symtab.c (lookup_symbol_aux_quick): Set block_found upon success.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Prototypes for local functions */
65
66 static void rbreak_command (char *, int);
67
68 static void types_info (char *, int);
69
70 static void functions_info (char *, int);
71
72 static void variables_info (char *, int);
73
74 static void sources_info (char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct symbol *lookup_symbol_aux (const char *name,
79 const struct block *block,
80 const domain_enum domain,
81 enum language language,
82 struct field_of_this_result *is_a_field_of_this);
83
84 static
85 struct symbol *lookup_symbol_aux_local (const char *name,
86 const struct block *block,
87 const domain_enum domain,
88 enum language language);
89
90 static
91 struct symbol *lookup_symbol_aux_symtabs (int block_index,
92 const char *name,
93 const domain_enum domain);
94
95 static
96 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
97 int block_index,
98 const char *name,
99 const domain_enum domain);
100
101 void _initialize_symtab (void);
102
103 /* */
104
105 /* Program space key for finding name and language of "main". */
106
107 static const struct program_space_data *main_progspace_key;
108
109 /* Type of the data stored on the program space. */
110
111 struct main_info
112 {
113 /* Name of "main". */
114
115 char *name_of_main;
116
117 /* Language of "main". */
118
119 enum language language_of_main;
120 };
121
122 /* When non-zero, print debugging messages related to symtab creation. */
123 unsigned int symtab_create_debug = 0;
124
125 /* Non-zero if a file may be known by two different basenames.
126 This is the uncommon case, and significantly slows down gdb.
127 Default set to "off" to not slow down the common case. */
128 int basenames_may_differ = 0;
129
130 /* Allow the user to configure the debugger behavior with respect
131 to multiple-choice menus when more than one symbol matches during
132 a symbol lookup. */
133
134 const char multiple_symbols_ask[] = "ask";
135 const char multiple_symbols_all[] = "all";
136 const char multiple_symbols_cancel[] = "cancel";
137 static const char *const multiple_symbols_modes[] =
138 {
139 multiple_symbols_ask,
140 multiple_symbols_all,
141 multiple_symbols_cancel,
142 NULL
143 };
144 static const char *multiple_symbols_mode = multiple_symbols_all;
145
146 /* Read-only accessor to AUTO_SELECT_MODE. */
147
148 const char *
149 multiple_symbols_select_mode (void)
150 {
151 return multiple_symbols_mode;
152 }
153
154 /* Block in which the most recently searched-for symbol was found.
155 Might be better to make this a parameter to lookup_symbol and
156 value_of_this. */
157
158 const struct block *block_found;
159
160 /* Return the name of a domain_enum. */
161
162 const char *
163 domain_name (domain_enum e)
164 {
165 switch (e)
166 {
167 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
168 case VAR_DOMAIN: return "VAR_DOMAIN";
169 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
170 case LABEL_DOMAIN: return "LABEL_DOMAIN";
171 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
172 default: gdb_assert_not_reached ("bad domain_enum");
173 }
174 }
175
176 /* Return the name of a search_domain . */
177
178 const char *
179 search_domain_name (enum search_domain e)
180 {
181 switch (e)
182 {
183 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
184 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
185 case TYPES_DOMAIN: return "TYPES_DOMAIN";
186 case ALL_DOMAIN: return "ALL_DOMAIN";
187 default: gdb_assert_not_reached ("bad search_domain");
188 }
189 }
190
191 /* Set the primary field in SYMTAB. */
192
193 void
194 set_symtab_primary (struct symtab *symtab, int primary)
195 {
196 symtab->primary = primary;
197
198 if (symtab_create_debug && primary)
199 {
200 fprintf_unfiltered (gdb_stdlog,
201 "Created primary symtab %s for %s.\n",
202 host_address_to_string (symtab),
203 symtab_to_filename_for_display (symtab));
204 }
205 }
206
207 /* See whether FILENAME matches SEARCH_NAME using the rule that we
208 advertise to the user. (The manual's description of linespecs
209 describes what we advertise). Returns true if they match, false
210 otherwise. */
211
212 int
213 compare_filenames_for_search (const char *filename, const char *search_name)
214 {
215 int len = strlen (filename);
216 size_t search_len = strlen (search_name);
217
218 if (len < search_len)
219 return 0;
220
221 /* The tail of FILENAME must match. */
222 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
223 return 0;
224
225 /* Either the names must completely match, or the character
226 preceding the trailing SEARCH_NAME segment of FILENAME must be a
227 directory separator.
228
229 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
230 cannot match FILENAME "/path//dir/file.c" - as user has requested
231 absolute path. The sama applies for "c:\file.c" possibly
232 incorrectly hypothetically matching "d:\dir\c:\file.c".
233
234 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
235 compatible with SEARCH_NAME "file.c". In such case a compiler had
236 to put the "c:file.c" name into debug info. Such compatibility
237 works only on GDB built for DOS host. */
238 return (len == search_len
239 || (!IS_ABSOLUTE_PATH (search_name)
240 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
241 || (HAS_DRIVE_SPEC (filename)
242 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
243 }
244
245 /* Check for a symtab of a specific name by searching some symtabs.
246 This is a helper function for callbacks of iterate_over_symtabs.
247
248 If NAME is not absolute, then REAL_PATH is NULL
249 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
250
251 The return value, NAME, REAL_PATH, CALLBACK, and DATA
252 are identical to the `map_symtabs_matching_filename' method of
253 quick_symbol_functions.
254
255 FIRST and AFTER_LAST indicate the range of symtabs to search.
256 AFTER_LAST is one past the last symtab to search; NULL means to
257 search until the end of the list. */
258
259 int
260 iterate_over_some_symtabs (const char *name,
261 const char *real_path,
262 int (*callback) (struct symtab *symtab,
263 void *data),
264 void *data,
265 struct symtab *first,
266 struct symtab *after_last)
267 {
268 struct symtab *s = NULL;
269 const char* base_name = lbasename (name);
270
271 for (s = first; s != NULL && s != after_last; s = s->next)
272 {
273 if (compare_filenames_for_search (s->filename, name))
274 {
275 if (callback (s, data))
276 return 1;
277 continue;
278 }
279
280 /* Before we invoke realpath, which can get expensive when many
281 files are involved, do a quick comparison of the basenames. */
282 if (! basenames_may_differ
283 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
284 continue;
285
286 if (compare_filenames_for_search (symtab_to_fullname (s), name))
287 {
288 if (callback (s, data))
289 return 1;
290 continue;
291 }
292
293 /* If the user gave us an absolute path, try to find the file in
294 this symtab and use its absolute path. */
295 if (real_path != NULL)
296 {
297 const char *fullname = symtab_to_fullname (s);
298
299 gdb_assert (IS_ABSOLUTE_PATH (real_path));
300 gdb_assert (IS_ABSOLUTE_PATH (name));
301 if (FILENAME_CMP (real_path, fullname) == 0)
302 {
303 if (callback (s, data))
304 return 1;
305 continue;
306 }
307 }
308 }
309
310 return 0;
311 }
312
313 /* Check for a symtab of a specific name; first in symtabs, then in
314 psymtabs. *If* there is no '/' in the name, a match after a '/'
315 in the symtab filename will also work.
316
317 Calls CALLBACK with each symtab that is found and with the supplied
318 DATA. If CALLBACK returns true, the search stops. */
319
320 void
321 iterate_over_symtabs (const char *name,
322 int (*callback) (struct symtab *symtab,
323 void *data),
324 void *data)
325 {
326 struct objfile *objfile;
327 char *real_path = NULL;
328 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
329
330 /* Here we are interested in canonicalizing an absolute path, not
331 absolutizing a relative path. */
332 if (IS_ABSOLUTE_PATH (name))
333 {
334 real_path = gdb_realpath (name);
335 make_cleanup (xfree, real_path);
336 gdb_assert (IS_ABSOLUTE_PATH (real_path));
337 }
338
339 ALL_OBJFILES (objfile)
340 {
341 if (iterate_over_some_symtabs (name, real_path, callback, data,
342 objfile->symtabs, NULL))
343 {
344 do_cleanups (cleanups);
345 return;
346 }
347 }
348
349 /* Same search rules as above apply here, but now we look thru the
350 psymtabs. */
351
352 ALL_OBJFILES (objfile)
353 {
354 if (objfile->sf
355 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
356 name,
357 real_path,
358 callback,
359 data))
360 {
361 do_cleanups (cleanups);
362 return;
363 }
364 }
365
366 do_cleanups (cleanups);
367 }
368
369 /* The callback function used by lookup_symtab. */
370
371 static int
372 lookup_symtab_callback (struct symtab *symtab, void *data)
373 {
374 struct symtab **result_ptr = data;
375
376 *result_ptr = symtab;
377 return 1;
378 }
379
380 /* A wrapper for iterate_over_symtabs that returns the first matching
381 symtab, or NULL. */
382
383 struct symtab *
384 lookup_symtab (const char *name)
385 {
386 struct symtab *result = NULL;
387
388 iterate_over_symtabs (name, lookup_symtab_callback, &result);
389 return result;
390 }
391
392 \f
393 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
394 full method name, which consist of the class name (from T), the unadorned
395 method name from METHOD_ID, and the signature for the specific overload,
396 specified by SIGNATURE_ID. Note that this function is g++ specific. */
397
398 char *
399 gdb_mangle_name (struct type *type, int method_id, int signature_id)
400 {
401 int mangled_name_len;
402 char *mangled_name;
403 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
404 struct fn_field *method = &f[signature_id];
405 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
406 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
407 const char *newname = type_name_no_tag (type);
408
409 /* Does the form of physname indicate that it is the full mangled name
410 of a constructor (not just the args)? */
411 int is_full_physname_constructor;
412
413 int is_constructor;
414 int is_destructor = is_destructor_name (physname);
415 /* Need a new type prefix. */
416 char *const_prefix = method->is_const ? "C" : "";
417 char *volatile_prefix = method->is_volatile ? "V" : "";
418 char buf[20];
419 int len = (newname == NULL ? 0 : strlen (newname));
420
421 /* Nothing to do if physname already contains a fully mangled v3 abi name
422 or an operator name. */
423 if ((physname[0] == '_' && physname[1] == 'Z')
424 || is_operator_name (field_name))
425 return xstrdup (physname);
426
427 is_full_physname_constructor = is_constructor_name (physname);
428
429 is_constructor = is_full_physname_constructor
430 || (newname && strcmp (field_name, newname) == 0);
431
432 if (!is_destructor)
433 is_destructor = (strncmp (physname, "__dt", 4) == 0);
434
435 if (is_destructor || is_full_physname_constructor)
436 {
437 mangled_name = (char *) xmalloc (strlen (physname) + 1);
438 strcpy (mangled_name, physname);
439 return mangled_name;
440 }
441
442 if (len == 0)
443 {
444 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
445 }
446 else if (physname[0] == 't' || physname[0] == 'Q')
447 {
448 /* The physname for template and qualified methods already includes
449 the class name. */
450 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
451 newname = NULL;
452 len = 0;
453 }
454 else
455 {
456 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
457 volatile_prefix, len);
458 }
459 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
460 + strlen (buf) + len + strlen (physname) + 1);
461
462 mangled_name = (char *) xmalloc (mangled_name_len);
463 if (is_constructor)
464 mangled_name[0] = '\0';
465 else
466 strcpy (mangled_name, field_name);
467
468 strcat (mangled_name, buf);
469 /* If the class doesn't have a name, i.e. newname NULL, then we just
470 mangle it using 0 for the length of the class. Thus it gets mangled
471 as something starting with `::' rather than `classname::'. */
472 if (newname != NULL)
473 strcat (mangled_name, newname);
474
475 strcat (mangled_name, physname);
476 return (mangled_name);
477 }
478
479 /* Initialize the cplus_specific structure. 'cplus_specific' should
480 only be allocated for use with cplus symbols. */
481
482 static void
483 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
484 struct obstack *obstack)
485 {
486 /* A language_specific structure should not have been previously
487 initialized. */
488 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
489 gdb_assert (obstack != NULL);
490
491 gsymbol->language_specific.cplus_specific =
492 OBSTACK_ZALLOC (obstack, struct cplus_specific);
493 }
494
495 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
496 correctly allocated. For C++ symbols a cplus_specific struct is
497 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
498 OBJFILE can be NULL. */
499
500 void
501 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
502 const char *name,
503 struct obstack *obstack)
504 {
505 if (gsymbol->language == language_cplus)
506 {
507 if (gsymbol->language_specific.cplus_specific == NULL)
508 symbol_init_cplus_specific (gsymbol, obstack);
509
510 gsymbol->language_specific.cplus_specific->demangled_name = name;
511 }
512 else if (gsymbol->language == language_ada)
513 {
514 if (name == NULL)
515 {
516 gsymbol->ada_mangled = 0;
517 gsymbol->language_specific.obstack = obstack;
518 }
519 else
520 {
521 gsymbol->ada_mangled = 1;
522 gsymbol->language_specific.mangled_lang.demangled_name = name;
523 }
524 }
525 else
526 gsymbol->language_specific.mangled_lang.demangled_name = name;
527 }
528
529 /* Return the demangled name of GSYMBOL. */
530
531 const char *
532 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
533 {
534 if (gsymbol->language == language_cplus)
535 {
536 if (gsymbol->language_specific.cplus_specific != NULL)
537 return gsymbol->language_specific.cplus_specific->demangled_name;
538 else
539 return NULL;
540 }
541 else if (gsymbol->language == language_ada)
542 {
543 if (!gsymbol->ada_mangled)
544 return NULL;
545 /* Fall through. */
546 }
547
548 return gsymbol->language_specific.mangled_lang.demangled_name;
549 }
550
551 \f
552 /* Initialize the language dependent portion of a symbol
553 depending upon the language for the symbol. */
554
555 void
556 symbol_set_language (struct general_symbol_info *gsymbol,
557 enum language language,
558 struct obstack *obstack)
559 {
560 gsymbol->language = language;
561 if (gsymbol->language == language_d
562 || gsymbol->language == language_go
563 || gsymbol->language == language_java
564 || gsymbol->language == language_objc
565 || gsymbol->language == language_fortran)
566 {
567 symbol_set_demangled_name (gsymbol, NULL, obstack);
568 }
569 else if (gsymbol->language == language_ada)
570 {
571 gdb_assert (gsymbol->ada_mangled == 0);
572 gsymbol->language_specific.obstack = obstack;
573 }
574 else if (gsymbol->language == language_cplus)
575 gsymbol->language_specific.cplus_specific = NULL;
576 else
577 {
578 memset (&gsymbol->language_specific, 0,
579 sizeof (gsymbol->language_specific));
580 }
581 }
582
583 /* Functions to initialize a symbol's mangled name. */
584
585 /* Objects of this type are stored in the demangled name hash table. */
586 struct demangled_name_entry
587 {
588 const char *mangled;
589 char demangled[1];
590 };
591
592 /* Hash function for the demangled name hash. */
593
594 static hashval_t
595 hash_demangled_name_entry (const void *data)
596 {
597 const struct demangled_name_entry *e = data;
598
599 return htab_hash_string (e->mangled);
600 }
601
602 /* Equality function for the demangled name hash. */
603
604 static int
605 eq_demangled_name_entry (const void *a, const void *b)
606 {
607 const struct demangled_name_entry *da = a;
608 const struct demangled_name_entry *db = b;
609
610 return strcmp (da->mangled, db->mangled) == 0;
611 }
612
613 /* Create the hash table used for demangled names. Each hash entry is
614 a pair of strings; one for the mangled name and one for the demangled
615 name. The entry is hashed via just the mangled name. */
616
617 static void
618 create_demangled_names_hash (struct objfile *objfile)
619 {
620 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
621 The hash table code will round this up to the next prime number.
622 Choosing a much larger table size wastes memory, and saves only about
623 1% in symbol reading. */
624
625 objfile->per_bfd->demangled_names_hash = htab_create_alloc
626 (256, hash_demangled_name_entry, eq_demangled_name_entry,
627 NULL, xcalloc, xfree);
628 }
629
630 /* Try to determine the demangled name for a symbol, based on the
631 language of that symbol. If the language is set to language_auto,
632 it will attempt to find any demangling algorithm that works and
633 then set the language appropriately. The returned name is allocated
634 by the demangler and should be xfree'd. */
635
636 static char *
637 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
638 const char *mangled)
639 {
640 char *demangled = NULL;
641
642 if (gsymbol->language == language_unknown)
643 gsymbol->language = language_auto;
644
645 if (gsymbol->language == language_objc
646 || gsymbol->language == language_auto)
647 {
648 demangled =
649 objc_demangle (mangled, 0);
650 if (demangled != NULL)
651 {
652 gsymbol->language = language_objc;
653 return demangled;
654 }
655 }
656 if (gsymbol->language == language_cplus
657 || gsymbol->language == language_auto)
658 {
659 demangled =
660 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
661 if (demangled != NULL)
662 {
663 gsymbol->language = language_cplus;
664 return demangled;
665 }
666 }
667 if (gsymbol->language == language_java)
668 {
669 demangled =
670 gdb_demangle (mangled,
671 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_java;
675 return demangled;
676 }
677 }
678 if (gsymbol->language == language_d
679 || gsymbol->language == language_auto)
680 {
681 demangled = d_demangle(mangled, 0);
682 if (demangled != NULL)
683 {
684 gsymbol->language = language_d;
685 return demangled;
686 }
687 }
688 /* FIXME(dje): Continually adding languages here is clumsy.
689 Better to just call la_demangle if !auto, and if auto then call
690 a utility routine that tries successive languages in turn and reports
691 which one it finds. I realize the la_demangle options may be different
692 for different languages but there's already a FIXME for that. */
693 if (gsymbol->language == language_go
694 || gsymbol->language == language_auto)
695 {
696 demangled = go_demangle (mangled, 0);
697 if (demangled != NULL)
698 {
699 gsymbol->language = language_go;
700 return demangled;
701 }
702 }
703
704 /* We could support `gsymbol->language == language_fortran' here to provide
705 module namespaces also for inferiors with only minimal symbol table (ELF
706 symbols). Just the mangling standard is not standardized across compilers
707 and there is no DW_AT_producer available for inferiors with only the ELF
708 symbols to check the mangling kind. */
709
710 /* Check for Ada symbols last. See comment below explaining why. */
711
712 if (gsymbol->language == language_auto)
713 {
714 const char *demangled = ada_decode (mangled);
715
716 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
717 {
718 /* Set the gsymbol language to Ada, but still return NULL.
719 Two reasons for that:
720
721 1. For Ada, we prefer computing the symbol's decoded name
722 on the fly rather than pre-compute it, in order to save
723 memory (Ada projects are typically very large).
724
725 2. There are some areas in the definition of the GNAT
726 encoding where, with a bit of bad luck, we might be able
727 to decode a non-Ada symbol, generating an incorrect
728 demangled name (Eg: names ending with "TB" for instance
729 are identified as task bodies and so stripped from
730 the decoded name returned).
731
732 Returning NULL, here, helps us get a little bit of
733 the best of both worlds. Because we're last, we should
734 not affect any of the other languages that were able to
735 demangle the symbol before us; we get to correctly tag
736 Ada symbols as such; and even if we incorrectly tagged
737 a non-Ada symbol, which should be rare, any routing
738 through the Ada language should be transparent (Ada
739 tries to behave much like C/C++ with non-Ada symbols). */
740 gsymbol->language = language_ada;
741 return NULL;
742 }
743 }
744
745 return NULL;
746 }
747
748 /* Set both the mangled and demangled (if any) names for GSYMBOL based
749 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
750 objfile's obstack; but if COPY_NAME is 0 and if NAME is
751 NUL-terminated, then this function assumes that NAME is already
752 correctly saved (either permanently or with a lifetime tied to the
753 objfile), and it will not be copied.
