* utils.c (query): Remove tui hacks; tui must use the query_hook.
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40
41 #include <sys/types.h>
42 #include <fcntl.h>
43 #include "gdb_string.h"
44 #include "gdb_stat.h"
45 #include <ctype.h>
46 #include <time.h>
47
48 #ifndef O_BINARY
49 #define O_BINARY 0
50 #endif
51
52 #ifdef HPUXHPPA
53
54 /* Some HP-UX related globals to clear when a new "main"
55 symbol file is loaded. HP-specific. */
56
57 extern int hp_som_som_object_present;
58 extern int hp_cxx_exception_support_initialized;
59 #define RESET_HP_UX_GLOBALS() do {\
60 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
61 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
62 } while (0)
63 #endif
64
65 int (*ui_load_progress_hook) (const char *section, unsigned long num);
66 void (*show_load_progress) (const char *section,
67 unsigned long section_sent,
68 unsigned long section_size,
69 unsigned long total_sent,
70 unsigned long total_size);
71 void (*pre_add_symbol_hook) (char *);
72 void (*post_add_symbol_hook) (void);
73 void (*target_new_objfile_hook) (struct objfile *);
74
75 static void clear_symtab_users_cleanup (void *ignore);
76
77 /* Global variables owned by this file */
78 int readnow_symbol_files; /* Read full symbols immediately */
79
80 struct complaint oldsyms_complaint =
81 {
82 "Replacing old symbols for `%s'", 0, 0
83 };
84
85 struct complaint empty_symtab_complaint =
86 {
87 "Empty symbol table found for `%s'", 0, 0
88 };
89
90 struct complaint unknown_option_complaint =
91 {
92 "Unknown option `%s' ignored", 0, 0
93 };
94
95 /* External variables and functions referenced. */
96
97 extern int info_verbose;
98
99 extern void report_transfer_performance (unsigned long, time_t, time_t);
100
101 /* Functions this file defines */
102
103 #if 0
104 static int simple_read_overlay_region_table (void);
105 static void simple_free_overlay_region_table (void);
106 #endif
107
108 static void set_initial_language (void);
109
110 static void load_command (char *, int);
111
112 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
113
114 static void add_symbol_file_command (char *, int);
115
116 static void add_shared_symbol_files_command (char *, int);
117
118 static void cashier_psymtab (struct partial_symtab *);
119
120 bfd *symfile_bfd_open (char *);
121
122 static void find_sym_fns (struct objfile *);
123
124 static void decrement_reading_symtab (void *);
125
126 static void overlay_invalidate_all (void);
127
128 static int overlay_is_mapped (struct obj_section *);
129
130 void list_overlays_command (char *, int);
131
132 void map_overlay_command (char *, int);
133
134 void unmap_overlay_command (char *, int);
135
136 static void overlay_auto_command (char *, int);
137
138 static void overlay_manual_command (char *, int);
139
140 static void overlay_off_command (char *, int);
141
142 static void overlay_load_command (char *, int);
143
144 static void overlay_command (char *, int);
145
146 static void simple_free_overlay_table (void);
147
148 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
149
150 static int simple_read_overlay_table (void);
151
152 static int simple_overlay_update_1 (struct obj_section *);
153
154 static void add_filename_language (char *ext, enum language lang);
155
156 static void set_ext_lang_command (char *args, int from_tty);
157
158 static void info_ext_lang_command (char *args, int from_tty);
159
160 static void init_filename_language_table (void);
161
162 void _initialize_symfile (void);
163
164 /* List of all available sym_fns. On gdb startup, each object file reader
165 calls add_symtab_fns() to register information on each format it is
166 prepared to read. */
167
168 static struct sym_fns *symtab_fns = NULL;
169
170 /* Flag for whether user will be reloading symbols multiple times.
171 Defaults to ON for VxWorks, otherwise OFF. */
172
173 #ifdef SYMBOL_RELOADING_DEFAULT
174 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
175 #else
176 int symbol_reloading = 0;
177 #endif
178
179 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
180 this variable is interpreted as a threshhold. If adding a new
181 library's symbol table to those already known to the debugger would
182 exceed this threshhold, then the shlib's symbols are not added.
183
184 If non-zero on other platforms, shared library symbols will be added
185 automatically when the inferior is created, new libraries are loaded,
186 or when attaching to the inferior. This is almost always what users
187 will want to have happen; but for very large programs, the startup
188 time will be excessive, and so if this is a problem, the user can
189 clear this flag and then add the shared library symbols as needed.
190 Note that there is a potential for confusion, since if the shared
191 library symbols are not loaded, commands like "info fun" will *not*
192 report all the functions that are actually present.
193
194 Note that HP-UX interprets this variable to mean, "threshhold size
195 in megabytes, where zero means never add". Other platforms interpret
196 this variable to mean, "always add if non-zero, never add if zero."
197 */
198
199 int auto_solib_add = 1;
200 \f
201
202 /* Since this function is called from within qsort, in an ANSI environment
203 it must conform to the prototype for qsort, which specifies that the
204 comparison function takes two "void *" pointers. */
205
206 static int
207 compare_symbols (const void *s1p, const void *s2p)
208 {
209 register struct symbol **s1, **s2;
210
211 s1 = (struct symbol **) s1p;
212 s2 = (struct symbol **) s2p;
213 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
214 }
215
216 /*
217
218 LOCAL FUNCTION
219
220 compare_psymbols -- compare two partial symbols by name
221
222 DESCRIPTION
223
224 Given pointers to pointers to two partial symbol table entries,
225 compare them by name and return -N, 0, or +N (ala strcmp).
226 Typically used by sorting routines like qsort().
227
228 NOTES
229
230 Does direct compare of first two characters before punting
231 and passing to strcmp for longer compares. Note that the
232 original version had a bug whereby two null strings or two
233 identically named one character strings would return the
234 comparison of memory following the null byte.
235
236 */
237
238 static int
239 compare_psymbols (const void *s1p, const void *s2p)
240 {
241 register struct partial_symbol **s1, **s2;
242 register char *st1, *st2;
243
244 s1 = (struct partial_symbol **) s1p;
245 s2 = (struct partial_symbol **) s2p;
246 st1 = SYMBOL_SOURCE_NAME (*s1);
247 st2 = SYMBOL_SOURCE_NAME (*s2);
248
249
250 if ((st1[0] - st2[0]) || !st1[0])
251 {
252 return (st1[0] - st2[0]);
253 }
254 else if ((st1[1] - st2[1]) || !st1[1])
255 {
256 return (st1[1] - st2[1]);
257 }
258 else
259 {
260 return (strcmp (st1, st2));
261 }
262 }
263
264 void
265 sort_pst_symbols (struct partial_symtab *pst)
266 {
267 /* Sort the global list; don't sort the static list */
268
269 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
270 pst->n_global_syms, sizeof (struct partial_symbol *),
271 compare_psymbols);
272 }
273
274 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
275
276 void
277 sort_block_syms (register struct block *b)
278 {
279 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
280 sizeof (struct symbol *), compare_symbols);
281 }
282
283 /* Call sort_symtab_syms to sort alphabetically
284 the symbols of each block of one symtab. */
285
286 void
287 sort_symtab_syms (register struct symtab *s)
288 {
289 register struct blockvector *bv;
290 int nbl;
291 int i;
292 register struct block *b;
293
294 if (s == 0)
295 return;
296 bv = BLOCKVECTOR (s);
297 nbl = BLOCKVECTOR_NBLOCKS (bv);
298 for (i = 0; i < nbl; i++)
299 {
300 b = BLOCKVECTOR_BLOCK (bv, i);
301 if (BLOCK_SHOULD_SORT (b))
302 sort_block_syms (b);
303 }
304 }
305
306 /* Make a null terminated copy of the string at PTR with SIZE characters in
307 the obstack pointed to by OBSTACKP . Returns the address of the copy.
308 Note that the string at PTR does not have to be null terminated, I.E. it
309 may be part of a larger string and we are only saving a substring. */
310
311 char *
312 obsavestring (char *ptr, int size, struct obstack *obstackp)
313 {
314 register char *p = (char *) obstack_alloc (obstackp, size + 1);
315 /* Open-coded memcpy--saves function call time. These strings are usually
316 short. FIXME: Is this really still true with a compiler that can
317 inline memcpy? */
318 {
319 register char *p1 = ptr;
320 register char *p2 = p;
321 char *end = ptr + size;
322 while (p1 != end)
323 *p2++ = *p1++;
324 }
325 p[size] = 0;
326 return p;
327 }
328
329 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
330 in the obstack pointed to by OBSTACKP. */
331
332 char *
333 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
334 const char *s3)
335 {
336 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
337 register char *val = (char *) obstack_alloc (obstackp, len);
338 strcpy (val, s1);
339 strcat (val, s2);
340 strcat (val, s3);
341 return val;
342 }
343
344 /* True if we are nested inside psymtab_to_symtab. */
345
346 int currently_reading_symtab = 0;
347
348 static void
349 decrement_reading_symtab (void *dummy)
350 {
351 currently_reading_symtab--;
352 }
353
354 /* Get the symbol table that corresponds to a partial_symtab.
355 This is fast after the first time you do it. In fact, there
356 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
357 case inline. */
358
359 struct symtab *
360 psymtab_to_symtab (register struct partial_symtab *pst)
361 {
362 /* If it's been looked up before, return it. */
363 if (pst->symtab)
364 return pst->symtab;
365
366 /* If it has not yet been read in, read it. */
367 if (!pst->readin)
368 {
369 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
370 currently_reading_symtab++;
371 (*pst->read_symtab) (pst);
372 do_cleanups (back_to);
373 }
374
375 return pst->symtab;
376 }
377
378 /* Initialize entry point information for this objfile. */
379
380 void
381 init_entry_point_info (struct objfile *objfile)
382 {
383 /* Save startup file's range of PC addresses to help blockframe.c
384 decide where the bottom of the stack is. */
385
386 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
387 {
388 /* Executable file -- record its entry point so we'll recognize
389 the startup file because it contains the entry point. */
390 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
391 }
392 else
393 {
394 /* Examination of non-executable.o files. Short-circuit this stuff. */
395 objfile->ei.entry_point = INVALID_ENTRY_POINT;
396 }
397 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
398 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
399 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
400 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
401 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
402 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
403 }
404
405 /* Get current entry point address. */
406
407 CORE_ADDR
408 entry_point_address (void)
409 {
410 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
411 }
412
413 /* Remember the lowest-addressed loadable section we've seen.
414 This function is called via bfd_map_over_sections.
415
416 In case of equal vmas, the section with the largest size becomes the
417 lowest-addressed loadable section.
418
419 If the vmas and sizes are equal, the last section is considered the
420 lowest-addressed loadable section. */
421
422 void
423 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
424 {
425 asection **lowest = (asection **) obj;
426
427 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
428 return;
429 if (!*lowest)
430 *lowest = sect; /* First loadable section */
431 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
432 *lowest = sect; /* A lower loadable section */
433 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
434 && (bfd_section_size (abfd, (*lowest))
435 <= bfd_section_size (abfd, sect)))
436 *lowest = sect;
437 }
438
439
440 /* Build (allocate and populate) a section_addr_info struct from
441 an existing section table. */
442
443 extern struct section_addr_info *
444 build_section_addr_info_from_section_table (const struct section_table *start,
445 const struct section_table *end)
446 {
447 struct section_addr_info *sap;
448 const struct section_table *stp;
449 int oidx;
450
451 sap = xmalloc (sizeof (struct section_addr_info));
452 memset (sap, 0, sizeof (struct section_addr_info));
453
454 for (stp = start, oidx = 0; stp != end; stp++)
455 {
456 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
457 && oidx < MAX_SECTIONS)
458 {
459 sap->other[oidx].addr = stp->addr;
460 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
461 sap->other[oidx].sectindex = stp->the_bfd_section->index;
462 oidx++;
463 }
464 }
465
466 return sap;
467 }
468
469
470 /* Free all memory allocated by build_section_addr_info_from_section_table. */
471
472 extern void
473 free_section_addr_info (struct section_addr_info *sap)
474 {
475 int idx;
476
477 for (idx = 0; idx < MAX_SECTIONS; idx++)
478 if (sap->other[idx].name)
479 xfree (sap->other[idx].name);
480 xfree (sap);
481 }
482
483
484 /* Parse the user's idea of an offset for dynamic linking, into our idea
485 of how to represent it for fast symbol reading. This is the default
486 version of the sym_fns.sym_offsets function for symbol readers that
487 don't need to do anything special. It allocates a section_offsets table
488 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
489
490 void
491 default_symfile_offsets (struct objfile *objfile,
492 struct section_addr_info *addrs)
493 {
494 int i;
495 asection *sect = NULL;
496
497 objfile->num_sections = SECT_OFF_MAX;
498 objfile->section_offsets = (struct section_offsets *)
499 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
500 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
501
502 /* Now calculate offsets for section that were specified by the
503 caller. */
504 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
505 {
506 struct other_sections *osp ;
507
508 osp = &addrs->other[i] ;
509 if (osp->addr == 0)
510 continue;
511
512 /* Record all sections in offsets */
513 /* The section_offsets in the objfile are here filled in using
514 the BFD index. */
515 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
516 }
517
518 /* Remember the bfd indexes for the .text, .data, .bss and
519 .rodata sections. */
520
521 sect = bfd_get_section_by_name (objfile->obfd, ".text");
522 if (sect)
523 objfile->sect_index_text = sect->index;
524
525 sect = bfd_get_section_by_name (objfile->obfd, ".data");
526 if (sect)
527 objfile->sect_index_data = sect->index;
528
529 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
530 if (sect)
531 objfile->sect_index_bss = sect->index;
532
533 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
534 if (sect)
535 objfile->sect_index_rodata = sect->index;
536
537 }
538
539 /* Process a symbol file, as either the main file or as a dynamically
540 loaded file.
