Isolate STABS readers' use of the `textlow' and `texthigh' fields
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40 #include "completer.h"
41
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) (char *);
73 void (*post_add_symbol_hook) (void);
74 void (*target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 struct complaint oldsyms_complaint =
82 {
83 "Replacing old symbols for `%s'", 0, 0
84 };
85
86 struct complaint empty_symtab_complaint =
87 {
88 "Empty symbol table found for `%s'", 0, 0
89 };
90
91 struct complaint unknown_option_complaint =
92 {
93 "Unknown option `%s' ignored", 0, 0
94 };
95
96 /* External variables and functions referenced. */
97
98 extern int info_verbose;
99
100 extern void report_transfer_performance (unsigned long, time_t, time_t);
101
102 /* Functions this file defines */
103
104 #if 0
105 static int simple_read_overlay_region_table (void);
106 static void simple_free_overlay_region_table (void);
107 #endif
108
109 static void set_initial_language (void);
110
111 static void load_command (char *, int);
112
113 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
114
115 static void add_symbol_file_command (char *, int);
116
117 static void add_shared_symbol_files_command (char *, int);
118
119 static void cashier_psymtab (struct partial_symtab *);
120
121 bfd *symfile_bfd_open (char *);
122
123 static void find_sym_fns (struct objfile *);
124
125 static void decrement_reading_symtab (void *);
126
127 static void overlay_invalidate_all (void);
128
129 static int overlay_is_mapped (struct obj_section *);
130
131 void list_overlays_command (char *, int);
132
133 void map_overlay_command (char *, int);
134
135 void unmap_overlay_command (char *, int);
136
137 static void overlay_auto_command (char *, int);
138
139 static void overlay_manual_command (char *, int);
140
141 static void overlay_off_command (char *, int);
142
143 static void overlay_load_command (char *, int);
144
145 static void overlay_command (char *, int);
146
147 static void simple_free_overlay_table (void);
148
149 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
150
151 static int simple_read_overlay_table (void);
152
153 static int simple_overlay_update_1 (struct obj_section *);
154
155 static void add_filename_language (char *ext, enum language lang);
156
157 static void set_ext_lang_command (char *args, int from_tty);
158
159 static void info_ext_lang_command (char *args, int from_tty);
160
161 static void init_filename_language_table (void);
162
163 void _initialize_symfile (void);
164
165 /* List of all available sym_fns. On gdb startup, each object file reader
166 calls add_symtab_fns() to register information on each format it is
167 prepared to read. */
168
169 static struct sym_fns *symtab_fns = NULL;
170
171 /* Flag for whether user will be reloading symbols multiple times.
172 Defaults to ON for VxWorks, otherwise OFF. */
173
174 #ifdef SYMBOL_RELOADING_DEFAULT
175 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
176 #else
177 int symbol_reloading = 0;
178 #endif
179
180 /* If non-zero, then on HP-UX (i.e., platforms that use somsolib.c),
181 this variable is interpreted as a threshhold. If adding a new
182 library's symbol table to those already known to the debugger would
183 exceed this threshhold, then the shlib's symbols are not added.
184
185 If non-zero on other platforms, shared library symbols will be added
186 automatically when the inferior is created, new libraries are loaded,
187 or when attaching to the inferior. This is almost always what users
188 will want to have happen; but for very large programs, the startup
189 time will be excessive, and so if this is a problem, the user can
190 clear this flag and then add the shared library symbols as needed.
191 Note that there is a potential for confusion, since if the shared
192 library symbols are not loaded, commands like "info fun" will *not*
193 report all the functions that are actually present.
194
195 Note that HP-UX interprets this variable to mean, "threshhold size
196 in megabytes, where zero means never add". Other platforms interpret
197 this variable to mean, "always add if non-zero, never add if zero."
198 */
199
200 int auto_solib_add = 1;
201 \f
202
203 /* Since this function is called from within qsort, in an ANSI environment
204 it must conform to the prototype for qsort, which specifies that the
205 comparison function takes two "void *" pointers. */
206
207 static int
208 compare_symbols (const void *s1p, const void *s2p)
209 {
210 register struct symbol **s1, **s2;
211
212 s1 = (struct symbol **) s1p;
213 s2 = (struct symbol **) s2p;
214 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
215 }
216
217 /*
218
219 LOCAL FUNCTION
220
221 compare_psymbols -- compare two partial symbols by name
222
223 DESCRIPTION
224
225 Given pointers to pointers to two partial symbol table entries,
226 compare them by name and return -N, 0, or +N (ala strcmp).
227 Typically used by sorting routines like qsort().
228
229 NOTES
230
231 Does direct compare of first two characters before punting
232 and passing to strcmp for longer compares. Note that the
233 original version had a bug whereby two null strings or two
234 identically named one character strings would return the
235 comparison of memory following the null byte.
236
237 */
238
239 static int
240 compare_psymbols (const void *s1p, const void *s2p)
241 {
242 register struct partial_symbol **s1, **s2;
243 register char *st1, *st2;
244
245 s1 = (struct partial_symbol **) s1p;
246 s2 = (struct partial_symbol **) s2p;
247 st1 = SYMBOL_SOURCE_NAME (*s1);
248 st2 = SYMBOL_SOURCE_NAME (*s2);
249
250
251 if ((st1[0] - st2[0]) || !st1[0])
252 {
253 return (st1[0] - st2[0]);
254 }
255 else if ((st1[1] - st2[1]) || !st1[1])
256 {
257 return (st1[1] - st2[1]);
258 }
259 else
260 {
261 return (strcmp (st1, st2));
262 }
263 }
264
265 void
266 sort_pst_symbols (struct partial_symtab *pst)
267 {
268 /* Sort the global list; don't sort the static list */
269
270 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
271 pst->n_global_syms, sizeof (struct partial_symbol *),
272 compare_psymbols);
273 }
274
275 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
276
277 void
278 sort_block_syms (register struct block *b)
279 {
280 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
281 sizeof (struct symbol *), compare_symbols);
282 }
283
284 /* Call sort_symtab_syms to sort alphabetically
285 the symbols of each block of one symtab. */
286
287 void
288 sort_symtab_syms (register struct symtab *s)
289 {
290 register struct blockvector *bv;
291 int nbl;
292 int i;
293 register struct block *b;
294
295 if (s == 0)
296 return;
297 bv = BLOCKVECTOR (s);
298 nbl = BLOCKVECTOR_NBLOCKS (bv);
299 for (i = 0; i < nbl; i++)
300 {
301 b = BLOCKVECTOR_BLOCK (bv, i);
302 if (BLOCK_SHOULD_SORT (b))
303 sort_block_syms (b);
304 }
305 }
306
307 /* Make a null terminated copy of the string at PTR with SIZE characters in
308 the obstack pointed to by OBSTACKP . Returns the address of the copy.
309 Note that the string at PTR does not have to be null terminated, I.E. it
310 may be part of a larger string and we are only saving a substring. */
311
312 char *
313 obsavestring (char *ptr, int size, struct obstack *obstackp)
314 {
315 register char *p = (char *) obstack_alloc (obstackp, size + 1);
316 /* Open-coded memcpy--saves function call time. These strings are usually
317 short. FIXME: Is this really still true with a compiler that can
318 inline memcpy? */
319 {
320 register char *p1 = ptr;
321 register char *p2 = p;
322 char *end = ptr + size;
323 while (p1 != end)
324 *p2++ = *p1++;
325 }
326 p[size] = 0;
327 return p;
328 }
329
330 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
331 in the obstack pointed to by OBSTACKP. */
332
333 char *
334 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
335 const char *s3)
336 {
337 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
338 register char *val = (char *) obstack_alloc (obstackp, len);
339 strcpy (val, s1);
340 strcat (val, s2);
341 strcat (val, s3);
342 return val;
343 }
344
345 /* True if we are nested inside psymtab_to_symtab. */
346
347 int currently_reading_symtab = 0;
348
349 static void
350 decrement_reading_symtab (void *dummy)
351 {
352 currently_reading_symtab--;
353 }
354
355 /* Get the symbol table that corresponds to a partial_symtab.
356 This is fast after the first time you do it. In fact, there
357 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
358 case inline. */
359
360 struct symtab *
361 psymtab_to_symtab (register struct partial_symtab *pst)
362 {
363 /* If it's been looked up before, return it. */
364 if (pst->symtab)
365 return pst->symtab;
366
367 /* If it has not yet been read in, read it. */
368 if (!pst->readin)
369 {
370 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
371 currently_reading_symtab++;
372 (*pst->read_symtab) (pst);
373 do_cleanups (back_to);
374 }
375
376 return pst->symtab;
377 }
378
379 /* Initialize entry point information for this objfile. */
380
381 void
382 init_entry_point_info (struct objfile *objfile)
383 {
384 /* Save startup file's range of PC addresses to help blockframe.c
385 decide where the bottom of the stack is. */
386
387 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
388 {
389 /* Executable file -- record its entry point so we'll recognize
390 the startup file because it contains the entry point. */
391 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
392 }
393 else
394 {
395 /* Examination of non-executable.o files. Short-circuit this stuff. */
396 objfile->ei.entry_point = INVALID_ENTRY_POINT;
397 }
398 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
402 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
403 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
404 }
405
406 /* Get current entry point address. */
407
408 CORE_ADDR
409 entry_point_address (void)
410 {
411 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
412 }
413
414 /* Remember the lowest-addressed loadable section we've seen.
415 This function is called via bfd_map_over_sections.
416
417 In case of equal vmas, the section with the largest size becomes the
418 lowest-addressed loadable section.
419
420 If the vmas and sizes are equal, the last section is considered the
421 lowest-addressed loadable section. */
422
423 void
424 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
425 {
426 asection **lowest = (asection **) obj;
427
428 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
429 return;
430 if (!*lowest)
431 *lowest = sect; /* First loadable section */
432 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
433 *lowest = sect; /* A lower loadable section */
434 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
435 && (bfd_section_size (abfd, (*lowest))
436 <= bfd_section_size (abfd, sect)))
437 *lowest = sect;
438 }
439
440
441 /* Build (allocate and populate) a section_addr_info struct from
442 an existing section table. */
443
444 extern struct section_addr_info *
445 build_section_addr_info_from_section_table (const struct section_table *start,
446 const struct section_table *end)
447 {
448 struct section_addr_info *sap;
449 const struct section_table *stp;
450 int oidx;
451
452 sap = xmalloc (sizeof (struct section_addr_info));
453 memset (sap, 0, sizeof (struct section_addr_info));
454
455 for (stp = start, oidx = 0; stp != end; stp++)
456 {
457 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
458 && oidx < MAX_SECTIONS)
459 {
460 sap->other[oidx].addr = stp->addr;
461 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
462 sap->other[oidx].sectindex = stp->the_bfd_section->index;
463 oidx++;
464 }
465 }
466
467 return sap;
468 }
469
470
471 /* Free all memory allocated by build_section_addr_info_from_section_table. */
472
473 extern void
474 free_section_addr_info (struct section_addr_info *sap)
475 {
476 int idx;
477
478 for (idx = 0; idx < MAX_SECTIONS; idx++)
479 if (sap->other[idx].name)
480 xfree (sap->other[idx].name);
481 xfree (sap);
482 }
483
484
485 /* Parse the user's idea of an offset for dynamic linking, into our idea
486 of how to represent it for fast symbol reading. This is the default
487 version of the sym_fns.sym_offsets function for symbol readers that
488 don't need to do anything special. It allocates a section_offsets table
489 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
490
491 void
492 default_symfile_offsets (struct objfile *objfile,
493 struct section_addr_info *addrs)
494 {
495 int i;
496 asection *sect = NULL;
497
498 objfile->num_sections = SECT_OFF_MAX;
499 objfile->section_offsets = (struct section_offsets *)
500 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
501 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
502
503 /* Now calculate offsets for section that were specified by the
504 caller. */
505 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
506 {
507 struct other_sections *osp ;
508
509 osp = &addrs->other[i] ;
510 if (osp->addr == 0)
511 continue;
512
513 /* Record all sections in offsets */
514 /* The section_offsets in the objfile are here filled in using
515 the BFD index. */
516 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
517 }
518
519 /* Remember the bfd indexes for the .text, .data, .bss and
520 .rodata sections. */
521
522 sect = bfd_get_section_by_name (objfile->obfd, ".text");
523 if (sect)
524 objfile->sect_index_text = sect->index;
525
526 sect = bfd_get_section_by_name (objfile->obfd, ".data");
527 if (sect)
528 objfile->sect_index_data = sect->index;
529
530 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
531 if (sect)
532 objfile->sect_index_bss = sect->index;
533
534 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
535 if (sect)
536 objfile->sect_index_rodata = sect->index;
537
538 }
539
540 /* Process a symbol file, as either the main file or as a dynamically
541 loaded file.