754
755 The hash table corresponding to OBJFILE is used, and the memory
756 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
757 so the pointer can be discarded after calling this function. */
758
759 /* We have to be careful when dealing with Java names: when we run
760 into a Java minimal symbol, we don't know it's a Java symbol, so it
761 gets demangled as a C++ name. This is unfortunate, but there's not
762 much we can do about it: but when demangling partial symbols and
763 regular symbols, we'd better not reuse the wrong demangled name.
764 (See PR gdb/1039.) We solve this by putting a distinctive prefix
765 on Java names when storing them in the hash table. */
766
767 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
768 don't mind the Java prefix so much: different languages have
769 different demangling requirements, so it's only natural that we
770 need to keep language data around in our demangling cache. But
771 it's not good that the minimal symbol has the wrong demangled name.
772 Unfortunately, I can't think of any easy solution to that
773 problem. */
774
775 #define JAVA_PREFIX "##JAVA$$"
776 #define JAVA_PREFIX_LEN 8
777
778 void
779 symbol_set_names (struct general_symbol_info *gsymbol,
780 const char *linkage_name, int len, int copy_name,
781 struct objfile *objfile)
782 {
783 struct demangled_name_entry **slot;
784 /* A 0-terminated copy of the linkage name. */
785 const char *linkage_name_copy;
786 /* A copy of the linkage name that might have a special Java prefix
787 added to it, for use when looking names up in the hash table. */
788 const char *lookup_name;
789 /* The length of lookup_name. */
790 int lookup_len;
791 struct demangled_name_entry entry;
792 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
793
794 if (gsymbol->language == language_ada)
795 {
796 /* In Ada, we do the symbol lookups using the mangled name, so
797 we can save some space by not storing the demangled name.
798
799 As a side note, we have also observed some overlap between
800 the C++ mangling and Ada mangling, similarly to what has
801 been observed with Java. Because we don't store the demangled
802 name with the symbol, we don't need to use the same trick
803 as Java. */
804 if (!copy_name)
805 gsymbol->name = linkage_name;
806 else
807 {
808 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
809
810 memcpy (name, linkage_name, len);
811 name[len] = '\0';
812 gsymbol->name = name;
813 }
814 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
815
816 return;
817 }
818
819 if (per_bfd->demangled_names_hash == NULL)
820 create_demangled_names_hash (objfile);
821
822 /* The stabs reader generally provides names that are not
823 NUL-terminated; most of the other readers don't do this, so we
824 can just use the given copy, unless we're in the Java case. */
825 if (gsymbol->language == language_java)
826 {
827 char *alloc_name;
828
829 lookup_len = len + JAVA_PREFIX_LEN;
830 alloc_name = alloca (lookup_len + 1);
831 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
832 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
833 alloc_name[lookup_len] = '\0';
834
835 lookup_name = alloc_name;
836 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
837 }
838 else if (linkage_name[len] != '\0')
839 {
840 char *alloc_name;
841
842 lookup_len = len;
843 alloc_name = alloca (lookup_len + 1);
844 memcpy (alloc_name, linkage_name, len);
845 alloc_name[lookup_len] = '\0';
846
847 lookup_name = alloc_name;
848 linkage_name_copy = alloc_name;
849 }
850 else
851 {
852 lookup_len = len;
853 lookup_name = linkage_name;
854 linkage_name_copy = linkage_name;
855 }
856
857 entry.mangled = lookup_name;
858 slot = ((struct demangled_name_entry **)
859 htab_find_slot (per_bfd->demangled_names_hash,
860 &entry, INSERT));
861
862 /* If this name is not in the hash table, add it. */
863 if (*slot == NULL
864 /* A C version of the symbol may have already snuck into the table.
865 This happens to, e.g., main.init (__go_init_main). Cope. */
866 || (gsymbol->language == language_go
867 && (*slot)->demangled[0] == '\0'))
868 {
869 char *demangled_name = symbol_find_demangled_name (gsymbol,
870 linkage_name_copy);
871 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
872
873 /* Suppose we have demangled_name==NULL, copy_name==0, and
874 lookup_name==linkage_name. In this case, we already have the
875 mangled name saved, and we don't have a demangled name. So,
876 you might think we could save a little space by not recording
877 this in the hash table at all.
878
879 It turns out that it is actually important to still save such
880 an entry in the hash table, because storing this name gives
881 us better bcache hit rates for partial symbols. */
882 if (!copy_name && lookup_name == linkage_name)
883 {
884 *slot = obstack_alloc (&per_bfd->storage_obstack,
885 offsetof (struct demangled_name_entry,
886 demangled)
887 + demangled_len + 1);
888 (*slot)->mangled = lookup_name;
889 }
890 else
891 {
892 char *mangled_ptr;
893
894 /* If we must copy the mangled name, put it directly after
895 the demangled name so we can have a single
896 allocation. */
897 *slot = obstack_alloc (&per_bfd->storage_obstack,
898 offsetof (struct demangled_name_entry,
899 demangled)
900 + lookup_len + demangled_len + 2);
901 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
902 strcpy (mangled_ptr, lookup_name);
903 (*slot)->mangled = mangled_ptr;
904 }
905
906 if (demangled_name != NULL)
907 {
908 strcpy ((*slot)->demangled, demangled_name);
909 xfree (demangled_name);
910 }
911 else
912 (*slot)->demangled[0] = '\0';
913 }
914
915 gsymbol->name = (*slot)->mangled + lookup_len - len;
916 if ((*slot)->demangled[0] != '\0')
917 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
918 &per_bfd->storage_obstack);
919 else
920 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
921 }
922
923 /* Return the source code name of a symbol. In languages where
924 demangling is necessary, this is the demangled name. */
925
926 const char *
927 symbol_natural_name (const struct general_symbol_info *gsymbol)
928 {
929 switch (gsymbol->language)
930 {
931 case language_cplus:
932 case language_d:
933 case language_go:
934 case language_java:
935 case language_objc:
936 case language_fortran:
937 if (symbol_get_demangled_name (gsymbol) != NULL)
938 return symbol_get_demangled_name (gsymbol);
939 break;
940 case language_ada:
941 return ada_decode_symbol (gsymbol);
942 default:
943 break;
944 }
945 return gsymbol->name;
946 }
947
948 /* Return the demangled name for a symbol based on the language for
949 that symbol. If no demangled name exists, return NULL. */
950
951 const char *
952 symbol_demangled_name (const struct general_symbol_info *gsymbol)
953 {
954 const char *dem_name = NULL;
955
956 switch (gsymbol->language)
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_java:
962 case language_objc:
963 case language_fortran:
964 dem_name = symbol_get_demangled_name (gsymbol);
965 break;
966 case language_ada:
967 dem_name = ada_decode_symbol (gsymbol);
968 break;
969 default:
970 break;
971 }
972 return dem_name;
973 }
974
975 /* Return the search name of a symbol---generally the demangled or
976 linkage name of the symbol, depending on how it will be searched for.
977 If there is no distinct demangled name, then returns the same value
978 (same pointer) as SYMBOL_LINKAGE_NAME. */
979
980 const char *
981 symbol_search_name (const struct general_symbol_info *gsymbol)
982 {
983 if (gsymbol->language == language_ada)
984 return gsymbol->name;
985 else
986 return symbol_natural_name (gsymbol);
987 }
988
989 /* Initialize the structure fields to zero values. */
990
991 void
992 init_sal (struct symtab_and_line *sal)
993 {
994 memset (sal, 0, sizeof (*sal));
995 }
996 \f
997
998 /* Return 1 if the two sections are the same, or if they could
999 plausibly be copies of each other, one in an original object
1000 file and another in a separated debug file. */
1001
1002 int
1003 matching_obj_sections (struct obj_section *obj_first,
1004 struct obj_section *obj_second)
1005 {
1006 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1007 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1008 struct objfile *obj;
1009
1010 /* If they're the same section, then they match. */
1011 if (first == second)
1012 return 1;
1013
1014 /* If either is NULL, give up. */
1015 if (first == NULL || second == NULL)
1016 return 0;
1017
1018 /* This doesn't apply to absolute symbols. */
1019 if (first->owner == NULL || second->owner == NULL)
1020 return 0;
1021
1022 /* If they're in the same object file, they must be different sections. */
1023 if (first->owner == second->owner)
1024 return 0;
1025
1026 /* Check whether the two sections are potentially corresponding. They must
1027 have the same size, address, and name. We can't compare section indexes,
1028 which would be more reliable, because some sections may have been
1029 stripped. */
1030 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1031 return 0;
1032
1033 /* In-memory addresses may start at a different offset, relativize them. */
1034 if (bfd_get_section_vma (first->owner, first)
1035 - bfd_get_start_address (first->owner)
1036 != bfd_get_section_vma (second->owner, second)
1037 - bfd_get_start_address (second->owner))
1038 return 0;
1039
1040 if (bfd_get_section_name (first->owner, first) == NULL
1041 || bfd_get_section_name (second->owner, second) == NULL
1042 || strcmp (bfd_get_section_name (first->owner, first),
1043 bfd_get_section_name (second->owner, second)) != 0)
1044 return 0;
1045
1046 /* Otherwise check that they are in corresponding objfiles. */
1047
1048 ALL_OBJFILES (obj)
1049 if (obj->obfd == first->owner)
1050 break;
1051 gdb_assert (obj != NULL);
1052
1053 if (obj->separate_debug_objfile != NULL
1054 && obj->separate_debug_objfile->obfd == second->owner)
1055 return 1;
1056 if (obj->separate_debug_objfile_backlink != NULL
1057 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1058 return 1;
1059
1060 return 0;
1061 }
1062
1063 struct symtab *
1064 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1065 {
1066 struct objfile *objfile;
1067 struct bound_minimal_symbol msymbol;
1068
1069 /* If we know that this is not a text address, return failure. This is
1070 necessary because we loop based on texthigh and textlow, which do
1071 not include the data ranges. */
1072 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1073 if (msymbol.minsym
1074 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1075 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1076 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1077 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1078 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1079 return NULL;
1080
1081 ALL_OBJFILES (objfile)
1082 {
1083 struct symtab *result = NULL;
1084
1085 if (objfile->sf)
1086 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1087 pc, section, 0);
1088 if (result)
1089 return result;
1090 }
1091
1092 return NULL;
1093 }
1094 \f
1095 /* Debug symbols usually don't have section information. We need to dig that
1096 out of the minimal symbols and stash that in the debug symbol. */
1097
1098 void
1099 fixup_section (struct general_symbol_info *ginfo,
1100 CORE_ADDR addr, struct objfile *objfile)
1101 {
1102 struct minimal_symbol *msym;
1103
1104 /* First, check whether a minimal symbol with the same name exists
1105 and points to the same address. The address check is required
1106 e.g. on PowerPC64, where the minimal symbol for a function will
1107 point to the function descriptor, while the debug symbol will
1108 point to the actual function code. */
1109 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1110 if (msym)
1111 ginfo->section = MSYMBOL_SECTION (msym);
1112 else
1113 {
1114 /* Static, function-local variables do appear in the linker
1115 (minimal) symbols, but are frequently given names that won't
1116 be found via lookup_minimal_symbol(). E.g., it has been
1117 observed in frv-uclinux (ELF) executables that a static,
1118 function-local variable named "foo" might appear in the
1119 linker symbols as "foo.6" or "foo.3". Thus, there is no
1120 point in attempting to extend the lookup-by-name mechanism to
1121 handle this case due to the fact that there can be multiple
1122 names.
1123
1124 So, instead, search the section table when lookup by name has
1125 failed. The ``addr'' and ``endaddr'' fields may have already
1126 been relocated. If so, the relocation offset (i.e. the
1127 ANOFFSET value) needs to be subtracted from these values when
1128 performing the comparison. We unconditionally subtract it,
1129 because, when no relocation has been performed, the ANOFFSET
1130 value will simply be zero.
1131
1132 The address of the symbol whose section we're fixing up HAS
1133 NOT BEEN adjusted (relocated) yet. It can't have been since
1134 the section isn't yet known and knowing the section is
1135 necessary in order to add the correct relocation value. In
1136 other words, we wouldn't even be in this function (attempting
1137 to compute the section) if it were already known.
1138
1139 Note that it is possible to search the minimal symbols
1140 (subtracting the relocation value if necessary) to find the
1141 matching minimal symbol, but this is overkill and much less
1142 efficient. It is not necessary to find the matching minimal
1143 symbol, only its section.
1144
1145 Note that this technique (of doing a section table search)
1146 can fail when unrelocated section addresses overlap. For
1147 this reason, we still attempt a lookup by name prior to doing
1148 a search of the section table. */
1149
1150 struct obj_section *s;
1151 int fallback = -1;
1152
1153 ALL_OBJFILE_OSECTIONS (objfile, s)
1154 {
1155 int idx = s - objfile->sections;
1156 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1157
1158 if (fallback == -1)
1159 fallback = idx;
1160
1161 if (obj_section_addr (s) - offset <= addr
1162 && addr < obj_section_endaddr (s) - offset)
1163 {
1164 ginfo->section = idx;
1165 return;
1166 }
1167 }
1168
1169 /* If we didn't find the section, assume it is in the first
1170 section. If there is no allocated section, then it hardly
1171 matters what we pick, so just pick zero. */
1172 if (fallback == -1)
1173 ginfo->section = 0;
1174 else
1175 ginfo->section = fallback;
1176 }
1177 }
1178
1179 struct symbol *
1180 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1181 {
1182 CORE_ADDR addr;
1183
1184 if (!sym)
1185 return NULL;
1186
1187 /* We either have an OBJFILE, or we can get at it from the sym's
1188 symtab. Anything else is a bug. */
1189 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1190
1191 if (objfile == NULL)
1192 objfile = SYMBOL_SYMTAB (sym)->objfile;
1193
1194 if (SYMBOL_OBJ_SECTION (objfile, sym))
1195 return sym;
1196
1197 /* We should have an objfile by now. */
1198 gdb_assert (objfile);
1199
1200 switch (SYMBOL_CLASS (sym))
1201 {
1202 case LOC_STATIC:
1203 case LOC_LABEL:
1204 addr = SYMBOL_VALUE_ADDRESS (sym);
1205 break;
1206 case LOC_BLOCK:
1207 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1208 break;
1209
1210 default:
1211 /* Nothing else will be listed in the minsyms -- no use looking
1212 it up. */
1213 return sym;
1214 }
1215
1216 fixup_section (&sym->ginfo, addr, objfile);
1217
1218 return sym;
1219 }
1220
1221 /* Compute the demangled form of NAME as used by the various symbol
1222 lookup functions. The result is stored in *RESULT_NAME. Returns a
1223 cleanup which can be used to clean up the result.
1224
1225 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1226 Normally, Ada symbol lookups are performed using the encoded name
1227 rather than the demangled name, and so it might seem to make sense
1228 for this function to return an encoded version of NAME.
1229 Unfortunately, we cannot do this, because this function is used in
1230 circumstances where it is not appropriate to try to encode NAME.
1231 For instance, when displaying the frame info, we demangle the name
1232 of each parameter, and then perform a symbol lookup inside our
1233 function using that demangled name. In Ada, certain functions
1234 have internally-generated parameters whose name contain uppercase
1235 characters. Encoding those name would result in those uppercase
1236 characters to become lowercase, and thus cause the symbol lookup
1237 to fail. */
1238
1239 struct cleanup *
1240 demangle_for_lookup (const char *name, enum language lang,
1241 const char **result_name)
1242 {
1243 char *demangled_name = NULL;
1244 const char *modified_name = NULL;
1245 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1246
1247 modified_name = name;
1248
1249 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1250 lookup, so we can always binary search. */
1251 if (lang == language_cplus)
1252 {
1253 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 else
1260 {
1261 /* If we were given a non-mangled name, canonicalize it
1262 according to the language (so far only for C++). */
1263 demangled_name = cp_canonicalize_string (name);
1264 if (demangled_name)
1265 {
1266 modified_name = demangled_name;
1267 make_cleanup (xfree, demangled_name);
1268 }
1269 }
1270 }
1271 else if (lang == language_java)
1272 {
1273 demangled_name = gdb_demangle (name,
1274 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1275 if (demangled_name)
1276 {
1277 modified_name = demangled_name;
1278 make_cleanup (xfree, demangled_name);
1279 }
1280 }
1281 else if (lang == language_d)
1282 {
1283 demangled_name = d_demangle (name, 0);
1284 if (demangled_name)
1285 {
1286 modified_name = demangled_name;
1287 make_cleanup (xfree, demangled_name);
1288 }
1289 }
1290 else if (lang == language_go)
1291 {
1292 demangled_name = go_demangle (name, 0);
1293 if (demangled_name)
1294 {
1295 modified_name = demangled_name;
1296 make_cleanup (xfree, demangled_name);
1297 }
1298 }
1299
1300 *result_name = modified_name;
1301 return cleanup;
1302 }
1303
1304 /* Find the definition for a specified symbol name NAME
1305 in domain DOMAIN, visible from lexical block BLOCK.
