Use VEC for filename_language_table
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "block.h"
49 #include "observer.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include <sys/stat.h>
63 #include <ctype.h>
64 #include <time.h>
65 #include "gdb_sys_time.h"
66
67 #include "psymtab.h"
68
69 int (*deprecated_ui_load_progress_hook) (const char *section,
70 unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file. */
82 int readnow_symbol_files; /* Read full symbols immediately. */
83
84 /* Functions this file defines. */
85
86 static void load_command (char *, int);
87
88 static void symbol_file_add_main_1 (const char *args, int from_tty, int flags);
89
90 static void add_symbol_file_command (char *, int);
91
92 static const struct sym_fns *find_sym_fns (bfd *);
93
94 static void decrement_reading_symtab (void *);
95
96 static void overlay_invalidate_all (void);
97
98 static void overlay_auto_command (char *, int);
99
100 static void overlay_manual_command (char *, int);
101
102 static void overlay_off_command (char *, int);
103
104 static void overlay_load_command (char *, int);
105
106 static void overlay_command (char *, int);
107
108 static void simple_free_overlay_table (void);
109
110 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
111 enum bfd_endian);
112
113 static int simple_read_overlay_table (void);
114
115 static int simple_overlay_update_1 (struct obj_section *);
116
117 static void add_filename_language (char *ext, enum language lang);
118
119 static void info_ext_lang_command (char *args, int from_tty);
120
121 static void init_filename_language_table (void);
122
123 static void symfile_find_segment_sections (struct objfile *objfile);
124
125 void _initialize_symfile (void);
126
127 /* List of all available sym_fns. On gdb startup, each object file reader
128 calls add_symtab_fns() to register information on each format it is
129 prepared to read. */
130
131 typedef struct
132 {
133 /* BFD flavour that we handle. */
134 enum bfd_flavour sym_flavour;
135
136 /* The "vtable" of symbol functions. */
137 const struct sym_fns *sym_fns;
138 } registered_sym_fns;
139
140 DEF_VEC_O (registered_sym_fns);
141
142 static VEC (registered_sym_fns) *symtab_fns = NULL;
143
144 /* Values for "set print symbol-loading". */
145
146 const char print_symbol_loading_off[] = "off";
147 const char print_symbol_loading_brief[] = "brief";
148 const char print_symbol_loading_full[] = "full";
149 static const char *print_symbol_loading_enums[] =
150 {
151 print_symbol_loading_off,
152 print_symbol_loading_brief,
153 print_symbol_loading_full,
154 NULL
155 };
156 static const char *print_symbol_loading = print_symbol_loading_full;
157
158 /* If non-zero, shared library symbols will be added automatically
159 when the inferior is created, new libraries are loaded, or when
160 attaching to the inferior. This is almost always what users will
161 want to have happen; but for very large programs, the startup time
162 will be excessive, and so if this is a problem, the user can clear
163 this flag and then add the shared library symbols as needed. Note
164 that there is a potential for confusion, since if the shared
165 library symbols are not loaded, commands like "info fun" will *not*
166 report all the functions that are actually present. */
167
168 int auto_solib_add = 1;
169 \f
170
171 /* Return non-zero if symbol-loading messages should be printed.
172 FROM_TTY is the standard from_tty argument to gdb commands.
173 If EXEC is non-zero the messages are for the executable.
174 Otherwise, messages are for shared libraries.
175 If FULL is non-zero then the caller is printing a detailed message.
176 E.g., the message includes the shared library name.
177 Otherwise, the caller is printing a brief "summary" message. */
178
179 int
180 print_symbol_loading_p (int from_tty, int exec, int full)
181 {
182 if (!from_tty && !info_verbose)
183 return 0;
184
185 if (exec)
186 {
187 /* We don't check FULL for executables, there are few such
188 messages, therefore brief == full. */
189 return print_symbol_loading != print_symbol_loading_off;
190 }
191 if (full)
192 return print_symbol_loading == print_symbol_loading_full;
193 return print_symbol_loading == print_symbol_loading_brief;
194 }
195
196 /* True if we are reading a symbol table. */
197
198 int currently_reading_symtab = 0;
199
200 static void
201 decrement_reading_symtab (void *dummy)
202 {
203 currently_reading_symtab--;
204 gdb_assert (currently_reading_symtab >= 0);
205 }
206
207 /* Increment currently_reading_symtab and return a cleanup that can be
208 used to decrement it. */
209
210 struct cleanup *
211 increment_reading_symtab (void)
212 {
213 ++currently_reading_symtab;
214 gdb_assert (currently_reading_symtab > 0);
215 return make_cleanup (decrement_reading_symtab, NULL);
216 }
217
218 /* Remember the lowest-addressed loadable section we've seen.
219 This function is called via bfd_map_over_sections.
220
221 In case of equal vmas, the section with the largest size becomes the
222 lowest-addressed loadable section.
223
224 If the vmas and sizes are equal, the last section is considered the
225 lowest-addressed loadable section. */
226
227 void
228 find_lowest_section (bfd *abfd, asection *sect, void *obj)
229 {
230 asection **lowest = (asection **) obj;
231
232 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
233 return;
234 if (!*lowest)
235 *lowest = sect; /* First loadable section */
236 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
237 *lowest = sect; /* A lower loadable section */
238 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
239 && (bfd_section_size (abfd, (*lowest))
240 <= bfd_section_size (abfd, sect)))
241 *lowest = sect;
242 }
243
244 /* Create a new section_addr_info, with room for NUM_SECTIONS. The
245 new object's 'num_sections' field is set to 0; it must be updated
246 by the caller. */
247
248 struct section_addr_info *
249 alloc_section_addr_info (size_t num_sections)
250 {
251 struct section_addr_info *sap;
252 size_t size;
253
254 size = (sizeof (struct section_addr_info)
255 + sizeof (struct other_sections) * (num_sections - 1));
256 sap = (struct section_addr_info *) xmalloc (size);
257 memset (sap, 0, size);
258
259 return sap;
260 }
261
262 /* Build (allocate and populate) a section_addr_info struct from
263 an existing section table. */
264
265 extern struct section_addr_info *
266 build_section_addr_info_from_section_table (const struct target_section *start,
267 const struct target_section *end)
268 {
269 struct section_addr_info *sap;
270 const struct target_section *stp;
271 int oidx;
272
273 sap = alloc_section_addr_info (end - start);
274
275 for (stp = start, oidx = 0; stp != end; stp++)
276 {
277 struct bfd_section *asect = stp->the_bfd_section;
278 bfd *abfd = asect->owner;
279
280 if (bfd_get_section_flags (abfd, asect) & (SEC_ALLOC | SEC_LOAD)
281 && oidx < end - start)
282 {
283 sap->other[oidx].addr = stp->addr;
284 sap->other[oidx].name = xstrdup (bfd_section_name (abfd, asect));
285 sap->other[oidx].sectindex = gdb_bfd_section_index (abfd, asect);
286 oidx++;
287 }
288 }
289
290 sap->num_sections = oidx;
291
292 return sap;
293 }
294
295 /* Create a section_addr_info from section offsets in ABFD. */
296
297 static struct section_addr_info *
298 build_section_addr_info_from_bfd (bfd *abfd)
299 {
300 struct section_addr_info *sap;
301 int i;
302 struct bfd_section *sec;
303
304 sap = alloc_section_addr_info (bfd_count_sections (abfd));
305 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
306 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
307 {
308 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
309 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
310 sap->other[i].sectindex = gdb_bfd_section_index (abfd, sec);
311 i++;
312 }
313
314 sap->num_sections = i;
315
316 return sap;
317 }
318
319 /* Create a section_addr_info from section offsets in OBJFILE. */
320
321 struct section_addr_info *
322 build_section_addr_info_from_objfile (const struct objfile *objfile)
323 {
324 struct section_addr_info *sap;
325 int i;
326
327 /* Before reread_symbols gets rewritten it is not safe to call:
328 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
329 */
330 sap = build_section_addr_info_from_bfd (objfile->obfd);
331 for (i = 0; i < sap->num_sections; i++)
332 {
333 int sectindex = sap->other[i].sectindex;
334
335 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
336 }
337 return sap;
338 }
339
340 /* Free all memory allocated by build_section_addr_info_from_section_table. */
341
342 extern void
343 free_section_addr_info (struct section_addr_info *sap)
344 {
345 int idx;
346
347 for (idx = 0; idx < sap->num_sections; idx++)
348 xfree (sap->other[idx].name);
349 xfree (sap);
350 }
351
352 /* Initialize OBJFILE's sect_index_* members. */
353
354 static void
355 init_objfile_sect_indices (struct objfile *objfile)
356 {
357 asection *sect;
358 int i;
359
360 sect = bfd_get_section_by_name (objfile->obfd, ".text");
361 if (sect)
362 objfile->sect_index_text = sect->index;
363
364 sect = bfd_get_section_by_name (objfile->obfd, ".data");
365 if (sect)
366 objfile->sect_index_data = sect->index;
367
368 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
369 if (sect)
370 objfile->sect_index_bss = sect->index;
371
372 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
373 if (sect)
374 objfile->sect_index_rodata = sect->index;
375
376 /* This is where things get really weird... We MUST have valid
377 indices for the various sect_index_* members or gdb will abort.
378 So if for example, there is no ".text" section, we have to
379 accomodate that. First, check for a file with the standard
380 one or two segments. */
381
382 symfile_find_segment_sections (objfile);
383
384 /* Except when explicitly adding symbol files at some address,
385 section_offsets contains nothing but zeros, so it doesn't matter
386 which slot in section_offsets the individual sect_index_* members
387 index into. So if they are all zero, it is safe to just point
388 all the currently uninitialized indices to the first slot. But
389 beware: if this is the main executable, it may be relocated
390 later, e.g. by the remote qOffsets packet, and then this will
391 be wrong! That's why we try segments first. */
392
393 for (i = 0; i < objfile->num_sections; i++)
394 {
395 if (ANOFFSET (objfile->section_offsets, i) != 0)
396 {
397 break;
398 }
399 }
400 if (i == objfile->num_sections)
401 {
402 if (objfile->sect_index_text == -1)
403 objfile->sect_index_text = 0;
404 if (objfile->sect_index_data == -1)
405 objfile->sect_index_data = 0;
406 if (objfile->sect_index_bss == -1)
407 objfile->sect_index_bss = 0;
408 if (objfile->sect_index_rodata == -1)
409 objfile->sect_index_rodata = 0;
410 }
411 }
412
413 /* The arguments to place_section. */
414
415 struct place_section_arg
416 {
417 struct section_offsets *offsets;
418 CORE_ADDR lowest;
419 };
420
421 /* Find a unique offset to use for loadable section SECT if
422 the user did not provide an offset. */
423
424 static void
425 place_section (bfd *abfd, asection *sect, void *obj)
426 {
427 struct place_section_arg *arg = (struct place_section_arg *) obj;
428 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
429 int done;
430 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
431
432 /* We are only interested in allocated sections. */
433 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
434 return;
435
436 /* If the user specified an offset, honor it. */
437 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
438 return;
439
440 /* Otherwise, let's try to find a place for the section. */
441 start_addr = (arg->lowest + align - 1) & -align;
442
443 do {
444 asection *cur_sec;
445
446 done = 1;
447
448 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
449 {
450 int indx = cur_sec->index;
451
452 /* We don't need to compare against ourself. */
453 if (cur_sec == sect)
454 continue;
455
456 /* We can only conflict with allocated sections. */
457 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
458 continue;
459
460 /* If the section offset is 0, either the section has not been placed
461 yet, or it was the lowest section placed (in which case LOWEST
462 will be past its end). */
463 if (offsets[indx] == 0)
464 continue;
465
466 /* If this section would overlap us, then we must move up. */
467 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
468 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
469 {
470 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
471 start_addr = (start_addr + align - 1) & -align;
472 done = 0;
473 break;
474 }
475
476 /* Otherwise, we appear to be OK. So far. */
477 }
478 }
479 while (!done);
480
481 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
482 arg->lowest = start_addr + bfd_get_section_size (sect);
483 }
484
485 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
486 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
487 entries. */
488
489 void
490 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
491 int num_sections,
492 const struct section_addr_info *addrs)
493 {
494 int i;
495
496 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
497
498 /* Now calculate offsets for section that were specified by the caller. */
499 for (i = 0; i < addrs->num_sections; i++)
500 {
501 const struct other_sections *osp;
502
503 osp = &addrs->other[i];
504 if (osp->sectindex == -1)
505 continue;
506
507 /* Record all sections in offsets. */
508 /* The section_offsets in the objfile are here filled in using
509 the BFD index. */
510 section_offsets->offsets[osp->sectindex] = osp->addr;
511 }
512 }
513
514 /* Transform section name S for a name comparison. prelink can split section
515 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
516 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
517 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
518 (`.sbss') section has invalid (increased) virtual address. */
519
520 static const char *
521 addr_section_name (const char *s)
522 {
523 if (strcmp (s, ".dynbss") == 0)
524 return ".bss";
525 if (strcmp (s, ".sdynbss") == 0)
526 return ".sbss";
527
528 return s;
529 }
530
531 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
532 their (name, sectindex) pair. sectindex makes the sort by name stable. */
533
534 static int
535 addrs_section_compar (const void *ap, const void *bp)
536 {
537 const struct other_sections *a = *((struct other_sections **) ap);
538 const struct other_sections *b = *((struct other_sections **) bp);
539 int retval;
540
541 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
542 if (retval)
543 return retval;
544
545 return a->sectindex - b->sectindex;
546 }
547
548 /* Provide sorted array of pointers to sections of ADDRS. The array is
549 terminated by NULL. Caller is responsible to call xfree for it. */
550
551 static struct other_sections **
552 addrs_section_sort (struct section_addr_info *addrs)
553 {
554 struct other_sections **array;
555 int i;
556
557 /* `+ 1' for the NULL terminator. */
558 array = XNEWVEC (struct other_sections *, addrs->num_sections + 1);
559 for (i = 0; i < addrs->num_sections; i++)
560 array[i] = &addrs->other[i];
561 array[i] = NULL;
562
563 qsort (array, i, sizeof (*array), addrs_section_compar);
564
565 return array;
566 }
567
568 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
569 also SECTINDEXes specific to ABFD there. This function can be used to
570 rebase ADDRS to start referencing different BFD than before. */
571
572 void
573 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
574 {
575 asection *lower_sect;
576 CORE_ADDR lower_offset;
577 int i;
578 struct cleanup *my_cleanup;
579 struct section_addr_info *abfd_addrs;
580 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
581 struct other_sections **addrs_to_abfd_addrs;
582
583 /* Find lowest loadable section to be used as starting point for
584 continguous sections. */
585 lower_sect = NULL;
586 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
587 if (lower_sect == NULL)
588 {
589 warning (_("no loadable sections found in added symbol-file %s"),
590 bfd_get_filename (abfd));
591 lower_offset = 0;
592 }
593 else
594 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
595
596 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
597 in ABFD. Section names are not unique - there can be multiple sections of
598 the same name. Also the sections of the same name do not have to be
599 adjacent to each other. Some sections may be present only in one of the
600 files. Even sections present in both files do not have to be in the same
601 order.
602
603 Use stable sort by name for the sections in both files. Then linearly
604 scan both lists matching as most of the entries as possible. */
605
606 addrs_sorted = addrs_section_sort (addrs);
607 my_cleanup = make_cleanup (xfree, addrs_sorted);
608
609 abfd_addrs = build_section_addr_info_from_bfd (abfd);
610 make_cleanup_free_section_addr_info (abfd_addrs);
611 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
612 make_cleanup (xfree, abfd_addrs_sorted);
613
614 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
615 ABFD_ADDRS_SORTED. */
616
617 addrs_to_abfd_addrs = XCNEWVEC (struct other_sections *, addrs->num_sections);
618 make_cleanup (xfree, addrs_to_abfd_addrs);
619
620 while (*addrs_sorted)
621 {
622 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
623
624 while (*abfd_addrs_sorted
625 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
626 sect_name) < 0)
627 abfd_addrs_sorted++;
628
629 if (*abfd_addrs_sorted
630 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
631 sect_name) == 0)
632 {
633 int index_in_addrs;
634
635 /* Make the found item directly addressable from ADDRS. */
636 index_in_addrs = *addrs_sorted - addrs->other;
637 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
638 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
639
640 /* Never use the same ABFD entry twice. */
641 abfd_addrs_sorted++;
642 }
643
644 addrs_sorted++;
645 }
646
647 /* Calculate offsets for the loadable sections.