541
542 OBJFILE is where the symbols are to be read from.
543
544 ADDR is the address where the text segment was loaded, unless the
545 objfile is the main symbol file, in which case it is zero.
546
547 MAINLINE is nonzero if this is the main symbol file, or zero if
548 it's an extra symbol file such as dynamically loaded code.
549
550 VERBO is nonzero if the caller has printed a verbose message about
551 the symbol reading (and complaints can be more terse about it). */
552
553 void
554 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
555 int mainline, int verbo)
556 {
557 asection *lower_sect;
558 asection *sect;
559 CORE_ADDR lower_offset;
560 struct section_addr_info local_addr;
561 struct cleanup *old_chain;
562 int i;
563
564 /* If ADDRS is NULL, initialize the local section_addr_info struct and
565 point ADDRS to it. We now establish the convention that an addr of
566 zero means no load address was specified. */
567
568 if (addrs == NULL)
569 {
570 memset (&local_addr, 0, sizeof (local_addr));
571 addrs = &local_addr;
572 }
573
574 init_entry_point_info (objfile);
575 find_sym_fns (objfile);
576
577 /* Make sure that partially constructed symbol tables will be cleaned up
578 if an error occurs during symbol reading. */
579 old_chain = make_cleanup_free_objfile (objfile);
580
581 if (mainline)
582 {
583 /* We will modify the main symbol table, make sure that all its users
584 will be cleaned up if an error occurs during symbol reading. */
585 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
586
587 /* Since no error yet, throw away the old symbol table. */
588
589 if (symfile_objfile != NULL)
590 {
591 free_objfile (symfile_objfile);
592 symfile_objfile = NULL;
593 }
594
595 /* Currently we keep symbols from the add-symbol-file command.
596 If the user wants to get rid of them, they should do "symbol-file"
597 without arguments first. Not sure this is the best behavior
598 (PR 2207). */
599
600 (*objfile->sf->sym_new_init) (objfile);
601 }
602
603 /* Convert addr into an offset rather than an absolute address.
604 We find the lowest address of a loaded segment in the objfile,
605 and assume that <addr> is where that got loaded.
606
607 We no longer warn if the lowest section is not a text segment (as
608 happens for the PA64 port. */
609 if (!mainline)
610 {
611 /* Find lowest loadable section to be used as starting point for
612 continguous sections. FIXME!! won't work without call to find
613 .text first, but this assumes text is lowest section. */
614 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
615 if (lower_sect == NULL)
616 bfd_map_over_sections (objfile->obfd, find_lowest_section,
617 (PTR) &lower_sect);
618 if (lower_sect == NULL)
619 warning ("no loadable sections found in added symbol-file %s",
620 objfile->name);
621 else
622 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
623 warning ("Lowest section in %s is %s at %s",
624 objfile->name,
625 bfd_section_name (objfile->obfd, lower_sect),
626 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
627 if (lower_sect != NULL)
628 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
629 else
630 lower_offset = 0;
631
632 /* Calculate offsets for the loadable sections.
633 FIXME! Sections must be in order of increasing loadable section
634 so that contiguous sections can use the lower-offset!!!
635
636 Adjust offsets if the segments are not contiguous.
637 If the section is contiguous, its offset should be set to
638 the offset of the highest loadable section lower than it
639 (the loadable section directly below it in memory).
640 this_offset = lower_offset = lower_addr - lower_orig_addr */
641
642 /* Calculate offsets for sections. */
643 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
644 {
645 if (addrs->other[i].addr != 0)
646 {
647 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
648 if (sect)
649 {
650 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
651 lower_offset = addrs->other[i].addr;
652 /* This is the index used by BFD. */
653 addrs->other[i].sectindex = sect->index ;
654 }
655 else
656 {
657 warning ("section %s not found in %s", addrs->other[i].name,
658 objfile->name);
659 addrs->other[i].addr = 0;
660 }
661 }
662 else
663 addrs->other[i].addr = lower_offset;
664 }
665 }
666
667 /* Initialize symbol reading routines for this objfile, allow complaints to
668 appear for this new file, and record how verbose to be, then do the
669 initial symbol reading for this file. */
670
671 (*objfile->sf->sym_init) (objfile);
672 clear_complaints (1, verbo);
673
674 (*objfile->sf->sym_offsets) (objfile, addrs);
675
676 #ifndef IBM6000_TARGET
677 /* This is a SVR4/SunOS specific hack, I think. In any event, it
678 screws RS/6000. sym_offsets should be doing this sort of thing,
679 because it knows the mapping between bfd sections and
680 section_offsets. */
681 /* This is a hack. As far as I can tell, section offsets are not
682 target dependent. They are all set to addr with a couple of
683 exceptions. The exceptions are sysvr4 shared libraries, whose
684 offsets are kept in solib structures anyway and rs6000 xcoff
685 which handles shared libraries in a completely unique way.
686
687 Section offsets are built similarly, except that they are built
688 by adding addr in all cases because there is no clear mapping
689 from section_offsets into actual sections. Note that solib.c
690 has a different algorithm for finding section offsets.
691
692 These should probably all be collapsed into some target
693 independent form of shared library support. FIXME. */
694
695 if (addrs)
696 {
697 struct obj_section *s;
698
699 /* Map section offsets in "addr" back to the object's
700 sections by comparing the section names with bfd's
701 section names. Then adjust the section address by
702 the offset. */ /* for gdb/13815 */
703
704 ALL_OBJFILE_OSECTIONS (objfile, s)
705 {
706 CORE_ADDR s_addr = 0;
707 int i;
708
709 for (i = 0;
710 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
711 i++)
712 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
713 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
714
715 s->addr -= s->offset;
716 s->addr += s_addr;
717 s->endaddr -= s->offset;
718 s->endaddr += s_addr;
719 s->offset += s_addr;
720 }
721 }
722 #endif /* not IBM6000_TARGET */
723
724 (*objfile->sf->sym_read) (objfile, mainline);
725
726 if (!have_partial_symbols () && !have_full_symbols ())
727 {
728 wrap_here ("");
729 printf_filtered ("(no debugging symbols found)...");
730 wrap_here ("");
731 }
732
733 /* Don't allow char * to have a typename (else would get caddr_t).
734 Ditto void *. FIXME: Check whether this is now done by all the
735 symbol readers themselves (many of them now do), and if so remove
736 it from here. */
737
738 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
739 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
740
741 /* Mark the objfile has having had initial symbol read attempted. Note
742 that this does not mean we found any symbols... */
743
744 objfile->flags |= OBJF_SYMS;
745
746 /* Discard cleanups as symbol reading was successful. */
747
748 discard_cleanups (old_chain);
749
750 /* Call this after reading in a new symbol table to give target
751 dependent code a crack at the new symbols. For instance, this
752 could be used to update the values of target-specific symbols GDB
753 needs to keep track of (such as _sigtramp, or whatever). */
754
755 TARGET_SYMFILE_POSTREAD (objfile);
756 }
757
758 /* Perform required actions after either reading in the initial
759 symbols for a new objfile, or mapping in the symbols from a reusable
760 objfile. */
761
762 void
763 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
764 {
765
766 /* If this is the main symbol file we have to clean up all users of the
767 old main symbol file. Otherwise it is sufficient to fixup all the
768 breakpoints that may have been redefined by this symbol file. */
769 if (mainline)
770 {
771 /* OK, make it the "real" symbol file. */
772 symfile_objfile = objfile;
773
774 clear_symtab_users ();
775 }
776 else
777 {
778 breakpoint_re_set ();
779 }
780
781 /* We're done reading the symbol file; finish off complaints. */
782 clear_complaints (0, verbo);
783 }
784
785 /* Process a symbol file, as either the main file or as a dynamically
786 loaded file.
787
788 NAME is the file name (which will be tilde-expanded and made
789 absolute herein) (but we don't free or modify NAME itself).
790 FROM_TTY says how verbose to be. MAINLINE specifies whether this
791 is the main symbol file, or whether it's an extra symbol file such
792 as dynamically loaded code. If !mainline, ADDR is the address
793 where the text segment was loaded.
794
795 Upon success, returns a pointer to the objfile that was added.
796 Upon failure, jumps back to command level (never returns). */
797
798 struct objfile *
799 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
800 int mainline, int flags)
801 {
802 struct objfile *objfile;
803 struct partial_symtab *psymtab;
804 bfd *abfd;
805
806 /* Open a bfd for the file, and give user a chance to burp if we'd be
807 interactively wiping out any existing symbols. */
808
809 abfd = symfile_bfd_open (name);
810
811 if ((have_full_symbols () || have_partial_symbols ())
812 && mainline
813 && from_tty
814 && !query ("Load new symbol table from \"%s\"? ", name))
815 error ("Not confirmed.");
816
817 objfile = allocate_objfile (abfd, flags);
818
819 /* If the objfile uses a mapped symbol file, and we have a psymtab for
820 it, then skip reading any symbols at this time. */
821
822 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
823 {
824 /* We mapped in an existing symbol table file that already has had
825 initial symbol reading performed, so we can skip that part. Notify
826 the user that instead of reading the symbols, they have been mapped.
827 */
828 if (from_tty || info_verbose)
829 {
830 printf_filtered ("Mapped symbols for %s...", name);
831 wrap_here ("");
832 gdb_flush (gdb_stdout);
833 }
834 init_entry_point_info (objfile);
835 find_sym_fns (objfile);
836 }
837 else
838 {
839 /* We either created a new mapped symbol table, mapped an existing
840 symbol table file which has not had initial symbol reading
841 performed, or need to read an unmapped symbol table. */
842 if (from_tty || info_verbose)
843 {
844 if (pre_add_symbol_hook)
845 pre_add_symbol_hook (name);
846 else
847 {
848 printf_filtered ("Reading symbols from %s...", name);
849 wrap_here ("");
850 gdb_flush (gdb_stdout);
851 }
852 }
853 syms_from_objfile (objfile, addrs, mainline, from_tty);
854 }
855
856 /* We now have at least a partial symbol table. Check to see if the
857 user requested that all symbols be read on initial access via either
858 the gdb startup command line or on a per symbol file basis. Expand
859 all partial symbol tables for this objfile if so. */
860
861 if ((flags & OBJF_READNOW) || readnow_symbol_files)
862 {
863 if (from_tty || info_verbose)
864 {
865 printf_filtered ("expanding to full symbols...");
866 wrap_here ("");
867 gdb_flush (gdb_stdout);
868 }
869
870 for (psymtab = objfile->psymtabs;
871 psymtab != NULL;
872 psymtab = psymtab->next)
873 {
874 psymtab_to_symtab (psymtab);
875 }
876 }
877
878 if (from_tty || info_verbose)
879 {
880 if (post_add_symbol_hook)
881 post_add_symbol_hook ();
882 else
883 {
884 printf_filtered ("done.\n");
885 gdb_flush (gdb_stdout);
886 }
887 }
888
889 new_symfile_objfile (objfile, mainline, from_tty);
890
891 if (target_new_objfile_hook)
892 target_new_objfile_hook (objfile);
893
894 return (objfile);
895 }
896
897 /* Call symbol_file_add() with default values and update whatever is
898 affected by the loading of a new main().
899 Used when the file is supplied in the gdb command line
900 and by some targets with special loading requirements.
