Use filtered output in ordinary commands
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2022 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 int (*deprecated_ui_load_progress_hook) (const char *section,
73 unsigned long num);
74 void (*deprecated_show_load_progress) (const char *section,
75 unsigned long section_sent,
76 unsigned long section_size,
77 unsigned long total_sent,
78 unsigned long total_size);
79 void (*deprecated_pre_add_symbol_hook) (const char *);
80 void (*deprecated_post_add_symbol_hook) (void);
81
82 using clear_symtab_users_cleanup
83 = FORWARD_SCOPE_EXIT (clear_symtab_users);
84
85 /* Global variables owned by this file. */
86
87 /* See symfile.h. */
88
89 int readnow_symbol_files;
90
91 /* See symfile.h. */
92
93 int readnever_symbol_files;
94
95 /* Functions this file defines. */
96
97 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
98 objfile_flags flags, CORE_ADDR reloff);
99
100 static const struct sym_fns *find_sym_fns (bfd *);
101
102 static void overlay_invalidate_all (void);
103
104 static void simple_free_overlay_table (void);
105
106 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
107 enum bfd_endian);
108
109 static int simple_read_overlay_table (void);
110
111 static int simple_overlay_update_1 (struct obj_section *);
112
113 static void symfile_find_segment_sections (struct objfile *objfile);
114
115 /* List of all available sym_fns. On gdb startup, each object file reader
116 calls add_symtab_fns() to register information on each format it is
117 prepared to read. */
118
119 struct registered_sym_fns
120 {
121 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
122 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
123 {}
124
125 /* BFD flavour that we handle. */
126 enum bfd_flavour sym_flavour;
127
128 /* The "vtable" of symbol functions. */
129 const struct sym_fns *sym_fns;
130 };
131
132 static std::vector<registered_sym_fns> symtab_fns;
133
134 /* Values for "set print symbol-loading". */
135
136 const char print_symbol_loading_off[] = "off";
137 const char print_symbol_loading_brief[] = "brief";
138 const char print_symbol_loading_full[] = "full";
139 static const char *print_symbol_loading_enums[] =
140 {
141 print_symbol_loading_off,
142 print_symbol_loading_brief,
143 print_symbol_loading_full,
144 NULL
145 };
146 static const char *print_symbol_loading = print_symbol_loading_full;
147
148 /* See symfile.h. */
149
150 bool auto_solib_add = true;
151 \f
152
153 /* Return non-zero if symbol-loading messages should be printed.
154 FROM_TTY is the standard from_tty argument to gdb commands.
155 If EXEC is non-zero the messages are for the executable.
156 Otherwise, messages are for shared libraries.
157 If FULL is non-zero then the caller is printing a detailed message.
158 E.g., the message includes the shared library name.
159 Otherwise, the caller is printing a brief "summary" message. */
160
161 int
162 print_symbol_loading_p (int from_tty, int exec, int full)
163 {
164 if (!from_tty && !info_verbose)
165 return 0;
166
167 if (exec)
168 {
169 /* We don't check FULL for executables, there are few such
170 messages, therefore brief == full. */
171 return print_symbol_loading != print_symbol_loading_off;
172 }
173 if (full)
174 return print_symbol_loading == print_symbol_loading_full;
175 return print_symbol_loading == print_symbol_loading_brief;
176 }
177
178 /* True if we are reading a symbol table. */
179
180 int currently_reading_symtab = 0;
181
182 /* Increment currently_reading_symtab and return a cleanup that can be
183 used to decrement it. */
184
185 scoped_restore_tmpl<int>
186 increment_reading_symtab (void)
187 {
188 gdb_assert (currently_reading_symtab >= 0);
189 return make_scoped_restore (&currently_reading_symtab,
190 currently_reading_symtab + 1);
191 }
192
193 /* Remember the lowest-addressed loadable section we've seen.
194
195 In case of equal vmas, the section with the largest size becomes the
196 lowest-addressed loadable section.
197
198 If the vmas and sizes are equal, the last section is considered the
199 lowest-addressed loadable section. */
200
201 static void
202 find_lowest_section (asection *sect, asection **lowest)
203 {
204 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
205 return;
206 if (!*lowest)
207 *lowest = sect; /* First loadable section */
208 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
209 *lowest = sect; /* A lower loadable section */
210 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
211 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
212 *lowest = sect;
213 }
214
215 /* Build (allocate and populate) a section_addr_info struct from
216 an existing section table. */
217
218 section_addr_info
219 build_section_addr_info_from_section_table (const target_section_table &table)
220 {
221 section_addr_info sap;
222
223 for (const target_section &stp : table)
224 {
225 struct bfd_section *asect = stp.the_bfd_section;
226 bfd *abfd = asect->owner;
227
228 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
229 && sap.size () < table.size ())
230 sap.emplace_back (stp.addr,
231 bfd_section_name (asect),
232 gdb_bfd_section_index (abfd, asect));
233 }
234
235 return sap;
236 }
237
238 /* Create a section_addr_info from section offsets in ABFD. */
239
240 static section_addr_info
241 build_section_addr_info_from_bfd (bfd *abfd)
242 {
243 struct bfd_section *sec;
244
245 section_addr_info sap;
246 for (sec = abfd->sections; sec != NULL; sec = sec->next)
247 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
248 sap.emplace_back (bfd_section_vma (sec),
249 bfd_section_name (sec),
250 gdb_bfd_section_index (abfd, sec));
251
252 return sap;
253 }
254
255 /* Create a section_addr_info from section offsets in OBJFILE. */
256
257 section_addr_info
258 build_section_addr_info_from_objfile (const struct objfile *objfile)
259 {
260 int i;
261
262 /* Before reread_symbols gets rewritten it is not safe to call:
263 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
264 */
265 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
266 for (i = 0; i < sap.size (); i++)
267 {
268 int sectindex = sap[i].sectindex;
269
270 sap[i].addr += objfile->section_offsets[sectindex];
271 }
272 return sap;
273 }
274
275 /* Initialize OBJFILE's sect_index_* members. */
276
277 static void
278 init_objfile_sect_indices (struct objfile *objfile)
279 {
280 asection *sect;
281 int i;
282
283 sect = bfd_get_section_by_name (objfile->obfd, ".text");
284 if (sect)
285 objfile->sect_index_text = sect->index;
286
287 sect = bfd_get_section_by_name (objfile->obfd, ".data");
288 if (sect)
289 objfile->sect_index_data = sect->index;
290
291 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
292 if (sect)
293 objfile->sect_index_bss = sect->index;
294
295 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
296 if (sect)
297 objfile->sect_index_rodata = sect->index;
298
299 /* This is where things get really weird... We MUST have valid
300 indices for the various sect_index_* members or gdb will abort.
301 So if for example, there is no ".text" section, we have to
302 accomodate that. First, check for a file with the standard
303 one or two segments. */
304
305 symfile_find_segment_sections (objfile);
306
307 /* Except when explicitly adding symbol files at some address,
308 section_offsets contains nothing but zeros, so it doesn't matter
309 which slot in section_offsets the individual sect_index_* members
310 index into. So if they are all zero, it is safe to just point
311 all the currently uninitialized indices to the first slot. But
312 beware: if this is the main executable, it may be relocated
313 later, e.g. by the remote qOffsets packet, and then this will
314 be wrong! That's why we try segments first. */
315
316 for (i = 0; i < objfile->section_offsets.size (); i++)
317 {
318 if (objfile->section_offsets[i] != 0)
319 {
320 break;
321 }
322 }
323 if (i == objfile->section_offsets.size ())
324 {
325 if (objfile->sect_index_text == -1)
326 objfile->sect_index_text = 0;
327 if (objfile->sect_index_data == -1)
328 objfile->sect_index_data = 0;
329 if (objfile->sect_index_bss == -1)
330 objfile->sect_index_bss = 0;
331 if (objfile->sect_index_rodata == -1)
332 objfile->sect_index_rodata = 0;
333 }
334 }
335
336 /* Find a unique offset to use for loadable section SECT if
337 the user did not provide an offset. */
338
339 static void
340 place_section (bfd *abfd, asection *sect, section_offsets &offsets,
341 CORE_ADDR &lowest)
342 {
343 CORE_ADDR start_addr;
344 int done;
345 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
346
347 /* We are only interested in allocated sections. */
348 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
349 return;
350
351 /* If the user specified an offset, honor it. */
352 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
353 return;
354
355 /* Otherwise, let's try to find a place for the section. */
356 start_addr = (lowest + align - 1) & -align;
357
358 do {
359 asection *cur_sec;
360
361 done = 1;
362
363 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
364 {
365 int indx = cur_sec->index;
366
367 /* We don't need to compare against ourself. */
368 if (cur_sec == sect)
369 continue;
370
371 /* We can only conflict with allocated sections. */
372 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
373 continue;
374
375 /* If the section offset is 0, either the section has not been placed
376 yet, or it was the lowest section placed (in which case LOWEST
377 will be past its end). */
378 if (offsets[indx] == 0)
379 continue;
380
381 /* If this section would overlap us, then we must move up. */
382 if (start_addr + bfd_section_size (sect) > offsets[indx]
383 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
384 {
385 start_addr = offsets[indx] + bfd_section_size (cur_sec);
386 start_addr = (start_addr + align - 1) & -align;
387 done = 0;
388 break;
389 }
390
391 /* Otherwise, we appear to be OK. So far. */
392 }
393 }
394 while (!done);
395
396 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
397 lowest = start_addr + bfd_section_size (sect);
398 }
399
400 /* Store section_addr_info as prepared (made relative and with SECTINDEX
401 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
402
403 void
404 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
405 const section_addr_info &addrs)
406 {
407 int i;
408
409 section_offsets.assign (section_offsets.size (), 0);
410
411 /* Now calculate offsets for section that were specified by the caller. */
412 for (i = 0; i < addrs.size (); i++)
413 {
414 const struct other_sections *osp;
415
416 osp = &addrs[i];
417 if (osp->sectindex == -1)
418 continue;
419
420 /* Record all sections in offsets. */
421 /* The section_offsets in the objfile are here filled in using
422 the BFD index. */
423 section_offsets[osp->sectindex] = osp->addr;
424 }
425 }
426
427 /* Transform section name S for a name comparison. prelink can split section
428 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
429 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
430 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
431 (`.sbss') section has invalid (increased) virtual address. */
432
433 static const char *
434 addr_section_name (const char *s)
435 {
436 if (strcmp (s, ".dynbss") == 0)
437 return ".bss";
438 if (strcmp (s, ".sdynbss") == 0)
439 return ".sbss";
440
441 return s;
442 }
443
444 /* std::sort comparator for addrs_section_sort. Sort entries in
445 ascending order by their (name, sectindex) pair. sectindex makes
446 the sort by name stable. */
447
448 static bool
449 addrs_section_compar (const struct other_sections *a,
450 const struct other_sections *b)
451 {
452 int retval;
453
454 retval = strcmp (addr_section_name (a->name.c_str ()),
455 addr_section_name (b->name.c_str ()));
456 if (retval != 0)
457 return retval < 0;
458
459 return a->sectindex < b->sectindex;
460 }
461
462 /* Provide sorted array of pointers to sections of ADDRS. */
463
464 static std::vector<const struct other_sections *>
465 addrs_section_sort (const section_addr_info &addrs)
466 {
467 int i;
468
469 std::vector<const struct other_sections *> array (addrs.size ());
470 for (i = 0; i < addrs.size (); i++)
471 array[i] = &addrs[i];
472
473 std::sort (array.begin (), array.end (), addrs_section_compar);
474
475 return array;
476 }
477
478 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
479 also SECTINDEXes specific to ABFD there. This function can be used to
480 rebase ADDRS to start referencing different BFD than before. */
481
482 void
483 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
484 {
485 asection *lower_sect;
486 CORE_ADDR lower_offset;
487 int i;
488
489 /* Find lowest loadable section to be used as starting point for
490 contiguous sections. */
491 lower_sect = NULL;
492 for (asection *iter : gdb_bfd_sections (abfd))
493 find_lowest_section (iter, &lower_sect);
494 if (lower_sect == NULL)
495 {
496 warning (_("no loadable sections found in added symbol-file %s"),
497 bfd_get_filename (abfd));
498 lower_offset = 0;
499 }
500 else
501 lower_offset = bfd_section_vma (lower_sect);
502
503 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
504 in ABFD. Section names are not unique - there can be multiple sections of
505 the same name. Also the sections of the same name do not have to be
506 adjacent to each other. Some sections may be present only in one of the
507 files. Even sections present in both files do not have to be in the same
508 order.
509
510 Use stable sort by name for the sections in both files. Then linearly
511 scan both lists matching as most of the entries as possible. */
512
513 std::vector<const struct other_sections *> addrs_sorted
514 = addrs_section_sort (*addrs);
515
516 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
517 std::vector<const struct other_sections *> abfd_addrs_sorted
518 = addrs_section_sort (abfd_addrs);
519
520 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
521 ABFD_ADDRS_SORTED. */
522
523 std::vector<const struct other_sections *>
524 addrs_to_abfd_addrs (addrs->size (), nullptr);
525
526 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
527 = abfd_addrs_sorted.begin ();
528 for (const other_sections *sect : addrs_sorted)
529 {
530 const char *sect_name = addr_section_name (sect->name.c_str ());
531
532 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
533 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
534 sect_name) < 0)
535 abfd_sorted_iter++;
536
537 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
538 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
539 sect_name) == 0)
540 {
541 int index_in_addrs;
542
543 /* Make the found item directly addressable from ADDRS. */
544 index_in_addrs = sect - addrs->data ();
545 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
546 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
547
548 /* Never use the same ABFD entry twice. */
549 abfd_sorted_iter++;
550 }
551 }
552
553 /* Calculate offsets for the loadable sections.
554 FIXME! Sections must be in order of increasing loadable section
555 so that contiguous sections can use the lower-offset!!!
556
557 Adjust offsets if the segments are not contiguous.
558 If the section is contiguous, its offset should be set to
559 the offset of the highest loadable section lower than it
560 (the loadable section directly below it in memory).
561 this_offset = lower_offset = lower_addr - lower_orig_addr */
562
563 for (i = 0; i < addrs->size (); i++)
564 {
565 const struct other_sections *sect = addrs_to_abfd_addrs[i];
566
567 if (sect)
568 {
569 /* This is the index used by BFD. */
570 (*addrs)[i].sectindex = sect->sectindex;
571
572 if ((*addrs)[i].addr != 0)
573 {
574 (*addrs)[i].addr -= sect->addr;
575 lower_offset = (*addrs)[i].addr;
576 }
577 else
578 (*addrs)[i].addr = lower_offset;
579 }
580 else
581 {
582 /* addr_section_name transformation is not used for SECT_NAME. */
583 const std::string &sect_name = (*addrs)[i].name;
584
585 /* This section does not exist in ABFD, which is normally
586 unexpected and we want to issue a warning.
587
588 However, the ELF prelinker does create a few sections which are
589 marked in the main executable as loadable (they are loaded in
590 memory from the DYNAMIC segment) and yet are not present in
591 separate debug info files. This is fine, and should not cause
592 a warning. Shared libraries contain just the section
593 ".gnu.liblist" but it is not marked as loadable there. There is
594 no other way to identify them than by their name as the sections
595 created by prelink have no special flags.
