693 /* Discard cleanups as symbol reading was successful. */
2694 discard_cleanups (old_cleanups);
2695
2696 /* If the mtime has changed between the time we set new_modtime
2697 and now, we *want* this to be out of date, so don't call stat
2698 again now. */
2699 objfile->mtime = new_modtime;
2700 init_entry_point_info (objfile);
2701
2702 VEC_safe_push (objfilep, new_objfiles, objfile);
2703 }
2704 }
2705
2706 if (new_objfiles)
2707 {
2708 int ix;
2709
2710 /* Notify objfiles that we've modified objfile sections. */
2711 objfiles_changed ();
2712
2713 clear_symtab_users (0);
2714
2715 /* clear_objfile_data for each objfile was called before freeing it and
2716 observer_notify_new_objfile (NULL) has been called by
2717 clear_symtab_users above. Notify the new files now. */
2718 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2719 observer_notify_new_objfile (objfile);
2720
2721 /* At least one objfile has changed, so we can consider that
2722 the executable we're debugging has changed too. */
2723 observer_notify_executable_changed ();
2724 }
2725
2726 do_cleanups (all_cleanups);
2727 }
2728 \f
2729
2730 typedef struct
2731 {
2732 char *ext;
2733 enum language lang;
2734 }
2735 filename_language;
2736
2737 static filename_language *filename_language_table;
2738 static int fl_table_size, fl_table_next;
2739
2740 static void
2741 add_filename_language (char *ext, enum language lang)
2742 {
2743 if (fl_table_next >= fl_table_size)
2744 {
2745 fl_table_size += 10;
2746 filename_language_table =
2747 xrealloc (filename_language_table,
2748 fl_table_size * sizeof (*filename_language_table));
2749 }
2750
2751 filename_language_table[fl_table_next].ext = xstrdup (ext);
2752 filename_language_table[fl_table_next].lang = lang;
2753 fl_table_next++;
2754 }
2755
2756 static char *ext_args;
2757 static void
2758 show_ext_args (struct ui_file *file, int from_tty,
2759 struct cmd_list_element *c, const char *value)
2760 {
2761 fprintf_filtered (file,
2762 _("Mapping between filename extension "
2763 "and source language is \"%s\".\n"),
2764 value);
2765 }
2766
2767 static void
2768 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2769 {
2770 int i;
2771 char *cp = ext_args;
2772 enum language lang;
2773
2774 /* First arg is filename extension, starting with '.' */
2775 if (*cp != '.')
2776 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2777
2778 /* Find end of first arg. */
2779 while (*cp && !isspace (*cp))
2780 cp++;
2781
2782 if (*cp == '\0')
2783 error (_("'%s': two arguments required -- "
2784 "filename extension and language"),
2785 ext_args);
2786
2787 /* Null-terminate first arg. */
2788 *cp++ = '\0';
2789
2790 /* Find beginning of second arg, which should be a source language. */
2791 cp = skip_spaces (cp);
2792
2793 if (*cp == '\0')
2794 error (_("'%s': two arguments required -- "
2795 "filename extension and language"),
2796 ext_args);
2797
2798 /* Lookup the language from among those we know. */
2799 lang = language_enum (cp);
2800
2801 /* Now lookup the filename extension: do we already know it? */
2802 for (i = 0; i < fl_table_next; i++)
2803 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2804 break;
2805
2806 if (i >= fl_table_next)
2807 {
2808 /* New file extension. */
2809 add_filename_language (ext_args, lang);
2810 }
2811 else
2812 {
2813 /* Redefining a previously known filename extension. */
2814
2815 /* if (from_tty) */
2816 /* query ("Really make files of type %s '%s'?", */
2817 /* ext_args, language_str (lang)); */
2818
2819 xfree (filename_language_table[i].ext);
2820 filename_language_table[i].ext = xstrdup (ext_args);
2821 filename_language_table[i].lang = lang;
2822 }
2823 }
2824
2825 static void
2826 info_ext_lang_command (char *args, int from_tty)
2827 {
2828 int i;
2829
2830 printf_filtered (_("Filename extensions and the languages they represent:"));
2831 printf_filtered ("\n\n");
2832 for (i = 0; i < fl_table_next; i++)
2833 printf_filtered ("\t%s\t- %s\n",
2834 filename_language_table[i].ext,
2835 language_str (filename_language_table[i].lang));
2836 }
2837
2838 static void
2839 init_filename_language_table (void)
2840 {
2841 if (fl_table_size == 0) /* Protect against repetition. */
2842 {
2843 fl_table_size = 20;
2844 fl_table_next = 0;
2845 filename_language_table =
2846 xmalloc (fl_table_size * sizeof (*filename_language_table));
2847 add_filename_language (".c", language_c);
2848 add_filename_language (".d", language_d);
2849 add_filename_language (".C", language_cplus);
2850 add_filename_language (".cc", language_cplus);
2851 add_filename_language (".cp", language_cplus);
2852 add_filename_language (".cpp", language_cplus);
2853 add_filename_language (".cxx", language_cplus);
2854 add_filename_language (".c++", language_cplus);
2855 add_filename_language (".java", language_java);
2856 add_filename_language (".class", language_java);
2857 add_filename_language (".m", language_objc);
2858 add_filename_language (".f", language_fortran);
2859 add_filename_language (".F", language_fortran);
2860 add_filename_language (".for", language_fortran);
2861 add_filename_language (".FOR", language_fortran);
2862 add_filename_language (".ftn", language_fortran);
2863 add_filename_language (".FTN", language_fortran);
2864 add_filename_language (".fpp", language_fortran);
2865 add_filename_language (".FPP", language_fortran);
2866 add_filename_language (".f90", language_fortran);
2867 add_filename_language (".F90", language_fortran);
2868 add_filename_language (".f95", language_fortran);
2869 add_filename_language (".F95", language_fortran);
2870 add_filename_language (".f03", language_fortran);
2871 add_filename_language (".F03", language_fortran);
2872 add_filename_language (".f08", language_fortran);
2873 add_filename_language (".F08", language_fortran);
2874 add_filename_language (".s", language_asm);
2875 add_filename_language (".sx", language_asm);
2876 add_filename_language (".S", language_asm);
2877 add_filename_language (".pas", language_pascal);
2878 add_filename_language (".p", language_pascal);
2879 add_filename_language (".pp", language_pascal);
2880 add_filename_language (".adb", language_ada);
2881 add_filename_language (".ads", language_ada);
2882 add_filename_language (".a", language_ada);
2883 add_filename_language (".ada", language_ada);
2884 add_filename_language (".dg", language_ada);
2885 }
2886 }
2887
2888 enum language
2889 deduce_language_from_filename (const char *filename)
2890 {
2891 int i;
2892 char *cp;
2893
2894 if (filename != NULL)
2895 if ((cp = strrchr (filename, '.')) != NULL)
2896 for (i = 0; i < fl_table_next; i++)
2897 if (strcmp (cp, filename_language_table[i].ext) == 0)
2898 return filename_language_table[i].lang;
2899
2900 return language_unknown;
2901 }
2902 \f
2903 /* Allocate and initialize a new symbol table.