648 FIXME! Sections must be in order of increasing loadable section
649 so that contiguous sections can use the lower-offset!!!
650
651 Adjust offsets if the segments are not contiguous.
652 If the section is contiguous, its offset should be set to
653 the offset of the highest loadable section lower than it
654 (the loadable section directly below it in memory).
655 this_offset = lower_offset = lower_addr - lower_orig_addr */
656
657 for (i = 0; i < addrs->num_sections; i++)
658 {
659 struct other_sections *sect = addrs_to_abfd_addrs[i];
660
661 if (sect)
662 {
663 /* This is the index used by BFD. */
664 addrs->other[i].sectindex = sect->sectindex;
665
666 if (addrs->other[i].addr != 0)
667 {
668 addrs->other[i].addr -= sect->addr;
669 lower_offset = addrs->other[i].addr;
670 }
671 else
672 addrs->other[i].addr = lower_offset;
673 }
674 else
675 {
676 /* addr_section_name transformation is not used for SECT_NAME. */
677 const char *sect_name = addrs->other[i].name;
678
679 /* This section does not exist in ABFD, which is normally
680 unexpected and we want to issue a warning.
681
682 However, the ELF prelinker does create a few sections which are
683 marked in the main executable as loadable (they are loaded in
684 memory from the DYNAMIC segment) and yet are not present in
685 separate debug info files. This is fine, and should not cause
686 a warning. Shared libraries contain just the section
687 ".gnu.liblist" but it is not marked as loadable there. There is
688 no other way to identify them than by their name as the sections
689 created by prelink have no special flags.
690
691 For the sections `.bss' and `.sbss' see addr_section_name. */
692
693 if (!(strcmp (sect_name, ".gnu.liblist") == 0
694 || strcmp (sect_name, ".gnu.conflict") == 0
695 || (strcmp (sect_name, ".bss") == 0
696 && i > 0
697 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
698 && addrs_to_abfd_addrs[i - 1] != NULL)
699 || (strcmp (sect_name, ".sbss") == 0
700 && i > 0
701 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
702 && addrs_to_abfd_addrs[i - 1] != NULL)))
703 warning (_("section %s not found in %s"), sect_name,
704 bfd_get_filename (abfd));
705
706 addrs->other[i].addr = 0;
707 addrs->other[i].sectindex = -1;
708 }
709 }
710
711 do_cleanups (my_cleanup);
712 }
713
714 /* Parse the user's idea of an offset for dynamic linking, into our idea
715 of how to represent it for fast symbol reading. This is the default
716 version of the sym_fns.sym_offsets function for symbol readers that
717 don't need to do anything special. It allocates a section_offsets table
718 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
719
720 void
721 default_symfile_offsets (struct objfile *objfile,
722 const struct section_addr_info *addrs)
723 {
724 objfile->num_sections = gdb_bfd_count_sections (objfile->obfd);
725 objfile->section_offsets = (struct section_offsets *)
726 obstack_alloc (&objfile->objfile_obstack,
727 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
728 relative_addr_info_to_section_offsets (objfile->section_offsets,
729 objfile->num_sections, addrs);
730
731 /* For relocatable files, all loadable sections will start at zero.
732 The zero is meaningless, so try to pick arbitrary addresses such
733 that no loadable sections overlap. This algorithm is quadratic,
734 but the number of sections in a single object file is generally
735 small. */
736 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
737 {
738 struct place_section_arg arg;
739 bfd *abfd = objfile->obfd;
740 asection *cur_sec;
741
742 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
743 /* We do not expect this to happen; just skip this step if the
744 relocatable file has a section with an assigned VMA. */
745 if (bfd_section_vma (abfd, cur_sec) != 0)
746 break;
747
748 if (cur_sec == NULL)
749 {
750 CORE_ADDR *offsets = objfile->section_offsets->offsets;
751
752 /* Pick non-overlapping offsets for sections the user did not
753 place explicitly. */
754 arg.offsets = objfile->section_offsets;
755 arg.lowest = 0;
756 bfd_map_over_sections (objfile->obfd, place_section, &arg);
757
758 /* Correctly filling in the section offsets is not quite
759 enough. Relocatable files have two properties that
760 (most) shared objects do not:
761
762 - Their debug information will contain relocations. Some
763 shared libraries do also, but many do not, so this can not
764 be assumed.
765
766 - If there are multiple code sections they will be loaded
767 at different relative addresses in memory than they are
768 in the objfile, since all sections in the file will start
769 at address zero.
770
771 Because GDB has very limited ability to map from an
772 address in debug info to the correct code section,
773 it relies on adding SECT_OFF_TEXT to things which might be
774 code. If we clear all the section offsets, and set the
775 section VMAs instead, then symfile_relocate_debug_section
776 will return meaningful debug information pointing at the
777 correct sections.
778
779 GDB has too many different data structures for section
780 addresses - a bfd, objfile, and so_list all have section
781 tables, as does exec_ops. Some of these could probably
782 be eliminated. */
783
784 for (cur_sec = abfd->sections; cur_sec != NULL;
785 cur_sec = cur_sec->next)
786 {
787 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
788 continue;
789
790 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
791 exec_set_section_address (bfd_get_filename (abfd),
792 cur_sec->index,
793 offsets[cur_sec->index]);
794 offsets[cur_sec->index] = 0;
795 }
796 }
797 }
798
799 /* Remember the bfd indexes for the .text, .data, .bss and
800 .rodata sections. */
801 init_objfile_sect_indices (objfile);
802 }
803
804 /* Divide the file into segments, which are individual relocatable units.
805 This is the default version of the sym_fns.sym_segments function for
806 symbol readers that do not have an explicit representation of segments.
807 It assumes that object files do not have segments, and fully linked
808 files have a single segment. */
809
810 struct symfile_segment_data *
811 default_symfile_segments (bfd *abfd)
812 {
813 int num_sections, i;
814 asection *sect;
815 struct symfile_segment_data *data;
816 CORE_ADDR low, high;
817
818 /* Relocatable files contain enough information to position each
819 loadable section independently; they should not be relocated
820 in segments. */
821 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
822 return NULL;
823
824 /* Make sure there is at least one loadable section in the file. */
825 for (sect = abfd->sections; sect != NULL; sect = sect->next)
826 {
827 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
828 continue;
829
830 break;
831 }
832 if (sect == NULL)
833 return NULL;
834
835 low = bfd_get_section_vma (abfd, sect);
836 high = low + bfd_get_section_size (sect);
837
838 data = XCNEW (struct symfile_segment_data);
839 data->num_segments = 1;
840 data->segment_bases = XCNEW (CORE_ADDR);
841 data->segment_sizes = XCNEW (CORE_ADDR);
842
843 num_sections = bfd_count_sections (abfd);
844 data->segment_info = XCNEWVEC (int, num_sections);
845
846 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
847 {
848 CORE_ADDR vma;
849
850 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
851 continue;
852
853 vma = bfd_get_section_vma (abfd, sect);
854 if (vma < low)
855 low = vma;
856 if (vma + bfd_get_section_size (sect) > high)
857 high = vma + bfd_get_section_size (sect);
858
859 data->segment_info[i] = 1;
860 }
861
862 data->segment_bases[0] = low;
863 data->segment_sizes[0] = high - low;
864
865 return data;
866 }
867
868 /* This is a convenience function to call sym_read for OBJFILE and
869 possibly force the partial symbols to be read. */
870
871 static void
872 read_symbols (struct objfile *objfile, int add_flags)
873 {
874 (*objfile->sf->sym_read) (objfile, add_flags);
875 objfile->per_bfd->minsyms_read = 1;
876
877 /* find_separate_debug_file_in_section should be called only if there is
878 single binary with no existing separate debug info file. */
879 if (!objfile_has_partial_symbols (objfile)
880 && objfile->separate_debug_objfile == NULL
881 && objfile->separate_debug_objfile_backlink == NULL)
882 {
883 bfd *abfd = find_separate_debug_file_in_section (objfile);
884 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
885
886 if (abfd != NULL)
887 {
888 /* find_separate_debug_file_in_section uses the same filename for the
889 virtual section-as-bfd like the bfd filename containing the
890 section. Therefore use also non-canonical name form for the same
891 file containing the section. */
892 symbol_file_add_separate (abfd, objfile->original_name, add_flags,
893 objfile);
894 }
895
896 do_cleanups (cleanup);
897 }
898 if ((add_flags & SYMFILE_NO_READ) == 0)
899 require_partial_symbols (objfile, 0);
900 }
901
902 /* Initialize entry point information for this objfile. */
903
904 static void
905 init_entry_point_info (struct objfile *objfile)
906 {
907 struct entry_info *ei = &objfile->per_bfd->ei;
908
909 if (ei->initialized)
910 return;
911 ei->initialized = 1;
912
913 /* Save startup file's range of PC addresses to help blockframe.c
914 decide where the bottom of the stack is. */
915
916 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
917 {
918 /* Executable file -- record its entry point so we'll recognize
919 the startup file because it contains the entry point. */
920 ei->entry_point = bfd_get_start_address (objfile->obfd);
921 ei->entry_point_p = 1;
922 }
923 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
924 && bfd_get_start_address (objfile->obfd) != 0)
925 {
926 /* Some shared libraries may have entry points set and be
927 runnable. There's no clear way to indicate this, so just check
928 for values other than zero. */
929 ei->entry_point = bfd_get_start_address (objfile->obfd);
930 ei->entry_point_p = 1;
931 }
932 else
933 {
934 /* Examination of non-executable.o files. Short-circuit this stuff. */
935 ei->entry_point_p = 0;
936 }
937
938 if (ei->entry_point_p)
939 {
940 struct obj_section *osect;
941 CORE_ADDR entry_point = ei->entry_point;
942 int found;
943
944 /* Make certain that the address points at real code, and not a
945 function descriptor. */
946 entry_point
947 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
948 entry_point,
949 &current_target);
950
951 /* Remove any ISA markers, so that this matches entries in the
952 symbol table. */
953 ei->entry_point
954 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
955
956 found = 0;
957 ALL_OBJFILE_OSECTIONS (objfile, osect)
958 {
959 struct bfd_section *sect = osect->the_bfd_section;
960
961 if (entry_point >= bfd_get_section_vma (objfile->obfd, sect)
962 && entry_point < (bfd_get_section_vma (objfile->obfd, sect)
963 + bfd_get_section_size (sect)))
964 {
965 ei->the_bfd_section_index
966 = gdb_bfd_section_index (objfile->obfd, sect);
967 found = 1;
968 break;
969 }
970 }
971
972 if (!found)
973 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
974 }
975 }
976
977 /* Process a symbol file, as either the main file or as a dynamically
978 loaded file.
979
980 This function does not set the OBJFILE's entry-point info.
981
982 OBJFILE is where the symbols are to be read from.
983
984 ADDRS is the list of section load addresses. If the user has given
985 an 'add-symbol-file' command, then this is the list of offsets and
986 addresses he or she provided as arguments to the command; or, if
987 we're handling a shared library, these are the actual addresses the
988 sections are loaded at, according to the inferior's dynamic linker
989 (as gleaned by GDB's shared library code). We convert each address
990 into an offset from the section VMA's as it appears in the object
991 file, and then call the file's sym_offsets function to convert this
992 into a format-specific offset table --- a `struct section_offsets'.
993
994 ADD_FLAGS encodes verbosity level, whether this is main symbol or
995 an extra symbol file such as dynamically loaded code, and wether
996 breakpoint reset should be deferred. */
997
998 static void
999 syms_from_objfile_1 (struct objfile *objfile,
1000 struct section_addr_info *addrs,
1001 int add_flags)
1002 {
1003 struct section_addr_info *local_addr = NULL;
1004 struct cleanup *old_chain;
1005 const int mainline = add_flags & SYMFILE_MAINLINE;
1006
1007 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
1008
1009 if (objfile->sf == NULL)
1010 {
1011 /* No symbols to load, but we still need to make sure
1012 that the section_offsets table is allocated. */
1013 int num_sections = gdb_bfd_count_sections (objfile->obfd);
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_sections);
1015
1016 objfile->num_sections = num_sections;
1017 objfile->section_offsets
1018 = (struct section_offsets *) obstack_alloc (&objfile->objfile_obstack,
1019 size);
1020 memset (objfile->section_offsets, 0, size);
1021 return;
1022 }
1023
1024 /* Make sure that partially constructed symbol tables will be cleaned up
1025 if an error occurs during symbol reading. */
1026 old_chain = make_cleanup_free_objfile (objfile);
1027
1028 /* If ADDRS is NULL, put together a dummy address list.
1029 We now establish the convention that an addr of zero means
1030 no load address was specified. */
1031 if (! addrs)
1032 {
1033 local_addr = alloc_section_addr_info (1);
1034 make_cleanup (xfree, local_addr);
1035 addrs = local_addr;
1036 }
1037
1038 if (mainline)
1039 {
1040 /* We will modify the main symbol table, make sure that all its users
1041 will be cleaned up if an error occurs during symbol reading. */
1042 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1043
1044 /* Since no error yet, throw away the old symbol table. */
1045
1046 if (symfile_objfile != NULL)
1047 {
1048 free_objfile (symfile_objfile);
1049 gdb_assert (symfile_objfile == NULL);
1050 }
1051
1052 /* Currently we keep symbols from the add-symbol-file command.
1053 If the user wants to get rid of them, they should do "symbol-file"
1054 without arguments first. Not sure this is the best behavior
1055 (PR 2207). */
1056
1057 (*objfile->sf->sym_new_init) (objfile);
1058 }
1059
1060 /* Convert addr into an offset rather than an absolute address.
1061 We find the lowest address of a loaded segment in the objfile,
1062 and assume that <addr> is where that got loaded.
1063
1064 We no longer warn if the lowest section is not a text segment (as
1065 happens for the PA64 port. */
1066 if (addrs->num_sections > 0)
1067 addr_info_make_relative (addrs, objfile->obfd);
1068
1069 /* Initialize symbol reading routines for this objfile, allow complaints to
1070 appear for this new file, and record how verbose to be, then do the
1071 initial symbol reading for this file. */
1072
1073 (*objfile->sf->sym_init) (objfile);
1074 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1075
1076 (*objfile->sf->sym_offsets) (objfile, addrs);
1077
1078 read_symbols (objfile, add_flags);
1079
1080 /* Discard cleanups as symbol reading was successful. */
1081
1082 discard_cleanups (old_chain);
1083 xfree (local_addr);
1084 }
1085
1086 /* Same as syms_from_objfile_1, but also initializes the objfile
1087 entry-point info. */
1088
1089 static void
1090 syms_from_objfile (struct objfile *objfile,
1091 struct section_addr_info *addrs,
1092 int add_flags)
1093 {
1094 syms_from_objfile_1 (objfile, addrs, add_flags);
1095 init_entry_point_info (objfile);
1096 }
1097
1098 /* Perform required actions after either reading in the initial
1099 symbols for a new objfile, or mapping in the symbols from a reusable
1100 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1101
1102 static void
1103 finish_new_objfile (struct objfile *objfile, int add_flags)
1104 {
1105 /* If this is the main symbol file we have to clean up all users of the
1106 old main symbol file. Otherwise it is sufficient to fixup all the
1107 breakpoints that may have been redefined by this symbol file. */
1108 if (add_flags & SYMFILE_MAINLINE)
1109 {
1110 /* OK, make it the "real" symbol file. */
1111 symfile_objfile = objfile;
1112
1113 clear_symtab_users (add_flags);
1114 }
1115 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1116 {
1117 breakpoint_re_set ();
1118 }
1119
1120 /* We're done reading the symbol file; finish off complaints. */
1121 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1122 }
1123
1124 /* Process a symbol file, as either the main file or as a dynamically
1125 loaded file.
