gdb/
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68
69 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
70 void (*deprecated_show_load_progress) (const char *section,
71 unsigned long section_sent,
72 unsigned long section_size,
73 unsigned long total_sent,
74 unsigned long total_size);
75 void (*deprecated_pre_add_symbol_hook) (const char *);
76 void (*deprecated_post_add_symbol_hook) (void);
77
78 static void clear_symtab_users_cleanup (void *ignore);
79
80 /* Global variables owned by this file */
81 int readnow_symbol_files; /* Read full symbols immediately */
82
83 /* External variables and functions referenced. */
84
85 extern void report_transfer_performance (unsigned long, time_t, time_t);
86
87 /* Functions this file defines */
88
89 #if 0
90 static int simple_read_overlay_region_table (void);
91 static void simple_free_overlay_region_table (void);
92 #endif
93
94 static void load_command (char *, int);
95
96 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
97
98 static void add_symbol_file_command (char *, int);
99
100 static void reread_separate_symbols (struct objfile *objfile);
101
102 static void cashier_psymtab (struct partial_symtab *);
103
104 bfd *symfile_bfd_open (char *);
105
106 int get_section_index (struct objfile *, char *);
107
108 static struct sym_fns *find_sym_fns (bfd *);
109
110 static void decrement_reading_symtab (void *);
111
112 static void overlay_invalidate_all (void);
113
114 void list_overlays_command (char *, int);
115
116 void map_overlay_command (char *, int);
117
118 void unmap_overlay_command (char *, int);
119
120 static void overlay_auto_command (char *, int);
121
122 static void overlay_manual_command (char *, int);
123
124 static void overlay_off_command (char *, int);
125
126 static void overlay_load_command (char *, int);
127
128 static void overlay_command (char *, int);
129
130 static void simple_free_overlay_table (void);
131
132 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
133 enum bfd_endian);
134
135 static int simple_read_overlay_table (void);
136
137 static int simple_overlay_update_1 (struct obj_section *);
138
139 static void add_filename_language (char *ext, enum language lang);
140
141 static void info_ext_lang_command (char *args, int from_tty);
142
143 static char *find_separate_debug_file (struct objfile *objfile);
144
145 static void init_filename_language_table (void);
146
147 static void symfile_find_segment_sections (struct objfile *objfile);
148
149 void _initialize_symfile (void);
150
151 /* List of all available sym_fns. On gdb startup, each object file reader
152 calls add_symtab_fns() to register information on each format it is
153 prepared to read. */
154
155 static struct sym_fns *symtab_fns = NULL;
156
157 /* Flag for whether user will be reloading symbols multiple times.
158 Defaults to ON for VxWorks, otherwise OFF. */
159
160 #ifdef SYMBOL_RELOADING_DEFAULT
161 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
162 #else
163 int symbol_reloading = 0;
164 #endif
165 static void
166 show_symbol_reloading (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("\
170 Dynamic symbol table reloading multiple times in one run is %s.\n"),
171 value);
172 }
173
174 /* If non-zero, gdb will notify the user when it is loading symbols
175 from a file. This is almost always what users will want to have happen;
176 but for programs with lots of dynamically linked libraries, the output
177 can be more noise than signal. */
178
179 int print_symbol_loading = 1;
180
181 /* If non-zero, shared library symbols will be added automatically
182 when the inferior is created, new libraries are loaded, or when
183 attaching to the inferior. This is almost always what users will
184 want to have happen; but for very large programs, the startup time
185 will be excessive, and so if this is a problem, the user can clear
186 this flag and then add the shared library symbols as needed. Note
187 that there is a potential for confusion, since if the shared
188 library symbols are not loaded, commands like "info fun" will *not*
189 report all the functions that are actually present. */
190
191 int auto_solib_add = 1;
192
193 /* For systems that support it, a threshold size in megabytes. If
194 automatically adding a new library's symbol table to those already
195 known to the debugger would cause the total shared library symbol
196 size to exceed this threshhold, then the shlib's symbols are not
197 added. The threshold is ignored if the user explicitly asks for a
198 shlib to be added, such as when using the "sharedlibrary"
199 command. */
200
201 int auto_solib_limit;
202 \f
203
204 /* This compares two partial symbols by names, using strcmp_iw_ordered
205 for the comparison. */
206
207 static int
208 compare_psymbols (const void *s1p, const void *s2p)
209 {
210 struct partial_symbol *const *s1 = s1p;
211 struct partial_symbol *const *s2 = s2p;
212
213 return strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*s1),
214 SYMBOL_SEARCH_NAME (*s2));
215 }
216
217 void
218 sort_pst_symbols (struct partial_symtab *pst)
219 {
220 /* Sort the global list; don't sort the static list */
221
222 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
223 pst->n_global_syms, sizeof (struct partial_symbol *),
224 compare_psymbols);
225 }
226
227 /* Make a null terminated copy of the string at PTR with SIZE characters in
228 the obstack pointed to by OBSTACKP . Returns the address of the copy.
229 Note that the string at PTR does not have to be null terminated, I.E. it
230 may be part of a larger string and we are only saving a substring. */
231
232 char *
233 obsavestring (const char *ptr, int size, struct obstack *obstackp)
234 {
235 char *p = (char *) obstack_alloc (obstackp, size + 1);
236 /* Open-coded memcpy--saves function call time. These strings are usually
237 short. FIXME: Is this really still true with a compiler that can
238 inline memcpy? */
239 {
240 const char *p1 = ptr;
241 char *p2 = p;
242 const char *end = ptr + size;
243 while (p1 != end)
244 *p2++ = *p1++;
245 }
246 p[size] = 0;
247 return p;
248 }
249
250 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
251 in the obstack pointed to by OBSTACKP. */
252
253 char *
254 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
255 const char *s3)
256 {
257 int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
258 char *val = (char *) obstack_alloc (obstackp, len);
259 strcpy (val, s1);
260 strcat (val, s2);
261 strcat (val, s3);
262 return val;
263 }
264
265 /* True if we are nested inside psymtab_to_symtab. */
266
267 int currently_reading_symtab = 0;
268
269 static void
270 decrement_reading_symtab (void *dummy)
271 {
272 currently_reading_symtab--;
273 }
274
275 /* Get the symbol table that corresponds to a partial_symtab.
276 This is fast after the first time you do it. In fact, there
277 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
278 case inline. */
279
280 struct symtab *
281 psymtab_to_symtab (struct partial_symtab *pst)
282 {
283 /* If it's been looked up before, return it. */
284 if (pst->symtab)
285 return pst->symtab;
286
287 /* If it has not yet been read in, read it. */
288 if (!pst->readin)
289 {
290 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
291 currently_reading_symtab++;
292 (*pst->read_symtab) (pst);
293 do_cleanups (back_to);
294 }
295
296 return pst->symtab;
297 }
298
299 /* Remember the lowest-addressed loadable section we've seen.
300 This function is called via bfd_map_over_sections.
301
302 In case of equal vmas, the section with the largest size becomes the
303 lowest-addressed loadable section.
304
305 If the vmas and sizes are equal, the last section is considered the
306 lowest-addressed loadable section. */
307
308 void
309 find_lowest_section (bfd *abfd, asection *sect, void *obj)
310 {
311 asection **lowest = (asection **) obj;
312
313 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
314 return;
315 if (!*lowest)
316 *lowest = sect; /* First loadable section */
317 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
318 *lowest = sect; /* A lower loadable section */
319 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
320 && (bfd_section_size (abfd, (*lowest))
321 <= bfd_section_size (abfd, sect)))
322 *lowest = sect;
323 }
324
325 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
326
327 struct section_addr_info *
328 alloc_section_addr_info (size_t num_sections)
329 {
330 struct section_addr_info *sap;
331 size_t size;
332
333 size = (sizeof (struct section_addr_info)
334 + sizeof (struct other_sections) * (num_sections - 1));
335 sap = (struct section_addr_info *) xmalloc (size);
336 memset (sap, 0, size);
337 sap->num_sections = num_sections;
338
339 return sap;
340 }
341
342
343 /* Return a freshly allocated copy of ADDRS. The section names, if
344 any, are also freshly allocated copies of those in ADDRS. */
345 struct section_addr_info *
346 copy_section_addr_info (struct section_addr_info *addrs)
347 {
348 struct section_addr_info *copy
349 = alloc_section_addr_info (addrs->num_sections);
350 int i;
351
352 copy->num_sections = addrs->num_sections;
353 for (i = 0; i < addrs->num_sections; i++)
354 {
355 copy->other[i].addr = addrs->other[i].addr;
356 if (addrs->other[i].name)
357 copy->other[i].name = xstrdup (addrs->other[i].name);
358 else
359 copy->other[i].name = NULL;
360 copy->other[i].sectindex = addrs->other[i].sectindex;
361 }
362
363 return copy;
364 }
365
366
367
368 /* Build (allocate and populate) a section_addr_info struct from
369 an existing section table. */
370
371 extern struct section_addr_info *
372 build_section_addr_info_from_section_table (const struct target_section *start,
373 const struct target_section *end)
374 {
375 struct section_addr_info *sap;
376 const struct target_section *stp;
377 int oidx;
378
379 sap = alloc_section_addr_info (end - start);
380
381 for (stp = start, oidx = 0; stp != end; stp++)
382 {
383 if (bfd_get_section_flags (stp->bfd,
384 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
385 && oidx < end - start)
386 {
387 sap->other[oidx].addr = stp->addr;
388 sap->other[oidx].name
389 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
390 sap->other[oidx].sectindex = stp->the_bfd_section->index;
391 oidx++;
392 }
393 }
394
395 return sap;
396 }
397
398
399 /* Free all memory allocated by build_section_addr_info_from_section_table. */
400
401 extern void
402 free_section_addr_info (struct section_addr_info *sap)
403 {
404 int idx;
405
406 for (idx = 0; idx < sap->num_sections; idx++)
407 if (sap->other[idx].name)
408 xfree (sap->other[idx].name);
409 xfree (sap);
410 }
411
412
413 /* Initialize OBJFILE's sect_index_* members. */
414 static void
415 init_objfile_sect_indices (struct objfile *objfile)
416 {
417 asection *sect;
418 int i;
419
420 sect = bfd_get_section_by_name (objfile->obfd, ".text");
421 if (sect)
422 objfile->sect_index_text = sect->index;
423
424 sect = bfd_get_section_by_name (objfile->obfd, ".data");
425 if (sect)
426 objfile->sect_index_data = sect->index;
427
428 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
429 if (sect)
430 objfile->sect_index_bss = sect->index;
431
432 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
433 if (sect)
434 objfile->sect_index_rodata = sect->index;
435
436 /* This is where things get really weird... We MUST have valid
437 indices for the various sect_index_* members or gdb will abort.
438 So if for example, there is no ".text" section, we have to
439 accomodate that. First, check for a file with the standard
440 one or two segments. */
441
442 symfile_find_segment_sections (objfile);
443
444 /* Except when explicitly adding symbol files at some address,
445 section_offsets contains nothing but zeros, so it doesn't matter
446 which slot in section_offsets the individual sect_index_* members
447 index into. So if they are all zero, it is safe to just point
448 all the currently uninitialized indices to the first slot. But
449 beware: if this is the main executable, it may be relocated
450 later, e.g. by the remote qOffsets packet, and then this will
451 be wrong! That's why we try segments first. */
452
453 for (i = 0; i < objfile->num_sections; i++)
454 {
455 if (ANOFFSET (objfile->section_offsets, i) != 0)
456 {
457 break;
458 }
459 }
460 if (i == objfile->num_sections)
461 {
462 if (objfile->sect_index_text == -1)
463 objfile->sect_index_text = 0;
464 if (objfile->sect_index_data == -1)
465 objfile->sect_index_data = 0;
466 if (objfile->sect_index_bss == -1)
467 objfile->sect_index_bss = 0;
468 if (objfile->sect_index_rodata == -1)
469 objfile->sect_index_rodata = 0;
470 }
471 }
472
473 /* The arguments to place_section. */
474
475 struct place_section_arg
476 {
477 struct section_offsets *offsets;
478 CORE_ADDR lowest;
479 };
480
481 /* Find a unique offset to use for loadable section SECT if
482 the user did not provide an offset. */
483
484 static void
485 place_section (bfd *abfd, asection *sect, void *obj)
486 {
487 struct place_section_arg *arg = obj;
488 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
489 int done;
490 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
491
492 /* We are only interested in allocated sections. */
493 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
494 return;
495
496 /* If the user specified an offset, honor it. */
497 if (offsets[sect->index] != 0)
498 return;
499
500 /* Otherwise, let's try to find a place for the section. */
501 start_addr = (arg->lowest + align - 1) & -align;
502
503 do {
504 asection *cur_sec;
505
506 done = 1;
507
508 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
509 {
510 int indx = cur_sec->index;
511 CORE_ADDR cur_offset;
512
513 /* We don't need to compare against ourself. */
514 if (cur_sec == sect)
515 continue;
516
517 /* We can only conflict with allocated sections. */
518 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
519 continue;
520
521 /* If the section offset is 0, either the section has not been placed
522 yet, or it was the lowest section placed (in which case LOWEST
523 will be past its end). */
524 if (offsets[indx] == 0)
525 continue;
526
527 /* If this section would overlap us, then we must move up. */
528 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
529 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
530 {
531 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
532 start_addr = (start_addr + align - 1) & -align;
533 done = 0;
534 break;
535 }
536
537 /* Otherwise, we appear to be OK. So far. */
538 }
539 }
540 while (!done);
541
542 offsets[sect->index] = start_addr;
543 arg->lowest = start_addr + bfd_get_section_size (sect);
544 }
545
546 /* Parse the user's idea of an offset for dynamic linking, into our idea
547 of how to represent it for fast symbol reading. This is the default
548 version of the sym_fns.sym_offsets function for symbol readers that
549 don't need to do anything special. It allocates a section_offsets table
550 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
551
552 void
553 default_symfile_offsets (struct objfile *objfile,
554 struct section_addr_info *addrs)
555 {
556 int i;
557
558 objfile->num_sections = bfd_count_sections (objfile->obfd);
559 objfile->section_offsets = (struct section_offsets *)
560 obstack_alloc (&objfile->objfile_obstack,
561 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
562 memset (objfile->section_offsets, 0,
563 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
564
565 /* Now calculate offsets for section that were specified by the
566 caller. */
567 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
568 {
569 struct other_sections *osp ;
570
571 osp = &addrs->other[i] ;
572 if (osp->addr == 0)
573 continue;
574
575 /* Record all sections in offsets */
576 /* The section_offsets in the objfile are here filled in using
577 the BFD index. */
578 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
579 }
580
581 /* For relocatable files, all loadable sections will start at zero.
582 The zero is meaningless, so try to pick arbitrary addresses such
583 that no loadable sections overlap. This algorithm is quadratic,
584 but the number of sections in a single object file is generally
585 small. */
586 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
587 {
588 struct place_section_arg arg;
589 bfd *abfd = objfile->obfd;
590 asection *cur_sec;
591 CORE_ADDR lowest = 0;
592
593 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
594 /* We do not expect this to happen; just skip this step if the
595 relocatable file has a section with an assigned VMA. */
596 if (bfd_section_vma (abfd, cur_sec) != 0)
597 break;
598
599 if (cur_sec == NULL)
600 {
601 CORE_ADDR *offsets = objfile->section_offsets->offsets;
602
603 /* Pick non-overlapping offsets for sections the user did not
604 place explicitly. */
605 arg.offsets = objfile->section_offsets;
606 arg.lowest = 0;
607 bfd_map_over_sections (objfile->obfd, place_section, &arg);
608
609 /* Correctly filling in the section offsets is not quite
610 enough. Relocatable files have two properties that
611 (most) shared objects do not:
612
613 - Their debug information will contain relocations. Some
614 shared libraries do also, but many do not, so this can not
615 be assumed.
616
617 - If there are multiple code sections they will be loaded
618 at different relative addresses in memory than they are
619 in the objfile, since all sections in the file will start
620 at address zero.
621
622 Because GDB has very limited ability to map from an
623 address in debug info to the correct code section,
624 it relies on adding SECT_OFF_TEXT to things which might be
625 code. If we clear all the section offsets, and set the
626 section VMAs instead, then symfile_relocate_debug_section
627 will return meaningful debug information pointing at the
628 correct sections.
629
630 GDB has too many different data structures for section
631 addresses - a bfd, objfile, and so_list all have section
632 tables, as does exec_ops. Some of these could probably
633 be eliminated. */
634
635 for (cur_sec = abfd->sections; cur_sec != NULL;
636 cur_sec = cur_sec->next)
637 {
638 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
639 continue;
640
641 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
642 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
643 offsets[cur_sec->index]);
644 offsets[cur_sec->index] = 0;
645 }
646 }
647 }
648
649 /* Remember the bfd indexes for the .text, .data, .bss and
650 .rodata sections. */
651 init_objfile_sect_indices (objfile);
652 }
653
654
655 /* Divide the file into segments, which are individual relocatable units.