596
597 For the sections `.bss' and `.sbss' see addr_section_name. */
598
599 if (!(sect_name == ".gnu.liblist"
600 || sect_name == ".gnu.conflict"
601 || (sect_name == ".bss"
602 && i > 0
603 && (*addrs)[i - 1].name == ".dynbss"
604 && addrs_to_abfd_addrs[i - 1] != NULL)
605 || (sect_name == ".sbss"
606 && i > 0
607 && (*addrs)[i - 1].name == ".sdynbss"
608 && addrs_to_abfd_addrs[i - 1] != NULL)))
609 warning (_("section %s not found in %s"), sect_name.c_str (),
610 bfd_get_filename (abfd));
611
612 (*addrs)[i].addr = 0;
613 (*addrs)[i].sectindex = -1;
614 }
615 }
616 }
617
618 /* Parse the user's idea of an offset for dynamic linking, into our idea
619 of how to represent it for fast symbol reading. This is the default
620 version of the sym_fns.sym_offsets function for symbol readers that
621 don't need to do anything special. It allocates a section_offsets table
622 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
623
624 void
625 default_symfile_offsets (struct objfile *objfile,
626 const section_addr_info &addrs)
627 {
628 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
629 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
630
631 /* For relocatable files, all loadable sections will start at zero.
632 The zero is meaningless, so try to pick arbitrary addresses such
633 that no loadable sections overlap. This algorithm is quadratic,
634 but the number of sections in a single object file is generally
635 small. */
636 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
637 {
638 bfd *abfd = objfile->obfd;
639 asection *cur_sec;
640
641 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
642 /* We do not expect this to happen; just skip this step if the
643 relocatable file has a section with an assigned VMA. */
644 if (bfd_section_vma (cur_sec) != 0)
645 break;
646
647 if (cur_sec == NULL)
648 {
649 section_offsets &offsets = objfile->section_offsets;
650
651 /* Pick non-overlapping offsets for sections the user did not
652 place explicitly. */
653 CORE_ADDR lowest = 0;
654 for (asection *sect : gdb_bfd_sections (objfile->obfd))
655 place_section (objfile->obfd, sect, objfile->section_offsets,
656 lowest);
657
658 /* Correctly filling in the section offsets is not quite
659 enough. Relocatable files have two properties that
660 (most) shared objects do not:
661
662 - Their debug information will contain relocations. Some
663 shared libraries do also, but many do not, so this can not
664 be assumed.
665
666 - If there are multiple code sections they will be loaded
667 at different relative addresses in memory than they are
668 in the objfile, since all sections in the file will start
669 at address zero.
670
671 Because GDB has very limited ability to map from an
672 address in debug info to the correct code section,
673 it relies on adding SECT_OFF_TEXT to things which might be
674 code. If we clear all the section offsets, and set the
675 section VMAs instead, then symfile_relocate_debug_section
676 will return meaningful debug information pointing at the
677 correct sections.
678
679 GDB has too many different data structures for section
680 addresses - a bfd, objfile, and so_list all have section
681 tables, as does exec_ops. Some of these could probably
682 be eliminated. */
683
684 for (cur_sec = abfd->sections; cur_sec != NULL;
685 cur_sec = cur_sec->next)
686 {
687 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
688 continue;
689
690 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
691 exec_set_section_address (bfd_get_filename (abfd),
692 cur_sec->index,
693 offsets[cur_sec->index]);
694 offsets[cur_sec->index] = 0;
695 }
696 }
697 }
698
699 /* Remember the bfd indexes for the .text, .data, .bss and
700 .rodata sections. */
701 init_objfile_sect_indices (objfile);
702 }
703
704 /* Divide the file into segments, which are individual relocatable units.
705 This is the default version of the sym_fns.sym_segments function for
706 symbol readers that do not have an explicit representation of segments.
707 It assumes that object files do not have segments, and fully linked
708 files have a single segment. */
709
710 symfile_segment_data_up
711 default_symfile_segments (bfd *abfd)
712 {
713 int num_sections, i;
714 asection *sect;
715 CORE_ADDR low, high;
716
717 /* Relocatable files contain enough information to position each
718 loadable section independently; they should not be relocated
719 in segments. */
720 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
721 return NULL;
722
723 /* Make sure there is at least one loadable section in the file. */
724 for (sect = abfd->sections; sect != NULL; sect = sect->next)
725 {
726 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
727 continue;
728
729 break;
730 }
731 if (sect == NULL)
732 return NULL;
733
734 low = bfd_section_vma (sect);
735 high = low + bfd_section_size (sect);
736
737 symfile_segment_data_up data (new symfile_segment_data);
738
739 num_sections = bfd_count_sections (abfd);
740
741 /* All elements are initialized to 0 (map to no segment). */
742 data->segment_info.resize (num_sections);
743
744 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
745 {
746 CORE_ADDR vma;
747
748 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
749 continue;
750
751 vma = bfd_section_vma (sect);
752 if (vma < low)
753 low = vma;
754 if (vma + bfd_section_size (sect) > high)
755 high = vma + bfd_section_size (sect);
756
757 data->segment_info[i] = 1;
758 }
759
760 data->segments.emplace_back (low, high - low);
761
762 return data;
763 }
764
765 /* This is a convenience function to call sym_read for OBJFILE and
766 possibly force the partial symbols to be read. */
767
768 static void
769 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
770 {
771 (*objfile->sf->sym_read) (objfile, add_flags);
772 objfile->per_bfd->minsyms_read = true;
773
774 /* find_separate_debug_file_in_section should be called only if there is
775 single binary with no existing separate debug info file. */
776 if (!objfile->has_partial_symbols ()
777 && objfile->separate_debug_objfile == NULL
778 && objfile->separate_debug_objfile_backlink == NULL)
779 {
780 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
781
782 if (abfd != NULL)
783 {
784 /* find_separate_debug_file_in_section uses the same filename for the
785 virtual section-as-bfd like the bfd filename containing the
786 section. Therefore use also non-canonical name form for the same
787 file containing the section. */
788 symbol_file_add_separate (abfd.get (),
789 bfd_get_filename (abfd.get ()),
790 add_flags | SYMFILE_NOT_FILENAME, objfile);
791 }
792 }
793 if ((add_flags & SYMFILE_NO_READ) == 0)
794 objfile->require_partial_symbols (false);
795 }
796
797 /* Initialize entry point information for this objfile. */
798
799 static void
800 init_entry_point_info (struct objfile *objfile)
801 {
802 struct entry_info *ei = &objfile->per_bfd->ei;
803
804 if (ei->initialized)
805 return;
806 ei->initialized = 1;
807
808 /* Save startup file's range of PC addresses to help blockframe.c
809 decide where the bottom of the stack is. */
810
811 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
812 {
813 /* Executable file -- record its entry point so we'll recognize
814 the startup file because it contains the entry point. */
815 ei->entry_point = bfd_get_start_address (objfile->obfd);
816 ei->entry_point_p = 1;
817 }
818 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
819 && bfd_get_start_address (objfile->obfd) != 0)
820 {
821 /* Some shared libraries may have entry points set and be
822 runnable. There's no clear way to indicate this, so just check
823 for values other than zero. */
824 ei->entry_point = bfd_get_start_address (objfile->obfd);
825 ei->entry_point_p = 1;
826 }
827 else
828 {
829 /* Examination of non-executable.o files. Short-circuit this stuff. */
830 ei->entry_point_p = 0;
831 }
832
833 if (ei->entry_point_p)
834 {
835 struct obj_section *osect;
836 CORE_ADDR entry_point = ei->entry_point;
837 int found;
838
839 /* Make certain that the address points at real code, and not a
840 function descriptor. */
841 entry_point = gdbarch_convert_from_func_ptr_addr
842 (objfile->arch (), entry_point, current_inferior ()->top_target ());
843
844 /* Remove any ISA markers, so that this matches entries in the
845 symbol table. */
846 ei->entry_point
847 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
848
849 found = 0;
850 ALL_OBJFILE_OSECTIONS (objfile, osect)
851 {
852 struct bfd_section *sect = osect->the_bfd_section;
853
854 if (entry_point >= bfd_section_vma (sect)
855 && entry_point < (bfd_section_vma (sect)
856 + bfd_section_size (sect)))
857 {
858 ei->the_bfd_section_index
859 = gdb_bfd_section_index (objfile->obfd, sect);
860 found = 1;
861 break;
862 }
863 }
864
865 if (!found)
866 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
867 }
868 }
869
870 /* Process a symbol file, as either the main file or as a dynamically
871 loaded file.
872
873 This function does not set the OBJFILE's entry-point info.
874
875 OBJFILE is where the symbols are to be read from.
876
877 ADDRS is the list of section load addresses. If the user has given
878 an 'add-symbol-file' command, then this is the list of offsets and
879 addresses he or she provided as arguments to the command; or, if
880 we're handling a shared library, these are the actual addresses the
881 sections are loaded at, according to the inferior's dynamic linker
882 (as gleaned by GDB's shared library code). We convert each address
883 into an offset from the section VMA's as it appears in the object
884 file, and then call the file's sym_offsets function to convert this
885 into a format-specific offset table --- a `section_offsets'.
886 The sectindex field is used to control the ordering of sections
887 with the same name. Upon return, it is updated to contain the
888 corresponding BFD section index, or -1 if the section was not found.
889
890 ADD_FLAGS encodes verbosity level, whether this is main symbol or
891 an extra symbol file such as dynamically loaded code, and whether
892 breakpoint reset should be deferred. */
893
894 static void
895 syms_from_objfile_1 (struct objfile *objfile,
896 section_addr_info *addrs,
897 symfile_add_flags add_flags)
898 {
899 section_addr_info local_addr;
900 const int mainline = add_flags & SYMFILE_MAINLINE;
901
902 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
903 objfile->qf.clear ();
904
905 if (objfile->sf == NULL)
906 {
907 /* No symbols to load, but we still need to make sure
908 that the section_offsets table is allocated. */
909 int num_sections = gdb_bfd_count_sections (objfile->obfd);
910
911 objfile->section_offsets.assign (num_sections, 0);
912 return;
913 }
914
915 /* Make sure that partially constructed symbol tables will be cleaned up
916 if an error occurs during symbol reading. */
917 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
918
919 objfile_up objfile_holder (objfile);
920
921 /* If ADDRS is NULL, put together a dummy address list.
922 We now establish the convention that an addr of zero means
923 no load address was specified. */
924 if (! addrs)
925 addrs = &local_addr;
926
927 if (mainline)
928 {
929 /* We will modify the main symbol table, make sure that all its users
930 will be cleaned up if an error occurs during symbol reading. */
931 defer_clear_users.emplace ((symfile_add_flag) 0);
932
933 /* Since no error yet, throw away the old symbol table. */
934
935 if (current_program_space->symfile_object_file != NULL)
936 {
937 current_program_space->symfile_object_file->unlink ();
938 gdb_assert (current_program_space->symfile_object_file == NULL);
939 }
940
941 /* Currently we keep symbols from the add-symbol-file command.
942 If the user wants to get rid of them, they should do "symbol-file"
943 without arguments first. Not sure this is the best behavior
944 (PR 2207). */
945
946 (*objfile->sf->sym_new_init) (objfile);
947 }
948
949 /* Convert addr into an offset rather than an absolute address.
950 We find the lowest address of a loaded segment in the objfile,
951 and assume that <addr> is where that got loaded.
952
953 We no longer warn if the lowest section is not a text segment (as
954 happens for the PA64 port. */
955 if (addrs->size () > 0)
956 addr_info_make_relative (addrs, objfile->obfd);
957
958 /* Initialize symbol reading routines for this objfile, allow complaints to
959 appear for this new file, and record how verbose to be, then do the
960 initial symbol reading for this file. */
961
962 (*objfile->sf->sym_init) (objfile);
963 clear_complaints ();
964
965 (*objfile->sf->sym_offsets) (objfile, *addrs);
966
967 read_symbols (objfile, add_flags);
968
969 /* Discard cleanups as symbol reading was successful. */
970
971 objfile_holder.release ();
972 if (defer_clear_users)
973 defer_clear_users->release ();
974 }
975
976 /* Same as syms_from_objfile_1, but also initializes the objfile
977 entry-point info. */
978
979 static void
980 syms_from_objfile (struct objfile *objfile,
981 section_addr_info *addrs,
982 symfile_add_flags add_flags)
983 {
984 syms_from_objfile_1 (objfile, addrs, add_flags);
985 init_entry_point_info (objfile);
986 }
987
988 /* Perform required actions after either reading in the initial
989 symbols for a new objfile, or mapping in the symbols from a reusable
990 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
991
992 static void
993 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
994 {
995 /* If this is the main symbol file we have to clean up all users of the
996 old main symbol file. Otherwise it is sufficient to fixup all the
997 breakpoints that may have been redefined by this symbol file. */
998 if (add_flags & SYMFILE_MAINLINE)
999 {
1000 /* OK, make it the "real" symbol file. */
1001 current_program_space->symfile_object_file = objfile;
1002
1003 clear_symtab_users (add_flags);
1004 }
1005 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1006 {
1007 breakpoint_re_set ();
1008 }
1009
1010 /* We're done reading the symbol file; finish off complaints. */
1011 clear_complaints ();
1012 }
1013
1014 /* Process a symbol file, as either the main file or as a dynamically
1015 loaded file.
1016
1017 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1018 A new reference is acquired by this function.
1019
1020 For NAME description see the objfile constructor.
1021
1022 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1023 extra, such as dynamically loaded code, and what to do with breakpoints.