1126
1127 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1128 A new reference is acquired by this function.
1129
1130 For NAME description see allocate_objfile's definition.
1131
1132 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1133 extra, such as dynamically loaded code, and what to do with breakpoins.
1134
1135 ADDRS is as described for syms_from_objfile_1, above.
1136 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1137
1138 PARENT is the original objfile if ABFD is a separate debug info file.
1139 Otherwise PARENT is NULL.
1140
1141 Upon success, returns a pointer to the objfile that was added.
1142 Upon failure, jumps back to command level (never returns). */
1143
1144 static struct objfile *
1145 symbol_file_add_with_addrs (bfd *abfd, const char *name, int add_flags,
1146 struct section_addr_info *addrs,
1147 int flags, struct objfile *parent)
1148 {
1149 struct objfile *objfile;
1150 const int from_tty = add_flags & SYMFILE_VERBOSE;
1151 const int mainline = add_flags & SYMFILE_MAINLINE;
1152 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1153 && (readnow_symbol_files
1154 || (add_flags & SYMFILE_NO_READ) == 0));
1155
1156 if (readnow_symbol_files)
1157 {
1158 flags |= OBJF_READNOW;
1159 add_flags &= ~SYMFILE_NO_READ;
1160 }
1161
1162 /* Give user a chance to burp if we'd be
1163 interactively wiping out any existing symbols. */
1164
1165 if ((have_full_symbols () || have_partial_symbols ())
1166 && mainline
1167 && from_tty
1168 && !query (_("Load new symbol table from \"%s\"? "), name))
1169 error (_("Not confirmed."));
1170
1171 objfile = allocate_objfile (abfd, name,
1172 flags | (mainline ? OBJF_MAINLINE : 0));
1173
1174 if (parent)
1175 add_separate_debug_objfile (objfile, parent);
1176
1177 /* We either created a new mapped symbol table, mapped an existing
1178 symbol table file which has not had initial symbol reading
1179 performed, or need to read an unmapped symbol table. */
1180 if (should_print)
1181 {
1182 if (deprecated_pre_add_symbol_hook)
1183 deprecated_pre_add_symbol_hook (name);
1184 else
1185 {
1186 printf_unfiltered (_("Reading symbols from %s..."), name);
1187 wrap_here ("");
1188 gdb_flush (gdb_stdout);
1189 }
1190 }
1191 syms_from_objfile (objfile, addrs, add_flags);
1192
1193 /* We now have at least a partial symbol table. Check to see if the
1194 user requested that all symbols be read on initial access via either
1195 the gdb startup command line or on a per symbol file basis. Expand
1196 all partial symbol tables for this objfile if so. */
1197
1198 if ((flags & OBJF_READNOW))
1199 {
1200 if (should_print)
1201 {
1202 printf_unfiltered (_("expanding to full symbols..."));
1203 wrap_here ("");
1204 gdb_flush (gdb_stdout);
1205 }
1206
1207 if (objfile->sf)
1208 objfile->sf->qf->expand_all_symtabs (objfile);
1209 }
1210
1211 if (should_print && !objfile_has_symbols (objfile))
1212 {
1213 wrap_here ("");
1214 printf_unfiltered (_("(no debugging symbols found)..."));
1215 wrap_here ("");
1216 }
1217
1218 if (should_print)
1219 {
1220 if (deprecated_post_add_symbol_hook)
1221 deprecated_post_add_symbol_hook ();
1222 else
1223 printf_unfiltered (_("done.\n"));
1224 }
1225
1226 /* We print some messages regardless of whether 'from_tty ||
1227 info_verbose' is true, so make sure they go out at the right
1228 time. */
1229 gdb_flush (gdb_stdout);
1230
1231 if (objfile->sf == NULL)
1232 {
1233 observer_notify_new_objfile (objfile);
1234 return objfile; /* No symbols. */
1235 }
1236
1237 finish_new_objfile (objfile, add_flags);
1238
1239 observer_notify_new_objfile (objfile);
1240
1241 bfd_cache_close_all ();
1242 return (objfile);
1243 }
1244
1245 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1246 see allocate_objfile's definition. */
1247
1248 void
1249 symbol_file_add_separate (bfd *bfd, const char *name, int symfile_flags,
1250 struct objfile *objfile)
1251 {
1252 struct section_addr_info *sap;
1253 struct cleanup *my_cleanup;
1254
1255 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1256 because sections of BFD may not match sections of OBJFILE and because
1257 vma may have been modified by tools such as prelink. */
1258 sap = build_section_addr_info_from_objfile (objfile);
1259 my_cleanup = make_cleanup_free_section_addr_info (sap);
1260
1261 symbol_file_add_with_addrs
1262 (bfd, name, symfile_flags, sap,
1263 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1264 | OBJF_USERLOADED),
1265 objfile);
1266
1267 do_cleanups (my_cleanup);
1268 }
1269
1270 /* Process the symbol file ABFD, as either the main file or as a
1271 dynamically loaded file.
1272 See symbol_file_add_with_addrs's comments for details. */
1273
1274 struct objfile *
1275 symbol_file_add_from_bfd (bfd *abfd, const char *name, int add_flags,
1276 struct section_addr_info *addrs,
1277 int flags, struct objfile *parent)
1278 {
1279 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1280 parent);
1281 }
1282
1283 /* Process a symbol file, as either the main file or as a dynamically
1284 loaded file. See symbol_file_add_with_addrs's comments for details. */
1285
1286 struct objfile *
1287 symbol_file_add (const char *name, int add_flags,
1288 struct section_addr_info *addrs, int flags)
1289 {
1290 bfd *bfd = symfile_bfd_open (name);
1291 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1292 struct objfile *objf;
1293
1294 objf = symbol_file_add_from_bfd (bfd, name, add_flags, addrs, flags, NULL);
1295 do_cleanups (cleanup);
1296 return objf;
1297 }
1298
1299 /* Call symbol_file_add() with default values and update whatever is
1300 affected by the loading of a new main().
1301 Used when the file is supplied in the gdb command line
1302 and by some targets with special loading requirements.
1303 The auxiliary function, symbol_file_add_main_1(), has the flags
1304 argument for the switches that can only be specified in the symbol_file
1305 command itself. */
1306
1307 void
1308 symbol_file_add_main (const char *args, int from_tty)
1309 {
1310 symbol_file_add_main_1 (args, from_tty, 0);
1311 }
1312
1313 static void
1314 symbol_file_add_main_1 (const char *args, int from_tty, int flags)
1315 {
1316 const int add_flags = (current_inferior ()->symfile_flags
1317 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1318
1319 symbol_file_add (args, add_flags, NULL, flags);
1320
1321 /* Getting new symbols may change our opinion about
1322 what is frameless. */
1323 reinit_frame_cache ();
1324
1325 if ((flags & SYMFILE_NO_READ) == 0)
1326 set_initial_language ();
1327 }
1328
1329 void
1330 symbol_file_clear (int from_tty)
1331 {
1332 if ((have_full_symbols () || have_partial_symbols ())
1333 && from_tty
1334 && (symfile_objfile
1335 ? !query (_("Discard symbol table from `%s'? "),
1336 objfile_name (symfile_objfile))
1337 : !query (_("Discard symbol table? "))))
1338 error (_("Not confirmed."));
1339
1340 /* solib descriptors may have handles to objfiles. Wipe them before their
1341 objfiles get stale by free_all_objfiles. */
1342 no_shared_libraries (NULL, from_tty);
1343
1344 free_all_objfiles ();
1345
1346 gdb_assert (symfile_objfile == NULL);
1347 if (from_tty)
1348 printf_unfiltered (_("No symbol file now.\n"));
1349 }
1350
1351 static int
1352 separate_debug_file_exists (const char *name, unsigned long crc,
1353 struct objfile *parent_objfile)
1354 {
1355 unsigned long file_crc;
1356 int file_crc_p;
1357 bfd *abfd;
1358 struct stat parent_stat, abfd_stat;
1359 int verified_as_different;
1360
1361 /* Find a separate debug info file as if symbols would be present in
1362 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1363 section can contain just the basename of PARENT_OBJFILE without any
1364 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1365 the separate debug infos with the same basename can exist. */
1366
1367 if (filename_cmp (name, objfile_name (parent_objfile)) == 0)
1368 return 0;
1369
1370 abfd = gdb_bfd_open (name, gnutarget, -1);
1371
1372 if (!abfd)
1373 return 0;
1374
1375 /* Verify symlinks were not the cause of filename_cmp name difference above.
1376
1377 Some operating systems, e.g. Windows, do not provide a meaningful
1378 st_ino; they always set it to zero. (Windows does provide a
1379 meaningful st_dev.) Files accessed from gdbservers that do not
1380 support the vFile:fstat packet will also have st_ino set to zero.
1381 Do not indicate a duplicate library in either case. While there
1382 is no guarantee that a system that provides meaningful inode
1383 numbers will never set st_ino to zero, this is merely an
1384 optimization, so we do not need to worry about false negatives. */
1385
1386 if (bfd_stat (abfd, &abfd_stat) == 0
1387 && abfd_stat.st_ino != 0
1388 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1389 {
1390 if (abfd_stat.st_dev == parent_stat.st_dev
1391 && abfd_stat.st_ino == parent_stat.st_ino)
1392 {
1393 gdb_bfd_unref (abfd);
1394 return 0;
1395 }
1396 verified_as_different = 1;
1397 }
1398 else
1399 verified_as_different = 0;
1400
1401 file_crc_p = gdb_bfd_crc (abfd, &file_crc);
1402
1403 gdb_bfd_unref (abfd);
1404
1405 if (!file_crc_p)
1406 return 0;
1407
1408 if (crc != file_crc)
1409 {
1410 unsigned long parent_crc;
1411
1412 /* If the files could not be verified as different with
1413 bfd_stat then we need to calculate the parent's CRC
1414 to verify whether the files are different or not. */
1415
1416 if (!verified_as_different)
1417 {
1418 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1419 return 0;
1420 }
1421
1422 if (verified_as_different || parent_crc != file_crc)
1423 warning (_("the debug information found in \"%s\""
1424 " does not match \"%s\" (CRC mismatch).\n"),
1425 name, objfile_name (parent_objfile));
1426
1427 return 0;
1428 }
1429
1430 return 1;
1431 }
1432
1433 char *debug_file_directory = NULL;
1434 static void
1435 show_debug_file_directory (struct ui_file *file, int from_tty,
1436 struct cmd_list_element *c, const char *value)
1437 {
1438 fprintf_filtered (file,
1439 _("The directory where separate debug "
1440 "symbols are searched for is \"%s\".\n"),
1441 value);
1442 }
1443
1444 #if ! defined (DEBUG_SUBDIRECTORY)
1445 #define DEBUG_SUBDIRECTORY ".debug"
1446 #endif
1447
1448 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1449 where the original file resides (may not be the same as
1450 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1451 looking for. CANON_DIR is the "realpath" form of DIR.
1452 DIR must contain a trailing '/'.
1453 Returns the path of the file with separate debug info, of NULL. */
1454
1455 static char *
1456 find_separate_debug_file (const char *dir,
1457 const char *canon_dir,
1458 const char *debuglink,
1459 unsigned long crc32, struct objfile *objfile)
1460 {
1461 char *debugdir;
1462 char *debugfile;
1463 int i;
1464 VEC (char_ptr) *debugdir_vec;
1465 struct cleanup *back_to;
1466 int ix;
1467
1468 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1469 i = strlen (dir);
1470 if (canon_dir != NULL && strlen (canon_dir) > i)
1471 i = strlen (canon_dir);
1472
1473 debugfile
1474 = (char *) xmalloc (strlen (debug_file_directory) + 1
1475 + i
1476 + strlen (DEBUG_SUBDIRECTORY)
1477 + strlen ("/")
1478 + strlen (debuglink)
1479 + 1);
1480
1481 /* First try in the same directory as the original file. */
1482 strcpy (debugfile, dir);
1483 strcat (debugfile, debuglink);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 return debugfile;
1487
1488 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1489 strcpy (debugfile, dir);
1490 strcat (debugfile, DEBUG_SUBDIRECTORY);
1491 strcat (debugfile, "/");
1492 strcat (debugfile, debuglink);
1493
1494 if (separate_debug_file_exists (debugfile, crc32, objfile))
1495 return debugfile;
1496
1497 /* Then try in the global debugfile directories.
1498
1499 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1500 cause "/..." lookups. */
1501
1502 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1503 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1504
1505 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1506 {
1507 strcpy (debugfile, debugdir);
1508 strcat (debugfile, "/");
1509 strcat (debugfile, dir);
1510 strcat (debugfile, debuglink);
1511
1512 if (separate_debug_file_exists (debugfile, crc32, objfile))
1513 {
1514 do_cleanups (back_to);
1515 return debugfile;
1516 }
1517
1518 /* If the file is in the sysroot, try using its base path in the
1519 global debugfile directory. */
1520 if (canon_dir != NULL
1521 && filename_ncmp (canon_dir, gdb_sysroot,
1522 strlen (gdb_sysroot)) == 0
1523 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1524 {
1525 strcpy (debugfile, debugdir);
1526 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1527 strcat (debugfile, "/");
1528 strcat (debugfile, debuglink);
1529
1530 if (separate_debug_file_exists (debugfile, crc32, objfile))
1531 {
1532 do_cleanups (back_to);
1533 return debugfile;
1534 }
1535 }
1536 }
1537
1538 do_cleanups (back_to);
1539 xfree (debugfile);
1540 return NULL;
1541 }
1542
1543 /* Modify PATH to contain only "[/]directory/" part of PATH.
1544 If there were no directory separators in PATH, PATH will be empty
1545 string on return. */
1546
1547 static void
1548 terminate_after_last_dir_separator (char *path)
1549 {
1550 int i;
1551
1552 /* Strip off the final filename part, leaving the directory name,
1553 followed by a slash. The directory can be relative or absolute. */
1554 for (i = strlen(path) - 1; i >= 0; i--)
1555 if (IS_DIR_SEPARATOR (path[i]))
1556 break;
1557
1558 /* If I is -1 then no directory is present there and DIR will be "". */
1559 path[i + 1] = '\0';
1560 }
1561
1562 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1563 Returns pathname, or NULL. */
1564
1565 char *
1566 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1567 {
1568 char *debuglink;
1569 char *dir, *canon_dir;
1570 char *debugfile;
1571 unsigned long crc32;
1572 struct cleanup *cleanups;
1573
1574 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1575
1576 if (debuglink == NULL)
1577 {
1578 /* There's no separate debug info, hence there's no way we could
1579 load it => no warning. */
1580 return NULL;
1581 }
1582
1583 cleanups = make_cleanup (xfree, debuglink);
1584 dir = xstrdup (objfile_name (objfile));
1585 make_cleanup (xfree, dir);
1586 terminate_after_last_dir_separator (dir);
1587 canon_dir = lrealpath (dir);
1588
1589 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1590 crc32, objfile);
1591 xfree (canon_dir);
1592
1593 if (debugfile == NULL)
1594 {
1595 /* For PR gdb/9538, try again with realpath (if different from the
1596 original). */
1597
1598 struct stat st_buf;
1599
1600 if (lstat (objfile_name (objfile), &st_buf) == 0
1601 && S_ISLNK (st_buf.st_mode))
1602 {
1603 char *symlink_dir;
1604
1605 symlink_dir = lrealpath (objfile_name (objfile));
1606 if (symlink_dir != NULL)
1607 {
1608 make_cleanup (xfree, symlink_dir);
1609 terminate_after_last_dir_separator (symlink_dir);
1610 if (strcmp (dir, symlink_dir) != 0)
1611 {
1612 /* Different directory, so try using it. */
1613 debugfile = find_separate_debug_file (symlink_dir,
1614 symlink_dir,
1615 debuglink,
1616 crc32,
1617 objfile);
1618 }
1619 }
1620 }
1621 }
1622
1623 do_cleanups (cleanups);
1624 return debugfile;
1625 }
1626
1627 /* This is the symbol-file command. Read the file, analyze its
1628 symbols, and add a struct symtab to a symtab list. The syntax of
1629 the command is rather bizarre:
1630
1631 1. The function buildargv implements various quoting conventions
1632 which are undocumented and have little or nothing in common with
1633 the way things are quoted (or not quoted) elsewhere in GDB.