542
543 OBJFILE is where the symbols are to be read from.
544
545 ADDR is the address where the text segment was loaded, unless the
546 objfile is the main symbol file, in which case it is zero.
547
548 MAINLINE is nonzero if this is the main symbol file, or zero if
549 it's an extra symbol file such as dynamically loaded code.
550
551 VERBO is nonzero if the caller has printed a verbose message about
552 the symbol reading (and complaints can be more terse about it). */
553
554 void
555 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
556 int mainline, int verbo)
557 {
558 asection *lower_sect;
559 asection *sect;
560 CORE_ADDR lower_offset;
561 struct section_addr_info local_addr;
562 struct cleanup *old_chain;
563 int i;
564
565 /* If ADDRS is NULL, initialize the local section_addr_info struct and
566 point ADDRS to it. We now establish the convention that an addr of
567 zero means no load address was specified. */
568
569 if (addrs == NULL)
570 {
571 memset (&local_addr, 0, sizeof (local_addr));
572 addrs = &local_addr;
573 }
574
575 init_entry_point_info (objfile);
576 find_sym_fns (objfile);
577
578 /* Make sure that partially constructed symbol tables will be cleaned up
579 if an error occurs during symbol reading. */
580 old_chain = make_cleanup_free_objfile (objfile);
581
582 if (mainline)
583 {
584 /* We will modify the main symbol table, make sure that all its users
585 will be cleaned up if an error occurs during symbol reading. */
586 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
587
588 /* Since no error yet, throw away the old symbol table. */
589
590 if (symfile_objfile != NULL)
591 {
592 free_objfile (symfile_objfile);
593 symfile_objfile = NULL;
594 }
595
596 /* Currently we keep symbols from the add-symbol-file command.
597 If the user wants to get rid of them, they should do "symbol-file"
598 without arguments first. Not sure this is the best behavior
599 (PR 2207). */
600
601 (*objfile->sf->sym_new_init) (objfile);
602 }
603
604 /* Convert addr into an offset rather than an absolute address.
605 We find the lowest address of a loaded segment in the objfile,
606 and assume that <addr> is where that got loaded.
607
608 We no longer warn if the lowest section is not a text segment (as
609 happens for the PA64 port. */
610 if (!mainline)
611 {
612 /* Find lowest loadable section to be used as starting point for
613 continguous sections. FIXME!! won't work without call to find
614 .text first, but this assumes text is lowest section. */
615 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
616 if (lower_sect == NULL)
617 bfd_map_over_sections (objfile->obfd, find_lowest_section,
618 (PTR) &lower_sect);
619 if (lower_sect == NULL)
620 warning ("no loadable sections found in added symbol-file %s",
621 objfile->name);
622 else
623 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
624 warning ("Lowest section in %s is %s at %s",
625 objfile->name,
626 bfd_section_name (objfile->obfd, lower_sect),
627 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
628 if (lower_sect != NULL)
629 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
630 else
631 lower_offset = 0;
632
633 /* Calculate offsets for the loadable sections.
634 FIXME! Sections must be in order of increasing loadable section
635 so that contiguous sections can use the lower-offset!!!
636
637 Adjust offsets if the segments are not contiguous.
638 If the section is contiguous, its offset should be set to
639 the offset of the highest loadable section lower than it
640 (the loadable section directly below it in memory).
641 this_offset = lower_offset = lower_addr - lower_orig_addr */
642
643 /* Calculate offsets for sections. */
644 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
645 {
646 if (addrs->other[i].addr != 0)
647 {
648 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
649 if (sect)
650 {
651 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
652 lower_offset = addrs->other[i].addr;
653 /* This is the index used by BFD. */
654 addrs->other[i].sectindex = sect->index ;
655 }
656 else
657 {
658 warning ("section %s not found in %s", addrs->other[i].name,
659 objfile->name);
660 addrs->other[i].addr = 0;
661 }
662 }
663 else
664 addrs->other[i].addr = lower_offset;
665 }
666 }
667
668 /* Initialize symbol reading routines for this objfile, allow complaints to
669 appear for this new file, and record how verbose to be, then do the
670 initial symbol reading for this file. */
671
672 (*objfile->sf->sym_init) (objfile);
673 clear_complaints (1, verbo);
674
675 (*objfile->sf->sym_offsets) (objfile, addrs);
676
677 #ifndef IBM6000_TARGET
678 /* This is a SVR4/SunOS specific hack, I think. In any event, it
679 screws RS/6000. sym_offsets should be doing this sort of thing,
680 because it knows the mapping between bfd sections and
681 section_offsets. */
682 /* This is a hack. As far as I can tell, section offsets are not
683 target dependent. They are all set to addr with a couple of
684 exceptions. The exceptions are sysvr4 shared libraries, whose
685 offsets are kept in solib structures anyway and rs6000 xcoff
686 which handles shared libraries in a completely unique way.
687
688 Section offsets are built similarly, except that they are built
689 by adding addr in all cases because there is no clear mapping
690 from section_offsets into actual sections. Note that solib.c
691 has a different algorithm for finding section offsets.
692
693 These should probably all be collapsed into some target
694 independent form of shared library support. FIXME. */
695
696 if (addrs)
697 {
698 struct obj_section *s;
699
700 /* Map section offsets in "addr" back to the object's
701 sections by comparing the section names with bfd's
702 section names. Then adjust the section address by
703 the offset. */ /* for gdb/13815 */
704
705 ALL_OBJFILE_OSECTIONS (objfile, s)
706 {
707 CORE_ADDR s_addr = 0;
708 int i;
709
710 for (i = 0;
711 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
712 i++)
713 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
714 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
715
716 s->addr -= s->offset;
717 s->addr += s_addr;
718 s->endaddr -= s->offset;
719 s->endaddr += s_addr;
720 s->offset += s_addr;
721 }
722 }
723 #endif /* not IBM6000_TARGET */
724
725 (*objfile->sf->sym_read) (objfile, mainline);
726
727 if (!have_partial_symbols () && !have_full_symbols ())
728 {
729 wrap_here ("");
730 printf_filtered ("(no debugging symbols found)...");
731 wrap_here ("");
732 }
733
734 /* Don't allow char * to have a typename (else would get caddr_t).
735 Ditto void *. FIXME: Check whether this is now done by all the
736 symbol readers themselves (many of them now do), and if so remove
737 it from here. */
738
739 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
740 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
741
742 /* Mark the objfile has having had initial symbol read attempted. Note
743 that this does not mean we found any symbols... */
744
745 objfile->flags |= OBJF_SYMS;
746
747 /* Discard cleanups as symbol reading was successful. */
748
749 discard_cleanups (old_chain);
750
751 /* Call this after reading in a new symbol table to give target
752 dependent code a crack at the new symbols. For instance, this
753 could be used to update the values of target-specific symbols GDB
754 needs to keep track of (such as _sigtramp, or whatever). */
755
756 TARGET_SYMFILE_POSTREAD (objfile);
757 }
758
759 /* Perform required actions after either reading in the initial
760 symbols for a new objfile, or mapping in the symbols from a reusable
761 objfile. */
762
763 void
764 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
765 {
766
767 /* If this is the main symbol file we have to clean up all users of the
768 old main symbol file. Otherwise it is sufficient to fixup all the
769 breakpoints that may have been redefined by this symbol file. */
770 if (mainline)
771 {
772 /* OK, make it the "real" symbol file. */
773 symfile_objfile = objfile;
774
775 clear_symtab_users ();
776 }
777 else
778 {
779 breakpoint_re_set ();
780 }
781
782 /* We're done reading the symbol file; finish off complaints. */
783 clear_complaints (0, verbo);
784 }
785
786 /* Process a symbol file, as either the main file or as a dynamically
787 loaded file.
788
789 NAME is the file name (which will be tilde-expanded and made
790 absolute herein) (but we don't free or modify NAME itself).
791 FROM_TTY says how verbose to be. MAINLINE specifies whether this
792 is the main symbol file, or whether it's an extra symbol file such
793 as dynamically loaded code. If !mainline, ADDR is the address
794 where the text segment was loaded.
795
796 Upon success, returns a pointer to the objfile that was added.
797 Upon failure, jumps back to command level (never returns). */
798
799 struct objfile *
800 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
801 int mainline, int flags)
802 {
803 struct objfile *objfile;
804 struct partial_symtab *psymtab;
805 bfd *abfd;
806
807 /* Open a bfd for the file, and give user a chance to burp if we'd be
808 interactively wiping out any existing symbols. */
809
810 abfd = symfile_bfd_open (name);
811
812 if ((have_full_symbols () || have_partial_symbols ())
813 && mainline
814 && from_tty
815 && !query ("Load new symbol table from \"%s\"? ", name))
816 error ("Not confirmed.");
817
818 objfile = allocate_objfile (abfd, flags);
819
820 /* If the objfile uses a mapped symbol file, and we have a psymtab for
821 it, then skip reading any symbols at this time. */
822
823 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
824 {
825 /* We mapped in an existing symbol table file that already has had
826 initial symbol reading performed, so we can skip that part. Notify
827 the user that instead of reading the symbols, they have been mapped.
828 */
829 if (from_tty || info_verbose)
830 {
831 printf_filtered ("Mapped symbols for %s...", name);
832 wrap_here ("");
833 gdb_flush (gdb_stdout);
834 }
835 init_entry_point_info (objfile);
836 find_sym_fns (objfile);
837 }
838 else
839 {
840 /* We either created a new mapped symbol table, mapped an existing
841 symbol table file which has not had initial symbol reading
842 performed, or need to read an unmapped symbol table. */
843 if (from_tty || info_verbose)
844 {
845 if (pre_add_symbol_hook)
846 pre_add_symbol_hook (name);
847 else
848 {
849 printf_filtered ("Reading symbols from %s...", name);
850 wrap_here ("");
851 gdb_flush (gdb_stdout);
852 }
853 }
854 syms_from_objfile (objfile, addrs, mainline, from_tty);
855 }
856
857 /* We now have at least a partial symbol table. Check to see if the
858 user requested that all symbols be read on initial access via either
859 the gdb startup command line or on a per symbol file basis. Expand
860 all partial symbol tables for this objfile if so. */
861
862 if ((flags & OBJF_READNOW) || readnow_symbol_files)
863 {
864 if (from_tty || info_verbose)
865 {
866 printf_filtered ("expanding to full symbols...");
867 wrap_here ("");
868 gdb_flush (gdb_stdout);
869 }
870
871 for (psymtab = objfile->psymtabs;
872 psymtab != NULL;
873 psymtab = psymtab->next)
874 {
875 psymtab_to_symtab (psymtab);
876 }
877 }
878
879 if (from_tty || info_verbose)
880 {
881 if (post_add_symbol_hook)
882 post_add_symbol_hook ();
883 else
884 {
885 printf_filtered ("done.\n");
886 gdb_flush (gdb_stdout);
887 }
888 }
889
890 new_symfile_objfile (objfile, mainline, from_tty);
891
892 if (target_new_objfile_hook)
893 target_new_objfile_hook (objfile);
894
895 return (objfile);
896 }
897
898 /* Call symbol_file_add() with default values and update whatever is
899 affected by the loading of a new main().
900 Used when the file is supplied in the gdb command line
901 and by some targets with special loading requirements.
902 The auxiliary function, symbol_file_add_main_1(), has the flags
903 argument for the switches that can only be specified in the symbol_file
904 command itself. */
905
906 void
907 symbol_file_add_main (char *args, int from_tty)
908 {
909 symbol_file_add_main_1 (args, from_tty, 0);
910 }
911
912 static void
913 symbol_file_add_main_1 (char *args, int from_tty, int flags)
914 {
915 symbol_file_add (args, from_tty, NULL, 1, flags);
916
917 #ifdef HPUXHPPA
918 RESET_HP_UX_GLOBALS ();
919 #endif
920
921 /* Getting new symbols may change our opinion about
922 what is frameless. */
923 reinit_frame_cache ();
924
925 set_initial_language ();
926 }
927
928 void
929 symbol_file_clear (int from_tty)
930 {
931 if ((have_full_symbols () || have_partial_symbols ())
932 && from_tty
933 && !query ("Discard symbol table from `%s'? ",
934 symfile_objfile->name))
935 error ("Not confirmed.");
936 free_all_objfiles ();
937
938 /* solib descriptors may have handles to objfiles. Since their
939 storage has just been released, we'd better wipe the solib
940 descriptors as well.