1024
1025 ADDRS is as described for syms_from_objfile_1, above.
1026 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1027
1028 PARENT is the original objfile if ABFD is a separate debug info file.
1029 Otherwise PARENT is NULL.
1030
1031 Upon success, returns a pointer to the objfile that was added.
1032 Upon failure, jumps back to command level (never returns). */
1033
1034 static struct objfile *
1035 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1036 symfile_add_flags add_flags,
1037 section_addr_info *addrs,
1038 objfile_flags flags, struct objfile *parent)
1039 {
1040 struct objfile *objfile;
1041 const int from_tty = add_flags & SYMFILE_VERBOSE;
1042 const int mainline = add_flags & SYMFILE_MAINLINE;
1043 const int always_confirm = add_flags & SYMFILE_ALWAYS_CONFIRM;
1044 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1045 && (readnow_symbol_files
1046 || (add_flags & SYMFILE_NO_READ) == 0));
1047
1048 if (readnow_symbol_files)
1049 {
1050 flags |= OBJF_READNOW;
1051 add_flags &= ~SYMFILE_NO_READ;
1052 }
1053 else if (readnever_symbol_files
1054 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1055 {
1056 flags |= OBJF_READNEVER;
1057 add_flags |= SYMFILE_NO_READ;
1058 }
1059 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1060 flags |= OBJF_NOT_FILENAME;
1061
1062 /* Give user a chance to burp if ALWAYS_CONFIRM or we'd be
1063 interactively wiping out any existing symbols. */
1064
1065 if (from_tty
1066 && (always_confirm
1067 || ((have_full_symbols () || have_partial_symbols ())
1068 && mainline))
1069 && !query (_("Load new symbol table from \"%s\"? "), name))
1070 error (_("Not confirmed."));
1071
1072 if (mainline)
1073 flags |= OBJF_MAINLINE;
1074 objfile = objfile::make (abfd, name, flags, parent);
1075
1076 /* We either created a new mapped symbol table, mapped an existing
1077 symbol table file which has not had initial symbol reading
1078 performed, or need to read an unmapped symbol table. */
1079 if (should_print)
1080 {
1081 if (deprecated_pre_add_symbol_hook)
1082 deprecated_pre_add_symbol_hook (name);
1083 else
1084 printf_filtered (_("Reading symbols from %ps...\n"),
1085 styled_string (file_name_style.style (), name));
1086 }
1087 syms_from_objfile (objfile, addrs, add_flags);
1088
1089 /* We now have at least a partial symbol table. Check to see if the
1090 user requested that all symbols be read on initial access via either
1091 the gdb startup command line or on a per symbol file basis. Expand
1092 all partial symbol tables for this objfile if so. */
1093
1094 if ((flags & OBJF_READNOW))
1095 {
1096 if (should_print)
1097 printf_filtered (_("Expanding full symbols from %ps...\n"),
1098 styled_string (file_name_style.style (), name));
1099
1100 objfile->expand_all_symtabs ();
1101 }
1102
1103 /* Note that we only print a message if we have no symbols and have
1104 no separate debug file. If there is a separate debug file which
1105 does not have symbols, we'll have emitted this message for that
1106 file, and so printing it twice is just redundant. */
1107 if (should_print && !objfile_has_symbols (objfile)
1108 && objfile->separate_debug_objfile == nullptr)
1109 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (should_print)
1113 {
1114 if (deprecated_post_add_symbol_hook)
1115 deprecated_post_add_symbol_hook ();
1116 }
1117
1118 /* We print some messages regardless of whether 'from_tty ||
1119 info_verbose' is true, so make sure they go out at the right
1120 time. */
1121 gdb_flush (gdb_stdout);
1122
1123 if (objfile->sf == NULL)
1124 {
1125 gdb::observers::new_objfile.notify (objfile);
1126 return objfile; /* No symbols. */
1127 }
1128
1129 finish_new_objfile (objfile, add_flags);
1130
1131 gdb::observers::new_objfile.notify (objfile);
1132
1133 bfd_cache_close_all ();
1134 return (objfile);
1135 }
1136
1137 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1138 see the objfile constructor. */
1139
1140 void
1141 symbol_file_add_separate (bfd *bfd, const char *name,
1142 symfile_add_flags symfile_flags,
1143 struct objfile *objfile)
1144 {
1145 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1146 because sections of BFD may not match sections of OBJFILE and because
1147 vma may have been modified by tools such as prelink. */
1148 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1149
1150 symbol_file_add_with_addrs
1151 (bfd, name, symfile_flags, &sap,
1152 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1153 | OBJF_USERLOADED | OBJF_MAINLINE),
1154 objfile);
1155 }
1156
1157 /* Process the symbol file ABFD, as either the main file or as a
1158 dynamically loaded file.
1159 See symbol_file_add_with_addrs's comments for details. */
1160
1161 struct objfile *
1162 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1163 symfile_add_flags add_flags,
1164 section_addr_info *addrs,
1165 objfile_flags flags, struct objfile *parent)
1166 {
1167 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1168 parent);
1169 }
1170
1171 /* Process a symbol file, as either the main file or as a dynamically
1172 loaded file. See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add (const char *name, symfile_add_flags add_flags,
1176 section_addr_info *addrs, objfile_flags flags)
1177 {
1178 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1179
1180 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1181 flags, NULL);
1182 }
1183
1184 /* Call symbol_file_add() with default values and update whatever is
1185 affected by the loading of a new main().
1186 Used when the file is supplied in the gdb command line
1187 and by some targets with special loading requirements.
1188 The auxiliary function, symbol_file_add_main_1(), has the flags
1189 argument for the switches that can only be specified in the symbol_file
1190 command itself. */
1191
1192 void
1193 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1194 {
1195 symbol_file_add_main_1 (args, add_flags, 0, 0);
1196 }
1197
1198 static void
1199 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1200 objfile_flags flags, CORE_ADDR reloff)
1201 {
1202 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1203
1204 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1205 if (reloff != 0)
1206 objfile_rebase (objfile, reloff);
1207
1208 /* Getting new symbols may change our opinion about
1209 what is frameless. */
1210 reinit_frame_cache ();
1211
1212 if ((add_flags & SYMFILE_NO_READ) == 0)
1213 set_initial_language ();
1214 }
1215
1216 void
1217 symbol_file_clear (int from_tty)
1218 {
1219 if ((have_full_symbols () || have_partial_symbols ())
1220 && from_tty
1221 && (current_program_space->symfile_object_file
1222 ? !query (_("Discard symbol table from `%s'? "),
1223 objfile_name (current_program_space->symfile_object_file))
1224 : !query (_("Discard symbol table? "))))
1225 error (_("Not confirmed."));
1226
1227 /* solib descriptors may have handles to objfiles. Wipe them before their
1228 objfiles get stale by free_all_objfiles. */
1229 no_shared_libraries (NULL, from_tty);
1230
1231 current_program_space->free_all_objfiles ();
1232
1233 clear_symtab_users (0);
1234
1235 gdb_assert (current_program_space->symfile_object_file == NULL);
1236 if (from_tty)
1237 printf_filtered (_("No symbol file now.\n"));
1238 }
1239
1240 /* See symfile.h. */
1241
1242 bool separate_debug_file_debug = false;
1243
1244 static int
1245 separate_debug_file_exists (const std::string &name, unsigned long crc,
1246 struct objfile *parent_objfile)
1247 {
1248 unsigned long file_crc;
1249 int file_crc_p;
1250 struct stat parent_stat, abfd_stat;
1251 int verified_as_different;
1252
1253 /* Find a separate debug info file as if symbols would be present in
1254 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1255 section can contain just the basename of PARENT_OBJFILE without any
1256 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1257 the separate debug infos with the same basename can exist. */
1258
1259 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1260 return 0;
1261
1262 if (separate_debug_file_debug)
1263 {
1264 fprintf_filtered (gdb_stdlog, _(" Trying %s..."), name.c_str ());
1265 gdb_flush (gdb_stdlog);
1266 }
1267
1268 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1269
1270 if (abfd == NULL)
1271 {
1272 if (separate_debug_file_debug)
1273 fprintf_filtered (gdb_stdlog, _(" no, unable to open.\n"));
1274
1275 return 0;
1276 }
1277
1278 /* Verify symlinks were not the cause of filename_cmp name difference above.
1279
1280 Some operating systems, e.g. Windows, do not provide a meaningful
1281 st_ino; they always set it to zero. (Windows does provide a
1282 meaningful st_dev.) Files accessed from gdbservers that do not
1283 support the vFile:fstat packet will also have st_ino set to zero.
1284 Do not indicate a duplicate library in either case. While there
1285 is no guarantee that a system that provides meaningful inode
1286 numbers will never set st_ino to zero, this is merely an
1287 optimization, so we do not need to worry about false negatives. */
1288
1289 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1290 && abfd_stat.st_ino != 0
1291 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1292 {
1293 if (abfd_stat.st_dev == parent_stat.st_dev
1294 && abfd_stat.st_ino == parent_stat.st_ino)
1295 {
1296 if (separate_debug_file_debug)
1297 fprintf_filtered (gdb_stdlog,
1298 _(" no, same file as the objfile.\n"));
1299
1300 return 0;
1301 }
1302 verified_as_different = 1;
1303 }
1304 else
1305 verified_as_different = 0;
1306
1307 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1308
1309 if (!file_crc_p)
1310 {
1311 if (separate_debug_file_debug)
1312 fprintf_filtered (gdb_stdlog, _(" no, error computing CRC.\n"));
1313
1314 return 0;
1315 }
1316
1317 if (crc != file_crc)
1318 {
1319 unsigned long parent_crc;
1320
1321 /* If the files could not be verified as different with
1322 bfd_stat then we need to calculate the parent's CRC
1323 to verify whether the files are different or not. */
1324
1325 if (!verified_as_different)
1326 {
1327 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1328 {
1329 if (separate_debug_file_debug)
1330 fprintf_filtered (gdb_stdlog,
1331 _(" no, error computing CRC.\n"));
1332
1333 return 0;
1334 }
1335 }
1336
1337 if (verified_as_different || parent_crc != file_crc)
1338 warning (_("the debug information found in \"%s\""
1339 " does not match \"%s\" (CRC mismatch).\n"),
1340 name.c_str (), objfile_name (parent_objfile));
1341
1342 if (separate_debug_file_debug)
1343 fprintf_filtered (gdb_stdlog, _(" no, CRC doesn't match.\n"));
1344
1345 return 0;
1346 }
1347
1348 if (separate_debug_file_debug)
1349 fprintf_filtered (gdb_stdlog, _(" yes!\n"));
1350
1351 return 1;
1352 }
1353
1354 std::string debug_file_directory;
1355 static void
1356 show_debug_file_directory (struct ui_file *file, int from_tty,
1357 struct cmd_list_element *c, const char *value)
1358 {
1359 fprintf_filtered (file,
1360 _("The directory where separate debug "
1361 "symbols are searched for is \"%s\".\n"),
1362 value);
1363 }
1364
1365 #if ! defined (DEBUG_SUBDIRECTORY)
1366 #define DEBUG_SUBDIRECTORY ".debug"
1367 #endif
1368
1369 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1370 where the original file resides (may not be the same as
1371 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1372 looking for. CANON_DIR is the "realpath" form of DIR.
1373 DIR must contain a trailing '/'.
1374 Returns the path of the file with separate debug info, or an empty
1375 string. */
1376
1377 static std::string
1378 find_separate_debug_file (const char *dir,
1379 const char *canon_dir,
1380 const char *debuglink,
1381 unsigned long crc32, struct objfile *objfile)
1382 {
1383 if (separate_debug_file_debug)
1384 fprintf_filtered (gdb_stdlog,
1385 _("\nLooking for separate debug info (debug link) for "
1386 "%s\n"), objfile_name (objfile));
1387
1388 /* First try in the same directory as the original file. */
1389 std::string debugfile = dir;
1390 debugfile += debuglink;
1391
1392 if (separate_debug_file_exists (debugfile, crc32, objfile))
1393 return debugfile;
1394
1395 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1396 debugfile = dir;
1397 debugfile += DEBUG_SUBDIRECTORY;
1398 debugfile += "/";
1399 debugfile += debuglink;
1400
1401 if (separate_debug_file_exists (debugfile, crc32, objfile))
1402 return debugfile;
1403
1404 /* Then try in the global debugfile directories.
1405
1406 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1407 cause "/..." lookups. */
1408
1409 bool target_prefix = startswith (dir, "target:");
1410 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1411 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1412 = dirnames_to_char_ptr_vec (debug_file_directory.c_str ());
1413 gdb::unique_xmalloc_ptr<char> canon_sysroot
1414 = gdb_realpath (gdb_sysroot.c_str ());
1415
1416 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1417 convert the drive letter into a one-letter directory, so that the
1418 file name resulting from splicing below will be valid.
1419
1420 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1421 There are various remote-debugging scenarios where such a
1422 transformation of the drive letter might be required when GDB runs
1423 on a Posix host, see
1424
1425 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1426
1427 If some of those scenarios need to be supported, we will need to
1428 use a different condition for HAS_DRIVE_SPEC and a different macro
1429 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1430 std::string drive;
1431 if (HAS_DRIVE_SPEC (dir_notarget))
1432 {
1433 drive = dir_notarget[0];
1434 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1435 }
1436
1437 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1438 {
1439 debugfile = target_prefix ? "target:" : "";
1440 debugfile += debugdir.get ();
1441 debugfile += "/";
1442 debugfile += drive;
1443 debugfile += dir_notarget;
1444 debugfile += debuglink;
1445
1446 if (separate_debug_file_exists (debugfile, crc32, objfile))
1447 return debugfile;
1448
1449 const char *base_path = NULL;
1450 if (canon_dir != NULL)
1451 {
1452 if (canon_sysroot.get () != NULL)
1453 base_path = child_path (canon_sysroot.get (), canon_dir);
1454 else
1455 base_path = child_path (gdb_sysroot.c_str (), canon_dir);
1456 }
1457 if (base_path != NULL)
1458 {
1459 /* If the file is in the sysroot, try using its base path in
1460 the global debugfile directory. */
1461 debugfile = target_prefix ? "target:" : "";
1462 debugfile += debugdir.get ();
1463 debugfile += "/";
1464 debugfile += base_path;
1465 debugfile += "/";
1466 debugfile += debuglink;
1467
1468 if (separate_debug_file_exists (debugfile, crc32, objfile))
1469 return debugfile;
1470
1471 /* If the file is in the sysroot, try using its base path in
1472 the sysroot's global debugfile directory. */
1473 debugfile = target_prefix ? "target:" : "";
1474 debugfile += gdb_sysroot;
1475 debugfile += debugdir.get ();
1476 debugfile += "/";
1477 debugfile += base_path;
1478 debugfile += "/";
1479 debugfile += debuglink;
1480
1481 if (separate_debug_file_exists (debugfile, crc32, objfile))
1482 return debugfile;
1483 }
1484
1485 }
1486
1487 return std::string ();
1488 }
1489
1490 /* Modify PATH to contain only "[/]directory/" part of PATH.
1491 If there were no directory separators in PATH, PATH will be empty
1492 string on return. */
1493
1494 static void
1495 terminate_after_last_dir_separator (char *path)
1496 {
1497 int i;
1498
1499 /* Strip off the final filename part, leaving the directory name,
1500 followed by a slash. The directory can be relative or absolute. */
1501 for (i = strlen(path) - 1; i >= 0; i--)
1502 if (IS_DIR_SEPARATOR (path[i]))
1503 break;
1504
1505 /* If I is -1 then no directory is present there and DIR will be "". */
1506 path[i + 1] = '\0';
1507 }
1508
1509 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1510 Returns pathname, or an empty string. */
1511
1512 std::string
1513 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1514 {
1515 unsigned long crc32;
1516
1517 gdb::unique_xmalloc_ptr<char> debuglink
1518 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1519
1520 if (debuglink == NULL)
1521 {
1522 /* There's no separate debug info, hence there's no way we could
1523 load it => no warning. */
1524 return std::string ();
1525 }
1526
1527 std::string dir = objfile_name (objfile);
1528 terminate_after_last_dir_separator (&dir[0]);
1529 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1530
1531 std::string debugfile
1532 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1533 debuglink.get (), crc32, objfile);
1534
1535 if (debugfile.empty ())
1536 {
1537 /* For PR gdb/9538, try again with realpath (if different from the
1538 original). */
1539
1540 struct stat st_buf;
1541
1542 if (lstat (objfile_name (objfile), &st_buf) == 0
1543 && S_ISLNK (st_buf.st_mode))
1544 {
1545 gdb::unique_xmalloc_ptr<char> symlink_dir
1546 (lrealpath (objfile_name (objfile)));
1547 if (symlink_dir != NULL)
1548 {
1549 terminate_after_last_dir_separator (symlink_dir.get ());
1550 if (dir != symlink_dir.get ())
1551 {
1552 /* Different directory, so try using it. */
1553 debugfile = find_separate_debug_file (symlink_dir.get (),
1554 symlink_dir.get (),
1555 debuglink.get (),
1556 crc32,
1557 objfile);
1558 }
1559 }
1560 }
1561 }
1562
1563 return debugfile;
1564 }
1565
1566 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1567 simultaneously. */
1568
1569 static void
1570 validate_readnow_readnever (objfile_flags flags)
1571 {
1572 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1573 error (_("-readnow and -readnever cannot be used simultaneously"));
1574 }
1575
1576 /* This is the symbol-file command. Read the file, analyze its
1577 symbols, and add a struct symtab to a symtab list. The syntax of
1578 the command is rather bizarre:
1579
1580 1. The function buildargv implements various quoting conventions
1581 which are undocumented and have little or nothing in common with
1582 the way things are quoted (or not quoted) elsewhere in GDB.