1634
1635 2. Options are used, which are not generally used in GDB (perhaps
1636 "set mapped on", "set readnow on" would be better)
1637
1638 3. The order of options matters, which is contrary to GNU
1639 conventions (because it is confusing and inconvenient). */
1640
1641 void
1642 symbol_file_command (char *args, int from_tty)
1643 {
1644 dont_repeat ();
1645
1646 if (args == NULL)
1647 {
1648 symbol_file_clear (from_tty);
1649 }
1650 else
1651 {
1652 char **argv = gdb_buildargv (args);
1653 int flags = OBJF_USERLOADED;
1654 struct cleanup *cleanups;
1655 char *name = NULL;
1656
1657 cleanups = make_cleanup_freeargv (argv);
1658 while (*argv != NULL)
1659 {
1660 if (strcmp (*argv, "-readnow") == 0)
1661 flags |= OBJF_READNOW;
1662 else if (**argv == '-')
1663 error (_("unknown option `%s'"), *argv);
1664 else
1665 {
1666 symbol_file_add_main_1 (*argv, from_tty, flags);
1667 name = *argv;
1668 }
1669
1670 argv++;
1671 }
1672
1673 if (name == NULL)
1674 error (_("no symbol file name was specified"));
1675
1676 do_cleanups (cleanups);
1677 }
1678 }
1679
1680 /* Set the initial language.
1681
1682 FIXME: A better solution would be to record the language in the
1683 psymtab when reading partial symbols, and then use it (if known) to
1684 set the language. This would be a win for formats that encode the
1685 language in an easily discoverable place, such as DWARF. For
1686 stabs, we can jump through hoops looking for specially named
1687 symbols or try to intuit the language from the specific type of
1688 stabs we find, but we can't do that until later when we read in
1689 full symbols. */
1690
1691 void
1692 set_initial_language (void)
1693 {
1694 enum language lang = main_language ();
1695
1696 if (lang == language_unknown)
1697 {
1698 char *name = main_name ();
1699 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1700
1701 if (sym != NULL)
1702 lang = SYMBOL_LANGUAGE (sym);
1703 }
1704
1705 if (lang == language_unknown)
1706 {
1707 /* Make C the default language */
1708 lang = language_c;
1709 }
1710
1711 set_language (lang);
1712 expected_language = current_language; /* Don't warn the user. */
1713 }
1714
1715 /* Open the file specified by NAME and hand it off to BFD for
1716 preliminary analysis. Return a newly initialized bfd *, which
1717 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1718 absolute). In case of trouble, error() is called. */
1719
1720 bfd *
1721 symfile_bfd_open (const char *name)
1722 {
1723 bfd *sym_bfd;
1724 int desc = -1;
1725 struct cleanup *back_to = make_cleanup (null_cleanup, 0);
1726
1727 if (!is_target_filename (name))
1728 {
1729 char *expanded_name, *absolute_name;
1730
1731 expanded_name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1732
1733 /* Look down path for it, allocate 2nd new malloc'd copy. */
1734 desc = openp (getenv ("PATH"),
1735 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1736 expanded_name, O_RDONLY | O_BINARY, &absolute_name);
1737 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1738 if (desc < 0)
1739 {
1740 char *exename = (char *) alloca (strlen (expanded_name) + 5);
1741
1742 strcat (strcpy (exename, expanded_name), ".exe");
1743 desc = openp (getenv ("PATH"),
1744 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1745 exename, O_RDONLY | O_BINARY, &absolute_name);
1746 }
1747 #endif
1748 if (desc < 0)
1749 {
1750 make_cleanup (xfree, expanded_name);
1751 perror_with_name (expanded_name);
1752 }
1753
1754 xfree (expanded_name);
1755 make_cleanup (xfree, absolute_name);
1756 name = absolute_name;
1757 }
1758
1759 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1760 if (!sym_bfd)
1761 error (_("`%s': can't open to read symbols: %s."), name,
1762 bfd_errmsg (bfd_get_error ()));
1763
1764 if (!gdb_bfd_has_target_filename (sym_bfd))
1765 bfd_set_cacheable (sym_bfd, 1);
1766
1767 if (!bfd_check_format (sym_bfd, bfd_object))
1768 {
1769 make_cleanup_bfd_unref (sym_bfd);
1770 error (_("`%s': can't read symbols: %s."), name,
1771 bfd_errmsg (bfd_get_error ()));
1772 }
1773
1774 do_cleanups (back_to);
1775
1776 return sym_bfd;
1777 }
1778
1779 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1780 the section was not found. */
1781
1782 int
1783 get_section_index (struct objfile *objfile, char *section_name)
1784 {
1785 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1786
1787 if (sect)
1788 return sect->index;
1789 else
1790 return -1;
1791 }
1792
1793 /* Link SF into the global symtab_fns list.
1794 FLAVOUR is the file format that SF handles.
1795 Called on startup by the _initialize routine in each object file format
1796 reader, to register information about each format the reader is prepared
1797 to handle. */
1798
1799 void
1800 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1801 {
1802 registered_sym_fns fns = { flavour, sf };
1803
1804 VEC_safe_push (registered_sym_fns, symtab_fns, &fns);
1805 }
1806
1807 /* Initialize OBJFILE to read symbols from its associated BFD. It
1808 either returns or calls error(). The result is an initialized
1809 struct sym_fns in the objfile structure, that contains cached
1810 information about the symbol file. */
1811
1812 static const struct sym_fns *
1813 find_sym_fns (bfd *abfd)
1814 {
1815 registered_sym_fns *rsf;
1816 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1817 int i;
1818
1819 if (our_flavour == bfd_target_srec_flavour
1820 || our_flavour == bfd_target_ihex_flavour
1821 || our_flavour == bfd_target_tekhex_flavour)
1822 return NULL; /* No symbols. */
1823
1824 for (i = 0; VEC_iterate (registered_sym_fns, symtab_fns, i, rsf); ++i)
1825 if (our_flavour == rsf->sym_flavour)
1826 return rsf->sym_fns;
1827
1828 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1829 bfd_get_target (abfd));
1830 }
1831 \f
1832
1833 /* This function runs the load command of our current target. */
1834
1835 static void
1836 load_command (char *arg, int from_tty)
1837 {
1838 struct cleanup *cleanup = make_cleanup (null_cleanup, NULL);
1839
1840 dont_repeat ();
1841
1842 /* The user might be reloading because the binary has changed. Take
1843 this opportunity to check. */
1844 reopen_exec_file ();
1845 reread_symbols ();
1846
1847 if (arg == NULL)
1848 {
1849 char *parg;
1850 int count = 0;
1851
1852 parg = arg = get_exec_file (1);
1853
1854 /* Count how many \ " ' tab space there are in the name. */
1855 while ((parg = strpbrk (parg, "\\\"'\t ")))
1856 {
1857 parg++;
1858 count++;
1859 }
1860
1861 if (count)
1862 {
1863 /* We need to quote this string so buildargv can pull it apart. */
1864 char *temp = (char *) xmalloc (strlen (arg) + count + 1 );
1865 char *ptemp = temp;
1866 char *prev;
1867
1868 make_cleanup (xfree, temp);
1869
1870 prev = parg = arg;
1871 while ((parg = strpbrk (parg, "\\\"'\t ")))
1872 {
1873 strncpy (ptemp, prev, parg - prev);
1874 ptemp += parg - prev;
1875 prev = parg++;
1876 *ptemp++ = '\\';
1877 }
1878 strcpy (ptemp, prev);
1879
1880 arg = temp;
1881 }
1882 }
1883
1884 target_load (arg, from_tty);
1885
1886 /* After re-loading the executable, we don't really know which
1887 overlays are mapped any more. */
1888 overlay_cache_invalid = 1;
1889
1890 do_cleanups (cleanup);
1891 }
1892
1893 /* This version of "load" should be usable for any target. Currently
1894 it is just used for remote targets, not inftarg.c or core files,
1895 on the theory that only in that case is it useful.
1896
1897 Avoiding xmodem and the like seems like a win (a) because we don't have
1898 to worry about finding it, and (b) On VMS, fork() is very slow and so
1899 we don't want to run a subprocess. On the other hand, I'm not sure how
1900 performance compares. */
1901
1902 static int validate_download = 0;
1903
1904 /* Callback service function for generic_load (bfd_map_over_sections). */
1905
1906 static void
1907 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1908 {
1909 bfd_size_type *sum = (bfd_size_type *) data;
1910
1911 *sum += bfd_get_section_size (asec);
1912 }
1913
1914 /* Opaque data for load_section_callback. */
1915 struct load_section_data {
1916 CORE_ADDR load_offset;
1917 struct load_progress_data *progress_data;
1918 VEC(memory_write_request_s) *requests;
1919 };
1920
1921 /* Opaque data for load_progress. */
1922 struct load_progress_data {
1923 /* Cumulative data. */
1924 unsigned long write_count;
1925 unsigned long data_count;
1926 bfd_size_type total_size;
1927 };
1928
1929 /* Opaque data for load_progress for a single section. */
1930 struct load_progress_section_data {
1931 struct load_progress_data *cumulative;
1932
1933 /* Per-section data. */
1934 const char *section_name;
1935 ULONGEST section_sent;
1936 ULONGEST section_size;
1937 CORE_ADDR lma;
1938 gdb_byte *buffer;
1939 };
1940
1941 /* Target write callback routine for progress reporting. */
1942
1943 static void
1944 load_progress (ULONGEST bytes, void *untyped_arg)
1945 {
1946 struct load_progress_section_data *args
1947 = (struct load_progress_section_data *) untyped_arg;
1948 struct load_progress_data *totals;
1949
1950 if (args == NULL)
1951 /* Writing padding data. No easy way to get at the cumulative
1952 stats, so just ignore this. */
1953 return;
1954
1955 totals = args->cumulative;
1956
1957 if (bytes == 0 && args->section_sent == 0)
1958 {
1959 /* The write is just starting. Let the user know we've started
1960 this section. */
1961 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1962 args->section_name, hex_string (args->section_size),
1963 paddress (target_gdbarch (), args->lma));
1964 return;
1965 }
1966
1967 if (validate_download)
1968 {
1969 /* Broken memories and broken monitors manifest themselves here
1970 when bring new computers to life. This doubles already slow
1971 downloads. */
1972 /* NOTE: cagney/1999-10-18: A more efficient implementation
1973 might add a verify_memory() method to the target vector and
1974 then use that. remote.c could implement that method using
1975 the ``qCRC'' packet. */
1976 gdb_byte *check = (gdb_byte *) xmalloc (bytes);
1977 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1978
1979 if (target_read_memory (args->lma, check, bytes) != 0)
1980 error (_("Download verify read failed at %s"),
1981 paddress (target_gdbarch (), args->lma));
1982 if (memcmp (args->buffer, check, bytes) != 0)
1983 error (_("Download verify compare failed at %s"),
1984 paddress (target_gdbarch (), args->lma));
1985 do_cleanups (verify_cleanups);
1986 }
1987 totals->data_count += bytes;
1988 args->lma += bytes;
1989 args->buffer += bytes;
1990 totals->write_count += 1;
1991 args->section_sent += bytes;
1992 if (check_quit_flag ()
1993 || (deprecated_ui_load_progress_hook != NULL
1994 && deprecated_ui_load_progress_hook (args->section_name,
1995 args->section_sent)))
1996 error (_("Canceled the download"));
1997
1998 if (deprecated_show_load_progress != NULL)
1999 deprecated_show_load_progress (args->section_name,
2000 args->section_sent,
2001 args->section_size,
2002 totals->data_count,
2003 totals->total_size);
2004 }
2005
2006 /* Callback service function for generic_load (bfd_map_over_sections). */
2007
2008 static void
2009 load_section_callback (bfd *abfd, asection *asec, void *data)
2010 {
2011 struct memory_write_request *new_request;
2012 struct load_section_data *args = (struct load_section_data *) data;
2013 struct load_progress_section_data *section_data;
2014 bfd_size_type size = bfd_get_section_size (asec);
2015 gdb_byte *buffer;
2016 const char *sect_name = bfd_get_section_name (abfd, asec);
2017
2018 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2019 return;
2020
2021 if (size == 0)
2022 return;
2023
2024 new_request = VEC_safe_push (memory_write_request_s,
2025 args->requests, NULL);
2026 memset (new_request, 0, sizeof (struct memory_write_request));
2027 section_data = XCNEW (struct load_progress_section_data);
2028 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2029 new_request->end = new_request->begin + size; /* FIXME Should size
2030 be in instead? */
2031 new_request->data = (gdb_byte *) xmalloc (size);
2032 new_request->baton = section_data;
2033
2034 buffer = new_request->data;
2035
2036 section_data->cumulative = args->progress_data;
2037 section_data->section_name = sect_name;
2038 section_data->section_size = size;
2039 section_data->lma = new_request->begin;
2040 section_data->buffer = buffer;
2041
2042 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2043 }
2044
2045 /* Clean up an entire memory request vector, including load
2046 data and progress records. */
2047
2048 static void
2049 clear_memory_write_data (void *arg)
2050 {
2051 VEC(memory_write_request_s) **vec_p = (VEC(memory_write_request_s) **) arg;
2052 VEC(memory_write_request_s) *vec = *vec_p;
2053 int i;
2054 struct memory_write_request *mr;
2055
2056 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2057 {
2058 xfree (mr->data);
2059 xfree (mr->baton);
2060 }
2061 VEC_free (memory_write_request_s, vec);
2062 }
2063
2064 void
2065 generic_load (const char *args, int from_tty)
2066 {
2067 bfd *loadfile_bfd;
2068 struct timeval start_time, end_time;
2069 char *filename;
2070 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2071 struct load_section_data cbdata;
2072 struct load_progress_data total_progress;
2073 struct ui_out *uiout = current_uiout;
2074
2075 CORE_ADDR entry;
2076 char **argv;
2077
2078 memset (&cbdata, 0, sizeof (cbdata));
2079 memset (&total_progress, 0, sizeof (total_progress));
2080 cbdata.progress_data = &total_progress;
2081
2082 make_cleanup (clear_memory_write_data, &cbdata.requests);
2083
2084 if (args == NULL)
2085 error_no_arg (_("file to load"));
2086
2087 argv = gdb_buildargv (args);
2088 make_cleanup_freeargv (argv);
2089
2090 filename = tilde_expand (argv[0]);
2091 make_cleanup (xfree, filename);
2092
2093 if (argv[1] != NULL)
2094 {
2095 const char *endptr;
2096
2097 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2098
2099 /* If the last word was not a valid number then
2100 treat it as a file name with spaces in. */
2101 if (argv[1] == endptr)
2102 error (_("Invalid download offset:%s."), argv[1]);
2103
2104 if (argv[2] != NULL)
2105 error (_("Too many parameters."));
2106 }
2107
2108 /* Open the file for loading. */
2109 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2110 if (loadfile_bfd == NULL)
2111 {
2112 perror_with_name (filename);
2113 return;
2114 }
2115
2116 make_cleanup_bfd_unref (loadfile_bfd);
2117
2118 if (!bfd_check_format (loadfile_bfd, bfd_object))
2119 {
2120 error (_("\"%s\" is not an object file: %s"), filename,
2121 bfd_errmsg (bfd_get_error ()));
2122 }
2123
2124 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2125 (void *) &total_progress.total_size);
2126
2127 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2128
2129 gettimeofday (&start_time, NULL);
2130
2131 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2132 load_progress) != 0)
2133 error (_("Load failed"));
2134
2135 gettimeofday (&end_time, NULL);
2136
2137 entry = bfd_get_start_address (loadfile_bfd);
2138 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2139 ui_out_text (uiout, "Start address ");
2140 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2141 ui_out_text (uiout, ", load size ");
2142 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2143 ui_out_text (uiout, "\n");
2144 regcache_write_pc (get_current_regcache (), entry);
2145
2146 /* Reset breakpoints, now that we have changed the load image. For
2147 instance, breakpoints may have been set (or reset, by
2148 post_create_inferior) while connected to the target but before we
2149 loaded the program. In that case, the prologue analyzer could
2150 have read instructions from the target to find the right
2151 breakpoint locations. Loading has changed the contents of that
2152 memory. */
2153
2154 breakpoint_re_set ();
2155
2156 print_transfer_performance (gdb_stdout, total_progress.data_count,
2157 total_progress.write_count,
2158 &start_time, &end_time);
2159
2160 do_cleanups (old_cleanups);
2161 }
2162
2163 /* Report how fast the transfer went. */
2164
2165 void
2166 print_transfer_performance (struct ui_file *stream,
2167 unsigned long data_count,
2168 unsigned long write_count,
2169 const struct timeval *start_time,
2170 const struct timeval *end_time)
2171 {
2172 ULONGEST time_count;
2173 struct ui_out *uiout = current_uiout;
2174
2175 /* Compute the elapsed time in milliseconds, as a tradeoff between
2176 accuracy and overflow. */
2177 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2178 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2179
2180 ui_out_text (uiout, "Transfer rate: ");
2181 if (time_count > 0)
2182 {
2183 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2184
2185 if (ui_out_is_mi_like_p (uiout))
2186 {
2187 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2188 ui_out_text (uiout, " bits/sec");
2189 }
2190 else if (rate < 1024)
2191 {
2192 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2193 ui_out_text (uiout, " bytes/sec");
2194 }
2195 else
2196 {
2197 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2198 ui_out_text (uiout, " KB/sec");
2199 }
2200 }
2201 else
2202 {
2203 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2204 ui_out_text (uiout, " bits in <1 sec");
2205 }
2206 if (write_count > 0)
2207 {
2208 ui_out_text (uiout, ", ");
2209 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2210 ui_out_text (uiout, " bytes/write");
2211 }
2212 ui_out_text (uiout, ".\n");
2213 }
2214
2215 /* This function allows the addition of incrementally linked object files.