656 This is the default version of the sym_fns.sym_segments function for
657 symbol readers that do not have an explicit representation of segments.
658 It assumes that object files do not have segments, and fully linked
659 files have a single segment. */
660
661 struct symfile_segment_data *
662 default_symfile_segments (bfd *abfd)
663 {
664 int num_sections, i;
665 asection *sect;
666 struct symfile_segment_data *data;
667 CORE_ADDR low, high;
668
669 /* Relocatable files contain enough information to position each
670 loadable section independently; they should not be relocated
671 in segments. */
672 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
673 return NULL;
674
675 /* Make sure there is at least one loadable section in the file. */
676 for (sect = abfd->sections; sect != NULL; sect = sect->next)
677 {
678 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
679 continue;
680
681 break;
682 }
683 if (sect == NULL)
684 return NULL;
685
686 low = bfd_get_section_vma (abfd, sect);
687 high = low + bfd_get_section_size (sect);
688
689 data = XZALLOC (struct symfile_segment_data);
690 data->num_segments = 1;
691 data->segment_bases = XCALLOC (1, CORE_ADDR);
692 data->segment_sizes = XCALLOC (1, CORE_ADDR);
693
694 num_sections = bfd_count_sections (abfd);
695 data->segment_info = XCALLOC (num_sections, int);
696
697 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
698 {
699 CORE_ADDR vma;
700
701 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
702 continue;
703
704 vma = bfd_get_section_vma (abfd, sect);
705 if (vma < low)
706 low = vma;
707 if (vma + bfd_get_section_size (sect) > high)
708 high = vma + bfd_get_section_size (sect);
709
710 data->segment_info[i] = 1;
711 }
712
713 data->segment_bases[0] = low;
714 data->segment_sizes[0] = high - low;
715
716 return data;
717 }
718
719 /* Process a symbol file, as either the main file or as a dynamically
720 loaded file.
721
722 OBJFILE is where the symbols are to be read from.
723
724 ADDRS is the list of section load addresses. If the user has given
725 an 'add-symbol-file' command, then this is the list of offsets and
726 addresses he or she provided as arguments to the command; or, if
727 we're handling a shared library, these are the actual addresses the
728 sections are loaded at, according to the inferior's dynamic linker
729 (as gleaned by GDB's shared library code). We convert each address
730 into an offset from the section VMA's as it appears in the object
731 file, and then call the file's sym_offsets function to convert this
732 into a format-specific offset table --- a `struct section_offsets'.
733 If ADDRS is non-zero, OFFSETS must be zero.
734
735 OFFSETS is a table of section offsets already in the right
736 format-specific representation. NUM_OFFSETS is the number of
737 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
738 assume this is the proper table the call to sym_offsets described
739 above would produce. Instead of calling sym_offsets, we just dump
740 it right into objfile->section_offsets. (When we're re-reading
741 symbols from an objfile, we don't have the original load address
742 list any more; all we have is the section offset table.) If
743 OFFSETS is non-zero, ADDRS must be zero.
744
745 ADD_FLAGS encodes verbosity level, whether this is main symbol or
746 an extra symbol file such as dynamically loaded code, and wether
747 breakpoint reset should be deferred. */
748
749 void
750 syms_from_objfile (struct objfile *objfile,
751 struct section_addr_info *addrs,
752 struct section_offsets *offsets,
753 int num_offsets,
754 int add_flags)
755 {
756 struct section_addr_info *local_addr = NULL;
757 struct cleanup *old_chain;
758 const int mainline = add_flags & SYMFILE_MAINLINE;
759
760 gdb_assert (! (addrs && offsets));
761
762 init_entry_point_info (objfile);
763 objfile->sf = find_sym_fns (objfile->obfd);
764
765 if (objfile->sf == NULL)
766 return; /* No symbols. */
767
768 /* Make sure that partially constructed symbol tables will be cleaned up
769 if an error occurs during symbol reading. */
770 old_chain = make_cleanup_free_objfile (objfile);
771
772 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
773 list. We now establish the convention that an addr of zero means
774 no load address was specified. */
775 if (! addrs && ! offsets)
776 {
777 local_addr
778 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
779 make_cleanup (xfree, local_addr);
780 addrs = local_addr;
781 }
782
783 /* Now either addrs or offsets is non-zero. */
784
785 if (mainline)
786 {
787 /* We will modify the main symbol table, make sure that all its users
788 will be cleaned up if an error occurs during symbol reading. */
789 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
790
791 /* Since no error yet, throw away the old symbol table. */
792
793 if (symfile_objfile != NULL)
794 {
795 free_objfile (symfile_objfile);
796 symfile_objfile = NULL;
797 }
798
799 /* Currently we keep symbols from the add-symbol-file command.
800 If the user wants to get rid of them, they should do "symbol-file"
801 without arguments first. Not sure this is the best behavior
802 (PR 2207). */
803
804 (*objfile->sf->sym_new_init) (objfile);
805 }
806
807 /* Convert addr into an offset rather than an absolute address.
808 We find the lowest address of a loaded segment in the objfile,
809 and assume that <addr> is where that got loaded.
810
811 We no longer warn if the lowest section is not a text segment (as
812 happens for the PA64 port. */
813 if (!mainline && addrs && addrs->other[0].name)
814 {
815 asection *lower_sect;
816 asection *sect;
817 CORE_ADDR lower_offset;
818 int i;
819
820 /* Find lowest loadable section to be used as starting point for
821 continguous sections. FIXME!! won't work without call to find
822 .text first, but this assumes text is lowest section. */
823 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
824 if (lower_sect == NULL)
825 bfd_map_over_sections (objfile->obfd, find_lowest_section,
826 &lower_sect);
827 if (lower_sect == NULL)
828 {
829 warning (_("no loadable sections found in added symbol-file %s"),
830 objfile->name);
831 lower_offset = 0;
832 }
833 else
834 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
835
836 /* Calculate offsets for the loadable sections.
837 FIXME! Sections must be in order of increasing loadable section
838 so that contiguous sections can use the lower-offset!!!
839
840 Adjust offsets if the segments are not contiguous.
841 If the section is contiguous, its offset should be set to
842 the offset of the highest loadable section lower than it
843 (the loadable section directly below it in memory).
844 this_offset = lower_offset = lower_addr - lower_orig_addr */
845
846 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
847 {
848 if (addrs->other[i].addr != 0)
849 {
850 sect = bfd_get_section_by_name (objfile->obfd,
851 addrs->other[i].name);
852 if (sect)
853 {
854 addrs->other[i].addr
855 -= bfd_section_vma (objfile->obfd, sect);
856 lower_offset = addrs->other[i].addr;
857 /* This is the index used by BFD. */
858 addrs->other[i].sectindex = sect->index ;
859 }
860 else
861 {
862 warning (_("section %s not found in %s"),
863 addrs->other[i].name,
864 objfile->name);
865 addrs->other[i].addr = 0;
866 }
867 }
868 else
869 addrs->other[i].addr = lower_offset;
870 }
871 }
872
873 /* Initialize symbol reading routines for this objfile, allow complaints to
874 appear for this new file, and record how verbose to be, then do the
875 initial symbol reading for this file. */
876
877 (*objfile->sf->sym_init) (objfile);
878 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
879
880 if (addrs)
881 (*objfile->sf->sym_offsets) (objfile, addrs);
882 else
883 {
884 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
885
886 /* Just copy in the offset table directly as given to us. */
887 objfile->num_sections = num_offsets;
888 objfile->section_offsets
889 = ((struct section_offsets *)
890 obstack_alloc (&objfile->objfile_obstack, size));
891 memcpy (objfile->section_offsets, offsets, size);
892
893 init_objfile_sect_indices (objfile);
894 }
895
896 (*objfile->sf->sym_read) (objfile, mainline);
897
898 /* Discard cleanups as symbol reading was successful. */
899
900 discard_cleanups (old_chain);
901 xfree (local_addr);
902 }
903
904 /* Perform required actions after either reading in the initial
905 symbols for a new objfile, or mapping in the symbols from a reusable
906 objfile. */
907
908 void
909 new_symfile_objfile (struct objfile *objfile, int add_flags)
910 {
911
912 /* If this is the main symbol file we have to clean up all users of the
913 old main symbol file. Otherwise it is sufficient to fixup all the
914 breakpoints that may have been redefined by this symbol file. */
915 if (add_flags & SYMFILE_MAINLINE)
916 {
917 /* OK, make it the "real" symbol file. */
918 symfile_objfile = objfile;
919
920 clear_symtab_users ();
921 }
922 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
923 {
924 breakpoint_re_set ();
925 }
926
927 /* We're done reading the symbol file; finish off complaints. */
928 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
929 }
930
931 /* Process a symbol file, as either the main file or as a dynamically
932 loaded file.
933
934 ABFD is a BFD already open on the file, as from symfile_bfd_open.
935 This BFD will be closed on error, and is always consumed by this function.
936
937 ADD_FLAGS encodes verbosity, whether this is main symbol file or
938 extra, such as dynamically loaded code, and what to do with breakpoins.
939
940 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
941 syms_from_objfile, above.
942 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
943
944 Upon success, returns a pointer to the objfile that was added.
945 Upon failure, jumps back to command level (never returns). */
946
947 static struct objfile *
948 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
949 int add_flags,
950 struct section_addr_info *addrs,
951 struct section_offsets *offsets,
952 int num_offsets,
953 int flags)
954 {
955 struct objfile *objfile;
956 struct partial_symtab *psymtab;
957 char *debugfile = NULL;
958 struct section_addr_info *orig_addrs = NULL;
959 struct cleanup *my_cleanups;
960 const char *name = bfd_get_filename (abfd);
961 const int from_tty = add_flags & SYMFILE_VERBOSE;
962
963 my_cleanups = make_cleanup_bfd_close (abfd);
964
965 /* Give user a chance to burp if we'd be
966 interactively wiping out any existing symbols. */
967
968 if ((have_full_symbols () || have_partial_symbols ())
969 && (add_flags & SYMFILE_MAINLINE)
970 && from_tty
971 && !query (_("Load new symbol table from \"%s\"? "), name))
972 error (_("Not confirmed."));
973
974 objfile = allocate_objfile (abfd, flags);
975 discard_cleanups (my_cleanups);
976
977 if (addrs)
978 {
979 orig_addrs = copy_section_addr_info (addrs);
980 make_cleanup_free_section_addr_info (orig_addrs);
981 }
982
983 /* We either created a new mapped symbol table, mapped an existing
984 symbol table file which has not had initial symbol reading
985 performed, or need to read an unmapped symbol table. */
986 if (from_tty || info_verbose)
987 {
988 if (deprecated_pre_add_symbol_hook)
989 deprecated_pre_add_symbol_hook (name);
990 else
991 {
992 if (print_symbol_loading)
993 {
994 printf_unfiltered (_("Reading symbols from %s..."), name);
995 wrap_here ("");
996 gdb_flush (gdb_stdout);
997 }
998 }
999 }
1000 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1001 add_flags);
1002
1003 /* We now have at least a partial symbol table. Check to see if the
1004 user requested that all symbols be read on initial access via either
1005 the gdb startup command line or on a per symbol file basis. Expand
1006 all partial symbol tables for this objfile if so. */
1007
1008 if ((flags & OBJF_READNOW) || readnow_symbol_files)
1009 {
1010 if ((from_tty || info_verbose) && print_symbol_loading)
1011 {
1012 printf_unfiltered (_("expanding to full symbols..."));
1013 wrap_here ("");
1014 gdb_flush (gdb_stdout);
1015 }
1016
1017 for (psymtab = objfile->psymtabs;
1018 psymtab != NULL;
1019 psymtab = psymtab->next)
1020 {
1021 psymtab_to_symtab (psymtab);
1022 }
1023 }
1024
1025 /* If the file has its own symbol tables it has no separate debug info.
1026 `.dynsym'/`.symtab' go to MSYMBOLS, `.debug_info' goes to SYMTABS/PSYMTABS.
1027 `.gnu_debuglink' may no longer be present with `.note.gnu.build-id'. */
1028 if (objfile->psymtabs == NULL)
1029 debugfile = find_separate_debug_file (objfile);
1030 if (debugfile)
1031 {
1032 if (addrs != NULL)
1033 {
1034 objfile->separate_debug_objfile
1035 = symbol_file_add (debugfile, add_flags, orig_addrs, flags);
1036 }
1037 else
1038 {
1039 objfile->separate_debug_objfile
1040 = symbol_file_add (debugfile, add_flags, NULL, flags);
1041 }
1042 objfile->separate_debug_objfile->separate_debug_objfile_backlink
1043 = objfile;
1044
1045 /* Put the separate debug object before the normal one, this is so that
1046 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
1047 put_objfile_before (objfile->separate_debug_objfile, objfile);
1048
1049 xfree (debugfile);
1050 }
1051
1052 if (!have_partial_symbols () && !have_full_symbols ()
1053 && print_symbol_loading)
1054 {
1055 wrap_here ("");
1056 printf_unfiltered (_("(no debugging symbols found)"));
1057 if (from_tty || info_verbose)
1058 printf_unfiltered ("...");
1059 else
1060 printf_unfiltered ("\n");
1061 wrap_here ("");
1062 }
1063
1064 if (from_tty || info_verbose)
1065 {
1066 if (deprecated_post_add_symbol_hook)
1067 deprecated_post_add_symbol_hook ();
1068 else
1069 {
1070 if (print_symbol_loading)
1071 printf_unfiltered (_("done.\n"));
1072 }
1073 }
1074
1075 /* We print some messages regardless of whether 'from_tty ||
1076 info_verbose' is true, so make sure they go out at the right
1077 time. */
1078 gdb_flush (gdb_stdout);
1079
1080 do_cleanups (my_cleanups);
1081
1082 if (objfile->sf == NULL)
1083 {
1084 observer_notify_new_objfile (objfile);
1085 return objfile; /* No symbols. */
1086 }
1087
1088 new_symfile_objfile (objfile, add_flags);
1089
1090 observer_notify_new_objfile (objfile);
1091
1092 bfd_cache_close_all ();
1093 return (objfile);
1094 }
1095
1096
1097 /* Process the symbol file ABFD, as either the main file or as a
1098 dynamically loaded file.
1099
1100 See symbol_file_add_with_addrs_or_offsets's comments for
1101 details. */
1102 struct objfile *
1103 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1104 struct section_addr_info *addrs,
1105 int flags)
1106 {
1107 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1108 flags);
1109 }
1110
1111
1112 /* Process a symbol file, as either the main file or as a dynamically
1113 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1114 for details. */
1115 struct objfile *
1116 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1117 int flags)
1118 {
1119 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1120 flags);
1121 }
1122
1123
1124 /* Call symbol_file_add() with default values and update whatever is
1125 affected by the loading of a new main().
1126 Used when the file is supplied in the gdb command line
1127 and by some targets with special loading requirements.