941 */
942 #if defined(SOLIB_RESTART)
943 SOLIB_RESTART ();
944 #endif
945
946 symfile_objfile = NULL;
947 if (from_tty)
948 printf_unfiltered ("No symbol file now.\n");
949 #ifdef HPUXHPPA
950 RESET_HP_UX_GLOBALS ();
951 #endif
952 }
953
954 /* This is the symbol-file command. Read the file, analyze its
955 symbols, and add a struct symtab to a symtab list. The syntax of
956 the command is rather bizarre--(1) buildargv implements various
957 quoting conventions which are undocumented and have little or
958 nothing in common with the way things are quoted (or not quoted)
959 elsewhere in GDB, (2) options are used, which are not generally
960 used in GDB (perhaps "set mapped on", "set readnow on" would be
961 better), (3) the order of options matters, which is contrary to GNU
962 conventions (because it is confusing and inconvenient). */
963 /* Note: ezannoni 2000-04-17. This function used to have support for
964 rombug (see remote-os9k.c). It consisted of a call to target_link()
965 (target.c) to get the address of the text segment from the target,
966 and pass that to symbol_file_add(). This is no longer supported. */
967
968 void
969 symbol_file_command (char *args, int from_tty)
970 {
971 char **argv;
972 char *name = NULL;
973 struct cleanup *cleanups;
974 int flags = OBJF_USERLOADED;
975
976 dont_repeat ();
977
978 if (args == NULL)
979 {
980 symbol_file_clear (from_tty);
981 }
982 else
983 {
984 if ((argv = buildargv (args)) == NULL)
985 {
986 nomem (0);
987 }
988 cleanups = make_cleanup_freeargv (argv);
989 while (*argv != NULL)
990 {
991 if (STREQ (*argv, "-mapped"))
992 flags |= OBJF_MAPPED;
993 else
994 if (STREQ (*argv, "-readnow"))
995 flags |= OBJF_READNOW;
996 else
997 if (**argv == '-')
998 error ("unknown option `%s'", *argv);
999 else
1000 {
1001 name = *argv;
1002
1003 symbol_file_add_main_1 (name, from_tty, flags);
1004 }
1005 argv++;
1006 }
1007
1008 if (name == NULL)
1009 {
1010 error ("no symbol file name was specified");
1011 }
1012 do_cleanups (cleanups);
1013 }
1014 }
1015
1016 /* Set the initial language.
1017
1018 A better solution would be to record the language in the psymtab when reading
1019 partial symbols, and then use it (if known) to set the language. This would
1020 be a win for formats that encode the language in an easily discoverable place,
1021 such as DWARF. For stabs, we can jump through hoops looking for specially
1022 named symbols or try to intuit the language from the specific type of stabs
1023 we find, but we can't do that until later when we read in full symbols.
1024 FIXME. */
1025
1026 static void
1027 set_initial_language (void)
1028 {
1029 struct partial_symtab *pst;
1030 enum language lang = language_unknown;
1031
1032 pst = find_main_psymtab ();
1033 if (pst != NULL)
1034 {
1035 if (pst->filename != NULL)
1036 {
1037 lang = deduce_language_from_filename (pst->filename);
1038 }
1039 if (lang == language_unknown)
1040 {
1041 /* Make C the default language */
1042 lang = language_c;
1043 }
1044 set_language (lang);
1045 expected_language = current_language; /* Don't warn the user */
1046 }
1047 }
1048
1049 /* Open file specified by NAME and hand it off to BFD for preliminary
1050 analysis. Result is a newly initialized bfd *, which includes a newly
1051 malloc'd` copy of NAME (tilde-expanded and made absolute).
1052 In case of trouble, error() is called. */
1053
1054 bfd *
1055 symfile_bfd_open (char *name)
1056 {
1057 bfd *sym_bfd;
1058 int desc;
1059 char *absolute_name;
1060
1061
1062
1063 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1064
1065 /* Look down path for it, allocate 2nd new malloc'd copy. */
1066 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1067 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1068 if (desc < 0)
1069 {
1070 char *exename = alloca (strlen (name) + 5);
1071 strcat (strcpy (exename, name), ".exe");
1072 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1073 0, &absolute_name);
1074 }
1075 #endif
1076 if (desc < 0)
1077 {
1078 make_cleanup (xfree, name);
1079 perror_with_name (name);
1080 }
1081 xfree (name); /* Free 1st new malloc'd copy */
1082 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1083 /* It'll be freed in free_objfile(). */
1084
1085 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1086 if (!sym_bfd)
1087 {
1088 close (desc);
1089 make_cleanup (xfree, name);
1090 error ("\"%s\": can't open to read symbols: %s.", name,
1091 bfd_errmsg (bfd_get_error ()));
1092 }
1093 sym_bfd->cacheable = true;
1094
1095 if (!bfd_check_format (sym_bfd, bfd_object))
1096 {
1097 /* FIXME: should be checking for errors from bfd_close (for one thing,
1098 on error it does not free all the storage associated with the
1099 bfd). */
1100 bfd_close (sym_bfd); /* This also closes desc */
1101 make_cleanup (xfree, name);
1102 error ("\"%s\": can't read symbols: %s.", name,
1103 bfd_errmsg (bfd_get_error ()));
1104 }
1105 return (sym_bfd);
1106 }
1107
1108 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1109 startup by the _initialize routine in each object file format reader,
1110 to register information about each format the the reader is prepared
1111 to handle. */
1112
1113 void
1114 add_symtab_fns (struct sym_fns *sf)
1115 {
1116 sf->next = symtab_fns;
1117 symtab_fns = sf;
1118 }
1119
1120
1121 /* Initialize to read symbols from the symbol file sym_bfd. It either
1122 returns or calls error(). The result is an initialized struct sym_fns
1123 in the objfile structure, that contains cached information about the
1124 symbol file. */
1125
1126 static void
1127 find_sym_fns (struct objfile *objfile)
1128 {
1129 struct sym_fns *sf;
1130 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1131 char *our_target = bfd_get_target (objfile->obfd);
1132
1133 /* Special kludge for apollo. See dstread.c. */
1134 if (STREQN (our_target, "apollo", 6))
1135 our_flavour = (enum bfd_flavour) -2;
1136
1137 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1138 {
1139 if (our_flavour == sf->sym_flavour)
1140 {
1141 objfile->sf = sf;
1142 return;
1143 }
1144 }
1145 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1146 bfd_get_target (objfile->obfd));
1147 }
1148 \f
1149 /* This function runs the load command of our current target. */
1150
1151 static void
1152 load_command (char *arg, int from_tty)
1153 {
1154 if (arg == NULL)
1155 arg = get_exec_file (1);
1156 target_load (arg, from_tty);
1157
1158 /* After re-loading the executable, we don't really know which
1159 overlays are mapped any more. */
1160 overlay_cache_invalid = 1;
1161 }
1162
1163 /* This version of "load" should be usable for any target. Currently
1164 it is just used for remote targets, not inftarg.c or core files,
1165 on the theory that only in that case is it useful.
1166
1167 Avoiding xmodem and the like seems like a win (a) because we don't have
1168 to worry about finding it, and (b) On VMS, fork() is very slow and so
1169 we don't want to run a subprocess. On the other hand, I'm not sure how
1170 performance compares. */
1171
1172 static int download_write_size = 512;
1173 static int validate_download = 0;
1174
1175 void
1176 generic_load (char *args, int from_tty)
1177 {
1178 asection *s;
1179 bfd *loadfile_bfd;
1180 time_t start_time, end_time; /* Start and end times of download */
1181 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1182 unsigned long write_count = 0; /* Number of writes needed. */
1183 unsigned long load_offset; /* offset to add to vma for each section */
1184 char *filename;
1185 struct cleanup *old_cleanups;
1186 char *offptr;
1187 CORE_ADDR total_size = 0;
1188 CORE_ADDR total_sent = 0;
1189
1190 /* Parse the input argument - the user can specify a load offset as
1191 a second argument. */
1192 filename = xmalloc (strlen (args) + 1);
1193 old_cleanups = make_cleanup (xfree, filename);
1194 strcpy (filename, args);
1195 offptr = strchr (filename, ' ');
1196 if (offptr != NULL)
1197 {
1198 char *endptr;
1199 load_offset = strtoul (offptr, &endptr, 0);
1200 if (offptr == endptr)
1201 error ("Invalid download offset:%s\n", offptr);
1202 *offptr = '\0';
1203 }
1204 else
1205 load_offset = 0;
1206
1207 /* Open the file for loading. */
1208 loadfile_bfd = bfd_openr (filename, gnutarget);
1209 if (loadfile_bfd == NULL)
1210 {
1211 perror_with_name (filename);
1212 return;
1213 }
1214
1215 /* FIXME: should be checking for errors from bfd_close (for one thing,
1216 on error it does not free all the storage associated with the
1217 bfd). */
1218 make_cleanup_bfd_close (loadfile_bfd);
1219
1220 if (!bfd_check_format (loadfile_bfd, bfd_object))
1221 {
1222 error ("\"%s\" is not an object file: %s", filename,
1223 bfd_errmsg (bfd_get_error ()));
1224 }
1225
1226 for (s = loadfile_bfd->sections; s; s = s->next)
1227 if (s->flags & SEC_LOAD)
1228 total_size += bfd_get_section_size_before_reloc (s);
1229
1230 start_time = time (NULL);
1231
1232 for (s = loadfile_bfd->sections; s; s = s->next)
1233 {
1234 if (s->flags & SEC_LOAD)
1235 {
1236 CORE_ADDR size = bfd_get_section_size_before_reloc (s);
1237 if (size > 0)
1238 {
1239 char *buffer;
1240 struct cleanup *old_chain;
1241 CORE_ADDR lma = s->lma + load_offset;
1242 CORE_ADDR block_size;
1243 int err;
1244 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1245 CORE_ADDR sent;
1246
1247 if (download_write_size > 0 && size > download_write_size)
1248 block_size = download_write_size;
1249 else
1250 block_size = size;
1251
1252 buffer = xmalloc (size);
1253 old_chain = make_cleanup (xfree, buffer);
1254
1255 /* Is this really necessary? I guess it gives the user something
1256 to look at during a long download. */
1257 #ifdef UI_OUT
1258 ui_out_message (uiout, 0, "Loading section %s, size 0x%s lma 0x%s\n",
1259 sect_name, paddr_nz (size), paddr_nz (lma));
1260 #else
1261 fprintf_unfiltered (gdb_stdout,
1262 "Loading section %s, size 0x%s lma 0x%s\n",
1263 sect_name, paddr_nz (size), paddr_nz (lma));
1264 #endif
1265
1266 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1267
1268 sent = 0;
1269 do
1270 {
1271 CORE_ADDR len;
1272 CORE_ADDR this_transfer = size - sent;
1273 if (this_transfer >= block_size)
1274 this_transfer = block_size;
1275 len = target_write_memory_partial (lma, buffer,
1276 this_transfer, &err);
1277 if (err)
1278 break;
1279 if (validate_download)
1280 {
1281 /* Broken memories and broken monitors manifest
1282 themselves here when bring new computers to
1283 life. This doubles already slow downloads. */
1284 /* NOTE: cagney/1999-10-18: A more efficient
1285 implementation might add a verify_memory()
1286 method to the target vector and then use
1287 that. remote.c could implement that method
1288 using the ``qCRC'' packet. */
1289 char *check = xmalloc (len);
1290 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1291 if (target_read_memory (lma, check, len) != 0)
1292 error ("Download verify read failed at 0x%s",
1293 paddr (lma));
1294 if (memcmp (buffer, check, len) != 0)
1295 error ("Download verify compare failed at 0x%s",
1296 paddr (lma));
1297 do_cleanups (verify_cleanups);
1298 }
1299 data_count += len;
1300 lma += len;
1301 buffer += len;
1302 write_count += 1;
1303 sent += len;
1304 total_sent += len;
1305 if (quit_flag
1306 || (ui_load_progress_hook != NULL
1307 && ui_load_progress_hook (sect_name, sent)))
1308 error ("Canceled the download");
1309
1310 if (show_load_progress != NULL)
1311 show_load_progress (sect_name, sent, size, total_sent, total_size);
1312 }
1313 while (sent < size);
1314
1315 if (err != 0)
1316 error ("Memory access error while loading section %s.", sect_name);
1317
1318 do_cleanups (old_chain);
1319 }
1320 }
1321 }
1322
1323 end_time = time (NULL);
1324 {
1325 CORE_ADDR entry;
1326 entry = bfd_get_start_address (loadfile_bfd);
1327 #ifdef UI_OUT
1328 ui_out_text (uiout, "Start address ");
1329 ui_out_field_fmt (uiout, "address", "0x%s" , paddr_nz (entry));
1330 ui_out_text (uiout, ", load size ");
1331 ui_out_field_fmt (uiout, "load-size", "%ld" , data_count);
1332 ui_out_text (uiout, "\n");
1333
1334 #else
1335 fprintf_unfiltered (gdb_stdout,
1336 "Start address 0x%s , load size %ld\n",
1337 paddr_nz (entry), data_count);
1338 #endif
1339 /* We were doing this in remote-mips.c, I suspect it is right
1340 for other targets too. */
1341 write_pc (entry);
1342 }
1343
1344 /* FIXME: are we supposed to call symbol_file_add or not? According to
1345 a comment from remote-mips.c (where a call to symbol_file_add was
1346 commented out), making the call confuses GDB if more than one file is
1347 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1348 does. */
1349
1350 print_transfer_performance (gdb_stdout, data_count, write_count,
1351 end_time - start_time);
1352
1353 do_cleanups (old_cleanups);
1354 }
1355
1356 /* Report how fast the transfer went. */
1357
1358 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1359 replaced by print_transfer_performance (with a very different
1360 function signature). */
1361
1362 void
1363 report_transfer_performance (unsigned long data_count, time_t start_time,
1364 time_t end_time)
1365 {
1366 print_transfer_performance (gdb_stdout, data_count, end_time - start_time, 0);
1367 }
1368
1369 void
1370 print_transfer_performance (struct ui_file *stream,
1371 unsigned long data_count,
1372 unsigned long write_count,
1373 unsigned long time_count)
1374 {
1375 #ifdef UI_OUT
1376 ui_out_text (uiout, "Transfer rate: ");
1377 if (time_count > 0)
1378 {
1379 ui_out_field_fmt (uiout, "transfer-rate", "%ld",
1380 (data_count * 8) / time_count);
1381 ui_out_text (uiout, " bits/sec");
1382 }
1383 else
1384 {
1385 ui_out_field_fmt (uiout, "transferred-bits", "%ld", (data_count * 8));
1386 ui_out_text (uiout, " bits in <1 sec");
1387 }
1388 if (write_count > 0)
1389 {
1390 ui_out_text (uiout, ", ");
1391 ui_out_field_fmt (uiout, "write-rate", "%ld", data_count / write_count);
1392 ui_out_text (uiout, " bytes/write");
1393 }
1394 ui_out_text (uiout, ".\n");
1395 #else
1396 fprintf_unfiltered (stream, "Transfer rate: ");
1397 if (time_count > 0)
1398 fprintf_unfiltered (stream, "%ld bits/sec", (data_count * 8) / time_count);
1399 else
1400 fprintf_unfiltered (stream, "%ld bits in <1 sec", (data_count * 8));
1401 if (write_count > 0)
1402 fprintf_unfiltered (stream, ", %ld bytes/write", data_count / write_count);
1403 fprintf_unfiltered (stream, ".\n");
1404 #endif
1405 }
1406
1407 /* This function allows the addition of incrementally linked object files.