2216 It does not modify any state in the target, only in the debugger. */
2217 /* Note: ezannoni 2000-04-13 This function/command used to have a
2218 special case syntax for the rombug target (Rombug is the boot
2219 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2220 rombug case, the user doesn't need to supply a text address,
2221 instead a call to target_link() (in target.c) would supply the
2222 value to use. We are now discontinuing this type of ad hoc syntax. */
2223
2224 static void
2225 add_symbol_file_command (char *args, int from_tty)
2226 {
2227 struct gdbarch *gdbarch = get_current_arch ();
2228 char *filename = NULL;
2229 int flags = OBJF_USERLOADED | OBJF_SHARED;
2230 char *arg;
2231 int section_index = 0;
2232 int argcnt = 0;
2233 int sec_num = 0;
2234 int i;
2235 int expecting_sec_name = 0;
2236 int expecting_sec_addr = 0;
2237 char **argv;
2238 struct objfile *objf;
2239
2240 struct sect_opt
2241 {
2242 char *name;
2243 char *value;
2244 };
2245
2246 struct section_addr_info *section_addrs;
2247 struct sect_opt *sect_opts = NULL;
2248 size_t num_sect_opts = 0;
2249 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2250
2251 num_sect_opts = 16;
2252 sect_opts = XNEWVEC (struct sect_opt, num_sect_opts);
2253
2254 dont_repeat ();
2255
2256 if (args == NULL)
2257 error (_("add-symbol-file takes a file name and an address"));
2258
2259 argv = gdb_buildargv (args);
2260 make_cleanup_freeargv (argv);
2261
2262 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2263 {
2264 /* Process the argument. */
2265 if (argcnt == 0)
2266 {
2267 /* The first argument is the file name. */
2268 filename = tilde_expand (arg);
2269 make_cleanup (xfree, filename);
2270 }
2271 else if (argcnt == 1)
2272 {
2273 /* The second argument is always the text address at which
2274 to load the program. */
2275 sect_opts[section_index].name = ".text";
2276 sect_opts[section_index].value = arg;
2277 if (++section_index >= num_sect_opts)
2278 {
2279 num_sect_opts *= 2;
2280 sect_opts = ((struct sect_opt *)
2281 xrealloc (sect_opts,
2282 num_sect_opts
2283 * sizeof (struct sect_opt)));
2284 }
2285 }
2286 else
2287 {
2288 /* It's an option (starting with '-') or it's an argument
2289 to an option. */
2290 if (expecting_sec_name)
2291 {
2292 sect_opts[section_index].name = arg;
2293 expecting_sec_name = 0;
2294 }
2295 else if (expecting_sec_addr)
2296 {
2297 sect_opts[section_index].value = arg;
2298 expecting_sec_addr = 0;
2299 if (++section_index >= num_sect_opts)
2300 {
2301 num_sect_opts *= 2;
2302 sect_opts = ((struct sect_opt *)
2303 xrealloc (sect_opts,
2304 num_sect_opts
2305 * sizeof (struct sect_opt)));
2306 }
2307 }
2308 else if (strcmp (arg, "-readnow") == 0)
2309 flags |= OBJF_READNOW;
2310 else if (strcmp (arg, "-s") == 0)
2311 {
2312 expecting_sec_name = 1;
2313 expecting_sec_addr = 1;
2314 }
2315 else
2316 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2317 " [-readnow] [-s <secname> <addr>]*"));
2318 }
2319 }
2320
2321 /* This command takes at least two arguments. The first one is a
2322 filename, and the second is the address where this file has been
2323 loaded. Abort now if this address hasn't been provided by the
2324 user. */
2325 if (section_index < 1)
2326 error (_("The address where %s has been loaded is missing"), filename);
2327
2328 /* Print the prompt for the query below. And save the arguments into
2329 a sect_addr_info structure to be passed around to other
2330 functions. We have to split this up into separate print
2331 statements because hex_string returns a local static
2332 string. */
2333
2334 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2335 section_addrs = alloc_section_addr_info (section_index);
2336 make_cleanup (xfree, section_addrs);
2337 for (i = 0; i < section_index; i++)
2338 {
2339 CORE_ADDR addr;
2340 char *val = sect_opts[i].value;
2341 char *sec = sect_opts[i].name;
2342
2343 addr = parse_and_eval_address (val);
2344
2345 /* Here we store the section offsets in the order they were
2346 entered on the command line. */
2347 section_addrs->other[sec_num].name = sec;
2348 section_addrs->other[sec_num].addr = addr;
2349 printf_unfiltered ("\t%s_addr = %s\n", sec,
2350 paddress (gdbarch, addr));
2351 sec_num++;
2352
2353 /* The object's sections are initialized when a
2354 call is made to build_objfile_section_table (objfile).
2355 This happens in reread_symbols.
2356 At this point, we don't know what file type this is,
2357 so we can't determine what section names are valid. */
2358 }
2359 section_addrs->num_sections = sec_num;
2360
2361 if (from_tty && (!query ("%s", "")))
2362 error (_("Not confirmed."));
2363
2364 objf = symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2365 section_addrs, flags);
2366
2367 add_target_sections_of_objfile (objf);
2368
2369 /* Getting new symbols may change our opinion about what is
2370 frameless. */
2371 reinit_frame_cache ();
2372 do_cleanups (my_cleanups);
2373 }
2374 \f
2375
2376 /* This function removes a symbol file that was added via add-symbol-file. */
2377
2378 static void
2379 remove_symbol_file_command (char *args, int from_tty)
2380 {
2381 char **argv;
2382 struct objfile *objf = NULL;
2383 struct cleanup *my_cleanups;
2384 struct program_space *pspace = current_program_space;
2385
2386 dont_repeat ();
2387
2388 if (args == NULL)
2389 error (_("remove-symbol-file: no symbol file provided"));
2390
2391 my_cleanups = make_cleanup (null_cleanup, NULL);
2392
2393 argv = gdb_buildargv (args);
2394
2395 if (strcmp (argv[0], "-a") == 0)
2396 {
2397 /* Interpret the next argument as an address. */
2398 CORE_ADDR addr;
2399
2400 if (argv[1] == NULL)
2401 error (_("Missing address argument"));
2402
2403 if (argv[2] != NULL)
2404 error (_("Junk after %s"), argv[1]);
2405
2406 addr = parse_and_eval_address (argv[1]);
2407
2408 ALL_OBJFILES (objf)
2409 {
2410 if ((objf->flags & OBJF_USERLOADED) != 0
2411 && (objf->flags & OBJF_SHARED) != 0
2412 && objf->pspace == pspace && is_addr_in_objfile (addr, objf))
2413 break;
2414 }
2415 }
2416 else if (argv[0] != NULL)
2417 {
2418 /* Interpret the current argument as a file name. */
2419 char *filename;
2420
2421 if (argv[1] != NULL)
2422 error (_("Junk after %s"), argv[0]);
2423
2424 filename = tilde_expand (argv[0]);
2425 make_cleanup (xfree, filename);
2426
2427 ALL_OBJFILES (objf)
2428 {
2429 if ((objf->flags & OBJF_USERLOADED) != 0
2430 && (objf->flags & OBJF_SHARED) != 0
2431 && objf->pspace == pspace
2432 && filename_cmp (filename, objfile_name (objf)) == 0)
2433 break;
2434 }
2435 }
2436
2437 if (objf == NULL)
2438 error (_("No symbol file found"));
2439
2440 if (from_tty
2441 && !query (_("Remove symbol table from file \"%s\"? "),
2442 objfile_name (objf)))
2443 error (_("Not confirmed."));
2444
2445 free_objfile (objf);
2446 clear_symtab_users (0);
2447
2448 do_cleanups (my_cleanups);
2449 }
2450
2451 typedef struct objfile *objfilep;
2452
2453 DEF_VEC_P (objfilep);
2454
2455 /* Re-read symbols if a symbol-file has changed. */
2456
2457 void
2458 reread_symbols (void)
2459 {
2460 struct objfile *objfile;
2461 long new_modtime;
2462 struct stat new_statbuf;
2463 int res;
2464 VEC (objfilep) *new_objfiles = NULL;
2465 struct cleanup *all_cleanups;
2466
2467 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2468
2469 /* With the addition of shared libraries, this should be modified,
2470 the load time should be saved in the partial symbol tables, since
2471 different tables may come from different source files. FIXME.
2472 This routine should then walk down each partial symbol table
2473 and see if the symbol table that it originates from has been changed. */
2474
2475 for (objfile = object_files; objfile; objfile = objfile->next)
2476 {
2477 if (objfile->obfd == NULL)
2478 continue;
2479
2480 /* Separate debug objfiles are handled in the main objfile. */
2481 if (objfile->separate_debug_objfile_backlink)
2482 continue;
2483
2484 /* If this object is from an archive (what you usually create with
2485 `ar', often called a `static library' on most systems, though
2486 a `shared library' on AIX is also an archive), then you should
2487 stat on the archive name, not member name. */
2488 if (objfile->obfd->my_archive)
2489 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2490 else
2491 res = stat (objfile_name (objfile), &new_statbuf);
2492 if (res != 0)
2493 {
2494 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2495 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2496 objfile_name (objfile));
2497 continue;
2498 }
2499 new_modtime = new_statbuf.st_mtime;
2500 if (new_modtime != objfile->mtime)
2501 {
2502 struct cleanup *old_cleanups;
2503 struct section_offsets *offsets;
2504 int num_offsets;
2505 char *original_name;
2506
2507 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2508 objfile_name (objfile));
2509
2510 /* There are various functions like symbol_file_add,
2511 symfile_bfd_open, syms_from_objfile, etc., which might
2512 appear to do what we want. But they have various other
2513 effects which we *don't* want. So we just do stuff
2514 ourselves. We don't worry about mapped files (for one thing,
2515 any mapped file will be out of date). */
2516
2517 /* If we get an error, blow away this objfile (not sure if
2518 that is the correct response for things like shared
2519 libraries). */
2520 old_cleanups = make_cleanup_free_objfile (objfile);
2521 /* We need to do this whenever any symbols go away. */
2522 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2523
2524 if (exec_bfd != NULL
2525 && filename_cmp (bfd_get_filename (objfile->obfd),
2526 bfd_get_filename (exec_bfd)) == 0)
2527 {
2528 /* Reload EXEC_BFD without asking anything. */
2529
2530 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2531 }
2532
2533 /* Keep the calls order approx. the same as in free_objfile. */
2534
2535 /* Free the separate debug objfiles. It will be
2536 automatically recreated by sym_read. */
2537 free_objfile_separate_debug (objfile);
2538
2539 /* Remove any references to this objfile in the global
2540 value lists. */
2541 preserve_values (objfile);
2542
2543 /* Nuke all the state that we will re-read. Much of the following
2544 code which sets things to NULL really is necessary to tell
2545 other parts of GDB that there is nothing currently there.
