2002-01-11 Michael Snyder <msnyder@redhat.com>
[binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "symtab.h"
25 #include "gdbtypes.h"
26 #include "gdbcore.h"
27 #include "frame.h"
28 #include "target.h"
29 #include "value.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "gdbcmd.h"
33 #include "breakpoint.h"
34 #include "language.h"
35 #include "complaints.h"
36 #include "demangle.h"
37 #include "inferior.h" /* for write_pc */
38 #include "gdb-stabs.h"
39 #include "obstack.h"
40 #include "completer.h"
41
42 #include <sys/types.h>
43 #include <fcntl.h>
44 #include "gdb_string.h"
45 #include "gdb_stat.h"
46 #include <ctype.h>
47 #include <time.h>
48
49 #ifndef O_BINARY
50 #define O_BINARY 0
51 #endif
52
53 #ifdef HPUXHPPA
54
55 /* Some HP-UX related globals to clear when a new "main"
56 symbol file is loaded. HP-specific. */
57
58 extern int hp_som_som_object_present;
59 extern int hp_cxx_exception_support_initialized;
60 #define RESET_HP_UX_GLOBALS() do {\
61 hp_som_som_object_present = 0; /* indicates HP-compiled code */ \
62 hp_cxx_exception_support_initialized = 0; /* must reinitialize exception stuff */ \
63 } while (0)
64 #endif
65
66 int (*ui_load_progress_hook) (const char *section, unsigned long num);
67 void (*show_load_progress) (const char *section,
68 unsigned long section_sent,
69 unsigned long section_size,
70 unsigned long total_sent,
71 unsigned long total_size);
72 void (*pre_add_symbol_hook) (char *);
73 void (*post_add_symbol_hook) (void);
74 void (*target_new_objfile_hook) (struct objfile *);
75
76 static void clear_symtab_users_cleanup (void *ignore);
77
78 /* Global variables owned by this file */
79 int readnow_symbol_files; /* Read full symbols immediately */
80
81 struct complaint oldsyms_complaint =
82 {
83 "Replacing old symbols for `%s'", 0, 0
84 };
85
86 struct complaint empty_symtab_complaint =
87 {
88 "Empty symbol table found for `%s'", 0, 0
89 };
90
91 struct complaint unknown_option_complaint =
92 {
93 "Unknown option `%s' ignored", 0, 0
94 };
95
96 /* External variables and functions referenced. */
97
98 extern void report_transfer_performance (unsigned long, time_t, time_t);
99
100 /* Functions this file defines */
101
102 #if 0
103 static int simple_read_overlay_region_table (void);
104 static void simple_free_overlay_region_table (void);
105 #endif
106
107 static void set_initial_language (void);
108
109 static void load_command (char *, int);
110
111 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
112
113 static void add_symbol_file_command (char *, int);
114
115 static void add_shared_symbol_files_command (char *, int);
116
117 static void cashier_psymtab (struct partial_symtab *);
118
119 bfd *symfile_bfd_open (char *);
120
121 static void find_sym_fns (struct objfile *);
122
123 static void decrement_reading_symtab (void *);
124
125 static void overlay_invalidate_all (void);
126
127 static int overlay_is_mapped (struct obj_section *);
128
129 void list_overlays_command (char *, int);
130
131 void map_overlay_command (char *, int);
132
133 void unmap_overlay_command (char *, int);
134
135 static void overlay_auto_command (char *, int);
136
137 static void overlay_manual_command (char *, int);
138
139 static void overlay_off_command (char *, int);
140
141 static void overlay_load_command (char *, int);
142
143 static void overlay_command (char *, int);
144
145 static void simple_free_overlay_table (void);
146
147 static void read_target_long_array (CORE_ADDR, unsigned int *, int);
148
149 static int simple_read_overlay_table (void);
150
151 static int simple_overlay_update_1 (struct obj_section *);
152
153 static void add_filename_language (char *ext, enum language lang);
154
155 static void set_ext_lang_command (char *args, int from_tty);
156
157 static void info_ext_lang_command (char *args, int from_tty);
158
159 static void init_filename_language_table (void);
160
161 void _initialize_symfile (void);
162
163 /* List of all available sym_fns. On gdb startup, each object file reader
164 calls add_symtab_fns() to register information on each format it is
165 prepared to read. */
166
167 static struct sym_fns *symtab_fns = NULL;
168
169 /* Flag for whether user will be reloading symbols multiple times.
170 Defaults to ON for VxWorks, otherwise OFF. */
171
172 #ifdef SYMBOL_RELOADING_DEFAULT
173 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
174 #else
175 int symbol_reloading = 0;
176 #endif
177
178 /* If non-zero, shared library symbols will be added automatically
179 when the inferior is created, new libraries are loaded, or when
180 attaching to the inferior. This is almost always what users will
181 want to have happen; but for very large programs, the startup time
182 will be excessive, and so if this is a problem, the user can clear
183 this flag and then add the shared library symbols as needed. Note
184 that there is a potential for confusion, since if the shared
185 library symbols are not loaded, commands like "info fun" will *not*
186 report all the functions that are actually present. */
187
188 int auto_solib_add = 1;
189
190 /* For systems that support it, a threshold size in megabytes. If
191 automatically adding a new library's symbol table to those already
192 known to the debugger would cause the total shared library symbol
193 size to exceed this threshhold, then the shlib's symbols are not
194 added. The threshold is ignored if the user explicitly asks for a
195 shlib to be added, such as when using the "sharedlibrary"
196 command. */
197
198 int auto_solib_limit;
199 \f
200
201 /* Since this function is called from within qsort, in an ANSI environment
202 it must conform to the prototype for qsort, which specifies that the
203 comparison function takes two "void *" pointers. */
204
205 static int
206 compare_symbols (const void *s1p, const void *s2p)
207 {
208 register struct symbol **s1, **s2;
209
210 s1 = (struct symbol **) s1p;
211 s2 = (struct symbol **) s2p;
212 return (strcmp (SYMBOL_SOURCE_NAME (*s1), SYMBOL_SOURCE_NAME (*s2)));
213 }
214
215 /*
216
217 LOCAL FUNCTION
218
219 compare_psymbols -- compare two partial symbols by name
220
221 DESCRIPTION
222
223 Given pointers to pointers to two partial symbol table entries,
224 compare them by name and return -N, 0, or +N (ala strcmp).
225 Typically used by sorting routines like qsort().
226
227 NOTES
228
229 Does direct compare of first two characters before punting
230 and passing to strcmp for longer compares. Note that the
231 original version had a bug whereby two null strings or two
232 identically named one character strings would return the
233 comparison of memory following the null byte.
234
235 */
236
237 static int
238 compare_psymbols (const void *s1p, const void *s2p)
239 {
240 register struct partial_symbol **s1, **s2;
241 register char *st1, *st2;
242
243 s1 = (struct partial_symbol **) s1p;
244 s2 = (struct partial_symbol **) s2p;
245 st1 = SYMBOL_SOURCE_NAME (*s1);
246 st2 = SYMBOL_SOURCE_NAME (*s2);
247
248
249 if ((st1[0] - st2[0]) || !st1[0])
250 {
251 return (st1[0] - st2[0]);
252 }
253 else if ((st1[1] - st2[1]) || !st1[1])
254 {
255 return (st1[1] - st2[1]);
256 }
257 else
258 {
259 return (strcmp (st1, st2));
260 }
261 }
262
263 void
264 sort_pst_symbols (struct partial_symtab *pst)
265 {
266 /* Sort the global list; don't sort the static list */
267
268 qsort (pst->objfile->global_psymbols.list + pst->globals_offset,
269 pst->n_global_syms, sizeof (struct partial_symbol *),
270 compare_psymbols);
271 }
272
273 /* Call sort_block_syms to sort alphabetically the symbols of one block. */
274
275 void
276 sort_block_syms (register struct block *b)
277 {
278 qsort (&BLOCK_SYM (b, 0), BLOCK_NSYMS (b),
279 sizeof (struct symbol *), compare_symbols);
280 }
281
282 /* Call sort_symtab_syms to sort alphabetically
283 the symbols of each block of one symtab. */
284
285 void
286 sort_symtab_syms (register struct symtab *s)
287 {
288 register struct blockvector *bv;
289 int nbl;
290 int i;
291 register struct block *b;
292
293 if (s == 0)
294 return;
295 bv = BLOCKVECTOR (s);
296 nbl = BLOCKVECTOR_NBLOCKS (bv);
297 for (i = 0; i < nbl; i++)
298 {
299 b = BLOCKVECTOR_BLOCK (bv, i);
300 if (BLOCK_SHOULD_SORT (b))
301 sort_block_syms (b);
302 }
303 }
304
305 /* Make a null terminated copy of the string at PTR with SIZE characters in
306 the obstack pointed to by OBSTACKP . Returns the address of the copy.
307 Note that the string at PTR does not have to be null terminated, I.E. it
308 may be part of a larger string and we are only saving a substring. */
309
310 char *
311 obsavestring (char *ptr, int size, struct obstack *obstackp)
312 {
313 register char *p = (char *) obstack_alloc (obstackp, size + 1);
314 /* Open-coded memcpy--saves function call time. These strings are usually
315 short. FIXME: Is this really still true with a compiler that can
316 inline memcpy? */
317 {
318 register char *p1 = ptr;
319 register char *p2 = p;
320 char *end = ptr + size;
321 while (p1 != end)
322 *p2++ = *p1++;
323 }
324 p[size] = 0;
325 return p;
326 }
327
328 /* Concatenate strings S1, S2 and S3; return the new string. Space is found
329 in the obstack pointed to by OBSTACKP. */
330
331 char *
332 obconcat (struct obstack *obstackp, const char *s1, const char *s2,
333 const char *s3)
334 {
335 register int len = strlen (s1) + strlen (s2) + strlen (s3) + 1;
336 register char *val = (char *) obstack_alloc (obstackp, len);
337 strcpy (val, s1);
338 strcat (val, s2);
339 strcat (val, s3);
340 return val;
341 }
342
343 /* True if we are nested inside psymtab_to_symtab. */
344
345 int currently_reading_symtab = 0;
346
347 static void
348 decrement_reading_symtab (void *dummy)
349 {
350 currently_reading_symtab--;
351 }
352
353 /* Get the symbol table that corresponds to a partial_symtab.
354 This is fast after the first time you do it. In fact, there
355 is an even faster macro PSYMTAB_TO_SYMTAB that does the fast
356 case inline. */
357
358 struct symtab *
359 psymtab_to_symtab (register struct partial_symtab *pst)
360 {
361 /* If it's been looked up before, return it. */
362 if (pst->symtab)
363 return pst->symtab;
364
365 /* If it has not yet been read in, read it. */
366 if (!pst->readin)
367 {
368 struct cleanup *back_to = make_cleanup (decrement_reading_symtab, NULL);
369 currently_reading_symtab++;
370 (*pst->read_symtab) (pst);
371 do_cleanups (back_to);
372 }
373
374 return pst->symtab;
375 }
376
377 /* Initialize entry point information for this objfile. */
378
379 void
380 init_entry_point_info (struct objfile *objfile)
381 {
382 /* Save startup file's range of PC addresses to help blockframe.c
383 decide where the bottom of the stack is. */
384
385 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
386 {
387 /* Executable file -- record its entry point so we'll recognize
388 the startup file because it contains the entry point. */
389 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
390 }
391 else
392 {
393 /* Examination of non-executable.o files. Short-circuit this stuff. */
394 objfile->ei.entry_point = INVALID_ENTRY_POINT;
395 }
396 objfile->ei.entry_file_lowpc = INVALID_ENTRY_LOWPC;
397 objfile->ei.entry_file_highpc = INVALID_ENTRY_HIGHPC;
398 objfile->ei.entry_func_lowpc = INVALID_ENTRY_LOWPC;
399 objfile->ei.entry_func_highpc = INVALID_ENTRY_HIGHPC;
400 objfile->ei.main_func_lowpc = INVALID_ENTRY_LOWPC;
401 objfile->ei.main_func_highpc = INVALID_ENTRY_HIGHPC;
402 }
403
404 /* Get current entry point address. */
405
406 CORE_ADDR
407 entry_point_address (void)
408 {
409 return symfile_objfile ? symfile_objfile->ei.entry_point : 0;
410 }
411
412 /* Remember the lowest-addressed loadable section we've seen.
413 This function is called via bfd_map_over_sections.
414
415 In case of equal vmas, the section with the largest size becomes the
416 lowest-addressed loadable section.