2904 CUST is from the result of allocate_compunit_symtab. */
2905
2906 struct symtab *
2907 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2908 {
2909 struct objfile *objfile = cust->objfile;
2910 struct symtab *symtab
2911 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2912
2913 symtab->filename = bcache (filename, strlen (filename) + 1,
2914 objfile->per_bfd->filename_cache);
2915 symtab->fullname = NULL;
2916 symtab->language = deduce_language_from_filename (filename);
2917
2918 /* This can be very verbose with lots of headers.
2919 Only print at higher debug levels. */
2920 if (symtab_create_debug >= 2)
2921 {
2922 /* Be a bit clever with debugging messages, and don't print objfile
2923 every time, only when it changes. */
2924 static char *last_objfile_name = NULL;
2925
2926 if (last_objfile_name == NULL
2927 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2928 {
2929 xfree (last_objfile_name);
2930 last_objfile_name = xstrdup (objfile_name (objfile));
2931 fprintf_unfiltered (gdb_stdlog,
2932 "Creating one or more symtabs for objfile %s ...\n",
2933 last_objfile_name);
2934 }
2935 fprintf_unfiltered (gdb_stdlog,
2936 "Created symtab %s for module %s.\n",
2937 host_address_to_string (symtab), filename);
2938 }
2939
2940 /* Add it to CUST's list of symtabs. */
2941 if (cust->filetabs == NULL)
2942 {
2943 cust->filetabs = symtab;
2944 cust->last_filetab = symtab;
2945 }
2946 else
2947 {
2948 cust->last_filetab->next = symtab;
2949 cust->last_filetab = symtab;
2950 }
2951
2952 /* Backlink to the containing compunit symtab. */
2953 symtab->compunit_symtab = cust;
2954
2955 return symtab;
2956 }
2957
2958 /* Allocate and initialize a new compunit.
2959 NAME is the name of the main source file, if there is one, or some
2960 descriptive text if there are no source files. */
2961
2962 struct compunit_symtab *
2963 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2964 {
2965 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2966 struct compunit_symtab);
2967 const char *saved_name;
2968
2969 cu->objfile = objfile;
2970
2971 /* The name we record here is only for display/debugging purposes.
2972 Just save the basename to avoid path issues (too long for display,
2973 relative vs absolute, etc.). */
2974 saved_name = lbasename (name);
2975 cu->name = obstack_copy0 (&objfile->objfile_obstack, saved_name,
2976 strlen (saved_name));
2977
2978 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2979
2980 if (symtab_create_debug)
2981 {
2982 fprintf_unfiltered (gdb_stdlog,
2983 "Created compunit symtab %s for %s.\n",
2984 host_address_to_string (cu),
2985 cu->name);
2986 }
2987
2988 return cu;
2989 }
2990
2991 /* Hook CU to the objfile it comes from. */
2992
2993 void
2994 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2995 {
2996 cu->next = cu->objfile->compunit_symtabs;
2997 cu->objfile->compunit_symtabs = cu;
2998 }
2999 \f
3000
3001 /* Reset all data structures in gdb which may contain references to symbol
3002 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
3003
3004 void
3005 clear_symtab_users (int add_flags)
3006 {
3007 /* Someday, we should do better than this, by only blowing away
3008 the things that really need to be blown. */
3009
3010 /* Clear the "current" symtab first, because it is no longer valid.
3011 breakpoint_re_set may try to access the current symtab. */
3012 clear_current_source_symtab_and_line ();
3013
3014 clear_displays ();
3015 clear_last_displayed_sal ();
3016 clear_pc_function_cache ();
3017 observer_notify_new_objfile (NULL);
3018
3019 /* Clear globals which might have pointed into a removed objfile.
3020 FIXME: It's not clear which of these are supposed to persist
3021 between expressions and which ought to be reset each time. */
3022 expression_context_block = NULL;
3023 innermost_block = NULL;
3024
3025 /* Varobj may refer to old symbols, perform a cleanup. */
3026 varobj_invalidate ();
3027
3028 /* Now that the various caches have been cleared, we can re_set
3029 our breakpoints without risking it using stale data. */
3030 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3031 breakpoint_re_set ();
3032 }
3033
3034 static void
3035 clear_symtab_users_cleanup (void *ignore)
3036 {
3037 clear_symtab_users (0);
3038 }
3039 \f
3040 /* OVERLAYS:
3041 The following code implements an abstraction for debugging overlay sections.
3042
3043 The target model is as follows:
3044 1) The gnu linker will permit multiple sections to be mapped into the
3045 same VMA, each with its own unique LMA (or load address).