2546
2547 Try to keep the freeing order compatible with free_objfile. */
2548
2549 if (objfile->sf != NULL)
2550 {
2551 (*objfile->sf->sym_finish) (objfile);
2552 }
2553
2554 clear_objfile_data (objfile);
2555
2556 /* Clean up any state BFD has sitting around. */
2557 {
2558 struct bfd *obfd = objfile->obfd;
2559 char *obfd_filename;
2560
2561 obfd_filename = bfd_get_filename (objfile->obfd);
2562 /* Open the new BFD before freeing the old one, so that
2563 the filename remains live. */
2564 objfile->obfd = gdb_bfd_open (obfd_filename, gnutarget, -1);
2565 if (objfile->obfd == NULL)
2566 {
2567 /* We have to make a cleanup and error here, rather
2568 than erroring later, because once we unref OBFD,
2569 OBFD_FILENAME will be freed. */
2570 make_cleanup_bfd_unref (obfd);
2571 error (_("Can't open %s to read symbols."), obfd_filename);
2572 }
2573 gdb_bfd_unref (obfd);
2574 }
2575
2576 original_name = xstrdup (objfile->original_name);
2577 make_cleanup (xfree, original_name);
2578
2579 /* bfd_openr sets cacheable to true, which is what we want. */
2580 if (!bfd_check_format (objfile->obfd, bfd_object))
2581 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2582 bfd_errmsg (bfd_get_error ()));
2583
2584 /* Save the offsets, we will nuke them with the rest of the
2585 objfile_obstack. */
2586 num_offsets = objfile->num_sections;
2587 offsets = ((struct section_offsets *)
2588 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2589 memcpy (offsets, objfile->section_offsets,
2590 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2591
2592 /* FIXME: Do we have to free a whole linked list, or is this
2593 enough? */
2594 if (objfile->global_psymbols.list)
2595 xfree (objfile->global_psymbols.list);
2596 memset (&objfile->global_psymbols, 0,
2597 sizeof (objfile->global_psymbols));
2598 if (objfile->static_psymbols.list)
2599 xfree (objfile->static_psymbols.list);
2600 memset (&objfile->static_psymbols, 0,
2601 sizeof (objfile->static_psymbols));
2602
2603 /* Free the obstacks for non-reusable objfiles. */
2604 psymbol_bcache_free (objfile->psymbol_cache);
2605 objfile->psymbol_cache = psymbol_bcache_init ();
2606 obstack_free (&objfile->objfile_obstack, 0);
2607 objfile->sections = NULL;
2608 objfile->compunit_symtabs = NULL;
2609 objfile->psymtabs = NULL;
2610 objfile->psymtabs_addrmap = NULL;
2611 objfile->free_psymtabs = NULL;
2612 objfile->template_symbols = NULL;
2613
2614 /* obstack_init also initializes the obstack so it is
2615 empty. We could use obstack_specify_allocation but
2616 gdb_obstack.h specifies the alloc/dealloc functions. */
2617 obstack_init (&objfile->objfile_obstack);
2618
2619 /* set_objfile_per_bfd potentially allocates the per-bfd
2620 data on the objfile's obstack (if sharing data across
2621 multiple users is not possible), so it's important to
2622 do it *after* the obstack has been initialized. */
2623 set_objfile_per_bfd (objfile);
2624
2625 objfile->original_name
2626 = (char *) obstack_copy0 (&objfile->objfile_obstack, original_name,
2627 strlen (original_name));
2628
2629 /* Reset the sym_fns pointer. The ELF reader can change it
2630 based on whether .gdb_index is present, and we need it to
2631 start over. PR symtab/15885 */
2632 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2633
2634 build_objfile_section_table (objfile);
2635 terminate_minimal_symbol_table (objfile);
2636
2637 /* We use the same section offsets as from last time. I'm not
2638 sure whether that is always correct for shared libraries. */
2639 objfile->section_offsets = (struct section_offsets *)
2640 obstack_alloc (&objfile->objfile_obstack,
2641 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2642 memcpy (objfile->section_offsets, offsets,
2643 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2644 objfile->num_sections = num_offsets;
2645
2646 /* What the hell is sym_new_init for, anyway? The concept of
2647 distinguishing between the main file and additional files
2648 in this way seems rather dubious. */
2649 if (objfile == symfile_objfile)
2650 {
2651 (*objfile->sf->sym_new_init) (objfile);
2652 }
2653
2654 (*objfile->sf->sym_init) (objfile);
2655 clear_complaints (&symfile_complaints, 1, 1);
2656
2657 objfile->flags &= ~OBJF_PSYMTABS_READ;
2658 read_symbols (objfile, 0);
2659
2660 if (!objfile_has_symbols (objfile))
2661 {
2662 wrap_here ("");
2663 printf_unfiltered (_("(no debugging symbols found)\n"));
2664 wrap_here ("");
2665 }
2666
2667 /* We're done reading the symbol file; finish off complaints. */
2668 clear_complaints (&symfile_complaints, 0, 1);
2669
2670 /* Getting new symbols may change our opinion about what is
2671 frameless. */
2672
2673 reinit_frame_cache ();
2674
2675 /* Discard cleanups as symbol reading was successful. */
2676 discard_cleanups (old_cleanups);
2677
2678 /* If the mtime has changed between the time we set new_modtime
2679 and now, we *want* this to be out of date, so don't call stat
2680 again now. */
2681 objfile->mtime = new_modtime;
2682 init_entry_point_info (objfile);
2683
2684 VEC_safe_push (objfilep, new_objfiles, objfile);
2685 }
2686 }
2687
2688 if (new_objfiles)
2689 {
2690 int ix;
2691
2692 /* Notify objfiles that we've modified objfile sections. */
2693 objfiles_changed ();
2694
2695 clear_symtab_users (0);
2696
2697 /* clear_objfile_data for each objfile was called before freeing it and
2698 observer_notify_new_objfile (NULL) has been called by
2699 clear_symtab_users above. Notify the new files now. */
2700 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2701 observer_notify_new_objfile (objfile);
2702
2703 /* At least one objfile has changed, so we can consider that
2704 the executable we're debugging has changed too. */
2705 observer_notify_executable_changed ();
2706 }
2707
2708 do_cleanups (all_cleanups);
2709 }
2710 \f
2711
2712 typedef struct
2713 {
2714 char *ext;
2715 enum language lang;
2716 } filename_language;
2717
2718 DEF_VEC_O (filename_language);
2719
2720 static VEC (filename_language) *filename_language_table;
2721
2722 static void
2723 add_filename_language (char *ext, enum language lang)
2724 {
2725 filename_language entry;
2726
2727 entry.ext = xstrdup (ext);
2728 entry.lang = lang;
2729
2730 VEC_safe_push (filename_language, filename_language_table, &entry);
2731 }
2732
2733 static char *ext_args;
2734 static void
2735 show_ext_args (struct ui_file *file, int from_tty,
2736 struct cmd_list_element *c, const char *value)
2737 {
2738 fprintf_filtered (file,
2739 _("Mapping between filename extension "
2740 "and source language is \"%s\".\n"),
2741 value);
2742 }
2743
2744 static void
2745 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2746 {
2747 int i;
2748 char *cp = ext_args;
2749 enum language lang;
2750 filename_language *entry;
2751
2752 /* First arg is filename extension, starting with '.' */
2753 if (*cp != '.')
2754 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2755
2756 /* Find end of first arg. */
2757 while (*cp && !isspace (*cp))
2758 cp++;
2759
2760 if (*cp == '\0')
2761 error (_("'%s': two arguments required -- "
2762 "filename extension and language"),
2763 ext_args);
2764
2765 /* Null-terminate first arg. */
2766 *cp++ = '\0';
2767
2768 /* Find beginning of second arg, which should be a source language. */
2769 cp = skip_spaces (cp);
2770
2771 if (*cp == '\0')
2772 error (_("'%s': two arguments required -- "
2773 "filename extension and language"),
2774 ext_args);
2775
2776 /* Lookup the language from among those we know. */
2777 lang = language_enum (cp);
2778
2779 /* Now lookup the filename extension: do we already know it? */
2780 for (i = 0;
2781 VEC_iterate (filename_language, filename_language_table, i, entry);
2782 ++i)
2783 {
2784 if (0 == strcmp (ext_args, entry->ext))
2785 break;
2786 }
2787
2788 if (entry == NULL)
2789 {
2790 /* New file extension. */
2791 add_filename_language (ext_args, lang);
2792 }
2793 else
2794 {
2795 /* Redefining a previously known filename extension. */
2796
2797 /* if (from_tty) */
2798 /* query ("Really make files of type %s '%s'?", */
2799 /* ext_args, language_str (lang)); */
2800
2801 xfree (entry->ext);
2802 entry->ext = xstrdup (ext_args);
2803 entry->lang = lang;
2804 }
2805 }
2806
2807 static void
2808 info_ext_lang_command (char *args, int from_tty)
2809 {
2810 int i;
2811 filename_language *entry;
2812
2813 printf_filtered (_("Filename extensions and the languages they represent:"));
2814 printf_filtered ("\n\n");
2815 for (i = 0;
2816 VEC_iterate (filename_language, filename_language_table, i, entry);
2817 ++i)
2818 printf_filtered ("\t%s\t- %s\n", entry->ext, language_str (entry->lang));
2819 }
2820
2821 static void
2822 init_filename_language_table (void)
2823 {
2824 /* Protect against repetition. */
2825 if (VEC_empty (filename_language, filename_language_table))
2826 {
2827 add_filename_language (".c", language_c);
2828 add_filename_language (".d", language_d);
2829 add_filename_language (".C", language_cplus);
2830 add_filename_language (".cc", language_cplus);
2831 add_filename_language (".cp", language_cplus);
2832 add_filename_language (".cpp", language_cplus);
2833 add_filename_language (".cxx", language_cplus);
2834 add_filename_language (".c++", language_cplus);
2835 add_filename_language (".java", language_java);
2836 add_filename_language (".class", language_java);
2837 add_filename_language (".m", language_objc);
2838 add_filename_language (".f", language_fortran);
2839 add_filename_language (".F", language_fortran);
2840 add_filename_language (".for", language_fortran);
2841 add_filename_language (".FOR", language_fortran);
2842 add_filename_language (".ftn", language_fortran);
2843 add_filename_language (".FTN", language_fortran);
2844 add_filename_language (".fpp", language_fortran);
2845 add_filename_language (".FPP", language_fortran);
2846 add_filename_language (".f90", language_fortran);
2847 add_filename_language (".F90", language_fortran);
2848 add_filename_language (".f95", language_fortran);
2849 add_filename_language (".F95", language_fortran);
2850 add_filename_language (".f03", language_fortran);
2851 add_filename_language (".F03", language_fortran);
2852 add_filename_language (".f08", language_fortran);
2853 add_filename_language (".F08", language_fortran);
2854 add_filename_language (".s", language_asm);
2855 add_filename_language (".sx", language_asm);
2856 add_filename_language (".S", language_asm);
2857 add_filename_language (".pas", language_pascal);
2858 add_filename_language (".p", language_pascal);
2859 add_filename_language (".pp", language_pascal);
2860 add_filename_language (".adb", language_ada);
2861 add_filename_language (".ads", language_ada);
2862 add_filename_language (".a", language_ada);
2863 add_filename_language (".ada", language_ada);
2864 add_filename_language (".dg", language_ada);
2865 add_filename_language (".rs", language_rust);
2866 }
2867 }
2868
2869 enum language
2870 deduce_language_from_filename (const char *filename)
2871 {
2872 int i;
2873 const char *cp;
2874
2875 if (filename != NULL)
2876 if ((cp = strrchr (filename, '.')) != NULL)
2877 {
2878 filename_language *entry;
2879
2880 for (i = 0;
2881 VEC_iterate (filename_language, filename_language_table, i, entry);
2882 ++i)
2883 if (strcmp (cp, entry->ext) == 0)
2884 return entry->lang;
2885 }
2886
2887 return language_unknown;
2888 }
2889 \f
2890 /* Allocate and initialize a new symbol table.
2891 CUST is from the result of allocate_compunit_symtab. */
2892
2893 struct symtab *
2894 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2895 {
2896 struct objfile *objfile = cust->objfile;
2897 struct symtab *symtab
2898 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2899
2900 symtab->filename
2901 = (const char *) bcache (filename, strlen (filename) + 1,
2902 objfile->per_bfd->filename_cache);
2903 symtab->fullname = NULL;
2904 symtab->language = deduce_language_from_filename (filename);
2905
2906 /* This can be very verbose with lots of headers.
2907 Only print at higher debug levels. */
2908 if (symtab_create_debug >= 2)
2909 {
2910 /* Be a bit clever with debugging messages, and don't print objfile
2911 every time, only when it changes. */
2912 static char *last_objfile_name = NULL;
2913
2914 if (last_objfile_name == NULL
2915 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2916 {
2917 xfree (last_objfile_name);
2918 last_objfile_name = xstrdup (objfile_name (objfile));
2919 fprintf_unfiltered (gdb_stdlog,
2920 "Creating one or more symtabs for objfile %s ...\n",
2921 last_objfile_name);
2922 }
2923 fprintf_unfiltered (gdb_stdlog,
2924 "Created symtab %s for module %s.\n",
2925 host_address_to_string (symtab), filename);
2926 }
2927
2928 /* Add it to CUST's list of symtabs. */
2929 if (cust->filetabs == NULL)
2930 {
2931 cust->filetabs = symtab;
2932 cust->last_filetab = symtab;
2933 }
2934 else
2935 {
2936 cust->last_filetab->next = symtab;
2937 cust->last_filetab = symtab;
2938 }
2939
2940 /* Backlink to the containing compunit symtab. */
2941 symtab->compunit_symtab = cust;
2942
2943 return symtab;
2944 }
2945
2946 /* Allocate and initialize a new compunit.
2947 NAME is the name of the main source file, if there is one, or some
2948 descriptive text if there are no source files. */
2949
2950 struct compunit_symtab *
2951 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2952 {
2953 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2954 struct compunit_symtab);
2955 const char *saved_name;
2956
2957 cu->objfile = objfile;
2958
2959 /* The name we record here is only for display/debugging purposes.
2960 Just save the basename to avoid path issues (too long for display,
2961 relative vs absolute, etc.). */
2962 saved_name = lbasename (name);
2963 cu->name
2964 = (const char *) obstack_copy0 (&objfile->objfile_obstack, saved_name,
2965 strlen (saved_name));
2966
2967 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2968
2969 if (symtab_create_debug)
2970 {
2971 fprintf_unfiltered (gdb_stdlog,
2972 "Created compunit symtab %s for %s.\n",
2973 host_address_to_string (cu),
2974 cu->name);
2975 }
2976
2977 return cu;
2978 }
2979
2980 /* Hook CU to the objfile it comes from. */
2981
2982 void
2983 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2984 {
2985 cu->next = cu->objfile->compunit_symtabs;
2986 cu->objfile->compunit_symtabs = cu;
2987 }
2988 \f
2989
2990 /* Reset all data structures in gdb which may contain references to symbol
2991 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2992
2993 void
2994 clear_symtab_users (int add_flags)
2995 {
2996 /* Someday, we should do better than this, by only blowing away
2997 the things that really need to be blown. */
2998
2999 /* Clear the "current" symtab first, because it is no longer valid.
3000 breakpoint_re_set may try to access the current symtab. */
3001 clear_current_source_symtab_and_line ();
3002
3003 clear_displays ();
3004 clear_last_displayed_sal ();
3005 clear_pc_function_cache ();
3006 observer_notify_new_objfile (NULL);
3007
3008 /* Clear globals which might have pointed into a removed objfile.
3009 FIXME: It's not clear which of these are supposed to persist
3010 between expressions and which ought to be reset each time. */
3011 expression_context_block = NULL;
3012 innermost_block = NULL;
3013
3014 /* Varobj may refer to old symbols, perform a cleanup. */
3015 varobj_invalidate ();
3016
3017 /* Now that the various caches have been cleared, we can re_set
3018 our breakpoints without risking it using stale data. */
3019 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
3020 breakpoint_re_set ();
3021 }
3022
3023 static void
3024 clear_symtab_users_cleanup (void *ignore)
3025 {
3026 clear_symtab_users (0);
3027 }
3028 \f
3029 /* OVERLAYS:
3030 The following code implements an abstraction for debugging overlay sections.
3031
3032 The target model is as follows:
3033 1) The gnu linker will permit multiple sections to be mapped into the
3034 same VMA, each with its own unique LMA (or load address).
3035 2) It is assumed that some runtime mechanism exists for mapping the
3036 sections, one by one, from the load address into the VMA address.
3037 3) This code provides a mechanism for gdb to keep track of which
3038 sections should be considered to be mapped from the VMA to the LMA.
3039 This information is used for symbol lookup, and memory read/write.
3040 For instance, if a section has been mapped then its contents
3041 should be read from the VMA, otherwise from the LMA.
3042
3043 Two levels of debugger support for overlays are available. One is
3044 "manual", in which the debugger relies on the user to tell it which
3045 overlays are currently mapped. This level of support is
3046 implemented entirely in the core debugger, and the information about
3047 whether a section is mapped is kept in the objfile->obj_section table.
3048
3049 The second level of support is "automatic", and is only available if
3050 the target-specific code provides functionality to read the target's
3051 overlay mapping table, and translate its contents for the debugger
3052 (by updating the mapped state information in the obj_section tables).
3053
3054 The interface is as follows:
3055 User commands:
3056 overlay map <name> -- tell gdb to consider this section mapped
3057 overlay unmap <name> -- tell gdb to consider this section unmapped
3058 overlay list -- list the sections that GDB thinks are mapped
3059 overlay read-target -- get the target's state of what's mapped
3060 overlay off/manual/auto -- set overlay debugging state
3061 Functional interface:
3062 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3063 section, return that section.