417
418 If the vmas and sizes are equal, the last section is considered the
419 lowest-addressed loadable section. */
420
421 void
422 find_lowest_section (bfd *abfd, asection *sect, PTR obj)
423 {
424 asection **lowest = (asection **) obj;
425
426 if (0 == (bfd_get_section_flags (abfd, sect) & SEC_LOAD))
427 return;
428 if (!*lowest)
429 *lowest = sect; /* First loadable section */
430 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
431 *lowest = sect; /* A lower loadable section */
432 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
433 && (bfd_section_size (abfd, (*lowest))
434 <= bfd_section_size (abfd, sect)))
435 *lowest = sect;
436 }
437
438
439 /* Build (allocate and populate) a section_addr_info struct from
440 an existing section table. */
441
442 extern struct section_addr_info *
443 build_section_addr_info_from_section_table (const struct section_table *start,
444 const struct section_table *end)
445 {
446 struct section_addr_info *sap;
447 const struct section_table *stp;
448 int oidx;
449
450 sap = xmalloc (sizeof (struct section_addr_info));
451 memset (sap, 0, sizeof (struct section_addr_info));
452
453 for (stp = start, oidx = 0; stp != end; stp++)
454 {
455 if (stp->the_bfd_section->flags & (SEC_ALLOC | SEC_LOAD)
456 && oidx < MAX_SECTIONS)
457 {
458 sap->other[oidx].addr = stp->addr;
459 sap->other[oidx].name = xstrdup (stp->the_bfd_section->name);
460 sap->other[oidx].sectindex = stp->the_bfd_section->index;
461 oidx++;
462 }
463 }
464
465 return sap;
466 }
467
468
469 /* Free all memory allocated by build_section_addr_info_from_section_table. */
470
471 extern void
472 free_section_addr_info (struct section_addr_info *sap)
473 {
474 int idx;
475
476 for (idx = 0; idx < MAX_SECTIONS; idx++)
477 if (sap->other[idx].name)
478 xfree (sap->other[idx].name);
479 xfree (sap);
480 }
481
482
483 /* Parse the user's idea of an offset for dynamic linking, into our idea
484 of how to represent it for fast symbol reading. This is the default
485 version of the sym_fns.sym_offsets function for symbol readers that
486 don't need to do anything special. It allocates a section_offsets table
487 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
488
489 void
490 default_symfile_offsets (struct objfile *objfile,
491 struct section_addr_info *addrs)
492 {
493 int i;
494 asection *sect = NULL;
495
496 objfile->num_sections = SECT_OFF_MAX;
497 objfile->section_offsets = (struct section_offsets *)
498 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
499 memset (objfile->section_offsets, 0, SIZEOF_SECTION_OFFSETS);
500
501 /* Now calculate offsets for section that were specified by the
502 caller. */
503 for (i = 0; i < MAX_SECTIONS && addrs->other[i].name; i++)
504 {
505 struct other_sections *osp ;
506
507 osp = &addrs->other[i] ;
508 if (osp->addr == 0)
509 continue;
510
511 /* Record all sections in offsets */
512 /* The section_offsets in the objfile are here filled in using
513 the BFD index. */
514 (objfile->section_offsets)->offsets[osp->sectindex] = osp->addr;
515 }
516
517 /* Remember the bfd indexes for the .text, .data, .bss and
518 .rodata sections. */
519
520 sect = bfd_get_section_by_name (objfile->obfd, ".text");
521 if (sect)
522 objfile->sect_index_text = sect->index;
523
524 sect = bfd_get_section_by_name (objfile->obfd, ".data");
525 if (sect)
526 objfile->sect_index_data = sect->index;
527
528 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
529 if (sect)
530 objfile->sect_index_bss = sect->index;
531
532 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
533 if (sect)
534 objfile->sect_index_rodata = sect->index;
535
536 }
537
538 /* Process a symbol file, as either the main file or as a dynamically
539 loaded file.
540
541 OBJFILE is where the symbols are to be read from.
542
543 ADDR is the address where the text segment was loaded, unless the
544 objfile is the main symbol file, in which case it is zero.
545
546 MAINLINE is nonzero if this is the main symbol file, or zero if
547 it's an extra symbol file such as dynamically loaded code.
548
549 VERBO is nonzero if the caller has printed a verbose message about
550 the symbol reading (and complaints can be more terse about it). */
551
552 void
553 syms_from_objfile (struct objfile *objfile, struct section_addr_info *addrs,
554 int mainline, int verbo)
555 {
556 asection *lower_sect;
557 asection *sect;
558 CORE_ADDR lower_offset;
559 struct section_addr_info local_addr;
560 struct cleanup *old_chain;
561 int i;
562
563 /* If ADDRS is NULL, initialize the local section_addr_info struct and
564 point ADDRS to it. We now establish the convention that an addr of
565 zero means no load address was specified. */
566
567 if (addrs == NULL)
568 {
569 memset (&local_addr, 0, sizeof (local_addr));
570 addrs = &local_addr;
571 }
572
573 init_entry_point_info (objfile);
574 find_sym_fns (objfile);
575
576 /* Make sure that partially constructed symbol tables will be cleaned up
577 if an error occurs during symbol reading. */
578 old_chain = make_cleanup_free_objfile (objfile);
579
580 if (mainline)
581 {
582 /* We will modify the main symbol table, make sure that all its users
583 will be cleaned up if an error occurs during symbol reading. */
584 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
585
586 /* Since no error yet, throw away the old symbol table. */
587
588 if (symfile_objfile != NULL)
589 {
590 free_objfile (symfile_objfile);
591 symfile_objfile = NULL;
592 }
593
594 /* Currently we keep symbols from the add-symbol-file command.
595 If the user wants to get rid of them, they should do "symbol-file"
596 without arguments first. Not sure this is the best behavior
597 (PR 2207). */
598
599 (*objfile->sf->sym_new_init) (objfile);
600 }
601
602 /* Convert addr into an offset rather than an absolute address.
603 We find the lowest address of a loaded segment in the objfile,
604 and assume that <addr> is where that got loaded.
605
606 We no longer warn if the lowest section is not a text segment (as
607 happens for the PA64 port. */
608 if (!mainline)
609 {
610 /* Find lowest loadable section to be used as starting point for
611 continguous sections. FIXME!! won't work without call to find
612 .text first, but this assumes text is lowest section. */
613 lower_sect = bfd_get_section_by_name (objfile->obfd, ".text");
614 if (lower_sect == NULL)
615 bfd_map_over_sections (objfile->obfd, find_lowest_section,
616 (PTR) &lower_sect);
617 if (lower_sect == NULL)
618 warning ("no loadable sections found in added symbol-file %s",
619 objfile->name);
620 else
621 if ((bfd_get_section_flags (objfile->obfd, lower_sect) & SEC_CODE) == 0)
622 warning ("Lowest section in %s is %s at %s",
623 objfile->name,
624 bfd_section_name (objfile->obfd, lower_sect),
625 paddr (bfd_section_vma (objfile->obfd, lower_sect)));
626 if (lower_sect != NULL)
627 lower_offset = bfd_section_vma (objfile->obfd, lower_sect);
628 else
629 lower_offset = 0;
630
631 /* Calculate offsets for the loadable sections.
632 FIXME! Sections must be in order of increasing loadable section
633 so that contiguous sections can use the lower-offset!!!
634
635 Adjust offsets if the segments are not contiguous.
636 If the section is contiguous, its offset should be set to
637 the offset of the highest loadable section lower than it
638 (the loadable section directly below it in memory).
639 this_offset = lower_offset = lower_addr - lower_orig_addr */
640
641 /* Calculate offsets for sections. */
642 for (i=0 ; i < MAX_SECTIONS && addrs->other[i].name; i++)
643 {
644 if (addrs->other[i].addr != 0)
645 {
646 sect = bfd_get_section_by_name (objfile->obfd, addrs->other[i].name);
647 if (sect)
648 {
649 addrs->other[i].addr -= bfd_section_vma (objfile->obfd, sect);
650 lower_offset = addrs->other[i].addr;
651 /* This is the index used by BFD. */
652 addrs->other[i].sectindex = sect->index ;
653 }
654 else
655 {
656 warning ("section %s not found in %s", addrs->other[i].name,
657 objfile->name);
658 addrs->other[i].addr = 0;
659 }
660 }
661 else
662 addrs->other[i].addr = lower_offset;
663 }
664 }
665
666 /* Initialize symbol reading routines for this objfile, allow complaints to
667 appear for this new file, and record how verbose to be, then do the
668 initial symbol reading for this file. */
669
670 (*objfile->sf->sym_init) (objfile);
671 clear_complaints (1, verbo);
672
673 (*objfile->sf->sym_offsets) (objfile, addrs);
674
675 #ifndef IBM6000_TARGET
676 /* This is a SVR4/SunOS specific hack, I think. In any event, it
677 screws RS/6000. sym_offsets should be doing this sort of thing,
678 because it knows the mapping between bfd sections and
679 section_offsets. */
680 /* This is a hack. As far as I can tell, section offsets are not
681 target dependent. They are all set to addr with a couple of
682 exceptions. The exceptions are sysvr4 shared libraries, whose
683 offsets are kept in solib structures anyway and rs6000 xcoff
684 which handles shared libraries in a completely unique way.
685
686 Section offsets are built similarly, except that they are built
687 by adding addr in all cases because there is no clear mapping
688 from section_offsets into actual sections. Note that solib.c
689 has a different algorithm for finding section offsets.
690
691 These should probably all be collapsed into some target
692 independent form of shared library support. FIXME. */
693
694 if (addrs)
695 {
696 struct obj_section *s;
697
698 /* Map section offsets in "addr" back to the object's
699 sections by comparing the section names with bfd's
700 section names. Then adjust the section address by
701 the offset. */ /* for gdb/13815 */
702
703 ALL_OBJFILE_OSECTIONS (objfile, s)
704 {
705 CORE_ADDR s_addr = 0;
706 int i;
707
708 for (i = 0;
709 !s_addr && i < MAX_SECTIONS && addrs->other[i].name;
710 i++)
711 if (strcmp (s->the_bfd_section->name, addrs->other[i].name) == 0)
712 s_addr = addrs->other[i].addr; /* end added for gdb/13815 */
713
714 s->addr -= s->offset;
715 s->addr += s_addr;
716 s->endaddr -= s->offset;
717 s->endaddr += s_addr;
718 s->offset += s_addr;
719 }
720 }
721 #endif /* not IBM6000_TARGET */
722
723 (*objfile->sf->sym_read) (objfile, mainline);
724
725 if (!have_partial_symbols () && !have_full_symbols ())
726 {
727 wrap_here ("");
728 printf_filtered ("(no debugging symbols found)...");
729 wrap_here ("");
730 }
731
732 /* Don't allow char * to have a typename (else would get caddr_t).
733 Ditto void *. FIXME: Check whether this is now done by all the
734 symbol readers themselves (many of them now do), and if so remove
735 it from here. */
736
737 TYPE_NAME (lookup_pointer_type (builtin_type_char)) = 0;
738 TYPE_NAME (lookup_pointer_type (builtin_type_void)) = 0;
739
740 /* Mark the objfile has having had initial symbol read attempted. Note
741 that this does not mean we found any symbols... */
742
743 objfile->flags |= OBJF_SYMS;
744
745 /* Discard cleanups as symbol reading was successful. */
746
747 discard_cleanups (old_chain);
748
749 /* Call this after reading in a new symbol table to give target
750 dependent code a crack at the new symbols. For instance, this
751 could be used to update the values of target-specific symbols GDB
752 needs to keep track of (such as _sigtramp, or whatever). */
753
754 TARGET_SYMFILE_POSTREAD (objfile);
755 }
756
757 /* Perform required actions after either reading in the initial
758 symbols for a new objfile, or mapping in the symbols from a reusable
759 objfile. */
760
761 void
762 new_symfile_objfile (struct objfile *objfile, int mainline, int verbo)
763 {
764
765 /* If this is the main symbol file we have to clean up all users of the
766 old main symbol file. Otherwise it is sufficient to fixup all the
767 breakpoints that may have been redefined by this symbol file. */
768 if (mainline)
769 {
770 /* OK, make it the "real" symbol file. */
771 symfile_objfile = objfile;
772
773 clear_symtab_users ();
774 }
775 else
776 {
777 breakpoint_re_set ();
778 }
779
780 /* We're done reading the symbol file; finish off complaints. */
781 clear_complaints (0, verbo);
782 }
783
784 /* Process a symbol file, as either the main file or as a dynamically
785 loaded file.
786
787 NAME is the file name (which will be tilde-expanded and made
788 absolute herein) (but we don't free or modify NAME itself).
789 FROM_TTY says how verbose to be. MAINLINE specifies whether this
790 is the main symbol file, or whether it's an extra symbol file such
791 as dynamically loaded code. If !mainline, ADDR is the address
792 where the text segment was loaded.
793
794 Upon success, returns a pointer to the objfile that was added.
795 Upon failure, jumps back to command level (never returns). */
796
797 struct objfile *
798 symbol_file_add (char *name, int from_tty, struct section_addr_info *addrs,
799 int mainline, int flags)
800 {
801 struct objfile *objfile;
802 struct partial_symtab *psymtab;
803 bfd *abfd;
804
805 /* Open a bfd for the file, and give user a chance to burp if we'd be
806 interactively wiping out any existing symbols. */
807
808 abfd = symfile_bfd_open (name);
809
810 if ((have_full_symbols () || have_partial_symbols ())
811 && mainline
812 && from_tty
813 && !query ("Load new symbol table from \"%s\"? ", name))
814 error ("Not confirmed.");
815
816 objfile = allocate_objfile (abfd, flags);
817
818 /* If the objfile uses a mapped symbol file, and we have a psymtab for
819 it, then skip reading any symbols at this time. */
820
821 if ((objfile->flags & OBJF_MAPPED) && (objfile->flags & OBJF_SYMS))
822 {
823 /* We mapped in an existing symbol table file that already has had
824 initial symbol reading performed, so we can skip that part. Notify
825 the user that instead of reading the symbols, they have been mapped.
826 */
827 if (from_tty || info_verbose)
828 {
829 printf_filtered ("Mapped symbols for %s...", name);
830 wrap_here ("");
831 gdb_flush (gdb_stdout);
832 }
833 init_entry_point_info (objfile);
834 find_sym_fns (objfile);
835 }
836 else
837 {
838 /* We either created a new mapped symbol table, mapped an existing
839 symbol table file which has not had initial symbol reading
840 performed, or need to read an unmapped symbol table. */
841 if (from_tty || info_verbose)
842 {
843 if (pre_add_symbol_hook)
844 pre_add_symbol_hook (name);
845 else
846 {
847 printf_filtered ("Reading symbols from %s...", name);
848 wrap_here ("");
849 gdb_flush (gdb_stdout);
850 }
851 }
852 syms_from_objfile (objfile, addrs, mainline, from_tty);
853 }
854
855 /* We now have at least a partial symbol table. Check to see if the
856 user requested that all symbols be read on initial access via either
857 the gdb startup command line or on a per symbol file basis. Expand
858 all partial symbol tables for this objfile if so. */
859
860 if ((flags & OBJF_READNOW) || readnow_symbol_files)
861 {
862 if (from_tty || info_verbose)
863 {
864 printf_filtered ("expanding to full symbols...");
865 wrap_here ("");
866 gdb_flush (gdb_stdout);
867 }
868
869 for (psymtab = objfile->psymtabs;
870 psymtab != NULL;
871 psymtab = psymtab->next)
872 {
873 psymtab_to_symtab (psymtab);
874 }
875 }
876
877 if (from_tty || info_verbose)
878 {
879 if (post_add_symbol_hook)
880 post_add_symbol_hook ();
881 else
882 {
883 printf_filtered ("done.\n");
884 gdb_flush (gdb_stdout);
885 }
886 }
887
888 new_symfile_objfile (objfile, mainline, from_tty);
889
890 if (target_new_objfile_hook)
891 target_new_objfile_hook (objfile);
892
893 return (objfile);
894 }
895
896 /* Call symbol_file_add() with default values and update whatever is
897 affected by the loading of a new main().
