[gdb/testsuite] Fix shlib compilation with target board unix/-pie/-fPIE
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 struct symtab *
335 compunit_primary_filetab (const struct compunit_symtab *cust)
336 {
337 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
338
339 /* The primary file symtab is the first one in the list. */
340 return COMPUNIT_FILETABS (cust);
341 }
342
343 /* See symtab.h. */
344
345 enum language
346 compunit_language (const struct compunit_symtab *cust)
347 {
348 struct symtab *symtab = compunit_primary_filetab (cust);
349
350 /* The language of the compunit symtab is the language of its primary
351 source file. */
352 return SYMTAB_LANGUAGE (symtab);
353 }
354
355 /* See symtab.h. */
356
357 bool
358 minimal_symbol::data_p () const
359 {
360 return type == mst_data
361 || type == mst_bss
362 || type == mst_abs
363 || type == mst_file_data
364 || type == mst_file_bss;
365 }
366
367 /* See symtab.h. */
368
369 bool
370 minimal_symbol::text_p () const
371 {
372 return type == mst_text
373 || type == mst_text_gnu_ifunc
374 || type == mst_data_gnu_ifunc
375 || type == mst_slot_got_plt
376 || type == mst_solib_trampoline
377 || type == mst_file_text;
378 }
379
380 /* See whether FILENAME matches SEARCH_NAME using the rule that we
381 advertise to the user. (The manual's description of linespecs
382 describes what we advertise). Returns true if they match, false
383 otherwise. */
384
385 bool
386 compare_filenames_for_search (const char *filename, const char *search_name)
387 {
388 int len = strlen (filename);
389 size_t search_len = strlen (search_name);
390
391 if (len < search_len)
392 return false;
393
394 /* The tail of FILENAME must match. */
395 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
396 return false;
397
398 /* Either the names must completely match, or the character
399 preceding the trailing SEARCH_NAME segment of FILENAME must be a
400 directory separator.
401
402 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
403 cannot match FILENAME "/path//dir/file.c" - as user has requested
404 absolute path. The sama applies for "c:\file.c" possibly
405 incorrectly hypothetically matching "d:\dir\c:\file.c".
406
407 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
408 compatible with SEARCH_NAME "file.c". In such case a compiler had
409 to put the "c:file.c" name into debug info. Such compatibility
410 works only on GDB built for DOS host. */
411 return (len == search_len
412 || (!IS_ABSOLUTE_PATH (search_name)
413 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
414 || (HAS_DRIVE_SPEC (filename)
415 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
416 }
417
418 /* Same as compare_filenames_for_search, but for glob-style patterns.
419 Heads up on the order of the arguments. They match the order of
420 compare_filenames_for_search, but it's the opposite of the order of
421 arguments to gdb_filename_fnmatch. */
422
423 bool
424 compare_glob_filenames_for_search (const char *filename,
425 const char *search_name)
426 {
427 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
428 all /s have to be explicitly specified. */
429 int file_path_elements = count_path_elements (filename);
430 int search_path_elements = count_path_elements (search_name);
431
432 if (search_path_elements > file_path_elements)
433 return false;
434
435 if (IS_ABSOLUTE_PATH (search_name))
436 {
437 return (search_path_elements == file_path_elements
438 && gdb_filename_fnmatch (search_name, filename,
439 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
440 }
441
442 {
443 const char *file_to_compare
444 = strip_leading_path_elements (filename,
445 file_path_elements - search_path_elements);
446
447 return gdb_filename_fnmatch (search_name, file_to_compare,
448 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
449 }
450 }
451
452 /* Check for a symtab of a specific name by searching some symtabs.
453 This is a helper function for callbacks of iterate_over_symtabs.
454
455 If NAME is not absolute, then REAL_PATH is NULL
456 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457
458 The return value, NAME, REAL_PATH and CALLBACK are identical to the
459 `map_symtabs_matching_filename' method of quick_symbol_functions.