3064 find_pc_overlay(pc): find any overlay section that contains
3065 the pc, either in its VMA or its LMA
3066 section_is_mapped(sect): true if overlay is marked as mapped
3067 section_is_overlay(sect): true if section's VMA != LMA
3068 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3069 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3070 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3071 overlay_mapped_address(...): map an address from section's LMA to VMA
3072 overlay_unmapped_address(...): map an address from section's VMA to LMA
3073 symbol_overlayed_address(...): Return a "current" address for symbol:
3074 either in VMA or LMA depending on whether
3075 the symbol's section is currently mapped. */
3076
3077 /* Overlay debugging state: */
3078
3079 enum overlay_debugging_state overlay_debugging = ovly_off;
3080 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
3081
3082 /* Function: section_is_overlay (SECTION)
3083 Returns true if SECTION has VMA not equal to LMA, ie.
3084 SECTION is loaded at an address different from where it will "run". */
3085
3086 int
3087 section_is_overlay (struct obj_section *section)
3088 {
3089 if (overlay_debugging && section)
3090 {
3091 bfd *abfd = section->objfile->obfd;
3092 asection *bfd_section = section->the_bfd_section;
3093
3094 if (bfd_section_lma (abfd, bfd_section) != 0
3095 && bfd_section_lma (abfd, bfd_section)
3096 != bfd_section_vma (abfd, bfd_section))
3097 return 1;
3098 }
3099
3100 return 0;
3101 }
3102
3103 /* Function: overlay_invalidate_all (void)
3104 Invalidate the mapped state of all overlay sections (mark it as stale). */
3105
3106 static void
3107 overlay_invalidate_all (void)
3108 {
3109 struct objfile *objfile;
3110 struct obj_section *sect;
3111
3112 ALL_OBJSECTIONS (objfile, sect)
3113 if (section_is_overlay (sect))
3114 sect->ovly_mapped = -1;
3115 }
3116
3117 /* Function: section_is_mapped (SECTION)
3118 Returns true if section is an overlay, and is currently mapped.
3119
3120 Access to the ovly_mapped flag is restricted to this function, so
3121 that we can do automatic update. If the global flag
3122 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3123 overlay_invalidate_all. If the mapped state of the particular
3124 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3125
3126 int
3127 section_is_mapped (struct obj_section *osect)
3128 {
3129 struct gdbarch *gdbarch;
3130
3131 if (osect == 0 || !section_is_overlay (osect))
3132 return 0;
3133
3134 switch (overlay_debugging)
3135 {
3136 default:
3137 case ovly_off:
3138 return 0; /* overlay debugging off */
3139 case ovly_auto: /* overlay debugging automatic */
3140 /* Unles there is a gdbarch_overlay_update function,
3141 there's really nothing useful to do here (can't really go auto). */
3142 gdbarch = get_objfile_arch (osect->objfile);
3143 if (gdbarch_overlay_update_p (gdbarch))
3144 {
3145 if (overlay_cache_invalid)
3146 {
3147 overlay_invalidate_all ();
3148 overlay_cache_invalid = 0;
3149 }
3150 if (osect->ovly_mapped == -1)
3151 gdbarch_overlay_update (gdbarch, osect);
3152 }
3153 /* fall thru to manual case */
3154 case ovly_on: /* overlay debugging manual */
3155 return osect->ovly_mapped == 1;
3156 }
3157 }
3158
3159 /* Function: pc_in_unmapped_range
3160 If PC falls into the lma range of SECTION, return true, else false. */
3161
3162 CORE_ADDR
3163 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3164 {
3165 if (section_is_overlay (section))
3166 {
3167 bfd *abfd = section->objfile->obfd;
3168 asection *bfd_section = section->the_bfd_section;
3169
3170 /* We assume the LMA is relocated by the same offset as the VMA. */
3171 bfd_vma size = bfd_get_section_size (bfd_section);
3172 CORE_ADDR offset = obj_section_offset (section);
3173
3174 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3175 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3176 return 1;
3177 }
3178
3179 return 0;
3180 }
3181
3182 /* Function: pc_in_mapped_range
3183 If PC falls into the vma range of SECTION, return true, else false. */
3184
3185 CORE_ADDR
3186 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3187 {
3188 if (section_is_overlay (section))
3189 {
3190 if (obj_section_addr (section) <= pc
3191 && pc < obj_section_endaddr (section))
3192 return 1;
3193 }
3194
3195 return 0;
3196 }
3197
3198 /* Return true if the mapped ranges of sections A and B overlap, false
3199 otherwise. */
3200
3201 static int
3202 sections_overlap (struct obj_section *a, struct obj_section *b)
3203 {
3204 CORE_ADDR a_start = obj_section_addr (a);
3205 CORE_ADDR a_end = obj_section_endaddr (a);
3206 CORE_ADDR b_start = obj_section_addr (b);
3207 CORE_ADDR b_end = obj_section_endaddr (b);
3208
3209 return (a_start < b_end && b_start < a_end);
3210 }
3211
3212 /* Function: overlay_unmapped_address (PC, SECTION)
3213 Returns the address corresponding to PC in the unmapped (load) range.
3214 May be the same as PC. */
3215
3216 CORE_ADDR
3217 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3218 {
3219 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3220 {
3221 bfd *abfd = section->objfile->obfd;
3222 asection *bfd_section = section->the_bfd_section;
3223
3224 return pc + bfd_section_lma (abfd, bfd_section)
3225 - bfd_section_vma (abfd, bfd_section);
3226 }
3227
3228 return pc;
3229 }
3230
3231 /* Function: overlay_mapped_address (PC, SECTION)
3232 Returns the address corresponding to PC in the mapped (runtime) range.
3233 May be the same as PC. */
3234
3235 CORE_ADDR
3236 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3237 {
3238 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3239 {
3240 bfd *abfd = section->objfile->obfd;
3241 asection *bfd_section = section->the_bfd_section;
3242
3243 return pc + bfd_section_vma (abfd, bfd_section)
3244 - bfd_section_lma (abfd, bfd_section);
3245 }
3246
3247 return pc;
3248 }
3249
3250 /* Function: symbol_overlayed_address
3251 Return one of two addresses (relative to the VMA or to the LMA),
3252 depending on whether the section is mapped or not. */
3253
3254 CORE_ADDR
3255 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3256 {
3257 if (overlay_debugging)
3258 {
3259 /* If the symbol has no section, just return its regular address. */
3260 if (section == 0)
3261 return address;
3262 /* If the symbol's section is not an overlay, just return its
3263 address. */
3264 if (!section_is_overlay (section))
3265 return address;
3266 /* If the symbol's section is mapped, just return its address. */
3267 if (section_is_mapped (section))
3268 return address;
3269 /*
3270 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3271 * then return its LOADED address rather than its vma address!!
3272 */
3273 return overlay_unmapped_address (address, section);
3274 }
3275 return address;
3276 }
3277
3278 /* Function: find_pc_overlay (PC)
3279 Return the best-match overlay section for PC:
3280 If PC matches a mapped overlay section's VMA, return that section.
3281 Else if PC matches an unmapped section's VMA, return that section.
3282 Else if PC matches an unmapped section's LMA, return that section. */
3283
3284 struct obj_section *
3285 find_pc_overlay (CORE_ADDR pc)
3286 {
3287 struct objfile *objfile;
3288 struct obj_section *osect, *best_match = NULL;
3289
3290 if (overlay_debugging)
3291 {
3292 ALL_OBJSECTIONS (objfile, osect)
3293 if (section_is_overlay (osect))
3294 {
3295 if (pc_in_mapped_range (pc, osect))
3296 {
3297 if (section_is_mapped (osect))
3298 return osect;
3299 else
3300 best_match = osect;
3301 }
3302 else if (pc_in_unmapped_range (pc, osect))
3303 best_match = osect;
3304 }
3305 }
3306 return best_match;
3307 }
3308
3309 /* Function: find_pc_mapped_section (PC)
3310 If PC falls into the VMA address range of an overlay section that is
3311 currently marked as MAPPED, return that section. Else return NULL. */
3312
3313 struct obj_section *
3314 find_pc_mapped_section (CORE_ADDR pc)
3315 {
3316 struct objfile *objfile;
3317 struct obj_section *osect;
3318
3319 if (overlay_debugging)
3320 {
3321 ALL_OBJSECTIONS (objfile, osect)
3322 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3323 return osect;
3324 }
3325
3326 return NULL;
3327 }
3328
3329 /* Function: list_overlays_command
3330 Print a list of mapped sections and their PC ranges. */
3331
3332 static void
3333 list_overlays_command (char *args, int from_tty)
3334 {
3335 int nmapped = 0;
3336 struct objfile *objfile;
3337 struct obj_section *osect;
3338
3339 if (overlay_debugging)
3340 {
3341 ALL_OBJSECTIONS (objfile, osect)
3342 if (section_is_mapped (osect))
3343 {
3344 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3345 const char *name;
3346 bfd_vma lma, vma;
3347 int size;
3348
3349 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3350 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3351 size = bfd_get_section_size (osect->the_bfd_section);
3352 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3353
3354 printf_filtered ("Section %s, loaded at ", name);
3355 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3356 puts_filtered (" - ");
3357 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3358 printf_filtered (", mapped at ");
3359 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3360 puts_filtered (" - ");
3361 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3362 puts_filtered ("\n");
3363
3364 nmapped++;
3365 }
3366 }
3367 if (nmapped == 0)
3368 printf_filtered (_("No sections are mapped.\n"));
3369 }
3370
3371 /* Function: map_overlay_command
3372 Mark the named section as mapped (ie. residing at its VMA address). */
3373
3374 static void
3375 map_overlay_command (char *args, int from_tty)
3376 {
3377 struct objfile *objfile, *objfile2;
3378 struct obj_section *sec, *sec2;
3379
3380 if (!overlay_debugging)
3381 error (_("Overlay debugging not enabled. Use "
3382 "either the 'overlay auto' or\n"
3383 "the 'overlay manual' command."));
3384
3385 if (args == 0 || *args == 0)
3386 error (_("Argument required: name of an overlay section"));
3387
3388 /* First, find a section matching the user supplied argument. */
3389 ALL_OBJSECTIONS (objfile, sec)
3390 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3391 {
3392 /* Now, check to see if the section is an overlay. */
3393 if (!section_is_overlay (sec))
3394 continue; /* not an overlay section */
3395
3396 /* Mark the overlay as "mapped". */
3397 sec->ovly_mapped = 1;
3398
3399 /* Next, make a pass and unmap any sections that are
3400 overlapped by this new section: */
3401 ALL_OBJSECTIONS (objfile2, sec2)
3402 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3403 {
3404 if (info_verbose)
3405 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3406 bfd_section_name (objfile->obfd,
3407 sec2->the_bfd_section));
3408 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3409 }
3410 return;
3411 }
3412 error (_("No overlay section called %s"), args);
3413 }
3414
3415 /* Function: unmap_overlay_command
3416 Mark the overlay section as unmapped
3417 (ie. resident in its LMA address range, rather than the VMA range). */
3418
3419 static void
3420 unmap_overlay_command (char *args, int from_tty)
3421 {
3422 struct objfile *objfile;
3423 struct obj_section *sec = NULL;
3424
3425 if (!overlay_debugging)
3426 error (_("Overlay debugging not enabled. "
3427 "Use either the 'overlay auto' or\n"
3428 "the 'overlay manual' command."));
3429
3430 if (args == 0 || *args == 0)
3431 error (_("Argument required: name of an overlay section"));
3432
3433 /* First, find a section matching the user supplied argument. */
3434 ALL_OBJSECTIONS (objfile, sec)
3435 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3436 {
3437 if (!sec->ovly_mapped)
3438 error (_("Section %s is not mapped"), args);
3439 sec->ovly_mapped = 0;
3440 return;
3441 }
3442 error (_("No overlay section called %s"), args);
3443 }
3444
3445 /* Function: overlay_auto_command
3446 A utility command to turn on overlay debugging.
3447 Possibly this should be done via a set/show command. */
3448
3449 static void
3450 overlay_auto_command (char *args, int from_tty)
3451 {
3452 overlay_debugging = ovly_auto;
3453 enable_overlay_breakpoints ();
3454 if (info_verbose)
3455 printf_unfiltered (_("Automatic overlay debugging enabled."));
3456 }
3457
3458 /* Function: overlay_manual_command
3459 A utility command to turn on overlay debugging.
3460 Possibly this should be done via a set/show command. */
3461
3462 static void
3463 overlay_manual_command (char *args, int from_tty)
3464 {
3465 overlay_debugging = ovly_on;
3466 disable_overlay_breakpoints ();
3467 if (info_verbose)
3468 printf_unfiltered (_("Overlay debugging enabled."));
3469 }
3470
3471 /* Function: overlay_off_command
3472 A utility command to turn on overlay debugging.
3473 Possibly this should be done via a set/show command. */
3474
3475 static void
3476 overlay_off_command (char *args, int from_tty)
3477 {
3478 overlay_debugging = ovly_off;
3479 disable_overlay_breakpoints ();
3480 if (info_verbose)
3481 printf_unfiltered (_("Overlay debugging disabled."));
3482 }
3483
3484 static void
3485 overlay_load_command (char *args, int from_tty)
3486 {
3487 struct gdbarch *gdbarch = get_current_arch ();
3488
3489 if (gdbarch_overlay_update_p (gdbarch))
3490 gdbarch_overlay_update (gdbarch, NULL);
3491 else
3492 error (_("This target does not know how to read its overlay state."));
3493 }
3494
3495 /* Function: overlay_command
3496 A place-holder for a mis-typed command. */
3497
3498 /* Command list chain containing all defined "overlay" subcommands. */
3499 static struct cmd_list_element *overlaylist;
3500
3501 static void
3502 overlay_command (char *args, int from_tty)
3503 {
3504 printf_unfiltered
3505 ("\"overlay\" must be followed by the name of an overlay command.\n");
3506 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3507 }
3508
3509 /* Target Overlays for the "Simplest" overlay manager:
3510
3511 This is GDB's default target overlay layer. It works with the
3512 minimal overlay manager supplied as an example by Cygnus. The
3513 entry point is via a function pointer "gdbarch_overlay_update",
3514 so targets that use a different runtime overlay manager can
3515 substitute their own overlay_update function and take over the
3516 function pointer.
3517
3518 The overlay_update function pokes around in the target's data structures
3519 to see what overlays are mapped, and updates GDB's overlay mapping with
3520 this information.
3521
3522 In this simple implementation, the target data structures are as follows:
3523 unsigned _novlys; /# number of overlay sections #/
3524 unsigned _ovly_table[_novlys][4] = {
3525 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3526 {..., ..., ..., ...},
3527 }
3528 unsigned _novly_regions; /# number of overlay regions #/
3529 unsigned _ovly_region_table[_novly_regions][3] = {
3530 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3531 {..., ..., ...},
3532 }
3533 These functions will attempt to update GDB's mappedness state in the
3534 symbol section table, based on the target's mappedness state.
3535
3536 To do this, we keep a cached copy of the target's _ovly_table, and
3537 attempt to detect when the cached copy is invalidated. The main
3538 entry point is "simple_overlay_update(SECT), which looks up SECT in
3539 the cached table and re-reads only the entry for that section from
3540 the target (whenever possible). */
3541
3542 /* Cached, dynamically allocated copies of the target data structures: */
3543 static unsigned (*cache_ovly_table)[4] = 0;
3544 static unsigned cache_novlys = 0;
3545 static CORE_ADDR cache_ovly_table_base = 0;
3546 enum ovly_index
3547 {
3548 VMA, OSIZE, LMA, MAPPED
3549 };
3550
3551 /* Throw away the cached copy of _ovly_table. */
3552
3553 static void
3554 simple_free_overlay_table (void)
3555 {
3556 if (cache_ovly_table)
3557 xfree (cache_ovly_table);
3558 cache_novlys = 0;
3559 cache_ovly_table = NULL;
3560 cache_ovly_table_base = 0;
3561 }
3562
3563 /* Read an array of ints of size SIZE from the target into a local buffer.