1408 It does not modify any state in the target, only in the debugger. */
1409 /* Note: ezannoni 2000-04-13 This function/command used to have a
1410 special case syntax for the rombug target (Rombug is the boot
1411 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1412 rombug case, the user doesn't need to supply a text address,
1413 instead a call to target_link() (in target.c) would supply the
1414 value to use. We are now discontinuing this type of ad hoc syntax. */
1415
1416 /* ARGSUSED */
1417 static void
1418 add_symbol_file_command (char *args, int from_tty)
1419 {
1420 char *filename = NULL;
1421 int flags = OBJF_USERLOADED;
1422 char *arg;
1423 int expecting_option = 0;
1424 int section_index = 0;
1425 int argcnt = 0;
1426 int sec_num = 0;
1427 int i;
1428 int expecting_sec_name = 0;
1429 int expecting_sec_addr = 0;
1430
1431 struct
1432 {
1433 char *name;
1434 char *value;
1435 } sect_opts[SECT_OFF_MAX];
1436
1437 struct section_addr_info section_addrs;
1438 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1439
1440 dont_repeat ();
1441
1442 if (args == NULL)
1443 error ("add-symbol-file takes a file name and an address");
1444
1445 /* Make a copy of the string that we can safely write into. */
1446 args = xstrdup (args);
1447
1448 /* Ensure section_addrs is initialized */
1449 memset (&section_addrs, 0, sizeof (section_addrs));
1450
1451 while (*args != '\000')
1452 {
1453 /* Any leading spaces? */
1454 while (isspace (*args))
1455 args++;
1456
1457 /* Point arg to the beginning of the argument. */
1458 arg = args;
1459
1460 /* Move args pointer over the argument. */
1461 while ((*args != '\000') && !isspace (*args))
1462 args++;
1463
1464 /* If there are more arguments, terminate arg and
1465 proceed past it. */
1466 if (*args != '\000')
1467 *args++ = '\000';
1468
1469 /* Now process the argument. */
1470 if (argcnt == 0)
1471 {
1472 /* The first argument is the file name. */
1473 filename = tilde_expand (arg);
1474 make_cleanup (xfree, filename);
1475 }
1476 else
1477 if (argcnt == 1)
1478 {
1479 /* The second argument is always the text address at which
1480 to load the program. */
1481 sect_opts[section_index].name = ".text";
1482 sect_opts[section_index].value = arg;
1483 section_index++;
1484 }
1485 else
1486 {
1487 /* It's an option (starting with '-') or it's an argument
1488 to an option */
1489
1490 if (*arg == '-')
1491 {
1492 if (strcmp (arg, "-mapped") == 0)
1493 flags |= OBJF_MAPPED;
1494 else
1495 if (strcmp (arg, "-readnow") == 0)
1496 flags |= OBJF_READNOW;
1497 else
1498 if (strcmp (arg, "-s") == 0)
1499 {
1500 if (section_index >= SECT_OFF_MAX)
1501 error ("Too many sections specified.");
1502 expecting_sec_name = 1;
1503 expecting_sec_addr = 1;
1504 }
1505 }
1506 else
1507 {
1508 if (expecting_sec_name)
1509 {
1510 sect_opts[section_index].name = arg;
1511 expecting_sec_name = 0;
1512 }
1513 else
1514 if (expecting_sec_addr)
1515 {
1516 sect_opts[section_index].value = arg;
1517 expecting_sec_addr = 0;
1518 section_index++;
1519 }
1520 else
1521 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1522 }
1523 }
1524 argcnt++;
1525 }
1526
1527 /* Print the prompt for the query below. And save the arguments into
1528 a sect_addr_info structure to be passed around to other
1529 functions. We have to split this up into separate print
1530 statements because local_hex_string returns a local static
1531 string. */
1532
1533 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1534 for (i = 0; i < section_index; i++)
1535 {
1536 CORE_ADDR addr;
1537 char *val = sect_opts[i].value;
1538 char *sec = sect_opts[i].name;
1539
1540 val = sect_opts[i].value;
1541 if (val[0] == '0' && val[1] == 'x')
1542 addr = strtoul (val+2, NULL, 16);
1543 else
1544 addr = strtoul (val, NULL, 10);
1545
1546 /* Here we store the section offsets in the order they were
1547 entered on the command line. */
1548 section_addrs.other[sec_num].name = sec;
1549 section_addrs.other[sec_num].addr = addr;
1550 printf_filtered ("\t%s_addr = %s\n",
1551 sec,
1552 local_hex_string ((unsigned long)addr));
1553 sec_num++;
1554
1555 /* The object's sections are initialized when a
1556 call is made to build_objfile_section_table (objfile).
1557 This happens in reread_symbols.
1558 At this point, we don't know what file type this is,
1559 so we can't determine what section names are valid. */
1560 }
1561
1562 if (from_tty && (!query ("%s", "")))
1563 error ("Not confirmed.");
1564
1565 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1566
1567 /* Getting new symbols may change our opinion about what is
1568 frameless. */
1569 reinit_frame_cache ();
1570 do_cleanups (my_cleanups);
1571 }
1572 \f
1573 static void
1574 add_shared_symbol_files_command (char *args, int from_tty)
1575 {
1576 #ifdef ADD_SHARED_SYMBOL_FILES
1577 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1578 #else
1579 error ("This command is not available in this configuration of GDB.");
1580 #endif
1581 }
1582 \f
1583 /* Re-read symbols if a symbol-file has changed. */
1584 void
1585 reread_symbols (void)
1586 {
1587 struct objfile *objfile;
1588 long new_modtime;
1589 int reread_one = 0;
1590 struct stat new_statbuf;
1591 int res;
1592
1593 /* With the addition of shared libraries, this should be modified,
1594 the load time should be saved in the partial symbol tables, since
1595 different tables may come from different source files. FIXME.
1596 This routine should then walk down each partial symbol table
1597 and see if the symbol table that it originates from has been changed */
1598
1599 for (objfile = object_files; objfile; objfile = objfile->next)
1600 {
1601 if (objfile->obfd)
1602 {
1603 #ifdef IBM6000_TARGET
1604 /* If this object is from a shared library, then you should
1605 stat on the library name, not member name. */
1606
1607 if (objfile->obfd->my_archive)
1608 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1609 else
1610 #endif
1611 res = stat (objfile->name, &new_statbuf);
1612 if (res != 0)
1613 {
1614 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1615 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1616 objfile->name);
1617 continue;
1618 }
1619 new_modtime = new_statbuf.st_mtime;
1620 if (new_modtime != objfile->mtime)
1621 {
1622 struct cleanup *old_cleanups;
1623 struct section_offsets *offsets;
1624 int num_offsets;
1625 char *obfd_filename;
1626
1627 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1628 objfile->name);
1629
1630 /* There are various functions like symbol_file_add,
1631 symfile_bfd_open, syms_from_objfile, etc., which might
1632 appear to do what we want. But they have various other
1633 effects which we *don't* want. So we just do stuff
1634 ourselves. We don't worry about mapped files (for one thing,
1635 any mapped file will be out of date). */
1636
1637 /* If we get an error, blow away this objfile (not sure if
1638 that is the correct response for things like shared
1639 libraries). */
1640 old_cleanups = make_cleanup_free_objfile (objfile);
1641 /* We need to do this whenever any symbols go away. */
1642 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1643
1644 /* Clean up any state BFD has sitting around. We don't need
1645 to close the descriptor but BFD lacks a way of closing the
1646 BFD without closing the descriptor. */
1647 obfd_filename = bfd_get_filename (objfile->obfd);
1648 if (!bfd_close (objfile->obfd))
1649 error ("Can't close BFD for %s: %s", objfile->name,
1650 bfd_errmsg (bfd_get_error ()));
1651 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1652 if (objfile->obfd == NULL)
1653 error ("Can't open %s to read symbols.", objfile->name);
1654 /* bfd_openr sets cacheable to true, which is what we want. */
1655 if (!bfd_check_format (objfile->obfd, bfd_object))
1656 error ("Can't read symbols from %s: %s.", objfile->name,
1657 bfd_errmsg (bfd_get_error ()));
1658
1659 /* Save the offsets, we will nuke them with the rest of the
1660 psymbol_obstack. */
1661 num_offsets = objfile->num_sections;
1662 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1663 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1664
1665 /* Nuke all the state that we will re-read. Much of the following
1666 code which sets things to NULL really is necessary to tell
1667 other parts of GDB that there is nothing currently there. */
1668
1669 /* FIXME: Do we have to free a whole linked list, or is this
1670 enough? */
1671 if (objfile->global_psymbols.list)
1672 mfree (objfile->md, objfile->global_psymbols.list);
1673 memset (&objfile->global_psymbols, 0,
1674 sizeof (objfile->global_psymbols));
1675 if (objfile->static_psymbols.list)
1676 mfree (objfile->md, objfile->static_psymbols.list);
1677 memset (&objfile->static_psymbols, 0,
1678 sizeof (objfile->static_psymbols));
1679
1680 /* Free the obstacks for non-reusable objfiles */
1681 free_bcache (&objfile->psymbol_cache);
1682 obstack_free (&objfile->psymbol_obstack, 0);
1683 obstack_free (&objfile->symbol_obstack, 0);
1684 obstack_free (&objfile->type_obstack, 0);
1685 objfile->sections = NULL;
1686 objfile->symtabs = NULL;
1687 objfile->psymtabs = NULL;
1688 objfile->free_psymtabs = NULL;
1689 objfile->msymbols = NULL;
1690 objfile->minimal_symbol_count = 0;
1691 memset (&objfile->msymbol_hash, 0,
1692 sizeof (objfile->msymbol_hash));
1693 memset (&objfile->msymbol_demangled_hash, 0,
1694 sizeof (objfile->msymbol_demangled_hash));
1695 objfile->fundamental_types = NULL;
1696 if (objfile->sf != NULL)
1697 {
1698 (*objfile->sf->sym_finish) (objfile);
1699 }
1700
1701 /* We never make this a mapped file. */
1702 objfile->md = NULL;
1703 /* obstack_specify_allocation also initializes the obstack so
1704 it is empty. */
1705 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1706 xmalloc, xfree);
1707 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1708 xmalloc, xfree);
1709 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1710 xmalloc, xfree);
1711 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1712 xmalloc, xfree);
1713 if (build_objfile_section_table (objfile))
1714 {
1715 error ("Can't find the file sections in `%s': %s",
1716 objfile->name, bfd_errmsg (bfd_get_error ()));
1717 }
1718
1719 /* We use the same section offsets as from last time. I'm not
1720 sure whether that is always correct for shared libraries. */
1721 objfile->section_offsets = (struct section_offsets *)
1722 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1723 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1724 objfile->num_sections = num_offsets;
1725
1726 /* What the hell is sym_new_init for, anyway? The concept of
1727 distinguishing between the main file and additional files
1728 in this way seems rather dubious. */
1729 if (objfile == symfile_objfile)
1730 {
1731 (*objfile->sf->sym_new_init) (objfile);
1732 #ifdef HPUXHPPA
1733 RESET_HP_UX_GLOBALS ();
1734 #endif
1735 }
1736
1737 (*objfile->sf->sym_init) (objfile);
1738 clear_complaints (1, 1);
1739 /* The "mainline" parameter is a hideous hack; I think leaving it
1740 zero is OK since dbxread.c also does what it needs to do if
1741 objfile->global_psymbols.size is 0. */
1742 (*objfile->sf->sym_read) (objfile, 0);
1743 if (!have_partial_symbols () && !have_full_symbols ())
1744 {
1745 wrap_here ("");
1746 printf_filtered ("(no debugging symbols found)\n");
1747 wrap_here ("");
1748 }
1749 objfile->flags |= OBJF_SYMS;
1750
1751 /* We're done reading the symbol file; finish off complaints. */
1752 clear_complaints (0, 1);
1753
1754 /* Getting new symbols may change our opinion about what is
1755 frameless. */
1756
1757 reinit_frame_cache ();
1758
1759 /* Discard cleanups as symbol reading was successful. */
1760 discard_cleanups (old_cleanups);
1761
1762 /* If the mtime has changed between the time we set new_modtime
1763 and now, we *want* this to be out of date, so don't call stat
1764 again now. */
1765 objfile->mtime = new_modtime;
1766 reread_one = 1;
1767
1768 /* Call this after reading in a new symbol table to give target
1769 dependent code a crack at the new symbols. For instance, this
1770 could be used to update the values of target-specific symbols GDB
1771 needs to keep track of (such as _sigtramp, or whatever). */
1772
1773 TARGET_SYMFILE_POSTREAD (objfile);
1774 }
1775 }
1776 }
1777
1778 if (reread_one)
1779 clear_symtab_users ();
1780 }
1781 \f
1782
1783
1784 typedef struct
1785 {
1786 char *ext;
1787 enum language lang;
1788 }
1789 filename_language;
1790
1791 static filename_language *filename_language_table;
1792 static int fl_table_size, fl_table_next;
1793
1794 static void
1795 add_filename_language (char *ext, enum language lang)
1796 {
1797 if (fl_table_next >= fl_table_size)
1798 {
1799 fl_table_size += 10;
1800 filename_language_table = xrealloc (filename_language_table,
1801 fl_table_size);
1802 }
1803
1804 filename_language_table[fl_table_next].ext = xstrdup (ext);
1805 filename_language_table[fl_table_next].lang = lang;
1806 fl_table_next++;
1807 }
1808
1809 static char *ext_args;
1810
1811 static void
1812 set_ext_lang_command (char *args, int from_tty)
1813 {
1814 int i;
1815 char *cp = ext_args;
1816 enum language lang;
1817
1818 /* First arg is filename extension, starting with '.' */
1819 if (*cp != '.')