3046 2) It is assumed that some runtime mechanism exists for mapping the
3047 sections, one by one, from the load address into the VMA address.
3048 3) This code provides a mechanism for gdb to keep track of which
3049 sections should be considered to be mapped from the VMA to the LMA.
3050 This information is used for symbol lookup, and memory read/write.
3051 For instance, if a section has been mapped then its contents
3052 should be read from the VMA, otherwise from the LMA.
3053
3054 Two levels of debugger support for overlays are available. One is
3055 "manual", in which the debugger relies on the user to tell it which
3056 overlays are currently mapped. This level of support is
3057 implemented entirely in the core debugger, and the information about
3058 whether a section is mapped is kept in the objfile->obj_section table.
3059
3060 The second level of support is "automatic", and is only available if
3061 the target-specific code provides functionality to read the target's
3062 overlay mapping table, and translate its contents for the debugger
3063 (by updating the mapped state information in the obj_section tables).
3064
3065 The interface is as follows:
3066 User commands:
3067 overlay map <name> -- tell gdb to consider this section mapped
3068 overlay unmap <name> -- tell gdb to consider this section unmapped
3069 overlay list -- list the sections that GDB thinks are mapped
3070 overlay read-target -- get the target's state of what's mapped
3071 overlay off/manual/auto -- set overlay debugging state
3072 Functional interface:
3073 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3074 section, return that section.
3075 find_pc_overlay(pc): find any overlay section that contains
3076 the pc, either in its VMA or its LMA
3077 section_is_mapped(sect): true if overlay is marked as mapped
3078 section_is_overlay(sect): true if section's VMA != LMA
3079 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3080 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3081 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3082 overlay_mapped_address(...): map an address from section's LMA to VMA
3083 overlay_unmapped_address(...): map an address from section's VMA to LMA
3084 symbol_overlayed_address(...): Return a "current" address for symbol:
3085 either in VMA or LMA depending on whether
3086 the symbol's section is currently mapped. */
3087
3088 /* Overlay debugging state: */
3089
3090 enum overlay_debugging_state overlay_debugging = ovly_off;
3091 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3092
3093 /* Function: section_is_overlay (SECTION)
3094 Returns true if SECTION has VMA not equal to LMA, ie.
3095 SECTION is loaded at an address different from where it will "run". */
3096
3097 int
3098 section_is_overlay (struct obj_section *section)
3099 {
3100 if (overlay_debugging && section)
3101 {
3102 bfd *abfd = section->objfile->obfd;
3103 asection *bfd_section = section->the_bfd_section;
3104
3105 if (bfd_section_lma (abfd, bfd_section) != 0
3106 && bfd_section_lma (abfd, bfd_section)
3107 != bfd_section_vma (abfd, bfd_section))
3108 return 1;
3109 }
3110
3111 return 0;
3112 }
3113
3114 /* Function: overlay_invalidate_all (void)
3115 Invalidate the mapped state of all overlay sections (mark it as stale). */
3116
3117 static void
3118 overlay_invalidate_all (void)
3119 {
3120 struct objfile *objfile;
3121 struct obj_section *sect;
3122
3123 ALL_OBJSECTIONS (objfile, sect)
3124 if (section_is_overlay (sect))
3125 sect->ovly_mapped = -1;
3126 }
3127
3128 /* Function: section_is_mapped (SECTION)
3129 Returns true if section is an overlay, and is currently mapped.
3130
3131 Access to the ovly_mapped flag is restricted to this function, so
3132 that we can do automatic update. If the global flag
3133 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3134 overlay_invalidate_all. If the mapped state of the particular
3135 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3136
3137 int
3138 section_is_mapped (struct obj_section *osect)
3139 {
3140 struct gdbarch *gdbarch;
3141
3142 if (osect == 0 || !section_is_overlay (osect))
3143 return 0;
3144
3145 switch (overlay_debugging)
3146 {
3147 default:
3148 case ovly_off:
3149 return 0; /* overlay debugging off */
3150 case ovly_auto: /* overlay debugging automatic */
3151 /* Unles there is a gdbarch_overlay_update function,
3152 there's really nothing useful to do here (can't really go auto). */
3153 gdbarch = get_objfile_arch (osect->objfile);
3154 if (gdbarch_overlay_update_p (gdbarch))
3155 {
3156 if (overlay_cache_invalid)
3157 {
3158 overlay_invalidate_all ();
3159 overlay_cache_invalid = 0;
3160 }
3161 if (osect->ovly_mapped == -1)
3162 gdbarch_overlay_update (gdbarch, osect);
3163 }
3164 /* fall thru to manual case */
3165 case ovly_on: /* overlay debugging manual */
3166 return osect->ovly_mapped == 1;
3167 }
3168 }
3169
3170 /* Function: pc_in_unmapped_range
3171 If PC falls into the lma range of SECTION, return true, else false. */
3172
3173 CORE_ADDR
3174 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3175 {
3176 if (section_is_overlay (section))
3177 {
3178 bfd *abfd = section->objfile->obfd;
3179 asection *bfd_section = section->the_bfd_section;
3180
3181 /* We assume the LMA is relocated by the same offset as the VMA. */
3182 bfd_vma size = bfd_get_section_size (bfd_section);
3183 CORE_ADDR offset = obj_section_offset (section);
3184
3185 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3186 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3187 return 1;
3188 }
3189
3190 return 0;
3191 }
3192
3193 /* Function: pc_in_mapped_range
3194 If PC falls into the vma range of SECTION, return true, else false. */
3195
3196 CORE_ADDR
3197 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3198 {
3199 if (section_is_overlay (section))
3200 {
3201 if (obj_section_addr (section) <= pc
3202 && pc < obj_section_endaddr (section))
3203 return 1;
3204 }
3205
3206 return 0;
3207 }
3208
3209 /* Return true if the mapped ranges of sections A and B overlap, false
3210 otherwise. */
3211
3212 static int
3213 sections_overlap (struct obj_section *a, struct obj_section *b)
3214 {
3215 CORE_ADDR a_start = obj_section_addr (a);
3216 CORE_ADDR a_end = obj_section_endaddr (a);
3217 CORE_ADDR b_start = obj_section_addr (b);
3218 CORE_ADDR b_end = obj_section_endaddr (b);
3219
3220 return (a_start < b_end && b_start < a_end);
3221 }
3222
3223 /* Function: overlay_unmapped_address (PC, SECTION)