1128 The auxiliary function, symbol_file_add_main_1(), has the flags
1129 argument for the switches that can only be specified in the symbol_file
1130 command itself. */
1131
1132 void
1133 symbol_file_add_main (char *args, int from_tty)
1134 {
1135 symbol_file_add_main_1 (args, from_tty, 0);
1136 }
1137
1138 static void
1139 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1140 {
1141 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1142 symbol_file_add (args, add_flags, NULL, flags);
1143
1144 /* Getting new symbols may change our opinion about
1145 what is frameless. */
1146 reinit_frame_cache ();
1147
1148 set_initial_language ();
1149 }
1150
1151 void
1152 symbol_file_clear (int from_tty)
1153 {
1154 if ((have_full_symbols () || have_partial_symbols ())
1155 && from_tty
1156 && (symfile_objfile
1157 ? !query (_("Discard symbol table from `%s'? "),
1158 symfile_objfile->name)
1159 : !query (_("Discard symbol table? "))))
1160 error (_("Not confirmed."));
1161
1162 free_all_objfiles ();
1163
1164 /* solib descriptors may have handles to objfiles. Since their
1165 storage has just been released, we'd better wipe the solib
1166 descriptors as well. */
1167 no_shared_libraries (NULL, from_tty);
1168
1169 symfile_objfile = NULL;
1170 if (from_tty)
1171 printf_unfiltered (_("No symbol file now.\n"));
1172 }
1173
1174 struct build_id
1175 {
1176 size_t size;
1177 gdb_byte data[1];
1178 };
1179
1180 /* Locate NT_GNU_BUILD_ID from ABFD and return its content. */
1181
1182 static struct build_id *
1183 build_id_bfd_get (bfd *abfd)
1184 {
1185 struct build_id *retval;
1186
1187 if (!bfd_check_format (abfd, bfd_object)
1188 || bfd_get_flavour (abfd) != bfd_target_elf_flavour
1189 || elf_tdata (abfd)->build_id == NULL)
1190 return NULL;
1191
1192 retval = xmalloc (sizeof *retval - 1 + elf_tdata (abfd)->build_id_size);
1193 retval->size = elf_tdata (abfd)->build_id_size;
1194 memcpy (retval->data, elf_tdata (abfd)->build_id, retval->size);
1195
1196 return retval;
1197 }
1198
1199 /* Return if FILENAME has NT_GNU_BUILD_ID matching the CHECK value. */
1200
1201 static int
1202 build_id_verify (const char *filename, struct build_id *check)
1203 {
1204 bfd *abfd;
1205 struct build_id *found = NULL;
1206 int retval = 0;
1207
1208 /* We expect to be silent on the non-existing files. */
1209 if (remote_filename_p (filename))
1210 abfd = remote_bfd_open (filename, gnutarget);
1211 else
1212 abfd = bfd_openr (filename, gnutarget);
1213 if (abfd == NULL)
1214 return 0;
1215
1216 found = build_id_bfd_get (abfd);
1217
1218 if (found == NULL)
1219 warning (_("File \"%s\" has no build-id, file skipped"), filename);
1220 else if (found->size != check->size
1221 || memcmp (found->data, check->data, found->size) != 0)
1222 warning (_("File \"%s\" has a different build-id, file skipped"), filename);
1223 else
1224 retval = 1;
1225
1226 if (!bfd_close (abfd))
1227 warning (_("cannot close \"%s\": %s"), filename,
1228 bfd_errmsg (bfd_get_error ()));
1229
1230 xfree (found);
1231
1232 return retval;
1233 }
1234
1235 static char *
1236 build_id_to_debug_filename (struct build_id *build_id)
1237 {
1238 char *link, *s, *retval = NULL;
1239 gdb_byte *data = build_id->data;
1240 size_t size = build_id->size;
1241
1242 /* DEBUG_FILE_DIRECTORY/.build-id/ab/cdef */
1243 link = xmalloc (strlen (debug_file_directory) + (sizeof "/.build-id/" - 1) + 1
1244 + 2 * size + (sizeof ".debug" - 1) + 1);
1245 s = link + sprintf (link, "%s/.build-id/", debug_file_directory);
1246 if (size > 0)
1247 {
1248 size--;
1249 s += sprintf (s, "%02x", (unsigned) *data++);
1250 }
1251 if (size > 0)
1252 *s++ = '/';
1253 while (size-- > 0)
1254 s += sprintf (s, "%02x", (unsigned) *data++);
1255 strcpy (s, ".debug");
1256
1257 /* lrealpath() is expensive even for the usually non-existent files. */
1258 if (access (link, F_OK) == 0)
1259 retval = lrealpath (link);
1260 xfree (link);
1261
1262 if (retval != NULL && !build_id_verify (retval, build_id))
1263 {
1264 xfree (retval);
1265 retval = NULL;
1266 }
1267
1268 return retval;
1269 }
1270
1271 static char *
1272 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1273 {
1274 asection *sect;
1275 bfd_size_type debuglink_size;
1276 unsigned long crc32;
1277 char *contents;
1278 int crc_offset;
1279 unsigned char *p;
1280
1281 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1282
1283 if (sect == NULL)
1284 return NULL;
1285
1286 debuglink_size = bfd_section_size (objfile->obfd, sect);
1287
1288 contents = xmalloc (debuglink_size);
1289 bfd_get_section_contents (objfile->obfd, sect, contents,
1290 (file_ptr)0, (bfd_size_type)debuglink_size);
1291
1292 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1293 crc_offset = strlen (contents) + 1;
1294 crc_offset = (crc_offset + 3) & ~3;
1295
1296 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1297
1298 *crc32_out = crc32;
1299 return contents;
1300 }
1301
1302 static int
1303 separate_debug_file_exists (const char *name, unsigned long crc)
1304 {
1305 unsigned long file_crc = 0;
1306 bfd *abfd;
1307 gdb_byte buffer[8*1024];
1308 int count;
1309
1310 if (remote_filename_p (name))
1311 abfd = remote_bfd_open (name, gnutarget);
1312 else
1313 abfd = bfd_openr (name, gnutarget);
1314
1315 if (!abfd)
1316 return 0;
1317
1318 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1319 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1320
1321 bfd_close (abfd);
1322
1323 return crc == file_crc;
1324 }
1325
1326 char *debug_file_directory = NULL;
1327 static void
1328 show_debug_file_directory (struct ui_file *file, int from_tty,
1329 struct cmd_list_element *c, const char *value)
1330 {
1331 fprintf_filtered (file, _("\
1332 The directory where separate debug symbols are searched for is \"%s\".\n"),
1333 value);
1334 }
1335
1336 #if ! defined (DEBUG_SUBDIRECTORY)
1337 #define DEBUG_SUBDIRECTORY ".debug"
1338 #endif
1339
1340 static char *
1341 find_separate_debug_file (struct objfile *objfile)
1342 {
1343 asection *sect;
1344 char *basename;
1345 char *dir;
1346 char *debugfile;
1347 char *name_copy;
1348 char *canon_name;
1349 bfd_size_type debuglink_size;
1350 unsigned long crc32;
1351 int i;
1352 struct build_id *build_id;
1353
1354 build_id = build_id_bfd_get (objfile->obfd);
1355 if (build_id != NULL)
1356 {
1357 char *build_id_name;
1358
1359 build_id_name = build_id_to_debug_filename (build_id);
1360 xfree (build_id);
1361 /* Prevent looping on a stripped .debug file. */
1362 if (build_id_name != NULL && strcmp (build_id_name, objfile->name) == 0)
1363 {
1364 warning (_("\"%s\": separate debug info file has no debug info"),
1365 build_id_name);
1366 xfree (build_id_name);
1367 }
1368 else if (build_id_name != NULL)
1369 return build_id_name;
1370 }
1371
1372 basename = get_debug_link_info (objfile, &crc32);
1373
1374 if (basename == NULL)
1375 return NULL;
1376
1377 dir = xstrdup (objfile->name);
1378
1379 /* Strip off the final filename part, leaving the directory name,
1380 followed by a slash. Objfile names should always be absolute and
1381 tilde-expanded, so there should always be a slash in there
1382 somewhere. */
1383 for (i = strlen(dir) - 1; i >= 0; i--)
1384 {
1385 if (IS_DIR_SEPARATOR (dir[i]))
1386 break;
1387 }
1388 gdb_assert (i >= 0 && IS_DIR_SEPARATOR (dir[i]));
1389 dir[i+1] = '\0';
1390
1391 /* Set I to max (strlen (canon_name), strlen (dir)). */
1392 canon_name = lrealpath (dir);
1393 i = strlen (dir);
1394 if (canon_name && strlen (canon_name) > i)
1395 i = strlen (canon_name);
1396
1397 debugfile = alloca (strlen (debug_file_directory) + 1
1398 + i
1399 + strlen (DEBUG_SUBDIRECTORY)
1400 + strlen ("/")
1401 + strlen (basename)
1402 + 1);
1403
1404 /* First try in the same directory as the original file. */
1405 strcpy (debugfile, dir);
1406 strcat (debugfile, basename);
1407
1408 if (separate_debug_file_exists (debugfile, crc32))
1409 {
1410 xfree (basename);
1411 xfree (dir);
1412 xfree (canon_name);
1413 return xstrdup (debugfile);
1414 }
1415
1416 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1417 strcpy (debugfile, dir);
1418 strcat (debugfile, DEBUG_SUBDIRECTORY);
1419 strcat (debugfile, "/");
1420 strcat (debugfile, basename);
1421
1422 if (separate_debug_file_exists (debugfile, crc32))
1423 {
1424 xfree (basename);
1425 xfree (dir);
1426 xfree (canon_name);
1427 return xstrdup (debugfile);
1428 }
1429
1430 /* Then try in the global debugfile directory. */
1431 strcpy (debugfile, debug_file_directory);
1432 strcat (debugfile, "/");
1433 strcat (debugfile, dir);
1434 strcat (debugfile, basename);
1435
1436 if (separate_debug_file_exists (debugfile, crc32))
1437 {
1438 xfree (basename);
1439 xfree (dir);
1440 xfree (canon_name);
1441 return xstrdup (debugfile);
1442 }
1443
1444 /* If the file is in the sysroot, try using its base path in the
1445 global debugfile directory. */
1446 if (canon_name
1447 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1448 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1449 {
1450 strcpy (debugfile, debug_file_directory);
1451 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1452 strcat (debugfile, "/");
1453 strcat (debugfile, basename);
1454
1455 if (separate_debug_file_exists (debugfile, crc32))
1456 {
1457 xfree (canon_name);
1458 xfree (basename);
1459 xfree (dir);
1460 xfree (canon_name);
1461 return xstrdup (debugfile);
1462 }
1463 }
1464
1465 if (canon_name)
1466 xfree (canon_name);
1467
1468 xfree (basename);
1469 xfree (dir);
1470 return NULL;
1471 }
1472
1473
1474 /* This is the symbol-file command. Read the file, analyze its
1475 symbols, and add a struct symtab to a symtab list. The syntax of
1476 the command is rather bizarre:
1477
1478 1. The function buildargv implements various quoting conventions
1479 which are undocumented and have little or nothing in common with
1480 the way things are quoted (or not quoted) elsewhere in GDB.
1481
1482 2. Options are used, which are not generally used in GDB (perhaps
1483 "set mapped on", "set readnow on" would be better)
1484
1485 3. The order of options matters, which is contrary to GNU
1486 conventions (because it is confusing and inconvenient). */
1487
1488 void
1489 symbol_file_command (char *args, int from_tty)
1490 {
1491 dont_repeat ();
1492
1493 if (args == NULL)
1494 {
1495 symbol_file_clear (from_tty);
1496 }
1497 else
1498 {
1499 char **argv = gdb_buildargv (args);
1500 int flags = OBJF_USERLOADED;
1501 struct cleanup *cleanups;
1502 char *name = NULL;
1503
1504 cleanups = make_cleanup_freeargv (argv);
1505 while (*argv != NULL)
1506 {
1507 if (strcmp (*argv, "-readnow") == 0)
1508 flags |= OBJF_READNOW;
1509 else if (**argv == '-')
1510 error (_("unknown option `%s'"), *argv);
1511 else
1512 {
1513 symbol_file_add_main_1 (*argv, from_tty, flags);
1514 name = *argv;
1515 }
1516
1517 argv++;
1518 }
1519
1520 if (name == NULL)
1521 error (_("no symbol file name was specified"));
1522
1523 do_cleanups (cleanups);
1524 }
1525 }
1526
1527 /* Set the initial language.
1528
1529 FIXME: A better solution would be to record the language in the
1530 psymtab when reading partial symbols, and then use it (if known) to
1531 set the language. This would be a win for formats that encode the
1532 language in an easily discoverable place, such as DWARF. For
1533 stabs, we can jump through hoops looking for specially named
1534 symbols or try to intuit the language from the specific type of
1535 stabs we find, but we can't do that until later when we read in
1536 full symbols. */
1537
1538 void
1539 set_initial_language (void)
1540 {
1541 struct partial_symtab *pst;
1542 enum language lang = language_unknown;
1543
1544 pst = find_main_psymtab ();
1545 if (pst != NULL)
1546 {
1547 if (pst->filename != NULL)
1548 lang = deduce_language_from_filename (pst->filename);
1549
1550 if (lang == language_unknown)
1551 {
1552 /* Make C the default language */
1553 lang = language_c;
1554 }
1555
1556 set_language (lang);
1557 expected_language = current_language; /* Don't warn the user. */
1558 }
1559 }
1560
1561 /* Open the file specified by NAME and hand it off to BFD for
1562 preliminary analysis. Return a newly initialized bfd *, which
1563 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1564 absolute). In case of trouble, error() is called. */
1565
1566 bfd *
1567 symfile_bfd_open (char *name)
1568 {
1569 bfd *sym_bfd;
1570 int desc;
1571 char *absolute_name;
1572
1573 if (remote_filename_p (name))
1574 {
1575 name = xstrdup (name);
1576 sym_bfd = remote_bfd_open (name, gnutarget);
1577 if (!sym_bfd)
1578 {
1579 make_cleanup (xfree, name);
1580 error (_("`%s': can't open to read symbols: %s."), name,
1581 bfd_errmsg (bfd_get_error ()));
1582 }
1583
1584 if (!bfd_check_format (sym_bfd, bfd_object))
1585 {
1586 bfd_close (sym_bfd);
1587 make_cleanup (xfree, name);
1588 error (_("`%s': can't read symbols: %s."), name,
1589 bfd_errmsg (bfd_get_error ()));
1590 }
1591
1592 return sym_bfd;
1593 }
1594
1595 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1596
1597 /* Look down path for it, allocate 2nd new malloc'd copy. */
1598 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1599 O_RDONLY | O_BINARY, &absolute_name);
1600 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1601 if (desc < 0)
1602 {
1603 char *exename = alloca (strlen (name) + 5);
1604 strcat (strcpy (exename, name), ".exe");
1605 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1606 O_RDONLY | O_BINARY, &absolute_name);
1607 }
1608 #endif
1609 if (desc < 0)
1610 {
1611 make_cleanup (xfree, name);
1612 perror_with_name (name);
1613 }
1614
1615 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1616 bfd. It'll be freed in free_objfile(). */
1617 xfree (name);
1618 name = absolute_name;
1619
1620 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1621 if (!sym_bfd)
1622 {
1623 close (desc);
1624 make_cleanup (xfree, name);
1625 error (_("`%s': can't open to read symbols: %s."), name,
1626 bfd_errmsg (bfd_get_error ()));
1627 }
1628 bfd_set_cacheable (sym_bfd, 1);
1629
1630 if (!bfd_check_format (sym_bfd, bfd_object))
1631 {
1632 /* FIXME: should be checking for errors from bfd_close (for one
1633 thing, on error it does not free all the storage associated
1634 with the bfd). */
1635 bfd_close (sym_bfd); /* This also closes desc. */
1636 make_cleanup (xfree, name);
1637 error (_("`%s': can't read symbols: %s."), name,
1638 bfd_errmsg (bfd_get_error ()));
1639 }
1640
1641 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1642 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1643
1644 return sym_bfd;
1645 }
1646
1647 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1648 the section was not found. */
1649
1650 int
1651 get_section_index (struct objfile *objfile, char *section_name)
1652 {
1653 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1654
1655 if (sect)
1656 return sect->index;
1657 else
1658 return -1;
1659 }
1660
1661 /* Link SF into the global symtab_fns list. Called on startup by the
1662 _initialize routine in each object file format reader, to register
1663 information about each format the the reader is prepared to
1664 handle. */
1665
1666 void
1667 add_symtab_fns (struct sym_fns *sf)
1668 {
1669 sf->next = symtab_fns;
1670 symtab_fns = sf;
1671 }
1672
1673 /* Initialize OBJFILE to read symbols from its associated BFD. It
1674 either returns or calls error(). The result is an initialized
1675 struct sym_fns in the objfile structure, that contains cached
1676 information about the symbol file. */
1677
1678 static struct sym_fns *
1679 find_sym_fns (bfd *abfd)
1680 {
1681 struct sym_fns *sf;
1682 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1683
1684 if (our_flavour == bfd_target_srec_flavour
1685 || our_flavour == bfd_target_ihex_flavour
1686 || our_flavour == bfd_target_tekhex_flavour)
1687 return NULL; /* No symbols. */
1688
1689 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1690 if (our_flavour == sf->sym_flavour)
1691 return sf;
1692
1693 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1694 bfd_get_target (abfd));
1695 }
1696 \f
1697
1698 /* This function runs the load command of our current target. */
1699
1700 static void
1701 load_command (char *arg, int from_tty)
1702 {
1703 /* The user might be reloading because the binary has changed. Take
1704 this opportunity to check. */
1705 reopen_exec_file ();
1706 reread_symbols ();
1707
1708 if (arg == NULL)
1709 {
1710 char *parg;
1711 int count = 0;
1712
1713 parg = arg = get_exec_file (1);
1714
1715 /* Count how many \ " ' tab space there are in the name. */
1716 while ((parg = strpbrk (parg, "\\\"'\t ")))
1717 {
1718 parg++;
1719 count++;
1720 }
1721
1722 if (count)
1723 {
1724 /* We need to quote this string so buildargv can pull it apart. */
1725 char *temp = xmalloc (strlen (arg) + count + 1 );
1726 char *ptemp = temp;
1727 char *prev;
1728
1729 make_cleanup (xfree, temp);
1730
1731 prev = parg = arg;
1732 while ((parg = strpbrk (parg, "\\\"'\t ")))
1733 {
1734 strncpy (ptemp, prev, parg - prev);
1735 ptemp += parg - prev;
1736 prev = parg++;
1737 *ptemp++ = '\\';
1738 }
1739 strcpy (ptemp, prev);
1740
1741 arg = temp;
1742 }
1743 }
1744
1745 target_load (arg, from_tty);
1746
1747 /* After re-loading the executable, we don't really know which
1748 overlays are mapped any more. */
1749 overlay_cache_invalid = 1;
1750 }
1751
1752 /* This version of "load" should be usable for any target. Currently
1753 it is just used for remote targets, not inftarg.c or core files,
1754 on the theory that only in that case is it useful.