1820 error ("'%s': Filename extension must begin with '.'", ext_args);
1821
1822 /* Find end of first arg. */
1823 while (*cp && !isspace (*cp))
1824 cp++;
1825
1826 if (*cp == '\0')
1827 error ("'%s': two arguments required -- filename extension and language",
1828 ext_args);
1829
1830 /* Null-terminate first arg */
1831 *cp++ = '\0';
1832
1833 /* Find beginning of second arg, which should be a source language. */
1834 while (*cp && isspace (*cp))
1835 cp++;
1836
1837 if (*cp == '\0')
1838 error ("'%s': two arguments required -- filename extension and language",
1839 ext_args);
1840
1841 /* Lookup the language from among those we know. */
1842 lang = language_enum (cp);
1843
1844 /* Now lookup the filename extension: do we already know it? */
1845 for (i = 0; i < fl_table_next; i++)
1846 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1847 break;
1848
1849 if (i >= fl_table_next)
1850 {
1851 /* new file extension */
1852 add_filename_language (ext_args, lang);
1853 }
1854 else
1855 {
1856 /* redefining a previously known filename extension */
1857
1858 /* if (from_tty) */
1859 /* query ("Really make files of type %s '%s'?", */
1860 /* ext_args, language_str (lang)); */
1861
1862 xfree (filename_language_table[i].ext);
1863 filename_language_table[i].ext = xstrdup (ext_args);
1864 filename_language_table[i].lang = lang;
1865 }
1866 }
1867
1868 static void
1869 info_ext_lang_command (char *args, int from_tty)
1870 {
1871 int i;
1872
1873 printf_filtered ("Filename extensions and the languages they represent:");
1874 printf_filtered ("\n\n");
1875 for (i = 0; i < fl_table_next; i++)
1876 printf_filtered ("\t%s\t- %s\n",
1877 filename_language_table[i].ext,
1878 language_str (filename_language_table[i].lang));
1879 }
1880
1881 static void
1882 init_filename_language_table (void)
1883 {
1884 if (fl_table_size == 0) /* protect against repetition */
1885 {
1886 fl_table_size = 20;
1887 fl_table_next = 0;
1888 filename_language_table =
1889 xmalloc (fl_table_size * sizeof (*filename_language_table));
1890 add_filename_language (".c", language_c);
1891 add_filename_language (".C", language_cplus);
1892 add_filename_language (".cc", language_cplus);
1893 add_filename_language (".cp", language_cplus);
1894 add_filename_language (".cpp", language_cplus);
1895 add_filename_language (".cxx", language_cplus);
1896 add_filename_language (".c++", language_cplus);
1897 add_filename_language (".java", language_java);
1898 add_filename_language (".class", language_java);
1899 add_filename_language (".ch", language_chill);
1900 add_filename_language (".c186", language_chill);
1901 add_filename_language (".c286", language_chill);
1902 add_filename_language (".f", language_fortran);
1903 add_filename_language (".F", language_fortran);
1904 add_filename_language (".s", language_asm);
1905 add_filename_language (".S", language_asm);
1906 add_filename_language (".pas", language_pascal);
1907 add_filename_language (".p", language_pascal);
1908 add_filename_language (".pp", language_pascal);
1909 }
1910 }
1911
1912 enum language
1913 deduce_language_from_filename (char *filename)
1914 {
1915 int i;
1916 char *cp;
1917
1918 if (filename != NULL)
1919 if ((cp = strrchr (filename, '.')) != NULL)
1920 for (i = 0; i < fl_table_next; i++)
1921 if (strcmp (cp, filename_language_table[i].ext) == 0)
1922 return filename_language_table[i].lang;
1923
1924 return language_unknown;
1925 }
1926 \f
1927 /* allocate_symtab:
1928
1929 Allocate and partly initialize a new symbol table. Return a pointer
1930 to it. error() if no space.
1931
1932 Caller must set these fields:
1933 LINETABLE(symtab)
1934 symtab->blockvector
1935 symtab->dirname
1936 symtab->free_code
1937 symtab->free_ptr
1938 possibly free_named_symtabs (symtab->filename);
1939 */
1940
1941 struct symtab *
1942 allocate_symtab (char *filename, struct objfile *objfile)
1943 {
1944 register struct symtab *symtab;
1945
1946 symtab = (struct symtab *)
1947 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1948 memset (symtab, 0, sizeof (*symtab));
1949 symtab->filename = obsavestring (filename, strlen (filename),
1950 &objfile->symbol_obstack);
1951 symtab->fullname = NULL;
1952 symtab->language = deduce_language_from_filename (filename);
1953 symtab->debugformat = obsavestring ("unknown", 7,
1954 &objfile->symbol_obstack);
1955
1956 /* Hook it to the objfile it comes from */
1957
1958 symtab->objfile = objfile;
1959 symtab->next = objfile->symtabs;
1960 objfile->symtabs = symtab;
1961
1962 /* FIXME: This should go away. It is only defined for the Z8000,
1963 and the Z8000 definition of this macro doesn't have anything to
1964 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1965 here for convenience. */
1966 #ifdef INIT_EXTRA_SYMTAB_INFO
1967 INIT_EXTRA_SYMTAB_INFO (symtab);
1968 #endif
1969
1970 return (symtab);
1971 }
1972
1973 struct partial_symtab *
1974 allocate_psymtab (char *filename, struct objfile *objfile)
1975 {
1976 struct partial_symtab *psymtab;
1977
1978 if (objfile->free_psymtabs)
1979 {
1980 psymtab = objfile->free_psymtabs;
1981 objfile->free_psymtabs = psymtab->next;
1982 }
1983 else
1984 psymtab = (struct partial_symtab *)
1985 obstack_alloc (&objfile->psymbol_obstack,
1986 sizeof (struct partial_symtab));
1987
1988 memset (psymtab, 0, sizeof (struct partial_symtab));
1989 psymtab->filename = obsavestring (filename, strlen (filename),
1990 &objfile->psymbol_obstack);
1991 psymtab->symtab = NULL;
1992 psymtab->text_addrs = addrset_new (&objfile->psymbol_obstack);
1993
1994 /* Prepend it to the psymtab list for the objfile it belongs to.
1995 Psymtabs are searched in most recent inserted -> least recent
1996 inserted order. */
1997
1998 psymtab->objfile = objfile;
1999 psymtab->next = objfile->psymtabs;
2000 objfile->psymtabs = psymtab;
2001 #if 0
2002 {
2003 struct partial_symtab **prev_pst;
2004 psymtab->objfile = objfile;
2005 psymtab->next = NULL;
2006 prev_pst = &(objfile->psymtabs);
2007 while ((*prev_pst) != NULL)
2008 prev_pst = &((*prev_pst)->next);
2009 (*prev_pst) = psymtab;
2010 }
2011 #endif
2012
2013 return (psymtab);
2014 }
2015
2016 void
2017 discard_psymtab (struct partial_symtab *pst)
2018 {
2019 struct partial_symtab **prev_pst;
2020
2021 /* From dbxread.c:
2022 Empty psymtabs happen as a result of header files which don't
2023 have any symbols in them. There can be a lot of them. But this
2024 check is wrong, in that a psymtab with N_SLINE entries but
2025 nothing else is not empty, but we don't realize that. Fixing
2026 that without slowing things down might be tricky. */
2027
2028 /* First, snip it out of the psymtab chain */
2029
2030 prev_pst = &(pst->objfile->psymtabs);
2031 while ((*prev_pst) != pst)
2032 prev_pst = &((*prev_pst)->next);
2033 (*prev_pst) = pst->next;
2034
2035 /* Next, put it on a free list for recycling */
2036
2037 pst->next = pst->objfile->free_psymtabs;
2038 pst->objfile->free_psymtabs = pst;
2039 }
2040 \f
2041
2042 /* Reset all data structures in gdb which may contain references to symbol
2043 table data. */
2044
2045 void
2046 clear_symtab_users (void)
2047 {
2048 /* Someday, we should do better than this, by only blowing away
2049 the things that really need to be blown. */
2050 clear_value_history ();
2051 clear_displays ();
2052 clear_internalvars ();
2053 breakpoint_re_set ();
2054 set_default_breakpoint (0, 0, 0, 0);
2055 current_source_symtab = 0;
2056 current_source_line = 0;
2057 clear_pc_function_cache ();
2058 if (target_new_objfile_hook)
2059 target_new_objfile_hook (NULL);
2060 }
2061
2062 static void
2063 clear_symtab_users_cleanup (void *ignore)
2064 {
2065 clear_symtab_users ();
2066 }
2067
2068 /* clear_symtab_users_once:
2069
2070 This function is run after symbol reading, or from a cleanup.
2071 If an old symbol table was obsoleted, the old symbol table
2072 has been blown away, but the other GDB data structures that may
2073 reference it have not yet been cleared or re-directed. (The old
2074 symtab was zapped, and the cleanup queued, in free_named_symtab()
2075 below.)
2076
2077 This function can be queued N times as a cleanup, or called
2078 directly; it will do all the work the first time, and then will be a
2079 no-op until the next time it is queued. This works by bumping a
2080 counter at queueing time. Much later when the cleanup is run, or at
2081 the end of symbol processing (in case the cleanup is discarded), if
2082 the queued count is greater than the "done-count", we do the work
2083 and set the done-count to the queued count. If the queued count is
2084 less than or equal to the done-count, we just ignore the call. This
2085 is needed because reading a single .o file will often replace many
2086 symtabs (one per .h file, for example), and we don't want to reset
2087 the breakpoints N times in the user's face.