901 The auxiliary function, symbol_file_add_main_1(), has the flags
902 argument for the switches that can only be specified in the symbol_file
903 command itself. */
904
905 void
906 symbol_file_add_main (char *args, int from_tty)
907 {
908 symbol_file_add_main_1 (args, from_tty, 0);
909 }
910
911 static void
912 symbol_file_add_main_1 (char *args, int from_tty, int flags)
913 {
914 symbol_file_add (args, from_tty, NULL, 1, flags);
915
916 #ifdef HPUXHPPA
917 RESET_HP_UX_GLOBALS ();
918 #endif
919
920 /* Getting new symbols may change our opinion about
921 what is frameless. */
922 reinit_frame_cache ();
923
924 set_initial_language ();
925 }
926
927 void
928 symbol_file_clear (int from_tty)
929 {
930 if ((have_full_symbols () || have_partial_symbols ())
931 && from_tty
932 && !query ("Discard symbol table from `%s'? ",
933 symfile_objfile->name))
934 error ("Not confirmed.");
935 free_all_objfiles ();
936
937 /* solib descriptors may have handles to objfiles. Since their
938 storage has just been released, we'd better wipe the solib
939 descriptors as well.
940 */
941 #if defined(SOLIB_RESTART)
942 SOLIB_RESTART ();
943 #endif
944
945 symfile_objfile = NULL;
946 if (from_tty)
947 printf_unfiltered ("No symbol file now.\n");
948 #ifdef HPUXHPPA
949 RESET_HP_UX_GLOBALS ();
950 #endif
951 }
952
953 /* This is the symbol-file command. Read the file, analyze its
954 symbols, and add a struct symtab to a symtab list. The syntax of
955 the command is rather bizarre--(1) buildargv implements various
956 quoting conventions which are undocumented and have little or
957 nothing in common with the way things are quoted (or not quoted)
958 elsewhere in GDB, (2) options are used, which are not generally
959 used in GDB (perhaps "set mapped on", "set readnow on" would be
960 better), (3) the order of options matters, which is contrary to GNU
961 conventions (because it is confusing and inconvenient). */
962 /* Note: ezannoni 2000-04-17. This function used to have support for
963 rombug (see remote-os9k.c). It consisted of a call to target_link()
964 (target.c) to get the address of the text segment from the target,
965 and pass that to symbol_file_add(). This is no longer supported. */
966
967 void
968 symbol_file_command (char *args, int from_tty)
969 {
970 char **argv;
971 char *name = NULL;
972 struct cleanup *cleanups;
973 int flags = OBJF_USERLOADED;
974
975 dont_repeat ();
976
977 if (args == NULL)
978 {
979 symbol_file_clear (from_tty);
980 }
981 else
982 {
983 if ((argv = buildargv (args)) == NULL)
984 {
985 nomem (0);
986 }
987 cleanups = make_cleanup_freeargv (argv);
988 while (*argv != NULL)
989 {
990 if (STREQ (*argv, "-mapped"))
991 flags |= OBJF_MAPPED;
992 else
993 if (STREQ (*argv, "-readnow"))
994 flags |= OBJF_READNOW;
995 else
996 if (**argv == '-')
997 error ("unknown option `%s'", *argv);
998 else
999 {
1000 name = *argv;
1001
1002 symbol_file_add_main_1 (name, from_tty, flags);
1003 }
1004 argv++;
1005 }
1006
1007 if (name == NULL)
1008 {
1009 error ("no symbol file name was specified");
1010 }
1011 do_cleanups (cleanups);
1012 }
1013 }
1014
1015 /* Set the initial language.
1016
1017 A better solution would be to record the language in the psymtab when reading
1018 partial symbols, and then use it (if known) to set the language. This would
1019 be a win for formats that encode the language in an easily discoverable place,
1020 such as DWARF. For stabs, we can jump through hoops looking for specially
1021 named symbols or try to intuit the language from the specific type of stabs
1022 we find, but we can't do that until later when we read in full symbols.
1023 FIXME. */
1024
1025 static void
1026 set_initial_language (void)
1027 {
1028 struct partial_symtab *pst;
1029 enum language lang = language_unknown;
1030
1031 pst = find_main_psymtab ();
1032 if (pst != NULL)
1033 {
1034 if (pst->filename != NULL)
1035 {
1036 lang = deduce_language_from_filename (pst->filename);
1037 }
1038 if (lang == language_unknown)
1039 {
1040 /* Make C the default language */
1041 lang = language_c;
1042 }
1043 set_language (lang);
1044 expected_language = current_language; /* Don't warn the user */
1045 }
1046 }
1047
1048 /* Open file specified by NAME and hand it off to BFD for preliminary
1049 analysis. Result is a newly initialized bfd *, which includes a newly
1050 malloc'd` copy of NAME (tilde-expanded and made absolute).
1051 In case of trouble, error() is called. */
1052
1053 bfd *
1054 symfile_bfd_open (char *name)
1055 {
1056 bfd *sym_bfd;
1057 int desc;
1058 char *absolute_name;
1059
1060
1061
1062 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1063
1064 /* Look down path for it, allocate 2nd new malloc'd copy. */
1065 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1066 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1067 if (desc < 0)
1068 {
1069 char *exename = alloca (strlen (name) + 5);
1070 strcat (strcpy (exename, name), ".exe");
1071 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1072 0, &absolute_name);
1073 }
1074 #endif
1075 if (desc < 0)
1076 {
1077 make_cleanup (xfree, name);
1078 perror_with_name (name);
1079 }
1080 xfree (name); /* Free 1st new malloc'd copy */
1081 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1082 /* It'll be freed in free_objfile(). */
1083
1084 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1085 if (!sym_bfd)
1086 {
1087 close (desc);
1088 make_cleanup (xfree, name);
1089 error ("\"%s\": can't open to read symbols: %s.", name,
1090 bfd_errmsg (bfd_get_error ()));
1091 }
1092 sym_bfd->cacheable = true;
1093
1094 if (!bfd_check_format (sym_bfd, bfd_object))
1095 {
1096 /* FIXME: should be checking for errors from bfd_close (for one thing,
1097 on error it does not free all the storage associated with the
1098 bfd). */
1099 bfd_close (sym_bfd); /* This also closes desc */
1100 make_cleanup (xfree, name);
1101 error ("\"%s\": can't read symbols: %s.", name,
1102 bfd_errmsg (bfd_get_error ()));
1103 }
1104 return (sym_bfd);
1105 }
1106
1107 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1108 startup by the _initialize routine in each object file format reader,
1109 to register information about each format the the reader is prepared
1110 to handle. */
1111
1112 void
1113 add_symtab_fns (struct sym_fns *sf)
1114 {
1115 sf->next = symtab_fns;
1116 symtab_fns = sf;
1117 }
1118
1119
1120 /* Initialize to read symbols from the symbol file sym_bfd. It either
1121 returns or calls error(). The result is an initialized struct sym_fns
1122 in the objfile structure, that contains cached information about the
1123 symbol file. */
1124
1125 static void
1126 find_sym_fns (struct objfile *objfile)
1127 {
1128 struct sym_fns *sf;
1129 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1130 char *our_target = bfd_get_target (objfile->obfd);
1131
1132 /* Special kludge for apollo. See dstread.c. */
1133 if (STREQN (our_target, "apollo", 6))
1134 our_flavour = (enum bfd_flavour) -2;
1135
1136 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1137 {
1138 if (our_flavour == sf->sym_flavour)
1139 {
1140 objfile->sf = sf;
1141 return;
1142 }
1143 }
1144 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1145 bfd_get_target (objfile->obfd));
1146 }
1147 \f
1148 /* This function runs the load command of our current target. */
1149
1150 static void
1151 load_command (char *arg, int from_tty)
1152 {
1153 if (arg == NULL)
1154 arg = get_exec_file (1);
1155 target_load (arg, from_tty);
1156 }
1157
1158 /* This version of "load" should be usable for any target. Currently
1159 it is just used for remote targets, not inftarg.c or core files,
1160 on the theory that only in that case is it useful.
1161
1162 Avoiding xmodem and the like seems like a win (a) because we don't have
1163 to worry about finding it, and (b) On VMS, fork() is very slow and so
1164 we don't want to run a subprocess. On the other hand, I'm not sure how
1165 performance compares. */
1166
1167 static int download_write_size = 512;
1168 static int validate_download = 0;
1169
1170 void
1171 generic_load (char *args, int from_tty)
1172 {
1173 asection *s;
1174 bfd *loadfile_bfd;
1175 time_t start_time, end_time; /* Start and end times of download */
1176 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1177 unsigned long write_count = 0; /* Number of writes needed. */
1178 unsigned long load_offset; /* offset to add to vma for each section */
1179 char *filename;
1180 struct cleanup *old_cleanups;
1181 char *offptr;
1182 CORE_ADDR total_size = 0;
1183 CORE_ADDR total_sent = 0;
1184
1185 /* Parse the input argument - the user can specify a load offset as
1186 a second argument. */
1187 filename = xmalloc (strlen (args) + 1);
1188 old_cleanups = make_cleanup (xfree, filename);
1189 strcpy (filename, args);
1190 offptr = strchr (filename, ' ');
1191 if (offptr != NULL)
1192 {
1193 char *endptr;
1194 load_offset = strtoul (offptr, &endptr, 0);
1195 if (offptr == endptr)
1196 error ("Invalid download offset:%s\n", offptr);
1197 *offptr = '\0';
1198 }
1199 else
1200 load_offset = 0;
1201
1202 /* Open the file for loading. */
1203 loadfile_bfd = bfd_openr (filename, gnutarget);
1204 if (loadfile_bfd == NULL)
1205 {
1206 perror_with_name (filename);
1207 return;
1208 }
1209
1210 /* FIXME: should be checking for errors from bfd_close (for one thing,
1211 on error it does not free all the storage associated with the
1212 bfd). */
1213 make_cleanup_bfd_close (loadfile_bfd);
1214
1215 if (!bfd_check_format (loadfile_bfd, bfd_object))
1216 {
1217 error ("\"%s\" is not an object file: %s", filename,
1218 bfd_errmsg (bfd_get_error ()));
1219 }
1220
1221 for (s = loadfile_bfd->sections; s; s = s->next)
1222 if (s->flags & SEC_LOAD)
1223 total_size += bfd_get_section_size_before_reloc (s);
1224
1225 start_time = time (NULL);
1226
1227 for (s = loadfile_bfd->sections; s; s = s->next)
1228 {
1229 if (s->flags & SEC_LOAD)
1230 {
1231 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1232 if (size > 0)
1233 {
1234 char *buffer;
1235 struct cleanup *old_chain;
1236 CORE_ADDR lma = s->lma + load_offset;
1237 CORE_ADDR block_size;
1238 int err;
1239 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1240 CORE_ADDR sent;
1241
1242 if (download_write_size > 0 && size > download_write_size)
1243 block_size = download_write_size;
1244 else
1245 block_size = size;
1246
1247 buffer = xmalloc (size);
1248 old_chain = make_cleanup (xfree, buffer);
1249
1250 /* Is this really necessary? I guess it gives the user something
1251 to look at during a long download. */
1252 #ifdef UI_OUT
1253 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1254 sect_name, paddr_nz (size), paddr_nz (lma));
1255 #else
1256 fprintf_unfiltered (gdb_stdout,
1257 "Loading section %s, size 0x%s lma 0x%s\n",
1258 sect_name, paddr_nz (size), paddr_nz (lma));
1259 #endif
1260
1261 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1262
1263 sent = 0;
1264 do
1265 {
1266 CORE_ADDR len;
1267 CORE_ADDR this_transfer = size - sent;
1268 if (this_transfer >= block_size)
1269 this_transfer = block_size;
1270 len = target_write_memory_partial (lma, buffer,
1271 this_transfer, &err);
1272 if (err)
1273 break;
1274 if (validate_download)
1275 {
1276 /* Broken memories and broken monitors manifest
1277 themselves here when bring new computers to
1278 life. This doubles already slow downloads. */
1279 /* NOTE: cagney/1999-10-18: A more efficient
1280 implementation might add a verify_memory()
1281 method to the target vector and then use
1282 that. remote.c could implement that method
1283 using the ``qCRC'' packet. */
1284 char *check = xmalloc (len);
1285 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1286 if (target_read_memory (lma, check, len) != 0)
1287 error ("Download verify read failed at 0x%s",
1288 paddr (lma));
1289 if (memcmp (buffer, check, len) != 0)
1290 error ("Download verify compare failed at 0x%s",
1291 paddr (lma));
1292 do_cleanups (verify_cleanups);
1293 }
1294 data_count += len;
1295 lma += len;
1296 buffer += len;
1297 write_count += 1;
1298 sent += len;
1299 total_sent += len;
1300 if (quit_flag
1301 || (ui_load_progress_hook != NULL
1302 && ui_load_progress_hook (sect_name, sent)))
1303 error ("Canceled the download");
1304
1305 if (show_load_progress != NULL)
1306 show_load_progress (sect_name, sent, size, total_sent, total_size);
1307 }
1308 while (sent < size);
1309
1310 if (err != 0)
1311 error ("Memory access error while loading section %s.", sect_name);
1312
1313 do_cleanups (old_chain);
1314 }
1315 }
1316 }
1317
1318 end_time = time (NULL);
1319 {
1320 CORE_ADDR entry;
1321 entry = bfd_get_start_address (loadfile_bfd);
1322 #ifdef UI_OUT
1323 ui_out_text (uiout, "Start address ");
1324 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1325 ui_out_text (uiout, ", load size ");
1326 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1327 ui_out_text (uiout, "\n");
1328
1329 #else
1330 fprintf_unfiltered (gdb_stdout,
1331 "Start address 0x%s , load size %ld\n",
1332 paddr_nz (entry), data_count);
1333 #endif
1334 /* We were doing this in remote-mips.c, I suspect it is right
1335 for other targets too. */
1336 write_pc (entry);
1337 }
1338
1339 /* FIXME: are we supposed to call symbol_file_add or not? According to
1340 a comment from remote-mips.c (where a call to symbol_file_add was
1341 commented out), making the call confuses GDB if more than one file is
1342 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1343 does. */
1344
1345 print_transfer_performance (gdb_stdout, data_count, write_count,
1346 end_time - start_time);
1347
1348 do_cleanups (old_cleanups);
1349 }
1350
1351 /* Report how fast the transfer went. */
1352
1353 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1354 replaced by print_transfer_performance (with a very different
1355 function signature). */
1356
1357 void
1358 report_transfer_performance (unsigned long data_count, time_t start_time,
1359 time_t end_time)
1360 {
1361 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1362 }
1363
1364 void
1365 print_transfer_performance (struct ui_file *stream,
1366 unsigned long data_count,
1367 unsigned long write_count,
1368 unsigned long time_count)
1369 {
1370 #ifdef UI_OUT
1371 ui_out_text (uiout, "Transfer rate: ");
1372 if (time_count > 0)
1373 {
1374 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1375 (data_count * 8) / time_count);
1376 ui_out_text (uiout, " bits/sec");
1377 }
1378 else
1379 {
1380 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1381 ui_out_text (uiout, " bits in <1 sec");
1382 }
1383 if (write_count > 0)
1384 {
1385 ui_out_text (uiout, ", ");
1386 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1387 ui_out_text (uiout, " bytes/write");
1388 }
1389 ui_out_text (uiout, ".\n");
1390 #else
1391 fprintf_unfiltered (stream, "Transfer rate: ");
1392 if (time_count > 0)
1393 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1394 else
1395 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1396 if (write_count > 0)
1397 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1398 fprintf_unfiltered (stream, ".\n");
1399 #endif
1400 }
1401
1402 /* This function allows the addition of incrementally linked object files.