898 Used when the file is supplied in the gdb command line
899 and by some targets with special loading requirements.
900 The auxiliary function, symbol_file_add_main_1(), has the flags
901 argument for the switches that can only be specified in the symbol_file
902 command itself. */
903
904 void
905 symbol_file_add_main (char *args, int from_tty)
906 {
907 symbol_file_add_main_1 (args, from_tty, 0);
908 }
909
910 static void
911 symbol_file_add_main_1 (char *args, int from_tty, int flags)
912 {
913 symbol_file_add (args, from_tty, NULL, 1, flags);
914
915 #ifdef HPUXHPPA
916 RESET_HP_UX_GLOBALS ();
917 #endif
918
919 /* Getting new symbols may change our opinion about
920 what is frameless. */
921 reinit_frame_cache ();
922
923 set_initial_language ();
924 }
925
926 void
927 symbol_file_clear (int from_tty)
928 {
929 if ((have_full_symbols () || have_partial_symbols ())
930 && from_tty
931 && !query ("Discard symbol table from `%s'? ",
932 symfile_objfile->name))
933 error ("Not confirmed.");
934 free_all_objfiles ();
935
936 /* solib descriptors may have handles to objfiles. Since their
937 storage has just been released, we'd better wipe the solib
938 descriptors as well.
939 */
940 #if defined(SOLIB_RESTART)
941 SOLIB_RESTART ();
942 #endif
943
944 symfile_objfile = NULL;
945 if (from_tty)
946 printf_unfiltered ("No symbol file now.\n");
947 #ifdef HPUXHPPA
948 RESET_HP_UX_GLOBALS ();
949 #endif
950 }
951
952 /* This is the symbol-file command. Read the file, analyze its
953 symbols, and add a struct symtab to a symtab list. The syntax of
954 the command is rather bizarre--(1) buildargv implements various
955 quoting conventions which are undocumented and have little or
956 nothing in common with the way things are quoted (or not quoted)
957 elsewhere in GDB, (2) options are used, which are not generally
958 used in GDB (perhaps "set mapped on", "set readnow on" would be
959 better), (3) the order of options matters, which is contrary to GNU
960 conventions (because it is confusing and inconvenient). */
961 /* Note: ezannoni 2000-04-17. This function used to have support for
962 rombug (see remote-os9k.c). It consisted of a call to target_link()
963 (target.c) to get the address of the text segment from the target,
964 and pass that to symbol_file_add(). This is no longer supported. */
965
966 void
967 symbol_file_command (char *args, int from_tty)
968 {
969 char **argv;
970 char *name = NULL;
971 struct cleanup *cleanups;
972 int flags = OBJF_USERLOADED;
973
974 dont_repeat ();
975
976 if (args == NULL)
977 {
978 symbol_file_clear (from_tty);
979 }
980 else
981 {
982 if ((argv = buildargv (args)) == NULL)
983 {
984 nomem (0);
985 }
986 cleanups = make_cleanup_freeargv (argv);
987 while (*argv != NULL)
988 {
989 if (STREQ (*argv, "-mapped"))
990 flags |= OBJF_MAPPED;
991 else
992 if (STREQ (*argv, "-readnow"))
993 flags |= OBJF_READNOW;
994 else
995 if (**argv == '-')
996 error ("unknown option `%s'", *argv);
997 else
998 {
999 name = *argv;
1000
1001 symbol_file_add_main_1 (name, from_tty, flags);
1002 }
1003 argv++;
1004 }
1005
1006 if (name == NULL)
1007 {
1008 error ("no symbol file name was specified");
1009 }
1010 do_cleanups (cleanups);
1011 }
1012 }
1013
1014 /* Set the initial language.
1015
1016 A better solution would be to record the language in the psymtab when reading
1017 partial symbols, and then use it (if known) to set the language. This would
1018 be a win for formats that encode the language in an easily discoverable place,
1019 such as DWARF. For stabs, we can jump through hoops looking for specially
1020 named symbols or try to intuit the language from the specific type of stabs
1021 we find, but we can't do that until later when we read in full symbols.
1022 FIXME. */
1023
1024 static void
1025 set_initial_language (void)
1026 {
1027 struct partial_symtab *pst;
1028 enum language lang = language_unknown;
1029
1030 pst = find_main_psymtab ();
1031 if (pst != NULL)
1032 {
1033 if (pst->filename != NULL)
1034 {
1035 lang = deduce_language_from_filename (pst->filename);
1036 }
1037 if (lang == language_unknown)
1038 {
1039 /* Make C the default language */
1040 lang = language_c;
1041 }
1042 set_language (lang);
1043 expected_language = current_language; /* Don't warn the user */
1044 }
1045 }
1046
1047 /* Open file specified by NAME and hand it off to BFD for preliminary
1048 analysis. Result is a newly initialized bfd *, which includes a newly
1049 malloc'd` copy of NAME (tilde-expanded and made absolute).
1050 In case of trouble, error() is called. */
1051
1052 bfd *
1053 symfile_bfd_open (char *name)
1054 {
1055 bfd *sym_bfd;
1056 int desc;
1057 char *absolute_name;
1058
1059
1060
1061 name = tilde_expand (name); /* Returns 1st new malloc'd copy */
1062
1063 /* Look down path for it, allocate 2nd new malloc'd copy. */
1064 desc = openp (getenv ("PATH"), 1, name, O_RDONLY | O_BINARY, 0, &absolute_name);
1065 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1066 if (desc < 0)
1067 {
1068 char *exename = alloca (strlen (name) + 5);
1069 strcat (strcpy (exename, name), ".exe");
1070 desc = openp (getenv ("PATH"), 1, exename, O_RDONLY | O_BINARY,
1071 0, &absolute_name);
1072 }
1073 #endif
1074 if (desc < 0)
1075 {
1076 make_cleanup (xfree, name);
1077 perror_with_name (name);
1078 }
1079 xfree (name); /* Free 1st new malloc'd copy */
1080 name = absolute_name; /* Keep 2nd malloc'd copy in bfd */
1081 /* It'll be freed in free_objfile(). */
1082
1083 sym_bfd = bfd_fdopenr (name, gnutarget, desc);
1084 if (!sym_bfd)
1085 {
1086 close (desc);
1087 make_cleanup (xfree, name);
1088 error ("\"%s\": can't open to read symbols: %s.", name,
1089 bfd_errmsg (bfd_get_error ()));
1090 }
1091 sym_bfd->cacheable = true;
1092
1093 if (!bfd_check_format (sym_bfd, bfd_object))
1094 {
1095 /* FIXME: should be checking for errors from bfd_close (for one thing,
1096 on error it does not free all the storage associated with the
1097 bfd). */
1098 bfd_close (sym_bfd); /* This also closes desc */
1099 make_cleanup (xfree, name);
1100 error ("\"%s\": can't read symbols: %s.", name,
1101 bfd_errmsg (bfd_get_error ()));
1102 }
1103 return (sym_bfd);
1104 }
1105
1106 /* Link a new symtab_fns into the global symtab_fns list. Called on gdb
1107 startup by the _initialize routine in each object file format reader,
1108 to register information about each format the the reader is prepared
1109 to handle. */
1110
1111 void
1112 add_symtab_fns (struct sym_fns *sf)
1113 {
1114 sf->next = symtab_fns;
1115 symtab_fns = sf;
1116 }
1117
1118
1119 /* Initialize to read symbols from the symbol file sym_bfd. It either
1120 returns or calls error(). The result is an initialized struct sym_fns
1121 in the objfile structure, that contains cached information about the
1122 symbol file. */
1123
1124 static void
1125 find_sym_fns (struct objfile *objfile)
1126 {
1127 struct sym_fns *sf;
1128 enum bfd_flavour our_flavour = bfd_get_flavour (objfile->obfd);
1129 char *our_target = bfd_get_target (objfile->obfd);
1130
1131 /* Special kludge for apollo. See dstread.c. */
1132 if (STREQN (our_target, "apollo", 6))
1133 our_flavour = (enum bfd_flavour) -2;
1134
1135 for (sf = symtab_fns; sf != NULL; sf = sf->next)
1136 {
1137 if (our_flavour == sf->sym_flavour)
1138 {
1139 objfile->sf = sf;
1140 return;
1141 }
1142 }
1143 error ("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown.",
1144 bfd_get_target (objfile->obfd));
1145 }
1146 \f
1147 /* This function runs the load command of our current target. */
1148
1149 static void
1150 load_command (char *arg, int from_tty)
1151 {
1152 if (arg == NULL)
1153 arg = get_exec_file (1);
1154 target_load (arg, from_tty);
1155
1156 /* After re-loading the executable, we don't really know which
1157 overlays are mapped any more. */
1158 overlay_cache_invalid = 1;
1159 }
1160
1161 /* This version of "load" should be usable for any target. Currently
1162 it is just used for remote targets, not inftarg.c or core files,
1163 on the theory that only in that case is it useful.
1164
1165 Avoiding xmodem and the like seems like a win (a) because we don't have
1166 to worry about finding it, and (b) On VMS, fork() is very slow and so
1167 we don't want to run a subprocess. On the other hand, I'm not sure how
1168 performance compares. */
1169
1170 static int download_write_size = 512;
1171 static int validate_download = 0;
1172
1173 void
1174 generic_load (char *args, int from_tty)
1175 {
1176 asection *s;
1177 bfd *loadfile_bfd;
1178 time_t start_time, end_time; /* Start and end times of download */
1179 unsigned long data_count = 0; /* Number of bytes transferred to memory */
1180 unsigned long write_count = 0; /* Number of writes needed. */
1181 unsigned long load_offset; /* offset to add to vma for each section */
1182 char *filename;
1183 struct cleanup *old_cleanups;
1184 char *offptr;
1185 bfd_size_type total_size = 0;
1186
1187 /* Parse the input argument - the user can specify a load offset as
1188 a second argument. */
1189 filename = xmalloc (strlen (args) + 1);
1190 old_cleanups = make_cleanup (xfree, filename);
1191 strcpy (filename, args);
1192 offptr = strchr (filename, ' ');
1193 if (offptr != NULL)
1194 {
1195 char *endptr;
1196
1197 load_offset = strtoul (offptr, &endptr, 0);
1198 if (offptr == endptr)
1199 error ("Invalid download offset:%s\n", offptr);
1200 *offptr = '\0';
1201 }
1202 else
1203 load_offset = 0;
1204
1205 /* Open the file for loading. */
1206 loadfile_bfd = bfd_openr (filename, gnutarget);
1207 if (loadfile_bfd == NULL)
1208 {
1209 perror_with_name (filename);
1210 return;
1211 }
1212
1213 /* FIXME: should be checking for errors from bfd_close (for one thing,
1214 on error it does not free all the storage associated with the
1215 bfd). */
1216 make_cleanup_bfd_close (loadfile_bfd);
1217
1218 if (!bfd_check_format (loadfile_bfd, bfd_object))
1219 {
1220 error ("\"%s\" is not an object file: %s", filename,
1221 bfd_errmsg (bfd_get_error ()));
1222 }
1223
1224 for (s = loadfile_bfd->sections; s; s = s->next)
1225 if (s->flags & SEC_LOAD)
1226 total_size += bfd_get_section_size_before_reloc (s);
1227
1228 start_time = time (NULL);
1229
1230 for (s = loadfile_bfd->sections; s; s = s->next)
1231 {
1232 if (s->flags & SEC_LOAD)
1233 {
1234 bfd_size_type size = bfd_get_section_size_before_reloc (s);
1235
1236 if (size > 0)
1237 {
1238 char *buffer;
1239 struct cleanup *old_chain;
1240 CORE_ADDR lma = bfd_section_lma (loadfile_bfd, s) + load_offset;
1241 bfd_size_type block_size;
1242 int err;
1243 const char *sect_name = bfd_get_section_name (loadfile_bfd, s);
1244 bfd_size_type sent;
1245
1246 if (download_write_size > 0 && size > download_write_size)
1247 block_size = download_write_size;
1248 else
1249 block_size = size;
1250
1251 buffer = xmalloc (size);
1252 old_chain = make_cleanup (xfree, buffer);
1253
1254 /* Is this really necessary? I guess it gives the user something
1255 to look at during a long download. */
1256 #ifdef UI_OUT
1257 ui_out_message (uiout, 0,
1258 "Loading section %s, size 0x%s lma 0x%s\n",
1259 sect_name, paddr_nz (size), paddr_nz (lma));
1260 #else
1261 fprintf_unfiltered (gdb_stdout,
1262 "Loading section %s, size 0x%s lma 0x%s\n",
1263 sect_name, paddr_nz (size), paddr_nz (lma));
1264 #endif
1265
1266 bfd_get_section_contents (loadfile_bfd, s, buffer, 0, size);
1267
1268 sent = 0;
1269 do
1270 {
1271 int len;
1272 bfd_size_type this_transfer = size - sent;
1273
1274 if (this_transfer >= block_size)
1275 this_transfer = block_size;
1276 len = target_write_memory_partial (lma, buffer,
1277 this_transfer, &err);
1278 if (err)
1279 break;
1280 if (validate_download)
1281 {
1282 /* Broken memories and broken monitors manifest
1283 themselves here when bring new computers to
1284 life. This doubles already slow downloads. */
1285 /* NOTE: cagney/1999-10-18: A more efficient
1286 implementation might add a verify_memory()
1287 method to the target vector and then use
1288 that. remote.c could implement that method
1289 using the ``qCRC'' packet. */
1290 char *check = xmalloc (len);
1291 struct cleanup *verify_cleanups = make_cleanup (xfree,
1292 check);
1293
1294 if (target_read_memory (lma, check, len) != 0)
1295 error ("Download verify read failed at 0x%s",
1296 paddr (lma));
1297 if (memcmp (buffer, check, len) != 0)
1298 error ("Download verify compare failed at 0x%s",
1299 paddr (lma));
1300 do_cleanups (verify_cleanups);
1301 }
1302 data_count += len;
1303 lma += len;
1304 buffer += len;
1305 write_count += 1;
1306 sent += len;
1307 if (quit_flag
1308 || (ui_load_progress_hook != NULL
1309 && ui_load_progress_hook (sect_name, sent)))
1310 error ("Canceled the download");
1311
1312 if (show_load_progress != NULL)
1313 show_load_progress (sect_name, sent, size,
1314 data_count, total_size);
1315 }
1316 while (sent < size);
1317
1318 if (err != 0)
1319 error ("Memory access error while loading section %s.",
1320 sect_name);
1321
1322 do_cleanups (old_chain);
1323 }
1324 }
1325 }
1326
1327 end_time = time (NULL);
1328 {
1329 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd);
1330
1331 #ifdef UI_OUT
1332 ui_out_text (uiout, "Start address ");
1333 ui_out_field_fmt (uiout, "address", "0x%s", paddr_nz (entry));
1334 ui_out_text (uiout, ", load size ");
1335 ui_out_field_fmt (uiout, "load-size", "%lu", data_count);
1336 ui_out_text (uiout, "\n");
1337
1338 #else
1339 fprintf_unfiltered (gdb_stdout,
1340 "Start address 0x%s, load size %lu\n",
1341 paddr_nz (entry), data_count);
1342 #endif
1343 /* We were doing this in remote-mips.c, I suspect it is right
1344 for other targets too. */
1345 write_pc (entry);
1346 }
1347
1348 /* FIXME: are we supposed to call symbol_file_add or not? According to
1349 a comment from remote-mips.c (where a call to symbol_file_add was
1350 commented out), making the call confuses GDB if more than one file is
1351 loaded in. remote-nindy.c had no call to symbol_file_add, but remote-vx.c
1352 does. */
1353
1354 print_transfer_performance (gdb_stdout, data_count, write_count,
1355 end_time - start_time);
1356
1357 do_cleanups (old_cleanups);
1358 }
1359
1360 /* Report how fast the transfer went. */
1361
1362 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
1363 replaced by print_transfer_performance (with a very different
1364 function signature). */
1365
1366 void
1367 report_transfer_performance (unsigned long data_count, time_t start_time,
1368 time_t end_time)
1369 {
1370 print_transfer_performance (gdb_stdout, data_count,
1371 end_time - start_time, 0);
1372 }
1373
1374 void
1375 print_transfer_performance (struct ui_file *stream,
1376 unsigned long data_count,
1377 unsigned long write_count,
1378 unsigned long time_count)
1379 {
1380 #ifdef UI_OUT
1381 ui_out_text (uiout, "Transfer rate: ");
1382 if (time_count > 0)
1383 {
1384 ui_out_field_fmt (uiout, "transfer-rate", "%lu",
1385 (data_count * 8) / time_count);
1386 ui_out_text (uiout, " bits/sec");
1387 }
1388 else
1389 {
1390 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
1391 ui_out_text (uiout, " bits in <1 sec");
1392 }
1393 if (write_count > 0)
1394 {
1395 ui_out_text (uiout, ", ");
1396 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
1397 ui_out_text (uiout, " bytes/write");
1398 }
1399 ui_out_text (uiout, ".\n");
1400 #else
1401 fprintf_unfiltered (stream, "Transfer rate: ");
1402 if (time_count > 0)
1403 fprintf_unfiltered (stream, "%lu bits/sec", (data_count * 8) / time_count);
1404 else
1405 fprintf_unfiltered (stream, "%lu bits in <1 sec", (data_count * 8));
1406 if (write_count > 0)
1407 fprintf_unfiltered (stream, ", %lu bytes/write", data_count / write_count);
1408 fprintf_unfiltered (stream, ".\n");
1409 #endif
1410 }
1411
1412 /* This function allows the addition of incrementally linked object files.