1755
1756 Avoiding xmodem and the like seems like a win (a) because we don't have
1757 to worry about finding it, and (b) On VMS, fork() is very slow and so
1758 we don't want to run a subprocess. On the other hand, I'm not sure how
1759 performance compares. */
1760
1761 static int validate_download = 0;
1762
1763 /* Callback service function for generic_load (bfd_map_over_sections). */
1764
1765 static void
1766 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1767 {
1768 bfd_size_type *sum = data;
1769
1770 *sum += bfd_get_section_size (asec);
1771 }
1772
1773 /* Opaque data for load_section_callback. */
1774 struct load_section_data {
1775 unsigned long load_offset;
1776 struct load_progress_data *progress_data;
1777 VEC(memory_write_request_s) *requests;
1778 };
1779
1780 /* Opaque data for load_progress. */
1781 struct load_progress_data {
1782 /* Cumulative data. */
1783 unsigned long write_count;
1784 unsigned long data_count;
1785 bfd_size_type total_size;
1786 };
1787
1788 /* Opaque data for load_progress for a single section. */
1789 struct load_progress_section_data {
1790 struct load_progress_data *cumulative;
1791
1792 /* Per-section data. */
1793 const char *section_name;
1794 ULONGEST section_sent;
1795 ULONGEST section_size;
1796 CORE_ADDR lma;
1797 gdb_byte *buffer;
1798 };
1799
1800 /* Target write callback routine for progress reporting. */
1801
1802 static void
1803 load_progress (ULONGEST bytes, void *untyped_arg)
1804 {
1805 struct load_progress_section_data *args = untyped_arg;
1806 struct load_progress_data *totals;
1807
1808 if (args == NULL)
1809 /* Writing padding data. No easy way to get at the cumulative
1810 stats, so just ignore this. */
1811 return;
1812
1813 totals = args->cumulative;
1814
1815 if (bytes == 0 && args->section_sent == 0)
1816 {
1817 /* The write is just starting. Let the user know we've started
1818 this section. */
1819 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1820 args->section_name, hex_string (args->section_size),
1821 paddress (target_gdbarch, args->lma));
1822 return;
1823 }
1824
1825 if (validate_download)
1826 {
1827 /* Broken memories and broken monitors manifest themselves here
1828 when bring new computers to life. This doubles already slow
1829 downloads. */
1830 /* NOTE: cagney/1999-10-18: A more efficient implementation
1831 might add a verify_memory() method to the target vector and
1832 then use that. remote.c could implement that method using
1833 the ``qCRC'' packet. */
1834 gdb_byte *check = xmalloc (bytes);
1835 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1836
1837 if (target_read_memory (args->lma, check, bytes) != 0)
1838 error (_("Download verify read failed at %s"),
1839 paddress (target_gdbarch, args->lma));
1840 if (memcmp (args->buffer, check, bytes) != 0)
1841 error (_("Download verify compare failed at %s"),
1842 paddress (target_gdbarch, args->lma));
1843 do_cleanups (verify_cleanups);
1844 }
1845 totals->data_count += bytes;
1846 args->lma += bytes;
1847 args->buffer += bytes;
1848 totals->write_count += 1;
1849 args->section_sent += bytes;
1850 if (quit_flag
1851 || (deprecated_ui_load_progress_hook != NULL
1852 && deprecated_ui_load_progress_hook (args->section_name,
1853 args->section_sent)))
1854 error (_("Canceled the download"));
1855
1856 if (deprecated_show_load_progress != NULL)
1857 deprecated_show_load_progress (args->section_name,
1858 args->section_sent,
1859 args->section_size,
1860 totals->data_count,
1861 totals->total_size);
1862 }
1863
1864 /* Callback service function for generic_load (bfd_map_over_sections). */
1865
1866 static void
1867 load_section_callback (bfd *abfd, asection *asec, void *data)
1868 {
1869 struct memory_write_request *new_request;
1870 struct load_section_data *args = data;
1871 struct load_progress_section_data *section_data;
1872 bfd_size_type size = bfd_get_section_size (asec);
1873 gdb_byte *buffer;
1874 const char *sect_name = bfd_get_section_name (abfd, asec);
1875
1876 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1877 return;
1878
1879 if (size == 0)
1880 return;
1881
1882 new_request = VEC_safe_push (memory_write_request_s,
1883 args->requests, NULL);
1884 memset (new_request, 0, sizeof (struct memory_write_request));
1885 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1886 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1887 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1888 new_request->data = xmalloc (size);
1889 new_request->baton = section_data;
1890
1891 buffer = new_request->data;
1892
1893 section_data->cumulative = args->progress_data;
1894 section_data->section_name = sect_name;
1895 section_data->section_size = size;
1896 section_data->lma = new_request->begin;
1897 section_data->buffer = buffer;
1898
1899 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1900 }
1901
1902 /* Clean up an entire memory request vector, including load
1903 data and progress records. */
1904
1905 static void
1906 clear_memory_write_data (void *arg)
1907 {
1908 VEC(memory_write_request_s) **vec_p = arg;
1909 VEC(memory_write_request_s) *vec = *vec_p;
1910 int i;
1911 struct memory_write_request *mr;
1912
1913 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1914 {
1915 xfree (mr->data);
1916 xfree (mr->baton);
1917 }
1918 VEC_free (memory_write_request_s, vec);
1919 }
1920
1921 void
1922 generic_load (char *args, int from_tty)
1923 {
1924 bfd *loadfile_bfd;
1925 struct timeval start_time, end_time;
1926 char *filename;
1927 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1928 struct load_section_data cbdata;
1929 struct load_progress_data total_progress;
1930
1931 CORE_ADDR entry;
1932 char **argv;
1933
1934 memset (&cbdata, 0, sizeof (cbdata));
1935 memset (&total_progress, 0, sizeof (total_progress));
1936 cbdata.progress_data = &total_progress;
1937
1938 make_cleanup (clear_memory_write_data, &cbdata.requests);
1939
1940 if (args == NULL)
1941 error_no_arg (_("file to load"));
1942
1943 argv = gdb_buildargv (args);
1944 make_cleanup_freeargv (argv);
1945
1946 filename = tilde_expand (argv[0]);
1947 make_cleanup (xfree, filename);
1948
1949 if (argv[1] != NULL)
1950 {
1951 char *endptr;
1952
1953 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1954
1955 /* If the last word was not a valid number then
1956 treat it as a file name with spaces in. */
1957 if (argv[1] == endptr)
1958 error (_("Invalid download offset:%s."), argv[1]);
1959
1960 if (argv[2] != NULL)
1961 error (_("Too many parameters."));
1962 }
1963
1964 /* Open the file for loading. */
1965 loadfile_bfd = bfd_openr (filename, gnutarget);
1966 if (loadfile_bfd == NULL)
1967 {
1968 perror_with_name (filename);
1969 return;
1970 }
1971
1972 /* FIXME: should be checking for errors from bfd_close (for one thing,
1973 on error it does not free all the storage associated with the
1974 bfd). */
1975 make_cleanup_bfd_close (loadfile_bfd);
1976
1977 if (!bfd_check_format (loadfile_bfd, bfd_object))
1978 {
1979 error (_("\"%s\" is not an object file: %s"), filename,
1980 bfd_errmsg (bfd_get_error ()));
1981 }
1982
1983 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
1984 (void *) &total_progress.total_size);
1985
1986 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
1987
1988 gettimeofday (&start_time, NULL);
1989
1990 if (target_write_memory_blocks (cbdata.requests, flash_discard,
1991 load_progress) != 0)
1992 error (_("Load failed"));
1993
1994 gettimeofday (&end_time, NULL);
1995
1996 entry = bfd_get_start_address (loadfile_bfd);
1997 ui_out_text (uiout, "Start address ");
1998 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
1999 ui_out_text (uiout, ", load size ");
2000 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2001 ui_out_text (uiout, "\n");
2002 /* We were doing this in remote-mips.c, I suspect it is right
2003 for other targets too. */
2004 regcache_write_pc (get_current_regcache (), entry);
2005
2006 /* FIXME: are we supposed to call symbol_file_add or not? According
2007 to a comment from remote-mips.c (where a call to symbol_file_add
2008 was commented out), making the call confuses GDB if more than one
2009 file is loaded in. Some targets do (e.g., remote-vx.c) but
2010 others don't (or didn't - perhaps they have all been deleted). */
2011
2012 print_transfer_performance (gdb_stdout, total_progress.data_count,
2013 total_progress.write_count,
2014 &start_time, &end_time);
2015
2016 do_cleanups (old_cleanups);
2017 }
2018
2019 /* Report how fast the transfer went. */
2020
2021 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2022 replaced by print_transfer_performance (with a very different
2023 function signature). */
2024
2025 void
2026 report_transfer_performance (unsigned long data_count, time_t start_time,
2027 time_t end_time)
2028 {
2029 struct timeval start, end;
2030
2031 start.tv_sec = start_time;
2032 start.tv_usec = 0;
2033 end.tv_sec = end_time;
2034 end.tv_usec = 0;
2035
2036 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2037 }
2038
2039 void
2040 print_transfer_performance (struct ui_file *stream,
2041 unsigned long data_count,
2042 unsigned long write_count,
2043 const struct timeval *start_time,
2044 const struct timeval *end_time)
2045 {
2046 ULONGEST time_count;
2047
2048 /* Compute the elapsed time in milliseconds, as a tradeoff between
2049 accuracy and overflow. */
2050 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2051 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2052
2053 ui_out_text (uiout, "Transfer rate: ");
2054 if (time_count > 0)
2055 {
2056 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2057
2058 if (ui_out_is_mi_like_p (uiout))
2059 {
2060 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2061 ui_out_text (uiout, " bits/sec");
2062 }
2063 else if (rate < 1024)
2064 {
2065 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2066 ui_out_text (uiout, " bytes/sec");
2067 }
2068 else
2069 {
2070 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2071 ui_out_text (uiout, " KB/sec");
2072 }
2073 }
2074 else
2075 {
2076 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2077 ui_out_text (uiout, " bits in <1 sec");
2078 }
2079 if (write_count > 0)
2080 {
2081 ui_out_text (uiout, ", ");
2082 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2083 ui_out_text (uiout, " bytes/write");
2084 }
2085 ui_out_text (uiout, ".\n");
2086 }
2087
2088 /* This function allows the addition of incrementally linked object files.
2089 It does not modify any state in the target, only in the debugger. */
2090 /* Note: ezannoni 2000-04-13 This function/command used to have a
2091 special case syntax for the rombug target (Rombug is the boot
2092 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2093 rombug case, the user doesn't need to supply a text address,
2094 instead a call to target_link() (in target.c) would supply the
2095 value to use. We are now discontinuing this type of ad hoc syntax. */
2096
2097 static void
2098 add_symbol_file_command (char *args, int from_tty)
2099 {
2100 struct gdbarch *gdbarch = get_current_arch ();
2101 char *filename = NULL;
2102 int flags = OBJF_USERLOADED;
2103 char *arg;
2104 int expecting_option = 0;
2105 int section_index = 0;
2106 int argcnt = 0;
2107 int sec_num = 0;
2108 int i;
2109 int expecting_sec_name = 0;
2110 int expecting_sec_addr = 0;
2111 char **argv;
2112
2113 struct sect_opt
2114 {
2115 char *name;
2116 char *value;
2117 };
2118
2119 struct section_addr_info *section_addrs;
2120 struct sect_opt *sect_opts = NULL;
2121 size_t num_sect_opts = 0;
2122 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2123
2124 num_sect_opts = 16;
2125 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2126 * sizeof (struct sect_opt));
2127
2128 dont_repeat ();
2129
2130 if (args == NULL)
2131 error (_("add-symbol-file takes a file name and an address"));
2132
2133 argv = gdb_buildargv (args);
2134 make_cleanup_freeargv (argv);
2135
2136 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2137 {
2138 /* Process the argument. */
2139 if (argcnt == 0)
2140 {
2141 /* The first argument is the file name. */
2142 filename = tilde_expand (arg);
2143 make_cleanup (xfree, filename);
2144 }
2145 else
2146 if (argcnt == 1)
2147 {
2148 /* The second argument is always the text address at which
2149 to load the program. */
2150 sect_opts[section_index].name = ".text";
2151 sect_opts[section_index].value = arg;
2152 if (++section_index >= num_sect_opts)
2153 {
2154 num_sect_opts *= 2;
2155 sect_opts = ((struct sect_opt *)
2156 xrealloc (sect_opts,
2157 num_sect_opts
2158 * sizeof (struct sect_opt)));
2159 }
2160 }
2161 else
2162 {
2163 /* It's an option (starting with '-') or it's an argument
2164 to an option */
2165
2166 if (*arg == '-')
2167 {
2168 if (strcmp (arg, "-readnow") == 0)
2169 flags |= OBJF_READNOW;
2170 else if (strcmp (arg, "-s") == 0)
2171 {
2172 expecting_sec_name = 1;
2173 expecting_sec_addr = 1;
2174 }
2175 }
2176 else
2177 {
2178 if (expecting_sec_name)
2179 {
2180 sect_opts[section_index].name = arg;
2181 expecting_sec_name = 0;
2182 }
2183 else
2184 if (expecting_sec_addr)
2185 {
2186 sect_opts[section_index].value = arg;
2187 expecting_sec_addr = 0;
2188 if (++section_index >= num_sect_opts)
2189 {
2190 num_sect_opts *= 2;
2191 sect_opts = ((struct sect_opt *)
2192 xrealloc (sect_opts,
2193 num_sect_opts
2194 * sizeof (struct sect_opt)));
2195 }
2196 }
2197 else
2198 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2199 }
2200 }
2201 }
2202
2203 /* This command takes at least two arguments. The first one is a
2204 filename, and the second is the address where this file has been
2205 loaded. Abort now if this address hasn't been provided by the
2206 user. */
2207 if (section_index < 1)
2208 error (_("The address where %s has been loaded is missing"), filename);
2209
2210 /* Print the prompt for the query below. And save the arguments into
2211 a sect_addr_info structure to be passed around to other
2212 functions. We have to split this up into separate print
2213 statements because hex_string returns a local static
2214 string. */
2215
2216 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2217 section_addrs = alloc_section_addr_info (section_index);
2218 make_cleanup (xfree, section_addrs);
2219 for (i = 0; i < section_index; i++)
2220 {
2221 CORE_ADDR addr;
2222 char *val = sect_opts[i].value;
2223 char *sec = sect_opts[i].name;
2224
2225 addr = parse_and_eval_address (val);
2226
2227 /* Here we store the section offsets in the order they were
2228 entered on the command line. */
2229 section_addrs->other[sec_num].name = sec;
2230 section_addrs->other[sec_num].addr = addr;
2231 printf_unfiltered ("\t%s_addr = %s\n", sec,
2232 paddress (gdbarch, addr));
2233 sec_num++;
2234
2235 /* The object's sections are initialized when a
2236 call is made to build_objfile_section_table (objfile).
2237 This happens in reread_symbols.
2238 At this point, we don't know what file type this is,
2239 so we can't determine what section names are valid. */
2240 }
2241
2242 if (from_tty && (!query ("%s", "")))
2243 error (_("Not confirmed."));
2244
2245 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2246 section_addrs, flags);
2247
2248 /* Getting new symbols may change our opinion about what is
2249 frameless. */
2250 reinit_frame_cache ();
2251 do_cleanups (my_cleanups);
2252 }
2253 \f
2254
2255 /* Re-read symbols if a symbol-file has changed. */
2256 void
2257 reread_symbols (void)
2258 {
2259 struct objfile *objfile;
2260 long new_modtime;
2261 int reread_one = 0;
2262 struct stat new_statbuf;
2263 int res;
2264
2265 /* With the addition of shared libraries, this should be modified,
2266 the load time should be saved in the partial symbol tables, since
2267 different tables may come from different source files. FIXME.