3224 Returns the address corresponding to PC in the unmapped (load) range.
3225 May be the same as PC. */
3226
3227 CORE_ADDR
3228 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3229 {
3230 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3231 {
3232 bfd *abfd = section->objfile->obfd;
3233 asection *bfd_section = section->the_bfd_section;
3234
3235 return pc + bfd_section_lma (abfd, bfd_section)
3236 - bfd_section_vma (abfd, bfd_section);
3237 }
3238
3239 return pc;
3240 }
3241
3242 /* Function: overlay_mapped_address (PC, SECTION)
3243 Returns the address corresponding to PC in the mapped (runtime) range.
3244 May be the same as PC. */
3245
3246 CORE_ADDR
3247 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3248 {
3249 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3250 {
3251 bfd *abfd = section->objfile->obfd;
3252 asection *bfd_section = section->the_bfd_section;
3253
3254 return pc + bfd_section_vma (abfd, bfd_section)
3255 - bfd_section_lma (abfd, bfd_section);
3256 }
3257
3258 return pc;
3259 }
3260
3261 /* Function: symbol_overlayed_address
3262 Return one of two addresses (relative to the VMA or to the LMA),
3263 depending on whether the section is mapped or not. */
3264
3265 CORE_ADDR
3266 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3267 {
3268 if (overlay_debugging)
3269 {
3270 /* If the symbol has no section, just return its regular address. */
3271 if (section == 0)
3272 return address;
3273 /* If the symbol's section is not an overlay, just return its
3274 address. */
3275 if (!section_is_overlay (section))
3276 return address;
3277 /* If the symbol's section is mapped, just return its address. */
3278 if (section_is_mapped (section))
3279 return address;
3280 /*
3281 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3282 * then return its LOADED address rather than its vma address!!
3283 */
3284 return overlay_unmapped_address (address, section);
3285 }
3286 return address;
3287 }
3288
3289 /* Function: find_pc_overlay (PC)
3290 Return the best-match overlay section for PC:
3291 If PC matches a mapped overlay section's VMA, return that section.
3292 Else if PC matches an unmapped section's VMA, return that section.
3293 Else if PC matches an unmapped section's LMA, return that section. */
3294
3295 struct obj_section *
3296 find_pc_overlay (CORE_ADDR pc)
3297 {
3298 struct objfile *objfile;
3299 struct obj_section *osect, *best_match = NULL;
3300
3301 if (overlay_debugging)
3302 ALL_OBJSECTIONS (objfile, osect)
3303 if (section_is_overlay (osect))
3304 {
3305 if (pc_in_mapped_range (pc, osect))
3306 {
3307 if (section_is_mapped (osect))
3308 return osect;
3309 else
3310 best_match = osect;
3311 }
3312 else if (pc_in_unmapped_range (pc, osect))
3313 best_match = osect;
3314 }
3315 return best_match;
3316 }
3317
3318 /* Function: find_pc_mapped_section (PC)
3319 If PC falls into the VMA address range of an overlay section that is
3320 currently marked as MAPPED, return that section. Else return NULL. */
3321
3322 struct obj_section *
3323 find_pc_mapped_section (CORE_ADDR pc)
3324 {
3325 struct objfile *objfile;
3326 struct obj_section *osect;
3327
3328 if (overlay_debugging)
3329 ALL_OBJSECTIONS (objfile, osect)
3330 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3331 return osect;
3332
3333 return NULL;
3334 }
3335
3336 /* Function: list_overlays_command
3337 Print a list of mapped sections and their PC ranges. */
3338
3339 static void
3340 list_overlays_command (char *args, int from_tty)
3341 {
3342 int nmapped = 0;
3343 struct objfile *objfile;
3344 struct obj_section *osect;
3345
3346 if (overlay_debugging)
3347 ALL_OBJSECTIONS (objfile, osect)
3348 if (section_is_mapped (osect))
3349 {
3350 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3351 const char *name;
3352 bfd_vma lma, vma;
3353 int size;
3354
3355 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3356 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3357 size = bfd_get_section_size (osect->the_bfd_section);
3358 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3359
3360 printf_filtered ("Section %s, loaded at ", name);
3361 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3362 puts_filtered (" - ");
3363 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3364 printf_filtered (", mapped at ");
3365 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3366 puts_filtered (" - ");
3367 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3368 puts_filtered ("\n");
3369
3370 nmapped++;
3371 }
3372 if (nmapped == 0)
3373 printf_filtered (_("No sections are mapped.\n"));
3374 }
3375
3376 /* Function: map_overlay_command
3377 Mark the named section as mapped (ie. residing at its VMA address). */
3378
3379 static void
3380 map_overlay_command (char *args, int from_tty)
3381 {
3382 struct objfile *objfile, *objfile2;
3383 struct obj_section *sec, *sec2;
3384
3385 if (!overlay_debugging)
3386 error (_("Overlay debugging not enabled. Use "
3387 "either the 'overlay auto' or\n"
3388 "the 'overlay manual' command."));
3389
3390 if (args == 0 || *args == 0)