2088
2089 The reason we both queue a cleanup, and call it directly after symbol
2090 reading, is because the cleanup protects us in case of errors, but is
2091 discarded if symbol reading is successful. */
2092
2093 #if 0
2094 /* FIXME: As free_named_symtabs is currently a big noop this function
2095 is no longer needed. */
2096 static void clear_symtab_users_once (void);
2097
2098 static int clear_symtab_users_queued;
2099 static int clear_symtab_users_done;
2100
2101 static void
2102 clear_symtab_users_once (void)
2103 {
2104 /* Enforce once-per-`do_cleanups'-semantics */
2105 if (clear_symtab_users_queued <= clear_symtab_users_done)
2106 return;
2107 clear_symtab_users_done = clear_symtab_users_queued;
2108
2109 clear_symtab_users ();
2110 }
2111 #endif
2112
2113 /* Delete the specified psymtab, and any others that reference it. */
2114
2115 static void
2116 cashier_psymtab (struct partial_symtab *pst)
2117 {
2118 struct partial_symtab *ps, *pprev = NULL;
2119 int i;
2120
2121 /* Find its previous psymtab in the chain */
2122 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2123 {
2124 if (ps == pst)
2125 break;
2126 pprev = ps;
2127 }
2128
2129 if (ps)
2130 {
2131 /* Unhook it from the chain. */
2132 if (ps == pst->objfile->psymtabs)
2133 pst->objfile->psymtabs = ps->next;
2134 else
2135 pprev->next = ps->next;
2136
2137 /* FIXME, we can't conveniently deallocate the entries in the
2138 partial_symbol lists (global_psymbols/static_psymbols) that
2139 this psymtab points to. These just take up space until all
2140 the psymtabs are reclaimed. Ditto the dependencies list and
2141 filename, which are all in the psymbol_obstack. */
2142
2143 /* We need to cashier any psymtab that has this one as a dependency... */
2144 again:
2145 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2146 {
2147 for (i = 0; i < ps->number_of_dependencies; i++)
2148 {
2149 if (ps->dependencies[i] == pst)
2150 {
2151 cashier_psymtab (ps);
2152 goto again; /* Must restart, chain has been munged. */
2153 }
2154 }
2155 }
2156 }
2157 }
2158
2159 /* If a symtab or psymtab for filename NAME is found, free it along
2160 with any dependent breakpoints, displays, etc.
2161 Used when loading new versions of object modules with the "add-file"
2162 command. This is only called on the top-level symtab or psymtab's name;
2163 it is not called for subsidiary files such as .h files.
2164
2165 Return value is 1 if we blew away the environment, 0 if not.
2166 FIXME. The return value appears to never be used.
2167
2168 FIXME. I think this is not the best way to do this. We should
2169 work on being gentler to the environment while still cleaning up
2170 all stray pointers into the freed symtab. */
2171
2172 int
2173 free_named_symtabs (char *name)
2174 {
2175 #if 0
2176 /* FIXME: With the new method of each objfile having it's own
2177 psymtab list, this function needs serious rethinking. In particular,
2178 why was it ever necessary to toss psymtabs with specific compilation
2179 unit filenames, as opposed to all psymtabs from a particular symbol
2180 file? -- fnf
2181 Well, the answer is that some systems permit reloading of particular
2182 compilation units. We want to blow away any old info about these
2183 compilation units, regardless of which objfiles they arrived in. --gnu. */
2184
2185 register struct symtab *s;
2186 register struct symtab *prev;
2187 register struct partial_symtab *ps;
2188 struct blockvector *bv;
2189 int blewit = 0;
2190
2191 /* We only wack things if the symbol-reload switch is set. */
2192 if (!symbol_reloading)
2193 return 0;
2194
2195 /* Some symbol formats have trouble providing file names... */
2196 if (name == 0 || *name == '\0')
2197 return 0;
2198
2199 /* Look for a psymtab with the specified name. */
2200
2201 again2:
2202 for (ps = partial_symtab_list; ps; ps = ps->next)
2203 {
2204 if (STREQ (name, ps->filename))
2205 {
2206 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2207 goto again2; /* Must restart, chain has been munged */
2208 }
2209 }
2210
2211 /* Look for a symtab with the specified name. */
2212
2213 for (s = symtab_list; s; s = s->next)
2214 {
2215 if (STREQ (name, s->filename))
2216 break;
2217 prev = s;
2218 }
2219
2220 if (s)
2221 {
2222 if (s == symtab_list)
2223 symtab_list = s->next;
2224 else
2225 prev->next = s->next;
2226
2227 /* For now, queue a delete for all breakpoints, displays, etc., whether
2228 or not they depend on the symtab being freed. This should be
2229 changed so that only those data structures affected are deleted. */
2230
2231 /* But don't delete anything if the symtab is empty.
2232 This test is necessary due to a bug in "dbxread.c" that
2233 causes empty symtabs to be created for N_SO symbols that
2234 contain the pathname of the object file. (This problem
2235 has been fixed in GDB 3.9x). */
2236
2237 bv = BLOCKVECTOR (s);
2238 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2239 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2240 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2241 {
2242 complain (&oldsyms_complaint, name);
2243
2244 clear_symtab_users_queued++;
2245 make_cleanup (clear_symtab_users_once, 0);
2246 blewit = 1;
2247 }
2248 else
2249 {
2250 complain (&empty_symtab_complaint, name);
2251 }
2252
2253 free_symtab (s);
2254 }
2255 else
2256 {
2257 /* It is still possible that some breakpoints will be affected
2258 even though no symtab was found, since the file might have
2259 been compiled without debugging, and hence not be associated
2260 with a symtab. In order to handle this correctly, we would need
2261 to keep a list of text address ranges for undebuggable files.
2262 For now, we do nothing, since this is a fairly obscure case. */
2263 ;
2264 }
2265
2266 /* FIXME, what about the minimal symbol table? */
2267 return blewit;
2268 #else
2269 return (0);
2270 #endif
2271 }
2272 \f
2273 /* Allocate and partially fill a partial symtab. It will be
2274 completely filled at the end of the symbol list.
2275
2276 FILENAME is the name of the symbol-file we are reading from. */
2277
2278 struct partial_symtab *
2279 start_psymtab_common (struct objfile *objfile,
2280 struct section_offsets *section_offsets, char *filename,
2281 CORE_ADDR textlow, struct partial_symbol **global_syms,
2282 struct partial_symbol **static_syms)
2283 {
2284 struct partial_symtab *psymtab;
2285
2286 psymtab = allocate_psymtab (filename, objfile);
2287 psymtab->section_offsets = section_offsets;
2288 psymtab->textlow = textlow;
2289 psymtab->texthigh = psymtab->textlow; /* default */
2290 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2291 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2292 return (psymtab);
2293 }
2294 \f
2295 /* Add a symbol with a long value to a psymtab.
2296 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2297
2298 void
2299 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2300 enum address_class class,
2301 struct psymbol_allocation_list *list, long val, /* Value as a long */
2302 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2303 enum language language, struct objfile *objfile)
2304 {
2305 register struct partial_symbol *psym;
2306 char *buf = alloca (namelength + 1);
2307 /* psymbol is static so that there will be no uninitialized gaps in the
2308 structure which might contain random data, causing cache misses in
2309 bcache. */
2310 static struct partial_symbol psymbol;
2311
2312 /* Create local copy of the partial symbol */
2313 memcpy (buf, name, namelength);
2314 buf[namelength] = '\0';
2315 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2316 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2317 if (val != 0)
2318 {
2319 SYMBOL_VALUE (&psymbol) = val;
2320 }
2321 else
2322 {
2323 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2324 }
2325 SYMBOL_SECTION (&psymbol) = 0;
2326 SYMBOL_LANGUAGE (&psymbol) = language;
2327 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2328 PSYMBOL_CLASS (&psymbol) = class;
2329 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2330
2331 /* Stash the partial symbol away in the cache */
2332 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2333
2334 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2335 if (list->next >= list->list + list->size)
2336 {
2337 extend_psymbol_list (list, objfile);
2338 }
2339 *list->next++ = psym;
2340 OBJSTAT (objfile, n_psyms++);
2341 }
2342
2343 /* Add a symbol with a long value to a psymtab. This differs from
2344 * add_psymbol_to_list above in taking both a mangled and a demangled
2345 * name. */
2346
2347 void
2348 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2349 int dem_namelength, namespace_enum namespace,
2350 enum address_class class,
2351 struct psymbol_allocation_list *list, long val, /* Value as a long */
2352 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2353 enum language language,
2354 struct objfile *objfile)
2355 {
2356 register struct partial_symbol *psym;
2357 char *buf = alloca (namelength + 1);
2358 /* psymbol is static so that there will be no uninitialized gaps in the
2359 structure which might contain random data, causing cache misses in
2360 bcache. */
2361 static struct partial_symbol psymbol;
2362
2363 /* Create local copy of the partial symbol */
2364
2365 memcpy (buf, name, namelength);
2366 buf[namelength] = '\0';
2367 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2368
2369 buf = alloca (dem_namelength + 1);
2370 memcpy (buf, dem_name, dem_namelength);
2371 buf[dem_namelength] = '\0';
2372
2373 switch (language)
2374 {
2375 case language_c:
2376 case language_cplus:
2377 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2378 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2379 break;
2380 case language_chill:
2381 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2382 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2383
2384 /* FIXME What should be done for the default case? Ignoring for now. */
2385 }
2386
2387 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2388 if (val != 0)
2389 {
2390 SYMBOL_VALUE (&psymbol) = val;
2391 }
2392 else
2393 {
2394 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2395 }
2396 SYMBOL_SECTION (&psymbol) = 0;
2397 SYMBOL_LANGUAGE (&psymbol) = language;
2398 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2399 PSYMBOL_CLASS (&psymbol) = class;
2400 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2401
2402 /* Stash the partial symbol away in the cache */
2403 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2404
2405 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2406 if (list->next >= list->list + list->size)
2407 {
2408 extend_psymbol_list (list, objfile);
2409 }
2410 *list->next++ = psym;
2411 OBJSTAT (objfile, n_psyms++);
2412 }
2413
2414 /* Initialize storage for partial symbols. */
2415
2416 void
2417 init_psymbol_list (struct objfile *objfile, int total_symbols)
2418 {
2419 /* Free any previously allocated psymbol lists. */
2420
2421 if (objfile->global_psymbols.list)
2422 {
2423 mfree (objfile->md, (PTR) objfile->global_psymbols.list);
2424 }
2425 if (objfile->static_psymbols.list)
2426 {
2427 mfree (objfile->md, (PTR) objfile->static_psymbols.list);
2428 }
2429
2430 /* Current best guess is that approximately a twentieth
2431 of the total symbols (in a debugging file) are global or static
2432 oriented symbols */
2433
2434 objfile->global_psymbols.size = total_symbols / 10;
2435 objfile->static_psymbols.size = total_symbols / 10;
2436
2437 if (objfile->global_psymbols.size > 0)
2438 {
2439 objfile->global_psymbols.next =
2440 objfile->global_psymbols.list = (struct partial_symbol **)
2441 xmmalloc (objfile->md, (objfile->global_psymbols.size
2442 * sizeof (struct partial_symbol *)));
2443 }
2444 if (objfile->static_psymbols.size > 0)
2445 {
2446 objfile->static_psymbols.next =
2447 objfile->static_psymbols.list = (struct partial_symbol **)
2448 xmmalloc (objfile->md, (objfile->static_psymbols.size
2449 * sizeof (struct partial_symbol *)));
2450 }
2451 }
2452
2453 /* OVERLAYS:
2454 The following code implements an abstraction for debugging overlay sections.
2455
2456 The target model is as follows:
2457 1) The gnu linker will permit multiple sections to be mapped into the
2458 same VMA, each with its own unique LMA (or load address).
2459 2) It is assumed that some runtime mechanism exists for mapping the
2460 sections, one by one, from the load address into the VMA address.
2461 3) This code provides a mechanism for gdb to keep track of which
2462 sections should be considered to be mapped from the VMA to the LMA.
2463 This information is used for symbol lookup, and memory read/write.
2464 For instance, if a section has been mapped then its contents
2465 should be read from the VMA, otherwise from the LMA.
2466
2467 Two levels of debugger support for overlays are available. One is
2468 "manual", in which the debugger relies on the user to tell it which
2469 overlays are currently mapped. This level of support is
2470 implemented entirely in the core debugger, and the information about
2471 whether a section is mapped is kept in the objfile->obj_section table.
2472
2473 The second level of support is "automatic", and is only available if
2474 the target-specific code provides functionality to read the target's
2475 overlay mapping table, and translate its contents for the debugger
2476 (by updating the mapped state information in the obj_section tables).