2268 This routine should then walk down each partial symbol table
2269 and see if the symbol table that it originates from has been changed */
2270
2271 for (objfile = object_files; objfile; objfile = objfile->next)
2272 {
2273 if (objfile->obfd)
2274 {
2275 #ifdef DEPRECATED_IBM6000_TARGET
2276 /* If this object is from a shared library, then you should
2277 stat on the library name, not member name. */
2278
2279 if (objfile->obfd->my_archive)
2280 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2281 else
2282 #endif
2283 res = stat (objfile->name, &new_statbuf);
2284 if (res != 0)
2285 {
2286 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2287 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2288 objfile->name);
2289 continue;
2290 }
2291 new_modtime = new_statbuf.st_mtime;
2292 if (new_modtime != objfile->mtime)
2293 {
2294 struct cleanup *old_cleanups;
2295 struct section_offsets *offsets;
2296 int num_offsets;
2297 char *obfd_filename;
2298
2299 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2300 objfile->name);
2301
2302 /* There are various functions like symbol_file_add,
2303 symfile_bfd_open, syms_from_objfile, etc., which might
2304 appear to do what we want. But they have various other
2305 effects which we *don't* want. So we just do stuff
2306 ourselves. We don't worry about mapped files (for one thing,
2307 any mapped file will be out of date). */
2308
2309 /* If we get an error, blow away this objfile (not sure if
2310 that is the correct response for things like shared
2311 libraries). */
2312 old_cleanups = make_cleanup_free_objfile (objfile);
2313 /* We need to do this whenever any symbols go away. */
2314 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2315
2316 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2317 bfd_get_filename (exec_bfd)) == 0)
2318 {
2319 /* Reload EXEC_BFD without asking anything. */
2320
2321 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2322 }
2323
2324 /* Clean up any state BFD has sitting around. We don't need
2325 to close the descriptor but BFD lacks a way of closing the
2326 BFD without closing the descriptor. */
2327 obfd_filename = bfd_get_filename (objfile->obfd);
2328 if (!bfd_close (objfile->obfd))
2329 error (_("Can't close BFD for %s: %s"), objfile->name,
2330 bfd_errmsg (bfd_get_error ()));
2331 if (remote_filename_p (obfd_filename))
2332 objfile->obfd = remote_bfd_open (obfd_filename, gnutarget);
2333 else
2334 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
2335 if (objfile->obfd == NULL)
2336 error (_("Can't open %s to read symbols."), objfile->name);
2337 /* bfd_openr sets cacheable to true, which is what we want. */
2338 if (!bfd_check_format (objfile->obfd, bfd_object))
2339 error (_("Can't read symbols from %s: %s."), objfile->name,
2340 bfd_errmsg (bfd_get_error ()));
2341
2342 /* Save the offsets, we will nuke them with the rest of the
2343 objfile_obstack. */
2344 num_offsets = objfile->num_sections;
2345 offsets = ((struct section_offsets *)
2346 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2347 memcpy (offsets, objfile->section_offsets,
2348 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2349
2350 /* Remove any references to this objfile in the global
2351 value lists. */
2352 preserve_values (objfile);
2353
2354 /* Nuke all the state that we will re-read. Much of the following
2355 code which sets things to NULL really is necessary to tell
2356 other parts of GDB that there is nothing currently there.
2357
2358 Try to keep the freeing order compatible with free_objfile. */
2359
2360 if (objfile->sf != NULL)
2361 {
2362 (*objfile->sf->sym_finish) (objfile);
2363 }
2364
2365 clear_objfile_data (objfile);
2366
2367 /* FIXME: Do we have to free a whole linked list, or is this
2368 enough? */
2369 if (objfile->global_psymbols.list)
2370 xfree (objfile->global_psymbols.list);
2371 memset (&objfile->global_psymbols, 0,
2372 sizeof (objfile->global_psymbols));
2373 if (objfile->static_psymbols.list)
2374 xfree (objfile->static_psymbols.list);
2375 memset (&objfile->static_psymbols, 0,
2376 sizeof (objfile->static_psymbols));
2377
2378 /* Free the obstacks for non-reusable objfiles */
2379 bcache_xfree (objfile->psymbol_cache);
2380 objfile->psymbol_cache = bcache_xmalloc ();
2381 bcache_xfree (objfile->macro_cache);
2382 objfile->macro_cache = bcache_xmalloc ();
2383 if (objfile->demangled_names_hash != NULL)
2384 {
2385 htab_delete (objfile->demangled_names_hash);
2386 objfile->demangled_names_hash = NULL;
2387 }
2388 obstack_free (&objfile->objfile_obstack, 0);
2389 objfile->sections = NULL;
2390 objfile->symtabs = NULL;
2391 objfile->psymtabs = NULL;
2392 objfile->psymtabs_addrmap = NULL;
2393 objfile->free_psymtabs = NULL;
2394 objfile->cp_namespace_symtab = NULL;
2395 objfile->msymbols = NULL;
2396 objfile->deprecated_sym_private = NULL;
2397 objfile->minimal_symbol_count = 0;
2398 memset (&objfile->msymbol_hash, 0,
2399 sizeof (objfile->msymbol_hash));
2400 memset (&objfile->msymbol_demangled_hash, 0,
2401 sizeof (objfile->msymbol_demangled_hash));
2402
2403 objfile->psymbol_cache = bcache_xmalloc ();
2404 objfile->macro_cache = bcache_xmalloc ();
2405 /* obstack_init also initializes the obstack so it is
2406 empty. We could use obstack_specify_allocation but
2407 gdb_obstack.h specifies the alloc/dealloc
2408 functions. */
2409 obstack_init (&objfile->objfile_obstack);
2410 if (build_objfile_section_table (objfile))
2411 {
2412 error (_("Can't find the file sections in `%s': %s"),
2413 objfile->name, bfd_errmsg (bfd_get_error ()));
2414 }
2415 terminate_minimal_symbol_table (objfile);
2416
2417 /* We use the same section offsets as from last time. I'm not
2418 sure whether that is always correct for shared libraries. */
2419 objfile->section_offsets = (struct section_offsets *)
2420 obstack_alloc (&objfile->objfile_obstack,
2421 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2422 memcpy (objfile->section_offsets, offsets,
2423 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2424 objfile->num_sections = num_offsets;
2425
2426 /* What the hell is sym_new_init for, anyway? The concept of
2427 distinguishing between the main file and additional files
2428 in this way seems rather dubious. */
2429 if (objfile == symfile_objfile)
2430 {
2431 (*objfile->sf->sym_new_init) (objfile);
2432 }
2433
2434 (*objfile->sf->sym_init) (objfile);
2435 clear_complaints (&symfile_complaints, 1, 1);
2436 /* The "mainline" parameter is a hideous hack; I think leaving it
2437 zero is OK since dbxread.c also does what it needs to do if
2438 objfile->global_psymbols.size is 0. */
2439 (*objfile->sf->sym_read) (objfile, 0);
2440 if (!have_partial_symbols () && !have_full_symbols ())
2441 {
2442 wrap_here ("");
2443 printf_unfiltered (_("(no debugging symbols found)\n"));
2444 wrap_here ("");
2445 }
2446
2447 /* We're done reading the symbol file; finish off complaints. */
2448 clear_complaints (&symfile_complaints, 0, 1);
2449
2450 /* Getting new symbols may change our opinion about what is
2451 frameless. */
2452
2453 reinit_frame_cache ();
2454
2455 /* Discard cleanups as symbol reading was successful. */
2456 discard_cleanups (old_cleanups);
2457
2458 /* If the mtime has changed between the time we set new_modtime
2459 and now, we *want* this to be out of date, so don't call stat
2460 again now. */
2461 objfile->mtime = new_modtime;
2462 reread_one = 1;
2463 reread_separate_symbols (objfile);
2464 init_entry_point_info (objfile);
2465 }
2466 }
2467 }
2468
2469 if (reread_one)
2470 {
2471 clear_symtab_users ();
2472 /* At least one objfile has changed, so we can consider that
2473 the executable we're debugging has changed too. */
2474 observer_notify_executable_changed ();
2475
2476 /* Notify objfiles that we've modified objfile sections. */
2477 objfiles_changed ();
2478 }
2479 }
2480
2481
2482 /* Handle separate debug info for OBJFILE, which has just been
2483 re-read:
2484 - If we had separate debug info before, but now we don't, get rid
2485 of the separated objfile.
2486 - If we didn't have separated debug info before, but now we do,
2487 read in the new separated debug info file.
2488 - If the debug link points to a different file, toss the old one
2489 and read the new one.
2490 This function does *not* handle the case where objfile is still
2491 using the same separate debug info file, but that file's timestamp
2492 has changed. That case should be handled by the loop in
2493 reread_symbols already. */
2494 static void
2495 reread_separate_symbols (struct objfile *objfile)
2496 {
2497 char *debug_file;
2498 unsigned long crc32;
2499
2500 /* Does the updated objfile's debug info live in a
2501 separate file? */
2502 debug_file = find_separate_debug_file (objfile);
2503
2504 if (objfile->separate_debug_objfile)
2505 {
2506 /* There are two cases where we need to get rid of
2507 the old separated debug info objfile:
2508 - if the new primary objfile doesn't have
2509 separated debug info, or
2510 - if the new primary objfile has separate debug
2511 info, but it's under a different filename.
2512
2513 If the old and new objfiles both have separate
2514 debug info, under the same filename, then we're
2515 okay --- if the separated file's contents have
2516 changed, we will have caught that when we
2517 visited it in this function's outermost
2518 loop. */
2519 if (! debug_file
2520 || strcmp (debug_file, objfile->separate_debug_objfile->name) != 0)
2521 free_objfile (objfile->separate_debug_objfile);
2522 }
2523
2524 /* If the new objfile has separate debug info, and we
2525 haven't loaded it already, do so now. */
2526 if (debug_file
2527 && ! objfile->separate_debug_objfile)
2528 {
2529 /* Use the same section offset table as objfile itself.
2530 Preserve the flags from objfile that make sense. */
2531 objfile->separate_debug_objfile
2532 = (symbol_file_add_with_addrs_or_offsets
2533 (symfile_bfd_open (debug_file),
2534 info_verbose ? SYMFILE_VERBOSE : 0,
2535 0, /* No addr table. */
2536 objfile->section_offsets, objfile->num_sections,
2537 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
2538 | OBJF_USERLOADED)));
2539 objfile->separate_debug_objfile->separate_debug_objfile_backlink
2540 = objfile;
2541 }
2542 if (debug_file)
2543 xfree (debug_file);
2544 }
2545
2546
2547 \f
2548
2549
2550 typedef struct
2551 {
2552 char *ext;
2553 enum language lang;
2554 }
2555 filename_language;
2556
2557 static filename_language *filename_language_table;
2558 static int fl_table_size, fl_table_next;
2559
2560 static void
2561 add_filename_language (char *ext, enum language lang)
2562 {
2563 if (fl_table_next >= fl_table_size)
2564 {
2565 fl_table_size += 10;
2566 filename_language_table =
2567 xrealloc (filename_language_table,
2568 fl_table_size * sizeof (*filename_language_table));
2569 }
2570
2571 filename_language_table[fl_table_next].ext = xstrdup (ext);
2572 filename_language_table[fl_table_next].lang = lang;
2573 fl_table_next++;
2574 }
2575
2576 static char *ext_args;
2577 static void
2578 show_ext_args (struct ui_file *file, int from_tty,
2579 struct cmd_list_element *c, const char *value)
2580 {
2581 fprintf_filtered (file, _("\
2582 Mapping between filename extension and source language is \"%s\".\n"),
2583 value);
2584 }
2585
2586 static void
2587 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2588 {
2589 int i;
2590 char *cp = ext_args;
2591 enum language lang;
2592
2593 /* First arg is filename extension, starting with '.' */
2594 if (*cp != '.')
2595 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2596
2597 /* Find end of first arg. */
2598 while (*cp && !isspace (*cp))
2599 cp++;
2600
2601 if (*cp == '\0')
2602 error (_("'%s': two arguments required -- filename extension and language"),
2603 ext_args);
2604
2605 /* Null-terminate first arg */
2606 *cp++ = '\0';
2607
2608 /* Find beginning of second arg, which should be a source language. */
2609 while (*cp && isspace (*cp))
2610 cp++;
2611
2612 if (*cp == '\0')
2613 error (_("'%s': two arguments required -- filename extension and language"),
2614 ext_args);
2615
2616 /* Lookup the language from among those we know. */
2617 lang = language_enum (cp);
2618
2619 /* Now lookup the filename extension: do we already know it? */
2620 for (i = 0; i < fl_table_next; i++)
2621 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2622 break;
2623
2624 if (i >= fl_table_next)
2625 {
2626 /* new file extension */
2627 add_filename_language (ext_args, lang);
2628 }
2629 else
2630 {
2631 /* redefining a previously known filename extension */
2632
2633 /* if (from_tty) */
2634 /* query ("Really make files of type %s '%s'?", */
2635 /* ext_args, language_str (lang)); */
2636
2637 xfree (filename_language_table[i].ext);
2638 filename_language_table[i].ext = xstrdup (ext_args);
2639 filename_language_table[i].lang = lang;
2640 }
2641 }
2642
2643 static void
2644 info_ext_lang_command (char *args, int from_tty)
2645 {
2646 int i;
2647
2648 printf_filtered (_("Filename extensions and the languages they represent:"));
2649 printf_filtered ("\n\n");
2650 for (i = 0; i < fl_table_next; i++)
2651 printf_filtered ("\t%s\t- %s\n",
2652 filename_language_table[i].ext,
2653 language_str (filename_language_table[i].lang));
2654 }
2655
2656 static void
2657 init_filename_language_table (void)
2658 {
2659 if (fl_table_size == 0) /* protect against repetition */
2660 {
2661 fl_table_size = 20;
2662 fl_table_next = 0;
2663 filename_language_table =
2664 xmalloc (fl_table_size * sizeof (*filename_language_table));
2665 add_filename_language (".c", language_c);
2666 add_filename_language (".C", language_cplus);
2667 add_filename_language (".cc", language_cplus);
2668 add_filename_language (".cp", language_cplus);
2669 add_filename_language (".cpp", language_cplus);
2670 add_filename_language (".cxx", language_cplus);
2671 add_filename_language (".c++", language_cplus);
2672 add_filename_language (".java", language_java);
2673 add_filename_language (".class", language_java);
2674 add_filename_language (".m", language_objc);
2675 add_filename_language (".f", language_fortran);
2676 add_filename_language (".F", language_fortran);
2677 add_filename_language (".s", language_asm);
2678 add_filename_language (".sx", language_asm);
2679 add_filename_language (".S", language_asm);
2680 add_filename_language (".pas", language_pascal);
2681 add_filename_language (".p", language_pascal);
2682 add_filename_language (".pp", language_pascal);
2683 add_filename_language (".adb", language_ada);
2684 add_filename_language (".ads", language_ada);
2685 add_filename_language (".a", language_ada);
2686 add_filename_language (".ada", language_ada);
2687 }
2688 }
2689
2690 enum language
2691 deduce_language_from_filename (char *filename)
2692 {
2693 int i;
2694 char *cp;
2695
2696 if (filename != NULL)
2697 if ((cp = strrchr (filename, '.')) != NULL)
2698 for (i = 0; i < fl_table_next; i++)
2699 if (strcmp (cp, filename_language_table[i].ext) == 0)
2700 return filename_language_table[i].lang;
2701
2702 return language_unknown;
2703 }
2704 \f
2705 /* allocate_symtab:
2706
2707 Allocate and partly initialize a new symbol table. Return a pointer
2708 to it. error() if no space.