1403 It does not modify any state in the target, only in the debugger. */
1404 /* Note: ezannoni 2000-04-13 This function/command used to have a
1405 special case syntax for the rombug target (Rombug is the boot
1406 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1407 rombug case, the user doesn't need to supply a text address,
1408 instead a call to target_link() (in target.c) would supply the
1409 value to use. We are now discontinuing this type of ad hoc syntax. */
1410
1411 /* ARGSUSED */
1412 static void
1413 add_symbol_file_command (char *args, int from_tty)
1414 {
1415 char *filename = NULL;
1416 int flags = OBJF_USERLOADED;
1417 char *arg;
1418 int expecting_option = 0;
1419 int section_index = 0;
1420 int argcnt = 0;
1421 int sec_num = 0;
1422 int i;
1423 int expecting_sec_name = 0;
1424 int expecting_sec_addr = 0;
1425
1426 struct
1427 {
1428 char *name;
1429 char *value;
1430 } sect_opts[SECT_OFF_MAX];
1431
1432 struct section_addr_info section_addrs;
1433 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1434
1435 dont_repeat ();
1436
1437 if (args == NULL)
1438 error ("add-symbol-file takes a file name and an address");
1439
1440 /* Make a copy of the string that we can safely write into. */
1441 args = xstrdup (args);
1442
1443 /* Ensure section_addrs is initialized */
1444 memset (&section_addrs, 0, sizeof (section_addrs));
1445
1446 while (*args != '\000')
1447 {
1448 /* Any leading spaces? */
1449 while (isspace (*args))
1450 args++;
1451
1452 /* Point arg to the beginning of the argument. */
1453 arg = args;
1454
1455 /* Move args pointer over the argument. */
1456 while ((*args != '\000') && !isspace (*args))
1457 args++;
1458
1459 /* If there are more arguments, terminate arg and
1460 proceed past it. */
1461 if (*args != '\000')
1462 *args++ = '\000';
1463
1464 /* Now process the argument. */
1465 if (argcnt == 0)
1466 {
1467 /* The first argument is the file name. */
1468 filename = tilde_expand (arg);
1469 make_cleanup (xfree, filename);
1470 }
1471 else
1472 if (argcnt == 1)
1473 {
1474 /* The second argument is always the text address at which
1475 to load the program. */
1476 sect_opts[section_index].name = ".text";
1477 sect_opts[section_index].value = arg;
1478 section_index++;
1479 }
1480 else
1481 {
1482 /* It's an option (starting with '-') or it's an argument
1483 to an option */
1484
1485 if (*arg == '-')
1486 {
1487 if (strcmp (arg, "-mapped") == 0)
1488 flags |= OBJF_MAPPED;
1489 else
1490 if (strcmp (arg, "-readnow") == 0)
1491 flags |= OBJF_READNOW;
1492 else
1493 if (strcmp (arg, "-s") == 0)
1494 {
1495 if (section_index >= SECT_OFF_MAX)
1496 error ("Too many sections specified.");
1497 expecting_sec_name = 1;
1498 expecting_sec_addr = 1;
1499 }
1500 }
1501 else
1502 {
1503 if (expecting_sec_name)
1504 {
1505 sect_opts[section_index].name = arg;
1506 expecting_sec_name = 0;
1507 }
1508 else
1509 if (expecting_sec_addr)
1510 {
1511 sect_opts[section_index].value = arg;
1512 expecting_sec_addr = 0;
1513 section_index++;
1514 }
1515 else
1516 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1517 }
1518 }
1519 argcnt++;
1520 }
1521
1522 /* Print the prompt for the query below. And save the arguments into
1523 a sect_addr_info structure to be passed around to other
1524 functions. We have to split this up into separate print
1525 statements because local_hex_string returns a local static
1526 string. */
1527
1528 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1529 for (i = 0; i < section_index; i++)
1530 {
1531 CORE_ADDR addr;
1532 char *val = sect_opts[i].value;
1533 char *sec = sect_opts[i].name;
1534
1535 val = sect_opts[i].value;
1536 if (val[0] == '0' && val[1] == 'x')
1537 addr = strtoul (val+2, NULL, 16);
1538 else
1539 addr = strtoul (val, NULL, 10);
1540
1541 /* Here we store the section offsets in the order they were
1542 entered on the command line. */
1543 section_addrs.other[sec_num].name = sec;
1544 section_addrs.other[sec_num].addr = addr;
1545 printf_filtered ("\t%s_addr = %s\n",
1546 sec,
1547 local_hex_string ((unsigned long)addr));
1548 sec_num++;
1549
1550 /* The object's sections are initialized when a
1551 call is made to build_objfile_section_table (objfile).
1552 This happens in reread_symbols.
1553 At this point, we don't know what file type this is,
1554 so we can't determine what section names are valid. */
1555 }
1556
1557 if (from_tty && (!query ("%s", "")))
1558 error ("Not confirmed.");
1559
1560 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1561
1562 /* Getting new symbols may change our opinion about what is
1563 frameless. */
1564 reinit_frame_cache ();
1565 do_cleanups (my_cleanups);
1566 }
1567 \f
1568 static void
1569 add_shared_symbol_files_command (char *args, int from_tty)
1570 {
1571 #ifdef ADD_SHARED_SYMBOL_FILES
1572 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1573 #else
1574 error ("This command is not available in this configuration of GDB.");
1575 #endif
1576 }
1577 \f
1578 /* Re-read symbols if a symbol-file has changed. */
1579 void
1580 reread_symbols (void)
1581 {
1582 struct objfile *objfile;
1583 long new_modtime;
1584 int reread_one = 0;
1585 struct stat new_statbuf;
1586 int res;
1587
1588 /* With the addition of shared libraries, this should be modified,
1589 the load time should be saved in the partial symbol tables, since
1590 different tables may come from different source files. FIXME.
1591 This routine should then walk down each partial symbol table
1592 and see if the symbol table that it originates from has been changed */
1593
1594 for (objfile = object_files; objfile; objfile = objfile->next)
1595 {
1596 if (objfile->obfd)
1597 {
1598 #ifdef IBM6000_TARGET
1599 /* If this object is from a shared library, then you should
1600 stat on the library name, not member name. */
1601
1602 if (objfile->obfd->my_archive)
1603 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1604 else
1605 #endif
1606 res = stat (objfile->name, &new_statbuf);
1607 if (res != 0)
1608 {
1609 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1610 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1611 objfile->name);
1612 continue;
1613 }
1614 new_modtime = new_statbuf.st_mtime;
1615 if (new_modtime != objfile->mtime)
1616 {
1617 struct cleanup *old_cleanups;
1618 struct section_offsets *offsets;
1619 int num_offsets;
1620 char *obfd_filename;
1621
1622 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1623 objfile->name);
1624
1625 /* There are various functions like symbol_file_add,
1626 symfile_bfd_open, syms_from_objfile, etc., which might
1627 appear to do what we want. But they have various other
1628 effects which we *don't* want. So we just do stuff
1629 ourselves. We don't worry about mapped files (for one thing,
1630 any mapped file will be out of date). */
1631
1632 /* If we get an error, blow away this objfile (not sure if
1633 that is the correct response for things like shared
1634 libraries). */
1635 old_cleanups = make_cleanup_free_objfile (objfile);
1636 /* We need to do this whenever any symbols go away. */
1637 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1638
1639 /* Clean up any state BFD has sitting around. We don't need
1640 to close the descriptor but BFD lacks a way of closing the
1641 BFD without closing the descriptor. */
1642 obfd_filename = bfd_get_filename (objfile->obfd);
1643 if (!bfd_close (objfile->obfd))
1644 error ("Can't close BFD for %s: %s", objfile->name,
1645 bfd_errmsg (bfd_get_error ()));
1646 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1647 if (objfile->obfd == NULL)
1648 error ("Can't open %s to read symbols.", objfile->name);
1649 /* bfd_openr sets cacheable to true, which is what we want. */
1650 if (!bfd_check_format (objfile->obfd, bfd_object))
1651 error ("Can't read symbols from %s: %s.", objfile->name,
1652 bfd_errmsg (bfd_get_error ()));
1653
1654 /* Save the offsets, we will nuke them with the rest of the
1655 psymbol_obstack. */
1656 num_offsets = objfile->num_sections;
1657 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1658 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1659
1660 /* Nuke all the state that we will re-read. Much of the following
1661 code which sets things to NULL really is necessary to tell
1662 other parts of GDB that there is nothing currently there. */
1663
1664 /* FIXME: Do we have to free a whole linked list, or is this
1665 enough? */
1666 if (objfile->global_psymbols.list)
1667 mfree (objfile->md, objfile->global_psymbols.list);
1668 memset (&objfile->global_psymbols, 0,
1669 sizeof (objfile->global_psymbols));
1670 if (objfile->static_psymbols.list)
1671 mfree (objfile->md, objfile->static_psymbols.list);
1672 memset (&objfile->static_psymbols, 0,
1673 sizeof (objfile->static_psymbols));
1674
1675 /* Free the obstacks for non-reusable objfiles */
1676 free_bcache (&objfile->psymbol_cache);
1677 obstack_free (&objfile->psymbol_obstack, 0);
1678 obstack_free (&objfile->symbol_obstack, 0);
1679 obstack_free (&objfile->type_obstack, 0);
1680 objfile->sections = NULL;
1681 objfile->symtabs = NULL;
1682 objfile->psymtabs = NULL;
1683 objfile->free_psymtabs = NULL;
1684 objfile->msymbols = NULL;
1685 objfile->minimal_symbol_count = 0;
1686 memset (&objfile->msymbol_hash, 0,
1687 sizeof (objfile->msymbol_hash));
1688 memset (&objfile->msymbol_demangled_hash, 0,
1689 sizeof (objfile->msymbol_demangled_hash));
1690 objfile->fundamental_types = NULL;
1691 if (objfile->sf != NULL)
1692 {
1693 (*objfile->sf->sym_finish) (objfile);
1694 }
1695
1696 /* We never make this a mapped file. */
1697 objfile->md = NULL;
1698 /* obstack_specify_allocation also initializes the obstack so
1699 it is empty. */
1700 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1701 xmalloc, xfree);
1702 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1703 xmalloc, xfree);
1704 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1705 xmalloc, xfree);
1706 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1707 xmalloc, xfree);
1708 if (build_objfile_section_table (objfile))
1709 {
1710 error ("Can't find the file sections in `%s': %s",
1711 objfile->name, bfd_errmsg (bfd_get_error ()));
1712 }
1713
1714 /* We use the same section offsets as from last time. I'm not
1715 sure whether that is always correct for shared libraries. */
1716 objfile->section_offsets = (struct section_offsets *)
1717 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1718 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1719 objfile->num_sections = num_offsets;
1720
1721 /* What the hell is sym_new_init for, anyway? The concept of
1722 distinguishing between the main file and additional files
1723 in this way seems rather dubious. */
1724 if (objfile == symfile_objfile)
1725 {
1726 (*objfile->sf->sym_new_init) (objfile);
1727 #ifdef HPUXHPPA
1728 RESET_HP_UX_GLOBALS ();
1729 #endif
1730 }
1731
1732 (*objfile->sf->sym_init) (objfile);
1733 clear_complaints (1, 1);
1734 /* The "mainline" parameter is a hideous hack; I think leaving it
1735 zero is OK since dbxread.c also does what it needs to do if
1736 objfile->global_psymbols.size is 0. */
1737 (*objfile->sf->sym_read) (objfile, 0);
1738 if (!have_partial_symbols () && !have_full_symbols ())
1739 {
1740 wrap_here ("");
1741 printf_filtered ("(no debugging symbols found)\n");
1742 wrap_here ("");
1743 }
1744 objfile->flags |= OBJF_SYMS;
1745
1746 /* We're done reading the symbol file; finish off complaints. */
1747 clear_complaints (0, 1);
1748
1749 /* Getting new symbols may change our opinion about what is
1750 frameless. */
1751
1752 reinit_frame_cache ();
1753
1754 /* Discard cleanups as symbol reading was successful. */
1755 discard_cleanups (old_cleanups);
1756
1757 /* If the mtime has changed between the time we set new_modtime
1758 and now, we *want* this to be out of date, so don't call stat
1759 again now. */
1760 objfile->mtime = new_modtime;
1761 reread_one = 1;
1762
1763 /* Call this after reading in a new symbol table to give target
1764 dependent code a crack at the new symbols. For instance, this
1765 could be used to update the values of target-specific symbols GDB
1766 needs to keep track of (such as _sigtramp, or whatever). */
1767
1768 TARGET_SYMFILE_POSTREAD (objfile);
1769 }
1770 }
1771 }
1772
1773 if (reread_one)
1774 clear_symtab_users ();
1775 }
1776 \f
1777
1778
1779 typedef struct
1780 {
1781 char *ext;
1782 enum language lang;
1783 }
1784 filename_language;
1785
1786 static filename_language *filename_language_table;
1787 static int fl_table_size, fl_table_next;
1788
1789 static void
1790 add_filename_language (char *ext, enum language lang)
1791 {
1792 if (fl_table_next >= fl_table_size)
1793 {
1794 fl_table_size += 10;
1795 filename_language_table = xrealloc (filename_language_table,
1796 fl_table_size);
1797 }
1798
1799 filename_language_table[fl_table_next].ext = xstrdup (ext);
1800 filename_language_table[fl_table_next].lang = lang;
1801 fl_table_next++;
1802 }
1803
1804 static char *ext_args;
1805
1806 static void
1807 set_ext_lang_command (char *args, int from_tty)
1808 {
1809 int i;
1810 char *cp = ext_args;
1811 enum language lang;
1812
1813 /* First arg is filename extension, starting with '.' */
1814 if (*cp != '.')