1413 It does not modify any state in the target, only in the debugger. */
1414 /* Note: ezannoni 2000-04-13 This function/command used to have a
1415 special case syntax for the rombug target (Rombug is the boot
1416 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
1417 rombug case, the user doesn't need to supply a text address,
1418 instead a call to target_link() (in target.c) would supply the
1419 value to use. We are now discontinuing this type of ad hoc syntax. */
1420
1421 /* ARGSUSED */
1422 static void
1423 add_symbol_file_command (char *args, int from_tty)
1424 {
1425 char *filename = NULL;
1426 int flags = OBJF_USERLOADED;
1427 char *arg;
1428 int expecting_option = 0;
1429 int section_index = 0;
1430 int argcnt = 0;
1431 int sec_num = 0;
1432 int i;
1433 int expecting_sec_name = 0;
1434 int expecting_sec_addr = 0;
1435
1436 struct
1437 {
1438 char *name;
1439 char *value;
1440 } sect_opts[SECT_OFF_MAX];
1441
1442 struct section_addr_info section_addrs;
1443 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
1444
1445 dont_repeat ();
1446
1447 if (args == NULL)
1448 error ("add-symbol-file takes a file name and an address");
1449
1450 /* Make a copy of the string that we can safely write into. */
1451 args = xstrdup (args);
1452
1453 /* Ensure section_addrs is initialized */
1454 memset (&section_addrs, 0, sizeof (section_addrs));
1455
1456 while (*args != '\000')
1457 {
1458 /* Any leading spaces? */
1459 while (isspace (*args))
1460 args++;
1461
1462 /* Point arg to the beginning of the argument. */
1463 arg = args;
1464
1465 /* Move args pointer over the argument. */
1466 while ((*args != '\000') && !isspace (*args))
1467 args++;
1468
1469 /* If there are more arguments, terminate arg and
1470 proceed past it. */
1471 if (*args != '\000')
1472 *args++ = '\000';
1473
1474 /* Now process the argument. */
1475 if (argcnt == 0)
1476 {
1477 /* The first argument is the file name. */
1478 filename = tilde_expand (arg);
1479 make_cleanup (xfree, filename);
1480 }
1481 else
1482 if (argcnt == 1)
1483 {
1484 /* The second argument is always the text address at which
1485 to load the program. */
1486 sect_opts[section_index].name = ".text";
1487 sect_opts[section_index].value = arg;
1488 section_index++;
1489 }
1490 else
1491 {
1492 /* It's an option (starting with '-') or it's an argument
1493 to an option */
1494
1495 if (*arg == '-')
1496 {
1497 if (strcmp (arg, "-mapped") == 0)
1498 flags |= OBJF_MAPPED;
1499 else
1500 if (strcmp (arg, "-readnow") == 0)
1501 flags |= OBJF_READNOW;
1502 else
1503 if (strcmp (arg, "-s") == 0)
1504 {
1505 if (section_index >= SECT_OFF_MAX)
1506 error ("Too many sections specified.");
1507 expecting_sec_name = 1;
1508 expecting_sec_addr = 1;
1509 }
1510 }
1511 else
1512 {
1513 if (expecting_sec_name)
1514 {
1515 sect_opts[section_index].name = arg;
1516 expecting_sec_name = 0;
1517 }
1518 else
1519 if (expecting_sec_addr)
1520 {
1521 sect_opts[section_index].value = arg;
1522 expecting_sec_addr = 0;
1523 section_index++;
1524 }
1525 else
1526 error ("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*");
1527 }
1528 }
1529 argcnt++;
1530 }
1531
1532 /* Print the prompt for the query below. And save the arguments into
1533 a sect_addr_info structure to be passed around to other
1534 functions. We have to split this up into separate print
1535 statements because local_hex_string returns a local static
1536 string. */
1537
1538 printf_filtered ("add symbol table from file \"%s\" at\n", filename);
1539 for (i = 0; i < section_index; i++)
1540 {
1541 CORE_ADDR addr;
1542 char *val = sect_opts[i].value;
1543 char *sec = sect_opts[i].name;
1544
1545 val = sect_opts[i].value;
1546 if (val[0] == '0' && val[1] == 'x')
1547 addr = strtoul (val+2, NULL, 16);
1548 else
1549 addr = strtoul (val, NULL, 10);
1550
1551 /* Here we store the section offsets in the order they were
1552 entered on the command line. */
1553 section_addrs.other[sec_num].name = sec;
1554 section_addrs.other[sec_num].addr = addr;
1555 printf_filtered ("\t%s_addr = %s\n",
1556 sec,
1557 local_hex_string ((unsigned long)addr));
1558 sec_num++;
1559
1560 /* The object's sections are initialized when a
1561 call is made to build_objfile_section_table (objfile).
1562 This happens in reread_symbols.
1563 At this point, we don't know what file type this is,
1564 so we can't determine what section names are valid. */
1565 }
1566
1567 if (from_tty && (!query ("%s", "")))
1568 error ("Not confirmed.");
1569
1570 symbol_file_add (filename, from_tty, &section_addrs, 0, flags);
1571
1572 /* Getting new symbols may change our opinion about what is
1573 frameless. */
1574 reinit_frame_cache ();
1575 do_cleanups (my_cleanups);
1576 }
1577 \f
1578 static void
1579 add_shared_symbol_files_command (char *args, int from_tty)
1580 {
1581 #ifdef ADD_SHARED_SYMBOL_FILES
1582 ADD_SHARED_SYMBOL_FILES (args, from_tty);
1583 #else
1584 error ("This command is not available in this configuration of GDB.");
1585 #endif
1586 }
1587 \f
1588 /* Re-read symbols if a symbol-file has changed. */
1589 void
1590 reread_symbols (void)
1591 {
1592 struct objfile *objfile;
1593 long new_modtime;
1594 int reread_one = 0;
1595 struct stat new_statbuf;
1596 int res;
1597
1598 /* With the addition of shared libraries, this should be modified,
1599 the load time should be saved in the partial symbol tables, since
1600 different tables may come from different source files. FIXME.