1583
1584 2. Options are used, which are not generally used in GDB (perhaps
1585 "set mapped on", "set readnow on" would be better)
1586
1587 3. The order of options matters, which is contrary to GNU
1588 conventions (because it is confusing and inconvenient). */
1589
1590 void
1591 symbol_file_command (const char *args, int from_tty)
1592 {
1593 dont_repeat ();
1594
1595 if (args == NULL)
1596 {
1597 symbol_file_clear (from_tty);
1598 }
1599 else
1600 {
1601 objfile_flags flags = OBJF_USERLOADED;
1602 symfile_add_flags add_flags = 0;
1603 char *name = NULL;
1604 bool stop_processing_options = false;
1605 CORE_ADDR offset = 0;
1606 int idx;
1607 char *arg;
1608
1609 if (from_tty)
1610 add_flags |= SYMFILE_VERBOSE;
1611
1612 gdb_argv built_argv (args);
1613 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1614 {
1615 if (stop_processing_options || *arg != '-')
1616 {
1617 if (name == NULL)
1618 name = arg;
1619 else
1620 error (_("Unrecognized argument \"%s\""), arg);
1621 }
1622 else if (strcmp (arg, "-readnow") == 0)
1623 flags |= OBJF_READNOW;
1624 else if (strcmp (arg, "-readnever") == 0)
1625 flags |= OBJF_READNEVER;
1626 else if (strcmp (arg, "-o") == 0)
1627 {
1628 arg = built_argv[++idx];
1629 if (arg == NULL)
1630 error (_("Missing argument to -o"));
1631
1632 offset = parse_and_eval_address (arg);
1633 }
1634 else if (strcmp (arg, "--") == 0)
1635 stop_processing_options = true;
1636 else
1637 error (_("Unrecognized argument \"%s\""), arg);
1638 }
1639
1640 if (name == NULL)
1641 error (_("no symbol file name was specified"));
1642
1643 validate_readnow_readnever (flags);
1644
1645 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1646 (Position Independent Executable) main symbol file will only be
1647 computed by the solib_create_inferior_hook below. Without it,
1648 breakpoint_re_set would fail to insert the breakpoints with the zero
1649 displacement. */
1650 add_flags |= SYMFILE_DEFER_BP_RESET;
1651
1652 symbol_file_add_main_1 (name, add_flags, flags, offset);
1653
1654 solib_create_inferior_hook (from_tty);
1655
1656 /* Now it's safe to re-add the breakpoints. */
1657 breakpoint_re_set ();
1658 }
1659 }
1660
1661 /* Set the initial language. */
1662
1663 void
1664 set_initial_language (void)
1665 {
1666 if (language_mode == language_mode_manual)
1667 return;
1668 enum language lang = main_language ();
1669 /* Make C the default language. */
1670 enum language default_lang = language_c;
1671
1672 if (lang == language_unknown)
1673 {
1674 const char *name = main_name ();
1675 struct symbol *sym
1676 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1677 NULL).symbol;
1678
1679 if (sym != NULL)
1680 lang = sym->language ();
1681 }
1682
1683 if (lang == language_unknown)
1684 {
1685 lang = default_lang;
1686 }
1687
1688 set_language (lang);
1689 expected_language = current_language; /* Don't warn the user. */
1690 }
1691
1692 /* Open the file specified by NAME and hand it off to BFD for
1693 preliminary analysis. Return a newly initialized bfd *, which
1694 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1695 absolute). In case of trouble, error() is called. */
1696
1697 gdb_bfd_ref_ptr
1698 symfile_bfd_open (const char *name)
1699 {
1700 int desc = -1;
1701
1702 gdb::unique_xmalloc_ptr<char> absolute_name;
1703 if (!is_target_filename (name))
1704 {
1705 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1706
1707 /* Look down path for it, allocate 2nd new malloc'd copy. */
1708 desc = openp (getenv ("PATH"),
1709 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1710 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1711 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1712 if (desc < 0)
1713 {
1714 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1715
1716 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1717 desc = openp (getenv ("PATH"),
1718 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1719 exename, O_RDONLY | O_BINARY, &absolute_name);
1720 }
1721 #endif
1722 if (desc < 0)
1723 perror_with_name (expanded_name.get ());
1724
1725 name = absolute_name.get ();
1726 }
1727
1728 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1729 if (sym_bfd == NULL)
1730 error (_("`%s': can't open to read symbols: %s."), name,
1731 bfd_errmsg (bfd_get_error ()));
1732
1733 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1734 bfd_set_cacheable (sym_bfd.get (), 1);
1735
1736 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1737 error (_("`%s': can't read symbols: %s."), name,
1738 bfd_errmsg (bfd_get_error ()));
1739
1740 return sym_bfd;
1741 }
1742
1743 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1744 the section was not found. */
1745
1746 int
1747 get_section_index (struct objfile *objfile, const char *section_name)
1748 {
1749 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1750
1751 if (sect)
1752 return sect->index;
1753 else
1754 return -1;
1755 }
1756
1757 /* Link SF into the global symtab_fns list.
1758 FLAVOUR is the file format that SF handles.
1759 Called on startup by the _initialize routine in each object file format
1760 reader, to register information about each format the reader is prepared
1761 to handle. */
1762
1763 void
1764 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1765 {
1766 symtab_fns.emplace_back (flavour, sf);
1767 }
1768
1769 /* Initialize OBJFILE to read symbols from its associated BFD. It
1770 either returns or calls error(). The result is an initialized
1771 struct sym_fns in the objfile structure, that contains cached
1772 information about the symbol file. */
1773
1774 static const struct sym_fns *
1775 find_sym_fns (bfd *abfd)
1776 {
1777 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1778
1779 if (our_flavour == bfd_target_srec_flavour
1780 || our_flavour == bfd_target_ihex_flavour
1781 || our_flavour == bfd_target_tekhex_flavour)
1782 return NULL; /* No symbols. */
1783
1784 for (const registered_sym_fns &rsf : symtab_fns)
1785 if (our_flavour == rsf.sym_flavour)
1786 return rsf.sym_fns;
1787
1788 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1789 bfd_get_target (abfd));
1790 }
1791 \f
1792
1793 /* This function runs the load command of our current target. */
1794
1795 static void
1796 load_command (const char *arg, int from_tty)
1797 {
1798 dont_repeat ();
1799
1800 /* The user might be reloading because the binary has changed. Take
1801 this opportunity to check. */
1802 reopen_exec_file ();
1803 reread_symbols (from_tty);
1804
1805 std::string temp;
1806 if (arg == NULL)
1807 {
1808 const char *parg, *prev;
1809
1810 arg = get_exec_file (1);
1811
1812 /* We may need to quote this string so buildargv can pull it
1813 apart. */
1814 prev = parg = arg;
1815 while ((parg = strpbrk (parg, "\\\"'\t ")))
1816 {
1817 temp.append (prev, parg - prev);
1818 prev = parg++;
1819 temp.push_back ('\\');
1820 }
1821 /* If we have not copied anything yet, then we didn't see a
1822 character to quote, and we can just leave ARG unchanged. */
1823 if (!temp.empty ())
1824 {
1825 temp.append (prev);
1826 arg = temp.c_str ();
1827 }
1828 }
1829
1830 target_load (arg, from_tty);
1831
1832 /* After re-loading the executable, we don't really know which
1833 overlays are mapped any more. */
1834 overlay_cache_invalid = 1;
1835 }
1836
1837 /* This version of "load" should be usable for any target. Currently
1838 it is just used for remote targets, not inftarg.c or core files,
1839 on the theory that only in that case is it useful.
1840
1841 Avoiding xmodem and the like seems like a win (a) because we don't have
1842 to worry about finding it, and (b) On VMS, fork() is very slow and so
1843 we don't want to run a subprocess. On the other hand, I'm not sure how
1844 performance compares. */
1845
1846 static int validate_download = 0;
1847
1848 /* Opaque data for load_progress. */
1849 struct load_progress_data
1850 {
1851 /* Cumulative data. */
1852 unsigned long write_count = 0;
1853 unsigned long data_count = 0;
1854 bfd_size_type total_size = 0;
1855 };
1856
1857 /* Opaque data for load_progress for a single section. */
1858 struct load_progress_section_data
1859 {
1860 load_progress_section_data (load_progress_data *cumulative_,
1861 const char *section_name_, ULONGEST section_size_,
1862 CORE_ADDR lma_, gdb_byte *buffer_)
1863 : cumulative (cumulative_), section_name (section_name_),
1864 section_size (section_size_), lma (lma_), buffer (buffer_)
1865 {}
1866
1867 struct load_progress_data *cumulative;
1868
1869 /* Per-section data. */
1870 const char *section_name;
1871 ULONGEST section_sent = 0;
1872 ULONGEST section_size;
1873 CORE_ADDR lma;
1874 gdb_byte *buffer;
1875 };
1876
1877 /* Opaque data for load_section_callback. */
1878 struct load_section_data
1879 {
1880 load_section_data (load_progress_data *progress_data_)
1881 : progress_data (progress_data_)
1882 {}
1883
1884 ~load_section_data ()
1885 {
1886 for (auto &&request : requests)
1887 {
1888 xfree (request.data);
1889 delete ((load_progress_section_data *) request.baton);
1890 }
1891 }
1892
1893 CORE_ADDR load_offset = 0;
1894 struct load_progress_data *progress_data;
1895 std::vector<struct memory_write_request> requests;
1896 };
1897
1898 /* Target write callback routine for progress reporting. */
1899
1900 static void
1901 load_progress (ULONGEST bytes, void *untyped_arg)
1902 {
1903 struct load_progress_section_data *args
1904 = (struct load_progress_section_data *) untyped_arg;
1905 struct load_progress_data *totals;
1906
1907 if (args == NULL)
1908 /* Writing padding data. No easy way to get at the cumulative
1909 stats, so just ignore this. */
1910 return;
1911
1912 totals = args->cumulative;
1913
1914 if (bytes == 0 && args->section_sent == 0)
1915 {
1916 /* The write is just starting. Let the user know we've started
1917 this section. */
1918 current_uiout->message ("Loading section %s, size %s lma %s\n",
1919 args->section_name,
1920 hex_string (args->section_size),
1921 paddress (target_gdbarch (), args->lma));
1922 return;
1923 }
1924
1925 if (validate_download)
1926 {
1927 /* Broken memories and broken monitors manifest themselves here
1928 when bring new computers to life. This doubles already slow
1929 downloads. */
1930 /* NOTE: cagney/1999-10-18: A more efficient implementation
1931 might add a verify_memory() method to the target vector and
1932 then use that. remote.c could implement that method using
1933 the ``qCRC'' packet. */
1934 gdb::byte_vector check (bytes);
1935
1936 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1937 error (_("Download verify read failed at %s"),
1938 paddress (target_gdbarch (), args->lma));
1939 if (memcmp (args->buffer, check.data (), bytes) != 0)
1940 error (_("Download verify compare failed at %s"),
1941 paddress (target_gdbarch (), args->lma));
1942 }
1943 totals->data_count += bytes;
1944 args->lma += bytes;
1945 args->buffer += bytes;
1946 totals->write_count += 1;
1947 args->section_sent += bytes;
1948 if (check_quit_flag ()
1949 || (deprecated_ui_load_progress_hook != NULL
1950 && deprecated_ui_load_progress_hook (args->section_name,
1951 args->section_sent)))
1952 error (_("Canceled the download"));
1953
1954 if (deprecated_show_load_progress != NULL)
1955 deprecated_show_load_progress (args->section_name,
1956 args->section_sent,
1957 args->section_size,
1958 totals->data_count,
1959 totals->total_size);
1960 }
1961
1962 /* Service function for generic_load. */
1963
1964 static void
1965 load_one_section (bfd *abfd, asection *asec,
1966 struct load_section_data *args)
1967 {
1968 bfd_size_type size = bfd_section_size (asec);
1969 const char *sect_name = bfd_section_name (asec);
1970
1971 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1972 return;
1973
1974 if (size == 0)
1975 return;
1976
1977 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1978 ULONGEST end = begin + size;
1979 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1980 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1981
1982 load_progress_section_data *section_data
1983 = new load_progress_section_data (args->progress_data, sect_name, size,
1984 begin, buffer);
1985
1986 args->requests.emplace_back (begin, end, buffer, section_data);
1987 }
1988
1989 static void print_transfer_performance (struct ui_file *stream,
1990 unsigned long data_count,
1991 unsigned long write_count,
1992 std::chrono::steady_clock::duration d);
1993
1994 /* See symfile.h. */
1995
1996 void
1997 generic_load (const char *args, int from_tty)
1998 {
1999 struct load_progress_data total_progress;
2000 struct load_section_data cbdata (&total_progress);
2001 struct ui_out *uiout = current_uiout;
2002
2003 if (args == NULL)
2004 error_no_arg (_("file to load"));
2005
2006 gdb_argv argv (args);
2007
2008 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2009
2010 if (argv[1] != NULL)
2011 {
2012 const char *endptr;
2013
2014 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2015
2016 /* If the last word was not a valid number then
2017 treat it as a file name with spaces in. */
2018 if (argv[1] == endptr)
2019 error (_("Invalid download offset:%s."), argv[1]);
2020
2021 if (argv[2] != NULL)
2022 error (_("Too many parameters."));
2023 }
2024
2025 /* Open the file for loading. */
2026 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2027 if (loadfile_bfd == NULL)
2028 perror_with_name (filename.get ());
2029
2030 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2031 {
2032 error (_("\"%s\" is not an object file: %s"), filename.get (),
2033 bfd_errmsg (bfd_get_error ()));
2034 }
2035
2036 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2037 total_progress.total_size += bfd_section_size (asec);
2038
2039 for (asection *asec : gdb_bfd_sections (loadfile_bfd))
2040 load_one_section (loadfile_bfd.get (), asec, &cbdata);
2041
2042 using namespace std::chrono;
2043
2044 steady_clock::time_point start_time = steady_clock::now ();
2045
2046 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2047 load_progress) != 0)
2048 error (_("Load failed"));
2049
2050 steady_clock::time_point end_time = steady_clock::now ();
2051
2052 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2053 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2054 uiout->text ("Start address ");
2055 uiout->field_core_addr ("address", target_gdbarch (), entry);
2056 uiout->text (", load size ");
2057 uiout->field_unsigned ("load-size", total_progress.data_count);
2058 uiout->text ("\n");
2059 regcache_write_pc (get_current_regcache (), entry);
2060
2061 /* Reset breakpoints, now that we have changed the load image. For
2062 instance, breakpoints may have been set (or reset, by
2063 post_create_inferior) while connected to the target but before we
2064 loaded the program. In that case, the prologue analyzer could
2065 have read instructions from the target to find the right
2066 breakpoint locations. Loading has changed the contents of that
2067 memory. */
2068
2069 breakpoint_re_set ();
2070
2071 print_transfer_performance (gdb_stdout, total_progress.data_count,
2072 total_progress.write_count,
2073 end_time - start_time);
2074 }
2075
2076 /* Report on STREAM the performance of a memory transfer operation,
2077 such as 'load'. DATA_COUNT is the number of bytes transferred.