1815 error ("'%s': Filename extension must begin with '.'", ext_args);
1816
1817 /* Find end of first arg. */
1818 while (*cp && !isspace (*cp))
1819 cp++;
1820
1821 if (*cp == '\0')
1822 error ("'%s': two arguments required -- filename extension and language",
1823 ext_args);
1824
1825 /* Null-terminate first arg */
1826 *cp++ = '\0';
1827
1828 /* Find beginning of second arg, which should be a source language. */
1829 while (*cp && isspace (*cp))
1830 cp++;
1831
1832 if (*cp == '\0')
1833 error ("'%s': two arguments required -- filename extension and language",
1834 ext_args);
1835
1836 /* Lookup the language from among those we know. */
1837 lang = language_enum (cp);
1838
1839 /* Now lookup the filename extension: do we already know it? */
1840 for (i = 0; i < fl_table_next; i++)
1841 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1842 break;
1843
1844 if (i >= fl_table_next)
1845 {
1846 /* new file extension */
1847 add_filename_language (ext_args, lang);
1848 }
1849 else
1850 {
1851 /* redefining a previously known filename extension */
1852
1853 /* if (from_tty) */
1854 /* query ("Really make files of type %s '%s'?", */
1855 /* ext_args, language_str (lang)); */
1856
1857 xfree (filename_language_table[i].ext);
1858 filename_language_table[i].ext = xstrdup (ext_args);
1859 filename_language_table[i].lang = lang;
1860 }
1861 }
1862
1863 static void
1864 info_ext_lang_command (char *args, int from_tty)
1865 {
1866 int i;
1867
1868 printf_filtered ("Filename extensions and the languages they represent:");
1869 printf_filtered ("\n\n");
1870 for (i = 0; i < fl_table_next; i++)
1871 printf_filtered ("\t%s\t- %s\n",
1872 filename_language_table[i].ext,
1873 language_str (filename_language_table[i].lang));
1874 }
1875
1876 static void
1877 init_filename_language_table (void)
1878 {
1879 if (fl_table_size == 0) /* protect against repetition */
1880 {
1881 fl_table_size = 20;
1882 fl_table_next = 0;
1883 filename_language_table =
1884 xmalloc (fl_table_size * sizeof (*filename_language_table));
1885 add_filename_language (".c", language_c);
1886 add_filename_language (".C", language_cplus);
1887 add_filename_language (".cc", language_cplus);
1888 add_filename_language (".cp", language_cplus);
1889 add_filename_language (".cpp", language_cplus);
1890 add_filename_language (".cxx", language_cplus);
1891 add_filename_language (".c++", language_cplus);
1892 add_filename_language (".java", language_java);
1893 add_filename_language (".class", language_java);
1894 add_filename_language (".ch", language_chill);
1895 add_filename_language (".c186", language_chill);
1896 add_filename_language (".c286", language_chill);
1897 add_filename_language (".f", language_fortran);
1898 add_filename_language (".F", language_fortran);
1899 add_filename_language (".s", language_asm);
1900 add_filename_language (".S", language_asm);
1901 add_filename_language (".pas", language_pascal);
1902 add_filename_language (".p", language_pascal);
1903 add_filename_language (".pp", language_pascal);
1904 }
1905 }
1906
1907 enum language
1908 deduce_language_from_filename (char *filename)
1909 {
1910 int i;
1911 char *cp;
1912
1913 if (filename != NULL)
1914 if ((cp = strrchr (filename, '.')) != NULL)
1915 for (i = 0; i < fl_table_next; i++)
1916 if (strcmp (cp, filename_language_table[i].ext) == 0)
1917 return filename_language_table[i].lang;
1918
1919 return language_unknown;
1920 }
1921 \f
1922 /* allocate_symtab:
1923
1924 Allocate and partly initialize a new symbol table. Return a pointer
1925 to it. error() if no space.
1926
1927 Caller must set these fields:
1928 LINETABLE(symtab)
1929 symtab->blockvector
1930 symtab->dirname
1931 symtab->free_code
1932 symtab->free_ptr
1933 possibly free_named_symtabs (symtab->filename);
1934 */
1935
1936 struct symtab *
1937 allocate_symtab (char *filename, struct objfile *objfile)
1938 {
1939 register struct symtab *symtab;
1940
1941 symtab = (struct symtab *)
1942 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1943 memset (symtab, 0, sizeof (*symtab));
1944 symtab->filename = obsavestring (filename, strlen (filename),
1945 &objfile->symbol_obstack);
1946 symtab->fullname = NULL;
1947 symtab->language = deduce_language_from_filename (filename);
1948 symtab->debugformat = obsavestring ("unknown", 7,
1949 &objfile->symbol_obstack);
1950
1951 /* Hook it to the objfile it comes from */
1952
1953 symtab->objfile = objfile;
1954 symtab->next = objfile->symtabs;
1955 objfile->symtabs = symtab;
1956
1957 /* FIXME: This should go away. It is only defined for the Z8000,
1958 and the Z8000 definition of this macro doesn't have anything to
1959 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1960 here for convenience. */
1961 #ifdef INIT_EXTRA_SYMTAB_INFO
1962 INIT_EXTRA_SYMTAB_INFO (symtab);
1963 #endif
1964
1965 return (symtab);
1966 }
1967
1968 struct partial_symtab *
1969 allocate_psymtab (char *filename, struct objfile *objfile)
1970 {
1971 struct partial_symtab *psymtab;
1972
1973 if (objfile->free_psymtabs)
1974 {
1975 psymtab = objfile->free_psymtabs;
1976 objfile->free_psymtabs = psymtab->next;
1977 }
1978 else
1979 psymtab = (struct partial_symtab *)
1980 obstack_alloc (&objfile->psymbol_obstack,
1981 sizeof (struct partial_symtab));
1982
1983 memset (psymtab, 0, sizeof (struct partial_symtab));
1984 psymtab->filename = obsavestring (filename, strlen (filename),
1985 &objfile->psymbol_obstack);
1986 psymtab->symtab = NULL;
1987
1988 /* Prepend it to the psymtab list for the objfile it belongs to.
1989 Psymtabs are searched in most recent inserted -> least recent
1990 inserted order. */
1991
1992 psymtab->objfile = objfile;
1993 psymtab->next = objfile->psymtabs;
1994 objfile->psymtabs = psymtab;
1995 #if 0
1996 {
1997 struct partial_symtab **prev_pst;
1998 psymtab->objfile = objfile;
1999 psymtab->next = NULL;
2000 prev_pst = &(objfile->psymtabs);
2001 while ((*prev_pst) != NULL)
2002 prev_pst = &((*prev_pst)->next);
2003 (*prev_pst) = psymtab;
2004 }
2005 #endif
2006
2007 return (psymtab);
2008 }
2009
2010 void
2011 discard_psymtab (struct partial_symtab *pst)
2012 {
2013 struct partial_symtab **prev_pst;
2014
2015 /* From dbxread.c:
2016 Empty psymtabs happen as a result of header files which don't
2017 have any symbols in them. There can be a lot of them. But this
2018 check is wrong, in that a psymtab with N_SLINE entries but
2019 nothing else is not empty, but we don't realize that. Fixing
2020 that without slowing things down might be tricky. */
2021
2022 /* First, snip it out of the psymtab chain */
2023
2024 prev_pst = &(pst->objfile->psymtabs);
2025 while ((*prev_pst) != pst)
2026 prev_pst = &((*prev_pst)->next);
2027 (*prev_pst) = pst->next;
2028
2029 /* Next, put it on a free list for recycling */
2030
2031 pst->next = pst->objfile->free_psymtabs;
2032 pst->objfile->free_psymtabs = pst;
2033 }
2034 \f
2035
2036 /* Reset all data structures in gdb which may contain references to symbol
2037 table data. */
2038
2039 void
2040 clear_symtab_users (void)
2041 {
2042 /* Someday, we should do better than this, by only blowing away
2043 the things that really need to be blown. */
2044 clear_value_history ();
2045 clear_displays ();
2046 clear_internalvars ();
2047 breakpoint_re_set ();
2048 set_default_breakpoint (0, 0, 0, 0);
2049 current_source_symtab = 0;
2050 current_source_line = 0;
2051 clear_pc_function_cache ();
2052 if (target_new_objfile_hook)
2053 target_new_objfile_hook (NULL);
2054 }
2055
2056 static void
2057 clear_symtab_users_cleanup (void *ignore)
2058 {
2059 clear_symtab_users ();
2060 }
2061
2062 /* clear_symtab_users_once:
2063
2064 This function is run after symbol reading, or from a cleanup.
2065 If an old symbol table was obsoleted, the old symbol table
2066 has been blown away, but the other GDB data structures that may
2067 reference it have not yet been cleared or re-directed. (The old
2068 symtab was zapped, and the cleanup queued, in free_named_symtab()
2069 below.)