1601 This routine should then walk down each partial symbol table
1602 and see if the symbol table that it originates from has been changed */
1603
1604 for (objfile = object_files; objfile; objfile = objfile->next)
1605 {
1606 if (objfile->obfd)
1607 {
1608 #ifdef IBM6000_TARGET
1609 /* If this object is from a shared library, then you should
1610 stat on the library name, not member name. */
1611
1612 if (objfile->obfd->my_archive)
1613 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
1614 else
1615 #endif
1616 res = stat (objfile->name, &new_statbuf);
1617 if (res != 0)
1618 {
1619 /* FIXME, should use print_sys_errmsg but it's not filtered. */
1620 printf_filtered ("`%s' has disappeared; keeping its symbols.\n",
1621 objfile->name);
1622 continue;
1623 }
1624 new_modtime = new_statbuf.st_mtime;
1625 if (new_modtime != objfile->mtime)
1626 {
1627 struct cleanup *old_cleanups;
1628 struct section_offsets *offsets;
1629 int num_offsets;
1630 char *obfd_filename;
1631
1632 printf_filtered ("`%s' has changed; re-reading symbols.\n",
1633 objfile->name);
1634
1635 /* There are various functions like symbol_file_add,
1636 symfile_bfd_open, syms_from_objfile, etc., which might
1637 appear to do what we want. But they have various other
1638 effects which we *don't* want. So we just do stuff
1639 ourselves. We don't worry about mapped files (for one thing,
1640 any mapped file will be out of date). */
1641
1642 /* If we get an error, blow away this objfile (not sure if
1643 that is the correct response for things like shared
1644 libraries). */
1645 old_cleanups = make_cleanup_free_objfile (objfile);
1646 /* We need to do this whenever any symbols go away. */
1647 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
1648
1649 /* Clean up any state BFD has sitting around. We don't need
1650 to close the descriptor but BFD lacks a way of closing the
1651 BFD without closing the descriptor. */
1652 obfd_filename = bfd_get_filename (objfile->obfd);
1653 if (!bfd_close (objfile->obfd))
1654 error ("Can't close BFD for %s: %s", objfile->name,
1655 bfd_errmsg (bfd_get_error ()));
1656 objfile->obfd = bfd_openr (obfd_filename, gnutarget);
1657 if (objfile->obfd == NULL)
1658 error ("Can't open %s to read symbols.", objfile->name);
1659 /* bfd_openr sets cacheable to true, which is what we want. */
1660 if (!bfd_check_format (objfile->obfd, bfd_object))
1661 error ("Can't read symbols from %s: %s.", objfile->name,
1662 bfd_errmsg (bfd_get_error ()));
1663
1664 /* Save the offsets, we will nuke them with the rest of the
1665 psymbol_obstack. */
1666 num_offsets = objfile->num_sections;
1667 offsets = (struct section_offsets *) alloca (SIZEOF_SECTION_OFFSETS);
1668 memcpy (offsets, objfile->section_offsets, SIZEOF_SECTION_OFFSETS);
1669
1670 /* Nuke all the state that we will re-read. Much of the following
1671 code which sets things to NULL really is necessary to tell
1672 other parts of GDB that there is nothing currently there. */
1673
1674 /* FIXME: Do we have to free a whole linked list, or is this
1675 enough? */
1676 if (objfile->global_psymbols.list)
1677 xmfree (objfile->md, objfile->global_psymbols.list);
1678 memset (&objfile->global_psymbols, 0,
1679 sizeof (objfile->global_psymbols));
1680 if (objfile->static_psymbols.list)
1681 xmfree (objfile->md, objfile->static_psymbols.list);
1682 memset (&objfile->static_psymbols, 0,
1683 sizeof (objfile->static_psymbols));
1684
1685 /* Free the obstacks for non-reusable objfiles */
1686 free_bcache (&objfile->psymbol_cache);
1687 obstack_free (&objfile->psymbol_obstack, 0);
1688 obstack_free (&objfile->symbol_obstack, 0);
1689 obstack_free (&objfile->type_obstack, 0);
1690 objfile->sections = NULL;
1691 objfile->symtabs = NULL;
1692 objfile->psymtabs = NULL;
1693 objfile->free_psymtabs = NULL;
1694 objfile->msymbols = NULL;
1695 objfile->minimal_symbol_count = 0;
1696 memset (&objfile->msymbol_hash, 0,
1697 sizeof (objfile->msymbol_hash));
1698 memset (&objfile->msymbol_demangled_hash, 0,
1699 sizeof (objfile->msymbol_demangled_hash));
1700 objfile->fundamental_types = NULL;
1701 if (objfile->sf != NULL)
1702 {
1703 (*objfile->sf->sym_finish) (objfile);
1704 }
1705
1706 /* We never make this a mapped file. */
1707 objfile->md = NULL;
1708 /* obstack_specify_allocation also initializes the obstack so
1709 it is empty. */
1710 obstack_specify_allocation (&objfile->psymbol_cache.cache, 0, 0,
1711 xmalloc, xfree);
1712 obstack_specify_allocation (&objfile->psymbol_obstack, 0, 0,
1713 xmalloc, xfree);
1714 obstack_specify_allocation (&objfile->symbol_obstack, 0, 0,
1715 xmalloc, xfree);
1716 obstack_specify_allocation (&objfile->type_obstack, 0, 0,
1717 xmalloc, xfree);
1718 if (build_objfile_section_table (objfile))
1719 {
1720 error ("Can't find the file sections in `%s': %s",
1721 objfile->name, bfd_errmsg (bfd_get_error ()));
1722 }
1723
1724 /* We use the same section offsets as from last time. I'm not
1725 sure whether that is always correct for shared libraries. */
1726 objfile->section_offsets = (struct section_offsets *)
1727 obstack_alloc (&objfile->psymbol_obstack, SIZEOF_SECTION_OFFSETS);
1728 memcpy (objfile->section_offsets, offsets, SIZEOF_SECTION_OFFSETS);
1729 objfile->num_sections = num_offsets;
1730
1731 /* What the hell is sym_new_init for, anyway? The concept of
1732 distinguishing between the main file and additional files
1733 in this way seems rather dubious. */
1734 if (objfile == symfile_objfile)
1735 {
1736 (*objfile->sf->sym_new_init) (objfile);
1737 #ifdef HPUXHPPA
1738 RESET_HP_UX_GLOBALS ();
1739 #endif
1740 }
1741
1742 (*objfile->sf->sym_init) (objfile);
1743 clear_complaints (1, 1);
1744 /* The "mainline" parameter is a hideous hack; I think leaving it
1745 zero is OK since dbxread.c also does what it needs to do if
1746 objfile->global_psymbols.size is 0. */
1747 (*objfile->sf->sym_read) (objfile, 0);
1748 if (!have_partial_symbols () && !have_full_symbols ())
1749 {
1750 wrap_here ("");
1751 printf_filtered ("(no debugging symbols found)\n");
1752 wrap_here ("");
1753 }
1754 objfile->flags |= OBJF_SYMS;
1755
1756 /* We're done reading the symbol file; finish off complaints. */
1757 clear_complaints (0, 1);
1758
1759 /* Getting new symbols may change our opinion about what is
1760 frameless. */
1761
1762 reinit_frame_cache ();
1763
1764 /* Discard cleanups as symbol reading was successful. */
1765 discard_cleanups (old_cleanups);
1766
1767 /* If the mtime has changed between the time we set new_modtime
1768 and now, we *want* this to be out of date, so don't call stat
1769 again now. */
1770 objfile->mtime = new_modtime;
1771 reread_one = 1;
1772
1773 /* Call this after reading in a new symbol table to give target
1774 dependent code a crack at the new symbols. For instance, this
1775 could be used to update the values of target-specific symbols GDB
1776 needs to keep track of (such as _sigtramp, or whatever). */
1777
1778 TARGET_SYMFILE_POSTREAD (objfile);
1779 }
1780 }
1781 }
1782
1783 if (reread_one)
1784 clear_symtab_users ();
1785 }
1786 \f
1787
1788
1789 typedef struct
1790 {
1791 char *ext;
1792 enum language lang;
1793 }
1794 filename_language;
1795
1796 static filename_language *filename_language_table;
1797 static int fl_table_size, fl_table_next;
1798
1799 static void
1800 add_filename_language (char *ext, enum language lang)
1801 {
1802 if (fl_table_next >= fl_table_size)
1803 {
1804 fl_table_size += 10;
1805 filename_language_table = xrealloc (filename_language_table,
1806 fl_table_size);
1807 }
1808
1809 filename_language_table[fl_table_next].ext = xstrdup (ext);
1810 filename_language_table[fl_table_next].lang = lang;
1811 fl_table_next++;
1812 }
1813
1814 static char *ext_args;
1815
1816 static void
1817 set_ext_lang_command (char *args, int from_tty)
1818 {
1819 int i;
1820 char *cp = ext_args;
1821 enum language lang;
1822
1823 /* First arg is filename extension, starting with '.' */
1824 if (*cp != '.')
1825 error ("'%s': Filename extension must begin with '.'", ext_args);
1826
1827 /* Find end of first arg. */
1828 while (*cp && !isspace (*cp))
1829 cp++;
1830
1831 if (*cp == '\0')
1832 error ("'%s': two arguments required -- filename extension and language",
1833 ext_args);
1834
1835 /* Null-terminate first arg */
1836 *cp++ = '\0';
1837
1838 /* Find beginning of second arg, which should be a source language. */
1839 while (*cp && isspace (*cp))
1840 cp++;
1841
1842 if (*cp == '\0')
1843 error ("'%s': two arguments required -- filename extension and language",
1844 ext_args);
1845
1846 /* Lookup the language from among those we know. */
1847 lang = language_enum (cp);
1848
1849 /* Now lookup the filename extension: do we already know it? */
1850 for (i = 0; i < fl_table_next; i++)
1851 if (0 == strcmp (ext_args, filename_language_table[i].ext))
1852 break;
1853
1854 if (i >= fl_table_next)
1855 {
1856 /* new file extension */
1857 add_filename_language (ext_args, lang);
1858 }
1859 else
1860 {
1861 /* redefining a previously known filename extension */
1862
1863 /* if (from_tty) */
1864 /* query ("Really make files of type %s '%s'?", */
1865 /* ext_args, language_str (lang)); */
1866
1867 xfree (filename_language_table[i].ext);
1868 filename_language_table[i].ext = xstrdup (ext_args);
1869 filename_language_table[i].lang = lang;
1870 }
1871 }
1872
1873 static void
1874 info_ext_lang_command (char *args, int from_tty)
1875 {
1876 int i;
1877
1878 printf_filtered ("Filename extensions and the languages they represent:");
1879 printf_filtered ("\n\n");
1880 for (i = 0; i < fl_table_next; i++)
1881 printf_filtered ("\t%s\t- %s\n",
1882 filename_language_table[i].ext,
1883 language_str (filename_language_table[i].lang));
1884 }
1885
1886 static void
1887 init_filename_language_table (void)
1888 {
1889 if (fl_table_size == 0) /* protect against repetition */
1890 {
1891 fl_table_size = 20;
1892 fl_table_next = 0;
1893 filename_language_table =
1894 xmalloc (fl_table_size * sizeof (*filename_language_table));
1895 add_filename_language (".c", language_c);
1896 add_filename_language (".C", language_cplus);
1897 add_filename_language (".cc", language_cplus);
1898 add_filename_language (".cp", language_cplus);
1899 add_filename_language (".cpp", language_cplus);
1900 add_filename_language (".cxx", language_cplus);
1901 add_filename_language (".c++", language_cplus);
1902 add_filename_language (".java", language_java);
1903 add_filename_language (".class", language_java);
1904 add_filename_language (".ch", language_chill);
1905 add_filename_language (".c186", language_chill);
1906 add_filename_language (".c286", language_chill);
1907 add_filename_language (".f", language_fortran);
1908 add_filename_language (".F", language_fortran);
1909 add_filename_language (".s", language_asm);
1910 add_filename_language (".S", language_asm);
1911 add_filename_language (".pas", language_pascal);
1912 add_filename_language (".p", language_pascal);
1913 add_filename_language (".pp", language_pascal);
1914 }
1915 }
1916
1917 enum language
1918 deduce_language_from_filename (char *filename)
1919 {
1920 int i;
1921 char *cp;
1922
1923 if (filename != NULL)
1924 if ((cp = strrchr (filename, '.')) != NULL)
1925 for (i = 0; i < fl_table_next; i++)
1926 if (strcmp (cp, filename_language_table[i].ext) == 0)
1927 return filename_language_table[i].lang;
1928
1929 return language_unknown;
1930 }
1931 \f
1932 /* allocate_symtab:
1933
1934 Allocate and partly initialize a new symbol table. Return a pointer
1935 to it. error() if no space.
1936
1937 Caller must set these fields:
1938 LINETABLE(symtab)
1939 symtab->blockvector
1940 symtab->dirname
1941 symtab->free_code
1942 symtab->free_ptr
1943 possibly free_named_symtabs (symtab->filename);
1944 */
1945
1946 struct symtab *
1947 allocate_symtab (char *filename, struct objfile *objfile)
1948 {
1949 register struct symtab *symtab;
1950
1951 symtab = (struct symtab *)
1952 obstack_alloc (&objfile->symbol_obstack, sizeof (struct symtab));
1953 memset (symtab, 0, sizeof (*symtab));
1954 symtab->filename = obsavestring (filename, strlen (filename),
1955 &objfile->symbol_obstack);
1956 symtab->fullname = NULL;
1957 symtab->language = deduce_language_from_filename (filename);
1958 symtab->debugformat = obsavestring ("unknown", 7,
1959 &objfile->symbol_obstack);
1960
1961 /* Hook it to the objfile it comes from */
1962
1963 symtab->objfile = objfile;
1964 symtab->next = objfile->symtabs;
1965 objfile->symtabs = symtab;
1966
1967 /* FIXME: This should go away. It is only defined for the Z8000,
1968 and the Z8000 definition of this macro doesn't have anything to
1969 do with the now-nonexistent EXTRA_SYMTAB_INFO macro, it's just
1970 here for convenience. */
1971 #ifdef INIT_EXTRA_SYMTAB_INFO
1972 INIT_EXTRA_SYMTAB_INFO (symtab);
1973 #endif
1974
1975 return (symtab);
1976 }
1977
1978 struct partial_symtab *
1979 allocate_psymtab (char *filename, struct objfile *objfile)
1980 {
1981 struct partial_symtab *psymtab;
1982
1983 if (objfile->free_psymtabs)
1984 {
1985 psymtab = objfile->free_psymtabs;
1986 objfile->free_psymtabs = psymtab->next;
1987 }
1988 else
1989 psymtab = (struct partial_symtab *)
1990 obstack_alloc (&objfile->psymbol_obstack,
1991 sizeof (struct partial_symtab));
1992
1993 memset (psymtab, 0, sizeof (struct partial_symtab));
1994 psymtab->filename = obsavestring (filename, strlen (filename),
1995 &objfile->psymbol_obstack);
1996 psymtab->symtab = NULL;
1997
1998 /* Prepend it to the psymtab list for the objfile it belongs to.
1999 Psymtabs are searched in most recent inserted -> least recent
2000 inserted order. */
2001
2002 psymtab->objfile = objfile;
2003 psymtab->next = objfile->psymtabs;
2004 objfile->psymtabs = psymtab;
2005 #if 0
2006 {
2007 struct partial_symtab **prev_pst;
2008 psymtab->objfile = objfile;
2009 psymtab->next = NULL;
2010 prev_pst = &(objfile->psymtabs);
2011 while ((*prev_pst) != NULL)
2012 prev_pst = &((*prev_pst)->next);
2013 (*prev_pst) = psymtab;
2014 }
2015 #endif
2016
2017 return (psymtab);
2018 }
2019
2020 void
2021 discard_psymtab (struct partial_symtab *pst)
2022 {
2023 struct partial_symtab **prev_pst;
2024
2025 /* From dbxread.c:
2026 Empty psymtabs happen as a result of header files which don't
2027 have any symbols in them. There can be a lot of them. But this
2028 check is wrong, in that a psymtab with N_SLINE entries but
2029 nothing else is not empty, but we don't realize that. Fixing
2030 that without slowing things down might be tricky. */
2031
2032 /* First, snip it out of the psymtab chain */
2033
2034 prev_pst = &(pst->objfile->psymtabs);
2035 while ((*prev_pst) != pst)
2036 prev_pst = &((*prev_pst)->next);
2037 (*prev_pst) = pst->next;
2038
2039 /* Next, put it on a free list for recycling */
2040
2041 pst->next = pst->objfile->free_psymtabs;
2042 pst->objfile->free_psymtabs = pst;
2043 }
2044 \f
2045
2046 /* Reset all data structures in gdb which may contain references to symbol
2047 table data. */
2048
2049 void
2050 clear_symtab_users (void)
2051 {
2052 /* Someday, we should do better than this, by only blowing away
2053 the things that really need to be blown. */
2054 clear_value_history ();
2055 clear_displays ();
2056 clear_internalvars ();
2057 breakpoint_re_set ();
2058 set_default_breakpoint (0, 0, 0, 0);
2059 current_source_symtab = 0;
2060 current_source_line = 0;
2061 clear_pc_function_cache ();
2062 if (target_new_objfile_hook)
2063 target_new_objfile_hook (NULL);
2064 }
2065
2066 static void
2067 clear_symtab_users_cleanup (void *ignore)
2068 {
2069 clear_symtab_users ();
2070 }
2071
2072 /* clear_symtab_users_once:
2073
2074 This function is run after symbol reading, or from a cleanup.
2075 If an old symbol table was obsoleted, the old symbol table
2076 has been blown away, but the other GDB data structures that may
2077 reference it have not yet been cleared or re-directed. (The old
2078 symtab was zapped, and the cleanup queued, in free_named_symtab()
2079 below.)