1306 Returns the struct symbol pointer, or zero if no symbol is found.
1307 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1308 NAME is a field of the current implied argument `this'. If so set
1309 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1310 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1311 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1312
1313 /* This function (or rather its subordinates) have a bunch of loops and
1314 it would seem to be attractive to put in some QUIT's (though I'm not really
1315 sure whether it can run long enough to be really important). But there
1316 are a few calls for which it would appear to be bad news to quit
1317 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1318 that there is C++ code below which can error(), but that probably
1319 doesn't affect these calls since they are looking for a known
1320 variable and thus can probably assume it will never hit the C++
1321 code). */
1322
1323 struct symbol *
1324 lookup_symbol_in_language (const char *name, const struct block *block,
1325 const domain_enum domain, enum language lang,
1326 struct field_of_this_result *is_a_field_of_this)
1327 {
1328 const char *modified_name;
1329 struct symbol *returnval;
1330 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1331
1332 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1333 is_a_field_of_this);
1334 do_cleanups (cleanup);
1335
1336 return returnval;
1337 }
1338
1339 /* Behave like lookup_symbol_in_language, but performed with the
1340 current language. */
1341
1342 struct symbol *
1343 lookup_symbol (const char *name, const struct block *block,
1344 domain_enum domain,
1345 struct field_of_this_result *is_a_field_of_this)
1346 {
1347 return lookup_symbol_in_language (name, block, domain,
1348 current_language->la_language,
1349 is_a_field_of_this);
1350 }
1351
1352 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1353 found, or NULL if not found. */
1354
1355 struct symbol *
1356 lookup_language_this (const struct language_defn *lang,
1357 const struct block *block)
1358 {
1359 if (lang->la_name_of_this == NULL || block == NULL)
1360 return NULL;
1361
1362 while (block)
1363 {
1364 struct symbol *sym;
1365
1366 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1367 if (sym != NULL)
1368 {
1369 block_found = block;
1370 return sym;
1371 }
1372 if (BLOCK_FUNCTION (block))
1373 break;
1374 block = BLOCK_SUPERBLOCK (block);
1375 }
1376
1377 return NULL;
1378 }
1379
1380 /* Given TYPE, a structure/union,
1381 return 1 if the component named NAME from the ultimate target
1382 structure/union is defined, otherwise, return 0. */
1383
1384 static int
1385 check_field (struct type *type, const char *name,
1386 struct field_of_this_result *is_a_field_of_this)
1387 {
1388 int i;
1389
1390 /* The type may be a stub. */
1391 CHECK_TYPEDEF (type);
1392
1393 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1394 {
1395 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1396
1397 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1398 {
1399 is_a_field_of_this->type = type;
1400 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1401 return 1;
1402 }
1403 }
1404
1405 /* C++: If it was not found as a data field, then try to return it
1406 as a pointer to a method. */
1407
1408 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1409 {
1410 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1411 {
1412 is_a_field_of_this->type = type;
1413 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1414 return 1;
1415 }
1416 }
1417
1418 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1419 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1420 return 1;
1421
1422 return 0;
1423 }
1424
1425 /* Behave like lookup_symbol except that NAME is the natural name
1426 (e.g., demangled name) of the symbol that we're looking for. */
1427
1428 static struct symbol *
1429 lookup_symbol_aux (const char *name, const struct block *block,
1430 const domain_enum domain, enum language language,
1431 struct field_of_this_result *is_a_field_of_this)
1432 {
1433 struct symbol *sym;
1434 const struct language_defn *langdef;
1435
1436 /* Make sure we do something sensible with is_a_field_of_this, since
1437 the callers that set this parameter to some non-null value will
1438 certainly use it later. If we don't set it, the contents of
1439 is_a_field_of_this are undefined. */
1440 if (is_a_field_of_this != NULL)
1441 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1442
1443 /* Search specified block and its superiors. Don't search
1444 STATIC_BLOCK or GLOBAL_BLOCK. */
1445
1446 sym = lookup_symbol_aux_local (name, block, domain, language);
1447 if (sym != NULL)
1448 return sym;
1449
1450 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1451 check to see if NAME is a field of `this'. */
1452
1453 langdef = language_def (language);
1454
1455 /* Don't do this check if we are searching for a struct. It will
1456 not be found by check_field, but will be found by other
1457 means. */
1458 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1459 {
1460 struct symbol *sym = lookup_language_this (langdef, block);
1461
1462 if (sym)
1463 {
1464 struct type *t = sym->type;
1465
1466 /* I'm not really sure that type of this can ever
1467 be typedefed; just be safe. */
1468 CHECK_TYPEDEF (t);
1469 if (TYPE_CODE (t) == TYPE_CODE_PTR
1470 || TYPE_CODE (t) == TYPE_CODE_REF)
1471 t = TYPE_TARGET_TYPE (t);
1472
1473 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (t) != TYPE_CODE_UNION)
1475 error (_("Internal error: `%s' is not an aggregate"),
1476 langdef->la_name_of_this);
1477
1478 if (check_field (t, name, is_a_field_of_this))
1479 return NULL;
1480 }
1481 }
1482
1483 /* Now do whatever is appropriate for LANGUAGE to look
1484 up static and global variables. */
1485
1486 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1487 if (sym != NULL)
1488 return sym;
1489
1490 /* Now search all static file-level symbols. Not strictly correct,
1491 but more useful than an error. */
1492
1493 return lookup_static_symbol_aux (name, domain);
1494 }
1495
1496 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1497 first, then check the psymtabs. If a psymtab indicates the existence of the
1498 desired name as a file-level static, then do psymtab-to-symtab conversion on
1499 the fly and return the found symbol. */
1500
1501 struct symbol *
1502 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1503 {
1504 struct objfile *objfile;
1505 struct symbol *sym;
1506
1507 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1508 if (sym != NULL)
1509 return sym;
1510
1511 ALL_OBJFILES (objfile)
1512 {
1513 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1514 if (sym != NULL)
1515 return sym;
1516 }
1517
1518 return NULL;
1519 }
1520
1521 /* Check to see if the symbol is defined in BLOCK or its superiors.
1522 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1523
1524 static struct symbol *
1525 lookup_symbol_aux_local (const char *name, const struct block *block,
1526 const domain_enum domain,
1527 enum language language)
1528 {
1529 struct symbol *sym;
1530 const struct block *static_block = block_static_block (block);
1531 const char *scope = block_scope (block);
1532
1533 /* Check if either no block is specified or it's a global block. */
1534
1535 if (static_block == NULL)
1536 return NULL;
1537
1538 while (block != static_block)
1539 {
1540 sym = lookup_symbol_aux_block (name, block, domain);
1541 if (sym != NULL)
1542 return sym;
1543
1544 if (language == language_cplus || language == language_fortran)
1545 {
1546 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1547 domain);
1548 if (sym != NULL)
1549 return sym;
1550 }
1551
1552 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1553 break;
1554 block = BLOCK_SUPERBLOCK (block);
1555 }
1556
1557 /* We've reached the edge of the function without finding a result. */
1558
1559 return NULL;
1560 }
1561
1562 /* Look up OBJFILE to BLOCK. */
1563
1564 struct objfile *
1565 lookup_objfile_from_block (const struct block *block)
1566 {
1567 struct objfile *obj;
1568 struct symtab *s;
1569
1570 if (block == NULL)
1571 return NULL;
1572
1573 block = block_global_block (block);
1574 /* Go through SYMTABS. */
1575 ALL_SYMTABS (obj, s)
1576 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1577 {
1578 if (obj->separate_debug_objfile_backlink)
1579 obj = obj->separate_debug_objfile_backlink;
1580
1581 return obj;
1582 }
1583
1584 return NULL;
1585 }
1586
1587 /* Look up a symbol in a block; if found, fixup the symbol, and set
1588 block_found appropriately. */
1589
1590 struct symbol *
1591 lookup_symbol_aux_block (const char *name, const struct block *block,
1592 const domain_enum domain)
1593 {
1594 struct symbol *sym;
1595
1596 sym = lookup_block_symbol (block, name, domain);
1597 if (sym)
1598 {
1599 block_found = block;
1600 return fixup_symbol_section (sym, NULL);
1601 }
1602
1603 return NULL;
1604 }
1605
1606 /* Check all global symbols in OBJFILE in symtabs and
1607 psymtabs. */
1608
1609 struct symbol *
1610 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1611 const char *name,
1612 const domain_enum domain)
1613 {
1614 const struct objfile *objfile;
1615 struct symbol *sym;
1616 const struct blockvector *bv;
1617 const struct block *block;
1618 struct symtab *s;
1619
1620 for (objfile = main_objfile;
1621 objfile;
1622 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1623 {
1624 /* Go through symtabs. */
1625 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1626 {
1627 bv = BLOCKVECTOR (s);
1628 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1629 sym = lookup_block_symbol (block, name, domain);
1630 if (sym)
1631 {
1632 block_found = block;
1633 return fixup_symbol_section (sym, (struct objfile *)objfile);
1634 }
1635 }
1636
1637 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1638 name, domain);
1639 if (sym)
1640 return sym;
1641 }
1642
1643 return NULL;
1644 }
1645
1646 /* Check to see if the symbol is defined in one of the OBJFILE's
1647 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1648 depending on whether or not we want to search global symbols or
1649 static symbols. */
1650
1651 static struct symbol *
1652 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1653 const char *name, const domain_enum domain)
1654 {
1655 struct symbol *sym = NULL;
1656 const struct blockvector *bv;
1657 const struct block *block;
1658 struct symtab *s;
1659
1660 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1661 {
1662 bv = BLOCKVECTOR (s);
1663 block = BLOCKVECTOR_BLOCK (bv, block_index);
1664 sym = lookup_block_symbol (block, name, domain);
1665 if (sym)
1666 {
1667 block_found = block;
1668 return fixup_symbol_section (sym, objfile);
1669 }
1670 }
1671
1672 return NULL;
1673 }
1674
1675 /* Same as lookup_symbol_aux_objfile, except that it searches all
1676 objfiles. Return the first match found. */
1677
1678 static struct symbol *
1679 lookup_symbol_aux_symtabs (int block_index, const char *name,
1680 const domain_enum domain)
1681 {
1682 struct symbol *sym;
1683 struct objfile *objfile;
1684
1685 ALL_OBJFILES (objfile)
1686 {
1687 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1688 if (sym)
1689 return sym;
1690 }
1691
1692 return NULL;
1693 }
1694
1695 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1696 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1697 and all related objfiles. */
1698
1699 static struct symbol *
1700 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1701 const char *linkage_name,
1702 domain_enum domain)
1703 {
1704 enum language lang = current_language->la_language;
1705 const char *modified_name;
1706 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1707 &modified_name);
1708 struct objfile *main_objfile, *cur_objfile;
1709
1710 if (objfile->separate_debug_objfile_backlink)
1711 main_objfile = objfile->separate_debug_objfile_backlink;
1712 else
1713 main_objfile = objfile;
1714
1715 for (cur_objfile = main_objfile;
1716 cur_objfile;
1717 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1718 {
1719 struct symbol *sym;
1720
1721 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1722 modified_name, domain);
1723 if (sym == NULL)
1724 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1725 modified_name, domain);
1726 if (sym != NULL)
1727 {
1728 do_cleanups (cleanup);
1729 return sym;
1730 }
1731 }
1732
1733 do_cleanups (cleanup);
1734 return NULL;
1735 }
1736
1737 /* A helper function that throws an exception when a symbol was found
1738 in a psymtab but not in a symtab. */
1739
1740 static void ATTRIBUTE_NORETURN
1741 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1742 {
1743 error (_("\
1744 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1745 %s may be an inlined function, or may be a template function\n \
1746 (if a template, try specifying an instantiation: %s<type>)."),
1747 kind == GLOBAL_BLOCK ? "global" : "static",
1748 name, symtab_to_filename_for_display (symtab), name, name);
1749 }
1750
1751 /* A helper function for lookup_symbol_aux that interfaces with the
1752 "quick" symbol table functions. */
1753
1754 static struct symbol *
1755 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1756 const char *name, const domain_enum domain)
1757 {
1758 struct symtab *symtab;
1759 const struct blockvector *bv;
1760 const struct block *block;
1761 struct symbol *sym;
1762
1763 if (!objfile->sf)
1764 return NULL;
1765 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1766 if (!symtab)
1767 return NULL;
1768
1769 bv = BLOCKVECTOR (symtab);
1770 block = BLOCKVECTOR_BLOCK (bv, kind);
1771 sym = lookup_block_symbol (block, name, domain);
1772 if (!sym)
1773 error_in_psymtab_expansion (kind, name, symtab);
1774 block_found = block;
1775 return fixup_symbol_section (sym, objfile);
1776 }
1777
1778 /* A default version of lookup_symbol_nonlocal for use by languages
1779 that can't think of anything better to do. This implements the C
1780 lookup rules. */
1781
1782 struct symbol *
1783 basic_lookup_symbol_nonlocal (const char *name,
1784 const struct block *block,
1785 const domain_enum domain)
1786 {
1787 struct symbol *sym;
1788
1789 /* NOTE: carlton/2003-05-19: The comments below were written when
1790 this (or what turned into this) was part of lookup_symbol_aux;
1791 I'm much less worried about these questions now, since these
1792 decisions have turned out well, but I leave these comments here
1793 for posterity. */
1794
1795 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1796 not it would be appropriate to search the current global block
1797 here as well. (That's what this code used to do before the
1798 is_a_field_of_this check was moved up.) On the one hand, it's
1799 redundant with the lookup_symbol_aux_symtabs search that happens
1800 next. On the other hand, if decode_line_1 is passed an argument
1801 like filename:var, then the user presumably wants 'var' to be
1802 searched for in filename. On the third hand, there shouldn't be
1803 multiple global variables all of which are named 'var', and it's
1804 not like decode_line_1 has ever restricted its search to only
1805 global variables in a single filename. All in all, only
1806 searching the static block here seems best: it's correct and it's
1807 cleanest. */
1808
1809 /* NOTE: carlton/2002-12-05: There's also a possible performance
1810 issue here: if you usually search for global symbols in the
1811 current file, then it would be slightly better to search the
1812 current global block before searching all the symtabs. But there
1813 are other factors that have a much greater effect on performance
1814 than that one, so I don't think we should worry about that for
1815 now. */
1816
1817 sym = lookup_symbol_static (name, block, domain);
1818 if (sym != NULL)
1819 return sym;
1820
1821 return lookup_symbol_global (name, block, domain);
1822 }
1823
1824 /* Lookup a symbol in the static block associated to BLOCK, if there
1825 is one; do nothing if BLOCK is NULL or a global block. */
1826
1827 struct symbol *
1828 lookup_symbol_static (const char *name,
1829 const struct block *block,
1830 const domain_enum domain)
1831 {
1832 const struct block *static_block = block_static_block (block);
1833
1834 if (static_block != NULL)
1835 return lookup_symbol_aux_block (name, static_block, domain);
1836 else
1837 return NULL;
1838 }
1839
1840 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1841
1842 struct global_sym_lookup_data
1843 {
1844 /* The name of the symbol we are searching for. */
1845 const char *name;
1846
1847 /* The domain to use for our search. */
1848 domain_enum domain;
1849
1850 /* The field where the callback should store the symbol if found.
1851 It should be initialized to NULL before the search is started. */
1852 struct symbol *result;
1853 };
1854
1855 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1856 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1857 OBJFILE. The arguments for the search are passed via CB_DATA,
1858 which in reality is a pointer to struct global_sym_lookup_data. */
1859
1860 static int
1861 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1862 void *cb_data)
1863 {
1864 struct global_sym_lookup_data *data =
1865 (struct global_sym_lookup_data *) cb_data;
1866
1867 gdb_assert (data->result == NULL);
1868
1869 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1870 data->name, data->domain);
1871 if (data->result == NULL)
1872 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1873 data->name, data->domain);
1874
1875 /* If we found a match, tell the iterator to stop. Otherwise,
1876 keep going. */
1877 return (data->result != NULL);
1878 }
1879
1880 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1881 necessary). */
1882
1883 struct symbol *
1884 lookup_symbol_global (const char *name,
1885 const struct block *block,
1886 const domain_enum domain)
1887 {
1888 struct symbol *sym = NULL;
1889 struct objfile *objfile = NULL;
1890 struct global_sym_lookup_data lookup_data;
1891
1892 /* Call library-specific lookup procedure. */
1893 objfile = lookup_objfile_from_block (block);
1894 if (objfile != NULL)
1895 sym = solib_global_lookup (objfile, name, domain);
1896 if (sym != NULL)
1897 return sym;
1898
1899 memset (&lookup_data, 0, sizeof (lookup_data));
1900 lookup_data.name = name;
1901 lookup_data.domain = domain;
1902 gdbarch_iterate_over_objfiles_in_search_order
1903 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1904 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1905
1906 return lookup_data.result;
1907 }
1908
1909 int
1910 symbol_matches_domain (enum language symbol_language,
1911 domain_enum symbol_domain,
1912 domain_enum domain)
1913 {
1914 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1915 A Java class declaration also defines a typedef for the class.
1916 Similarly, any Ada type declaration implicitly defines a typedef. */
1917 if (symbol_language == language_cplus
1918 || symbol_language == language_d
1919 || symbol_language == language_java
1920 || symbol_language == language_ada)
1921 {
1922 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1923 && symbol_domain == STRUCT_DOMAIN)
1924 return 1;
1925 }
1926 /* For all other languages, strict match is required. */
1927 return (symbol_domain == domain);
1928 }
1929
1930 /* Look up a type named NAME in the struct_domain. The type returned
1931 must not be opaque -- i.e., must have at least one field
1932 defined. */
1933
1934 struct type *
1935 lookup_transparent_type (const char *name)
1936 {
1937 return current_language->la_lookup_transparent_type (name);
1938 }
1939
1940 /* A helper for basic_lookup_transparent_type that interfaces with the
1941 "quick" symbol table functions. */
1942
1943 static struct type *
1944 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1945 const char *name)
1946 {
1947 struct symtab *symtab;
1948 const struct blockvector *bv;
1949 struct block *block;
1950 struct symbol *sym;
1951
1952 if (!objfile->sf)
1953 return NULL;
1954 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1955 if (!symtab)
1956 return NULL;
1957
1958 bv = BLOCKVECTOR (symtab);
1959 block = BLOCKVECTOR_BLOCK (bv, kind);
1960 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1961 if (!sym)
1962 error_in_psymtab_expansion (kind, name, symtab);
1963
1964 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1965 return SYMBOL_TYPE (sym);
1966
1967 return NULL;
1968 }
1969
1970 /* The standard implementation of lookup_transparent_type. This code
1971 was modeled on lookup_symbol -- the parts not relevant to looking
1972 up types were just left out. In particular it's assumed here that
1973 types are available in struct_domain and only at file-static or
1974 global blocks. */
1975
1976 struct type *
1977 basic_lookup_transparent_type (const char *name)
1978 {
1979 struct symbol *sym;
1980 struct symtab *s = NULL;
1981 const struct blockvector *bv;
1982 struct objfile *objfile;
1983 struct block *block;
1984 struct type *t;
1985
1986 /* Now search all the global symbols. Do the symtab's first, then
1987 check the psymtab's. If a psymtab indicates the existence
1988 of the desired name as a global, then do psymtab-to-symtab
1989 conversion on the fly and return the found symbol. */
1990
1991 ALL_OBJFILES (objfile)
1992 {
1993 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1994 {
1995 bv = BLOCKVECTOR (s);
1996 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1997 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1998 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1999 {
2000 return SYMBOL_TYPE (sym);
2001 }
2002 }
2003 }
2004
2005 ALL_OBJFILES (objfile)
2006 {
2007 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2008 if (t)
2009 return t;
2010 }
2011
2012 /* Now search the static file-level symbols.
2013 Not strictly correct, but more useful than an error.
2014 Do the symtab's first, then
2015 check the psymtab's. If a psymtab indicates the existence
2016 of the desired name as a file-level static, then do psymtab-to-symtab
2017 conversion on the fly and return the found symbol. */
2018
2019 ALL_OBJFILES (objfile)
2020 {
2021 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2022 {
2023 bv = BLOCKVECTOR (s);
2024 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2025 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2026 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2027 {
2028 return SYMBOL_TYPE (sym);
2029 }
2030 }
2031 }
2032
2033 ALL_OBJFILES (objfile)
2034 {
2035 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2036 if (t)
2037 return t;
2038 }
2039
2040 return (struct type *) 0;
2041 }
2042
2043 /* Search BLOCK for symbol NAME in DOMAIN.
2044
2045 Note that if NAME is the demangled form of a C++ symbol, we will fail
2046 to find a match during the binary search of the non-encoded names, but
2047 for now we don't worry about the slight inefficiency of looking for
2048 a match we'll never find, since it will go pretty quick. Once the
2049 binary search terminates, we drop through and do a straight linear
2050 search on the symbols. Each symbol which is marked as being a ObjC/C++
2051 symbol (language_cplus or language_objc set) has both the encoded and
2052 non-encoded names tested for a match. */
2053
2054 struct symbol *
2055 lookup_block_symbol (const struct block *block, const char *name,
2056 const domain_enum domain)
2057 {
2058 struct block_iterator iter;
2059 struct symbol *sym;
2060
2061 if (!BLOCK_FUNCTION (block))
2062 {
2063 for (sym = block_iter_name_first (block, name, &iter);
2064 sym != NULL;
2065 sym = block_iter_name_next (name, &iter))
2066 {
2067 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2068 SYMBOL_DOMAIN (sym), domain))
2069 return sym;
2070 }
2071 return NULL;
2072 }
2073 else
2074 {
2075 /* Note that parameter symbols do not always show up last in the
2076 list; this loop makes sure to take anything else other than
2077 parameter symbols first; it only uses parameter symbols as a
2078 last resort. Note that this only takes up extra computation
2079 time on a match. */
2080
2081 struct symbol *sym_found = NULL;
2082
2083 for (sym = block_iter_name_first (block, name, &iter);
2084 sym != NULL;
2085 sym = block_iter_name_next (name, &iter))
2086 {
2087 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2088 SYMBOL_DOMAIN (sym), domain))
2089 {
2090 sym_found = sym;
2091 if (!SYMBOL_IS_ARGUMENT (sym))
2092 {
2093 break;
2094 }
2095 }
2096 }
2097 return (sym_found); /* Will be NULL if not found. */
2098 }
2099 }
2100
2101 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2102
2103 For each symbol that matches, CALLBACK is called. The symbol and
2104 DATA are passed to the callback.
2105
2106 If CALLBACK returns zero, the iteration ends. Otherwise, the
2107 search continues. */
2108
2109 void
2110 iterate_over_symbols (const struct block *block, const char *name,
2111 const domain_enum domain,
2112 symbol_found_callback_ftype *callback,
2113 void *data)
2114 {
2115 struct block_iterator iter;
2116 struct symbol *sym;
2117
2118 for (sym = block_iter_name_first (block, name, &iter);
2119 sym != NULL;
2120 sym = block_iter_name_next (name, &iter))
2121 {
2122 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2123 SYMBOL_DOMAIN (sym), domain))
2124 {
2125 if (!callback (sym, data))
2126 return;
2127 }
2128 }
2129 }
2130
2131 /* Find the symtab associated with PC and SECTION. Look through the
2132 psymtabs and read in another symtab if necessary. */
2133
2134 struct symtab *
2135 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2136 {
2137 struct block *b;
2138 const struct blockvector *bv;
2139 struct symtab *s = NULL;
2140 struct symtab *best_s = NULL;
2141 struct objfile *objfile;
2142 CORE_ADDR distance = 0;
2143 struct bound_minimal_symbol msymbol;
2144
2145 /* If we know that this is not a text address, return failure. This is
2146 necessary because we loop based on the block's high and low code
2147 addresses, which do not include the data ranges, and because
2148 we call find_pc_sect_psymtab which has a similar restriction based
2149 on the partial_symtab's texthigh and textlow. */
2150 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2151 if (msymbol.minsym
2152 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2153 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2154 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2155 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2156 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2157 return NULL;
2158
2159 /* Search all symtabs for the one whose file contains our address, and which
2160 is the smallest of all the ones containing the address. This is designed
2161 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2162 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2163 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2164
2165 This happens for native ecoff format, where code from included files
2166 gets its own symtab. The symtab for the included file should have
2167 been read in already via the dependency mechanism.