2070
2071 This function can be queued N times as a cleanup, or called
2072 directly; it will do all the work the first time, and then will be a
2073 no-op until the next time it is queued. This works by bumping a
2074 counter at queueing time. Much later when the cleanup is run, or at
2075 the end of symbol processing (in case the cleanup is discarded), if
2076 the queued count is greater than the "done-count", we do the work
2077 and set the done-count to the queued count. If the queued count is
2078 less than or equal to the done-count, we just ignore the call. This
2079 is needed because reading a single .o file will often replace many
2080 symtabs (one per .h file, for example), and we don't want to reset
2081 the breakpoints N times in the user's face.
2082
2083 The reason we both queue a cleanup, and call it directly after symbol
2084 reading, is because the cleanup protects us in case of errors, but is
2085 discarded if symbol reading is successful. */
2086
2087 #if 0
2088 /* FIXME: As free_named_symtabs is currently a big noop this function
2089 is no longer needed. */
2090 static void clear_symtab_users_once (void);
2091
2092 static int clear_symtab_users_queued;
2093 static int clear_symtab_users_done;
2094
2095 static void
2096 clear_symtab_users_once (void)
2097 {
2098 /* Enforce once-per-`do_cleanups'-semantics */
2099 if (clear_symtab_users_queued <= clear_symtab_users_done)
2100 return;
2101 clear_symtab_users_done = clear_symtab_users_queued;
2102
2103 clear_symtab_users ();
2104 }
2105 #endif
2106
2107 /* Delete the specified psymtab, and any others that reference it. */
2108
2109 static void
2110 cashier_psymtab (struct partial_symtab *pst)
2111 {
2112 struct partial_symtab *ps, *pprev = NULL;
2113 int i;
2114
2115 /* Find its previous psymtab in the chain */
2116 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2117 {
2118 if (ps == pst)
2119 break;
2120 pprev = ps;
2121 }
2122
2123 if (ps)
2124 {
2125 /* Unhook it from the chain. */
2126 if (ps == pst->objfile->psymtabs)
2127 pst->objfile->psymtabs = ps->next;
2128 else
2129 pprev->next = ps->next;
2130
2131 /* FIXME, we can't conveniently deallocate the entries in the
2132 partial_symbol lists (global_psymbols/static_psymbols) that
2133 this psymtab points to. These just take up space until all
2134 the psymtabs are reclaimed. Ditto the dependencies list and
2135 filename, which are all in the psymbol_obstack. */
2136
2137 /* We need to cashier any psymtab that has this one as a dependency... */
2138 again:
2139 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2140 {
2141 for (i = 0; i < ps->number_of_dependencies; i++)
2142 {
2143 if (ps->dependencies[i] == pst)
2144 {
2145 cashier_psymtab (ps);
2146 goto again; /* Must restart, chain has been munged. */
2147 }
2148 }
2149 }
2150 }
2151 }
2152
2153 /* If a symtab or psymtab for filename NAME is found, free it along
2154 with any dependent breakpoints, displays, etc.
2155 Used when loading new versions of object modules with the "add-file"
2156 command. This is only called on the top-level symtab or psymtab's name;
2157 it is not called for subsidiary files such as .h files.
2158
2159 Return value is 1 if we blew away the environment, 0 if not.
2160 FIXME. The return value appears to never be used.
2161
2162 FIXME. I think this is not the best way to do this. We should
2163 work on being gentler to the environment while still cleaning up
2164 all stray pointers into the freed symtab. */
2165
2166 int
2167 free_named_symtabs (char *name)
2168 {
2169 #if 0
2170 /* FIXME: With the new method of each objfile having it's own
2171 psymtab list, this function needs serious rethinking. In particular,
2172 why was it ever necessary to toss psymtabs with specific compilation
2173 unit filenames, as opposed to all psymtabs from a particular symbol
2174 file? -- fnf
2175 Well, the answer is that some systems permit reloading of particular
2176 compilation units. We want to blow away any old info about these
2177 compilation units, regardless of which objfiles they arrived in. --gnu. */
2178
2179 register struct symtab *s;
2180 register struct symtab *prev;
2181 register struct partial_symtab *ps;
2182 struct blockvector *bv;
2183 int blewit = 0;
2184
2185 /* We only wack things if the symbol-reload switch is set. */
2186 if (!symbol_reloading)
2187 return 0;
2188
2189 /* Some symbol formats have trouble providing file names... */
2190 if (name == 0 || *name == '\0')
2191 return 0;
2192
2193 /* Look for a psymtab with the specified name. */
2194
2195 again2:
2196 for (ps = partial_symtab_list; ps; ps = ps->next)
2197 {
2198 if (STREQ (name, ps->filename))
2199 {
2200 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2201 goto again2; /* Must restart, chain has been munged */
2202 }
2203 }
2204
2205 /* Look for a symtab with the specified name. */
2206
2207 for (s = symtab_list; s; s = s->next)
2208 {
2209 if (STREQ (name, s->filename))
2210 break;
2211 prev = s;
2212 }
2213
2214 if (s)
2215 {
2216 if (s == symtab_list)
2217 symtab_list = s->next;
2218 else
2219 prev->next = s->next;
2220
2221 /* For now, queue a delete for all breakpoints, displays, etc., whether
2222 or not they depend on the symtab being freed. This should be
2223 changed so that only those data structures affected are deleted. */
2224
2225 /* But don't delete anything if the symtab is empty.
2226 This test is necessary due to a bug in "dbxread.c" that
2227 causes empty symtabs to be created for N_SO symbols that
2228 contain the pathname of the object file. (This problem
2229 has been fixed in GDB 3.9x). */
2230
2231 bv = BLOCKVECTOR (s);
2232 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2233 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2234 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2235 {
2236 complain (&oldsyms_complaint, name);
2237
2238 clear_symtab_users_queued++;
2239 make_cleanup (clear_symtab_users_once, 0);
2240 blewit = 1;
2241 }
2242 else
2243 {
2244 complain (&empty_symtab_complaint, name);
2245 }
2246
2247 free_symtab (s);
2248 }
2249 else
2250 {
2251 /* It is still possible that some breakpoints will be affected
2252 even though no symtab was found, since the file might have
2253 been compiled without debugging, and hence not be associated
2254 with a symtab. In order to handle this correctly, we would need
2255 to keep a list of text address ranges for undebuggable files.
2256 For now, we do nothing, since this is a fairly obscure case. */
2257 ;
2258 }
2259
2260 /* FIXME, what about the minimal symbol table? */
2261 return blewit;
2262 #else
2263 return (0);
2264 #endif
2265 }
2266 \f
2267 /* Allocate and partially fill a partial symtab. It will be
2268 completely filled at the end of the symbol list.
2269
2270 FILENAME is the name of the symbol-file we are reading from. */
2271
2272 struct partial_symtab *
2273 start_psymtab_common (struct objfile *objfile,
2274 struct section_offsets *section_offsets, char *filename,
2275 CORE_ADDR textlow, struct partial_symbol **global_syms,
2276 struct partial_symbol **static_syms)
2277 {
2278 struct partial_symtab *psymtab;
2279
2280 psymtab = allocate_psymtab (filename, objfile);
2281 psymtab->section_offsets = section_offsets;
2282 psymtab->textlow = textlow;
2283 psymtab->texthigh = psymtab->textlow; /* default */
2284 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2285 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2286 return (psymtab);
2287 }
2288 \f
2289 /* Add a symbol with a long value to a psymtab.
2290 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2291
2292 void
2293 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2294 enum address_class class,
2295 struct psymbol_allocation_list *list, long val, /* Value as a long */
2296 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2297 enum language language, struct objfile *objfile)
2298 {
2299 register struct partial_symbol *psym;
2300 char *buf = alloca (namelength + 1);
2301 /* psymbol is static so that there will be no uninitialized gaps in the
2302 structure which might contain random data, causing cache misses in
2303 bcache. */
2304 static struct partial_symbol psymbol;
2305
2306 /* Create local copy of the partial symbol */
2307 memcpy (buf, name, namelength);
2308 buf[namelength] = '\0';
2309 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2310 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2311 if (val != 0)
2312 {
2313 SYMBOL_VALUE (&psymbol) = val;
2314 }
2315 else
2316 {
2317 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2318 }
2319 SYMBOL_SECTION (&psymbol) = 0;
2320 SYMBOL_LANGUAGE (&psymbol) = language;
2321 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2322 PSYMBOL_CLASS (&psymbol) = class;
2323 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2324
2325 /* Stash the partial symbol away in the cache */
2326 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2327
2328 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2329 if (list->next >= list->list + list->size)
2330 {
2331 extend_psymbol_list (list, objfile);
2332 }
2333 *list->next++ = psym;
2334 OBJSTAT (objfile, n_psyms++);
2335 }
2336
2337 /* Add a symbol with a long value to a psymtab. This differs from
2338 * add_psymbol_to_list above in taking both a mangled and a demangled
2339 * name. */
2340
2341 void
2342 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2343 int dem_namelength, namespace_enum namespace,
2344 enum address_class class,
2345 struct psymbol_allocation_list *list, long val, /* Value as a long */
2346 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2347 enum language language,
2348 struct objfile *objfile)
2349 {
2350 register struct partial_symbol *psym;
2351 char *buf = alloca (namelength + 1);
2352 /* psymbol is static so that there will be no uninitialized gaps in the
2353 structure which might contain random data, causing cache misses in
2354 bcache. */
2355 static struct partial_symbol psymbol;
2356
2357 /* Create local copy of the partial symbol */
2358
2359 memcpy (buf, name, namelength);
2360 buf[namelength] = '\0';
2361 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2362
2363 buf = alloca (dem_namelength + 1);
2364 memcpy (buf, dem_name, dem_namelength);
2365 buf[dem_namelength] = '\0';
2366
2367 switch (language)
2368 {
2369 case language_c:
2370 case language_cplus:
2371 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2372 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2373 break;
2374 case language_chill:
2375 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2376 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2377
2378 /* FIXME What should be done for the default case? Ignoring for now. */
2379 }
2380
2381 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2382 if (val != 0)
2383 {
2384 SYMBOL_VALUE (&psymbol) = val;
2385 }
2386 else
2387 {
2388 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2389 }
2390 SYMBOL_SECTION (&psymbol) = 0;
2391 SYMBOL_LANGUAGE (&psymbol) = language;
2392 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2393 PSYMBOL_CLASS (&psymbol) = class;
2394 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2395
2396 /* Stash the partial symbol away in the cache */
2397 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2398
2399 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2400 if (list->next >= list->list + list->size)
2401 {
2402 extend_psymbol_list (list, objfile);
2403 }
2404 *list->next++ = psym;
2405 OBJSTAT (objfile, n_psyms++);
2406 }
2407
2408 /* Initialize storage for partial symbols. */
2409
2410 void
2411 init_psymbol_list (struct objfile *objfile, int total_symbols)
2412 {
2413 /* Free any previously allocated psymbol lists. */
2414
2415 if (objfile->global_psymbols.list)
2416 {
2417 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2418 }
2419 if (objfile->static_psymbols.list)
2420 {
2421 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2422 }
2423
2424 /* Current best guess is that approximately a twentieth
2425 of the total symbols (in a debugging file) are global or static
2426 oriented symbols */
2427
2428 objfile->global_psymbols.size = total_symbols / 10;
2429 objfile->static_psymbols.size = total_symbols / 10;
2430
2431 if (objfile->global_psymbols.size > 0)
2432 {
2433 objfile->global_psymbols.next =
2434 objfile->global_psymbols.list = (struct partial_symbol **)
2435 xmmalloc (objfile->md, (objfile->global_psymbols.size
2436 * sizeof (struct partial_symbol *)));
2437 }
2438 if (objfile->static_psymbols.size > 0)
2439 {
2440 objfile->static_psymbols.next =
2441 objfile->static_psymbols.list = (struct partial_symbol **)
2442 xmmalloc (objfile->md, (objfile->static_psymbols.size
2443 * sizeof (struct partial_symbol *)));
2444 }
2445 }
2446
2447 /* OVERLAYS:
2448 The following code implements an abstraction for debugging overlay sections.
2449
2450 The target model is as follows:
2451 1) The gnu linker will permit multiple sections to be mapped into the
2452 same VMA, each with its own unique LMA (or load address).
2453 2) It is assumed that some runtime mechanism exists for mapping the
2454 sections, one by one, from the load address into the VMA address.
2455 3) This code provides a mechanism for gdb to keep track of which
2456 sections should be considered to be mapped from the VMA to the LMA.
2457 This information is used for symbol lookup, and memory read/write.
2458 For instance, if a section has been mapped then its contents
2459 should be read from the VMA, otherwise from the LMA.
2460
2461 Two levels of debugger support for overlays are available. One is
2462 "manual", in which the debugger relies on the user to tell it which
2463 overlays are currently mapped. This level of support is
2464 implemented entirely in the core debugger, and the information about
2465 whether a section is mapped is kept in the objfile->obj_section table.