2080
2081 This function can be queued N times as a cleanup, or called
2082 directly; it will do all the work the first time, and then will be a
2083 no-op until the next time it is queued. This works by bumping a
2084 counter at queueing time. Much later when the cleanup is run, or at
2085 the end of symbol processing (in case the cleanup is discarded), if
2086 the queued count is greater than the "done-count", we do the work
2087 and set the done-count to the queued count. If the queued count is
2088 less than or equal to the done-count, we just ignore the call. This
2089 is needed because reading a single .o file will often replace many
2090 symtabs (one per .h file, for example), and we don't want to reset
2091 the breakpoints N times in the user's face.
2092
2093 The reason we both queue a cleanup, and call it directly after symbol
2094 reading, is because the cleanup protects us in case of errors, but is
2095 discarded if symbol reading is successful. */
2096
2097 #if 0
2098 /* FIXME: As free_named_symtabs is currently a big noop this function
2099 is no longer needed. */
2100 static void clear_symtab_users_once (void);
2101
2102 static int clear_symtab_users_queued;
2103 static int clear_symtab_users_done;
2104
2105 static void
2106 clear_symtab_users_once (void)
2107 {
2108 /* Enforce once-per-`do_cleanups'-semantics */
2109 if (clear_symtab_users_queued <= clear_symtab_users_done)
2110 return;
2111 clear_symtab_users_done = clear_symtab_users_queued;
2112
2113 clear_symtab_users ();
2114 }
2115 #endif
2116
2117 /* Delete the specified psymtab, and any others that reference it. */
2118
2119 static void
2120 cashier_psymtab (struct partial_symtab *pst)
2121 {
2122 struct partial_symtab *ps, *pprev = NULL;
2123 int i;
2124
2125 /* Find its previous psymtab in the chain */
2126 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2127 {
2128 if (ps == pst)
2129 break;
2130 pprev = ps;
2131 }
2132
2133 if (ps)
2134 {
2135 /* Unhook it from the chain. */
2136 if (ps == pst->objfile->psymtabs)
2137 pst->objfile->psymtabs = ps->next;
2138 else
2139 pprev->next = ps->next;
2140
2141 /* FIXME, we can't conveniently deallocate the entries in the
2142 partial_symbol lists (global_psymbols/static_psymbols) that
2143 this psymtab points to. These just take up space until all
2144 the psymtabs are reclaimed. Ditto the dependencies list and
2145 filename, which are all in the psymbol_obstack. */
2146
2147 /* We need to cashier any psymtab that has this one as a dependency... */
2148 again:
2149 for (ps = pst->objfile->psymtabs; ps; ps = ps->next)
2150 {
2151 for (i = 0; i < ps->number_of_dependencies; i++)
2152 {
2153 if (ps->dependencies[i] == pst)
2154 {
2155 cashier_psymtab (ps);
2156 goto again; /* Must restart, chain has been munged. */
2157 }
2158 }
2159 }
2160 }
2161 }
2162
2163 /* If a symtab or psymtab for filename NAME is found, free it along
2164 with any dependent breakpoints, displays, etc.
2165 Used when loading new versions of object modules with the "add-file"
2166 command. This is only called on the top-level symtab or psymtab's name;
2167 it is not called for subsidiary files such as .h files.
2168
2169 Return value is 1 if we blew away the environment, 0 if not.
2170 FIXME. The return value appears to never be used.
2171
2172 FIXME. I think this is not the best way to do this. We should
2173 work on being gentler to the environment while still cleaning up
2174 all stray pointers into the freed symtab. */
2175
2176 int
2177 free_named_symtabs (char *name)
2178 {
2179 #if 0
2180 /* FIXME: With the new method of each objfile having it's own
2181 psymtab list, this function needs serious rethinking. In particular,
2182 why was it ever necessary to toss psymtabs with specific compilation
2183 unit filenames, as opposed to all psymtabs from a particular symbol
2184 file? -- fnf
2185 Well, the answer is that some systems permit reloading of particular
2186 compilation units. We want to blow away any old info about these
2187 compilation units, regardless of which objfiles they arrived in. --gnu. */
2188
2189 register struct symtab *s;
2190 register struct symtab *prev;
2191 register struct partial_symtab *ps;
2192 struct blockvector *bv;
2193 int blewit = 0;
2194
2195 /* We only wack things if the symbol-reload switch is set. */
2196 if (!symbol_reloading)
2197 return 0;
2198
2199 /* Some symbol formats have trouble providing file names... */
2200 if (name == 0 || *name == '\0')
2201 return 0;
2202
2203 /* Look for a psymtab with the specified name. */
2204
2205 again2:
2206 for (ps = partial_symtab_list; ps; ps = ps->next)
2207 {
2208 if (STREQ (name, ps->filename))
2209 {
2210 cashier_psymtab (ps); /* Blow it away...and its little dog, too. */
2211 goto again2; /* Must restart, chain has been munged */
2212 }
2213 }
2214
2215 /* Look for a symtab with the specified name. */
2216
2217 for (s = symtab_list; s; s = s->next)
2218 {
2219 if (STREQ (name, s->filename))
2220 break;
2221 prev = s;
2222 }
2223
2224 if (s)
2225 {
2226 if (s == symtab_list)
2227 symtab_list = s->next;
2228 else
2229 prev->next = s->next;
2230
2231 /* For now, queue a delete for all breakpoints, displays, etc., whether
2232 or not they depend on the symtab being freed. This should be
2233 changed so that only those data structures affected are deleted. */
2234
2235 /* But don't delete anything if the symtab is empty.
2236 This test is necessary due to a bug in "dbxread.c" that
2237 causes empty symtabs to be created for N_SO symbols that
2238 contain the pathname of the object file. (This problem
2239 has been fixed in GDB 3.9x). */
2240
2241 bv = BLOCKVECTOR (s);
2242 if (BLOCKVECTOR_NBLOCKS (bv) > 2
2243 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK))
2244 || BLOCK_NSYMS (BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK)))
2245 {
2246 complain (&oldsyms_complaint, name);
2247
2248 clear_symtab_users_queued++;
2249 make_cleanup (clear_symtab_users_once, 0);
2250 blewit = 1;
2251 }
2252 else
2253 {
2254 complain (&empty_symtab_complaint, name);
2255 }
2256
2257 free_symtab (s);
2258 }
2259 else
2260 {
2261 /* It is still possible that some breakpoints will be affected
2262 even though no symtab was found, since the file might have
2263 been compiled without debugging, and hence not be associated
2264 with a symtab. In order to handle this correctly, we would need
2265 to keep a list of text address ranges for undebuggable files.
2266 For now, we do nothing, since this is a fairly obscure case. */
2267 ;
2268 }
2269
2270 /* FIXME, what about the minimal symbol table? */
2271 return blewit;
2272 #else
2273 return (0);
2274 #endif
2275 }
2276 \f
2277 /* Allocate and partially fill a partial symtab. It will be
2278 completely filled at the end of the symbol list.
2279
2280 FILENAME is the name of the symbol-file we are reading from. */
2281
2282 struct partial_symtab *
2283 start_psymtab_common (struct objfile *objfile,
2284 struct section_offsets *section_offsets, char *filename,
2285 CORE_ADDR textlow, struct partial_symbol **global_syms,
2286 struct partial_symbol **static_syms)
2287 {
2288 struct partial_symtab *psymtab;
2289
2290 psymtab = allocate_psymtab (filename, objfile);
2291 psymtab->section_offsets = section_offsets;
2292 psymtab->textlow = textlow;
2293 psymtab->texthigh = psymtab->textlow; /* default */
2294 psymtab->globals_offset = global_syms - objfile->global_psymbols.list;
2295 psymtab->statics_offset = static_syms - objfile->static_psymbols.list;
2296 return (psymtab);
2297 }
2298 \f
2299 /* Add a symbol with a long value to a psymtab.
2300 Since one arg is a struct, we pass in a ptr and deref it (sigh). */
2301
2302 void
2303 add_psymbol_to_list (char *name, int namelength, namespace_enum namespace,
2304 enum address_class class,
2305 struct psymbol_allocation_list *list, long val, /* Value as a long */
2306 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2307 enum language language, struct objfile *objfile)
2308 {
2309 register struct partial_symbol *psym;
2310 char *buf = alloca (namelength + 1);
2311 /* psymbol is static so that there will be no uninitialized gaps in the
2312 structure which might contain random data, causing cache misses in
2313 bcache. */
2314 static struct partial_symbol psymbol;
2315
2316 /* Create local copy of the partial symbol */
2317 memcpy (buf, name, namelength);
2318 buf[namelength] = '\0';
2319 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2320 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2321 if (val != 0)
2322 {
2323 SYMBOL_VALUE (&psymbol) = val;
2324 }
2325 else
2326 {
2327 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2328 }
2329 SYMBOL_SECTION (&psymbol) = 0;
2330 SYMBOL_LANGUAGE (&psymbol) = language;
2331 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2332 PSYMBOL_CLASS (&psymbol) = class;
2333 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2334
2335 /* Stash the partial symbol away in the cache */
2336 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2337
2338 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2339 if (list->next >= list->list + list->size)
2340 {
2341 extend_psymbol_list (list, objfile);
2342 }
2343 *list->next++ = psym;
2344 OBJSTAT (objfile, n_psyms++);
2345 }
2346
2347 /* Add a symbol with a long value to a psymtab. This differs from
2348 * add_psymbol_to_list above in taking both a mangled and a demangled
2349 * name. */
2350
2351 void
2352 add_psymbol_with_dem_name_to_list (char *name, int namelength, char *dem_name,
2353 int dem_namelength, namespace_enum namespace,
2354 enum address_class class,
2355 struct psymbol_allocation_list *list, long val, /* Value as a long */
2356 CORE_ADDR coreaddr, /* Value as a CORE_ADDR */
2357 enum language language,
2358 struct objfile *objfile)
2359 {
2360 register struct partial_symbol *psym;
2361 char *buf = alloca (namelength + 1);
2362 /* psymbol is static so that there will be no uninitialized gaps in the
2363 structure which might contain random data, causing cache misses in
2364 bcache. */
2365 static struct partial_symbol psymbol;
2366
2367 /* Create local copy of the partial symbol */
2368
2369 memcpy (buf, name, namelength);
2370 buf[namelength] = '\0';
2371 SYMBOL_NAME (&psymbol) = bcache (buf, namelength + 1, &objfile->psymbol_cache);
2372
2373 buf = alloca (dem_namelength + 1);
2374 memcpy (buf, dem_name, dem_namelength);
2375 buf[dem_namelength] = '\0';
2376
2377 switch (language)
2378 {
2379 case language_c:
2380 case language_cplus:
2381 SYMBOL_CPLUS_DEMANGLED_NAME (&psymbol) =
2382 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2383 break;
2384 case language_chill:
2385 SYMBOL_CHILL_DEMANGLED_NAME (&psymbol) =
2386 bcache (buf, dem_namelength + 1, &objfile->psymbol_cache);
2387
2388 /* FIXME What should be done for the default case? Ignoring for now. */
2389 }
2390
2391 /* val and coreaddr are mutually exclusive, one of them *will* be zero */
2392 if (val != 0)
2393 {
2394 SYMBOL_VALUE (&psymbol) = val;
2395 }
2396 else
2397 {
2398 SYMBOL_VALUE_ADDRESS (&psymbol) = coreaddr;
2399 }
2400 SYMBOL_SECTION (&psymbol) = 0;
2401 SYMBOL_LANGUAGE (&psymbol) = language;
2402 PSYMBOL_NAMESPACE (&psymbol) = namespace;
2403 PSYMBOL_CLASS (&psymbol) = class;
2404 SYMBOL_INIT_LANGUAGE_SPECIFIC (&psymbol, language);
2405
2406 /* Stash the partial symbol away in the cache */
2407 psym = bcache (&psymbol, sizeof (struct partial_symbol), &objfile->psymbol_cache);
2408
2409 /* Save pointer to partial symbol in psymtab, growing symtab if needed. */
2410 if (list->next >= list->list + list->size)
2411 {
2412 extend_psymbol_list (list, objfile);
2413 }
2414 *list->next++ = psym;
2415 OBJSTAT (objfile, n_psyms++);
2416 }
2417
2418 /* Initialize storage for partial symbols. */
2419
2420 void
2421 init_psymbol_list (struct objfile *objfile, int total_symbols)
2422 {
2423 /* Free any previously allocated psymbol lists. */
2424
2425 if (objfile->global_psymbols.list)
2426 {
2427 xmfree (objfile->md, (PTR) objfile->global_psymbols.list);
2428 }
2429 if (objfile->static_psymbols.list)
2430 {
2431 xmfree (objfile->md, (PTR) objfile->static_psymbols.list);
2432 }
2433
2434 /* Current best guess is that approximately a twentieth
2435 of the total symbols (in a debugging file) are global or static
2436 oriented symbols */
2437
2438 objfile->global_psymbols.size = total_symbols / 10;
2439 objfile->static_psymbols.size = total_symbols / 10;
2440
2441 if (objfile->global_psymbols.size > 0)
2442 {
2443 objfile->global_psymbols.next =
2444 objfile->global_psymbols.list = (struct partial_symbol **)
2445 xmmalloc (objfile->md, (objfile->global_psymbols.size
2446 * sizeof (struct partial_symbol *)));
2447 }
2448 if (objfile->static_psymbols.size > 0)
2449 {
2450 objfile->static_psymbols.next =
2451 objfile->static_psymbols.list = (struct partial_symbol **)
2452 xmmalloc (objfile->md, (objfile->static_psymbols.size
2453 * sizeof (struct partial_symbol *)));
2454 }
2455 }
2456
2457 /* OVERLAYS:
2458 The following code implements an abstraction for debugging overlay sections.
2459
2460 The target model is as follows:
2461 1) The gnu linker will permit multiple sections to be mapped into the
2462 same VMA, each with its own unique LMA (or load address).
2463 2) It is assumed that some runtime mechanism exists for mapping the
2464 sections, one by one, from the load address into the VMA address.
2465 3) This code provides a mechanism for gdb to keep track of which
2466 sections should be considered to be mapped from the VMA to the LMA.
2467 This information is used for symbol lookup, and memory read/write.
2468 For instance, if a section has been mapped then its contents
2469 should be read from the VMA, otherwise from the LMA.