3391 error (_("Argument required: name of an overlay section"));
3392
3393 /* First, find a section matching the user supplied argument. */
3394 ALL_OBJSECTIONS (objfile, sec)
3395 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3396 {
3397 /* Now, check to see if the section is an overlay. */
3398 if (!section_is_overlay (sec))
3399 continue; /* not an overlay section */
3400
3401 /* Mark the overlay as "mapped". */
3402 sec->ovly_mapped = 1;
3403
3404 /* Next, make a pass and unmap any sections that are
3405 overlapped by this new section: */
3406 ALL_OBJSECTIONS (objfile2, sec2)
3407 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3408 {
3409 if (info_verbose)
3410 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3411 bfd_section_name (objfile->obfd,
3412 sec2->the_bfd_section));
3413 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3414 }
3415 return;
3416 }
3417 error (_("No overlay section called %s"), args);
3418 }
3419
3420 /* Function: unmap_overlay_command
3421 Mark the overlay section as unmapped
3422 (ie. resident in its LMA address range, rather than the VMA range). */
3423
3424 static void
3425 unmap_overlay_command (char *args, int from_tty)
3426 {
3427 struct objfile *objfile;
3428 struct obj_section *sec = NULL;
3429
3430 if (!overlay_debugging)
3431 error (_("Overlay debugging not enabled. "
3432 "Use either the 'overlay auto' or\n"
3433 "the 'overlay manual' command."));
3434
3435 if (args == 0 || *args == 0)
3436 error (_("Argument required: name of an overlay section"));
3437
3438 /* First, find a section matching the user supplied argument. */
3439 ALL_OBJSECTIONS (objfile, sec)
3440 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3441 {
3442 if (!sec->ovly_mapped)
3443 error (_("Section %s is not mapped"), args);
3444 sec->ovly_mapped = 0;
3445 return;
3446 }
3447 error (_("No overlay section called %s"), args);
3448 }
3449
3450 /* Function: overlay_auto_command
3451 A utility command to turn on overlay debugging.
3452 Possibly this should be done via a set/show command. */
3453
3454 static void
3455 overlay_auto_command (char *args, int from_tty)
3456 {
3457 overlay_debugging = ovly_auto;
3458 enable_overlay_breakpoints ();
3459 if (info_verbose)
3460 printf_unfiltered (_("Automatic overlay debugging enabled."));
3461 }
3462
3463 /* Function: overlay_manual_command
3464 A utility command to turn on overlay debugging.
3465 Possibly this should be done via a set/show command. */
3466
3467 static void
3468 overlay_manual_command (char *args, int from_tty)
3469 {
3470 overlay_debugging = ovly_on;
3471 disable_overlay_breakpoints ();
3472 if (info_verbose)
3473 printf_unfiltered (_("Overlay debugging enabled."));
3474 }
3475
3476 /* Function: overlay_off_command
3477 A utility command to turn on overlay debugging.
3478 Possibly this should be done via a set/show command. */
3479
3480 static void
3481 overlay_off_command (char *args, int from_tty)
3482 {
3483 overlay_debugging = ovly_off;
3484 disable_overlay_breakpoints ();
3485 if (info_verbose)
3486 printf_unfiltered (_("Overlay debugging disabled."));
3487 }
3488
3489 static void
3490 overlay_load_command (char *args, int from_tty)
3491 {
3492 struct gdbarch *gdbarch = get_current_arch ();
3493
3494 if (gdbarch_overlay_update_p (gdbarch))
3495 gdbarch_overlay_update (gdbarch, NULL);
3496 else
3497 error (_("This target does not know how to read its overlay state."));
3498 }
3499
3500 /* Function: overlay_command
3501 A place-holder for a mis-typed command. */
3502
3503 /* Command list chain containing all defined "overlay" subcommands. */
3504 static struct cmd_list_element *overlaylist;
3505
3506 static void
3507 overlay_command (char *args, int from_tty)
3508 {
3509 printf_unfiltered
3510 ("\"overlay\" must be followed by the name of an overlay command.\n");
3511 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3512 }
3513
3514 /* Target Overlays for the "Simplest" overlay manager:
3515
3516 This is GDB's default target overlay layer. It works with the
3517 minimal overlay manager supplied as an example by Cygnus. The
3518 entry point is via a function pointer "gdbarch_overlay_update",
3519 so targets that use a different runtime overlay manager can
3520 substitute their own overlay_update function and take over the
3521 function pointer.
3522
3523 The overlay_update function pokes around in the target's data structures
3524 to see what overlays are mapped, and updates GDB's overlay mapping with
3525 this information.
3526
3527 In this simple implementation, the target data structures are as follows:
3528 unsigned _novlys; /# number of overlay sections #/
3529 unsigned _ovly_table[_novlys][4] = {
3530 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3531 {..., ..., ..., ...},
3532 }
3533 unsigned _novly_regions; /# number of overlay regions #/
3534 unsigned _ovly_region_table[_novly_regions][3] = {
3535 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3536 {..., ..., ...},
3537 }
3538 These functions will attempt to update GDB's mappedness state in the
3539 symbol section table, based on the target's mappedness state.