2466
2467 The second level of support is "automatic", and is only available if
2468 the target-specific code provides functionality to read the target's
2469 overlay mapping table, and translate its contents for the debugger
2470 (by updating the mapped state information in the obj_section tables).
2471
2472 The interface is as follows:
2473 User commands:
2474 overlay map <name> -- tell gdb to consider this section mapped
2475 overlay unmap <name> -- tell gdb to consider this section unmapped
2476 overlay list -- list the sections that GDB thinks are mapped
2477 overlay read-target -- get the target's state of what's mapped
2478 overlay off/manual/auto -- set overlay debugging state
2479 Functional interface:
2480 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2481 section, return that section.
2482 find_pc_overlay(pc): find any overlay section that contains
2483 the pc, either in its VMA or its LMA
2484 overlay_is_mapped(sect): true if overlay is marked as mapped
2485 section_is_overlay(sect): true if section's VMA != LMA
2486 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2487 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2488 overlay_mapped_address(...): map an address from section's LMA to VMA
2489 overlay_unmapped_address(...): map an address from section's VMA to LMA
2490 symbol_overlayed_address(...): Return a "current" address for symbol:
2491 either in VMA or LMA depending on whether
2492 the symbol's section is currently mapped
2493 */
2494
2495 /* Overlay debugging state: */
2496
2497 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2498 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2499
2500 /* Target vector for refreshing overlay mapped state */
2501 static void simple_overlay_update (struct obj_section *);
2502 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2503
2504 /* Function: section_is_overlay (SECTION)
2505 Returns true if SECTION has VMA not equal to LMA, ie.
2506 SECTION is loaded at an address different from where it will "run". */
2507
2508 int
2509 section_is_overlay (asection *section)
2510 {
2511 if (overlay_debugging)
2512 if (section && section->lma != 0 &&
2513 section->vma != section->lma)
2514 return 1;
2515
2516 return 0;
2517 }
2518
2519 /* Function: overlay_invalidate_all (void)
2520 Invalidate the mapped state of all overlay sections (mark it as stale). */
2521
2522 static void
2523 overlay_invalidate_all (void)
2524 {
2525 struct objfile *objfile;
2526 struct obj_section *sect;
2527
2528 ALL_OBJSECTIONS (objfile, sect)
2529 if (section_is_overlay (sect->the_bfd_section))
2530 sect->ovly_mapped = -1;
2531 }
2532
2533 /* Function: overlay_is_mapped (SECTION)
2534 Returns true if section is an overlay, and is currently mapped.
2535 Private: public access is thru function section_is_mapped.
2536
2537 Access to the ovly_mapped flag is restricted to this function, so
2538 that we can do automatic update. If the global flag
2539 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2540 overlay_invalidate_all. If the mapped state of the particular
2541 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2542
2543 static int
2544 overlay_is_mapped (struct obj_section *osect)
2545 {
2546 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2547 return 0;
2548
2549 switch (overlay_debugging)
2550 {
2551 default:
2552 case 0:
2553 return 0; /* overlay debugging off */
2554 case -1: /* overlay debugging automatic */
2555 /* Unles there is a target_overlay_update function,
2556 there's really nothing useful to do here (can't really go auto) */
2557 if (target_overlay_update)
2558 {
2559 if (overlay_cache_invalid)
2560 {
2561 overlay_invalidate_all ();
2562 overlay_cache_invalid = 0;
2563 }
2564 if (osect->ovly_mapped == -1)
2565 (*target_overlay_update) (osect);
2566 }
2567 /* fall thru to manual case */
2568 case 1: /* overlay debugging manual */
2569 return osect->ovly_mapped == 1;
2570 }
2571 }
2572
2573 /* Function: section_is_mapped
2574 Returns true if section is an overlay, and is currently mapped. */
2575
2576 int
2577 section_is_mapped (asection *section)
2578 {
2579 struct objfile *objfile;
2580 struct obj_section *osect;
2581
2582 if (overlay_debugging)
2583 if (section && section_is_overlay (section))
2584 ALL_OBJSECTIONS (objfile, osect)
2585 if (osect->the_bfd_section == section)
2586 return overlay_is_mapped (osect);
2587
2588 return 0;
2589 }
2590
2591 /* Function: pc_in_unmapped_range
2592 If PC falls into the lma range of SECTION, return true, else false. */
2593
2594 CORE_ADDR
2595 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2596 {
2597 int size;
2598
2599 if (overlay_debugging)
2600 if (section && section_is_overlay (section))
2601 {
2602 size = bfd_get_section_size_before_reloc (section);
2603 if (section->lma <= pc && pc < section->lma + size)
2604 return 1;
2605 }
2606 return 0;
2607 }
2608
2609 /* Function: pc_in_mapped_range
2610 If PC falls into the vma range of SECTION, return true, else false. */
2611
2612 CORE_ADDR
2613 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2614 {
2615 int size;
2616
2617 if (overlay_debugging)
2618 if (section && section_is_overlay (section))
2619 {
2620 size = bfd_get_section_size_before_reloc (section);
2621 if (section->vma <= pc && pc < section->vma + size)
2622 return 1;
2623 }
2624 return 0;
2625 }
2626
2627 /* Function: overlay_unmapped_address (PC, SECTION)
2628 Returns the address corresponding to PC in the unmapped (load) range.
2629 May be the same as PC. */
2630
2631 CORE_ADDR
2632 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2633 {
2634 if (overlay_debugging)
2635 if (section && section_is_overlay (section) &&
2636 pc_in_mapped_range (pc, section))
2637 return pc + section->lma - section->vma;
2638
2639 return pc;
2640 }
2641
2642 /* Function: overlay_mapped_address (PC, SECTION)
2643 Returns the address corresponding to PC in the mapped (runtime) range.
2644 May be the same as PC. */
2645
2646 CORE_ADDR
2647 overlay_mapped_address (CORE_ADDR pc, asection *section)
2648 {
2649 if (overlay_debugging)
2650 if (section && section_is_overlay (section) &&
2651 pc_in_unmapped_range (pc, section))
2652 return pc + section->vma - section->lma;
2653
2654 return pc;
2655 }
2656
2657
2658 /* Function: symbol_overlayed_address
2659 Return one of two addresses (relative to the VMA or to the LMA),
2660 depending on whether the section is mapped or not. */
2661
2662 CORE_ADDR
2663 symbol_overlayed_address (CORE_ADDR address, asection *section)
2664 {
2665 if (overlay_debugging)
2666 {
2667 /* If the symbol has no section, just return its regular address. */
2668 if (section == 0)
2669 return address;
2670 /* If the symbol's section is not an overlay, just return its address */
2671 if (!section_is_overlay (section))
2672 return address;
2673 /* If the symbol's section is mapped, just return its address */
2674 if (section_is_mapped (section))
2675 return address;
2676 /*
2677 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2678 * then return its LOADED address rather than its vma address!!
2679 */
2680 return overlay_unmapped_address (address, section);
2681 }
2682 return address;
2683 }
2684
2685 /* Function: find_pc_overlay (PC)
2686 Return the best-match overlay section for PC:
2687 If PC matches a mapped overlay section's VMA, return that section.
2688 Else if PC matches an unmapped section's VMA, return that section.
2689 Else if PC matches an unmapped section's LMA, return that section. */
2690
2691 asection *
2692 find_pc_overlay (CORE_ADDR pc)
2693 {
2694 struct objfile *objfile;
2695 struct obj_section *osect, *best_match = NULL;
2696
2697 if (overlay_debugging)
2698 ALL_OBJSECTIONS (objfile, osect)
2699 if (section_is_overlay (osect->the_bfd_section))
2700 {
2701 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2702 {
2703 if (overlay_is_mapped (osect))
2704 return osect->the_bfd_section;
2705 else
2706 best_match = osect;
2707 }
2708 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2709 best_match = osect;
2710 }
2711 return best_match ? best_match->the_bfd_section : NULL;
2712 }
2713
2714 /* Function: find_pc_mapped_section (PC)
2715 If PC falls into the VMA address range of an overlay section that is
2716 currently marked as MAPPED, return that section. Else return NULL. */
2717
2718 asection *
2719 find_pc_mapped_section (CORE_ADDR pc)
2720 {
2721 struct objfile *objfile;
2722 struct obj_section *osect;
2723
2724 if (overlay_debugging)
2725 ALL_OBJSECTIONS (objfile, osect)
2726 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2727 overlay_is_mapped (osect))
2728 return osect->the_bfd_section;
2729
2730 return NULL;
2731 }
2732
2733 /* Function: list_overlays_command
2734 Print a list of mapped sections and their PC ranges */
2735
2736 void
2737 list_overlays_command (char *args, int from_tty)
2738 {
2739 int nmapped = 0;
2740 struct objfile *objfile;
2741 struct obj_section *osect;
2742
2743 if (overlay_debugging)
2744 ALL_OBJSECTIONS (objfile, osect)
2745 if (overlay_is_mapped (osect))
2746 {
2747 const char *name;
2748 bfd_vma lma, vma;
2749 int size;
2750
2751 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2752 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2753 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2754 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2755
2756 printf_filtered ("Section %s, loaded at ", name);
2757 print_address_numeric (lma, 1, gdb_stdout);
2758 puts_filtered (" - ");
2759 print_address_numeric (lma + size, 1, gdb_stdout);
2760 printf_filtered (", mapped at ");
2761 print_address_numeric (vma, 1, gdb_stdout);
2762 puts_filtered (" - ");
2763 print_address_numeric (vma + size, 1, gdb_stdout);
2764 puts_filtered ("\n");
2765
2766 nmapped++;
2767 }
2768 if (nmapped == 0)
2769 printf_filtered ("No sections are mapped.\n");
2770 }
2771
2772 /* Function: map_overlay_command
2773 Mark the named section as mapped (ie. residing at its VMA address). */
2774
2775 void
2776 map_overlay_command (char *args, int from_tty)
2777 {
2778 struct objfile *objfile, *objfile2;
2779 struct obj_section *sec, *sec2;
2780 asection *bfdsec;
2781
2782 if (!overlay_debugging)
2783 error ("\
2784 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2785 the 'overlay manual' command.");
2786
2787 if (args == 0 || *args == 0)
2788 error ("Argument required: name of an overlay section");
2789
2790 /* First, find a section matching the user supplied argument */
2791 ALL_OBJSECTIONS (objfile, sec)
2792 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2793 {
2794 /* Now, check to see if the section is an overlay. */
2795 bfdsec = sec->the_bfd_section;
2796 if (!section_is_overlay (bfdsec))
2797 continue; /* not an overlay section */
2798
2799 /* Mark the overlay as "mapped" */
2800 sec->ovly_mapped = 1;
2801
2802 /* Next, make a pass and unmap any sections that are
2803 overlapped by this new section: */
2804 ALL_OBJSECTIONS (objfile2, sec2)
2805 if (sec2->ovly_mapped &&
2806 sec != sec2 &&
2807 sec->the_bfd_section != sec2->the_bfd_section &&
2808 (pc_in_mapped_range (sec2->addr, sec->the_bfd_section) ||
2809 pc_in_mapped_range (sec2->endaddr, sec->the_bfd_section)))
2810 {
2811 if (info_verbose)
2812 printf_filtered ("Note: section %s unmapped by overlap\n",
2813 bfd_section_name (objfile->obfd,
2814 sec2->the_bfd_section));
2815 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2816 }
2817 return;
2818 }
2819 error ("No overlay section called %s", args);
2820 }
2821
2822 /* Function: unmap_overlay_command
2823 Mark the overlay section as unmapped
2824 (ie. resident in its LMA address range, rather than the VMA range). */
2825
2826 void
2827 unmap_overlay_command (char *args, int from_tty)
2828 {
2829 struct objfile *objfile;
2830 struct obj_section *sec;
2831
2832 if (!overlay_debugging)
2833 error ("\
2834 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2835 the 'overlay manual' command.");
2836
2837 if (args == 0 || *args == 0)
2838 error ("Argument required: name of an overlay section");
2839
2840 /* First, find a section matching the user supplied argument */
2841 ALL_OBJSECTIONS (objfile, sec)
2842 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2843 {
2844 if (!sec->ovly_mapped)
2845 error ("Section %s is not mapped", args);
2846 sec->ovly_mapped = 0;
2847 return;
2848 }
2849 error ("No overlay section called %s", args);