2470
2471 Two levels of debugger support for overlays are available. One is
2472 "manual", in which the debugger relies on the user to tell it which
2473 overlays are currently mapped. This level of support is
2474 implemented entirely in the core debugger, and the information about
2475 whether a section is mapped is kept in the objfile->obj_section table.
2476
2477 The second level of support is "automatic", and is only available if
2478 the target-specific code provides functionality to read the target's
2479 overlay mapping table, and translate its contents for the debugger
2480 (by updating the mapped state information in the obj_section tables).
2481
2482 The interface is as follows:
2483 User commands:
2484 overlay map <name> -- tell gdb to consider this section mapped
2485 overlay unmap <name> -- tell gdb to consider this section unmapped
2486 overlay list -- list the sections that GDB thinks are mapped
2487 overlay read-target -- get the target's state of what's mapped
2488 overlay off/manual/auto -- set overlay debugging state
2489 Functional interface:
2490 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2491 section, return that section.
2492 find_pc_overlay(pc): find any overlay section that contains
2493 the pc, either in its VMA or its LMA
2494 overlay_is_mapped(sect): true if overlay is marked as mapped
2495 section_is_overlay(sect): true if section's VMA != LMA
2496 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2497 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2498 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2499 overlay_mapped_address(...): map an address from section's LMA to VMA
2500 overlay_unmapped_address(...): map an address from section's VMA to LMA
2501 symbol_overlayed_address(...): Return a "current" address for symbol:
2502 either in VMA or LMA depending on whether
2503 the symbol's section is currently mapped
2504 */
2505
2506 /* Overlay debugging state: */
2507
2508 int overlay_debugging = 0; /* 0 == off, 1 == manual, -1 == auto */
2509 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2510
2511 /* Target vector for refreshing overlay mapped state */
2512 static void simple_overlay_update (struct obj_section *);
2513 void (*target_overlay_update) (struct obj_section *) = simple_overlay_update;
2514
2515 /* Function: section_is_overlay (SECTION)
2516 Returns true if SECTION has VMA not equal to LMA, ie.
2517 SECTION is loaded at an address different from where it will "run". */
2518
2519 int
2520 section_is_overlay (asection *section)
2521 {
2522 if (overlay_debugging)
2523 if (section && section->lma != 0 &&
2524 section->vma != section->lma)
2525 return 1;
2526
2527 return 0;
2528 }
2529
2530 /* Function: overlay_invalidate_all (void)
2531 Invalidate the mapped state of all overlay sections (mark it as stale). */
2532
2533 static void
2534 overlay_invalidate_all (void)
2535 {
2536 struct objfile *objfile;
2537 struct obj_section *sect;
2538
2539 ALL_OBJSECTIONS (objfile, sect)
2540 if (section_is_overlay (sect->the_bfd_section))
2541 sect->ovly_mapped = -1;
2542 }
2543
2544 /* Function: overlay_is_mapped (SECTION)
2545 Returns true if section is an overlay, and is currently mapped.
2546 Private: public access is thru function section_is_mapped.
2547
2548 Access to the ovly_mapped flag is restricted to this function, so
2549 that we can do automatic update. If the global flag
2550 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2551 overlay_invalidate_all. If the mapped state of the particular
2552 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2553
2554 static int
2555 overlay_is_mapped (struct obj_section *osect)
2556 {
2557 if (osect == 0 || !section_is_overlay (osect->the_bfd_section))
2558 return 0;
2559
2560 switch (overlay_debugging)
2561 {
2562 default:
2563 case 0:
2564 return 0; /* overlay debugging off */
2565 case -1: /* overlay debugging automatic */
2566 /* Unles there is a target_overlay_update function,
2567 there's really nothing useful to do here (can't really go auto) */
2568 if (target_overlay_update)
2569 {
2570 if (overlay_cache_invalid)
2571 {
2572 overlay_invalidate_all ();
2573 overlay_cache_invalid = 0;
2574 }
2575 if (osect->ovly_mapped == -1)
2576 (*target_overlay_update) (osect);
2577 }
2578 /* fall thru to manual case */
2579 case 1: /* overlay debugging manual */
2580 return osect->ovly_mapped == 1;
2581 }
2582 }
2583
2584 /* Function: section_is_mapped
2585 Returns true if section is an overlay, and is currently mapped. */
2586
2587 int
2588 section_is_mapped (asection *section)
2589 {
2590 struct objfile *objfile;
2591 struct obj_section *osect;
2592
2593 if (overlay_debugging)
2594 if (section && section_is_overlay (section))
2595 ALL_OBJSECTIONS (objfile, osect)
2596 if (osect->the_bfd_section == section)
2597 return overlay_is_mapped (osect);
2598
2599 return 0;
2600 }
2601
2602 /* Function: pc_in_unmapped_range
2603 If PC falls into the lma range of SECTION, return true, else false. */
2604
2605 CORE_ADDR
2606 pc_in_unmapped_range (CORE_ADDR pc, asection *section)
2607 {
2608 int size;
2609
2610 if (overlay_debugging)
2611 if (section && section_is_overlay (section))
2612 {
2613 size = bfd_get_section_size_before_reloc (section);
2614 if (section->lma <= pc && pc < section->lma + size)
2615 return 1;
2616 }
2617 return 0;
2618 }
2619
2620 /* Function: pc_in_mapped_range
2621 If PC falls into the vma range of SECTION, return true, else false. */
2622
2623 CORE_ADDR
2624 pc_in_mapped_range (CORE_ADDR pc, asection *section)
2625 {
2626 int size;
2627
2628 if (overlay_debugging)
2629 if (section && section_is_overlay (section))
2630 {
2631 size = bfd_get_section_size_before_reloc (section);
2632 if (section->vma <= pc && pc < section->vma + size)
2633 return 1;
2634 }
2635 return 0;
2636 }
2637
2638
2639 /* Return true if the mapped ranges of sections A and B overlap, false
2640 otherwise. */
2641 int
2642 sections_overlap (asection *a, asection *b)
2643 {
2644 CORE_ADDR a_start = a->vma;
2645 CORE_ADDR a_end = a->vma + bfd_get_section_size_before_reloc (a);
2646 CORE_ADDR b_start = b->vma;
2647 CORE_ADDR b_end = b->vma + bfd_get_section_size_before_reloc (b);
2648
2649 return (a_start < b_end && b_start < a_end);
2650 }
2651
2652 /* Function: overlay_unmapped_address (PC, SECTION)
2653 Returns the address corresponding to PC in the unmapped (load) range.
2654 May be the same as PC. */
2655
2656 CORE_ADDR
2657 overlay_unmapped_address (CORE_ADDR pc, asection *section)
2658 {
2659 if (overlay_debugging)
2660 if (section && section_is_overlay (section) &&
2661 pc_in_mapped_range (pc, section))
2662 return pc + section->lma - section->vma;
2663
2664 return pc;
2665 }
2666
2667 /* Function: overlay_mapped_address (PC, SECTION)
2668 Returns the address corresponding to PC in the mapped (runtime) range.
2669 May be the same as PC. */
2670
2671 CORE_ADDR
2672 overlay_mapped_address (CORE_ADDR pc, asection *section)
2673 {
2674 if (overlay_debugging)
2675 if (section && section_is_overlay (section) &&
2676 pc_in_unmapped_range (pc, section))
2677 return pc + section->vma - section->lma;
2678
2679 return pc;
2680 }
2681
2682
2683 /* Function: symbol_overlayed_address
2684 Return one of two addresses (relative to the VMA or to the LMA),
2685 depending on whether the section is mapped or not. */
2686
2687 CORE_ADDR
2688 symbol_overlayed_address (CORE_ADDR address, asection *section)
2689 {
2690 if (overlay_debugging)
2691 {
2692 /* If the symbol has no section, just return its regular address. */
2693 if (section == 0)
2694 return address;
2695 /* If the symbol's section is not an overlay, just return its address */
2696 if (!section_is_overlay (section))
2697 return address;
2698 /* If the symbol's section is mapped, just return its address */
2699 if (section_is_mapped (section))
2700 return address;
2701 /*
2702 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
2703 * then return its LOADED address rather than its vma address!!
2704 */
2705 return overlay_unmapped_address (address, section);
2706 }
2707 return address;
2708 }
2709
2710 /* Function: find_pc_overlay (PC)
2711 Return the best-match overlay section for PC:
2712 If PC matches a mapped overlay section's VMA, return that section.
2713 Else if PC matches an unmapped section's VMA, return that section.
2714 Else if PC matches an unmapped section's LMA, return that section. */
2715
2716 asection *
2717 find_pc_overlay (CORE_ADDR pc)
2718 {
2719 struct objfile *objfile;
2720 struct obj_section *osect, *best_match = NULL;
2721
2722 if (overlay_debugging)
2723 ALL_OBJSECTIONS (objfile, osect)
2724 if (section_is_overlay (osect->the_bfd_section))
2725 {
2726 if (pc_in_mapped_range (pc, osect->the_bfd_section))
2727 {
2728 if (overlay_is_mapped (osect))
2729 return osect->the_bfd_section;
2730 else
2731 best_match = osect;
2732 }
2733 else if (pc_in_unmapped_range (pc, osect->the_bfd_section))
2734 best_match = osect;
2735 }
2736 return best_match ? best_match->the_bfd_section : NULL;
2737 }
2738
2739 /* Function: find_pc_mapped_section (PC)
2740 If PC falls into the VMA address range of an overlay section that is
2741 currently marked as MAPPED, return that section. Else return NULL. */
2742
2743 asection *
2744 find_pc_mapped_section (CORE_ADDR pc)
2745 {
2746 struct objfile *objfile;
2747 struct obj_section *osect;
2748
2749 if (overlay_debugging)
2750 ALL_OBJSECTIONS (objfile, osect)
2751 if (pc_in_mapped_range (pc, osect->the_bfd_section) &&
2752 overlay_is_mapped (osect))
2753 return osect->the_bfd_section;
2754
2755 return NULL;
2756 }
2757
2758 /* Function: list_overlays_command
2759 Print a list of mapped sections and their PC ranges */
2760
2761 void
2762 list_overlays_command (char *args, int from_tty)
2763 {
2764 int nmapped = 0;
2765 struct objfile *objfile;
2766 struct obj_section *osect;
2767
2768 if (overlay_debugging)
2769 ALL_OBJSECTIONS (objfile, osect)
2770 if (overlay_is_mapped (osect))
2771 {
2772 const char *name;
2773 bfd_vma lma, vma;
2774 int size;
2775
2776 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
2777 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
2778 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
2779 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
2780
2781 printf_filtered ("Section %s, loaded at ", name);
2782 print_address_numeric (lma, 1, gdb_stdout);
2783 puts_filtered (" - ");
2784 print_address_numeric (lma + size, 1, gdb_stdout);
2785 printf_filtered (", mapped at ");
2786 print_address_numeric (vma, 1, gdb_stdout);
2787 puts_filtered (" - ");
2788 print_address_numeric (vma + size, 1, gdb_stdout);
2789 puts_filtered ("\n");
2790
2791 nmapped++;
2792 }
2793 if (nmapped == 0)
2794 printf_filtered ("No sections are mapped.\n");
2795 }
2796
2797 /* Function: map_overlay_command
2798 Mark the named section as mapped (ie. residing at its VMA address). */
2799
2800 void
2801 map_overlay_command (char *args, int from_tty)
2802 {
2803 struct objfile *objfile, *objfile2;
2804 struct obj_section *sec, *sec2;
2805 asection *bfdsec;
2806
2807 if (!overlay_debugging)
2808 error ("\
2809 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2810 the 'overlay manual' command.");
2811
2812 if (args == 0 || *args == 0)
2813 error ("Argument required: name of an overlay section");
2814
2815 /* First, find a section matching the user supplied argument */
2816 ALL_OBJSECTIONS (objfile, sec)
2817 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2818 {
2819 /* Now, check to see if the section is an overlay. */
2820 bfdsec = sec->the_bfd_section;
2821 if (!section_is_overlay (bfdsec))
2822 continue; /* not an overlay section */
2823
2824 /* Mark the overlay as "mapped" */
2825 sec->ovly_mapped = 1;
2826
2827 /* Next, make a pass and unmap any sections that are
2828 overlapped by this new section: */
2829 ALL_OBJSECTIONS (objfile2, sec2)
2830 if (sec2->ovly_mapped
2831 && sec != sec2
2832 && sec->the_bfd_section != sec2->the_bfd_section
2833 && sections_overlap (sec->the_bfd_section,
2834 sec2->the_bfd_section))
2835 {
2836 if (info_verbose)
2837 printf_filtered ("Note: section %s unmapped by overlap\n",
2838 bfd_section_name (objfile->obfd,
2839 sec2->the_bfd_section));
2840 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
2841 }
2842 return;
2843 }
2844 error ("No overlay section called %s", args);
2845 }
2846
2847 /* Function: unmap_overlay_command
2848 Mark the overlay section as unmapped
2849 (ie. resident in its LMA address range, rather than the VMA range). */
2850
2851 void
2852 unmap_overlay_command (char *args, int from_tty)
2853 {
2854 struct objfile *objfile;
2855 struct obj_section *sec;
2856
2857 if (!overlay_debugging)
2858 error ("\
2859 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
2860 the 'overlay manual' command.");
2861
2862 if (args == 0 || *args == 0)
2863 error ("Argument required: name of an overlay section");
2864
2865 /* First, find a section matching the user supplied argument */
2866 ALL_OBJSECTIONS (objfile, sec)
2867 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
2868 {
2869 if (!sec->ovly_mapped)
2870 error ("Section %s is not mapped", args);
2871 sec->ovly_mapped = 0;
2872 return;
2873 }
2874 error ("No overlay section called %s", args);
2875 }
2876
2877 /* Function: overlay_auto_command
2878 A utility command to turn on overlay debugging.
2879 Possibly this should be done via a set/show command. */
2880
2881 static void
2882 overlay_auto_command (char *args, int from_tty)
2883 {
2884 overlay_debugging = -1;
2885 if (info_verbose)
2886 printf_filtered ("Automatic overlay debugging enabled.");
2887 }
2888
2889 /* Function: overlay_manual_command
2890 A utility command to turn on overlay debugging.
2891 Possibly this should be done via a set/show command. */
2892
2893 static void
2894 overlay_manual_command (char *args, int from_tty)
2895 {
2896 overlay_debugging = 1;
2897 if (info_verbose)
2898 printf_filtered ("Overlay debugging enabled.");
2899 }
2900
2901 /* Function: overlay_off_command
2902 A utility command to turn on overlay debugging.
2903 Possibly this should be done via a set/show command. */
2904
2905 static void
2906 overlay_off_command (char *args, int from_tty)
2907 {
2908 overlay_debugging = 0;
2909 if (info_verbose)
2910 printf_filtered ("Overlay debugging disabled.");
2911 }
2912
2913 static void
2914 overlay_load_command (char *args, int from_tty)
2915 {
2916 if (target_overlay_update)
2917 (*target_overlay_update) (NULL);
2918 else
2919 error ("This target does not know how to read its overlay state.");
2920 }
2921
2922 /* Function: overlay_command
2923 A place-holder for a mis-typed command */
2924
2925 /* Command list chain containing all defined "overlay" subcommands. */
2926 struct cmd_list_element *overlaylist;
2927
2928 static void
2929 overlay_command (char *args, int from_tty)
2930 {
2931 printf_unfiltered
2932 ("\"overlay\" must be followed by the name of an overlay command.\n");
2933 help_list (overlaylist, "overlay ", -1, gdb_stdout);
2934 }
2935
2936
2937 /* Target Overlays for the "Simplest" overlay manager:
2938
2939 This is GDB's default target overlay layer. It works with the
2940 minimal overlay manager supplied as an example by Cygnus. The
2941 entry point is via a function pointer "target_overlay_update",
2942 so targets that use a different runtime overlay manager can
2943 substitute their own overlay_update function and take over the
2944 function pointer.