2078 WRITE_COUNT is the number of separate write operations, or 0, if
2079 that information is not available. TIME is how long the operation
2080 lasted. */
2081
2082 static void
2083 print_transfer_performance (struct ui_file *stream,
2084 unsigned long data_count,
2085 unsigned long write_count,
2086 std::chrono::steady_clock::duration time)
2087 {
2088 using namespace std::chrono;
2089 struct ui_out *uiout = current_uiout;
2090
2091 milliseconds ms = duration_cast<milliseconds> (time);
2092
2093 uiout->text ("Transfer rate: ");
2094 if (ms.count () > 0)
2095 {
2096 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2097
2098 if (uiout->is_mi_like_p ())
2099 {
2100 uiout->field_unsigned ("transfer-rate", rate * 8);
2101 uiout->text (" bits/sec");
2102 }
2103 else if (rate < 1024)
2104 {
2105 uiout->field_unsigned ("transfer-rate", rate);
2106 uiout->text (" bytes/sec");
2107 }
2108 else
2109 {
2110 uiout->field_unsigned ("transfer-rate", rate / 1024);
2111 uiout->text (" KB/sec");
2112 }
2113 }
2114 else
2115 {
2116 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2117 uiout->text (" bits in <1 sec");
2118 }
2119 if (write_count > 0)
2120 {
2121 uiout->text (", ");
2122 uiout->field_unsigned ("write-rate", data_count / write_count);
2123 uiout->text (" bytes/write");
2124 }
2125 uiout->text (".\n");
2126 }
2127
2128 /* Add an OFFSET to the start address of each section in OBJF, except
2129 sections that were specified in ADDRS. */
2130
2131 static void
2132 set_objfile_default_section_offset (struct objfile *objf,
2133 const section_addr_info &addrs,
2134 CORE_ADDR offset)
2135 {
2136 /* Add OFFSET to all sections by default. */
2137 section_offsets offsets (objf->section_offsets.size (), offset);
2138
2139 /* Create sorted lists of all sections in ADDRS as well as all
2140 sections in OBJF. */
2141
2142 std::vector<const struct other_sections *> addrs_sorted
2143 = addrs_section_sort (addrs);
2144
2145 section_addr_info objf_addrs
2146 = build_section_addr_info_from_objfile (objf);
2147 std::vector<const struct other_sections *> objf_addrs_sorted
2148 = addrs_section_sort (objf_addrs);
2149
2150 /* Walk the BFD section list, and if a matching section is found in
2151 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2152 unchanged.
2153
2154 Note that both lists may contain multiple sections with the same
2155 name, and then the sections from ADDRS are matched in BFD order
2156 (thanks to sectindex). */
2157
2158 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2159 = addrs_sorted.begin ();
2160 for (const other_sections *objf_sect : objf_addrs_sorted)
2161 {
2162 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2163 int cmp = -1;
2164
2165 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2166 {
2167 const struct other_sections *sect = *addrs_sorted_iter;
2168 const char *sect_name = addr_section_name (sect->name.c_str ());
2169 cmp = strcmp (sect_name, objf_name);
2170 if (cmp <= 0)
2171 ++addrs_sorted_iter;
2172 }
2173
2174 if (cmp == 0)
2175 offsets[objf_sect->sectindex] = 0;
2176 }
2177
2178 /* Apply the new section offsets. */
2179 objfile_relocate (objf, offsets);
2180 }
2181
2182 /* This function allows the addition of incrementally linked object files.
2183 It does not modify any state in the target, only in the debugger. */
2184
2185 static void
2186 add_symbol_file_command (const char *args, int from_tty)
2187 {
2188 struct gdbarch *gdbarch = get_current_arch ();
2189 gdb::unique_xmalloc_ptr<char> filename;
2190 char *arg;
2191 int argcnt = 0;
2192 struct objfile *objf;
2193 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2194 symfile_add_flags add_flags = 0;
2195
2196 if (from_tty)
2197 add_flags |= SYMFILE_VERBOSE;
2198
2199 struct sect_opt
2200 {
2201 const char *name;
2202 const char *value;
2203 };
2204
2205 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2206 bool stop_processing_options = false;
2207 CORE_ADDR offset = 0;
2208
2209 dont_repeat ();
2210
2211 if (args == NULL)
2212 error (_("add-symbol-file takes a file name and an address"));
2213
2214 bool seen_addr = false;
2215 bool seen_offset = false;
2216 gdb_argv argv (args);
2217
2218 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2219 {
2220 if (stop_processing_options || *arg != '-')
2221 {
2222 if (filename == NULL)
2223 {
2224 /* First non-option argument is always the filename. */
2225 filename.reset (tilde_expand (arg));
2226 }
2227 else if (!seen_addr)
2228 {
2229 /* The second non-option argument is always the text
2230 address at which to load the program. */
2231 sect_opts[0].value = arg;
2232 seen_addr = true;
2233 }
2234 else
2235 error (_("Unrecognized argument \"%s\""), arg);
2236 }
2237 else if (strcmp (arg, "-readnow") == 0)
2238 flags |= OBJF_READNOW;
2239 else if (strcmp (arg, "-readnever") == 0)
2240 flags |= OBJF_READNEVER;
2241 else if (strcmp (arg, "-s") == 0)
2242 {
2243 if (argv[argcnt + 1] == NULL)
2244 error (_("Missing section name after \"-s\""));
2245 else if (argv[argcnt + 2] == NULL)
2246 error (_("Missing section address after \"-s\""));
2247
2248 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2249
2250 sect_opts.push_back (sect);
2251 argcnt += 2;
2252 }
2253 else if (strcmp (arg, "-o") == 0)
2254 {
2255 arg = argv[++argcnt];
2256 if (arg == NULL)
2257 error (_("Missing argument to -o"));
2258
2259 offset = parse_and_eval_address (arg);
2260 seen_offset = true;
2261 }
2262 else if (strcmp (arg, "--") == 0)
2263 stop_processing_options = true;
2264 else
2265 error (_("Unrecognized argument \"%s\""), arg);
2266 }
2267
2268 if (filename == NULL)
2269 error (_("You must provide a filename to be loaded."));
2270
2271 validate_readnow_readnever (flags);
2272
2273 /* Print the prompt for the query below. And save the arguments into
2274 a sect_addr_info structure to be passed around to other
2275 functions. We have to split this up into separate print
2276 statements because hex_string returns a local static
2277 string. */
2278
2279 printf_filtered (_("add symbol table from file \"%s\""),
2280 filename.get ());
2281 section_addr_info section_addrs;
2282 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2283 if (!seen_addr)
2284 ++it;
2285 for (; it != sect_opts.end (); ++it)
2286 {
2287 CORE_ADDR addr;
2288 const char *val = it->value;
2289 const char *sec = it->name;
2290
2291 if (section_addrs.empty ())
2292 printf_filtered (_(" at\n"));
2293 addr = parse_and_eval_address (val);
2294
2295 /* Here we store the section offsets in the order they were
2296 entered on the command line. Every array element is
2297 assigned an ascending section index to preserve the above
2298 order over an unstable sorting algorithm. This dummy
2299 index is not used for any other purpose.
2300 */
2301 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2302 printf_filtered ("\t%s_addr = %s\n", sec,
2303 paddress (gdbarch, addr));
2304
2305 /* The object's sections are initialized when a
2306 call is made to build_objfile_section_table (objfile).
2307 This happens in reread_symbols.
2308 At this point, we don't know what file type this is,
2309 so we can't determine what section names are valid. */
2310 }
2311 if (seen_offset)
2312 printf_filtered (_("%s offset by %s\n"),
2313 (section_addrs.empty ()
2314 ? _(" with all sections")
2315 : _("with other sections")),
2316 paddress (gdbarch, offset));
2317 else if (section_addrs.empty ())
2318 printf_filtered ("\n");
2319
2320 if (from_tty && (!query ("%s", "")))
2321 error (_("Not confirmed."));
2322
2323 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2324 flags);
2325 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2326 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2327 filename.get ());
2328
2329 if (seen_offset)
2330 set_objfile_default_section_offset (objf, section_addrs, offset);
2331
2332 current_program_space->add_target_sections (objf);
2333
2334 /* Getting new symbols may change our opinion about what is
2335 frameless. */
2336 reinit_frame_cache ();
2337 }
2338 \f
2339
2340 /* This function removes a symbol file that was added via add-symbol-file. */
2341
2342 static void
2343 remove_symbol_file_command (const char *args, int from_tty)
2344 {
2345 struct objfile *objf = NULL;
2346 struct program_space *pspace = current_program_space;
2347
2348 dont_repeat ();
2349
2350 if (args == NULL)
2351 error (_("remove-symbol-file: no symbol file provided"));
2352
2353 gdb_argv argv (args);
2354
2355 if (strcmp (argv[0], "-a") == 0)
2356 {
2357 /* Interpret the next argument as an address. */
2358 CORE_ADDR addr;
2359
2360 if (argv[1] == NULL)
2361 error (_("Missing address argument"));
2362
2363 if (argv[2] != NULL)
2364 error (_("Junk after %s"), argv[1]);
2365
2366 addr = parse_and_eval_address (argv[1]);
2367
2368 for (objfile *objfile : current_program_space->objfiles ())
2369 {
2370 if ((objfile->flags & OBJF_USERLOADED) != 0
2371 && (objfile->flags & OBJF_SHARED) != 0
2372 && objfile->pspace == pspace
2373 && is_addr_in_objfile (addr, objfile))
2374 {
2375 objf = objfile;
2376 break;
2377 }
2378 }
2379 }
2380 else if (argv[0] != NULL)
2381 {
2382 /* Interpret the current argument as a file name. */
2383
2384 if (argv[1] != NULL)
2385 error (_("Junk after %s"), argv[0]);
2386
2387 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2388
2389 for (objfile *objfile : current_program_space->objfiles ())
2390 {
2391 if ((objfile->flags & OBJF_USERLOADED) != 0
2392 && (objfile->flags & OBJF_SHARED) != 0
2393 && objfile->pspace == pspace
2394 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2395 {
2396 objf = objfile;
2397 break;
2398 }
2399 }
2400 }
2401
2402 if (objf == NULL)
2403 error (_("No symbol file found"));
2404
2405 if (from_tty
2406 && !query (_("Remove symbol table from file \"%s\"? "),
2407 objfile_name (objf)))
2408 error (_("Not confirmed."));
2409
2410 objf->unlink ();
2411 clear_symtab_users (0);
2412 }
2413
2414 /* Re-read symbols if a symbol-file has changed. */
2415
2416 void
2417 reread_symbols (int from_tty)
2418 {
2419 long new_modtime;
2420 struct stat new_statbuf;
2421 int res;
2422 std::vector<struct objfile *> new_objfiles;
2423
2424 for (objfile *objfile : current_program_space->objfiles ())
2425 {
2426 if (objfile->obfd == NULL)
2427 continue;
2428
2429 /* Separate debug objfiles are handled in the main objfile. */
2430 if (objfile->separate_debug_objfile_backlink)
2431 continue;
2432
2433 /* If this object is from an archive (what you usually create with
2434 `ar', often called a `static library' on most systems, though
2435 a `shared library' on AIX is also an archive), then you should
2436 stat on the archive name, not member name. */
2437 if (objfile->obfd->my_archive)
2438 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2439 else
2440 res = stat (objfile_name (objfile), &new_statbuf);
2441 if (res != 0)
2442 {
2443 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2444 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2445 objfile_name (objfile));
2446 continue;
2447 }
2448 new_modtime = new_statbuf.st_mtime;
2449 if (new_modtime != objfile->mtime)
2450 {
2451 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2452 objfile_name (objfile));
2453
2454 /* There are various functions like symbol_file_add,
2455 symfile_bfd_open, syms_from_objfile, etc., which might
2456 appear to do what we want. But they have various other
2457 effects which we *don't* want. So we just do stuff
2458 ourselves. We don't worry about mapped files (for one thing,
2459 any mapped file will be out of date). */
2460
2461 /* If we get an error, blow away this objfile (not sure if
2462 that is the correct response for things like shared
2463 libraries). */
2464 objfile_up objfile_holder (objfile);
2465
2466 /* We need to do this whenever any symbols go away. */
2467 clear_symtab_users_cleanup defer_clear_users (0);
2468
2469 if (current_program_space->exec_bfd () != NULL
2470 && filename_cmp (bfd_get_filename (objfile->obfd),
2471 bfd_get_filename (current_program_space->exec_bfd ())) == 0)
2472 {
2473 /* Reload EXEC_BFD without asking anything. */
2474
2475 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2476 }
2477
2478 /* Keep the calls order approx. the same as in free_objfile. */
2479
2480 /* Free the separate debug objfiles. It will be
2481 automatically recreated by sym_read. */
2482 free_objfile_separate_debug (objfile);
2483
2484 /* Clear the stale source cache. */
2485 forget_cached_source_info ();
2486
2487 /* Remove any references to this objfile in the global
2488 value lists. */
2489 preserve_values (objfile);
2490
2491 /* Nuke all the state that we will re-read. Much of the following
2492 code which sets things to NULL really is necessary to tell
2493 other parts of GDB that there is nothing currently there.
2494
2495 Try to keep the freeing order compatible with free_objfile. */
2496
2497 if (objfile->sf != NULL)
2498 {
2499 (*objfile->sf->sym_finish) (objfile);
2500 }
2501
2502 clear_objfile_data (objfile);
2503
2504 /* Clean up any state BFD has sitting around. */
2505 {
2506 gdb_bfd_ref_ptr obfd (objfile->obfd);
2507 const char *obfd_filename;
2508
2509 obfd_filename = bfd_get_filename (objfile->obfd);
2510 /* Open the new BFD before freeing the old one, so that
2511 the filename remains live. */
2512 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2513 objfile->obfd = temp.release ();
2514 if (objfile->obfd == NULL)
2515 error (_("Can't open %s to read symbols."), obfd_filename);
2516 }
2517
2518 std::string original_name = objfile->original_name;
2519
2520 /* bfd_openr sets cacheable to true, which is what we want. */
2521 if (!bfd_check_format (objfile->obfd, bfd_object))
2522 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2523 bfd_errmsg (bfd_get_error ()));
2524
2525 /* NB: after this call to obstack_free, objfiles_changed
2526 will need to be called (see discussion below). */
2527 obstack_free (&objfile->objfile_obstack, 0);
2528 objfile->sections = NULL;
2529 objfile->section_offsets.clear ();
2530 objfile->sect_index_bss = -1;
2531 objfile->sect_index_data = -1;
2532 objfile->sect_index_rodata = -1;
2533 objfile->sect_index_text = -1;
2534 objfile->compunit_symtabs = NULL;
2535 objfile->template_symbols = NULL;
2536 objfile->static_links.reset (nullptr);
2537
2538 /* obstack_init also initializes the obstack so it is
2539 empty. We could use obstack_specify_allocation but
2540 gdb_obstack.h specifies the alloc/dealloc functions. */
2541 obstack_init (&objfile->objfile_obstack);
2542
2543 /* set_objfile_per_bfd potentially allocates the per-bfd
2544 data on the objfile's obstack (if sharing data across
2545 multiple users is not possible), so it's important to
2546 do it *after* the obstack has been initialized. */
2547 set_objfile_per_bfd (objfile);
2548
2549 objfile->original_name
2550 = obstack_strdup (&objfile->objfile_obstack, original_name);
2551
2552 /* Reset the sym_fns pointer. The ELF reader can change it
2553 based on whether .gdb_index is present, and we need it to
2554 start over. PR symtab/15885 */
2555 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2556 objfile->qf.clear ();
2557
2558 build_objfile_section_table (objfile);
2559
2560 /* What the hell is sym_new_init for, anyway? The concept of
2561 distinguishing between the main file and additional files
2562 in this way seems rather dubious. */
2563 if (objfile == current_program_space->symfile_object_file)
2564 {
2565 (*objfile->sf->sym_new_init) (objfile);
2566 }
2567
2568 (*objfile->sf->sym_init) (objfile);
2569 clear_complaints ();
2570
2571 objfile->flags &= ~OBJF_PSYMTABS_READ;
2572
2573 /* We are about to read new symbols and potentially also
2574 DWARF information. Some targets may want to pass addresses
2575 read from DWARF DIE's through an adjustment function before
2576 saving them, like MIPS, which may call into
2577 "find_pc_section". When called, that function will make
2578 use of per-objfile program space data.