2709
2710 Caller must set these fields:
2711 LINETABLE(symtab)
2712 symtab->blockvector
2713 symtab->dirname
2714 symtab->free_code
2715 symtab->free_ptr
2716 possibly free_named_symtabs (symtab->filename);
2717 */
2718
2719 struct symtab *
2720 allocate_symtab (char *filename, struct objfile *objfile)
2721 {
2722 struct symtab *symtab;
2723
2724 symtab = (struct symtab *)
2725 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2726 memset (symtab, 0, sizeof (*symtab));
2727 symtab->filename = obsavestring (filename, strlen (filename),
2728 &objfile->objfile_obstack);
2729 symtab->fullname = NULL;
2730 symtab->language = deduce_language_from_filename (filename);
2731 symtab->debugformat = obsavestring ("unknown", 7,
2732 &objfile->objfile_obstack);
2733
2734 /* Hook it to the objfile it comes from */
2735
2736 symtab->objfile = objfile;
2737 symtab->next = objfile->symtabs;
2738 objfile->symtabs = symtab;
2739
2740 return (symtab);
2741 }
2742
2743 struct partial_symtab *
2744 allocate_psymtab (char *filename, struct objfile *objfile)
2745 {
2746 struct partial_symtab *psymtab;
2747
2748 if (objfile->free_psymtabs)
2749 {
2750 psymtab = objfile->free_psymtabs;
2751 objfile->free_psymtabs = psymtab->next;
2752 }
2753 else
2754 psymtab = (struct partial_symtab *)
2755 obstack_alloc (&objfile->objfile_obstack,
2756 sizeof (struct partial_symtab));
2757
2758 memset (psymtab, 0, sizeof (struct partial_symtab));
2759 psymtab->filename = obsavestring (filename, strlen (filename),
2760 &objfile->objfile_obstack);
2761 psymtab->symtab = NULL;
2762
2763 /* Prepend it to the psymtab list for the objfile it belongs to.
2764 Psymtabs are searched in most recent inserted -> least recent
2765 inserted order. */
2766
2767 psymtab->objfile = objfile;
2768 psymtab->next = objfile->psymtabs;
2769 objfile->psymtabs = psymtab;
2770 #if 0
2771 {
2772 struct partial_symtab **prev_pst;
2773 psymtab->objfile = objfile;
2774 psymtab->next = NULL;
2775 prev_pst = &(objfile->psymtabs);
2776 while ((*prev_pst) != NULL)
2777 prev_pst = &((*prev_pst)->next);
2778 (*prev_pst) = psymtab;
2779 }
2780 #endif
2781
2782 return (psymtab);
2783 }
2784
2785 void
2786 discard_psymtab (struct partial_symtab *pst)
2787 {
2788 struct partial_symtab **prev_pst;
2789
2790 /* From dbxread.c:
2791 Empty psymtabs happen as a result of header files which don't
2792 have any symbols in them. There can be a lot of them. But this
2793 check is wrong, in that a psymtab with N_SLINE entries but
2794 nothing else is not empty, but we don't realize that. Fixing
2795 that without slowing things down might be tricky. */
2796
2797 /* First, snip it out of the psymtab chain */
2798
2799 prev_pst = &(pst->objfile->psymtabs);
2800 while ((*prev_pst) != pst)
2801 prev_pst = &((*prev_pst)->next);
2802 (*prev_pst) = pst->next;
2803
2804 /* Next, put it on a free list for recycling */
2805
2806 pst->next = pst->objfile->free_psymtabs;
2807 pst->objfile->free_psymtabs = pst;
2808 }
2809 \f
2810
2811 /* Reset all data structures in gdb which may contain references to symbol
2812 table data. */
2813
2814 void
2815 clear_symtab_users (void)
2816 {
2817 /* Someday, we should do better than this, by only blowing away
2818 the things that really need to be blown. */
2819
2820 /* Clear the "current" symtab first, because it is no longer valid.
2821 breakpoint_re_set may try to access the current symtab. */
2822 clear_current_source_symtab_and_line ();
2823
2824 clear_displays ();
2825 breakpoint_re_set ();
2826 set_default_breakpoint (0, 0, 0, 0);
2827 clear_pc_function_cache ();
2828 observer_notify_new_objfile (NULL);
2829
2830 /* Clear globals which might have pointed into a removed objfile.
2831 FIXME: It's not clear which of these are supposed to persist
2832 between expressions and which ought to be reset each time. */
2833 expression_context_block = NULL;
2834 innermost_block = NULL;
2835
2836 /* Varobj may refer to old symbols, perform a cleanup. */
2837 varobj_invalidate ();
2838
2839 }
2840
2841 static void
2842 clear_symtab_users_cleanup (void *ignore)
2843 {
2844 clear_symtab_users ();
2845 }
2846
2847 /* clear_symtab_users_once:
2848
2849 This function is run after symbol reading, or from a cleanup.
2850 If an old symbol table was obsoleted, the old symbol table
2851 has been blown away, but the other GDB data structures that may
2852 reference it have not yet been cleared or re-directed. (The old
2853 symtab was zapped, and the cleanup queued, in free_named_symtab()
2854 below.)
2855
2856 This function can be queued N times as a cleanup, or called
2857 directly; it will do all the work the first time, and then will be a
2858 no-op until the next time it is queued. This works by bumping a
2859 counter at queueing time. Much later when the cleanup is run, or at
2860 the end of symbol processing (in case the cleanup is discarded), if
2861 the queued count is greater than the "done-count", we do the work
2862 and set the done-count to the queued count. If the queued count is
2863 less than or equal to the done-count, we just ignore the call. This
2864 is needed because reading a single .o file will often replace many
2865 symtabs (one per .h file, for example), and we don't want to reset
2866 the breakpoints N times in the user's face.
2867
2868 The reason we both queue a cleanup, and call it directly after symbol
2869 reading, is because the cleanup protects us in case of errors, but is
2870 discarded if symbol reading is successful. */
2871
2872 #if 0
2873 /* FIXME: As free_named_symtabs is currently a big noop this function
2874 is no longer needed. */
2875 static void clear_symtab_users_once (void);
2876
2877 static int clear_symtab_users_queued;
2878 static int clear_symtab_users_done;
2879
2880 static void
2881 clear_symtab_users_once (void)
2882 {
2883 /* Enforce once-per-`do_cleanups'-semantics */
2884 if (clear_symtab_users_queued <= clear_symtab_users_done)
2885 return;
2886 clear_symtab_users_done = clear_symtab_users_queued;
2887
2888 clear_symtab_users ();
2889 }
2890 #endif
2891
2892 /* Delete the specified psymtab, and any others that reference it. */
2893
2894 static void
2895 cashier_psymtab (struct partial_symtab *pst)
2896 {
2897 struct partial_symtab *ps, *pprev = NULL;
2898 int i;
2899
2900 /* Find its previous psymtab in the chain */
2901 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2902 {
2903 if (ps == pst)
2904 break;
2905 pprev = ps;
2906 }
2907
2908 if (ps)
2909 {
2910 /* Unhook it from the chain. */
2911 if (ps == pst->objfile->psymtabs)
2912 pst->objfile->psymtabs = ps->next;
2913 else
2914 pprev->next = ps->next;
2915
2916 /* FIXME, we can't conveniently deallocate the entries in the
2917 partial_symbol lists (global_psymbols/static_psymbols) that
2918 this psymtab points to. These just take up space until all
2919 the psymtabs are reclaimed. Ditto the dependencies list and
2920 filename, which are all in the objfile_obstack. */
2921
2922 /* We need to cashier any psymtab that has this one as a dependency... */
2923 again:
2924 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2925 {
2926 for (i = 0; i < ps->number_of_dependencies; i++)
2927 {
2928 if (ps->dependencies[i] == pst)
2929 {
2930 cashier_psymtab (ps);
2931 goto again; /* Must restart, chain has been munged. */
2932 }
2933 }
2934 }
2935 }
2936 }
2937
2938 /* If a symtab or psymtab for filename NAME is found, free it along
2939 with any dependent breakpoints, displays, etc.
2940 Used when loading new versions of object modules with the "add-file"
2941 command. This is only called on the top-level symtab or psymtab's name;
2942 it is not called for subsidiary files such as .h files.
2943
2944 Return value is 1 if we blew away the environment, 0 if not.
2945 FIXME. The return value appears to never be used.
2946
2947 FIXME. I think this is not the best way to do this. We should
2948 work on being gentler to the environment while still cleaning up
2949 all stray pointers into the freed symtab. */
2950
2951 int
2952 free_named_symtabs (char *name)
2953 {
2954 #if 0
2955 /* FIXME: With the new method of each objfile having it's own
2956 psymtab list, this function needs serious rethinking. In particular,
2957 why was it ever necessary to toss psymtabs with specific compilation
2958 unit filenames, as opposed to all psymtabs from a particular symbol
2959 file? -- fnf
2960 Well, the answer is that some systems permit reloading of particular
2961 compilation units. We want to blow away any old info about these
2962 compilation units, regardless of which objfiles they arrived in. --gnu. */
2963
2964 struct symtab *s;
2965 struct symtab *prev;
2966 struct partial_symtab *ps;
2967 struct blockvector *bv;
2968 int blewit = 0;
2969
2970 /* We only wack things if the symbol-reload switch is set. */
2971 if (!symbol_reloading)
2972 return 0;
2973
2974 /* Some symbol formats have trouble providing file names... */
2975 if (name == 0 || *name == '\0')
2976 return 0;
2977
2978 /* Look for a psymtab with the specified name. */
2979
2980 again2:
2981 for (ps = partial_symtab_list; ps; ps = ps->next)
2982 {
2983 if (strcmp (name, ps->filename) == 0)
2984 {
2985 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2986 goto again2; /* Must restart, chain has been munged */
2987 }
2988 }
2989
2990 /* Look for a symtab with the specified name. */
2991
2992 for (s = symtab_list; s; s = s->next)
2993 {
2994 if (strcmp (name, s->filename) == 0)
2995 break;
2996 prev = s;
2997 }
2998
2999 if (s)
3000 {
3001 if (s == symtab_list)
3002 symtab_list = s->next;
3003 else
3004 prev->next = s->next;
3005
3006 /* For now, queue a delete for all breakpoints, displays, etc., whether
3007 or not they depend on the symtab being freed. This should be
3008 changed so that only those data structures affected are deleted. */
3009
3010 /* But don't delete anything if the symtab is empty.
3011 This test is necessary due to a bug in "dbxread.c" that
3012 causes empty symtabs to be created for N_SO symbols that
3013 contain the pathname of the object file. (This problem
3014 has been fixed in GDB 3.9x). */
3015
3016 bv = BLOCKVECTOR (s);
3017 if (BLOCKVECTOR_NBLOCKS (bv) > 2
3018 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
3019 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
3020 {
3021 complaint (&symfile_complaints, _("Replacing old symbols for `%s'"),
3022 name);
3023 clear_symtab_users_queued++;
3024 make_cleanup (clear_symtab_users_once, 0);
3025 blewit = 1;
3026 }
3027 else
3028 complaint (&symfile_complaints, _("Empty symbol table found for `%s'"),
3029 name);
3030
3031 free_symtab (s);
3032 }
3033 else
3034 {
3035 /* It is still possible that some breakpoints will be affected
3036 even though no symtab was found, since the file might have
3037 been compiled without debugging, and hence not be associated
3038 with a symtab. In order to handle this correctly, we would need
3039 to keep a list of text address ranges for undebuggable files.
3040 For now, we do nothing, since this is a fairly obscure case. */
3041 ;
3042 }
3043
3044 /* FIXME, what about the minimal symbol table? */
3045 return blewit;
3046 #else
3047 return (0);
3048 #endif
3049 }
3050 \f
3051 /* Allocate and partially fill a partial symtab. It will be
3052 completely filled at the end of the symbol list.
3053
3054 FILENAME is the name of the symbol-file we are reading from. */
3055
3056 struct partial_symtab *
3057 start_psymtab_common (struct objfile *objfile,
3058 struct section_offsets *section_offsets, char *filename,
3059 CORE_ADDR textlow, struct partial_symbol **global_syms,
3060 struct partial_symbol **static_syms)
3061 {
3062 struct partial_symtab *psymtab;
3063
3064 psymtab = allocate_psymtab (filename, objfile);
3065 psymtab->section_offsets = section_offsets;
3066 psymtab->textlow = textlow;
3067 psymtab->texthigh = psymtab->textlow; /* default */
3068 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
3069 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
3070 return (psymtab);
3071 }
3072 \f
3073 /* Helper function, initialises partial symbol structure and stashes
3074 it into objfile's bcache. Note that our caching mechanism will
3075 use all fields of struct partial_symbol to determine hash value of the
3076 structure. In other words, having two symbols with the same name but
3077 different domain (or address) is possible and correct. */
3078
3079 static const struct partial_symbol *
3080 add_psymbol_to_bcache (char *name, int namelength, domain_enum domain,
3081 enum address_class class,
3082 long val, /* Value as a long */
3083 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3084 enum language language, struct objfile *objfile,
3085 int *added)
3086 {
3087 char *buf = name;
3088 /* psymbol is static so that there will be no uninitialized gaps in the
3089 structure which might contain random data, causing cache misses in
3090 bcache. */
3091 static struct partial_symbol psymbol;
3092
3093 if (name[namelength] != '\0')
3094 {
3095 buf = alloca (namelength + 1);
3096 /* Create local copy of the partial symbol */
3097 memcpy (buf, name, namelength);
3098 buf[namelength] = '\0';
3099 }
3100 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
3101 if (val != 0)
3102 {
3103 SYMBOL_VALUE (&psymbol) = val;
3104 }
3105 else
3106 {
3107 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
3108 }
3109 SYMBOL_SECTION (&psymbol) = 0;
3110 SYMBOL_LANGUAGE (&psymbol) = language;
3111 PSYMBOL_DOMAIN (&psymbol) = domain;
3112 PSYMBOL_CLASS (&psymbol) = class;
3113
3114 SYMBOL_SET_NAMES (&psymbol, buf, namelength, objfile);
3115
3116 /* Stash the partial symbol away in the cache */
3117 return bcache_full (&psymbol, sizeof (struct partial_symbol),
3118 objfile->psymbol_cache, added);
3119 }
3120
3121 /* Helper function, adds partial symbol to the given partial symbol
3122 list. */
3123
3124 static void
3125 append_psymbol_to_list (struct psymbol_allocation_list *list,
3126 const struct partial_symbol *psym,
3127 struct objfile *objfile)
3128 {
3129 if (list->next >= list->list + list->size)
3130 extend_psymbol_list (list, objfile);
3131 *list->next++ = (struct partial_symbol *) psym;
3132 OBJSTAT (objfile, n_psyms++);
3133 }
3134
3135 /* Add a symbol with a long value to a psymtab.
3136 Since one arg is a struct, we pass in a ptr and deref it (sigh).
3137 Return the partial symbol that has been added. */
3138
3139 /* NOTE: carlton/2003-09-11: The reason why we return the partial
3140 symbol is so that callers can get access to the symbol's demangled
3141 name, which they don't have any cheap way to determine otherwise.
3142 (Currenly, dwarf2read.c is the only file who uses that information,
3143 though it's possible that other readers might in the future.)
3144 Elena wasn't thrilled about that, and I don't blame her, but we
3145 couldn't come up with a better way to get that information. If
3146 it's needed in other situations, we could consider breaking up
3147 SYMBOL_SET_NAMES to provide access to the demangled name lookup
3148 cache. */
3149
3150 const struct partial_symbol *
3151 add_psymbol_to_list (char *name, int namelength, domain_enum domain,
3152 enum address_class class,
3153 struct psymbol_allocation_list *list,
3154 long val, /* Value as a long */
3155 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
3156 enum language language, struct objfile *objfile)
3157 {
3158 const struct partial_symbol *psym;
3159
3160 int added;
3161
3162 /* Stash the partial symbol away in the cache */
3163 psym = add_psymbol_to_bcache (name, namelength, domain, class,
3164 val, coreaddr, language, objfile, &added);
3165
3166 /* Do not duplicate global partial symbols. */
3167 if (list == &objfile->global_psymbols
3168 && !added)
3169 return psym;
3170
3171 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
3172 append_psymbol_to_list (list, psym, objfile);
3173 return psym;
3174 }
3175
3176 /* Initialize storage for partial symbols. */
3177
3178 void
3179 init_psymbol_list (struct objfile *objfile, int total_symbols)
3180 {
3181 /* Free any previously allocated psymbol lists. */
3182
3183 if (objfile->global_psymbols.list)
3184 {
3185 xfree (objfile->global_psymbols.list);
3186 }
3187 if (objfile->static_psymbols.list)
3188 {
3189 xfree (objfile->static_psymbols.list);
3190 }
3191
3192 /* Current best guess is that approximately a twentieth
3193 of the total symbols (in a debugging file) are global or static
3194 oriented symbols */
3195
3196 objfile->global_psymbols.size = total_symbols / 10;
3197 objfile->static_psymbols.size = total_symbols / 10;
3198
3199 if (objfile->global_psymbols.size > 0)
3200 {
3201 objfile->global_psymbols.next =
3202 objfile->global_psymbols.list = (struct partial_symbol **)
3203 xmalloc ((objfile->global_psymbols.size
3204 * sizeof (struct partial_symbol *)));
3205 }
3206 if (objfile->static_psymbols.size > 0)
3207 {
3208 objfile->static_psymbols.next =
3209 objfile->static_psymbols.list = (struct partial_symbol **)
3210 xmalloc ((objfile->static_psymbols.size
3211 * sizeof (struct partial_symbol *)));
3212 }
3213 }
3214
3215 /* OVERLAYS:
3216 The following code implements an abstraction for debugging overlay sections.
3217
3218 The target model is as follows:
3219 1) The gnu linker will permit multiple sections to be mapped into the
3220 same VMA, each with its own unique LMA (or load address).