3564 Convert to host order. int LEN is number of ints. */
3565
3566 static void
3567 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3568 int len, int size, enum bfd_endian byte_order)
3569 {
3570 /* FIXME (alloca): Not safe if array is very large. */
3571 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3572 int i;
3573
3574 read_memory (memaddr, buf, len * size);
3575 for (i = 0; i < len; i++)
3576 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3577 }
3578
3579 /* Find and grab a copy of the target _ovly_table
3580 (and _novlys, which is needed for the table's size). */
3581
3582 static int
3583 simple_read_overlay_table (void)
3584 {
3585 struct bound_minimal_symbol novlys_msym;
3586 struct bound_minimal_symbol ovly_table_msym;
3587 struct gdbarch *gdbarch;
3588 int word_size;
3589 enum bfd_endian byte_order;
3590
3591 simple_free_overlay_table ();
3592 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3593 if (! novlys_msym.minsym)
3594 {
3595 error (_("Error reading inferior's overlay table: "
3596 "couldn't find `_novlys' variable\n"
3597 "in inferior. Use `overlay manual' mode."));
3598 return 0;
3599 }
3600
3601 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3602 if (! ovly_table_msym.minsym)
3603 {
3604 error (_("Error reading inferior's overlay table: couldn't find "
3605 "`_ovly_table' array\n"
3606 "in inferior. Use `overlay manual' mode."));
3607 return 0;
3608 }
3609
3610 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3611 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3612 byte_order = gdbarch_byte_order (gdbarch);
3613
3614 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3615 4, byte_order);
3616 cache_ovly_table
3617 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3618 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3619 read_target_long_array (cache_ovly_table_base,
3620 (unsigned int *) cache_ovly_table,
3621 cache_novlys * 4, word_size, byte_order);
3622
3623 return 1; /* SUCCESS */
3624 }
3625
3626 /* Function: simple_overlay_update_1
3627 A helper function for simple_overlay_update. Assuming a cached copy
3628 of _ovly_table exists, look through it to find an entry whose vma,
3629 lma and size match those of OSECT. Re-read the entry and make sure
3630 it still matches OSECT (else the table may no longer be valid).
3631 Set OSECT's mapped state to match the entry. Return: 1 for
3632 success, 0 for failure. */
3633
3634 static int
3635 simple_overlay_update_1 (struct obj_section *osect)
3636 {
3637 int i, size;
3638 bfd *obfd = osect->objfile->obfd;
3639 asection *bsect = osect->the_bfd_section;
3640 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3641 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3642 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3643
3644 size = bfd_get_section_size (osect->the_bfd_section);
3645 for (i = 0; i < cache_novlys; i++)
3646 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3647 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3648 /* && cache_ovly_table[i][OSIZE] == size */ )
3649 {
3650 read_target_long_array (cache_ovly_table_base + i * word_size,
3651 (unsigned int *) cache_ovly_table[i],
3652 4, word_size, byte_order);
3653 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3654 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3655 /* && cache_ovly_table[i][OSIZE] == size */ )
3656 {
3657 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3658 return 1;
3659 }
3660 else /* Warning! Warning! Target's ovly table has changed! */
3661 return 0;
3662 }
3663 return 0;
3664 }
3665
3666 /* Function: simple_overlay_update
3667 If OSECT is NULL, then update all sections' mapped state
3668 (after re-reading the entire target _ovly_table).
3669 If OSECT is non-NULL, then try to find a matching entry in the
3670 cached ovly_table and update only OSECT's mapped state.
3671 If a cached entry can't be found or the cache isn't valid, then
3672 re-read the entire cache, and go ahead and update all sections. */
3673
3674 void
3675 simple_overlay_update (struct obj_section *osect)
3676 {
3677 struct objfile *objfile;
3678
3679 /* Were we given an osect to look up? NULL means do all of them. */
3680 if (osect)
3681 /* Have we got a cached copy of the target's overlay table? */
3682 if (cache_ovly_table != NULL)
3683 {
3684 /* Does its cached location match what's currently in the
3685 symtab? */
3686 struct bound_minimal_symbol minsym
3687 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3688
3689 if (minsym.minsym == NULL)
3690 error (_("Error reading inferior's overlay table: couldn't "
3691 "find `_ovly_table' array\n"
3692 "in inferior. Use `overlay manual' mode."));
3693
3694 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3695 /* Then go ahead and try to look up this single section in
3696 the cache. */
3697 if (simple_overlay_update_1 (osect))
3698 /* Found it! We're done. */
3699 return;
3700 }
3701
3702 /* Cached table no good: need to read the entire table anew.
3703 Or else we want all the sections, in which case it's actually
3704 more efficient to read the whole table in one block anyway. */
3705
3706 if (! simple_read_overlay_table ())
3707 return;
3708
3709 /* Now may as well update all sections, even if only one was requested. */
3710 ALL_OBJSECTIONS (objfile, osect)
3711 if (section_is_overlay (osect))
3712 {
3713 int i, size;
3714 bfd *obfd = osect->objfile->obfd;
3715 asection *bsect = osect->the_bfd_section;
3716
3717 size = bfd_get_section_size (bsect);
3718 for (i = 0; i < cache_novlys; i++)
3719 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3720 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3721 /* && cache_ovly_table[i][OSIZE] == size */ )
3722 { /* obj_section matches i'th entry in ovly_table. */
3723 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3724 break; /* finished with inner for loop: break out. */
3725 }
3726 }
3727 }
3728
3729 /* Set the output sections and output offsets for section SECTP in
3730 ABFD. The relocation code in BFD will read these offsets, so we
3731 need to be sure they're initialized. We map each section to itself,
3732 with no offset; this means that SECTP->vma will be honored. */
3733
3734 static void
3735 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3736 {
3737 sectp->output_section = sectp;
3738 sectp->output_offset = 0;
3739 }
3740
3741 /* Default implementation for sym_relocate. */
3742
3743 bfd_byte *
3744 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3745 bfd_byte *buf)
3746 {
3747 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3748 DWO file. */
3749 bfd *abfd = sectp->owner;
3750
3751 /* We're only interested in sections with relocation
3752 information. */
3753 if ((sectp->flags & SEC_RELOC) == 0)
3754 return NULL;
3755
3756 /* We will handle section offsets properly elsewhere, so relocate as if
3757 all sections begin at 0. */
3758 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3759
3760 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3761 }
3762
3763 /* Relocate the contents of a debug section SECTP in ABFD. The
3764 contents are stored in BUF if it is non-NULL, or returned in a
3765 malloc'd buffer otherwise.
3766
3767 For some platforms and debug info formats, shared libraries contain
3768 relocations against the debug sections (particularly for DWARF-2;
3769 one affected platform is PowerPC GNU/Linux, although it depends on
3770 the version of the linker in use). Also, ELF object files naturally
3771 have unresolved relocations for their debug sections. We need to apply
3772 the relocations in order to get the locations of symbols correct.
3773 Another example that may require relocation processing, is the
3774 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3775 debug section. */
3776
3777 bfd_byte *
3778 symfile_relocate_debug_section (struct objfile *objfile,
3779 asection *sectp, bfd_byte *buf)
3780 {
3781 gdb_assert (objfile->sf->sym_relocate);
3782
3783 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3784 }
3785
3786 struct symfile_segment_data *
3787 get_symfile_segment_data (bfd *abfd)
3788 {
3789 const struct sym_fns *sf = find_sym_fns (abfd);
3790
3791 if (sf == NULL)
3792 return NULL;
3793
3794 return sf->sym_segments (abfd);
3795 }
3796
3797 void
3798 free_symfile_segment_data (struct symfile_segment_data *data)
3799 {
3800 xfree (data->segment_bases);
3801 xfree (data->segment_sizes);
3802 xfree (data->segment_info);
3803 xfree (data);
3804 }
3805
3806 /* Given:
3807 - DATA, containing segment addresses from the object file ABFD, and
3808 the mapping from ABFD's sections onto the segments that own them,
3809 and
3810 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3811 segment addresses reported by the target,
3812 store the appropriate offsets for each section in OFFSETS.
3813
3814 If there are fewer entries in SEGMENT_BASES than there are segments
3815 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3816
3817 If there are more entries, then ignore the extra. The target may
3818 not be able to distinguish between an empty data segment and a
3819 missing data segment; a missing text segment is less plausible. */
3820
3821 int
3822 symfile_map_offsets_to_segments (bfd *abfd,
3823 const struct symfile_segment_data *data,
3824 struct section_offsets *offsets,
3825 int num_segment_bases,
3826 const CORE_ADDR *segment_bases)
3827 {
3828 int i;
3829 asection *sect;
3830
3831 /* It doesn't make sense to call this function unless you have some
3832 segment base addresses. */
3833 gdb_assert (num_segment_bases > 0);
3834
3835 /* If we do not have segment mappings for the object file, we
3836 can not relocate it by segments. */
3837 gdb_assert (data != NULL);
3838 gdb_assert (data->num_segments > 0);
3839
3840 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3841 {
3842 int which = data->segment_info[i];
3843
3844 gdb_assert (0 <= which && which <= data->num_segments);
3845
3846 /* Don't bother computing offsets for sections that aren't
3847 loaded as part of any segment. */
3848 if (! which)
3849 continue;
3850
3851 /* Use the last SEGMENT_BASES entry as the address of any extra
3852 segments mentioned in DATA->segment_info. */
3853 if (which > num_segment_bases)
3854 which = num_segment_bases;
3855
3856 offsets->offsets[i] = (segment_bases[which - 1]
3857 - data->segment_bases[which - 1]);
3858 }
3859
3860 return 1;
3861 }
3862
3863 static void
3864 symfile_find_segment_sections (struct objfile *objfile)
3865 {
3866 bfd *abfd = objfile->obfd;
3867 int i;
3868 asection *sect;
3869 struct symfile_segment_data *data;
3870
3871 data = get_symfile_segment_data (objfile->obfd);
3872 if (data == NULL)
3873 return;
3874
3875 if (data->num_segments != 1 && data->num_segments != 2)
3876 {
3877 free_symfile_segment_data (data);
3878 return;
3879 }
3880
3881 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3882 {
3883 int which = data->segment_info[i];
3884
3885 if (which == 1)
3886 {
3887 if (objfile->sect_index_text == -1)
3888 objfile->sect_index_text = sect->index;
3889
3890 if (objfile->sect_index_rodata == -1)
3891 objfile->sect_index_rodata = sect->index;
3892 }
3893 else if (which == 2)
3894 {
3895 if (objfile->sect_index_data == -1)
3896 objfile->sect_index_data = sect->index;
3897
3898 if (objfile->sect_index_bss == -1)
3899 objfile->sect_index_bss = sect->index;
3900 }
3901 }
3902
3903 free_symfile_segment_data (data);
3904 }
3905
3906 /* Listen for free_objfile events. */
3907
3908 static void
3909 symfile_free_objfile (struct objfile *objfile)
3910 {
3911 /* Remove the target sections owned by this objfile. */
3912 if (objfile != NULL)
3913 remove_target_sections ((void *) objfile);
3914 }
3915
3916 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3917 Expand all symtabs that match the specified criteria.
3918 See quick_symbol_functions.expand_symtabs_matching for details. */
3919
3920 void
3921 expand_symtabs_matching (expand_symtabs_file_matcher_ftype *file_matcher,
3922 expand_symtabs_symbol_matcher_ftype *symbol_matcher,
3923 expand_symtabs_exp_notify_ftype *expansion_notify,
3924 enum search_domain kind,
3925 void *data)
3926 {
3927 struct objfile *objfile;
3928
3929 ALL_OBJFILES (objfile)
3930 {
3931 if (objfile->sf)
3932 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3933 symbol_matcher,
3934 expansion_notify, kind,
3935 data);
3936 }
3937 }
3938
3939 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3940 Map function FUN over every file.
3941 See quick_symbol_functions.map_symbol_filenames for details. */
3942
3943 void
3944 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3945 int need_fullname)
3946 {
3947 struct objfile *objfile;
3948
3949 ALL_OBJFILES (objfile)
3950 {
3951 if (objfile->sf)
3952 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3953 need_fullname);
3954 }
3955 }
3956
3957 void
3958 _initialize_symfile (void)
3959 {
3960 struct cmd_list_element *c;
3961
3962 observer_attach_free_objfile (symfile_free_objfile);
3963
3964 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3965 Load symbol table from executable file FILE.\n\
3966 The `file' command can also load symbol tables, as well as setting the file\n\
3967 to execute."), &cmdlist);
3968 set_cmd_completer (c, filename_completer);
3969
3970 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3971 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3972 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3973 ...]\nADDR is the starting address of the file's text.\n\
3974 The optional arguments are section-name section-address pairs and\n\
3975 should be specified if the data and bss segments are not contiguous\n\
3976 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3977 &cmdlist);
3978 set_cmd_completer (c, filename_completer);
3979
3980 c = add_cmd ("remove-symbol-file", class_files,
3981 remove_symbol_file_command, _("\
3982 Remove a symbol file added via the add-symbol-file command.\n\
3983 Usage: remove-symbol-file FILENAME\n\
3984 remove-symbol-file -a ADDRESS\n\
3985 The file to remove can be identified by its filename or by an address\n\
3986 that lies within the boundaries of this symbol file in memory."),
3987 &cmdlist);
3988
3989 c = add_cmd ("load", class_files, load_command, _("\
3990 Dynamically load FILE into the running program, and record its symbols\n\
3991 for access from GDB.\n\
3992 A load OFFSET may also be given."), &cmdlist);
3993 set_cmd_completer (c, filename_completer);
3994
3995 add_prefix_cmd ("overlay", class_support, overlay_command,
3996 _("Commands for debugging overlays."), &overlaylist,
3997 "overlay ", 0, &cmdlist);
3998
3999 add_com_alias ("ovly", "overlay", class_alias, 1);
4000 add_com_alias ("ov", "overlay", class_alias, 1);
4001
4002 add_cmd ("map-overlay", class_support, map_overlay_command,
4003 _("Assert that an overlay section is mapped."), &overlaylist);
4004
4005 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4006 _("Assert that an overlay section is unmapped."), &overlaylist);
4007
4008 add_cmd ("list-overlays", class_support, list_overlays_command,
4009 _("List mappings of overlay sections."), &overlaylist);
4010
4011 add_cmd ("manual", class_support, overlay_manual_command,
4012 _("Enable overlay debugging."), &overlaylist);
4013 add_cmd ("off", class_support, overlay_off_command,
4014 _("Disable overlay debugging."), &overlaylist);
4015 add_cmd ("auto", class_support, overlay_auto_command,
4016 _("Enable automatic overlay debugging."), &overlaylist);
4017 add_cmd ("load-target", class_support, overlay_load_command,
4018 _("Read the overlay mapping state from the target."), &overlaylist);
4019
4020 /* Filename extension to source language lookup table: */
4021 init_filename_language_table ();
4022 add_setshow_string_noescape_cmd ("extension-language", class_files,
4023 &ext_args, _("\
4024 Set mapping between filename extension and source language."), _("\
4025 Show mapping between filename extension and source language."), _("\
4026 Usage: set extension-language .foo bar"),
4027 set_ext_lang_command,
4028 show_ext_args,
4029 &setlist, &showlist);
4030
4031 add_info ("extensions", info_ext_lang_command,
4032 _("All filename extensions associated with a source language."));
4033
4034 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4035 &debug_file_directory, _("\
4036 Set the directories where separate debug symbols are searched for."), _("\
4037 Show the directories where separate debug symbols are searched for."), _("\
4038 Separate debug symbols are first searched for in the same\n\
4039 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4040 and lastly at the path of the directory of the binary with\n\
4041 each global debug-file-directory component prepended."),
4042 NULL,
4043 show_debug_file_directory,
4044 &setlist, &showlist);
4045
4046 add_setshow_enum_cmd ("symbol-loading", no_class,
4047 print_symbol_loading_enums, &print_symbol_loading,
4048 _("\
4049 Set printing of symbol loading messages."), _("\
4050 Show printing of symbol loading messages."), _("\
4051 off == turn all messages off\n\
4052 brief == print messages for the executable,\n\
4053 and brief messages for shared libraries\n\
4054 full == print messages for the executable,\n\
4055 and messages for each shared library."),
4056 NULL,
4057 NULL,
4058 &setprintlist, &showprintlist);
4059 }