2579
2580 Since we discarded our section information above, we have
2581 dangling pointers in the per-objfile program space data
2582 structure. Force GDB to update the section mapping
2583 information by letting it know the objfile has changed,
2584 making the dangling pointers point to correct data
2585 again. */
2586
2587 objfiles_changed ();
2588
2589 /* Recompute section offsets and section indices. */
2590 objfile->sf->sym_offsets (objfile, {});
2591
2592 read_symbols (objfile, 0);
2593
2594 if ((objfile->flags & OBJF_READNOW))
2595 {
2596 const int mainline = objfile->flags & OBJF_MAINLINE;
2597 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
2598 && readnow_symbol_files);
2599 if (should_print)
2600 printf_filtered (_("Expanding full symbols from %ps...\n"),
2601 styled_string (file_name_style.style (),
2602 objfile_name (objfile)));
2603
2604 objfile->expand_all_symtabs ();
2605 }
2606
2607 if (!objfile_has_symbols (objfile))
2608 {
2609 wrap_here ("");
2610 printf_filtered (_("(no debugging symbols found)\n"));
2611 wrap_here ("");
2612 }
2613
2614 /* We're done reading the symbol file; finish off complaints. */
2615 clear_complaints ();
2616
2617 /* Getting new symbols may change our opinion about what is
2618 frameless. */
2619
2620 reinit_frame_cache ();
2621
2622 /* Discard cleanups as symbol reading was successful. */
2623 objfile_holder.release ();
2624 defer_clear_users.release ();
2625
2626 /* If the mtime has changed between the time we set new_modtime
2627 and now, we *want* this to be out of date, so don't call stat
2628 again now. */
2629 objfile->mtime = new_modtime;
2630 init_entry_point_info (objfile);
2631
2632 new_objfiles.push_back (objfile);
2633 }
2634 }
2635
2636 if (!new_objfiles.empty ())
2637 {
2638 clear_symtab_users (0);
2639
2640 /* clear_objfile_data for each objfile was called before freeing it and
2641 gdb::observers::new_objfile.notify (NULL) has been called by
2642 clear_symtab_users above. Notify the new files now. */
2643 for (auto iter : new_objfiles)
2644 gdb::observers::new_objfile.notify (iter);
2645
2646 /* At least one objfile has changed, so we can consider that
2647 the executable we're debugging has changed too. */
2648 gdb::observers::executable_changed.notify ();
2649 }
2650 }
2651 \f
2652
2653 struct filename_language
2654 {
2655 filename_language (const std::string &ext_, enum language lang_)
2656 : ext (ext_), lang (lang_)
2657 {}
2658
2659 std::string ext;
2660 enum language lang;
2661 };
2662
2663 static std::vector<filename_language> filename_language_table;
2664
2665 /* See symfile.h. */
2666
2667 void
2668 add_filename_language (const char *ext, enum language lang)
2669 {
2670 gdb_assert (ext != nullptr);
2671 filename_language_table.emplace_back (ext, lang);
2672 }
2673
2674 static std::string ext_args;
2675 static void
2676 show_ext_args (struct ui_file *file, int from_tty,
2677 struct cmd_list_element *c, const char *value)
2678 {
2679 fprintf_filtered (file,
2680 _("Mapping between filename extension "
2681 "and source language is \"%s\".\n"),
2682 value);
2683 }
2684
2685 static void
2686 set_ext_lang_command (const char *args,
2687 int from_tty, struct cmd_list_element *e)
2688 {
2689 const char *begin = ext_args.c_str ();
2690 const char *end = ext_args.c_str ();
2691
2692 /* First arg is filename extension, starting with '.' */
2693 if (*end != '.')
2694 error (_("'%s': Filename extension must begin with '.'"), ext_args.c_str ());
2695
2696 /* Find end of first arg. */
2697 while (*end != '\0' && !isspace (*end))
2698 end++;
2699
2700 if (*end == '\0')
2701 error (_("'%s': two arguments required -- "
2702 "filename extension and language"),
2703 ext_args.c_str ());
2704
2705 /* Extract first arg, the extension. */
2706 std::string extension = ext_args.substr (0, end - begin);
2707
2708 /* Find beginning of second arg, which should be a source language. */
2709 begin = skip_spaces (end);
2710
2711 if (*begin == '\0')
2712 error (_("'%s': two arguments required -- "
2713 "filename extension and language"),
2714 ext_args.c_str ());
2715
2716 /* Lookup the language from among those we know. */
2717 language lang = language_enum (begin);
2718
2719 auto it = filename_language_table.begin ();
2720 /* Now lookup the filename extension: do we already know it? */
2721 for (; it != filename_language_table.end (); it++)
2722 {
2723 if (it->ext == extension)
2724 break;
2725 }
2726
2727 if (it == filename_language_table.end ())
2728 {
2729 /* New file extension. */
2730 add_filename_language (extension.data (), lang);
2731 }
2732 else
2733 {
2734 /* Redefining a previously known filename extension. */
2735
2736 /* if (from_tty) */
2737 /* query ("Really make files of type %s '%s'?", */
2738 /* ext_args, language_str (lang)); */
2739
2740 it->lang = lang;
2741 }
2742 }
2743
2744 static void
2745 info_ext_lang_command (const char *args, int from_tty)
2746 {
2747 printf_filtered (_("Filename extensions and the languages they represent:"));
2748 printf_filtered ("\n\n");
2749 for (const filename_language &entry : filename_language_table)
2750 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2751 language_str (entry.lang));
2752 }
2753
2754 enum language
2755 deduce_language_from_filename (const char *filename)
2756 {
2757 const char *cp;
2758
2759 if (filename != NULL)
2760 if ((cp = strrchr (filename, '.')) != NULL)
2761 {
2762 for (const filename_language &entry : filename_language_table)
2763 if (entry.ext == cp)
2764 return entry.lang;
2765 }
2766
2767 return language_unknown;
2768 }
2769 \f
2770 /* Allocate and initialize a new symbol table.
2771 CUST is from the result of allocate_compunit_symtab. */
2772
2773 struct symtab *
2774 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2775 {
2776 struct objfile *objfile = cust->objfile;
2777 struct symtab *symtab
2778 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2779
2780 symtab->filename = objfile->intern (filename);
2781 symtab->fullname = NULL;
2782 symtab->language = deduce_language_from_filename (filename);
2783
2784 /* This can be very verbose with lots of headers.
2785 Only print at higher debug levels. */
2786 if (symtab_create_debug >= 2)
2787 {
2788 /* Be a bit clever with debugging messages, and don't print objfile
2789 every time, only when it changes. */
2790 static std::string last_objfile_name;
2791 const char *this_objfile_name = objfile_name (objfile);
2792
2793 if (last_objfile_name.empty () || last_objfile_name != this_objfile_name)
2794 {
2795 last_objfile_name = this_objfile_name;
2796 fprintf_filtered (gdb_stdlog,
2797 "Creating one or more symtabs for objfile %s ...\n",
2798 this_objfile_name);
2799 }
2800 fprintf_filtered (gdb_stdlog,
2801 "Created symtab %s for module %s.\n",
2802 host_address_to_string (symtab), filename);
2803 }
2804
2805 /* Add it to CUST's list of symtabs. */
2806 if (cust->filetabs == NULL)
2807 {
2808 cust->filetabs = symtab;
2809 cust->last_filetab = symtab;
2810 }
2811 else
2812 {
2813 cust->last_filetab->next = symtab;
2814 cust->last_filetab = symtab;
2815 }
2816
2817 /* Backlink to the containing compunit symtab. */
2818 symtab->compunit_symtab = cust;
2819
2820 return symtab;
2821 }
2822
2823 /* Allocate and initialize a new compunit.
2824 NAME is the name of the main source file, if there is one, or some
2825 descriptive text if there are no source files. */
2826
2827 struct compunit_symtab *
2828 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2829 {
2830 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2831 struct compunit_symtab);
2832 const char *saved_name;
2833
2834 cu->objfile = objfile;
2835
2836 /* The name we record here is only for display/debugging purposes.
2837 Just save the basename to avoid path issues (too long for display,
2838 relative vs absolute, etc.). */
2839 saved_name = lbasename (name);
2840 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2841
2842 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2843
2844 if (symtab_create_debug)
2845 {
2846 fprintf_filtered (gdb_stdlog,
2847 "Created compunit symtab %s for %s.\n",
2848 host_address_to_string (cu),
2849 cu->name);
2850 }
2851
2852 return cu;
2853 }
2854
2855 /* Hook CU to the objfile it comes from. */
2856
2857 void
2858 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2859 {
2860 cu->next = cu->objfile->compunit_symtabs;
2861 cu->objfile->compunit_symtabs = cu;
2862 }
2863 \f
2864
2865 /* Reset all data structures in gdb which may contain references to
2866 symbol table data. */
2867
2868 void
2869 clear_symtab_users (symfile_add_flags add_flags)
2870 {
2871 /* Someday, we should do better than this, by only blowing away
2872 the things that really need to be blown. */
2873
2874 /* Clear the "current" symtab first, because it is no longer valid.
2875 breakpoint_re_set may try to access the current symtab. */
2876 clear_current_source_symtab_and_line ();
2877
2878 clear_displays ();
2879 clear_last_displayed_sal ();
2880 clear_pc_function_cache ();
2881 gdb::observers::new_objfile.notify (NULL);
2882
2883 /* Varobj may refer to old symbols, perform a cleanup. */
2884 varobj_invalidate ();
2885
2886 /* Now that the various caches have been cleared, we can re_set
2887 our breakpoints without risking it using stale data. */
2888 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2889 breakpoint_re_set ();
2890 }
2891 \f
2892 /* OVERLAYS:
2893 The following code implements an abstraction for debugging overlay sections.
2894
2895 The target model is as follows:
2896 1) The gnu linker will permit multiple sections to be mapped into the
2897 same VMA, each with its own unique LMA (or load address).
2898 2) It is assumed that some runtime mechanism exists for mapping the
2899 sections, one by one, from the load address into the VMA address.
2900 3) This code provides a mechanism for gdb to keep track of which
2901 sections should be considered to be mapped from the VMA to the LMA.
2902 This information is used for symbol lookup, and memory read/write.
2903 For instance, if a section has been mapped then its contents
2904 should be read from the VMA, otherwise from the LMA.
2905
2906 Two levels of debugger support for overlays are available. One is
2907 "manual", in which the debugger relies on the user to tell it which
2908 overlays are currently mapped. This level of support is
2909 implemented entirely in the core debugger, and the information about
2910 whether a section is mapped is kept in the objfile->obj_section table.
2911
2912 The second level of support is "automatic", and is only available if
2913 the target-specific code provides functionality to read the target's
2914 overlay mapping table, and translate its contents for the debugger
2915 (by updating the mapped state information in the obj_section tables).
2916
2917 The interface is as follows:
2918 User commands:
2919 overlay map <name> -- tell gdb to consider this section mapped
2920 overlay unmap <name> -- tell gdb to consider this section unmapped
2921 overlay list -- list the sections that GDB thinks are mapped
2922 overlay read-target -- get the target's state of what's mapped
2923 overlay off/manual/auto -- set overlay debugging state
2924 Functional interface:
2925 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2926 section, return that section.
2927 find_pc_overlay(pc): find any overlay section that contains
2928 the pc, either in its VMA or its LMA
2929 section_is_mapped(sect): true if overlay is marked as mapped
2930 section_is_overlay(sect): true if section's VMA != LMA
2931 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2932 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2933 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2934 overlay_mapped_address(...): map an address from section's LMA to VMA
2935 overlay_unmapped_address(...): map an address from section's VMA to LMA
2936 symbol_overlayed_address(...): Return a "current" address for symbol:
2937 either in VMA or LMA depending on whether
2938 the symbol's section is currently mapped. */
2939
2940 /* Overlay debugging state: */
2941
2942 enum overlay_debugging_state overlay_debugging = ovly_off;
2943 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2944
2945 /* Function: section_is_overlay (SECTION)
2946 Returns true if SECTION has VMA not equal to LMA, ie.
2947 SECTION is loaded at an address different from where it will "run". */
2948
2949 int
2950 section_is_overlay (struct obj_section *section)
2951 {
2952 if (overlay_debugging && section)
2953 {
2954 asection *bfd_section = section->the_bfd_section;
2955
2956 if (bfd_section_lma (bfd_section) != 0
2957 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2958 return 1;
2959 }
2960
2961 return 0;
2962 }
2963
2964 /* Function: overlay_invalidate_all (void)
2965 Invalidate the mapped state of all overlay sections (mark it as stale). */
2966
2967 static void
2968 overlay_invalidate_all (void)
2969 {
2970 struct obj_section *sect;
2971
2972 for (objfile *objfile : current_program_space->objfiles ())
2973 ALL_OBJFILE_OSECTIONS (objfile, sect)
2974 if (section_is_overlay (sect))
2975 sect->ovly_mapped = -1;
2976 }
2977
2978 /* Function: section_is_mapped (SECTION)
2979 Returns true if section is an overlay, and is currently mapped.
2980
2981 Access to the ovly_mapped flag is restricted to this function, so
2982 that we can do automatic update. If the global flag
2983 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2984 overlay_invalidate_all. If the mapped state of the particular
2985 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2986
2987 int
2988 section_is_mapped (struct obj_section *osect)
2989 {
2990 struct gdbarch *gdbarch;
2991
2992 if (osect == 0 || !section_is_overlay (osect))
2993 return 0;
2994
2995 switch (overlay_debugging)
2996 {
2997 default:
2998 case ovly_off:
2999 return 0; /* overlay debugging off */
3000 case ovly_auto: /* overlay debugging automatic */
3001 /* Unles there is a gdbarch_overlay_update function,
3002 there's really nothing useful to do here (can't really go auto). */
3003 gdbarch = osect->objfile->arch ();
3004 if (gdbarch_overlay_update_p (gdbarch))
3005 {
3006 if (overlay_cache_invalid)
3007 {
3008 overlay_invalidate_all ();
3009 overlay_cache_invalid = 0;
3010 }
3011 if (osect->ovly_mapped == -1)
3012 gdbarch_overlay_update (gdbarch, osect);
3013 }
3014 /* fall thru */
3015 case ovly_on: /* overlay debugging manual */
3016 return osect->ovly_mapped == 1;
3017 }
3018 }
3019
3020 /* Function: pc_in_unmapped_range
3021 If PC falls into the lma range of SECTION, return true, else false. */
3022
3023 CORE_ADDR
3024 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3025 {
3026 if (section_is_overlay (section))
3027 {
3028 asection *bfd_section = section->the_bfd_section;
3029
3030 /* We assume the LMA is relocated by the same offset as the VMA. */
3031 bfd_vma size = bfd_section_size (bfd_section);
3032 CORE_ADDR offset = section->offset ();
3033
3034 if (bfd_section_lma (bfd_section) + offset <= pc
3035 && pc < bfd_section_lma (bfd_section) + offset + size)
3036 return 1;
3037 }
3038
3039 return 0;
3040 }
3041
3042 /* Function: pc_in_mapped_range
3043 If PC falls into the vma range of SECTION, return true, else false. */
3044
3045 CORE_ADDR
3046 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3047 {
3048 if (section_is_overlay (section))
3049 {
3050 if (section->addr () <= pc
3051 && pc < section->endaddr ())
3052 return 1;
3053 }
3054
3055 return 0;
3056 }
3057
3058 /* Return true if the mapped ranges of sections A and B overlap, false
3059 otherwise. */
3060
3061 static int
3062 sections_overlap (struct obj_section *a, struct obj_section *b)
3063 {
3064 CORE_ADDR a_start = a->addr ();
3065 CORE_ADDR a_end = a->endaddr ();
3066 CORE_ADDR b_start = b->addr ();
3067 CORE_ADDR b_end = b->endaddr ();
3068
3069 return (a_start < b_end && b_start < a_end);
3070 }
3071
3072 /* Function: overlay_unmapped_address (PC, SECTION)