460
461 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
462 Each symtab within the specified compunit symtab is also searched.
463 AFTER_LAST is one past the last compunit symtab to search; NULL means to
464 search until the end of the list. */
465
466 bool
467 iterate_over_some_symtabs (const char *name,
468 const char *real_path,
469 struct compunit_symtab *first,
470 struct compunit_symtab *after_last,
471 gdb::function_view<bool (symtab *)> callback)
472 {
473 struct compunit_symtab *cust;
474 const char* base_name = lbasename (name);
475
476 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
477 {
478 for (symtab *s : compunit_filetabs (cust))
479 {
480 if (compare_filenames_for_search (s->filename, name))
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486
487 /* Before we invoke realpath, which can get expensive when many
488 files are involved, do a quick comparison of the basenames. */
489 if (! basenames_may_differ
490 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
491 continue;
492
493 if (compare_filenames_for_search (symtab_to_fullname (s), name))
494 {
495 if (callback (s))
496 return true;
497 continue;
498 }
499
500 /* If the user gave us an absolute path, try to find the file in
501 this symtab and use its absolute path. */
502 if (real_path != NULL)
503 {
504 const char *fullname = symtab_to_fullname (s);
505
506 gdb_assert (IS_ABSOLUTE_PATH (real_path));
507 gdb_assert (IS_ABSOLUTE_PATH (name));
508 gdb::unique_xmalloc_ptr<char> fullname_real_path
509 = gdb_realpath (fullname);
510 fullname = fullname_real_path.get ();
511 if (FILENAME_CMP (real_path, fullname) == 0)
512 {
513 if (callback (s))
514 return true;
515 continue;
516 }
517 }
518 }
519 }
520
521 return false;
522 }
523
524 /* Check for a symtab of a specific name; first in symtabs, then in
525 psymtabs. *If* there is no '/' in the name, a match after a '/'
526 in the symtab filename will also work.
527
528 Calls CALLBACK with each symtab that is found. If CALLBACK returns
529 true, the search stops. */
530
531 void
532 iterate_over_symtabs (const char *name,
533 gdb::function_view<bool (symtab *)> callback)
534 {
535 gdb::unique_xmalloc_ptr<char> real_path;
536
537 /* Here we are interested in canonicalizing an absolute path, not
538 absolutizing a relative path. */
539 if (IS_ABSOLUTE_PATH (name))
540 {
541 real_path = gdb_realpath (name);
542 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
543 }
544
545 for (objfile *objfile : current_program_space->objfiles ())
546 {
547 if (iterate_over_some_symtabs (name, real_path.get (),
548 objfile->compunit_symtabs, NULL,
549 callback))
550 return;
551 }
552
553 /* Same search rules as above apply here, but now we look thru the
554 psymtabs. */
555
556 for (objfile *objfile : current_program_space->objfiles ())
557 {
558 if (objfile->sf
559 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
560 name,
561 real_path.get (),
562 callback))
563 return;
564 }
565 }
566
567 /* A wrapper for iterate_over_symtabs that returns the first matching
568 symtab, or NULL. */
569
570 struct symtab *
571 lookup_symtab (const char *name)
572 {
573 struct symtab *result = NULL;
574
575 iterate_over_symtabs (name, [&] (symtab *symtab)
576 {
577 result = symtab;
578 return true;
579 });
580
581 return result;
582 }
583
584 \f
585 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
586 full method name, which consist of the class name (from T), the unadorned
587 method name from METHOD_ID, and the signature for the specific overload,
588 specified by SIGNATURE_ID. Note that this function is g++ specific. */
589
590 char *
591 gdb_mangle_name (struct type *type, int method_id, int signature_id)
592 {
593 int mangled_name_len;
594 char *mangled_name;
595 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
596 struct fn_field *method = &f[signature_id];
597 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
598 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
599 const char *newname = type->name ();
600