3221 2) It is assumed that some runtime mechanism exists for mapping the
3222 sections, one by one, from the load address into the VMA address.
3223 3) This code provides a mechanism for gdb to keep track of which
3224 sections should be considered to be mapped from the VMA to the LMA.
3225 This information is used for symbol lookup, and memory read/write.
3226 For instance, if a section has been mapped then its contents
3227 should be read from the VMA, otherwise from the LMA.
3228
3229 Two levels of debugger support for overlays are available. One is
3230 "manual", in which the debugger relies on the user to tell it which
3231 overlays are currently mapped. This level of support is
3232 implemented entirely in the core debugger, and the information about
3233 whether a section is mapped is kept in the objfile->obj_section table.
3234
3235 The second level of support is "automatic", and is only available if
3236 the target-specific code provides functionality to read the target's
3237 overlay mapping table, and translate its contents for the debugger
3238 (by updating the mapped state information in the obj_section tables).
3239
3240 The interface is as follows:
3241 User commands:
3242 overlay map <name> -- tell gdb to consider this section mapped
3243 overlay unmap <name> -- tell gdb to consider this section unmapped
3244 overlay list -- list the sections that GDB thinks are mapped
3245 overlay read-target -- get the target's state of what's mapped
3246 overlay off/manual/auto -- set overlay debugging state
3247 Functional interface:
3248 find_pc_mapped_section(pc): if the pc is in the range of a mapped
3249 section, return that section.
3250 find_pc_overlay(pc): find any overlay section that contains
3251 the pc, either in its VMA or its LMA
3252 section_is_mapped(sect): true if overlay is marked as mapped
3253 section_is_overlay(sect): true if section's VMA != LMA
3254 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
3255 pc_in_unmapped_range(...): true if pc belongs to section's LMA
3256 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
3257 overlay_mapped_address(...): map an address from section's LMA to VMA
3258 overlay_unmapped_address(...): map an address from section's VMA to LMA
3259 symbol_overlayed_address(...): Return a "current" address for symbol:
3260 either in VMA or LMA depending on whether
3261 the symbol's section is currently mapped
3262 */
3263
3264 /* Overlay debugging state: */
3265
3266 enum overlay_debugging_state overlay_debugging = ovly_off;
3267 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
3268
3269 /* Function: section_is_overlay (SECTION)
3270 Returns true if SECTION has VMA not equal to LMA, ie.
3271 SECTION is loaded at an address different from where it will "run". */
3272
3273 int
3274 section_is_overlay (struct obj_section *section)
3275 {
3276 if (overlay_debugging && section)
3277 {
3278 bfd *abfd = section->objfile->obfd;
3279 asection *bfd_section = section->the_bfd_section;
3280
3281 if (bfd_section_lma (abfd, bfd_section) != 0
3282 && bfd_section_lma (abfd, bfd_section)
3283 != bfd_section_vma (abfd, bfd_section))
3284 return 1;
3285 }
3286
3287 return 0;
3288 }
3289
3290 /* Function: overlay_invalidate_all (void)
3291 Invalidate the mapped state of all overlay sections (mark it as stale). */
3292
3293 static void
3294 overlay_invalidate_all (void)
3295 {
3296 struct objfile *objfile;
3297 struct obj_section *sect;
3298
3299 ALL_OBJSECTIONS (objfile, sect)
3300 if (section_is_overlay (sect))
3301 sect->ovly_mapped = -1;
3302 }
3303
3304 /* Function: section_is_mapped (SECTION)
3305 Returns true if section is an overlay, and is currently mapped.
3306
3307 Access to the ovly_mapped flag is restricted to this function, so
3308 that we can do automatic update. If the global flag
3309 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3310 overlay_invalidate_all. If the mapped state of the particular
3311 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3312
3313 int
3314 section_is_mapped (struct obj_section *osect)
3315 {
3316 struct gdbarch *gdbarch;
3317
3318 if (osect == 0 || !section_is_overlay (osect))
3319 return 0;
3320
3321 switch (overlay_debugging)
3322 {
3323 default:
3324 case ovly_off:
3325 return 0; /* overlay debugging off */
3326 case ovly_auto: /* overlay debugging automatic */
3327 /* Unles there is a gdbarch_overlay_update function,
3328 there's really nothing useful to do here (can't really go auto) */
3329 gdbarch = get_objfile_arch (osect->objfile);
3330 if (gdbarch_overlay_update_p (gdbarch))
3331 {
3332 if (overlay_cache_invalid)
3333 {
3334 overlay_invalidate_all ();
3335 overlay_cache_invalid = 0;
3336 }
3337 if (osect->ovly_mapped == -1)
3338 gdbarch_overlay_update (gdbarch, osect);
3339 }
3340 /* fall thru to manual case */
3341 case ovly_on: /* overlay debugging manual */
3342 return osect->ovly_mapped == 1;
3343 }
3344 }
3345
3346 /* Function: pc_in_unmapped_range
3347 If PC falls into the lma range of SECTION, return true, else false. */
3348
3349 CORE_ADDR
3350 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3351 {
3352 if (section_is_overlay (section))
3353 {
3354 bfd *abfd = section->objfile->obfd;
3355 asection *bfd_section = section->the_bfd_section;
3356
3357 /* We assume the LMA is relocated by the same offset as the VMA. */
3358 bfd_vma size = bfd_get_section_size (bfd_section);
3359 CORE_ADDR offset = obj_section_offset (section);
3360
3361 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3362 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3363 return 1;
3364 }
3365
3366 return 0;
3367 }
3368
3369 /* Function: pc_in_mapped_range
3370 If PC falls into the vma range of SECTION, return true, else false. */
3371
3372 CORE_ADDR
3373 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3374 {
3375 if (section_is_overlay (section))
3376 {
3377 if (obj_section_addr (section) <= pc
3378 && pc < obj_section_endaddr (section))
3379 return 1;
3380 }
3381
3382 return 0;
3383 }
3384
3385
3386 /* Return true if the mapped ranges of sections A and B overlap, false
3387 otherwise. */
3388 static int
3389 sections_overlap (struct obj_section *a, struct obj_section *b)
3390 {
3391 CORE_ADDR a_start = obj_section_addr (a);
3392 CORE_ADDR a_end = obj_section_endaddr (a);
3393 CORE_ADDR b_start = obj_section_addr (b);
3394 CORE_ADDR b_end = obj_section_endaddr (b);
3395
3396 return (a_start < b_end && b_start < a_end);
3397 }
3398
3399 /* Function: overlay_unmapped_address (PC, SECTION)
3400 Returns the address corresponding to PC in the unmapped (load) range.
3401 May be the same as PC. */
3402
3403 CORE_ADDR
3404 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3405 {
3406 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3407 {
3408 bfd *abfd = section->objfile->obfd;
3409 asection *bfd_section = section->the_bfd_section;
3410
3411 return pc + bfd_section_lma (abfd, bfd_section)
3412 - bfd_section_vma (abfd, bfd_section);
3413 }
3414
3415 return pc;
3416 }
3417
3418 /* Function: overlay_mapped_address (PC, SECTION)
3419 Returns the address corresponding to PC in the mapped (runtime) range.
3420 May be the same as PC. */
3421
3422 CORE_ADDR
3423 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3424 {
3425 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3426 {
3427 bfd *abfd = section->objfile->obfd;
3428 asection *bfd_section = section->the_bfd_section;
3429
3430 return pc + bfd_section_vma (abfd, bfd_section)
3431 - bfd_section_lma (abfd, bfd_section);
3432 }
3433
3434 return pc;
3435 }
3436
3437
3438 /* Function: symbol_overlayed_address
3439 Return one of two addresses (relative to the VMA or to the LMA),
3440 depending on whether the section is mapped or not. */
3441
3442 CORE_ADDR
3443 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3444 {
3445 if (overlay_debugging)
3446 {
3447 /* If the symbol has no section, just return its regular address. */
3448 if (section == 0)
3449 return address;
3450 /* If the symbol's section is not an overlay, just return its address */
3451 if (!section_is_overlay (section))
3452 return address;
3453 /* If the symbol's section is mapped, just return its address */
3454 if (section_is_mapped (section))
3455 return address;
3456 /*
3457 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3458 * then return its LOADED address rather than its vma address!!
3459 */
3460 return overlay_unmapped_address (address, section);
3461 }
3462 return address;
3463 }
3464
3465 /* Function: find_pc_overlay (PC)
3466 Return the best-match overlay section for PC:
3467 If PC matches a mapped overlay section's VMA, return that section.
3468 Else if PC matches an unmapped section's VMA, return that section.
3469 Else if PC matches an unmapped section's LMA, return that section. */
3470
3471 struct obj_section *
3472 find_pc_overlay (CORE_ADDR pc)
3473 {
3474 struct objfile *objfile;
3475 struct obj_section *osect, *best_match = NULL;
3476
3477 if (overlay_debugging)
3478 ALL_OBJSECTIONS (objfile, osect)
3479 if (section_is_overlay (osect))
3480 {
3481 if (pc_in_mapped_range (pc, osect))
3482 {
3483 if (section_is_mapped (osect))
3484 return osect;
3485 else
3486 best_match = osect;
3487 }
3488 else if (pc_in_unmapped_range (pc, osect))
3489 best_match = osect;
3490 }
3491 return best_match;
3492 }
3493
3494 /* Function: find_pc_mapped_section (PC)
3495 If PC falls into the VMA address range of an overlay section that is
3496 currently marked as MAPPED, return that section. Else return NULL. */
3497
3498 struct obj_section *
3499 find_pc_mapped_section (CORE_ADDR pc)
3500 {
3501 struct objfile *objfile;
3502 struct obj_section *osect;
3503
3504 if (overlay_debugging)
3505 ALL_OBJSECTIONS (objfile, osect)
3506 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3507 return osect;
3508
3509 return NULL;
3510 }
3511
3512 /* Function: list_overlays_command
3513 Print a list of mapped sections and their PC ranges */
3514
3515 void
3516 list_overlays_command (char *args, int from_tty)
3517 {
3518 int nmapped = 0;
3519 struct objfile *objfile;
3520 struct obj_section *osect;
3521
3522 if (overlay_debugging)
3523 ALL_OBJSECTIONS (objfile, osect)
3524 if (section_is_mapped (osect))
3525 {
3526 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3527 const char *name;
3528 bfd_vma lma, vma;
3529 int size;
3530
3531 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3532 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3533 size = bfd_get_section_size (osect->the_bfd_section);
3534 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3535
3536 printf_filtered ("Section %s, loaded at ", name);
3537 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3538 puts_filtered (" - ");
3539 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3540 printf_filtered (", mapped at ");
3541 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3542 puts_filtered (" - ");
3543 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3544 puts_filtered ("\n");
3545
3546 nmapped++;
3547 }
3548 if (nmapped == 0)
3549 printf_filtered (_("No sections are mapped.\n"));
3550 }
3551
3552 /* Function: map_overlay_command
3553 Mark the named section as mapped (ie. residing at its VMA address). */
3554
3555 void
3556 map_overlay_command (char *args, int from_tty)
3557 {
3558 struct objfile *objfile, *objfile2;
3559 struct obj_section *sec, *sec2;
3560
3561 if (!overlay_debugging)
3562 error (_("\
3563 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3564 the 'overlay manual' command."));
3565
3566 if (args == 0 || *args == 0)
3567 error (_("Argument required: name of an overlay section"));
3568
3569 /* First, find a section matching the user supplied argument */
3570 ALL_OBJSECTIONS (objfile, sec)
3571 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3572 {
3573 /* Now, check to see if the section is an overlay. */
3574 if (!section_is_overlay (sec))
3575 continue; /* not an overlay section */
3576
3577 /* Mark the overlay as "mapped" */
3578 sec->ovly_mapped = 1;
3579
3580 /* Next, make a pass and unmap any sections that are
3581 overlapped by this new section: */
3582 ALL_OBJSECTIONS (objfile2, sec2)
3583 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3584 {
3585 if (info_verbose)
3586 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3587 bfd_section_name (objfile->obfd,
3588 sec2->the_bfd_section));
3589 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3590 }
3591 return;
3592 }
3593 error (_("No overlay section called %s"), args);
3594 }
3595
3596 /* Function: unmap_overlay_command
3597 Mark the overlay section as unmapped
3598 (ie. resident in its LMA address range, rather than the VMA range). */
3599
3600 void
3601 unmap_overlay_command (char *args, int from_tty)
3602 {
3603 struct objfile *objfile;
3604 struct obj_section *sec;
3605
3606 if (!overlay_debugging)
3607 error (_("\
3608 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3609 the 'overlay manual' command."));
3610
3611 if (args == 0 || *args == 0)
3612 error (_("Argument required: name of an overlay section"));
3613
3614 /* First, find a section matching the user supplied argument */
3615 ALL_OBJSECTIONS (objfile, sec)
3616 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3617 {
3618 if (!sec->ovly_mapped)
3619 error (_("Section %s is not mapped"), args);
3620 sec->ovly_mapped = 0;
3621 return;
3622 }
3623 error (_("No overlay section called %s"), args);
3624 }
3625
3626 /* Function: overlay_auto_command
3627 A utility command to turn on overlay debugging.
3628 Possibly this should be done via a set/show command. */
3629
3630 static void
3631 overlay_auto_command (char *args, int from_tty)
3632 {
3633 overlay_debugging = ovly_auto;
3634 enable_overlay_breakpoints ();
3635 if (info_verbose)
3636 printf_unfiltered (_("Automatic overlay debugging enabled."));
3637 }
3638
3639 /* Function: overlay_manual_command
3640 A utility command to turn on overlay debugging.
3641 Possibly this should be done via a set/show command. */
3642
3643 static void
3644 overlay_manual_command (char *args, int from_tty)
3645 {
3646 overlay_debugging = ovly_on;
3647 disable_overlay_breakpoints ();
3648 if (info_verbose)
3649 printf_unfiltered (_("Overlay debugging enabled."));
3650 }
3651
3652 /* Function: overlay_off_command
3653 A utility command to turn on overlay debugging.
3654 Possibly this should be done via a set/show command. */
3655
3656 static void
3657 overlay_off_command (char *args, int from_tty)
3658 {
3659 overlay_debugging = ovly_off;
3660 disable_overlay_breakpoints ();
3661 if (info_verbose)
3662 printf_unfiltered (_("Overlay debugging disabled."));
3663 }
3664
3665 static void
3666 overlay_load_command (char *args, int from_tty)
3667 {
3668 struct gdbarch *gdbarch = get_current_arch ();
3669
3670 if (gdbarch_overlay_update_p (gdbarch))
3671 gdbarch_overlay_update (gdbarch, NULL);
3672 else
3673 error (_("This target does not know how to read its overlay state."));
3674 }
3675
3676 /* Function: overlay_command
3677 A place-holder for a mis-typed command */
3678
3679 /* Command list chain containing all defined "overlay" subcommands. */
3680 struct cmd_list_element *overlaylist;
3681
3682 static void
3683 overlay_command (char *args, int from_tty)
3684 {
3685 printf_unfiltered
3686 ("\"overlay\" must be followed by the name of an overlay command.\n");
3687 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3688 }
3689
3690
3691 /* Target Overlays for the "Simplest" overlay manager:
3692
3693 This is GDB's default target overlay layer. It works with the
3694 minimal overlay manager supplied as an example by Cygnus. The
3695 entry point is via a function pointer "gdbarch_overlay_update",
3696 so targets that use a different runtime overlay manager can
3697 substitute their own overlay_update function and take over the
3698 function pointer.
3699
3700 The overlay_update function pokes around in the target's data structures
3701 to see what overlays are mapped, and updates GDB's overlay mapping with
3702 this information.
3703
3704 In this simple implementation, the target data structures are as follows:
3705 unsigned _novlys; /# number of overlay sections #/
3706 unsigned _ovly_table[_novlys][4] = {
3707 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3708 {..., ..., ..., ...},
3709 }
3710 unsigned _novly_regions; /# number of overlay regions #/
3711 unsigned _ovly_region_table[_novly_regions][3] = {
3712 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3713 {..., ..., ...},
3714 }
3715 These functions will attempt to update GDB's mappedness state in the
3716 symbol section table, based on the target's mappedness state.