3073 Returns the address corresponding to PC in the unmapped (load) range.
3074 May be the same as PC. */
3075
3076 CORE_ADDR
3077 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3078 {
3079 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3080 {
3081 asection *bfd_section = section->the_bfd_section;
3082
3083 return (pc + bfd_section_lma (bfd_section)
3084 - bfd_section_vma (bfd_section));
3085 }
3086
3087 return pc;
3088 }
3089
3090 /* Function: overlay_mapped_address (PC, SECTION)
3091 Returns the address corresponding to PC in the mapped (runtime) range.
3092 May be the same as PC. */
3093
3094 CORE_ADDR
3095 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3096 {
3097 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3098 {
3099 asection *bfd_section = section->the_bfd_section;
3100
3101 return (pc + bfd_section_vma (bfd_section)
3102 - bfd_section_lma (bfd_section));
3103 }
3104
3105 return pc;
3106 }
3107
3108 /* Function: symbol_overlayed_address
3109 Return one of two addresses (relative to the VMA or to the LMA),
3110 depending on whether the section is mapped or not. */
3111
3112 CORE_ADDR
3113 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3114 {
3115 if (overlay_debugging)
3116 {
3117 /* If the symbol has no section, just return its regular address. */
3118 if (section == 0)
3119 return address;
3120 /* If the symbol's section is not an overlay, just return its
3121 address. */
3122 if (!section_is_overlay (section))
3123 return address;
3124 /* If the symbol's section is mapped, just return its address. */
3125 if (section_is_mapped (section))
3126 return address;
3127 /*
3128 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3129 * then return its LOADED address rather than its vma address!!
3130 */
3131 return overlay_unmapped_address (address, section);
3132 }
3133 return address;
3134 }
3135
3136 /* Function: find_pc_overlay (PC)
3137 Return the best-match overlay section for PC:
3138 If PC matches a mapped overlay section's VMA, return that section.
3139 Else if PC matches an unmapped section's VMA, return that section.
3140 Else if PC matches an unmapped section's LMA, return that section. */
3141
3142 struct obj_section *
3143 find_pc_overlay (CORE_ADDR pc)
3144 {
3145 struct obj_section *osect, *best_match = NULL;
3146
3147 if (overlay_debugging)
3148 {
3149 for (objfile *objfile : current_program_space->objfiles ())
3150 ALL_OBJFILE_OSECTIONS (objfile, osect)
3151 if (section_is_overlay (osect))
3152 {
3153 if (pc_in_mapped_range (pc, osect))
3154 {
3155 if (section_is_mapped (osect))
3156 return osect;
3157 else
3158 best_match = osect;
3159 }
3160 else if (pc_in_unmapped_range (pc, osect))
3161 best_match = osect;
3162 }
3163 }
3164 return best_match;
3165 }
3166
3167 /* Function: find_pc_mapped_section (PC)
3168 If PC falls into the VMA address range of an overlay section that is
3169 currently marked as MAPPED, return that section. Else return NULL. */
3170
3171 struct obj_section *
3172 find_pc_mapped_section (CORE_ADDR pc)
3173 {
3174 struct obj_section *osect;
3175
3176 if (overlay_debugging)
3177 {
3178 for (objfile *objfile : current_program_space->objfiles ())
3179 ALL_OBJFILE_OSECTIONS (objfile, osect)
3180 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3181 return osect;
3182 }
3183
3184 return NULL;
3185 }
3186
3187 /* Function: list_overlays_command
3188 Print a list of mapped sections and their PC ranges. */
3189
3190 static void
3191 list_overlays_command (const char *args, int from_tty)
3192 {
3193 int nmapped = 0;
3194 struct obj_section *osect;
3195
3196 if (overlay_debugging)
3197 {
3198 for (objfile *objfile : current_program_space->objfiles ())
3199 ALL_OBJFILE_OSECTIONS (objfile, osect)
3200 if (section_is_mapped (osect))
3201 {
3202 struct gdbarch *gdbarch = objfile->arch ();
3203 const char *name;
3204 bfd_vma lma, vma;
3205 int size;
3206
3207 vma = bfd_section_vma (osect->the_bfd_section);
3208 lma = bfd_section_lma (osect->the_bfd_section);
3209 size = bfd_section_size (osect->the_bfd_section);
3210 name = bfd_section_name (osect->the_bfd_section);
3211
3212 printf_filtered ("Section %s, loaded at ", name);
3213 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3214 puts_filtered (" - ");
3215 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3216 printf_filtered (", mapped at ");
3217 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3218 puts_filtered (" - ");
3219 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3220 puts_filtered ("\n");
3221
3222 nmapped++;
3223 }
3224 }
3225 if (nmapped == 0)
3226 printf_filtered (_("No sections are mapped.\n"));
3227 }
3228
3229 /* Function: map_overlay_command
3230 Mark the named section as mapped (ie. residing at its VMA address). */
3231
3232 static void
3233 map_overlay_command (const char *args, int from_tty)
3234 {
3235 struct obj_section *sec, *sec2;
3236
3237 if (!overlay_debugging)
3238 error (_("Overlay debugging not enabled. Use "
3239 "either the 'overlay auto' or\n"
3240 "the 'overlay manual' command."));
3241
3242 if (args == 0 || *args == 0)
3243 error (_("Argument required: name of an overlay section"));
3244
3245 /* First, find a section matching the user supplied argument. */
3246 for (objfile *obj_file : current_program_space->objfiles ())
3247 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3248 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3249 {
3250 /* Now, check to see if the section is an overlay. */
3251 if (!section_is_overlay (sec))
3252 continue; /* not an overlay section */
3253
3254 /* Mark the overlay as "mapped". */
3255 sec->ovly_mapped = 1;
3256
3257 /* Next, make a pass and unmap any sections that are
3258 overlapped by this new section: */
3259 for (objfile *objfile2 : current_program_space->objfiles ())
3260 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3261 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3262 sec2))
3263 {
3264 if (info_verbose)
3265 printf_filtered (_("Note: section %s unmapped by overlap\n"),
3266 bfd_section_name (sec2->the_bfd_section));
3267 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3268 }
3269 return;
3270 }
3271 error (_("No overlay section called %s"), args);
3272 }
3273
3274 /* Function: unmap_overlay_command
3275 Mark the overlay section as unmapped
3276 (ie. resident in its LMA address range, rather than the VMA range). */
3277
3278 static void
3279 unmap_overlay_command (const char *args, int from_tty)
3280 {
3281 struct obj_section *sec = NULL;
3282
3283 if (!overlay_debugging)
3284 error (_("Overlay debugging not enabled. "
3285 "Use either the 'overlay auto' or\n"
3286 "the 'overlay manual' command."));
3287
3288 if (args == 0 || *args == 0)
3289 error (_("Argument required: name of an overlay section"));
3290
3291 /* First, find a section matching the user supplied argument. */
3292 for (objfile *objfile : current_program_space->objfiles ())
3293 ALL_OBJFILE_OSECTIONS (objfile, sec)
3294 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3295 {
3296 if (!sec->ovly_mapped)
3297 error (_("Section %s is not mapped"), args);
3298 sec->ovly_mapped = 0;
3299 return;
3300 }
3301 error (_("No overlay section called %s"), args);
3302 }
3303
3304 /* Function: overlay_auto_command
3305 A utility command to turn on overlay debugging.
3306 Possibly this should be done via a set/show command. */
3307
3308 static void
3309 overlay_auto_command (const char *args, int from_tty)
3310 {
3311 overlay_debugging = ovly_auto;
3312 enable_overlay_breakpoints ();
3313 if (info_verbose)
3314 printf_filtered (_("Automatic overlay debugging enabled."));
3315 }
3316
3317 /* Function: overlay_manual_command
3318 A utility command to turn on overlay debugging.
3319 Possibly this should be done via a set/show command. */
3320
3321 static void
3322 overlay_manual_command (const char *args, int from_tty)
3323 {
3324 overlay_debugging = ovly_on;
3325 disable_overlay_breakpoints ();
3326 if (info_verbose)
3327 printf_filtered (_("Overlay debugging enabled."));
3328 }
3329
3330 /* Function: overlay_off_command
3331 A utility command to turn on overlay debugging.
3332 Possibly this should be done via a set/show command. */
3333
3334 static void
3335 overlay_off_command (const char *args, int from_tty)
3336 {
3337 overlay_debugging = ovly_off;
3338 disable_overlay_breakpoints ();
3339 if (info_verbose)
3340 printf_filtered (_("Overlay debugging disabled."));
3341 }
3342
3343 static void
3344 overlay_load_command (const char *args, int from_tty)
3345 {
3346 struct gdbarch *gdbarch = get_current_arch ();
3347
3348 if (gdbarch_overlay_update_p (gdbarch))
3349 gdbarch_overlay_update (gdbarch, NULL);
3350 else
3351 error (_("This target does not know how to read its overlay state."));
3352 }
3353
3354 /* Command list chain containing all defined "overlay" subcommands. */
3355 static struct cmd_list_element *overlaylist;
3356
3357 /* Target Overlays for the "Simplest" overlay manager:
3358
3359 This is GDB's default target overlay layer. It works with the
3360 minimal overlay manager supplied as an example by Cygnus. The
3361 entry point is via a function pointer "gdbarch_overlay_update",
3362 so targets that use a different runtime overlay manager can
3363 substitute their own overlay_update function and take over the
3364 function pointer.
3365
3366 The overlay_update function pokes around in the target's data structures
3367 to see what overlays are mapped, and updates GDB's overlay mapping with
3368 this information.
3369
3370 In this simple implementation, the target data structures are as follows:
3371 unsigned _novlys; /# number of overlay sections #/
3372 unsigned _ovly_table[_novlys][4] = {
3373 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3374 {..., ..., ..., ...},
3375 }
3376 unsigned _novly_regions; /# number of overlay regions #/
3377 unsigned _ovly_region_table[_novly_regions][3] = {
3378 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3379 {..., ..., ...},
3380 }
3381 These functions will attempt to update GDB's mappedness state in the
3382 symbol section table, based on the target's mappedness state.
3383
3384 To do this, we keep a cached copy of the target's _ovly_table, and
3385 attempt to detect when the cached copy is invalidated. The main
3386 entry point is "simple_overlay_update(SECT), which looks up SECT in
3387 the cached table and re-reads only the entry for that section from
3388 the target (whenever possible). */
3389
3390 /* Cached, dynamically allocated copies of the target data structures: */
3391 static unsigned (*cache_ovly_table)[4] = 0;
3392 static unsigned cache_novlys = 0;
3393 static CORE_ADDR cache_ovly_table_base = 0;
3394 enum ovly_index
3395 {
3396 VMA, OSIZE, LMA, MAPPED
3397 };
3398
3399 /* Throw away the cached copy of _ovly_table. */
3400
3401 static void
3402 simple_free_overlay_table (void)
3403 {
3404 xfree (cache_ovly_table);
3405 cache_novlys = 0;
3406 cache_ovly_table = NULL;
3407 cache_ovly_table_base = 0;
3408 }
3409
3410 /* Read an array of ints of size SIZE from the target into a local buffer.
3411 Convert to host order. int LEN is number of ints. */
3412
3413 static void
3414 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3415 int len, int size, enum bfd_endian byte_order)
3416 {
3417 /* FIXME (alloca): Not safe if array is very large. */
3418 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3419 int i;
3420
3421 read_memory (memaddr, buf, len * size);
3422 for (i = 0; i < len; i++)
3423 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3424 }
3425
3426 /* Find and grab a copy of the target _ovly_table
3427 (and _novlys, which is needed for the table's size). */
3428
3429 static int
3430 simple_read_overlay_table (void)
3431 {
3432 struct bound_minimal_symbol novlys_msym;
3433 struct bound_minimal_symbol ovly_table_msym;
3434 struct gdbarch *gdbarch;
3435 int word_size;
3436 enum bfd_endian byte_order;
3437
3438 simple_free_overlay_table ();
3439 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3440 if (! novlys_msym.minsym)
3441 {
3442 error (_("Error reading inferior's overlay table: "
3443 "couldn't find `_novlys' variable\n"
3444 "in inferior. Use `overlay manual' mode."));
3445 return 0;
3446 }
3447
3448 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3449 if (! ovly_table_msym.minsym)
3450 {
3451 error (_("Error reading inferior's overlay table: couldn't find "
3452 "`_ovly_table' array\n"
3453 "in inferior. Use `overlay manual' mode."));
3454 return 0;
3455 }
3456
3457 gdbarch = ovly_table_msym.objfile->arch ();
3458 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3459 byte_order = gdbarch_byte_order (gdbarch);
3460
3461 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3462 4, byte_order);
3463 cache_ovly_table
3464 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3465 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3466 read_target_long_array (cache_ovly_table_base,
3467 (unsigned int *) cache_ovly_table,
3468 cache_novlys * 4, word_size, byte_order);
3469
3470 return 1; /* SUCCESS */
3471 }
3472
3473 /* Function: simple_overlay_update_1
3474 A helper function for simple_overlay_update. Assuming a cached copy
3475 of _ovly_table exists, look through it to find an entry whose vma,
3476 lma and size match those of OSECT. Re-read the entry and make sure
3477 it still matches OSECT (else the table may no longer be valid).
3478 Set OSECT's mapped state to match the entry. Return: 1 for
3479 success, 0 for failure. */
3480
3481 static int
3482 simple_overlay_update_1 (struct obj_section *osect)
3483 {
3484 int i;
3485 asection *bsect = osect->the_bfd_section;
3486 struct gdbarch *gdbarch = osect->objfile->arch ();
3487 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3488 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3489
3490 for (i = 0; i < cache_novlys; i++)
3491 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3492 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3493 {
3494 read_target_long_array (cache_ovly_table_base + i * word_size,
3495 (unsigned int *) cache_ovly_table[i],
3496 4, word_size, byte_order);
3497 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3498 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3499 {
3500 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3501 return 1;
3502 }
3503 else /* Warning! Warning! Target's ovly table has changed! */
3504 return 0;
3505 }
3506 return 0;
3507 }
3508
3509 /* Function: simple_overlay_update
3510 If OSECT is NULL, then update all sections' mapped state
3511 (after re-reading the entire target _ovly_table).