2850 }
2851
2852 /* Function: overlay_auto_command
2853 A utility command to turn on overlay debugging.
2854 Possibly this should be done via a set/show command. */
2855
2856 static void
2857 overlay_auto_command (char *args, int from_tty)
2858 {
2859 overlay_debugging = -1;
2860 if (info_verbose)
2861 printf_filtered ("Automatic overlay debugging enabled.");
2862 }
2863
2864 /* Function: overlay_manual_command
2865 A utility command to turn on overlay debugging.
2866 Possibly this should be done via a set/show command. */
2867
2868 static void
2869 overlay_manual_command (char *args, int from_tty)
2870 {
2871 overlay_debugging = 1;
2872 if (info_verbose)
2873 printf_filtered ("Overlay debugging enabled.");
2874 }
2875
2876 /* Function: overlay_off_command
2877 A utility command to turn on overlay debugging.
2878 Possibly this should be done via a set/show command. */
2879
2880 static void
2881 overlay_off_command (char *args, int from_tty)
2882 {
2883 overlay_debugging = 0;
2884 if (info_verbose)
2885 printf_filtered ("Overlay debugging disabled.");
2886 }
2887
2888 static void
2889 overlay_load_command (char *args, int from_tty)
2890 {
2891 if (target_overlay_update)
2892 (*target_overlay_update) (NULL);
2893 else
2894 error ("This target does not know how to read its overlay state.");
2895 }
2896
2897 /* Function: overlay_command
2898 A place-holder for a mis-typed command */
2899
2900 /* Command list chain containing all defined "overlay" subcommands. */
2901 struct cmd_list_element *overlaylist;
2902
2903 static void
2904 overlay_command (char *args, int from_tty)
2905 {
2906 printf_unfiltered
2907 ("\"overlay\" must be followed by the name of an overlay command.\n");
2908 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2909 }
2910
2911
2912 /* Target Overlays for the "Simplest" overlay manager:
2913
2914 This is GDB's default target overlay layer. It works with the
2915 minimal overlay manager supplied as an example by Cygnus. The
2916 entry point is via a function pointer "target_overlay_update",
2917 so targets that use a different runtime overlay manager can
2918 substitute their own overlay_update function and take over the
2919 function pointer.
2920
2921 The overlay_update function pokes around in the target's data structures
2922 to see what overlays are mapped, and updates GDB's overlay mapping with
2923 this information.
2924
2925 In this simple implementation, the target data structures are as follows:
2926 unsigned _novlys; /# number of overlay sections #/
2927 unsigned _ovly_table[_novlys][4] = {
2928 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2929 {..., ..., ..., ...},
2930 }
2931 unsigned _novly_regions; /# number of overlay regions #/
2932 unsigned _ovly_region_table[_novly_regions][3] = {
2933 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2934 {..., ..., ...},
2935 }
2936 These functions will attempt to update GDB's mappedness state in the
2937 symbol section table, based on the target's mappedness state.
2938
2939 To do this, we keep a cached copy of the target's _ovly_table, and
2940 attempt to detect when the cached copy is invalidated. The main
2941 entry point is "simple_overlay_update(SECT), which looks up SECT in
2942 the cached table and re-reads only the entry for that section from
2943 the target (whenever possible).
2944 */
2945
2946 /* Cached, dynamically allocated copies of the target data structures: */
2947 static unsigned (*cache_ovly_table)[4] = 0;
2948 #if 0
2949 static unsigned (*cache_ovly_region_table)[3] = 0;
2950 #endif
2951 static unsigned cache_novlys = 0;
2952 #if 0
2953 static unsigned cache_novly_regions = 0;
2954 #endif
2955 static CORE_ADDR cache_ovly_table_base = 0;
2956 #if 0
2957 static CORE_ADDR cache_ovly_region_table_base = 0;
2958 #endif
2959 enum ovly_index
2960 {
2961 VMA, SIZE, LMA, MAPPED
2962 };
2963 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2964
2965 /* Throw away the cached copy of _ovly_table */
2966 static void
2967 simple_free_overlay_table (void)
2968 {
2969 if (cache_ovly_table)
2970 xfree (cache_ovly_table);
2971 cache_novlys = 0;
2972 cache_ovly_table = NULL;
2973 cache_ovly_table_base = 0;
2974 }
2975
2976 #if 0
2977 /* Throw away the cached copy of _ovly_region_table */
2978 static void
2979 simple_free_overlay_region_table (void)
2980 {
2981 if (cache_ovly_region_table)
2982 xfree (cache_ovly_region_table);
2983 cache_novly_regions = 0;
2984 cache_ovly_region_table = NULL;
2985 cache_ovly_region_table_base = 0;
2986 }
2987 #endif
2988
2989 /* Read an array of ints from the target into a local buffer.
2990 Convert to host order. int LEN is number of ints */
2991 static void
2992 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
2993 {
2994 char *buf = alloca (len * TARGET_LONG_BYTES);
2995 int i;
2996
2997 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
2998 for (i = 0; i < len; i++)
2999 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3000 TARGET_LONG_BYTES);
3001 }
3002
3003 /* Find and grab a copy of the target _ovly_table
3004 (and _novlys, which is needed for the table's size) */
3005 static int
3006 simple_read_overlay_table (void)
3007 {
3008 struct minimal_symbol *msym;
3009
3010 simple_free_overlay_table ();
3011 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3012 if (msym != NULL)
3013 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3014 else
3015 return 0; /* failure */
3016 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3017 if (cache_ovly_table != NULL)
3018 {
3019 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3020 if (msym != NULL)
3021 {
3022 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3023 read_target_long_array (cache_ovly_table_base,
3024 (int *) cache_ovly_table,
3025 cache_novlys * 4);
3026 }
3027 else
3028 return 0; /* failure */
3029 }
3030 else
3031 return 0; /* failure */
3032 return 1; /* SUCCESS */
3033 }
3034
3035 #if 0
3036 /* Find and grab a copy of the target _ovly_region_table
3037 (and _novly_regions, which is needed for the table's size) */
3038 static int
3039 simple_read_overlay_region_table (void)
3040 {
3041 struct minimal_symbol *msym;
3042
3043 simple_free_overlay_region_table ();
3044 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3045 if (msym != NULL)
3046 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3047 else
3048 return 0; /* failure */
3049 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3050 if (cache_ovly_region_table != NULL)
3051 {
3052 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3053 if (msym != NULL)
3054 {
3055 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3056 read_target_long_array (cache_ovly_region_table_base,
3057 (int *) cache_ovly_region_table,
3058 cache_novly_regions * 3);
3059 }
3060 else
3061 return 0; /* failure */
3062 }
3063 else
3064 return 0; /* failure */
3065 return 1; /* SUCCESS */
3066 }
3067 #endif
3068
3069 /* Function: simple_overlay_update_1
3070 A helper function for simple_overlay_update. Assuming a cached copy
3071 of _ovly_table exists, look through it to find an entry whose vma,
3072 lma and size match those of OSECT. Re-read the entry and make sure
3073 it still matches OSECT (else the table may no longer be valid).
3074 Set OSECT's mapped state to match the entry. Return: 1 for
3075 success, 0 for failure. */
3076
3077 static int
3078 simple_overlay_update_1 (struct obj_section *osect)
3079 {
3080 int i, size;
3081
3082 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3083 for (i = 0; i < cache_novlys; i++)
3084 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3085 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3086 cache_ovly_table[i][SIZE] == size */ )
3087 {
3088 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3089 (int *) cache_ovly_table[i], 4);
3090 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3091 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3092 cache_ovly_table[i][SIZE] == size */ )
3093 {
3094 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3095 return 1;
3096 }
3097 else /* Warning! Warning! Target's ovly table has changed! */
3098 return 0;
3099 }
3100 return 0;
3101 }
3102
3103 /* Function: simple_overlay_update
3104 If OSECT is NULL, then update all sections' mapped state
3105 (after re-reading the entire target _ovly_table).
3106 If OSECT is non-NULL, then try to find a matching entry in the
3107 cached ovly_table and update only OSECT's mapped state.
3108 If a cached entry can't be found or the cache isn't valid, then
3109 re-read the entire cache, and go ahead and update all sections. */
3110
3111 static void
3112 simple_overlay_update (struct obj_section *osect)
3113 {
3114 struct objfile *objfile;
3115
3116 /* Were we given an osect to look up? NULL means do all of them. */
3117 if (osect)
3118 /* Have we got a cached copy of the target's overlay table? */
3119 if (cache_ovly_table != NULL)
3120 /* Does its cached location match what's currently in the symtab? */
3121 if (cache_ovly_table_base ==
3122 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3123 /* Then go ahead and try to look up this single section in the cache */
3124 if (simple_overlay_update_1 (osect))
3125 /* Found it! We're done. */
3126 return;
3127
3128 /* Cached table no good: need to read the entire table anew.
3129 Or else we want all the sections, in which case it's actually
3130 more efficient to read the whole table in one block anyway. */
3131
3132 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3133 {
3134 warning ("Failed to read the target overlay mapping table.");
3135 return;
3136 }
3137 /* Now may as well update all sections, even if only one was requested. */
3138 ALL_OBJSECTIONS (objfile, osect)
3139 if (section_is_overlay (osect->the_bfd_section))
3140 {
3141 int i, size;
3142
3143 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3144 for (i = 0; i < cache_novlys; i++)
3145 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3146 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3147 cache_ovly_table[i][SIZE] == size */ )
3148 { /* obj_section matches i'th entry in ovly_table */
3149 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3150 break; /* finished with inner for loop: break out */
3151 }
3152 }
3153 }
3154
3155
3156 void
3157 _initialize_symfile (void)
3158 {
3159 struct cmd_list_element *c;
3160
3161 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3162 "Load symbol table from executable file FILE.\n\
3163 The `file' command can also load symbol tables, as well as setting the file\n\
3164 to execute.", &cmdlist);
3165 c->completer = filename_completer;
3166
3167 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3168 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3169 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3170 ADDR is the starting address of the file's text.\n\
3171 The optional arguments are section-name section-address pairs and\n\
3172 should be specified if the data and bss segments are not contiguous\n\
3173 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3174 &cmdlist);
3175 c->completer = filename_completer;
3176
3177 c = add_cmd ("add-shared-symbol-files", class_files,
3178 add_shared_symbol_files_command,
3179 "Load the symbols from shared objects in the dynamic linker's link map.",
3180 &cmdlist);
3181 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3182 &cmdlist);
3183
3184 c = add_cmd ("load", class_files, load_command,
3185 "Dynamically load FILE into the running program, and record its symbols\n\
3186 for access from GDB.", &cmdlist);
3187 c->completer = filename_completer;
3188
3189 add_show_from_set
3190 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3191 (char *) &symbol_reloading,
3192 "Set dynamic symbol table reloading multiple times in one run.",
3193 &setlist),
3194 &showlist);
3195
3196 add_prefix_cmd ("overlay", class_support, overlay_command,
3197 "Commands for debugging overlays.", &overlaylist,
3198 "overlay ", 0, &cmdlist);
3199
3200 add_com_alias ("ovly", "overlay", class_alias, 1);
3201 add_com_alias ("ov", "overlay", class_alias, 1);
3202
3203 add_cmd ("map-overlay", class_support, map_overlay_command,
3204 "Assert that an overlay section is mapped.", &overlaylist);
3205
3206 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3207 "Assert that an overlay section is unmapped.", &overlaylist);
3208
3209 add_cmd ("list-overlays", class_support, list_overlays_command,
3210 "List mappings of overlay sections.", &overlaylist);
3211
3212 add_cmd ("manual", class_support, overlay_manual_command,
3213 "Enable overlay debugging.", &overlaylist);
3214 add_cmd ("off", class_support, overlay_off_command,
3215 "Disable overlay debugging.", &overlaylist);
3216 add_cmd ("auto", class_support, overlay_auto_command,
3217 "Enable automatic overlay debugging.", &overlaylist);
3218 add_cmd ("load-target", class_support, overlay_load_command,
3219 "Read the overlay mapping state from the target.", &overlaylist);
3220
3221 /* Filename extension to source language lookup table: */
3222 init_filename_language_table ();
3223 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3224 (char *) &ext_args,
3225 "Set mapping between filename extension and source language.\n\
3226 Usage: set extension-language .foo bar",
3227 &setlist);
3228 c->function.cfunc = set_ext_lang_command;
3229
3230 add_info ("extensions", info_ext_lang_command,
3231 "All filename extensions associated with a source language.");
3232
3233 add_show_from_set
3234 (add_set_cmd ("download-write-size", class_obscure,
3235 var_integer, (char *) &download_write_size,
3236 "Set the write size used when downloading a program.\n"
3237 "Only used when downloading a program onto a remote\n"
3238 "target. Specify zero, or a negative value, to disable\n"
3239 "blocked writes. The actual size of each transfer is also\n"
3240 "limited by the size of the target packet and the memory\n"
3241 "cache.\n",
3242 &setlist),
3243 &showlist);
3244 }