3717
3718 To do this, we keep a cached copy of the target's _ovly_table, and
3719 attempt to detect when the cached copy is invalidated. The main
3720 entry point is "simple_overlay_update(SECT), which looks up SECT in
3721 the cached table and re-reads only the entry for that section from
3722 the target (whenever possible).
3723 */
3724
3725 /* Cached, dynamically allocated copies of the target data structures: */
3726 static unsigned (*cache_ovly_table)[4] = 0;
3727 #if 0
3728 static unsigned (*cache_ovly_region_table)[3] = 0;
3729 #endif
3730 static unsigned cache_novlys = 0;
3731 #if 0
3732 static unsigned cache_novly_regions = 0;
3733 #endif
3734 static CORE_ADDR cache_ovly_table_base = 0;
3735 #if 0
3736 static CORE_ADDR cache_ovly_region_table_base = 0;
3737 #endif
3738 enum ovly_index
3739 {
3740 VMA, SIZE, LMA, MAPPED
3741 };
3742
3743 /* Throw away the cached copy of _ovly_table */
3744 static void
3745 simple_free_overlay_table (void)
3746 {
3747 if (cache_ovly_table)
3748 xfree (cache_ovly_table);
3749 cache_novlys = 0;
3750 cache_ovly_table = NULL;
3751 cache_ovly_table_base = 0;
3752 }
3753
3754 #if 0
3755 /* Throw away the cached copy of _ovly_region_table */
3756 static void
3757 simple_free_overlay_region_table (void)
3758 {
3759 if (cache_ovly_region_table)
3760 xfree (cache_ovly_region_table);
3761 cache_novly_regions = 0;
3762 cache_ovly_region_table = NULL;
3763 cache_ovly_region_table_base = 0;
3764 }
3765 #endif
3766
3767 /* Read an array of ints of size SIZE from the target into a local buffer.
3768 Convert to host order. int LEN is number of ints */
3769 static void
3770 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3771 int len, int size, enum bfd_endian byte_order)
3772 {
3773 /* FIXME (alloca): Not safe if array is very large. */
3774 gdb_byte *buf = alloca (len * size);
3775 int i;
3776
3777 read_memory (memaddr, buf, len * size);
3778 for (i = 0; i < len; i++)
3779 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3780 }
3781
3782 /* Find and grab a copy of the target _ovly_table
3783 (and _novlys, which is needed for the table's size) */
3784 static int
3785 simple_read_overlay_table (void)
3786 {
3787 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3788 struct gdbarch *gdbarch;
3789 int word_size;
3790 enum bfd_endian byte_order;
3791
3792 simple_free_overlay_table ();
3793 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3794 if (! novlys_msym)
3795 {
3796 error (_("Error reading inferior's overlay table: "
3797 "couldn't find `_novlys' variable\n"
3798 "in inferior. Use `overlay manual' mode."));
3799 return 0;
3800 }
3801
3802 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3803 if (! ovly_table_msym)
3804 {
3805 error (_("Error reading inferior's overlay table: couldn't find "
3806 "`_ovly_table' array\n"
3807 "in inferior. Use `overlay manual' mode."));
3808 return 0;
3809 }
3810
3811 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3812 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3813 byte_order = gdbarch_byte_order (gdbarch);
3814
3815 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3816 4, byte_order);
3817 cache_ovly_table
3818 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3819 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3820 read_target_long_array (cache_ovly_table_base,
3821 (unsigned int *) cache_ovly_table,
3822 cache_novlys * 4, word_size, byte_order);
3823
3824 return 1; /* SUCCESS */
3825 }
3826
3827 #if 0
3828 /* Find and grab a copy of the target _ovly_region_table
3829 (and _novly_regions, which is needed for the table's size) */
3830 static int
3831 simple_read_overlay_region_table (void)
3832 {
3833 struct minimal_symbol *msym;
3834 struct gdbarch *gdbarch;
3835 int word_size;
3836 enum bfd_endian byte_order;
3837
3838 simple_free_overlay_region_table ();
3839 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3840 if (msym == NULL)
3841 return 0; /* failure */
3842
3843 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3844 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3845 byte_order = gdbarch_byte_order (gdbarch);
3846
3847 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3848 4, byte_order);
3849
3850 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3851 if (cache_ovly_region_table != NULL)
3852 {
3853 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3854 if (msym != NULL)
3855 {
3856 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3857 read_target_long_array (cache_ovly_region_table_base,
3858 (unsigned int *) cache_ovly_region_table,
3859 cache_novly_regions * 3,
3860 word_size, byte_order);
3861 }
3862 else
3863 return 0; /* failure */
3864 }
3865 else
3866 return 0; /* failure */
3867 return 1; /* SUCCESS */
3868 }
3869 #endif
3870
3871 /* Function: simple_overlay_update_1
3872 A helper function for simple_overlay_update. Assuming a cached copy
3873 of _ovly_table exists, look through it to find an entry whose vma,
3874 lma and size match those of OSECT. Re-read the entry and make sure
3875 it still matches OSECT (else the table may no longer be valid).
3876 Set OSECT's mapped state to match the entry. Return: 1 for
3877 success, 0 for failure. */
3878
3879 static int
3880 simple_overlay_update_1 (struct obj_section *osect)
3881 {
3882 int i, size;
3883 bfd *obfd = osect->objfile->obfd;
3884 asection *bsect = osect->the_bfd_section;
3885 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3886 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3887 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3888
3889 size = bfd_get_section_size (osect->the_bfd_section);
3890 for (i = 0; i < cache_novlys; i++)
3891 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3892 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3893 /* && cache_ovly_table[i][SIZE] == size */ )
3894 {
3895 read_target_long_array (cache_ovly_table_base + i * word_size,
3896 (unsigned int *) cache_ovly_table[i],
3897 4, word_size, byte_order);
3898 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3899 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3900 /* && cache_ovly_table[i][SIZE] == size */ )
3901 {
3902 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3903 return 1;
3904 }
3905 else /* Warning! Warning! Target's ovly table has changed! */
3906 return 0;
3907 }
3908 return 0;
3909 }
3910
3911 /* Function: simple_overlay_update
3912 If OSECT is NULL, then update all sections' mapped state
3913 (after re-reading the entire target _ovly_table).
3914 If OSECT is non-NULL, then try to find a matching entry in the
3915 cached ovly_table and update only OSECT's mapped state.
3916 If a cached entry can't be found or the cache isn't valid, then
3917 re-read the entire cache, and go ahead and update all sections. */
3918
3919 void
3920 simple_overlay_update (struct obj_section *osect)
3921 {
3922 struct objfile *objfile;
3923
3924 /* Were we given an osect to look up? NULL means do all of them. */
3925 if (osect)
3926 /* Have we got a cached copy of the target's overlay table? */
3927 if (cache_ovly_table != NULL)
3928 /* Does its cached location match what's currently in the symtab? */
3929 if (cache_ovly_table_base ==
3930 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3931 /* Then go ahead and try to look up this single section in the cache */
3932 if (simple_overlay_update_1 (osect))
3933 /* Found it! We're done. */
3934 return;
3935
3936 /* Cached table no good: need to read the entire table anew.
3937 Or else we want all the sections, in which case it's actually
3938 more efficient to read the whole table in one block anyway. */
3939
3940 if (! simple_read_overlay_table ())
3941 return;
3942
3943 /* Now may as well update all sections, even if only one was requested. */
3944 ALL_OBJSECTIONS (objfile, osect)
3945 if (section_is_overlay (osect))
3946 {
3947 int i, size;
3948 bfd *obfd = osect->objfile->obfd;
3949 asection *bsect = osect->the_bfd_section;
3950
3951 size = bfd_get_section_size (bsect);
3952 for (i = 0; i < cache_novlys; i++)
3953 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3954 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3955 /* && cache_ovly_table[i][SIZE] == size */ )
3956 { /* obj_section matches i'th entry in ovly_table */
3957 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3958 break; /* finished with inner for loop: break out */
3959 }
3960 }
3961 }
3962
3963 /* Set the output sections and output offsets for section SECTP in
3964 ABFD. The relocation code in BFD will read these offsets, so we
3965 need to be sure they're initialized. We map each section to itself,
3966 with no offset; this means that SECTP->vma will be honored. */
3967
3968 static void
3969 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3970 {
3971 sectp->output_section = sectp;
3972 sectp->output_offset = 0;
3973 }
3974
3975 /* Relocate the contents of a debug section SECTP in ABFD. The
3976 contents are stored in BUF if it is non-NULL, or returned in a
3977 malloc'd buffer otherwise.
3978
3979 For some platforms and debug info formats, shared libraries contain
3980 relocations against the debug sections (particularly for DWARF-2;
3981 one affected platform is PowerPC GNU/Linux, although it depends on
3982 the version of the linker in use). Also, ELF object files naturally
3983 have unresolved relocations for their debug sections. We need to apply
3984 the relocations in order to get the locations of symbols correct.
3985 Another example that may require relocation processing, is the
3986 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3987 debug section. */
3988
3989 bfd_byte *
3990 symfile_relocate_debug_section (bfd *abfd, asection *sectp, bfd_byte *buf)
3991 {
3992 /* We're only interested in sections with relocation
3993 information. */
3994 if ((sectp->flags & SEC_RELOC) == 0)
3995 return NULL;
3996
3997 /* We will handle section offsets properly elsewhere, so relocate as if
3998 all sections begin at 0. */
3999 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
4000
4001 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
4002 }
4003
4004 struct symfile_segment_data *
4005 get_symfile_segment_data (bfd *abfd)
4006 {
4007 struct sym_fns *sf = find_sym_fns (abfd);
4008
4009 if (sf == NULL)
4010 return NULL;
4011
4012 return sf->sym_segments (abfd);
4013 }
4014
4015 void
4016 free_symfile_segment_data (struct symfile_segment_data *data)
4017 {
4018 xfree (data->segment_bases);
4019 xfree (data->segment_sizes);
4020 xfree (data->segment_info);
4021 xfree (data);
4022 }
4023
4024
4025 /* Given:
4026 - DATA, containing segment addresses from the object file ABFD, and
4027 the mapping from ABFD's sections onto the segments that own them,
4028 and
4029 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
4030 segment addresses reported by the target,
4031 store the appropriate offsets for each section in OFFSETS.
4032
4033 If there are fewer entries in SEGMENT_BASES than there are segments
4034 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
4035
4036 If there are more entries, then ignore the extra. The target may
4037 not be able to distinguish between an empty data segment and a
4038 missing data segment; a missing text segment is less plausible. */
4039 int
4040 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
4041 struct section_offsets *offsets,
4042 int num_segment_bases,
4043 const CORE_ADDR *segment_bases)
4044 {
4045 int i;
4046 asection *sect;
4047
4048 /* It doesn't make sense to call this function unless you have some
4049 segment base addresses. */
4050 gdb_assert (segment_bases > 0);
4051
4052 /* If we do not have segment mappings for the object file, we
4053 can not relocate it by segments. */
4054 gdb_assert (data != NULL);
4055 gdb_assert (data->num_segments > 0);
4056
4057 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4058 {
4059 int which = data->segment_info[i];
4060
4061 gdb_assert (0 <= which && which <= data->num_segments);
4062
4063 /* Don't bother computing offsets for sections that aren't
4064 loaded as part of any segment. */
4065 if (! which)
4066 continue;
4067
4068 /* Use the last SEGMENT_BASES entry as the address of any extra
4069 segments mentioned in DATA->segment_info. */
4070 if (which > num_segment_bases)
4071 which = num_segment_bases;
4072
4073 offsets->offsets[i] = (segment_bases[which - 1]
4074 - data->segment_bases[which - 1]);
4075 }
4076
4077 return 1;
4078 }
4079
4080 static void
4081 symfile_find_segment_sections (struct objfile *objfile)
4082 {
4083 bfd *abfd = objfile->obfd;
4084 int i;
4085 asection *sect;
4086 struct symfile_segment_data *data;
4087
4088 data = get_symfile_segment_data (objfile->obfd);
4089 if (data == NULL)
4090 return;
4091
4092 if (data->num_segments != 1 && data->num_segments != 2)
4093 {
4094 free_symfile_segment_data (data);
4095 return;
4096 }
4097
4098 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
4099 {
4100 CORE_ADDR vma;
4101 int which = data->segment_info[i];
4102
4103 if (which == 1)
4104 {
4105 if (objfile->sect_index_text == -1)
4106 objfile->sect_index_text = sect->index;
4107
4108 if (objfile->sect_index_rodata == -1)
4109 objfile->sect_index_rodata = sect->index;
4110 }
4111 else if (which == 2)
4112 {
4113 if (objfile->sect_index_data == -1)
4114 objfile->sect_index_data = sect->index;
4115
4116 if (objfile->sect_index_bss == -1)
4117 objfile->sect_index_bss = sect->index;
4118 }
4119 }
4120
4121 free_symfile_segment_data (data);
4122 }
4123
4124 void
4125 _initialize_symfile (void)
4126 {
4127 struct cmd_list_element *c;
4128
4129 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
4130 Load symbol table from executable file FILE.\n\
4131 The `file' command can also load symbol tables, as well as setting the file\n\
4132 to execute."), &cmdlist);
4133 set_cmd_completer (c, filename_completer);
4134
4135 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
4136 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
4137 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
4138 ADDR is the starting address of the file's text.\n\
4139 The optional arguments are section-name section-address pairs and\n\
4140 should be specified if the data and bss segments are not contiguous\n\
4141 with the text. SECT is a section name to be loaded at SECT_ADDR."),
4142 &cmdlist);
4143 set_cmd_completer (c, filename_completer);
4144
4145 c = add_cmd ("load", class_files, load_command, _("\
4146 Dynamically load FILE into the running program, and record its symbols\n\
4147 for access from GDB.\n\
4148 A load OFFSET may also be given."), &cmdlist);
4149 set_cmd_completer (c, filename_completer);
4150
4151 add_setshow_boolean_cmd ("symbol-reloading", class_support,
4152 &symbol_reloading, _("\
4153 Set dynamic symbol table reloading multiple times in one run."), _("\
4154 Show dynamic symbol table reloading multiple times in one run."), NULL,
4155 NULL,
4156 show_symbol_reloading,
4157 &setlist, &showlist);
4158
4159 add_prefix_cmd ("overlay", class_support, overlay_command,
4160 _("Commands for debugging overlays."), &overlaylist,
4161 "overlay ", 0, &cmdlist);
4162
4163 add_com_alias ("ovly", "overlay", class_alias, 1);
4164 add_com_alias ("ov", "overlay", class_alias, 1);
4165
4166 add_cmd ("map-overlay", class_support, map_overlay_command,
4167 _("Assert that an overlay section is mapped."), &overlaylist);
4168
4169 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
4170 _("Assert that an overlay section is unmapped."), &overlaylist);
4171
4172 add_cmd ("list-overlays", class_support, list_overlays_command,
4173 _("List mappings of overlay sections."), &overlaylist);
4174
4175 add_cmd ("manual", class_support, overlay_manual_command,
4176 _("Enable overlay debugging."), &overlaylist);
4177 add_cmd ("off", class_support, overlay_off_command,
4178 _("Disable overlay debugging."), &overlaylist);
4179 add_cmd ("auto", class_support, overlay_auto_command,
4180 _("Enable automatic overlay debugging."), &overlaylist);
4181 add_cmd ("load-target", class_support, overlay_load_command,
4182 _("Read the overlay mapping state from the target."), &overlaylist);
4183
4184 /* Filename extension to source language lookup table: */
4185 init_filename_language_table ();
4186 add_setshow_string_noescape_cmd ("extension-language", class_files,
4187 &ext_args, _("\
4188 Set mapping between filename extension and source language."), _("\
4189 Show mapping between filename extension and source language."), _("\
4190 Usage: set extension-language .foo bar"),
4191 set_ext_lang_command,
4192 show_ext_args,
4193 &setlist, &showlist);
4194
4195 add_info ("extensions", info_ext_lang_command,
4196 _("All filename extensions associated with a source language."));
4197
4198 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
4199 &debug_file_directory, _("\
4200 Set the directory where separate debug symbols are searched for."), _("\
4201 Show the directory where separate debug symbols are searched for."), _("\
4202 Separate debug symbols are first searched for in the same\n\
4203 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
4204 and lastly at the path of the directory of the binary with\n\
4205 the global debug-file directory prepended."),
4206 NULL,
4207 show_debug_file_directory,
4208 &setlist, &showlist);
4209
4210 add_setshow_boolean_cmd ("symbol-loading", no_class,
4211 &print_symbol_loading, _("\
4212 Set printing of symbol loading messages."), _("\
4213 Show printing of symbol loading messages."), NULL,
4214 NULL,
4215 NULL,
4216 &setprintlist, &showprintlist);
4217 }