3540
3541 To do this, we keep a cached copy of the target's _ovly_table, and
3542 attempt to detect when the cached copy is invalidated. The main
3543 entry point is "simple_overlay_update(SECT), which looks up SECT in
3544 the cached table and re-reads only the entry for that section from
3545 the target (whenever possible). */
3546
3547 /* Cached, dynamically allocated copies of the target data structures: */
3548 static unsigned (*cache_ovly_table)[4] = 0;
3549 static unsigned cache_novlys = 0;
3550 static CORE_ADDR cache_ovly_table_base = 0;
3551 enum ovly_index
3552 {
3553 VMA, SIZE, LMA, MAPPED
3554 };
3555
3556 /* Throw away the cached copy of _ovly_table. */
3557
3558 static void
3559 simple_free_overlay_table (void)
3560 {
3561 if (cache_ovly_table)
3562 xfree (cache_ovly_table);
3563 cache_novlys = 0;
3564 cache_ovly_table = NULL;
3565 cache_ovly_table_base = 0;
3566 }
3567
3568 /* Read an array of ints of size SIZE from the target into a local buffer.
3569 Convert to host order. int LEN is number of ints. */
3570
3571 static void
3572 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3573 int len, int size, enum bfd_endian byte_order)
3574 {
3575 /* FIXME (alloca): Not safe if array is very large. */
3576 gdb_byte *buf = alloca (len * size);
3577 int i;
3578
3579 read_memory (memaddr, buf, len * size);
3580 for (i = 0; i < len; i++)
3581 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3582 }
3583
3584 /* Find and grab a copy of the target _ovly_table
3585 (and _novlys, which is needed for the table's size). */
3586
3587 static int
3588 simple_read_overlay_table (void)
3589 {
3590 struct bound_minimal_symbol novlys_msym;
3591 struct bound_minimal_symbol ovly_table_msym;
3592 struct gdbarch *gdbarch;
3593 int word_size;
3594 enum bfd_endian byte_order;
3595
3596 simple_free_overlay_table ();
3597 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3598 if (! novlys_msym.minsym)
3599 {
3600 error (_("Error reading inferior's overlay table: "
3601 "couldn't find `_novlys' variable\n"
3602 "in inferior. Use `overlay manual' mode."));
3603 return 0;
3604 }
3605
3606 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3607 if (! ovly_table_msym.minsym)
3608 {
3609 error (_("Error reading inferior's overlay table: couldn't find "
3610 "`_ovly_table' array\n"
3611 "in inferior. Use `overlay manual' mode."));
3612 return 0;
3613 }
3614
3615 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3616 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3617 byte_order = gdbarch_byte_order (gdbarch);
3618
3619 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3620 4, byte_order);
3621 cache_ovly_table
3622 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3623 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3624 read_target_long_array (cache_ovly_table_base,
3625 (unsigned int *) cache_ovly_table,
3626 cache_novlys * 4, word_size, byte_order);
3627
3628 return 1; /* SUCCESS */
3629 }
3630
3631 /* Function: simple_overlay_update_1
3632 A helper function for simple_overlay_update. Assuming a cached copy
3633 of _ovly_table exists, look through it to find an entry whose vma,
3634 lma and size match those of OSECT. Re-read the entry and make sure
3635 it still matches OSECT (else the table may no longer be valid).
3636 Set OSECT's mapped state to match the entry. Return: 1 for
3637 success, 0 for failure. */
3638
3639 static int
3640 simple_overlay_update_1 (struct obj_section *osect)
3641 {
3642 int i, size;
3643 bfd *obfd = osect->objfile->obfd;
3644 asection *bsect = osect->the_bfd_section;
3645 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3646 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3648
3649 size = bfd_get_section_size (osect->the_bfd_section);
3650 for (i = 0; i < cache_novlys; i++)
3651 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3652 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3653 /* && cache_ovly_table[i][SIZE] == size */ )
3654 {
3655 read_target_long_array (cache_ovly_table_base + i * word_size,
3656 (unsigned int *) cache_ovly_table[i],
3657 4, word_size, byte_order);
3658 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3659 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3660 /* && cache_ovly_table[i][SIZE] == size */ )
3661 {
3662 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3663 return 1;
3664 }
3665 else /* Warning! Warning! Target's ovly table has changed! */
3666 return 0;
3667 }
3668 return 0;
3669 }
3670
3671 /* Function: simple_overlay_update
3672 If OSECT is NULL, then update all sections' mapped state
3673 (after re-reading the entire target _ovly_table).
3674 If OSECT is non-NULL, then try to find a matching entry in the
3675 cached ovly_table and update only OSECT's mapped state.
3676 If a cached entry can't be found or the cache isn't valid, then
3677 re-read the entire cache, and go ahead and update all sections. */
3678
3679 void
3680 simple_overlay_update (struct obj_section *osect)
3681 {
3682 struct objfile *objfile;
3683
3684 /* Were we given an osect to look up? NULL means do all of them. */
3685 if (osect)
3686 /* Have we got a cached copy of the target's overlay table? */
3687 if (cache_ovly_table != NULL)
3688 {
3689 /* Does its cached location match what's currently in the
3690 symtab? */
3691 struct bound_minimal_symbol minsym
3692 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3693
3694 if (minsym.minsym == NULL)
3695 error (_("Error reading inferior's overlay table: couldn't "
3696 "find `_ovly_table' array\n"
3697 "in inferior. Use `overlay manual' mode."));
3698
3699 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3700 /* Then go ahead and try to look up this single section in
3701 the cache. */
3702 if (simple_overlay_update_1 (osect))
3703 /* Found it! We're done. */
3704 return;
3705 }
3706
3707 /* Cached table no good: need to read the entire table anew.