2168 It might be swifter to create several symtabs with the same name
2169 like xcoff does (I'm not sure).
2170
2171 It also happens for objfiles that have their functions reordered.
2172 For these, the symtab we are looking for is not necessarily read in. */
2173
2174 ALL_PRIMARY_SYMTABS (objfile, s)
2175 {
2176 bv = BLOCKVECTOR (s);
2177 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2178
2179 if (BLOCK_START (b) <= pc
2180 && BLOCK_END (b) > pc
2181 && (distance == 0
2182 || BLOCK_END (b) - BLOCK_START (b) < distance))
2183 {
2184 /* For an objfile that has its functions reordered,
2185 find_pc_psymtab will find the proper partial symbol table
2186 and we simply return its corresponding symtab. */
2187 /* In order to better support objfiles that contain both
2188 stabs and coff debugging info, we continue on if a psymtab
2189 can't be found. */
2190 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2191 {
2192 struct symtab *result;
2193
2194 result
2195 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2196 msymbol,
2197 pc, section,
2198 0);
2199 if (result)
2200 return result;
2201 }
2202 if (section != 0)
2203 {
2204 struct block_iterator iter;
2205 struct symbol *sym = NULL;
2206
2207 ALL_BLOCK_SYMBOLS (b, iter, sym)
2208 {
2209 fixup_symbol_section (sym, objfile);
2210 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2211 section))
2212 break;
2213 }
2214 if (sym == NULL)
2215 continue; /* No symbol in this symtab matches
2216 section. */
2217 }
2218 distance = BLOCK_END (b) - BLOCK_START (b);
2219 best_s = s;
2220 }
2221 }
2222
2223 if (best_s != NULL)
2224 return (best_s);
2225
2226 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2227
2228 ALL_OBJFILES (objfile)
2229 {
2230 struct symtab *result;
2231
2232 if (!objfile->sf)
2233 continue;
2234 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2235 msymbol,
2236 pc, section,
2237 1);
2238 if (result)
2239 return result;
2240 }
2241
2242 return NULL;
2243 }
2244
2245 /* Find the symtab associated with PC. Look through the psymtabs and read
2246 in another symtab if necessary. Backward compatibility, no section. */
2247
2248 struct symtab *
2249 find_pc_symtab (CORE_ADDR pc)
2250 {
2251 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2252 }
2253 \f
2254
2255 /* Find the source file and line number for a given PC value and SECTION.
2256 Return a structure containing a symtab pointer, a line number,
2257 and a pc range for the entire source line.
2258 The value's .pc field is NOT the specified pc.
2259 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2260 use the line that ends there. Otherwise, in that case, the line
2261 that begins there is used. */
2262
2263 /* The big complication here is that a line may start in one file, and end just
2264 before the start of another file. This usually occurs when you #include
2265 code in the middle of a subroutine. To properly find the end of a line's PC
2266 range, we must search all symtabs associated with this compilation unit, and
2267 find the one whose first PC is closer than that of the next line in this
2268 symtab. */
2269
2270 /* If it's worth the effort, we could be using a binary search. */
2271
2272 struct symtab_and_line
2273 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2274 {
2275 struct symtab *s;
2276 struct linetable *l;
2277 int len;
2278 int i;
2279 struct linetable_entry *item;
2280 struct symtab_and_line val;
2281 const struct blockvector *bv;
2282 struct bound_minimal_symbol msymbol;
2283 struct objfile *objfile;
2284
2285 /* Info on best line seen so far, and where it starts, and its file. */
2286
2287 struct linetable_entry *best = NULL;
2288 CORE_ADDR best_end = 0;
2289 struct symtab *best_symtab = 0;
2290
2291 /* Store here the first line number
2292 of a file which contains the line at the smallest pc after PC.
2293 If we don't find a line whose range contains PC,
2294 we will use a line one less than this,
2295 with a range from the start of that file to the first line's pc. */
2296 struct linetable_entry *alt = NULL;
2297
2298 /* Info on best line seen in this file. */
2299
2300 struct linetable_entry *prev;
2301
2302 /* If this pc is not from the current frame,
2303 it is the address of the end of a call instruction.
2304 Quite likely that is the start of the following statement.
2305 But what we want is the statement containing the instruction.
2306 Fudge the pc to make sure we get that. */
2307
2308 init_sal (&val); /* initialize to zeroes */
2309
2310 val.pspace = current_program_space;
2311
2312 /* It's tempting to assume that, if we can't find debugging info for
2313 any function enclosing PC, that we shouldn't search for line
2314 number info, either. However, GAS can emit line number info for
2315 assembly files --- very helpful when debugging hand-written
2316 assembly code. In such a case, we'd have no debug info for the
2317 function, but we would have line info. */
2318
2319 if (notcurrent)
2320 pc -= 1;
2321
2322 /* elz: added this because this function returned the wrong
2323 information if the pc belongs to a stub (import/export)
2324 to call a shlib function. This stub would be anywhere between
2325 two functions in the target, and the line info was erroneously
2326 taken to be the one of the line before the pc. */
2327
2328 /* RT: Further explanation:
2329
2330 * We have stubs (trampolines) inserted between procedures.
2331 *
2332 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2333 * exists in the main image.
2334 *
2335 * In the minimal symbol table, we have a bunch of symbols
2336 * sorted by start address. The stubs are marked as "trampoline",
2337 * the others appear as text. E.g.:
2338 *
2339 * Minimal symbol table for main image
2340 * main: code for main (text symbol)
2341 * shr1: stub (trampoline symbol)
2342 * foo: code for foo (text symbol)
2343 * ...
2344 * Minimal symbol table for "shr1" image:
2345 * ...
2346 * shr1: code for shr1 (text symbol)
2347 * ...
2348 *
2349 * So the code below is trying to detect if we are in the stub
2350 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2351 * and if found, do the symbolization from the real-code address
2352 * rather than the stub address.
2353 *
2354 * Assumptions being made about the minimal symbol table:
2355 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2356 * if we're really in the trampoline.s If we're beyond it (say
2357 * we're in "foo" in the above example), it'll have a closer
2358 * symbol (the "foo" text symbol for example) and will not
2359 * return the trampoline.
2360 * 2. lookup_minimal_symbol_text() will find a real text symbol
2361 * corresponding to the trampoline, and whose address will
2362 * be different than the trampoline address. I put in a sanity
2363 * check for the address being the same, to avoid an
2364 * infinite recursion.
2365 */
2366 msymbol = lookup_minimal_symbol_by_pc (pc);
2367 if (msymbol.minsym != NULL)
2368 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2369 {
2370 struct bound_minimal_symbol mfunsym
2371 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2372 NULL);
2373
2374 if (mfunsym.minsym == NULL)
2375 /* I eliminated this warning since it is coming out
2376 * in the following situation:
2377 * gdb shmain // test program with shared libraries
2378 * (gdb) break shr1 // function in shared lib
2379 * Warning: In stub for ...
2380 * In the above situation, the shared lib is not loaded yet,
2381 * so of course we can't find the real func/line info,
2382 * but the "break" still works, and the warning is annoying.
2383 * So I commented out the warning. RT */
2384 /* warning ("In stub for %s; unable to find real function/line info",
2385 SYMBOL_LINKAGE_NAME (msymbol)); */
2386 ;
2387 /* fall through */
2388 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2389 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2390 /* Avoid infinite recursion */
2391 /* See above comment about why warning is commented out. */
2392 /* warning ("In stub for %s; unable to find real function/line info",
2393 SYMBOL_LINKAGE_NAME (msymbol)); */
2394 ;
2395 /* fall through */
2396 else
2397 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2398 }
2399
2400
2401 s = find_pc_sect_symtab (pc, section);
2402 if (!s)
2403 {
2404 /* If no symbol information, return previous pc. */
2405 if (notcurrent)
2406 pc++;
2407 val.pc = pc;
2408 return val;
2409 }
2410
2411 bv = BLOCKVECTOR (s);
2412 objfile = s->objfile;
2413
2414 /* Look at all the symtabs that share this blockvector.
2415 They all have the same apriori range, that we found was right;
2416 but they have different line tables. */
2417
2418 ALL_OBJFILE_SYMTABS (objfile, s)
2419 {
2420 if (BLOCKVECTOR (s) != bv)
2421 continue;
2422
2423 /* Find the best line in this symtab. */
2424 l = LINETABLE (s);
2425 if (!l)
2426 continue;
2427 len = l->nitems;
2428 if (len <= 0)
2429 {
2430 /* I think len can be zero if the symtab lacks line numbers
2431 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2432 I'm not sure which, and maybe it depends on the symbol
2433 reader). */
2434 continue;
2435 }
2436
2437 prev = NULL;
2438 item = l->item; /* Get first line info. */
2439
2440 /* Is this file's first line closer than the first lines of other files?
2441 If so, record this file, and its first line, as best alternate. */
2442 if (item->pc > pc && (!alt || item->pc < alt->pc))
2443 alt = item;
2444
2445 for (i = 0; i < len; i++, item++)
2446 {
2447 /* Leave prev pointing to the linetable entry for the last line
2448 that started at or before PC. */
2449 if (item->pc > pc)
2450 break;
2451
2452 prev = item;
2453 }
2454
2455 /* At this point, prev points at the line whose start addr is <= pc, and
2456 item points at the next line. If we ran off the end of the linetable
2457 (pc >= start of the last line), then prev == item. If pc < start of
2458 the first line, prev will not be set. */
2459
2460 /* Is this file's best line closer than the best in the other files?
2461 If so, record this file, and its best line, as best so far. Don't
2462 save prev if it represents the end of a function (i.e. line number
2463 0) instead of a real line. */
2464
2465 if (prev && prev->line && (!best || prev->pc > best->pc))
2466 {
2467 best = prev;
2468 best_symtab = s;
2469
2470 /* Discard BEST_END if it's before the PC of the current BEST. */
2471 if (best_end <= best->pc)
2472 best_end = 0;
2473 }
2474
2475 /* If another line (denoted by ITEM) is in the linetable and its
2476 PC is after BEST's PC, but before the current BEST_END, then
2477 use ITEM's PC as the new best_end. */
2478 if (best && i < len && item->pc > best->pc
2479 && (best_end == 0 || best_end > item->pc))
2480 best_end = item->pc;
2481 }
2482
2483 if (!best_symtab)
2484 {
2485 /* If we didn't find any line number info, just return zeros.
2486 We used to return alt->line - 1 here, but that could be
2487 anywhere; if we don't have line number info for this PC,
2488 don't make some up. */
2489 val.pc = pc;
2490 }
2491 else if (best->line == 0)
2492 {
2493 /* If our best fit is in a range of PC's for which no line
2494 number info is available (line number is zero) then we didn't
2495 find any valid line information. */
2496 val.pc = pc;
2497 }
2498 else
2499 {
2500 val.symtab = best_symtab;
2501 val.line = best->line;
2502 val.pc = best->pc;
2503 if (best_end && (!alt || best_end < alt->pc))
2504 val.end = best_end;
2505 else if (alt)
2506 val.end = alt->pc;
2507 else
2508 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2509 }
2510 val.section = section;
2511 return val;
2512 }
2513
2514 /* Backward compatibility (no section). */
2515
2516 struct symtab_and_line
2517 find_pc_line (CORE_ADDR pc, int notcurrent)
2518 {
2519 struct obj_section *section;
2520
2521 section = find_pc_overlay (pc);
2522 if (pc_in_unmapped_range (pc, section))
2523 pc = overlay_mapped_address (pc, section);
2524 return find_pc_sect_line (pc, section, notcurrent);
2525 }
2526 \f
2527 /* Find line number LINE in any symtab whose name is the same as
2528 SYMTAB.
2529
2530 If found, return the symtab that contains the linetable in which it was
2531 found, set *INDEX to the index in the linetable of the best entry
2532 found, and set *EXACT_MATCH nonzero if the value returned is an
2533 exact match.
2534
2535 If not found, return NULL. */
2536
2537 struct symtab *
2538 find_line_symtab (struct symtab *symtab, int line,
2539 int *index, int *exact_match)
2540 {
2541 int exact = 0; /* Initialized here to avoid a compiler warning. */
2542
2543 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2544 so far seen. */
2545
2546 int best_index;
2547 struct linetable *best_linetable;
2548 struct symtab *best_symtab;
2549
2550 /* First try looking it up in the given symtab. */
2551 best_linetable = LINETABLE (symtab);
2552 best_symtab = symtab;
2553 best_index = find_line_common (best_linetable, line, &exact, 0);
2554 if (best_index < 0 || !exact)
2555 {
2556 /* Didn't find an exact match. So we better keep looking for
2557 another symtab with the same name. In the case of xcoff,
2558 multiple csects for one source file (produced by IBM's FORTRAN
2559 compiler) produce multiple symtabs (this is unavoidable
2560 assuming csects can be at arbitrary places in memory and that
2561 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2562
2563 /* BEST is the smallest linenumber > LINE so far seen,
2564 or 0 if none has been seen so far.
2565 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2566 int best;
2567
2568 struct objfile *objfile;
2569 struct symtab *s;
2570
2571 if (best_index >= 0)
2572 best = best_linetable->item[best_index].line;
2573 else
2574 best = 0;
2575
2576 ALL_OBJFILES (objfile)
2577 {
2578 if (objfile->sf)
2579 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2580 symtab_to_fullname (symtab));
2581 }
2582
2583 ALL_SYMTABS (objfile, s)
2584 {
2585 struct linetable *l;
2586 int ind;
2587
2588 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2589 continue;
2590 if (FILENAME_CMP (symtab_to_fullname (symtab),
2591 symtab_to_fullname (s)) != 0)
2592 continue;
2593 l = LINETABLE (s);
2594 ind = find_line_common (l, line, &exact, 0);
2595 if (ind >= 0)
2596 {
2597 if (exact)
2598 {
2599 best_index = ind;
2600 best_linetable = l;
2601 best_symtab = s;
2602 goto done;
2603 }
2604 if (best == 0 || l->item[ind].line < best)
2605 {
2606 best = l->item[ind].line;
2607 best_index = ind;
2608 best_linetable = l;
2609 best_symtab = s;
2610 }
2611 }
2612 }
2613 }
2614 done:
2615 if (best_index < 0)
2616 return NULL;
2617
2618 if (index)
2619 *index = best_index;
2620 if (exact_match)
2621 *exact_match = exact;
2622
2623 return best_symtab;
2624 }
2625
2626 /* Given SYMTAB, returns all the PCs function in the symtab that
2627 exactly match LINE. Returns NULL if there are no exact matches,
2628 but updates BEST_ITEM in this case. */
2629
2630 VEC (CORE_ADDR) *
2631 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2632 struct linetable_entry **best_item)
2633 {
2634 int start = 0;
2635 VEC (CORE_ADDR) *result = NULL;
2636
2637 /* First, collect all the PCs that are at this line. */
2638 while (1)
2639 {
2640 int was_exact;
2641 int idx;
2642
2643 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2644 if (idx < 0)
2645 break;
2646
2647 if (!was_exact)
2648 {
2649 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2650
2651 if (*best_item == NULL || item->line < (*best_item)->line)
2652 *best_item = item;
2653
2654 break;
2655 }
2656
2657 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2658 start = idx + 1;
2659 }
2660
2661 return result;
2662 }
2663
2664 \f
2665 /* Set the PC value for a given source file and line number and return true.
2666 Returns zero for invalid line number (and sets the PC to 0).
2667 The source file is specified with a struct symtab. */
2668
2669 int
2670 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2671 {
2672 struct linetable *l;
2673 int ind;
2674
2675 *pc = 0;
2676 if (symtab == 0)
2677 return 0;
2678
2679 symtab = find_line_symtab (symtab, line, &ind, NULL);
2680 if (symtab != NULL)
2681 {
2682 l = LINETABLE (symtab);
2683 *pc = l->item[ind].pc;
2684 return 1;
2685 }
2686 else
2687 return 0;
2688 }
2689
2690 /* Find the range of pc values in a line.
2691 Store the starting pc of the line into *STARTPTR
2692 and the ending pc (start of next line) into *ENDPTR.
2693 Returns 1 to indicate success.
2694 Returns 0 if could not find the specified line. */
2695
2696 int
2697 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2698 CORE_ADDR *endptr)
2699 {
2700 CORE_ADDR startaddr;
2701 struct symtab_and_line found_sal;
2702
2703 startaddr = sal.pc;
2704 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2705 return 0;
2706
2707 /* This whole function is based on address. For example, if line 10 has
2708 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2709 "info line *0x123" should say the line goes from 0x100 to 0x200
2710 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2711 This also insures that we never give a range like "starts at 0x134
2712 and ends at 0x12c". */
2713
2714 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2715 if (found_sal.line != sal.line)
2716 {
2717 /* The specified line (sal) has zero bytes. */
2718 *startptr = found_sal.pc;
2719 *endptr = found_sal.pc;
2720 }
2721 else
2722 {
2723 *startptr = found_sal.pc;
2724 *endptr = found_sal.end;
2725 }
2726 return 1;
2727 }
2728
2729 /* Given a line table and a line number, return the index into the line
2730 table for the pc of the nearest line whose number is >= the specified one.
2731 Return -1 if none is found. The value is >= 0 if it is an index.
2732 START is the index at which to start searching the line table.
2733
2734 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2735
2736 static int
2737 find_line_common (struct linetable *l, int lineno,
2738 int *exact_match, int start)
2739 {
2740 int i;
2741 int len;
2742
2743 /* BEST is the smallest linenumber > LINENO so far seen,
2744 or 0 if none has been seen so far.