2477
2478 The interface is as follows:
2479 User commands:
2480 overlay map <name> -- tell gdb to consider this section mapped
2481 overlay unmap <name> -- tell gdb to consider this section unmapped
2482 overlay list -- list the sections that GDB thinks are mapped
2483 overlay read-target -- get the target's state of what's mapped
2484 overlay off/manual/auto -- set overlay debugging state
2485 Functional interface:
2486 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2487 section, return that section.
2488 find_pc_overlay(pc): find any overlay section that contains
2489 the pc, either in its VMA or its LMA
2490 overlay_is_mapped(sect): true if overlay is marked as mapped
2491 section_is_overlay(sect): true if section's VMA != LMA
2492 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2493 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2494 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2495 overlay_mapped_address(...): map an address from section's LMA to VMA
2496 overlay_unmapped_address(...): map an address from section's VMA to LMA
2497 symbol_overlayed_address(...): Return a "current" address for symbol:
2498 either in VMA or LMA depending on whether
2499 the symbol's section is currently mapped
2500 */
2501
2502 /* Overlay debugging state: */
2503
2504 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2505 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2506
2507 /* Target vector for refreshing overlay mapped state */
2508 static void simple_overlay_update (struct obj_section *);
2509 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2510
2511 /* Function: section_is_overlay (SECTION)
2512 Returns true if SECTION has VMA not equal to LMA, ie.
2513 SECTION is loaded at an address different from where it will "run". */
2514
2515 int
2516 section_is_overlay (asection *section)
2517 {
2518 if (overlay_debugging)
2519 if (section && section->lma != 0 &&
2520 section->vma != section->lma)
2521 return 1;
2522
2523 return 0;
2524 }
2525
2526 /* Function: overlay_invalidate_all (void)
2527 Invalidate the mapped state of all overlay sections (mark it as stale). */
2528
2529 static void
2530 overlay_invalidate_all (void)
2531 {
2532 struct objfile *objfile;
2533 struct obj_section *sect;
2534
2535 ALL_OBJSECTIONS (objfile, sect)
2536 if (section_is_overlay (sect->the_bfd_section))
2537 sect->ovly_mapped = -1;
2538 }
2539
2540 /* Function: overlay_is_mapped (SECTION)
2541 Returns true if section is an overlay, and is currently mapped.
2542 Private: public access is thru function section_is_mapped.
2543
2544 Access to the ovly_mapped flag is restricted to this function, so
2545 that we can do automatic update. If the global flag
2546 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2547 overlay_invalidate_all. If the mapped state of the particular
2548 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2549
2550 static int
2551 overlay_is_mapped (struct obj_section *osect)
2552 {
2553 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2554 return 0;
2555
2556 switch (overlay_debugging)
2557 {
2558 default:
2559 case 0:
2560 return 0; /* overlay debugging off */
2561 case -1: /* overlay debugging automatic */
2562 /* Unles there is a target_overlay_update function,
2563 there's really nothing useful to do here (can't really go auto) */
2564 if (target_overlay_update)
2565 {
2566 if (overlay_cache_invalid)
2567 {
2568 overlay_invalidate_all ();
2569 overlay_cache_invalid = 0;
2570 }
2571 if (osect->ovly_mapped == -1)
2572 (*target_overlay_update) (osect);
2573 }
2574 /* fall thru to manual case */
2575 case 1: /* overlay debugging manual */
2576 return osect->ovly_mapped == 1;
2577 }
2578 }
2579
2580 /* Function: section_is_mapped
2581 Returns true if section is an overlay, and is currently mapped. */
2582
2583 int
2584 section_is_mapped (asection *section)
2585 {
2586 struct objfile *objfile;
2587 struct obj_section *osect;
2588
2589 if (overlay_debugging)
2590 if (section && section_is_overlay (section))
2591 ALL_OBJSECTIONS (objfile, osect)
2592 if (osect->the_bfd_section == section)
2593 return overlay_is_mapped (osect);
2594
2595 return 0;
2596 }
2597
2598 /* Function: pc_in_unmapped_range
2599 If PC falls into the lma range of SECTION, return true, else false. */
2600
2601 CORE_ADDR
2602 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2603 {
2604 int size;
2605
2606 if (overlay_debugging)
2607 if (section && section_is_overlay (section))
2608 {
2609 size = bfd_get_section_size_before_reloc (section);
2610 if (section->lma <= pc && pc < section->lma + size)
2611 return 1;
2612 }
2613 return 0;
2614 }
2615
2616 /* Function: pc_in_mapped_range
2617 If PC falls into the vma range of SECTION, return true, else false. */
2618
2619 CORE_ADDR
2620 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2621 {
2622 int size;
2623
2624 if (overlay_debugging)
2625 if (section && section_is_overlay (section))
2626 {
2627 size = bfd_get_section_size_before_reloc (section);
2628 if (section->vma <= pc && pc < section->vma + size)
2629 return 1;
2630 }
2631 return 0;
2632 }
2633
2634
2635 /* Return true if the mapped ranges of sections A and B overlap, false
2636 otherwise. */
2637 int
2638 sections_overlap (asection *a, asection *b)
2639 {
2640 CORE_ADDR a_start = a->vma;
2641 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2642 CORE_ADDR b_start = b->vma;
2643 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2644
2645 return (a_start < b_end && b_start < a_end);
2646 }
2647
2648 /* Function: overlay_unmapped_address (PC, SECTION)
2649 Returns the address corresponding to PC in the unmapped (load) range.
2650 May be the same as PC. */
2651
2652 CORE_ADDR
2653 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2654 {
2655 if (overlay_debugging)
2656 if (section && section_is_overlay (section) &&
2657 pc_in_mapped_range (pc, section))
2658 return pc + section->lma - section->vma;
2659
2660 return pc;
2661 }
2662
2663 /* Function: overlay_mapped_address (PC, SECTION)
2664 Returns the address corresponding to PC in the mapped (runtime) range.
2665 May be the same as PC. */
2666
2667 CORE_ADDR
2668 overlay_mapped_address (CORE_ADDR pc, asection *section)
2669 {
2670 if (overlay_debugging)
2671 if (section && section_is_overlay (section) &&
2672 pc_in_unmapped_range (pc, section))
2673 return pc + section->vma - section->lma;
2674
2675 return pc;
2676 }
2677
2678
2679 /* Function: symbol_overlayed_address
2680 Return one of two addresses (relative to the VMA or to the LMA),
2681 depending on whether the section is mapped or not. */
2682
2683 CORE_ADDR
2684 symbol_overlayed_address (CORE_ADDR address, asection *section)
2685 {
2686 if (overlay_debugging)
2687 {
2688 /* If the symbol has no section, just return its regular address. */
2689 if (section == 0)
2690 return address;
2691 /* If the symbol's section is not an overlay, just return its address */
2692 if (!section_is_overlay (section))
2693 return address;
2694 /* If the symbol's section is mapped, just return its address */
2695 if (section_is_mapped (section))
2696 return address;
2697 /*
2698 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2699 * then return its LOADED address rather than its vma address!!
2700 */
2701 return overlay_unmapped_address (address, section);
2702 }
2703 return address;
2704 }
2705
2706 /* Function: find_pc_overlay (PC)
2707 Return the best-match overlay section for PC:
2708 If PC matches a mapped overlay section's VMA, return that section.
2709 Else if PC matches an unmapped section's VMA, return that section.
2710 Else if PC matches an unmapped section's LMA, return that section. */
2711
2712 asection *
2713 find_pc_overlay (CORE_ADDR pc)
2714 {
2715 struct objfile *objfile;
2716 struct obj_section *osect, *best_match = NULL;
2717
2718 if (overlay_debugging)
2719 ALL_OBJSECTIONS (objfile, osect)
2720 if (section_is_overlay (osect->the_bfd_section))
2721 {
2722 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2723 {
2724 if (overlay_is_mapped (osect))
2725 return osect->the_bfd_section;
2726 else
2727 best_match = osect;
2728 }
2729 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2730 best_match = osect;
2731 }
2732 return best_match ? best_match->the_bfd_section : NULL;
2733 }
2734
2735 /* Function: find_pc_mapped_section (PC)
2736 If PC falls into the VMA address range of an overlay section that is
2737 currently marked as MAPPED, return that section. Else return NULL. */
2738
2739 asection *
2740 find_pc_mapped_section (CORE_ADDR pc)
2741 {
2742 struct objfile *objfile;
2743 struct obj_section *osect;
2744
2745 if (overlay_debugging)
2746 ALL_OBJSECTIONS (objfile, osect)
2747 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2748 overlay_is_mapped (osect))
2749 return osect->the_bfd_section;
2750
2751 return NULL;
2752 }
2753
2754 /* Function: list_overlays_command
2755 Print a list of mapped sections and their PC ranges */
2756
2757 void
2758 list_overlays_command (char *args, int from_tty)
2759 {
2760 int nmapped = 0;
2761 struct objfile *objfile;
2762 struct obj_section *osect;
2763
2764 if (overlay_debugging)
2765 ALL_OBJSECTIONS (objfile, osect)
2766 if (overlay_is_mapped (osect))
2767 {
2768 const char *name;
2769 bfd_vma lma, vma;
2770 int size;
2771
2772 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2773 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2774 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2775 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2776
2777 printf_filtered ("Section %s, loaded at ", name);
2778 print_address_numeric (lma, 1, gdb_stdout);
2779 puts_filtered (" - ");
2780 print_address_numeric (lma + size, 1, gdb_stdout);
2781 printf_filtered (", mapped at ");
2782 print_address_numeric (vma, 1, gdb_stdout);
2783 puts_filtered (" - ");
2784 print_address_numeric (vma + size, 1, gdb_stdout);
2785 puts_filtered ("\n");
2786
2787 nmapped++;
2788 }
2789 if (nmapped == 0)
2790 printf_filtered ("No sections are mapped.\n");
2791 }
2792
2793 /* Function: map_overlay_command
2794 Mark the named section as mapped (ie. residing at its VMA address). */
2795
2796 void
2797 map_overlay_command (char *args, int from_tty)
2798 {
2799 struct objfile *objfile, *objfile2;
2800 struct obj_section *sec, *sec2;
2801 asection *bfdsec;
2802
2803 if (!overlay_debugging)
2804 error ("\
2805 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2806 the 'overlay manual' command.");
2807
2808 if (args == 0 || *args == 0)
2809 error ("Argument required: name of an overlay section");
2810
2811 /* First, find a section matching the user supplied argument */
2812 ALL_OBJSECTIONS (objfile, sec)
2813 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2814 {
2815 /* Now, check to see if the section is an overlay. */
2816 bfdsec = sec->the_bfd_section;
2817 if (!section_is_overlay (bfdsec))
2818 continue; /* not an overlay section */
2819
2820 /* Mark the overlay as "mapped" */
2821 sec->ovly_mapped = 1;
2822
2823 /* Next, make a pass and unmap any sections that are
2824 overlapped by this new section: */
2825 ALL_OBJSECTIONS (objfile2, sec2)
2826 if (sec2->ovly_mapped
2827 && sec != sec2
2828 && sec->the_bfd_section != sec2->the_bfd_section
2829 && sections_overlap (sec->the_bfd_section,
2830 sec2->the_bfd_section))
2831 {
2832 if (info_verbose)
2833 printf_filtered ("Note: section %s unmapped by overlap\n",
2834 bfd_section_name (objfile->obfd,
2835 sec2->the_bfd_section));
2836 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2837 }
2838 return;
2839 }
2840 error ("No overlay section called %s", args);
2841 }
2842
2843 /* Function: unmap_overlay_command
2844 Mark the overlay section as unmapped
2845 (ie. resident in its LMA address range, rather than the VMA range). */
2846
2847 void
2848 unmap_overlay_command (char *args, int from_tty)
2849 {
2850 struct objfile *objfile;
2851 struct obj_section *sec;
2852
2853 if (!overlay_debugging)
2854 error ("\
2855 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2856 the 'overlay manual' command.");
2857
2858 if (args == 0 || *args == 0)
2859 error ("Argument required: name of an overlay section");
2860
2861 /* First, find a section matching the user supplied argument */
2862 ALL_OBJSECTIONS (objfile, sec)
2863 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2864 {
2865 if (!sec->ovly_mapped)
2866 error ("Section %s is not mapped", args);
2867 sec->ovly_mapped = 0;
2868 return;
2869 }
2870 error ("No overlay section called %s", args);
2871 }
2872
2873 /* Function: overlay_auto_command
2874 A utility command to turn on overlay debugging.
2875 Possibly this should be done via a set/show command. */
2876
2877 static void
2878 overlay_auto_command (char *args, int from_tty)
2879 {
2880 overlay_debugging = -1;
2881 if (info_verbose)
2882 printf_filtered ("Automatic overlay debugging enabled.");
2883 }
2884
2885 /* Function: overlay_manual_command
2886 A utility command to turn on overlay debugging.
2887 Possibly this should be done via a set/show command. */
2888
2889 static void
2890 overlay_manual_command (char *args, int from_tty)
2891 {
2892 overlay_debugging = 1;
2893 if (info_verbose)
2894 printf_filtered ("Overlay debugging enabled.");
2895 }
2896
2897 /* Function: overlay_off_command
2898 A utility command to turn on overlay debugging.
2899 Possibly this should be done via a set/show command. */
2900
2901 static void
2902 overlay_off_command (char *args, int from_tty)
2903 {
2904 overlay_debugging = 0;
2905 if (info_verbose)
2906 printf_filtered ("Overlay debugging disabled.");
2907 }
2908
2909 static void
2910 overlay_load_command (char *args, int from_tty)
2911 {
2912 if (target_overlay_update)
2913 (*target_overlay_update) (NULL);
2914 else
2915 error ("This target does not know how to read its overlay state.");
2916 }
2917
2918 /* Function: overlay_command
2919 A place-holder for a mis-typed command */
2920
2921 /* Command list chain containing all defined "overlay" subcommands. */
2922 struct cmd_list_element *overlaylist;
2923
2924 static void
2925 overlay_command (char *args, int from_tty)
2926 {
2927 printf_unfiltered
2928 ("\"overlay\" must be followed by the name of an overlay command.\n");
2929 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2930 }
2931
2932
2933 /* Target Overlays for the "Simplest" overlay manager:
2934
2935 This is GDB's default target overlay layer. It works with the
2936 minimal overlay manager supplied as an example by Cygnus. The
2937 entry point is via a function pointer "target_overlay_update",
2938 so targets that use a different runtime overlay manager can
2939 substitute their own overlay_update function and take over the
2940 function pointer.