2945
2946 The overlay_update function pokes around in the target's data structures
2947 to see what overlays are mapped, and updates GDB's overlay mapping with
2948 this information.
2949
2950 In this simple implementation, the target data structures are as follows:
2951 unsigned _novlys; /# number of overlay sections #/
2952 unsigned _ovly_table[_novlys][4] = {
2953 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
2954 {..., ..., ..., ...},
2955 }
2956 unsigned _novly_regions; /# number of overlay regions #/
2957 unsigned _ovly_region_table[_novly_regions][3] = {
2958 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
2959 {..., ..., ...},
2960 }
2961 These functions will attempt to update GDB's mappedness state in the
2962 symbol section table, based on the target's mappedness state.
2963
2964 To do this, we keep a cached copy of the target's _ovly_table, and
2965 attempt to detect when the cached copy is invalidated. The main
2966 entry point is "simple_overlay_update(SECT), which looks up SECT in
2967 the cached table and re-reads only the entry for that section from
2968 the target (whenever possible).
2969 */
2970
2971 /* Cached, dynamically allocated copies of the target data structures: */
2972 static unsigned (*cache_ovly_table)[4] = 0;
2973 #if 0
2974 static unsigned (*cache_ovly_region_table)[3] = 0;
2975 #endif
2976 static unsigned cache_novlys = 0;
2977 #if 0
2978 static unsigned cache_novly_regions = 0;
2979 #endif
2980 static CORE_ADDR cache_ovly_table_base = 0;
2981 #if 0
2982 static CORE_ADDR cache_ovly_region_table_base = 0;
2983 #endif
2984 enum ovly_index
2985 {
2986 VMA, SIZE, LMA, MAPPED
2987 };
2988 #define TARGET_LONG_BYTES (TARGET_LONG_BIT / TARGET_CHAR_BIT)
2989
2990 /* Throw away the cached copy of _ovly_table */
2991 static void
2992 simple_free_overlay_table (void)
2993 {
2994 if (cache_ovly_table)
2995 xfree (cache_ovly_table);
2996 cache_novlys = 0;
2997 cache_ovly_table = NULL;
2998 cache_ovly_table_base = 0;
2999 }
3000
3001 #if 0
3002 /* Throw away the cached copy of _ovly_region_table */
3003 static void
3004 simple_free_overlay_region_table (void)
3005 {
3006 if (cache_ovly_region_table)
3007 xfree (cache_ovly_region_table);
3008 cache_novly_regions = 0;
3009 cache_ovly_region_table = NULL;
3010 cache_ovly_region_table_base = 0;
3011 }
3012 #endif
3013
3014 /* Read an array of ints from the target into a local buffer.
3015 Convert to host order. int LEN is number of ints */
3016 static void
3017 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr, int len)
3018 {
3019 /* FIXME (alloca): Not safe if array is very large. */
3020 char *buf = alloca (len * TARGET_LONG_BYTES);
3021 int i;
3022
3023 read_memory (memaddr, buf, len * TARGET_LONG_BYTES);
3024 for (i = 0; i < len; i++)
3025 myaddr[i] = extract_unsigned_integer (TARGET_LONG_BYTES * i + buf,
3026 TARGET_LONG_BYTES);
3027 }
3028
3029 /* Find and grab a copy of the target _ovly_table
3030 (and _novlys, which is needed for the table's size) */
3031 static int
3032 simple_read_overlay_table (void)
3033 {
3034 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3035
3036 simple_free_overlay_table ();
3037 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3038 if (! novlys_msym)
3039 {
3040 error ("Error reading inferior's overlay table: "
3041 "couldn't find `_novlys' variable\n"
3042 "in inferior. Use `overlay manual' mode.");
3043 return 0;
3044 }
3045
3046 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3047 if (! ovly_table_msym)
3048 {
3049 error ("Error reading inferior's overlay table: couldn't find "
3050 "`_ovly_table' array\n"
3051 "in inferior. Use `overlay manual' mode.");
3052 return 0;
3053 }
3054
3055 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym), 4);
3056 cache_ovly_table
3057 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3058 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3059 read_target_long_array (cache_ovly_table_base,
3060 (int *) cache_ovly_table,
3061 cache_novlys * 4);
3062
3063 return 1; /* SUCCESS */
3064 }
3065
3066 #if 0
3067 /* Find and grab a copy of the target _ovly_region_table
3068 (and _novly_regions, which is needed for the table's size) */
3069 static int
3070 simple_read_overlay_region_table (void)
3071 {
3072 struct minimal_symbol *msym;
3073
3074 simple_free_overlay_region_table ();
3075 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3076 if (msym != NULL)
3077 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym), 4);
3078 else
3079 return 0; /* failure */
3080 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3081 if (cache_ovly_region_table != NULL)
3082 {
3083 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3084 if (msym != NULL)
3085 {
3086 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3087 read_target_long_array (cache_ovly_region_table_base,
3088 (int *) cache_ovly_region_table,
3089 cache_novly_regions * 3);
3090 }
3091 else
3092 return 0; /* failure */
3093 }
3094 else
3095 return 0; /* failure */
3096 return 1; /* SUCCESS */
3097 }
3098 #endif
3099
3100 /* Function: simple_overlay_update_1
3101 A helper function for simple_overlay_update. Assuming a cached copy
3102 of _ovly_table exists, look through it to find an entry whose vma,
3103 lma and size match those of OSECT. Re-read the entry and make sure
3104 it still matches OSECT (else the table may no longer be valid).
3105 Set OSECT's mapped state to match the entry. Return: 1 for
3106 success, 0 for failure. */
3107
3108 static int
3109 simple_overlay_update_1 (struct obj_section *osect)
3110 {
3111 int i, size;
3112
3113 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3114 for (i = 0; i < cache_novlys; i++)
3115 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3116 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3117 cache_ovly_table[i][SIZE] == size */ )
3118 {
3119 read_target_long_array (cache_ovly_table_base + i * TARGET_LONG_BYTES,
3120 (int *) cache_ovly_table[i], 4);
3121 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3122 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3123 cache_ovly_table[i][SIZE] == size */ )
3124 {
3125 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3126 return 1;
3127 }
3128 else /* Warning! Warning! Target's ovly table has changed! */
3129 return 0;
3130 }
3131 return 0;
3132 }
3133
3134 /* Function: simple_overlay_update
3135 If OSECT is NULL, then update all sections' mapped state
3136 (after re-reading the entire target _ovly_table).
3137 If OSECT is non-NULL, then try to find a matching entry in the
3138 cached ovly_table and update only OSECT's mapped state.
3139 If a cached entry can't be found or the cache isn't valid, then
3140 re-read the entire cache, and go ahead and update all sections. */
3141
3142 static void
3143 simple_overlay_update (struct obj_section *osect)
3144 {
3145 struct objfile *objfile;
3146
3147 /* Were we given an osect to look up? NULL means do all of them. */
3148 if (osect)
3149 /* Have we got a cached copy of the target's overlay table? */
3150 if (cache_ovly_table != NULL)
3151 /* Does its cached location match what's currently in the symtab? */
3152 if (cache_ovly_table_base ==
3153 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3154 /* Then go ahead and try to look up this single section in the cache */
3155 if (simple_overlay_update_1 (osect))
3156 /* Found it! We're done. */
3157 return;
3158
3159 /* Cached table no good: need to read the entire table anew.
3160 Or else we want all the sections, in which case it's actually
3161 more efficient to read the whole table in one block anyway. */
3162
3163 if (! simple_read_overlay_table ())
3164 return;
3165
3166 /* Now may as well update all sections, even if only one was requested. */
3167 ALL_OBJSECTIONS (objfile, osect)
3168 if (section_is_overlay (osect->the_bfd_section))
3169 {
3170 int i, size;
3171
3172 size = bfd_get_section_size_before_reloc (osect->the_bfd_section);
3173 for (i = 0; i < cache_novlys; i++)
3174 if (cache_ovly_table[i][VMA] == osect->the_bfd_section->vma &&
3175 cache_ovly_table[i][LMA] == osect->the_bfd_section->lma /* &&
3176 cache_ovly_table[i][SIZE] == size */ )
3177 { /* obj_section matches i'th entry in ovly_table */
3178 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3179 break; /* finished with inner for loop: break out */
3180 }
3181 }
3182 }
3183
3184
3185 void
3186 _initialize_symfile (void)
3187 {
3188 struct cmd_list_element *c;
3189
3190 c = add_cmd ("symbol-file", class_files, symbol_file_command,
3191 "Load symbol table from executable file FILE.\n\
3192 The `file' command can also load symbol tables, as well as setting the file\n\
3193 to execute.", &cmdlist);
3194 c->completer = filename_completer;
3195
3196 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command,
3197 "Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3198 Load the symbols from FILE, assuming FILE has been dynamically loaded.\n\
3199 ADDR is the starting address of the file's text.\n\
3200 The optional arguments are section-name section-address pairs and\n\
3201 should be specified if the data and bss segments are not contiguous\n\
3202 with the text. SECT is a section name to be loaded at SECT_ADDR.",
3203 &cmdlist);
3204 c->completer = filename_completer;
3205
3206 c = add_cmd ("add-shared-symbol-files", class_files,
3207 add_shared_symbol_files_command,
3208 "Load the symbols from shared objects in the dynamic linker's link map.",
3209 &cmdlist);
3210 c = add_alias_cmd ("assf", "add-shared-symbol-files", class_files, 1,
3211 &cmdlist);
3212
3213 c = add_cmd ("load", class_files, load_command,
3214 "Dynamically load FILE into the running program, and record its symbols\n\
3215 for access from GDB.", &cmdlist);
3216 c->completer = filename_completer;
3217
3218 add_show_from_set
3219 (add_set_cmd ("symbol-reloading", class_support, var_boolean,
3220 (char *) &symbol_reloading,
3221 "Set dynamic symbol table reloading multiple times in one run.",
3222 &setlist),
3223 &showlist);
3224
3225 add_prefix_cmd ("overlay", class_support, overlay_command,
3226 "Commands for debugging overlays.", &overlaylist,
3227 "overlay ", 0, &cmdlist);
3228
3229 add_com_alias ("ovly", "overlay", class_alias, 1);
3230 add_com_alias ("ov", "overlay", class_alias, 1);
3231
3232 add_cmd ("map-overlay", class_support, map_overlay_command,
3233 "Assert that an overlay section is mapped.", &overlaylist);
3234
3235 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3236 "Assert that an overlay section is unmapped.", &overlaylist);
3237
3238 add_cmd ("list-overlays", class_support, list_overlays_command,
3239 "List mappings of overlay sections.", &overlaylist);
3240
3241 add_cmd ("manual", class_support, overlay_manual_command,
3242 "Enable overlay debugging.", &overlaylist);
3243 add_cmd ("off", class_support, overlay_off_command,
3244 "Disable overlay debugging.", &overlaylist);
3245 add_cmd ("auto", class_support, overlay_auto_command,
3246 "Enable automatic overlay debugging.", &overlaylist);
3247 add_cmd ("load-target", class_support, overlay_load_command,
3248 "Read the overlay mapping state from the target.", &overlaylist);
3249
3250 /* Filename extension to source language lookup table: */
3251 init_filename_language_table ();
3252 c = add_set_cmd ("extension-language", class_files, var_string_noescape,
3253 (char *) &ext_args,
3254 "Set mapping between filename extension and source language.\n\
3255 Usage: set extension-language .foo bar",
3256 &setlist);
3257 c->function.cfunc = set_ext_lang_command;
3258
3259 add_info ("extensions", info_ext_lang_command,
3260 "All filename extensions associated with a source language.");
3261
3262 add_show_from_set
3263 (add_set_cmd ("download-write-size", class_obscure,
3264 var_integer, (char *) &download_write_size,
3265 "Set the write size used when downloading a program.\n"
3266 "Only used when downloading a program onto a remote\n"
3267 "target. Specify zero, or a negative value, to disable\n"
3268 "blocked writes. The actual size of each transfer is also\n"
3269 "limited by the size of the target packet and the memory\n"
3270 "cache.\n",
3271 &setlist),
3272 &showlist);
3273 }