2745 BEST_INDEX identifies the item for it. */
2746
2747 int best_index = -1;
2748 int best = 0;
2749
2750 *exact_match = 0;
2751
2752 if (lineno <= 0)
2753 return -1;
2754 if (l == 0)
2755 return -1;
2756
2757 len = l->nitems;
2758 for (i = start; i < len; i++)
2759 {
2760 struct linetable_entry *item = &(l->item[i]);
2761
2762 if (item->line == lineno)
2763 {
2764 /* Return the first (lowest address) entry which matches. */
2765 *exact_match = 1;
2766 return i;
2767 }
2768
2769 if (item->line > lineno && (best == 0 || item->line < best))
2770 {
2771 best = item->line;
2772 best_index = i;
2773 }
2774 }
2775
2776 /* If we got here, we didn't get an exact match. */
2777 return best_index;
2778 }
2779
2780 int
2781 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2782 {
2783 struct symtab_and_line sal;
2784
2785 sal = find_pc_line (pc, 0);
2786 *startptr = sal.pc;
2787 *endptr = sal.end;
2788 return sal.symtab != 0;
2789 }
2790
2791 /* Given a function symbol SYM, find the symtab and line for the start
2792 of the function.
2793 If the argument FUNFIRSTLINE is nonzero, we want the first line
2794 of real code inside the function. */
2795
2796 struct symtab_and_line
2797 find_function_start_sal (struct symbol *sym, int funfirstline)
2798 {
2799 struct symtab_and_line sal;
2800
2801 fixup_symbol_section (sym, NULL);
2802 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2803 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2804
2805 /* We always should have a line for the function start address.
2806 If we don't, something is odd. Create a plain SAL refering
2807 just the PC and hope that skip_prologue_sal (if requested)
2808 can find a line number for after the prologue. */
2809 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2810 {
2811 init_sal (&sal);
2812 sal.pspace = current_program_space;
2813 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2814 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2815 }
2816
2817 if (funfirstline)
2818 skip_prologue_sal (&sal);
2819
2820 return sal;
2821 }
2822
2823 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2824 address for that function that has an entry in SYMTAB's line info
2825 table. If such an entry cannot be found, return FUNC_ADDR
2826 unaltered. */
2827
2828 static CORE_ADDR
2829 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2830 {
2831 CORE_ADDR func_start, func_end;
2832 struct linetable *l;
2833 int i;
2834
2835 /* Give up if this symbol has no lineinfo table. */
2836 l = LINETABLE (symtab);
2837 if (l == NULL)
2838 return func_addr;
2839
2840 /* Get the range for the function's PC values, or give up if we
2841 cannot, for some reason. */
2842 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2843 return func_addr;
2844
2845 /* Linetable entries are ordered by PC values, see the commentary in
2846 symtab.h where `struct linetable' is defined. Thus, the first
2847 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2848 address we are looking for. */
2849 for (i = 0; i < l->nitems; i++)
2850 {
2851 struct linetable_entry *item = &(l->item[i]);
2852
2853 /* Don't use line numbers of zero, they mark special entries in
2854 the table. See the commentary on symtab.h before the
2855 definition of struct linetable. */
2856 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2857 return item->pc;
2858 }
2859
2860 return func_addr;
2861 }
2862
2863 /* Adjust SAL to the first instruction past the function prologue.
2864 If the PC was explicitly specified, the SAL is not changed.
2865 If the line number was explicitly specified, at most the SAL's PC
2866 is updated. If SAL is already past the prologue, then do nothing. */
2867
2868 void
2869 skip_prologue_sal (struct symtab_and_line *sal)
2870 {
2871 struct symbol *sym;
2872 struct symtab_and_line start_sal;
2873 struct cleanup *old_chain;
2874 CORE_ADDR pc, saved_pc;
2875 struct obj_section *section;
2876 const char *name;
2877 struct objfile *objfile;
2878 struct gdbarch *gdbarch;
2879 const struct block *b, *function_block;
2880 int force_skip, skip;
2881
2882 /* Do not change the SAL if PC was specified explicitly. */
2883 if (sal->explicit_pc)
2884 return;
2885
2886 old_chain = save_current_space_and_thread ();
2887 switch_to_program_space_and_thread (sal->pspace);
2888
2889 sym = find_pc_sect_function (sal->pc, sal->section);
2890 if (sym != NULL)
2891 {
2892 fixup_symbol_section (sym, NULL);
2893
2894 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2895 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2896 name = SYMBOL_LINKAGE_NAME (sym);
2897 objfile = SYMBOL_SYMTAB (sym)->objfile;
2898 }
2899 else
2900 {
2901 struct bound_minimal_symbol msymbol
2902 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2903
2904 if (msymbol.minsym == NULL)
2905 {
2906 do_cleanups (old_chain);
2907 return;
2908 }
2909
2910 objfile = msymbol.objfile;
2911 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2912 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2913 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2914 }
2915
2916 gdbarch = get_objfile_arch (objfile);
2917
2918 /* Process the prologue in two passes. In the first pass try to skip the
2919 prologue (SKIP is true) and verify there is a real need for it (indicated
2920 by FORCE_SKIP). If no such reason was found run a second pass where the
2921 prologue is not skipped (SKIP is false). */
2922
2923 skip = 1;
2924 force_skip = 1;
2925
2926 /* Be conservative - allow direct PC (without skipping prologue) only if we
2927 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2928 have to be set by the caller so we use SYM instead. */
2929 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2930 force_skip = 0;
2931
2932 saved_pc = pc;
2933 do
2934 {
2935 pc = saved_pc;
2936
2937 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2938 so that gdbarch_skip_prologue has something unique to work on. */
2939 if (section_is_overlay (section) && !section_is_mapped (section))
2940 pc = overlay_unmapped_address (pc, section);
2941
2942 /* Skip "first line" of function (which is actually its prologue). */
2943 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2944 if (gdbarch_skip_entrypoint_p (gdbarch))
2945 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2946 if (skip)
2947 pc = gdbarch_skip_prologue (gdbarch, pc);
2948
2949 /* For overlays, map pc back into its mapped VMA range. */
2950 pc = overlay_mapped_address (pc, section);
2951
2952 /* Calculate line number. */
2953 start_sal = find_pc_sect_line (pc, section, 0);
2954
2955 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2956 line is still part of the same function. */
2957 if (skip && start_sal.pc != pc
2958 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2959 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2960 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2961 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2962 {
2963 /* First pc of next line */
2964 pc = start_sal.end;
2965 /* Recalculate the line number (might not be N+1). */
2966 start_sal = find_pc_sect_line (pc, section, 0);
2967 }
2968
2969 /* On targets with executable formats that don't have a concept of
2970 constructors (ELF with .init has, PE doesn't), gcc emits a call
2971 to `__main' in `main' between the prologue and before user
2972 code. */
2973 if (gdbarch_skip_main_prologue_p (gdbarch)
2974 && name && strcmp_iw (name, "main") == 0)
2975 {
2976 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2977 /* Recalculate the line number (might not be N+1). */
2978 start_sal = find_pc_sect_line (pc, section, 0);
2979 force_skip = 1;
2980 }
2981 }
2982 while (!force_skip && skip--);
2983
2984 /* If we still don't have a valid source line, try to find the first
2985 PC in the lineinfo table that belongs to the same function. This
2986 happens with COFF debug info, which does not seem to have an
2987 entry in lineinfo table for the code after the prologue which has
2988 no direct relation to source. For example, this was found to be
2989 the case with the DJGPP target using "gcc -gcoff" when the
2990 compiler inserted code after the prologue to make sure the stack
2991 is aligned. */
2992 if (!force_skip && sym && start_sal.symtab == NULL)
2993 {
2994 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2995 /* Recalculate the line number. */
2996 start_sal = find_pc_sect_line (pc, section, 0);
2997 }
2998
2999 do_cleanups (old_chain);
3000
3001 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3002 forward SAL to the end of the prologue. */
3003 if (sal->pc >= pc)
3004 return;
3005
3006 sal->pc = pc;
3007 sal->section = section;
3008
3009 /* Unless the explicit_line flag was set, update the SAL line
3010 and symtab to correspond to the modified PC location. */
3011 if (sal->explicit_line)
3012 return;
3013
3014 sal->symtab = start_sal.symtab;
3015 sal->line = start_sal.line;
3016 sal->end = start_sal.end;
3017
3018 /* Check if we are now inside an inlined function. If we can,
3019 use the call site of the function instead. */
3020 b = block_for_pc_sect (sal->pc, sal->section);
3021 function_block = NULL;
3022 while (b != NULL)
3023 {
3024 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3025 function_block = b;
3026 else if (BLOCK_FUNCTION (b) != NULL)
3027 break;
3028 b = BLOCK_SUPERBLOCK (b);
3029 }
3030 if (function_block != NULL
3031 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3032 {
3033 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3034 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3035 }
3036 }
3037
3038 /* Determine if PC is in the prologue of a function. The prologue is the area
3039 between the first instruction of a function, and the first executable line.
3040 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
3041
3042 If non-zero, func_start is where we think the prologue starts, possibly
3043 by previous examination of symbol table information. */
3044
3045 int
3046 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
3047 {
3048 struct symtab_and_line sal;
3049 CORE_ADDR func_addr, func_end;
3050
3051 /* We have several sources of information we can consult to figure
3052 this out.
3053 - Compilers usually emit line number info that marks the prologue
3054 as its own "source line". So the ending address of that "line"
3055 is the end of the prologue. If available, this is the most
3056 reliable method.
3057 - The minimal symbols and partial symbols, which can usually tell
3058 us the starting and ending addresses of a function.
3059 - If we know the function's start address, we can call the
3060 architecture-defined gdbarch_skip_prologue function to analyze the
3061 instruction stream and guess where the prologue ends.
3062 - Our `func_start' argument; if non-zero, this is the caller's
3063 best guess as to the function's entry point. At the time of
3064 this writing, handle_inferior_event doesn't get this right, so
3065 it should be our last resort. */
3066
3067 /* Consult the partial symbol table, to find which function
3068 the PC is in. */
3069 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3070 {
3071 CORE_ADDR prologue_end;
3072
3073 /* We don't even have minsym information, so fall back to using
3074 func_start, if given. */
3075 if (! func_start)
3076 return 1; /* We *might* be in a prologue. */
3077
3078 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
3079
3080 return func_start <= pc && pc < prologue_end;
3081 }
3082
3083 /* If we have line number information for the function, that's
3084 usually pretty reliable. */
3085 sal = find_pc_line (func_addr, 0);
3086
3087 /* Now sal describes the source line at the function's entry point,
3088 which (by convention) is the prologue. The end of that "line",
3089 sal.end, is the end of the prologue.
3090
3091 Note that, for functions whose source code is all on a single
3092 line, the line number information doesn't always end up this way.
3093 So we must verify that our purported end-of-prologue address is
3094 *within* the function, not at its start or end. */
3095 if (sal.line == 0
3096 || sal.end <= func_addr
3097 || func_end <= sal.end)
3098 {
3099 /* We don't have any good line number info, so use the minsym
3100 information, together with the architecture-specific prologue
3101 scanning code. */
3102 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3103
3104 return func_addr <= pc && pc < prologue_end;
3105 }
3106
3107 /* We have line number info, and it looks good. */
3108 return func_addr <= pc && pc < sal.end;
3109 }
3110
3111 /* Given PC at the function's start address, attempt to find the
3112 prologue end using SAL information. Return zero if the skip fails.
3113
3114 A non-optimized prologue traditionally has one SAL for the function
3115 and a second for the function body. A single line function has
3116 them both pointing at the same line.
3117
3118 An optimized prologue is similar but the prologue may contain
3119 instructions (SALs) from the instruction body. Need to skip those
3120 while not getting into the function body.
3121
3122 The functions end point and an increasing SAL line are used as
3123 indicators of the prologue's endpoint.
3124
3125 This code is based on the function refine_prologue_limit
3126 (found in ia64). */
3127
3128 CORE_ADDR
3129 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3130 {
3131 struct symtab_and_line prologue_sal;
3132 CORE_ADDR start_pc;
3133 CORE_ADDR end_pc;
3134 const struct block *bl;
3135
3136 /* Get an initial range for the function. */
3137 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3138 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3139
3140 prologue_sal = find_pc_line (start_pc, 0);
3141 if (prologue_sal.line != 0)
3142 {
3143 /* For languages other than assembly, treat two consecutive line
3144 entries at the same address as a zero-instruction prologue.
3145 The GNU assembler emits separate line notes for each instruction
3146 in a multi-instruction macro, but compilers generally will not
3147 do this. */
3148 if (prologue_sal.symtab->language != language_asm)
3149 {
3150 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3151 int idx = 0;
3152
3153 /* Skip any earlier lines, and any end-of-sequence marker
3154 from a previous function. */
3155 while (linetable->item[idx].pc != prologue_sal.pc
3156 || linetable->item[idx].line == 0)
3157 idx++;
3158
3159 if (idx+1 < linetable->nitems
3160 && linetable->item[idx+1].line != 0
3161 && linetable->item[idx+1].pc == start_pc)
3162 return start_pc;
3163 }
3164
3165 /* If there is only one sal that covers the entire function,
3166 then it is probably a single line function, like
3167 "foo(){}". */
3168 if (prologue_sal.end >= end_pc)
3169 return 0;
3170
3171 while (prologue_sal.end < end_pc)
3172 {
3173 struct symtab_and_line sal;
3174
3175 sal = find_pc_line (prologue_sal.end, 0);
3176 if (sal.line == 0)
3177 break;
3178 /* Assume that a consecutive SAL for the same (or larger)
3179 line mark the prologue -> body transition. */
3180 if (sal.line >= prologue_sal.line)
3181 break;
3182 /* Likewise if we are in a different symtab altogether
3183 (e.g. within a file included via #include).  */
3184 if (sal.symtab != prologue_sal.symtab)
3185 break;
3186
3187 /* The line number is smaller. Check that it's from the
3188 same function, not something inlined. If it's inlined,
3189 then there is no point comparing the line numbers. */
3190 bl = block_for_pc (prologue_sal.end);
3191 while (bl)
3192 {
3193 if (block_inlined_p (bl))
3194 break;
3195 if (BLOCK_FUNCTION (bl))
3196 {
3197 bl = NULL;
3198 break;
3199 }
3200 bl = BLOCK_SUPERBLOCK (bl);
3201 }
3202 if (bl != NULL)
3203 break;
3204
3205 /* The case in which compiler's optimizer/scheduler has
3206 moved instructions into the prologue. We look ahead in
3207 the function looking for address ranges whose
3208 corresponding line number is less the first one that we
3209 found for the function. This is more conservative then
3210 refine_prologue_limit which scans a large number of SALs
3211 looking for any in the prologue. */
3212 prologue_sal = sal;
3213 }
3214 }
3215
3216 if (prologue_sal.end < end_pc)
3217 /* Return the end of this line, or zero if we could not find a
3218 line. */
3219 return prologue_sal.end;
3220 else
3221 /* Don't return END_PC, which is past the end of the function. */
3222 return prologue_sal.pc;
3223 }
3224 \f
3225 /* If P is of the form "operator[ \t]+..." where `...' is
3226 some legitimate operator text, return a pointer to the
3227 beginning of the substring of the operator text.
3228 Otherwise, return "". */
3229
3230 static const char *
3231 operator_chars (const char *p, const char **end)
3232 {
3233 *end = "";
3234 if (strncmp (p, "operator", 8))
3235 return *end;
3236 p += 8;
3237
3238 /* Don't get faked out by `operator' being part of a longer
3239 identifier. */
3240 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3241 return *end;
3242
3243 /* Allow some whitespace between `operator' and the operator symbol. */
3244 while (*p == ' ' || *p == '\t')
3245 p++;
3246
3247 /* Recognize 'operator TYPENAME'. */
3248
3249 if (isalpha (*p) || *p == '_' || *p == '$')
3250 {
3251 const char *q = p + 1;
3252
3253 while (isalnum (*q) || *q == '_' || *q == '$')
3254 q++;
3255 *end = q;
3256 return p;
3257 }
3258
3259 while (*p)
3260 switch (*p)
3261 {
3262 case '\\': /* regexp quoting */
3263 if (p[1] == '*')
3264 {
3265 if (p[2] == '=') /* 'operator\*=' */
3266 *end = p + 3;
3267 else /* 'operator\*' */
3268 *end = p + 2;
3269 return p;
3270 }
3271 else if (p[1] == '[')
3272 {
3273 if (p[2] == ']')
3274 error (_("mismatched quoting on brackets, "
3275 "try 'operator\\[\\]'"));
3276 else if (p[2] == '\\' && p[3] == ']')
3277 {
3278 *end = p + 4; /* 'operator\[\]' */
3279 return p;
3280 }
3281 else
3282 error (_("nothing is allowed between '[' and ']'"));
3283 }
3284 else
3285 {
3286 /* Gratuitous qoute: skip it and move on. */
3287 p++;
3288 continue;
3289 }
3290 break;
3291 case '!':
3292 case '=':
3293 case '*':
3294 case '/':
3295 case '%':
3296 case '^':
3297 if (p[1] == '=')
3298 *end = p + 2;
3299 else
3300 *end = p + 1;
3301 return p;
3302 case '<':
3303 case '>':
3304 case '+':
3305 case '-':
3306 case '&':
3307 case '|':
3308 if (p[0] == '-' && p[1] == '>')
3309 {
3310 /* Struct pointer member operator 'operator->'. */
3311 if (p[2] == '*')
3312 {
3313 *end = p + 3; /* 'operator->*' */
3314 return p;
3315 }
3316 else if (p[2] == '\\')
3317 {
3318 *end = p + 4; /* Hopefully 'operator->\*' */
3319 return p;
3320 }
3321 else
3322 {
3323 *end = p + 2; /* 'operator->' */
3324 return p;
3325 }
3326 }
3327 if (p[1] == '=' || p[1] == p[0])
3328 *end = p + 2;
3329 else
3330 *end = p + 1;
3331 return p;
3332 case '~':
3333 case ',':
3334 *end = p + 1;
3335 return p;
3336 case '(':
3337 if (p[1] != ')')
3338 error (_("`operator ()' must be specified "
3339 "without whitespace in `()'"));
3340 *end = p + 2;
3341 return p;
3342 case '?':
3343 if (p[1] != ':')
3344 error (_("`operator ?:' must be specified "
3345 "without whitespace in `?:'"));
3346 *end = p + 2;
3347 return p;
3348 case '[':
3349 if (p[1] != ']')
3350 error (_("`operator []' must be specified "
3351 "without whitespace in `[]'"));
3352 *end = p + 2;
3353 return p;
3354 default:
3355 error (_("`operator %s' not supported"), p);
3356 break;
3357 }
3358
3359 *end = "";
3360 return *end;
3361 }
3362 \f
3363
3364 /* Cache to watch for file names already seen by filename_seen. */
3365
3366 struct filename_seen_cache
3367 {
3368 /* Table of files seen so far. */
3369 htab_t tab;
3370 /* Initial size of the table. It automagically grows from here. */
3371 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3372 };
3373
3374 /* filename_seen_cache constructor. */
3375
3376 static struct filename_seen_cache *
3377 create_filename_seen_cache (void)
3378 {
3379 struct filename_seen_cache *cache;
3380
3381 cache = XNEW (struct filename_seen_cache);
3382 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3383 filename_hash, filename_eq,
3384 NULL, xcalloc, xfree);
3385
3386 return cache;
3387 }
3388
3389 /* Empty the cache, but do not delete it. */
3390
3391 static void
3392 clear_filename_seen_cache (struct filename_seen_cache *cache)
3393 {
3394 htab_empty (cache->tab);
3395 }
3396
3397 /* filename_seen_cache destructor.
3398 This takes a void * argument as it is generally used as a cleanup. */
3399
3400 static void
3401 delete_filename_seen_cache (void *ptr)
3402 {
3403 struct filename_seen_cache *cache = ptr;
3404
3405 htab_delete (cache->tab);
3406 xfree (cache);
3407 }
3408
3409 /* If FILE is not already in the table of files in CACHE, return zero;
3410 otherwise return non-zero. Optionally add FILE to the table if ADD
3411 is non-zero.