3708 Or else we want all the sections, in which case it's actually
3709 more efficient to read the whole table in one block anyway. */
3710
3711 if (! simple_read_overlay_table ())
3712 return;
3713
3714 /* Now may as well update all sections, even if only one was requested. */
3715 ALL_OBJSECTIONS (objfile, osect)
3716 if (section_is_overlay (osect))
3717 {
3718 int i, size;
3719 bfd *obfd = osect->objfile->obfd;
3720 asection *bsect = osect->the_bfd_section;
3721
3722 size = bfd_get_section_size (bsect);
3723 for (i = 0; i < cache_novlys; i++)
3724 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3725 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3726 /* && cache_ovly_table[i][SIZE] == size */ )
3727 { /* obj_section matches i'th entry in ovly_table. */
3728 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3729 break; /* finished with inner for loop: break out. */
3730 }
3731 }
3732 }
3733
3734 /* Set the output sections and output offsets for section SECTP in
3735 ABFD. The relocation code in BFD will read these offsets, so we
3736 need to be sure they're initialized. We map each section to itself,
3737 with no offset; this means that SECTP->vma will be honored. */
3738
3739 static void
3740 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3741 {
3742 sectp->output_section = sectp;
3743 sectp->output_offset = 0;
3744 }
3745
3746 /* Default implementation for sym_relocate. */
3747
3748 bfd_byte *
3749 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3750 bfd_byte *buf)
3751 {
3752 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3753 DWO file. */
3754 bfd *abfd = sectp->owner;
3755
3756 /* We're only interested in sections with relocation
3757 information. */
3758 if ((sectp->flags & SEC_RELOC) == 0)
3759 return NULL;
3760
3761 /* We will handle section offsets properly elsewhere, so relocate as if
3762 all sections begin at 0. */
3763 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3764
3765 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3766 }
3767
3768 /* Relocate the contents of a debug section SECTP in ABFD. The
3769 contents are stored in BUF if it is non-NULL, or returned in a
3770 malloc'd buffer otherwise.
3771
3772 For some platforms and debug info formats, shared libraries contain
3773 relocations against the debug sections (particularly for DWARF-2;
3774 one affected platform is PowerPC GNU/Linux, although it depends on
3775 the version of the linker in use). Also, ELF object files naturally
3776 have unresolved relocations for their debug sections. We need to apply
3777 the relocations in order to get the locations of symbols correct.
3778 Another example that may require relocation processing, is the
3779 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3780 debug section. */
3781
3782 bfd_byte *
3783 symfile_relocate_debug_section (struct objfile *objfile,
3784 asection *sectp, bfd_byte *buf)
3785 {
3786 gdb_assert (objfile->sf->sym_relocate);
3787
3788 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3789 }
3790
3791 struct symfile_segment_data *
3792 get_symfile_segment_data (bfd *abfd)
3793 {
3794 const struct sym_fns *sf = find_sym_fns (abfd);
3795
3796 if (sf == NULL)
3797 return NULL;
3798
3799 return sf->sym_segments (abfd);
3800 }
3801
3802 void
3803 free_symfile_segment_data (struct symfile_segment_data *data)
3804 {
3805 xfree (data->segment_bases);
3806 xfree (data->segment_sizes);
3807 xfree (data->segment_info);
3808 xfree (data);
3809 }
3810
3811 /* Given:
3812 - DATA, containing segment addresses from the object file ABFD, and
3813 the mapping from ABFD's sections onto the segments that own them,
3814 and
3815 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3816 segment addresses reported by the target,
3817 store the appropriate offsets for each section in OFFSETS.
3818
3819 If there are fewer entries in SEGMENT_BASES than there are segments
3820 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3821
3822 If there are more entries, then ignore the extra. The target may
3823 not be able to distinguish between an empty data segment and a
3824 missing data segment; a missing text segment is less plausible. */
3825
3826 int
3827 symfile_map_offsets_to_segments (bfd *abfd,
3828 const struct symfile_segment_data *data,
3829 struct section_offsets *offsets,
3830 int num_segment_bases,
3831 const CORE_ADDR *segment_bases)
3832 {
3833 int i;
3834 asection *sect;
3835
3836 /* It doesn't make sense to call this function unless you have some
3837 segment base addresses. */
3838 gdb_assert (num_segment_bases > 0);
3839
3840 /* If we do not have segment mappings for the object file, we
3841 can not relocate it by segments. */
3842 gdb_assert (data != NULL);
3843 gdb_assert (data->num_segments > 0);
3844
3845 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3846 {
3847 int which = data->segment_info[i];
3848
3849 gdb_assert (0 <= which && which <= data->num_segments);
3850
3851 /* Don't bother computing offsets for sections that aren't
3852 loaded as part of any segment. */
3853 if (! which)
3854 continue;
3855
3856 /* Use the last SEGMENT_BASES entry as the address of any extra
3857 segments mentioned in DATA->segment_info. */
3858 if (which > num_segment_bases)
3859 which = num_segment_bases;
3860
3861 offsets->offsets[i] = (segment_bases[which - 1]
3862 - data->segment_bases[which - 1]);
3863 }
3864
3865 return 1;
3866 }
3867
3868 static void
3869 symfile_find_segment_sections (struct objfile *objfile)
3870 {
3871 bfd *abfd = objfile->obfd;
3872 int i;
3873 asection *sect;
3874 struct symfile_segment_data *data;
3875
3876 data = get_symfile_segment_data (objfile->obfd);
3877 if (data == NULL)
3878 return;
3879
3880 if (data->num_segments != 1 && data->num_segments != 2)
3881 {
3882 free_symfile_segment_data (data);
3883 return;
3884 }
3885
3886 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3887 {
3888 int which = data->segment_info[i];
3889
3890 if (which == 1)
3891 {
3892 if (objfile->sect_index_text == -1)
3893 objfile->sect_index_text = sect->index;
3894
3895 if (objfile->sect_index_rodata == -1)
3896 objfile->sect_index_rodata = sect->index;
3897 }
3898 else if (which == 2)
3899 {
3900 if (objfile->sect_index_data == -1)
3901 objfile->sect_index_data = sect->index;
3902
3903 if (objfile->sect_index_bss == -1)
3904 objfile->sect_index_bss = sect->index;
3905 }
3906 }
3907
3908 free_symfile_segment_data (data);
3909 }
3910
3911 /* Listen for free_objfile events. */
3912
3913 static void
3914 symfile_free_objfile (struct objfile *objfile)
3915 {
3916 /* Remove the target sections owned by this objfile. */
3917 if (objfile != NULL)
3918 remove_target_sections ((void *) objfile);
3919 }
3920
3921 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3922 Expand all symtabs that match the specified criteria.