2941
2942 The overlay_update function pokes around in the target's data structures
2943 to see what overlays are mapped, and updates GDB's overlay mapping with
2944 this information.
2945
2946 In this simple implementation, the target data structures are as follows:
2947 unsigned _novlys; /# number of overlay sections #/
2948 unsigned _ovly_table[_novlys][4] = {
2949 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2950 {..., ..., ..., ...},
2951 }
2952 unsigned _novly_regions; /# number of overlay regions #/
2953 unsigned _ovly_region_table[_novly_regions][3] = {
2954 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2955 {..., ..., ...},
2956 }
2957 These functions will attempt to update GDB's mappedness state in the
2958 symbol section table, based on the target's mappedness state.
2959
2960 To do this, we keep a cached copy of the target's _ovly_table, and
2961 attempt to detect when the cached copy is invalidated. The main
2962 entry point is "simple_overlay_update(SECT), which looks up SECT in
2963 the cached table and re-reads only the entry for that section from
2964 the target (whenever possible).
2965 */
2966
2967 /* Cached, dynamically allocated copies of the target data structures: */
2968 static unsigned (*cache_ovly_table)[4] = 0;
2969 #if 0
2970 static unsigned (*cache_ovly_region_table)[3] = 0;
2971 #endif
2972 static unsigned cache_novlys = 0;
2973 #if 0
2974 static unsigned cache_novly_regions = 0;
2975 #endif
2976 static CORE_ADDR cache_ovly_table_base = 0;
2977 #if 0
2978 static CORE_ADDR cache_ovly_region_table_base = 0;
2979 #endif
2980 enum ovly_index
2981 {
2982 VMA, SIZE, LMA, MAPPED
2983 };
2984 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2985
2986 /* Throw away the cached copy of _ovly_table */
2987 static void
2988 simple_free_overlay_table (void)
2989 {
2990 if (cache_ovly_table)
2991 xfree (cache_ovly_table);
2992 cache_novlys = 0;
2993 cache_ovly_table = NULL;
2994 cache_ovly_table_base = 0;
2995 }
2996
2997 #if 0
2998 /* Throw away the cached copy of _ovly_region_table */
2999 static void
3000 simple_free_overlay_region_table (void)
3001 {
3002 if (cache_ovly_region_table)
3003 xfree (cache_ovly_region_table);
3004 cache_novly_regions = 0;
3005 cache_ovly_region_table = NULL;
3006 cache_ovly_region_table_base = 0;
3007 }
3008 #endif
3009
3010 /* Read an array of ints from the target into a local buffer.
3011 Convert to host order. int LEN is number of ints */
3012 static void
3013 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3014 {
3015 char *buf = alloca (len * TARGET_LONG_BYTES);
3016 int i;
3017
3018 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3019 for (i = 0; i < len; i++)
3020 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3021 TARGET_LONG_BYTES);
3022 }
3023
3024 /* Find and grab a copy of the target _ovly_table
3025 (and _novlys, which is needed for the table's size) */
3026 static int
3027 simple_read_overlay_table (void)
3028 {
3029 struct minimal_symbol *msym;
3030
3031 simple_free_overlay_table ();
3032 msym = lookup_minimal_symbol ("_novlys", 0, 0);
3033 if (msym != NULL)
3034 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3035 else
3036 return 0; /* failure */
3037 cache_ovly_table = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3038 if (cache_ovly_table != NULL)
3039 {
3040 msym = lookup_minimal_symbol ("_ovly_table", 0, 0);
3041 if (msym != NULL)
3042 {
3043 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (msym);
3044 read_target_long_array (cache_ovly_table_base,
3045 (int *) cache_ovly_table,
3046 cache_novlys * 4);
3047 }
3048 else
3049 return 0; /* failure */
3050 }
3051 else
3052 return 0; /* failure */
3053 return 1; /* SUCCESS */
3054 }
3055
3056 #if 0
3057 /* Find and grab a copy of the target _ovly_region_table
3058 (and _novly_regions, which is needed for the table's size) */
3059 static int
3060 simple_read_overlay_region_table (void)
3061 {
3062 struct minimal_symbol *msym;
3063
3064 simple_free_overlay_region_table ();
3065 msym = lookup_minimal_symbol ("_novly_regions", 0, 0);
3066 if (msym != NULL)
3067 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3068 else
3069 return 0; /* failure */
3070 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3071 if (cache_ovly_region_table != NULL)
3072 {
3073 msym = lookup_minimal_symbol ("_ovly_region_table", 0, 0);
3074 if (msym != NULL)
3075 {
3076 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3077 read_target_long_array (cache_ovly_region_table_base,
3078 (int *) cache_ovly_region_table,
3079 cache_novly_regions * 3);
3080 }
3081 else
3082 return 0; /* failure */
3083 }
3084 else
3085 return 0; /* failure */
3086 return 1; /* SUCCESS */
3087 }
3088 #endif
3089
3090 /* Function: simple_overlay_update_1
3091 A helper function for simple_overlay_update. Assuming a cached copy
3092 of _ovly_table exists, look through it to find an entry whose vma,
3093 lma and size match those of OSECT. Re-read the entry and make sure
3094 it still matches OSECT (else the table may no longer be valid).
3095 Set OSECT's mapped state to match the entry. Return: 1 for
3096 success, 0 for failure. */
3097
3098 static int
3099 simple_overlay_update_1 (struct obj_section *osect)
3100 {
3101 int i, size;
3102
3103 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3104 for (i = 0; i < cache_novlys; i++)
3105 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3106 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3107 cache_ovly_table[i][SIZE] == size */ )
3108 {
3109 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3110 (int *) cache_ovly_table[i], 4);
3111 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3112 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3113 cache_ovly_table[i][SIZE] == size */ )
3114 {
3115 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3116 return 1;
3117 }
3118 else /* Warning! Warning! Target's ovly table has changed! */
3119 return 0;
3120 }
3121 return 0;
3122 }
3123
3124 /* Function: simple_overlay_update
3125 If OSECT is NULL, then update all sections' mapped state
3126 (after re-reading the entire target _ovly_table).
3127 If OSECT is non-NULL, then try to find a matching entry in the
3128 cached ovly_table and update only OSECT's mapped state.
3129 If a cached entry can't be found or the cache isn't valid, then
3130 re-read the entire cache, and go ahead and update all sections. */
3131
3132 static void
3133 simple_overlay_update (struct obj_section *osect)
3134 {
3135 struct objfile *objfile;
3136
3137 /* Were we given an osect to look up? NULL means do all of them. */
3138 if (osect)
3139 /* Have we got a cached copy of the target's overlay table? */
3140 if (cache_ovly_table != NULL)
3141 /* Does its cached location match what's currently in the symtab? */
3142 if (cache_ovly_table_base ==
3143 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", 0, 0)))
3144 /* Then go ahead and try to look up this single section in the cache */
3145 if (simple_overlay_update_1 (osect))
3146 /* Found it! We're done. */
3147 return;
3148
3149 /* Cached table no good: need to read the entire table anew.
3150 Or else we want all the sections, in which case it's actually
3151 more efficient to read the whole table in one block anyway. */
3152
3153 if (simple_read_overlay_table () == 0) /* read failed? No table? */
3154 {
3155 warning ("Failed to read the target overlay mapping table.");
3156 return;
3157 }
3158 /* Now may as well update all sections, even if only one was requested. */
3159 ALL_OBJSECTIONS (objfile, osect)
3160 if (section_is_overlay (osect->the_bfd_section))
3161 {
3162 int i, size;
3163
3164 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3165 for (i = 0; i < cache_novlys; i++)
3166 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3167 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3168 cache_ovly_table[i][SIZE] == size */ )
3169 { /* obj_section matches i'th entry in ovly_table */
3170 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3171 break; /* finished with inner for loop: break out */
3172 }
3173 }
3174 }
3175
3176
3177 void
3178 _initialize_symfile (void)
3179 {
3180 struct cmd_list_element *c;
3181
3182 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3183 "Load symbol table from executable file FILE.\n\
3184 The `file' command can also load symbol tables, as well as setting the file\n\
3185 to execute.", &cmdlist);
3186 c->completer = filename_completer;
3187
3188 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3189 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3190 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3191 ADDR is the starting address of the file's text.\n\
3192 The optional arguments are section-name section-address pairs and\n\
3193 should be specified if the data and bss segments are not contiguous\n\
3194 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3195 &cmdlist);
3196 c->completer = filename_completer;
3197
3198 c = add_cmd ("add-shared-symbol-files", class_files,
3199 add_shared_symbol_files_command,
3200 "Load the symbols from shared objects in the dynamic linker's link map.",
3201 &cmdlist);
3202 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3203 &cmdlist);
3204
3205 c = add_cmd ("load", class_files, load_command,
3206 "Dynamically load FILE into the running program, and record its symbols\n\
3207 for access from GDB.", &cmdlist);
3208 c->completer = filename_completer;
3209
3210 add_show_from_set
3211 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3212 (char *) &symbol_reloading,
3213 "Set dynamic symbol table reloading multiple times in one run.",
3214 &setlist),
3215 &showlist);
3216
3217 add_prefix_cmd ("overlay", class_support, overlay_command,
3218 "Commands for debugging overlays.", &overlaylist,
3219 "overlay ", 0, &cmdlist);
3220
3221 add_com_alias ("ovly", "overlay", class_alias, 1);
3222 add_com_alias ("ov", "overlay", class_alias, 1);
3223
3224 add_cmd ("map-overlay", class_support, map_overlay_command,
3225 "Assert that an overlay section is mapped.", &overlaylist);
3226
3227 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3228 "Assert that an overlay section is unmapped.", &overlaylist);
3229
3230 add_cmd ("list-overlays", class_support, list_overlays_command,
3231 "List mappings of overlay sections.", &overlaylist);
3232
3233 add_cmd ("manual", class_support, overlay_manual_command,
3234 "Enable overlay debugging.", &overlaylist);
3235 add_cmd ("off", class_support, overlay_off_command,
3236 "Disable overlay debugging.", &overlaylist);
3237 add_cmd ("auto", class_support, overlay_auto_command,
3238 "Enable automatic overlay debugging.", &overlaylist);
3239 add_cmd ("load-target", class_support, overlay_load_command,
3240 "Read the overlay mapping state from the target.", &overlaylist);
3241
3242 /* Filename extension to source language lookup table: */
3243 init_filename_language_table ();
3244 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3245 (char *) &ext_args,
3246 "Set mapping between filename extension and source language.\n\
3247 Usage: set extension-language .foo bar",
3248 &setlist);
3249 c->function.cfunc = set_ext_lang_command;
3250
3251 add_info ("extensions", info_ext_lang_command,
3252 "All filename extensions associated with a source language.");
3253
3254 add_show_from_set
3255 (add_set_cmd ("download-write-size", class_obscure,
3256 var_integer, (char *) &download_write_size,
3257 "Set the write size used when downloading a program.\n"
3258 "Only used when downloading a program onto a remote\n"
3259 "target. Specify zero, or a negative value, to disable\n"
3260 "blocked writes. The actual size of each transfer is also\n"
3261 "limited by the size of the target packet and the memory\n"
3262 "cache.\n",
3263 &setlist),
3264 &showlist);
3265 }