3412
3413 NOTE: We don't manage space for FILE, we assume FILE lives as long
3414 as the caller needs. */
3415
3416 static int
3417 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3418 {
3419 void **slot;
3420
3421 /* Is FILE in tab? */
3422 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3423 if (*slot != NULL)
3424 return 1;
3425
3426 /* No; maybe add it to tab. */
3427 if (add)
3428 *slot = (char *) file;
3429
3430 return 0;
3431 }
3432
3433 /* Data structure to maintain printing state for output_source_filename. */
3434
3435 struct output_source_filename_data
3436 {
3437 /* Cache of what we've seen so far. */
3438 struct filename_seen_cache *filename_seen_cache;
3439
3440 /* Flag of whether we're printing the first one. */
3441 int first;
3442 };
3443
3444 /* Slave routine for sources_info. Force line breaks at ,'s.
3445 NAME is the name to print.
3446 DATA contains the state for printing and watching for duplicates. */
3447
3448 static void
3449 output_source_filename (const char *name,
3450 struct output_source_filename_data *data)
3451 {
3452 /* Since a single source file can result in several partial symbol
3453 tables, we need to avoid printing it more than once. Note: if
3454 some of the psymtabs are read in and some are not, it gets
3455 printed both under "Source files for which symbols have been
3456 read" and "Source files for which symbols will be read in on
3457 demand". I consider this a reasonable way to deal with the
3458 situation. I'm not sure whether this can also happen for
3459 symtabs; it doesn't hurt to check. */
3460
3461 /* Was NAME already seen? */
3462 if (filename_seen (data->filename_seen_cache, name, 1))
3463 {
3464 /* Yes; don't print it again. */
3465 return;
3466 }
3467
3468 /* No; print it and reset *FIRST. */
3469 if (! data->first)
3470 printf_filtered (", ");
3471 data->first = 0;
3472
3473 wrap_here ("");
3474 fputs_filtered (name, gdb_stdout);
3475 }
3476
3477 /* A callback for map_partial_symbol_filenames. */
3478
3479 static void
3480 output_partial_symbol_filename (const char *filename, const char *fullname,
3481 void *data)
3482 {
3483 output_source_filename (fullname ? fullname : filename, data);
3484 }
3485
3486 static void
3487 sources_info (char *ignore, int from_tty)
3488 {
3489 struct symtab *s;
3490 struct objfile *objfile;
3491 struct output_source_filename_data data;
3492 struct cleanup *cleanups;
3493
3494 if (!have_full_symbols () && !have_partial_symbols ())
3495 {
3496 error (_("No symbol table is loaded. Use the \"file\" command."));
3497 }
3498
3499 data.filename_seen_cache = create_filename_seen_cache ();
3500 cleanups = make_cleanup (delete_filename_seen_cache,
3501 data.filename_seen_cache);
3502
3503 printf_filtered ("Source files for which symbols have been read in:\n\n");
3504
3505 data.first = 1;
3506 ALL_SYMTABS (objfile, s)
3507 {
3508 const char *fullname = symtab_to_fullname (s);
3509
3510 output_source_filename (fullname, &data);
3511 }
3512 printf_filtered ("\n\n");
3513
3514 printf_filtered ("Source files for which symbols "
3515 "will be read in on demand:\n\n");
3516
3517 clear_filename_seen_cache (data.filename_seen_cache);
3518 data.first = 1;
3519 map_symbol_filenames (output_partial_symbol_filename, &data,
3520 1 /*need_fullname*/);
3521 printf_filtered ("\n");
3522
3523 do_cleanups (cleanups);
3524 }
3525
3526 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3527 non-zero compare only lbasename of FILES. */
3528
3529 static int
3530 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3531 {
3532 int i;
3533
3534 if (file != NULL && nfiles != 0)
3535 {
3536 for (i = 0; i < nfiles; i++)
3537 {
3538 if (compare_filenames_for_search (file, (basenames
3539 ? lbasename (files[i])
3540 : files[i])))
3541 return 1;
3542 }
3543 }
3544 else if (nfiles == 0)
3545 return 1;
3546 return 0;
3547 }
3548
3549 /* Free any memory associated with a search. */
3550
3551 void
3552 free_search_symbols (struct symbol_search *symbols)
3553 {
3554 struct symbol_search *p;
3555 struct symbol_search *next;
3556
3557 for (p = symbols; p != NULL; p = next)
3558 {
3559 next = p->next;
3560 xfree (p);
3561 }
3562 }
3563
3564 static void
3565 do_free_search_symbols_cleanup (void *symbolsp)
3566 {
3567 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3568
3569 free_search_symbols (symbols);
3570 }
3571
3572 struct cleanup *
3573 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3574 {
3575 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3576 }
3577
3578 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3579 sort symbols, not minimal symbols. */
3580
3581 static int
3582 compare_search_syms (const void *sa, const void *sb)
3583 {
3584 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3585 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3586 int c;
3587
3588 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3589 if (c != 0)
3590 return c;
3591
3592 if (sym_a->block != sym_b->block)
3593 return sym_a->block - sym_b->block;
3594
3595 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3596 SYMBOL_PRINT_NAME (sym_b->symbol));
3597 }
3598
3599 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3600 The duplicates are freed, and the new list is returned in
3601 *NEW_HEAD, *NEW_TAIL. */
3602
3603 static void
3604 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3605 struct symbol_search **new_head,
3606 struct symbol_search **new_tail)
3607 {
3608 struct symbol_search **symbols, *symp, *old_next;
3609 int i, j, nunique;
3610
3611 gdb_assert (found != NULL && nfound > 0);
3612
3613 /* Build an array out of the list so we can easily sort them. */
3614 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3615 * nfound);
3616 symp = found;
3617 for (i = 0; i < nfound; i++)
3618 {
3619 gdb_assert (symp != NULL);
3620 gdb_assert (symp->block >= 0 && symp->block <= 1);
3621 symbols[i] = symp;
3622 symp = symp->next;
3623 }
3624 gdb_assert (symp == NULL);
3625
3626 qsort (symbols, nfound, sizeof (struct symbol_search *),
3627 compare_search_syms);
3628
3629 /* Collapse out the dups. */
3630 for (i = 1, j = 1; i < nfound; ++i)
3631 {
3632 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3633 symbols[j++] = symbols[i];
3634 else
3635 xfree (symbols[i]);
3636 }
3637 nunique = j;
3638 symbols[j - 1]->next = NULL;
3639
3640 /* Rebuild the linked list. */
3641 for (i = 0; i < nunique - 1; i++)
3642 symbols[i]->next = symbols[i + 1];
3643 symbols[nunique - 1]->next = NULL;
3644
3645 *new_head = symbols[0];
3646 *new_tail = symbols[nunique - 1];
3647 xfree (symbols);
3648 }
3649
3650 /* An object of this type is passed as the user_data to the
3651 expand_symtabs_matching method. */
3652 struct search_symbols_data
3653 {
3654 int nfiles;
3655 const char **files;
3656
3657 /* It is true if PREG contains valid data, false otherwise. */
3658 unsigned preg_p : 1;
3659 regex_t preg;
3660 };
3661
3662 /* A callback for expand_symtabs_matching. */
3663
3664 static int
3665 search_symbols_file_matches (const char *filename, void *user_data,
3666 int basenames)
3667 {
3668 struct search_symbols_data *data = user_data;
3669
3670 return file_matches (filename, data->files, data->nfiles, basenames);
3671 }
3672
3673 /* A callback for expand_symtabs_matching. */
3674
3675 static int
3676 search_symbols_name_matches (const char *symname, void *user_data)
3677 {
3678 struct search_symbols_data *data = user_data;
3679
3680 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3681 }
3682
3683 /* Search the symbol table for matches to the regular expression REGEXP,
3684 returning the results in *MATCHES.
3685
3686 Only symbols of KIND are searched:
3687 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3688 and constants (enums)
3689 FUNCTIONS_DOMAIN - search all functions
3690 TYPES_DOMAIN - search all type names
3691 ALL_DOMAIN - an internal error for this function
3692
3693 free_search_symbols should be called when *MATCHES is no longer needed.
3694
3695 Within each file the results are sorted locally; each symtab's global and
3696 static blocks are separately alphabetized.
3697 Duplicate entries are removed. */
3698
3699 void
3700 search_symbols (const char *regexp, enum search_domain kind,
3701 int nfiles, const char *files[],
3702 struct symbol_search **matches)
3703 {
3704 struct symtab *s;
3705 const struct blockvector *bv;
3706 struct block *b;
3707 int i = 0;
3708 struct block_iterator iter;
3709 struct symbol *sym;
3710 struct objfile *objfile;
3711 struct minimal_symbol *msymbol;
3712 int found_misc = 0;
3713 static const enum minimal_symbol_type types[]
3714 = {mst_data, mst_text, mst_abs};
3715 static const enum minimal_symbol_type types2[]
3716 = {mst_bss, mst_file_text, mst_abs};
3717 static const enum minimal_symbol_type types3[]
3718 = {mst_file_data, mst_solib_trampoline, mst_abs};
3719 static const enum minimal_symbol_type types4[]
3720 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3721 enum minimal_symbol_type ourtype;
3722 enum minimal_symbol_type ourtype2;
3723 enum minimal_symbol_type ourtype3;
3724 enum minimal_symbol_type ourtype4;
3725 struct symbol_search *found;
3726 struct symbol_search *tail;
3727 struct search_symbols_data datum;
3728 int nfound;
3729
3730 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3731 CLEANUP_CHAIN is freed only in the case of an error. */
3732 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3733 struct cleanup *retval_chain;
3734
3735 gdb_assert (kind <= TYPES_DOMAIN);
3736
3737 ourtype = types[kind];
3738 ourtype2 = types2[kind];
3739 ourtype3 = types3[kind];
3740 ourtype4 = types4[kind];
3741
3742 *matches = NULL;
3743 datum.preg_p = 0;
3744
3745 if (regexp != NULL)
3746 {
3747 /* Make sure spacing is right for C++ operators.
3748 This is just a courtesy to make the matching less sensitive
3749 to how many spaces the user leaves between 'operator'
3750 and <TYPENAME> or <OPERATOR>. */
3751 const char *opend;
3752 const char *opname = operator_chars (regexp, &opend);
3753 int errcode;
3754
3755 if (*opname)
3756 {
3757 int fix = -1; /* -1 means ok; otherwise number of
3758 spaces needed. */
3759
3760 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3761 {
3762 /* There should 1 space between 'operator' and 'TYPENAME'. */
3763 if (opname[-1] != ' ' || opname[-2] == ' ')
3764 fix = 1;
3765 }
3766 else
3767 {
3768 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3769 if (opname[-1] == ' ')
3770 fix = 0;
3771 }
3772 /* If wrong number of spaces, fix it. */
3773 if (fix >= 0)
3774 {
3775 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3776
3777 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3778 regexp = tmp;
3779 }
3780 }
3781
3782 errcode = regcomp (&datum.preg, regexp,
3783 REG_NOSUB | (case_sensitivity == case_sensitive_off
3784 ? REG_ICASE : 0));
3785 if (errcode != 0)
3786 {
3787 char *err = get_regcomp_error (errcode, &datum.preg);
3788
3789 make_cleanup (xfree, err);
3790 error (_("Invalid regexp (%s): %s"), err, regexp);
3791 }
3792 datum.preg_p = 1;
3793 make_regfree_cleanup (&datum.preg);
3794 }
3795
3796 /* Search through the partial symtabs *first* for all symbols
3797 matching the regexp. That way we don't have to reproduce all of
3798 the machinery below. */
3799
3800 datum.nfiles = nfiles;
3801 datum.files = files;
3802 expand_symtabs_matching ((nfiles == 0
3803 ? NULL
3804 : search_symbols_file_matches),
3805 search_symbols_name_matches,
3806 kind, &datum);
3807
3808 /* Here, we search through the minimal symbol tables for functions
3809 and variables that match, and force their symbols to be read.
3810 This is in particular necessary for demangled variable names,
3811 which are no longer put into the partial symbol tables.
3812 The symbol will then be found during the scan of symtabs below.
3813
3814 For functions, find_pc_symtab should succeed if we have debug info
3815 for the function, for variables we have to call
3816 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3817 has debug info.
3818 If the lookup fails, set found_misc so that we will rescan to print
3819 any matching symbols without debug info.
3820 We only search the objfile the msymbol came from, we no longer search
3821 all objfiles. In large programs (1000s of shared libs) searching all
3822 objfiles is not worth the pain. */
3823
3824 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3825 {
3826 ALL_MSYMBOLS (objfile, msymbol)
3827 {
3828 QUIT;
3829
3830 if (msymbol->created_by_gdb)
3831 continue;
3832
3833 if (MSYMBOL_TYPE (msymbol) == ourtype
3834 || MSYMBOL_TYPE (msymbol) == ourtype2
3835 || MSYMBOL_TYPE (msymbol) == ourtype3
3836 || MSYMBOL_TYPE (msymbol) == ourtype4)
3837 {
3838 if (!datum.preg_p
3839 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3840 NULL, 0) == 0)
3841 {
3842 /* Note: An important side-effect of these lookup functions
3843 is to expand the symbol table if msymbol is found, for the
3844 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3845 if (kind == FUNCTIONS_DOMAIN
3846 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3847 msymbol)) == NULL
3848 : (lookup_symbol_in_objfile_from_linkage_name
3849 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3850 == NULL))
3851 found_misc = 1;
3852 }
3853 }
3854 }
3855 }
3856
3857 found = NULL;
3858 tail = NULL;
3859 nfound = 0;
3860 retval_chain = make_cleanup_free_search_symbols (&found);
3861
3862 ALL_PRIMARY_SYMTABS (objfile, s)
3863 {
3864 bv = BLOCKVECTOR (s);
3865 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3866 {
3867 b = BLOCKVECTOR_BLOCK (bv, i);
3868 ALL_BLOCK_SYMBOLS (b, iter, sym)
3869 {
3870 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3871
3872 QUIT;
3873
3874 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3875 a substring of symtab_to_fullname as it may contain "./" etc. */
3876 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3877 || ((basenames_may_differ
3878 || file_matches (lbasename (real_symtab->filename),
3879 files, nfiles, 1))
3880 && file_matches (symtab_to_fullname (real_symtab),
3881 files, nfiles, 0)))
3882 && ((!datum.preg_p
3883 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3884 NULL, 0) == 0)
3885 && ((kind == VARIABLES_DOMAIN
3886 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3887 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3888 && SYMBOL_CLASS (sym) != LOC_BLOCK
3889 /* LOC_CONST can be used for more than just enums,
3890 e.g., c++ static const members.
3891 We only want to skip enums here. */
3892 && !(SYMBOL_CLASS (sym) == LOC_CONST
3893 && TYPE_CODE (SYMBOL_TYPE (sym))
3894 == TYPE_CODE_ENUM))
3895 || (kind == FUNCTIONS_DOMAIN
3896 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3897 || (kind == TYPES_DOMAIN
3898 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3899 {
3900 /* match */
3901 struct symbol_search *psr = (struct symbol_search *)
3902 xmalloc (sizeof (struct symbol_search));
3903 psr->block = i;
3904 psr->symtab = real_symtab;
3905 psr->symbol = sym;
3906 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3907 psr->next = NULL;
3908 if (tail == NULL)
3909 found = psr;
3910 else
3911 tail->next = psr;
3912 tail = psr;
3913 nfound ++;
3914 }
3915 }
3916 }
3917 }
3918
3919 if (found != NULL)
3920 {
3921 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3922 /* Note: nfound is no longer useful beyond this point. */
3923 }
3924
3925 /* If there are no eyes, avoid all contact. I mean, if there are
3926 no debug symbols, then print directly from the msymbol_vector. */
3927
3928 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3929 {
3930 ALL_MSYMBOLS (objfile, msymbol)
3931 {
3932 QUIT;
3933
3934 if (msymbol->created_by_gdb)
3935 continue;
3936
3937 if (MSYMBOL_TYPE (msymbol) == ourtype
3938 || MSYMBOL_TYPE (msymbol) == ourtype2
3939 || MSYMBOL_TYPE (msymbol) == ourtype3
3940 || MSYMBOL_TYPE (msymbol) == ourtype4)
3941 {
3942 if (!datum.preg_p
3943 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3944 NULL, 0) == 0)
3945 {
3946 /* For functions we can do a quick check of whether the
3947 symbol might be found via find_pc_symtab. */
3948 if (kind != FUNCTIONS_DOMAIN
3949 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3950 msymbol)) == NULL)
3951 {
3952 if (lookup_symbol_in_objfile_from_linkage_name
3953 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3954 == NULL)
3955 {
3956 /* match */
3957 struct symbol_search *psr = (struct symbol_search *)
3958 xmalloc (sizeof (struct symbol_search));
3959 psr->block = i;
3960 psr->msymbol.minsym = msymbol;
3961 psr->msymbol.objfile = objfile;
3962 psr->symtab = NULL;
3963 psr->symbol = NULL;
3964 psr->next = NULL;
3965 if (tail == NULL)
3966 found = psr;
3967 else
3968 tail->next = psr;
3969 tail = psr;
3970 }
3971 }
3972 }
3973 }
3974 }
3975 }
3976
3977 discard_cleanups (retval_chain);
3978 do_cleanups (old_chain);
3979 *matches = found;
3980 }
3981
3982 /* Helper function for symtab_symbol_info, this function uses
3983 the data returned from search_symbols() to print information
3984 regarding the match to gdb_stdout. */
3985
3986 static void
3987 print_symbol_info (enum search_domain kind,
3988 struct symtab *s, struct symbol *sym,
3989 int block, const char *last)
3990 {
3991 const char *s_filename = symtab_to_filename_for_display (s);
3992
3993 if (last == NULL || filename_cmp (last, s_filename) != 0)
3994 {
3995 fputs_filtered ("\nFile ", gdb_stdout);
3996 fputs_filtered (s_filename, gdb_stdout);
3997 fputs_filtered (":\n", gdb_stdout);
3998 }
3999
4000 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4001 printf_filtered ("static ");
4002
4003 /* Typedef that is not a C++ class. */
4004 if (kind == TYPES_DOMAIN
4005 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4006 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4007 /* variable, func, or typedef-that-is-c++-class. */
4008 else if (kind < TYPES_DOMAIN
4009 || (kind == TYPES_DOMAIN
4010 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4011 {
4012 type_print (SYMBOL_TYPE (sym),
4013 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4014 ? "" : SYMBOL_PRINT_NAME (sym)),
4015 gdb_stdout, 0);
4016
4017 printf_filtered (";\n");
4018 }
4019 }
4020
4021 /* This help function for symtab_symbol_info() prints information
4022 for non-debugging symbols to gdb_stdout. */
4023
4024 static void
4025 print_msymbol_info (struct bound_minimal_symbol msymbol)
4026 {
4027 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4028 char *tmp;
4029
4030 if (gdbarch_addr_bit (gdbarch) <= 32)
4031 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4032 & (CORE_ADDR) 0xffffffff,
4033 8);
4034 else
4035 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4036 16);
4037 printf_filtered ("%s %s\n",
4038 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4039 }
4040
4041 /* This is the guts of the commands "info functions", "info types", and
4042 "info variables". It calls search_symbols to find all matches and then
4043 print_[m]symbol_info to print out some useful information about the
4044 matches. */
4045
4046 static void
4047 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4048 {
4049 static const char * const classnames[] =
4050 {"variable", "function", "type"};
4051 struct symbol_search *symbols;
4052 struct symbol_search *p;
4053 struct cleanup *old_chain;
4054 const char *last_filename = NULL;
4055 int first = 1;
4056
4057 gdb_assert (kind <= TYPES_DOMAIN);
4058
4059 /* Must make sure that if we're interrupted, symbols gets freed. */
4060 search_symbols (regexp, kind, 0, NULL, &symbols);
4061 old_chain = make_cleanup_free_search_symbols (&symbols);
4062
4063 if (regexp != NULL)
4064 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4065 classnames[kind], regexp);
4066 else
4067 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4068
4069 for (p = symbols; p != NULL; p = p->next)
4070 {
4071 QUIT;
4072
4073 if (p->msymbol.minsym != NULL)
4074 {
4075 if (first)
4076 {
4077 printf_filtered (_("\nNon-debugging symbols:\n"));
4078 first = 0;
4079 }
4080 print_msymbol_info (p->msymbol);
4081 }
4082 else
4083 {
4084 print_symbol_info (kind,
4085 p->symtab,
4086 p->symbol,
4087 p->block,
4088 last_filename);
4089 last_filename = symtab_to_filename_for_display (p->symtab);
4090 }
4091 }
4092
4093 do_cleanups (old_chain);
4094 }
4095
4096 static void
4097 variables_info (char *regexp, int from_tty)
4098 {
4099 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4100 }
4101
4102 static void
4103 functions_info (char *regexp, int from_tty)
4104 {
4105 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4106 }
4107
4108
4109 static void
4110 types_info (char *regexp, int from_tty)
4111 {
4112 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4113 }
4114
4115 /* Breakpoint all functions matching regular expression. */
4116
4117 void
4118 rbreak_command_wrapper (char *regexp, int from_tty)
4119 {
4120 rbreak_command (regexp, from_tty);
4121 }
4122
4123 /* A cleanup function that calls end_rbreak_breakpoints. */
4124
4125 static void
4126 do_end_rbreak_breakpoints (void *ignore)
4127 {
4128 end_rbreak_breakpoints ();
4129 }
4130
4131 static void
4132 rbreak_command (char *regexp, int from_tty)
4133 {
4134 struct symbol_search *ss;
4135 struct symbol_search *p;
4136 struct cleanup *old_chain;
4137 char *string = NULL;
4138 int len = 0;
4139 const char **files = NULL;
4140 const char *file_name;
4141 int nfiles = 0;
4142
4143 if (regexp)
4144 {
4145 char *colon = strchr (regexp, ':');
4146
4147 if (colon && *(colon + 1) != ':')
4148 {
4149 int colon_index;
4150 char *local_name;
4151
4152 colon_index = colon - regexp;
4153 local_name = alloca (colon_index + 1);
4154 memcpy (local_name, regexp, colon_index);
4155 local_name[colon_index--] = 0;
4156 while (isspace (local_name[colon_index]))
4157 local_name[colon_index--] = 0;
4158 file_name = local_name;
4159 files = &file_name;
4160 nfiles = 1;
4161 regexp = skip_spaces (colon + 1);
4162 }
4163 }
4164
4165 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4166 old_chain = make_cleanup_free_search_symbols (&ss);
4167 make_cleanup (free_current_contents, &string);
4168
4169 start_rbreak_breakpoints ();
4170 make_cleanup (do_end_rbreak_breakpoints, NULL);
4171 for (p = ss; p != NULL; p = p->next)
4172 {
4173 if (p->msymbol.minsym == NULL)
4174 {
4175 const char *fullname = symtab_to_fullname (p->symtab);
4176
4177 int newlen = (strlen (fullname)
4178 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4179 + 4);
4180
4181 if (newlen > len)
4182 {
4183 string = xrealloc (string, newlen);
4184 len = newlen;
4185 }
4186 strcpy (string, fullname);
4187 strcat (string, ":'");
4188 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4189 strcat (string, "'");
4190 break_command (string, from_tty);
4191 print_symbol_info (FUNCTIONS_DOMAIN,
4192 p->symtab,
4193 p->symbol,
4194 p->block,
4195 symtab_to_filename_for_display (p->symtab));
4196 }
4197 else
4198 {
4199 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4200
4201 if (newlen > len)
4202 {
4203 string = xrealloc (string, newlen);
4204 len = newlen;
4205 }
4206 strcpy (string, "'");
4207 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4208 strcat (string, "'");
4209
4210 break_command (string, from_tty);
4211 printf_filtered ("<function, no debug info> %s;\n",
4212 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4213 }
4214 }
4215
4216 do_cleanups (old_chain);
4217 }
4218 \f
4219
4220 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4221
4222 Either sym_text[sym_text_len] != '(' and then we search for any
4223 symbol starting with SYM_TEXT text.