3923 See quick_symbol_functions.expand_symtabs_matching for details. */
3924
3925 void
3926 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3927 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3928 expand_symtabs_exp_notify_ftype *expansion_notify,
3929 enum search_domain kind,
3930 void *data)
3931 {
3932 struct objfile *objfile;
3933
3934 ALL_OBJFILES (objfile)
3935 {
3936 if (objfile->sf)
3937 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3938 symbol_matcher,
3939 expansion_notify, kind,
3940 data);
3941 }
3942 }
3943
3944 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3945 Map function FUN over every file.
3946 See quick_symbol_functions.map_symbol_filenames for details. */
3947
3948 void
3949 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3950 int need_fullname)
3951 {
3952 struct objfile *objfile;
3953
3954 ALL_OBJFILES (objfile)
3955 {
3956 if (objfile->sf)
3957 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3958 need_fullname);
3959 }
3960 }
3961
3962 void
3963 _initialize_symfile (void)
3964 {
3965 struct cmd_list_element *c;
3966
3967 observer_attach_free_objfile (symfile_free_objfile);
3968
3969 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3970 Load symbol table from executable file FILE.\n\
3971 The `file' command can also load symbol tables, as well as setting the file\n\
3972 to execute."), &cmdlist);
3973 set_cmd_completer (c, filename_completer);
3974
3975 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3976 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3977 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3978 ...]\nADDR is the starting address of the file's text.\n\
3979 The optional arguments are section-name section-address pairs and\n\
3980 should be specified if the data and bss segments are not contiguous\n\
3981 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3982 &cmdlist);
3983 set_cmd_completer (c, filename_completer);
3984
3985 c = add_cmd ("remove-symbol-file", class_files,
3986 remove_symbol_file_command, _("\
3987 Remove a symbol file added via the add-symbol-file command.\n\
3988 Usage: remove-symbol-file FILENAME\n\
3989 remove-symbol-file -a ADDRESS\n\
3990 The file to remove can be identified by its filename or by an address\n\
3991 that lies within the boundaries of this symbol file in memory."),
3992 &cmdlist);
3993
3994 c = add_cmd ("load", class_files, load_command, _("\
3995 Dynamically load FILE into the running program, and record its symbols\n\
3996 for access from GDB.\n\
3997 A load OFFSET may also be given."), &cmdlist);
3998 set_cmd_completer (c, filename_completer);
3999
4000 add_prefix_cmd ("overlay", class_support, overlay_command,
4001 _("Commands for debugging overlays."), &overlaylist,
4002 "overlay ", 0, &cmdlist);
4003
4004 add_com_alias ("ovly", "overlay", class_alias, 1);
4005 add_com_alias ("ov", "overlay", class_alias, 1);
4006
4007 add_cmd ("map-overlay", class_support, map_overlay_command,
4008 _("Assert that an overlay section is mapped."), &overlaylist);
4009
4010 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4011 _("Assert that an overlay section is unmapped."), &overlaylist);
4012
4013 add_cmd ("list-overlays", class_support, list_overlays_command,
4014 _("List mappings of overlay sections."), &overlaylist);
4015
4016 add_cmd ("manual", class_support, overlay_manual_command,
4017 _("Enable overlay debugging."), &overlaylist);
4018 add_cmd ("off", class_support, overlay_off_command,
4019 _("Disable overlay debugging."), &overlaylist);
4020 add_cmd ("auto", class_support, overlay_auto_command,
4021 _("Enable automatic overlay debugging."), &overlaylist);
4022 add_cmd ("load-target", class_support, overlay_load_command,
4023 _("Read the overlay mapping state from the target."), &overlaylist);
4024
4025 /* Filename extension to source language lookup table: */
4026 init_filename_language_table ();
4027 add_setshow_string_noescape_cmd ("extension-language", class_files,
4028 &ext_args, _("\
4029 Set mapping between filename extension and source language."), _("\
4030 Show mapping between filename extension and source language."), _("\
4031 Usage: set extension-language .foo bar"),
4032 set_ext_lang_command,
4033 show_ext_args,
4034 &setlist, &showlist);
4035
4036 add_info ("extensions", info_ext_lang_command,
4037 _("All filename extensions associated with a source language."));
4038
4039 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4040 &debug_file_directory, _("\
4041 Set the directories where separate debug symbols are searched for."), _("\
4042 Show the directories where separate debug symbols are searched for."), _("\
4043 Separate debug symbols are first searched for in the same\n\
4044 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4045 and lastly at the path of the directory of the binary with\n\
4046 each global debug-file-directory component prepended."),
4047 NULL,
4048 show_debug_file_directory,
4049 &setlist, &showlist);
4050
4051 add_setshow_enum_cmd ("symbol-loading", no_class,
4052 print_symbol_loading_enums, &print_symbol_loading,
4053 _("\
4054 Set printing of symbol loading messages."), _("\
4055 Show printing of symbol loading messages."), _("\
4056 off == turn all messages off\n\
4057 brief == print messages for the executable,\n\
4058 and brief messages for shared libraries\n\
4059 full == print messages for the executable,\n\
4060 and messages for each shared library."),
4061 NULL,
4062 NULL,
4063 &setprintlist, &showprintlist);
4064 }