3512 If OSECT is non-NULL, then try to find a matching entry in the
3513 cached ovly_table and update only OSECT's mapped state.
3514 If a cached entry can't be found or the cache isn't valid, then
3515 re-read the entire cache, and go ahead and update all sections. */
3516
3517 void
3518 simple_overlay_update (struct obj_section *osect)
3519 {
3520 /* Were we given an osect to look up? NULL means do all of them. */
3521 if (osect)
3522 /* Have we got a cached copy of the target's overlay table? */
3523 if (cache_ovly_table != NULL)
3524 {
3525 /* Does its cached location match what's currently in the
3526 symtab? */
3527 struct bound_minimal_symbol minsym
3528 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3529
3530 if (minsym.minsym == NULL)
3531 error (_("Error reading inferior's overlay table: couldn't "
3532 "find `_ovly_table' array\n"
3533 "in inferior. Use `overlay manual' mode."));
3534
3535 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3536 /* Then go ahead and try to look up this single section in
3537 the cache. */
3538 if (simple_overlay_update_1 (osect))
3539 /* Found it! We're done. */
3540 return;
3541 }
3542
3543 /* Cached table no good: need to read the entire table anew.
3544 Or else we want all the sections, in which case it's actually
3545 more efficient to read the whole table in one block anyway. */
3546
3547 if (! simple_read_overlay_table ())
3548 return;
3549
3550 /* Now may as well update all sections, even if only one was requested. */
3551 for (objfile *objfile : current_program_space->objfiles ())
3552 ALL_OBJFILE_OSECTIONS (objfile, osect)
3553 if (section_is_overlay (osect))
3554 {
3555 int i;
3556 asection *bsect = osect->the_bfd_section;
3557
3558 for (i = 0; i < cache_novlys; i++)
3559 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3560 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3561 { /* obj_section matches i'th entry in ovly_table. */
3562 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3563 break; /* finished with inner for loop: break out. */
3564 }
3565 }
3566 }
3567
3568 /* Default implementation for sym_relocate. */
3569
3570 bfd_byte *
3571 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3572 bfd_byte *buf)
3573 {
3574 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3575 DWO file. */
3576 bfd *abfd = sectp->owner;
3577
3578 /* We're only interested in sections with relocation
3579 information. */
3580 if ((sectp->flags & SEC_RELOC) == 0)
3581 return NULL;
3582
3583 /* We will handle section offsets properly elsewhere, so relocate as if
3584 all sections begin at 0. */
3585 for (asection *sect : gdb_bfd_sections (abfd))
3586 {
3587 sect->output_section = sect;
3588 sect->output_offset = 0;
3589 }
3590
3591 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3592 }
3593
3594 /* Relocate the contents of a debug section SECTP in ABFD. The
3595 contents are stored in BUF if it is non-NULL, or returned in a
3596 malloc'd buffer otherwise.
3597
3598 For some platforms and debug info formats, shared libraries contain
3599 relocations against the debug sections (particularly for DWARF-2;
3600 one affected platform is PowerPC GNU/Linux, although it depends on
3601 the version of the linker in use). Also, ELF object files naturally
3602 have unresolved relocations for their debug sections. We need to apply
3603 the relocations in order to get the locations of symbols correct.
3604 Another example that may require relocation processing, is the
3605 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3606 debug section. */
3607
3608 bfd_byte *
3609 symfile_relocate_debug_section (struct objfile *objfile,
3610 asection *sectp, bfd_byte *buf)
3611 {
3612 gdb_assert (objfile->sf->sym_relocate);
3613
3614 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3615 }
3616
3617 symfile_segment_data_up
3618 get_symfile_segment_data (bfd *abfd)
3619 {
3620 const struct sym_fns *sf = find_sym_fns (abfd);
3621
3622 if (sf == NULL)
3623 return NULL;
3624
3625 return sf->sym_segments (abfd);
3626 }
3627
3628 /* Given:
3629 - DATA, containing segment addresses from the object file ABFD, and
3630 the mapping from ABFD's sections onto the segments that own them,
3631 and
3632 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3633 segment addresses reported by the target,
3634 store the appropriate offsets for each section in OFFSETS.
3635
3636 If there are fewer entries in SEGMENT_BASES than there are segments
3637 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3638
3639 If there are more entries, then ignore the extra. The target may
3640 not be able to distinguish between an empty data segment and a
3641 missing data segment; a missing text segment is less plausible. */
3642
3643 int
3644 symfile_map_offsets_to_segments (bfd *abfd,
3645 const struct symfile_segment_data *data,
3646 section_offsets &offsets,
3647 int num_segment_bases,
3648 const CORE_ADDR *segment_bases)
3649 {
3650 int i;
3651 asection *sect;
3652
3653 /* It doesn't make sense to call this function unless you have some
3654 segment base addresses. */
3655 gdb_assert (num_segment_bases > 0);
3656
3657 /* If we do not have segment mappings for the object file, we
3658 can not relocate it by segments. */
3659 gdb_assert (data != NULL);
3660 gdb_assert (data->segments.size () > 0);
3661
3662 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3663 {
3664 int which = data->segment_info[i];
3665
3666 gdb_assert (0 <= which && which <= data->segments.size ());
3667
3668 /* Don't bother computing offsets for sections that aren't
3669 loaded as part of any segment. */
3670 if (! which)
3671 continue;
3672
3673 /* Use the last SEGMENT_BASES entry as the address of any extra
3674 segments mentioned in DATA->segment_info. */
3675 if (which > num_segment_bases)
3676 which = num_segment_bases;
3677
3678 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3679 }
3680
3681 return 1;
3682 }
3683
3684 static void
3685 symfile_find_segment_sections (struct objfile *objfile)
3686 {
3687 bfd *abfd = objfile->obfd;
3688 int i;
3689 asection *sect;
3690
3691 symfile_segment_data_up data
3692 = get_symfile_segment_data (objfile->obfd);
3693 if (data == NULL)
3694 return;
3695
3696 if (data->segments.size () != 1 && data->segments.size () != 2)
3697 return;
3698
3699 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3700 {
3701 int which = data->segment_info[i];
3702
3703 if (which == 1)
3704 {
3705 if (objfile->sect_index_text == -1)
3706 objfile->sect_index_text = sect->index;
3707
3708 if (objfile->sect_index_rodata == -1)
3709 objfile->sect_index_rodata = sect->index;
3710 }
3711 else if (which == 2)
3712 {
3713 if (objfile->sect_index_data == -1)
3714 objfile->sect_index_data = sect->index;
3715
3716 if (objfile->sect_index_bss == -1)
3717 objfile->sect_index_bss = sect->index;
3718 }
3719 }
3720 }
3721
3722 /* Listen for free_objfile events. */
3723
3724 static void
3725 symfile_free_objfile (struct objfile *objfile)
3726 {
3727 /* Remove the target sections owned by this objfile. */
3728 if (objfile != NULL)
3729 current_program_space->remove_target_sections ((void *) objfile);
3730 }
3731
3732 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3733 Expand all symtabs that match the specified criteria.
3734 See quick_symbol_functions.expand_symtabs_matching for details. */
3735
3736 bool
3737 expand_symtabs_matching
3738 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3739 const lookup_name_info &lookup_name,
3740 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3741 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3742 block_search_flags search_flags,
3743 enum search_domain kind)
3744 {
3745 for (objfile *objfile : current_program_space->objfiles ())
3746 if (!objfile->expand_symtabs_matching (file_matcher,
3747 &lookup_name,
3748 symbol_matcher,
3749 expansion_notify,
3750 search_flags,
3751 UNDEF_DOMAIN,
3752 kind))
3753 return false;
3754 return true;
3755 }
3756
3757 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3758 Map function FUN over every file.
3759 See quick_symbol_functions.map_symbol_filenames for details. */
3760
3761 void
3762 map_symbol_filenames (gdb::function_view<symbol_filename_ftype> fun,
3763 bool need_fullname)
3764 {
3765 for (objfile *objfile : current_program_space->objfiles ())
3766 objfile->map_symbol_filenames (fun, need_fullname);
3767 }
3768
3769 #if GDB_SELF_TEST
3770
3771 namespace selftests {
3772 namespace filename_language {
3773
3774 static void test_filename_language ()
3775 {
3776 /* This test messes up the filename_language_table global. */
3777 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3778
3779 /* Test deducing an unknown extension. */
3780 language lang = deduce_language_from_filename ("myfile.blah");
3781 SELF_CHECK (lang == language_unknown);
3782
3783 /* Test deducing a known extension. */
3784 lang = deduce_language_from_filename ("myfile.c");
3785 SELF_CHECK (lang == language_c);
3786
3787 /* Test adding a new extension using the internal API. */
3788 add_filename_language (".blah", language_pascal);
3789 lang = deduce_language_from_filename ("myfile.blah");
3790 SELF_CHECK (lang == language_pascal);
3791 }
3792
3793 static void
3794 test_set_ext_lang_command ()
3795 {
3796 /* This test messes up the filename_language_table global. */
3797 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3798
3799 /* Confirm that the .hello extension is not known. */
3800 language lang = deduce_language_from_filename ("cake.hello");
3801 SELF_CHECK (lang == language_unknown);
3802
3803 /* Test adding a new extension using the CLI command. */
3804 ext_args = ".hello rust";
3805 set_ext_lang_command (NULL, 1, NULL);
3806
3807 lang = deduce_language_from_filename ("cake.hello");
3808 SELF_CHECK (lang == language_rust);
3809
3810 /* Test overriding an existing extension using the CLI command. */
3811 int size_before = filename_language_table.size ();
3812 ext_args = ".hello pascal";
3813 set_ext_lang_command (NULL, 1, NULL);
3814 int size_after = filename_language_table.size ();
3815
3816 lang = deduce_language_from_filename ("cake.hello");
3817 SELF_CHECK (lang == language_pascal);
3818 SELF_CHECK (size_before == size_after);
3819 }
3820
3821 } /* namespace filename_language */
3822 } /* namespace selftests */
3823
3824 #endif /* GDB_SELF_TEST */
3825
3826 void _initialize_symfile ();
3827 void
3828 _initialize_symfile ()
3829 {
3830 struct cmd_list_element *c;
3831
3832 gdb::observers::free_objfile.attach (symfile_free_objfile, "symfile");
3833
3834 #define READNOW_READNEVER_HELP \
3835 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3836 immediately. This makes the command slower, but may make future operations\n\
3837 faster.\n\
3838 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3839 symbolic debug information."
3840
3841 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3842 Load symbol table from executable file FILE.\n\
3843 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3844 OFF is an optional offset which is added to each section address.\n\
3845 The `file' command can also load symbol tables, as well as setting the file\n\
3846 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3847 set_cmd_completer (c, filename_completer);
3848
3849 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3850 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3851 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3852 [-s SECT-NAME SECT-ADDR]...\n\
3853 ADDR is the starting address of the file's text.\n\
3854 Each '-s' argument provides a section name and address, and\n\
3855 should be specified if the data and bss segments are not contiguous\n\
3856 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3857 OFF is an optional offset which is added to the default load addresses\n\
3858 of all sections for which no other address was specified.\n"
3859 READNOW_READNEVER_HELP),
3860 &cmdlist);
3861 set_cmd_completer (c, filename_completer);
3862
3863 c = add_cmd ("remove-symbol-file", class_files,
3864 remove_symbol_file_command, _("\
3865 Remove a symbol file added via the add-symbol-file command.\n\
3866 Usage: remove-symbol-file FILENAME\n\
3867 remove-symbol-file -a ADDRESS\n\
3868 The file to remove can be identified by its filename or by an address\n\
3869 that lies within the boundaries of this symbol file in memory."),
3870 &cmdlist);
3871
3872 c = add_cmd ("load", class_files, load_command, _("\
3873 Dynamically load FILE into the running program.\n\
3874 FILE symbols are recorded for access from GDB.\n\
3875 Usage: load [FILE] [OFFSET]\n\
3876 An optional load OFFSET may also be given as a literal address.\n\
3877 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3878 on its own."), &cmdlist);
3879 set_cmd_completer (c, filename_completer);
3880
3881 cmd_list_element *overlay_cmd
3882 = add_basic_prefix_cmd ("overlay", class_support,
3883 _("Commands for debugging overlays."), &overlaylist,
3884 0, &cmdlist);
3885
3886 add_com_alias ("ovly", overlay_cmd, class_support, 1);
3887 add_com_alias ("ov", overlay_cmd, class_support, 1);
3888
3889 add_cmd ("map-overlay", class_support, map_overlay_command,
3890 _("Assert that an overlay section is mapped."), &overlaylist);
3891
3892 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3893 _("Assert that an overlay section is unmapped."), &overlaylist);
3894
3895 add_cmd ("list-overlays", class_support, list_overlays_command,
3896 _("List mappings of overlay sections."), &overlaylist);
3897
3898 add_cmd ("manual", class_support, overlay_manual_command,
3899 _("Enable overlay debugging."), &overlaylist);
3900 add_cmd ("off", class_support, overlay_off_command,
3901 _("Disable overlay debugging."), &overlaylist);
3902 add_cmd ("auto", class_support, overlay_auto_command,
3903 _("Enable automatic overlay debugging."), &overlaylist);
3904 add_cmd ("load-target", class_support, overlay_load_command,
3905 _("Read the overlay mapping state from the target."), &overlaylist);
3906
3907 /* Filename extension to source language lookup table: */
3908 add_setshow_string_noescape_cmd ("extension-language", class_files,
3909 &ext_args, _("\
3910 Set mapping between filename extension and source language."), _("\
3911 Show mapping between filename extension and source language."), _("\
3912 Usage: set extension-language .foo bar"),
3913 set_ext_lang_command,
3914 show_ext_args,
3915 &setlist, &showlist);
3916
3917 add_info ("extensions", info_ext_lang_command,
3918 _("All filename extensions associated with a source language."));
3919
3920 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3921 &debug_file_directory, _("\
3922 Set the directories where separate debug symbols are searched for."), _("\
3923 Show the directories where separate debug symbols are searched for."), _("\
3924 Separate debug symbols are first searched for in the same\n\
3925 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3926 and lastly at the path of the directory of the binary with\n\
3927 each global debug-file-directory component prepended."),
3928 NULL,
3929 show_debug_file_directory,
3930 &setlist, &showlist);
3931
3932 add_setshow_enum_cmd ("symbol-loading", no_class,
3933 print_symbol_loading_enums, &print_symbol_loading,
3934 _("\
3935 Set printing of symbol loading messages."), _("\
3936 Show printing of symbol loading messages."), _("\
3937 off == turn all messages off\n\
3938 brief == print messages for the executable,\n\
3939 and brief messages for shared libraries\n\
3940 full == print messages for the executable,\n\
3941 and messages for each shared library."),
3942 NULL,
3943 NULL,
3944 &setprintlist, &showprintlist);
3945
3946 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3947 &separate_debug_file_debug, _("\
3948 Set printing of separate debug info file search debug."), _("\
3949 Show printing of separate debug info file search debug."), _("\
3950 When on, GDB prints the searched locations while looking for separate debug \
3951 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3952
3953 #if GDB_SELF_TEST
3954 selftests::register_test
3955 ("filename_language", selftests::filename_language::test_filename_language);
3956 selftests::register_test
3957 ("set_ext_lang_command",
3958 selftests::filename_language::test_set_ext_lang_command);
3959 #endif
3960 }