4224
4225 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4226 be terminated at that point. Partial symbol tables do not have parameters
4227 information. */
4228
4229 static int
4230 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4231 {
4232 int (*ncmp) (const char *, const char *, size_t);
4233
4234 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4235
4236 if (ncmp (name, sym_text, sym_text_len) != 0)
4237 return 0;
4238
4239 if (sym_text[sym_text_len] == '(')
4240 {
4241 /* User searches for `name(someth...'. Require NAME to be terminated.
4242 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4243 present but accept even parameters presence. In this case this
4244 function is in fact strcmp_iw but whitespace skipping is not supported
4245 for tab completion. */
4246
4247 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4248 return 0;
4249 }
4250
4251 return 1;
4252 }
4253
4254 /* Free any memory associated with a completion list. */
4255
4256 static void
4257 free_completion_list (VEC (char_ptr) **list_ptr)
4258 {
4259 int i;
4260 char *p;
4261
4262 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4263 xfree (p);
4264 VEC_free (char_ptr, *list_ptr);
4265 }
4266
4267 /* Callback for make_cleanup. */
4268
4269 static void
4270 do_free_completion_list (void *list)
4271 {
4272 free_completion_list (list);
4273 }
4274
4275 /* Helper routine for make_symbol_completion_list. */
4276
4277 static VEC (char_ptr) *return_val;
4278
4279 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4280 completion_list_add_name \
4281 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4282
4283 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4284 completion_list_add_name \
4285 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4286
4287 /* Test to see if the symbol specified by SYMNAME (which is already
4288 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4289 characters. If so, add it to the current completion list. */
4290
4291 static void
4292 completion_list_add_name (const char *symname,
4293 const char *sym_text, int sym_text_len,
4294 const char *text, const char *word)
4295 {
4296 /* Clip symbols that cannot match. */
4297 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4298 return;
4299
4300 /* We have a match for a completion, so add SYMNAME to the current list
4301 of matches. Note that the name is moved to freshly malloc'd space. */
4302
4303 {
4304 char *new;
4305
4306 if (word == sym_text)
4307 {
4308 new = xmalloc (strlen (symname) + 5);
4309 strcpy (new, symname);
4310 }
4311 else if (word > sym_text)
4312 {
4313 /* Return some portion of symname. */
4314 new = xmalloc (strlen (symname) + 5);
4315 strcpy (new, symname + (word - sym_text));
4316 }
4317 else
4318 {
4319 /* Return some of SYM_TEXT plus symname. */
4320 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4321 strncpy (new, word, sym_text - word);
4322 new[sym_text - word] = '\0';
4323 strcat (new, symname);
4324 }
4325
4326 VEC_safe_push (char_ptr, return_val, new);
4327 }
4328 }
4329
4330 /* ObjC: In case we are completing on a selector, look as the msymbol
4331 again and feed all the selectors into the mill. */
4332
4333 static void
4334 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4335 const char *sym_text, int sym_text_len,
4336 const char *text, const char *word)
4337 {
4338 static char *tmp = NULL;
4339 static unsigned int tmplen = 0;
4340
4341 const char *method, *category, *selector;
4342 char *tmp2 = NULL;
4343
4344 method = MSYMBOL_NATURAL_NAME (msymbol);
4345
4346 /* Is it a method? */
4347 if ((method[0] != '-') && (method[0] != '+'))
4348 return;
4349
4350 if (sym_text[0] == '[')
4351 /* Complete on shortened method method. */
4352 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4353
4354 while ((strlen (method) + 1) >= tmplen)
4355 {
4356 if (tmplen == 0)
4357 tmplen = 1024;
4358 else
4359 tmplen *= 2;
4360 tmp = xrealloc (tmp, tmplen);
4361 }
4362 selector = strchr (method, ' ');
4363 if (selector != NULL)
4364 selector++;
4365
4366 category = strchr (method, '(');
4367
4368 if ((category != NULL) && (selector != NULL))
4369 {
4370 memcpy (tmp, method, (category - method));
4371 tmp[category - method] = ' ';
4372 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4373 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4374 if (sym_text[0] == '[')
4375 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4376 }
4377
4378 if (selector != NULL)
4379 {
4380 /* Complete on selector only. */
4381 strcpy (tmp, selector);
4382 tmp2 = strchr (tmp, ']');
4383 if (tmp2 != NULL)
4384 *tmp2 = '\0';
4385
4386 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4387 }
4388 }
4389
4390 /* Break the non-quoted text based on the characters which are in
4391 symbols. FIXME: This should probably be language-specific. */
4392
4393 static const char *
4394 language_search_unquoted_string (const char *text, const char *p)
4395 {
4396 for (; p > text; --p)
4397 {
4398 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4399 continue;
4400 else
4401 {
4402 if ((current_language->la_language == language_objc))
4403 {
4404 if (p[-1] == ':') /* Might be part of a method name. */
4405 continue;
4406 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4407 p -= 2; /* Beginning of a method name. */
4408 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4409 { /* Might be part of a method name. */
4410 const char *t = p;
4411
4412 /* Seeing a ' ' or a '(' is not conclusive evidence
4413 that we are in the middle of a method name. However,
4414 finding "-[" or "+[" should be pretty un-ambiguous.
4415 Unfortunately we have to find it now to decide. */
4416
4417 while (t > text)
4418 if (isalnum (t[-1]) || t[-1] == '_' ||
4419 t[-1] == ' ' || t[-1] == ':' ||
4420 t[-1] == '(' || t[-1] == ')')
4421 --t;
4422 else
4423 break;
4424
4425 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4426 p = t - 2; /* Method name detected. */
4427 /* Else we leave with p unchanged. */
4428 }
4429 }
4430 break;
4431 }
4432 }
4433 return p;
4434 }
4435
4436 static void
4437 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4438 int sym_text_len, const char *text,
4439 const char *word)
4440 {
4441 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4442 {
4443 struct type *t = SYMBOL_TYPE (sym);
4444 enum type_code c = TYPE_CODE (t);
4445 int j;
4446
4447 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4448 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4449 if (TYPE_FIELD_NAME (t, j))
4450 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4451 sym_text, sym_text_len, text, word);
4452 }
4453 }
4454
4455 /* Type of the user_data argument passed to add_macro_name or
4456 symbol_completion_matcher. The contents are simply whatever is
4457 needed by completion_list_add_name. */
4458 struct add_name_data
4459 {
4460 const char *sym_text;
4461 int sym_text_len;
4462 const char *text;
4463 const char *word;
4464 };
4465
4466 /* A callback used with macro_for_each and macro_for_each_in_scope.
4467 This adds a macro's name to the current completion list. */
4468
4469 static void
4470 add_macro_name (const char *name, const struct macro_definition *ignore,
4471 struct macro_source_file *ignore2, int ignore3,
4472 void *user_data)
4473 {
4474 struct add_name_data *datum = (struct add_name_data *) user_data;
4475
4476 completion_list_add_name (name,
4477 datum->sym_text, datum->sym_text_len,
4478 datum->text, datum->word);
4479 }
4480
4481 /* A callback for expand_symtabs_matching. */
4482
4483 static int
4484 symbol_completion_matcher (const char *name, void *user_data)
4485 {
4486 struct add_name_data *datum = (struct add_name_data *) user_data;
4487
4488 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4489 }
4490
4491 VEC (char_ptr) *
4492 default_make_symbol_completion_list_break_on (const char *text,
4493 const char *word,
4494 const char *break_on,
4495 enum type_code code)
4496 {
4497 /* Problem: All of the symbols have to be copied because readline
4498 frees them. I'm not going to worry about this; hopefully there
4499 won't be that many. */
4500
4501 struct symbol *sym;
4502 struct symtab *s;
4503 struct minimal_symbol *msymbol;
4504 struct objfile *objfile;
4505 const struct block *b;
4506 const struct block *surrounding_static_block, *surrounding_global_block;
4507 struct block_iterator iter;
4508 /* The symbol we are completing on. Points in same buffer as text. */
4509 const char *sym_text;
4510 /* Length of sym_text. */
4511 int sym_text_len;
4512 struct add_name_data datum;
4513 struct cleanup *back_to;
4514
4515 /* Now look for the symbol we are supposed to complete on. */
4516 {
4517 const char *p;
4518 char quote_found;
4519 const char *quote_pos = NULL;
4520
4521 /* First see if this is a quoted string. */
4522 quote_found = '\0';
4523 for (p = text; *p != '\0'; ++p)
4524 {
4525 if (quote_found != '\0')
4526 {
4527 if (*p == quote_found)
4528 /* Found close quote. */
4529 quote_found = '\0';
4530 else if (*p == '\\' && p[1] == quote_found)
4531 /* A backslash followed by the quote character
4532 doesn't end the string. */
4533 ++p;
4534 }
4535 else if (*p == '\'' || *p == '"')
4536 {
4537 quote_found = *p;
4538 quote_pos = p;
4539 }
4540 }
4541 if (quote_found == '\'')
4542 /* A string within single quotes can be a symbol, so complete on it. */
4543 sym_text = quote_pos + 1;
4544 else if (quote_found == '"')
4545 /* A double-quoted string is never a symbol, nor does it make sense
4546 to complete it any other way. */
4547 {
4548 return NULL;
4549 }
4550 else
4551 {
4552 /* It is not a quoted string. Break it based on the characters
4553 which are in symbols. */
4554 while (p > text)
4555 {
4556 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4557 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4558 --p;
4559 else
4560 break;
4561 }
4562 sym_text = p;
4563 }
4564 }
4565
4566 sym_text_len = strlen (sym_text);
4567
4568 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4569
4570 if (current_language->la_language == language_cplus
4571 || current_language->la_language == language_java
4572 || current_language->la_language == language_fortran)
4573 {
4574 /* These languages may have parameters entered by user but they are never
4575 present in the partial symbol tables. */
4576
4577 const char *cs = memchr (sym_text, '(', sym_text_len);
4578
4579 if (cs)
4580 sym_text_len = cs - sym_text;
4581 }
4582 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4583
4584 return_val = NULL;
4585 back_to = make_cleanup (do_free_completion_list, &return_val);
4586
4587 datum.sym_text = sym_text;
4588 datum.sym_text_len = sym_text_len;
4589 datum.text = text;
4590 datum.word = word;
4591
4592 /* Look through the partial symtabs for all symbols which begin
4593 by matching SYM_TEXT. Expand all CUs that you find to the list.
4594 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4595 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4596 &datum);
4597
4598 /* At this point scan through the misc symbol vectors and add each
4599 symbol you find to the list. Eventually we want to ignore
4600 anything that isn't a text symbol (everything else will be
4601 handled by the psymtab code above). */
4602
4603 if (code == TYPE_CODE_UNDEF)
4604 {
4605 ALL_MSYMBOLS (objfile, msymbol)
4606 {
4607 QUIT;
4608 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4609 word);
4610
4611 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4612 word);
4613 }
4614 }
4615
4616 /* Search upwards from currently selected frame (so that we can
4617 complete on local vars). Also catch fields of types defined in
4618 this places which match our text string. Only complete on types
4619 visible from current context. */
4620
4621 b = get_selected_block (0);
4622 surrounding_static_block = block_static_block (b);
4623 surrounding_global_block = block_global_block (b);
4624 if (surrounding_static_block != NULL)
4625 while (b != surrounding_static_block)
4626 {
4627 QUIT;
4628
4629 ALL_BLOCK_SYMBOLS (b, iter, sym)
4630 {
4631 if (code == TYPE_CODE_UNDEF)
4632 {
4633 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4634 word);
4635 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4636 word);
4637 }
4638 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4639 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4640 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4641 word);
4642 }
4643
4644 /* Stop when we encounter an enclosing function. Do not stop for
4645 non-inlined functions - the locals of the enclosing function
4646 are in scope for a nested function. */
4647 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4648 break;
4649 b = BLOCK_SUPERBLOCK (b);
4650 }
4651
4652 /* Add fields from the file's types; symbols will be added below. */
4653
4654 if (code == TYPE_CODE_UNDEF)
4655 {
4656 if (surrounding_static_block != NULL)
4657 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4658 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4659
4660 if (surrounding_global_block != NULL)
4661 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4662 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4663 }
4664
4665 /* Go through the symtabs and check the externs and statics for
4666 symbols which match. */
4667
4668 ALL_PRIMARY_SYMTABS (objfile, s)
4669 {
4670 QUIT;
4671 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4672 ALL_BLOCK_SYMBOLS (b, iter, sym)
4673 {
4674 if (code == TYPE_CODE_UNDEF
4675 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4676 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4677 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4678 }
4679 }
4680
4681 ALL_PRIMARY_SYMTABS (objfile, s)
4682 {
4683 QUIT;
4684 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4685 ALL_BLOCK_SYMBOLS (b, iter, sym)
4686 {
4687 if (code == TYPE_CODE_UNDEF
4688 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4689 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4691 }
4692 }
4693
4694 /* Skip macros if we are completing a struct tag -- arguable but
4695 usually what is expected. */
4696 if (current_language->la_macro_expansion == macro_expansion_c
4697 && code == TYPE_CODE_UNDEF)
4698 {
4699 struct macro_scope *scope;
4700
4701 /* Add any macros visible in the default scope. Note that this
4702 may yield the occasional wrong result, because an expression
4703 might be evaluated in a scope other than the default. For
4704 example, if the user types "break file:line if <TAB>", the
4705 resulting expression will be evaluated at "file:line" -- but
4706 at there does not seem to be a way to detect this at
4707 completion time. */
4708 scope = default_macro_scope ();
4709 if (scope)
4710 {
4711 macro_for_each_in_scope (scope->file, scope->line,
4712 add_macro_name, &datum);
4713 xfree (scope);
4714 }
4715
4716 /* User-defined macros are always visible. */
4717 macro_for_each (macro_user_macros, add_macro_name, &datum);
4718 }
4719
4720 discard_cleanups (back_to);
4721 return (return_val);
4722 }
4723
4724 VEC (char_ptr) *
4725 default_make_symbol_completion_list (const char *text, const char *word,
4726 enum type_code code)
4727 {
4728 return default_make_symbol_completion_list_break_on (text, word, "", code);
4729 }
4730
4731 /* Return a vector of all symbols (regardless of class) which begin by
4732 matching TEXT. If the answer is no symbols, then the return value
4733 is NULL. */
4734
4735 VEC (char_ptr) *
4736 make_symbol_completion_list (const char *text, const char *word)
4737 {
4738 return current_language->la_make_symbol_completion_list (text, word,
4739 TYPE_CODE_UNDEF);
4740 }
4741
4742 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4743 symbols whose type code is CODE. */
4744
4745 VEC (char_ptr) *
4746 make_symbol_completion_type (const char *text, const char *word,
4747 enum type_code code)
4748 {
4749 gdb_assert (code == TYPE_CODE_UNION
4750 || code == TYPE_CODE_STRUCT
4751 || code == TYPE_CODE_CLASS
4752 || code == TYPE_CODE_ENUM);
4753 return current_language->la_make_symbol_completion_list (text, word, code);
4754 }
4755
4756 /* Like make_symbol_completion_list, but suitable for use as a
4757 completion function. */
4758
4759 VEC (char_ptr) *
4760 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4761 const char *text, const char *word)
4762 {
4763 return make_symbol_completion_list (text, word);
4764 }
4765
4766 /* Like make_symbol_completion_list, but returns a list of symbols
4767 defined in a source file FILE. */
4768
4769 VEC (char_ptr) *
4770 make_file_symbol_completion_list (const char *text, const char *word,
4771 const char *srcfile)
4772 {
4773 struct symbol *sym;
4774 struct symtab *s;
4775 struct block *b;
4776 struct block_iterator iter;
4777 /* The symbol we are completing on. Points in same buffer as text. */
4778 const char *sym_text;
4779 /* Length of sym_text. */
4780 int sym_text_len;
4781
4782 /* Now look for the symbol we are supposed to complete on.
4783 FIXME: This should be language-specific. */
4784 {
4785 const char *p;
4786 char quote_found;
4787 const char *quote_pos = NULL;
4788
4789 /* First see if this is a quoted string. */
4790 quote_found = '\0';
4791 for (p = text; *p != '\0'; ++p)
4792 {
4793 if (quote_found != '\0')
4794 {
4795 if (*p == quote_found)
4796 /* Found close quote. */
4797 quote_found = '\0';
4798 else if (*p == '\\' && p[1] == quote_found)
4799 /* A backslash followed by the quote character
4800 doesn't end the string. */
4801 ++p;
4802 }
4803 else if (*p == '\'' || *p == '"')
4804 {
4805 quote_found = *p;
4806 quote_pos = p;
4807 }
4808 }
4809 if (quote_found == '\'')
4810 /* A string within single quotes can be a symbol, so complete on it. */
4811 sym_text = quote_pos + 1;
4812 else if (quote_found == '"')
4813 /* A double-quoted string is never a symbol, nor does it make sense
4814 to complete it any other way. */
4815 {
4816 return NULL;
4817 }
4818 else
4819 {
4820 /* Not a quoted string. */
4821 sym_text = language_search_unquoted_string (text, p);
4822 }
4823 }
4824
4825 sym_text_len = strlen (sym_text);
4826
4827 return_val = NULL;
4828
4829 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4830 in). */
4831 s = lookup_symtab (srcfile);
4832 if (s == NULL)
4833 {
4834 /* Maybe they typed the file with leading directories, while the
4835 symbol tables record only its basename. */
4836 const char *tail = lbasename (srcfile);
4837
4838 if (tail > srcfile)
4839 s = lookup_symtab (tail);
4840 }
4841
4842 /* If we have no symtab for that file, return an empty list. */
4843 if (s == NULL)
4844 return (return_val);
4845
4846 /* Go through this symtab and check the externs and statics for
4847 symbols which match. */
4848
4849 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4850 ALL_BLOCK_SYMBOLS (b, iter, sym)
4851 {
4852 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4853 }
4854
4855 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4856 ALL_BLOCK_SYMBOLS (b, iter, sym)
4857 {
4858 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4859 }
4860
4861 return (return_val);
4862 }
4863
4864 /* A helper function for make_source_files_completion_list. It adds
4865 another file name to a list of possible completions, growing the
4866 list as necessary. */
4867
4868 static void
4869 add_filename_to_list (const char *fname, const char *text, const char *word,
4870 VEC (char_ptr) **list)
4871 {
4872 char *new;
4873 size_t fnlen = strlen (fname);
4874
4875 if (word == text)
4876 {
4877 /* Return exactly fname. */
4878 new = xmalloc (fnlen + 5);
4879 strcpy (new, fname);
4880 }
4881 else if (word > text)
4882 {
4883 /* Return some portion of fname. */
4884 new = xmalloc (fnlen + 5);
4885 strcpy (new, fname + (word - text));
4886 }
4887 else
4888 {
4889 /* Return some of TEXT plus fname. */
4890 new = xmalloc (fnlen + (text - word) + 5);
4891 strncpy (new, word, text - word);
4892 new[text - word] = '\0';
4893 strcat (new, fname);
4894 }
4895 VEC_safe_push (char_ptr, *list, new);
4896 }
4897
4898 static int
4899 not_interesting_fname (const char *fname)
4900 {
4901 static const char *illegal_aliens[] = {
4902 "_globals_", /* inserted by coff_symtab_read */
4903 NULL
4904 };
4905 int i;
4906
4907 for (i = 0; illegal_aliens[i]; i++)
4908 {
4909 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4910 return 1;
4911 }
4912 return 0;
4913 }
4914
4915 /* An object of this type is passed as the user_data argument to
4916 map_partial_symbol_filenames. */
4917 struct add_partial_filename_data
4918 {
4919 struct filename_seen_cache *filename_seen_cache;
4920 const char *text;
4921 const char *word;
4922 int text_len;
4923 VEC (char_ptr) **list;
4924 };
4925
4926 /* A callback for map_partial_symbol_filenames. */
4927
4928 static void
4929 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4930 void *user_data)
4931 {
4932 struct add_partial_filename_data *data = user_data;
4933
4934 if (not_interesting_fname (filename))
4935 return;
4936 if (!filename_seen (data->filename_seen_cache, filename, 1)
4937 && filename_ncmp (filename, data->text, data->text_len) == 0)
4938 {
4939 /* This file matches for a completion; add it to the
4940 current list of matches. */
4941 add_filename_to_list (filename, data->text, data->word, data->list);
4942 }
4943 else
4944 {
4945 const char *base_name = lbasename (filename);
4946
4947 if (base_name != filename
4948 && !filename_seen (data->filename_seen_cache, base_name, 1)
4949 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4950 add_filename_to_list (base_name, data->text, data->word, data->list);
4951 }
4952 }
4953
4954 /* Return a vector of all source files whose names begin with matching
4955 TEXT. The file names are looked up in the symbol tables of this
4956 program. If the answer is no matchess, then the return value is
4957 NULL. */
4958
4959 VEC (char_ptr) *
4960 make_source_files_completion_list (const char *text, const char *word)
4961 {
4962 struct symtab *s;
4963 struct objfile *objfile;
4964 size_t text_len = strlen (text);
4965 VEC (char_ptr) *list = NULL;
4966 const char *base_name;
4967 struct add_partial_filename_data datum;
4968 struct filename_seen_cache *filename_seen_cache;
4969 struct cleanup *back_to, *cache_cleanup;
4970
4971 if (!have_full_symbols () && !have_partial_symbols ())
4972 return list;
4973
4974 back_to = make_cleanup (do_free_completion_list, &list);
4975
4976 filename_seen_cache = create_filename_seen_cache ();
4977 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4978 filename_seen_cache);
4979
4980 ALL_SYMTABS (objfile, s)
4981 {
4982 if (not_interesting_fname (s->filename))
4983 continue;
4984 if (!filename_seen (filename_seen_cache, s->filename, 1)
4985 && filename_ncmp (s->filename, text, text_len) == 0)
4986 {
4987 /* This file matches for a completion; add it to the current
4988 list of matches. */
4989 add_filename_to_list (s->filename, text, word, &list);
4990 }
4991 else
4992 {
4993 /* NOTE: We allow the user to type a base name when the
4994 debug info records leading directories, but not the other
4995 way around. This is what subroutines of breakpoint
4996 command do when they parse file names. */
4997 base_name = lbasename (s->filename);
4998 if (base_name != s->filename
4999 && !filename_seen (filename_seen_cache, base_name, 1)
5000 && filename_ncmp (base_name, text, text_len) == 0)
5001 add_filename_to_list (base_name, text, word, &list);
5002 }
5003 }
5004
5005 datum.filename_seen_cache = filename_seen_cache;
5006 datum.text = text;
5007 datum.word = word;
5008 datum.text_len = text_len;
5009 datum.list = &list;
5010 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5011 0 /*need_fullname*/);
5012
5013 do_cleanups (cache_cleanup);
5014 discard_cleanups (back_to);
5015
5016 return list;
5017 }
5018 \f
5019 /* Track MAIN */
5020
5021 /* Return the "main_info" object for the current program space. If
5022 the object has not yet been created, create it and fill in some
5023 default values. */
5024
5025 static struct main_info *
5026 get_main_info (void)
5027 {
5028 struct main_info *info = program_space_data (current_program_space,
5029 main_progspace_key);
5030
5031 if (info == NULL)
5032 {
5033 /* It may seem strange to store the main name in the progspace
5034 and also in whatever objfile happens to see a main name in
5035 its debug info. The reason for this is mainly historical:
5036 gdb returned "main" as the name even if no function named
5037 "main" was defined the program; and this approach lets us
5038 keep compatibility. */
5039 info = XCNEW (struct main_info);
5040 info->language_of_main = language_unknown;
5041 set_program_space_data (current_program_space, main_progspace_key,
5042 info);
5043 }
5044
5045 return info;
5046 }
5047
5048 /* A cleanup to destroy a struct main_info when a progspace is
5049 destroyed. */
5050
5051 static void
5052 main_info_cleanup (struct program_space *pspace, void *data)
5053 {
5054 struct main_info *info = data;
5055
5056 if (info != NULL)
5057 xfree (info->name_of_main);
5058 xfree (info);
5059 }
5060
5061 static void
5062 set_main_name (const char *name, enum language lang)
5063 {
5064 struct main_info *info = get_main_info ();
5065
5066 if (info->name_of_main != NULL)
5067 {
5068 xfree (info->name_of_main);
5069 info->name_of_main = NULL;
5070 info->language_of_main = language_unknown;
5071 }
5072 if (name != NULL)
5073 {
5074 info->name_of_main = xstrdup (name);
5075 info->language_of_main = lang;
5076 }
5077 }
5078
5079 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5080 accordingly. */
5081
5082 static void
5083 find_main_name (void)
5084 {
5085 const char *new_main_name;
5086 struct objfile *objfile;
5087
5088 /* First check the objfiles to see whether a debuginfo reader has
5089 picked up the appropriate main name. Historically the main name
5090 was found in a more or less random way; this approach instead
5091 relies on the order of objfile creation -- which still isn't
5092 guaranteed to get the correct answer, but is just probably more
5093 accurate. */
5094 ALL_OBJFILES (objfile)
5095 {
5096 if (objfile->per_bfd->name_of_main != NULL)
5097 {
5098 set_main_name (objfile->per_bfd->name_of_main,
5099 objfile->per_bfd->language_of_main);
5100 return;
5101 }
5102 }
5103
5104 /* Try to see if the main procedure is in Ada. */
5105 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5106 be to add a new method in the language vector, and call this
5107 method for each language until one of them returns a non-empty
5108 name. This would allow us to remove this hard-coded call to
5109 an Ada function. It is not clear that this is a better approach
5110 at this point, because all methods need to be written in a way
5111 such that false positives never be returned. For instance, it is
5112 important that a method does not return a wrong name for the main
5113 procedure if the main procedure is actually written in a different
5114 language. It is easy to guaranty this with Ada, since we use a
5115 special symbol generated only when the main in Ada to find the name
5116 of the main procedure. It is difficult however to see how this can
5117 be guarantied for languages such as C, for instance. This suggests
5118 that order of call for these methods becomes important, which means
5119 a more complicated approach. */
5120 new_main_name = ada_main_name ();
5121 if (new_main_name != NULL)
5122 {
5123 set_main_name (new_main_name, language_ada);
5124 return;
5125 }
5126
5127 new_main_name = d_main_name ();
5128 if (new_main_name != NULL)
5129 {
5130 set_main_name (new_main_name, language_d);
5131 return;
5132 }
5133
5134 new_main_name = go_main_name ();
5135 if (new_main_name != NULL)
5136 {
5137 set_main_name (new_main_name, language_go);
5138 return;
5139 }
5140
5141 new_main_name = pascal_main_name ();
5142 if (new_main_name != NULL)
5143 {
5144 set_main_name (new_main_name, language_pascal);
5145 return;
5146 }
5147
5148 /* The languages above didn't identify the name of the main procedure.
5149 Fallback to "main". */
5150 set_main_name ("main", language_unknown);
5151 }
5152
5153 char *
5154 main_name (void)
5155 {
5156 struct main_info *info = get_main_info ();
5157
5158 if (info->name_of_main == NULL)
5159 find_main_name ();
5160
5161 return info->name_of_main;
5162 }
5163
5164 /* Return the language of the main function. If it is not known,
5165 return language_unknown. */
5166
5167 enum language
5168 main_language (void)
5169 {
5170 struct main_info *info = get_main_info ();
5171
5172 if (info->name_of_main == NULL)
5173 find_main_name ();
5174
5175 return info->language_of_main;
5176 }
5177
5178 /* Handle ``executable_changed'' events for the symtab module. */
5179
5180 static void
5181 symtab_observer_executable_changed (void)
5182 {
5183 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5184 set_main_name (NULL, language_unknown);
5185 }
5186
5187 /* Return 1 if the supplied producer string matches the ARM RealView
5188 compiler (armcc). */
5189
5190 int
5191 producer_is_realview (const char *producer)
5192 {
5193 static const char *const arm_idents[] = {
5194 "ARM C Compiler, ADS",
5195 "Thumb C Compiler, ADS",
5196 "ARM C++ Compiler, ADS",
5197 "Thumb C++ Compiler, ADS",
5198 "ARM/Thumb C/C++ Compiler, RVCT",
5199 "ARM C/C++ Compiler, RVCT"
5200 };
5201 int i;
5202
5203 if (producer == NULL)
5204 return 0;
5205
5206 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5207 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5208 return 1;
5209
5210 return 0;
5211 }
5212
5213 \f
5214
5215 /* The next index to hand out in response to a registration request. */
5216
5217 static int next_aclass_value = LOC_FINAL_VALUE;
5218
5219 /* The maximum number of "aclass" registrations we support. This is
5220 constant for convenience. */
5221 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5222
5223 /* The objects representing the various "aclass" values. The elements
5224 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5225 elements are those registered at gdb initialization time. */
5226
5227 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5228
5229 /* The globally visible pointer. This is separate from 'symbol_impl'
5230 so that it can be const. */
5231
5232 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5233
5234 /* Make sure we saved enough room in struct symbol. */
5235
5236 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5237
5238 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5239 is the ops vector associated with this index. This returns the new
5240 index, which should be used as the aclass_index field for symbols
5241 of this type. */
5242
5243 int
5244 register_symbol_computed_impl (enum address_class aclass,
5245 const struct symbol_computed_ops *ops)
5246 {
5247 int result = next_aclass_value++;
5248
5249 gdb_assert (aclass == LOC_COMPUTED);
5250 gdb_assert (result < MAX_SYMBOL_IMPLS);
5251 symbol_impl[result].aclass = aclass;
5252 symbol_impl[result].ops_computed = ops;
5253
5254 /* Sanity check OPS. */
5255 gdb_assert (ops != NULL);
5256 gdb_assert (ops->tracepoint_var_ref != NULL);
5257 gdb_assert (ops->describe_location != NULL);
5258 gdb_assert (ops->read_needs_frame != NULL);
5259 gdb_assert (ops->read_variable != NULL);
5260
5261 return result;
5262 }
5263
5264 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5265 OPS is the ops vector associated with this index. This returns the
5266 new index, which should be used as the aclass_index field for symbols
5267 of this type. */
5268
5269 int
5270 register_symbol_block_impl (enum address_class aclass,
5271 const struct symbol_block_ops *ops)
5272 {
5273 int result = next_aclass_value++;
5274
5275 gdb_assert (aclass == LOC_BLOCK);
5276 gdb_assert (result < MAX_SYMBOL_IMPLS);
5277 symbol_impl[result].aclass = aclass;
5278 symbol_impl[result].ops_block = ops;
5279
5280 /* Sanity check OPS. */
5281 gdb_assert (ops != NULL);
5282 gdb_assert (ops->find_frame_base_location != NULL);
5283
5284 return result;
5285 }
5286
5287 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5288 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5289 this index. This returns the new index, which should be used as
5290 the aclass_index field for symbols of this type. */
5291
5292 int
5293 register_symbol_register_impl (enum address_class aclass,
5294 const struct symbol_register_ops *ops)
5295 {
5296 int result = next_aclass_value++;
5297
5298 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5299 gdb_assert (result < MAX_SYMBOL_IMPLS);
5300 symbol_impl[result].aclass = aclass;
5301 symbol_impl[result].ops_register = ops;
5302
5303 return result;
5304 }
5305
5306 /* Initialize elements of 'symbol_impl' for the constants in enum
5307 address_class. */
5308
5309 static void
5310 initialize_ordinary_address_classes (void)
5311 {
5312 int i;
5313
5314 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5315 symbol_impl[i].aclass = i;
5316 }
5317
5318 \f
5319
5320 /* Initialize the symbol SYM. */
5321
5322 void
5323 initialize_symbol (struct symbol *sym)
5324 {
5325 memset (sym, 0, sizeof (*sym));
5326 SYMBOL_SECTION (sym) = -1;
5327 }
5328
5329 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5330 obstack. */
5331
5332 struct symbol *
5333 allocate_symbol (struct objfile *objfile)
5334 {
5335 struct symbol *result;
5336
5337 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5338 SYMBOL_SECTION (result) = -1;
5339
5340 return result;
5341 }
5342
5343 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5344 obstack. */
5345
5346 struct template_symbol *
5347 allocate_template_symbol (struct objfile *objfile)
5348 {
5349 struct template_symbol *result;
5350
5351 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5352 SYMBOL_SECTION (&result->base) = -1;
5353
5354 return result;
5355 }
5356
5357 \f
5358
5359 void
5360 _initialize_symtab (void)
5361 {
5362 initialize_ordinary_address_classes ();
5363
5364 main_progspace_key
5365 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5366
5367 add_info ("variables", variables_info, _("\
5368 All global and static variable names, or those matching REGEXP."));
5369 if (dbx_commands)
5370 add_com ("whereis", class_info, variables_info, _("\
5371 All global and static variable names, or those matching REGEXP."));
5372
5373 add_info ("functions", functions_info,
5374 _("All function names, or those matching REGEXP."));
5375
5376 /* FIXME: This command has at least the following problems:
5377 1. It prints builtin types (in a very strange and confusing fashion).
5378 2. It doesn't print right, e.g. with
5379 typedef struct foo *FOO
5380 type_print prints "FOO" when we want to make it (in this situation)
5381 print "struct foo *".
5382 I also think "ptype" or "whatis" is more likely to be useful (but if
5383 there is much disagreement "info types" can be fixed). */
5384 add_info ("types", types_info,
5385 _("All type names, or those matching REGEXP."));
5386
5387 add_info ("sources", sources_info,
5388 _("Source files in the program."));
5389
5390 add_com ("rbreak", class_breakpoint, rbreak_command,
5391 _("Set a breakpoint for all functions matching REGEXP."));
5392
5393 if (xdb_commands)
5394 {
5395 add_com ("lf", class_info, sources_info,
5396 _("Source files in the program"));
5397 add_com ("lg", class_info, variables_info, _("\
5398 All global and static variable names, or those matching REGEXP."));
5399 }
5400
5401 add_setshow_enum_cmd ("multiple-symbols", no_class,
5402 multiple_symbols_modes, &multiple_symbols_mode,
5403 _("\
5404 Set the debugger behavior when more than one symbol are possible matches\n\
5405 in an expression."), _("\
5406 Show how the debugger handles ambiguities in expressions."), _("\
5407 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5408 NULL, NULL, &setlist, &showlist);
5409
5410 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5411 &basenames_may_differ, _("\
5412 Set whether a source file may have multiple base names."), _("\
5413 Show whether a source file may have multiple base names."), _("\
5414 (A \"base name\" is the name of a file with the directory part removed.\n\
5415 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5416 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5417 before comparing them. Canonicalization is an expensive operation,\n\
5418 but it allows the same file be known by more than one base name.\n\
5419 If not set (the default), all source files are assumed to have just\n\
5420 one base name, and gdb will do file name comparisons more efficiently."),
5421 NULL, NULL,
5422 &setlist, &showlist);
5423
5424 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5425 _("Set debugging of symbol table creation."),
5426 _("Show debugging of symbol table creation."), _("\
5427 When enabled (non-zero), debugging messages are printed when building\n\
5428 symbol tables. A value of 1 (one) normally provides enough information.\n\
5429 A value greater than 1 provides more verbose information."),
5430 NULL,
5431 NULL,
5432 &setdebuglist, &showdebuglist);
5433
5434 observer_attach_executable_changed (symtab_observer_executable_changed);
5435 }