601 /* Does the form of physname indicate that it is the full mangled name
602 of a constructor (not just the args)? */
603 int is_full_physname_constructor;
604
605 int is_constructor;
606 int is_destructor = is_destructor_name (physname);
607 /* Need a new type prefix. */
608 const char *const_prefix = method->is_const ? "C" : "";
609 const char *volatile_prefix = method->is_volatile ? "V" : "";
610 char buf[20];
611 int len = (newname == NULL ? 0 : strlen (newname));
612
613 /* Nothing to do if physname already contains a fully mangled v3 abi name
614 or an operator name. */
615 if ((physname[0] == '_' && physname[1] == 'Z')
616 || is_operator_name (field_name))
617 return xstrdup (physname);
618
619 is_full_physname_constructor = is_constructor_name (physname);
620
621 is_constructor = is_full_physname_constructor
622 || (newname && strcmp (field_name, newname) == 0);
623
624 if (!is_destructor)
625 is_destructor = (startswith (physname, "__dt"));
626
627 if (is_destructor || is_full_physname_constructor)
628 {
629 mangled_name = (char *) xmalloc (strlen (physname) + 1);
630 strcpy (mangled_name, physname);
631 return mangled_name;
632 }
633
634 if (len == 0)
635 {
636 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
637 }
638 else if (physname[0] == 't' || physname[0] == 'Q')
639 {
640 /* The physname for template and qualified methods already includes
641 the class name. */
642 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
643 newname = NULL;
644 len = 0;
645 }
646 else
647 {
648 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
649 volatile_prefix, len);
650 }
651 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
652 + strlen (buf) + len + strlen (physname) + 1);
653
654 mangled_name = (char *) xmalloc (mangled_name_len);
655 if (is_constructor)
656 mangled_name[0] = '\0';
657 else
658 strcpy (mangled_name, field_name);
659
660 strcat (mangled_name, buf);
661 /* If the class doesn't have a name, i.e. newname NULL, then we just
662 mangle it using 0 for the length of the class. Thus it gets mangled
663 as something starting with `::' rather than `classname::'. */
664 if (newname != NULL)
665 strcat (mangled_name, newname);
666
667 strcat (mangled_name, physname);
668 return (mangled_name);
669 }
670
671 /* See symtab.h. */
672
673 void
674 general_symbol_info::set_demangled_name (const char *name,
675 struct obstack *obstack)
676 {
677 if (language () == language_ada)
678 {
679 if (name == NULL)
680 {
681 ada_mangled = 0;
682 language_specific.obstack = obstack;
683 }
684 else
685 {
686 ada_mangled = 1;
687 language_specific.demangled_name = name;
688 }
689 }
690 else
691 language_specific.demangled_name = name;
692 }
693
694 \f
695 /* Initialize the language dependent portion of a symbol
696 depending upon the language for the symbol. */
697
698 void
699 general_symbol_info::set_language (enum language language,
700 struct obstack *obstack)
701 {
702 m_language = language;
703 if (language == language_cplus
704 || language == language_d
705 || language == language_go
706 || language == language_objc
707 || language == language_fortran)
708 {
709 set_demangled_name (NULL, obstack);
710 }
711 else if (language == language_ada)
712 {
713 gdb_assert (ada_mangled == 0);
714 language_specific.obstack = obstack;
715 }
716 else
717 {
718 memset (&language_specific, 0, sizeof (language_specific));
719 }
720 }
721
722 /* Functions to initialize a symbol's mangled name. */
723
724 /* Objects of this type are stored in the demangled name hash table. */
725 struct demangled_name_entry
726 {
727 demangled_name_entry (gdb::string_view mangled_name)
728 : mangled (mangled_name) {}
729
730 gdb::string_view mangled;
731 enum language language;
732 gdb::unique_xmalloc_ptr<char> demangled;
733 };
734
735 /* Hash function for the demangled name hash. */
736
737 static hashval_t
738 hash_demangled_name_entry (const void *data)
739 {
740 const struct demangled_name_entry *e
741 = (const struct demangled_name_entry *) data;
742
743 return fast_hash (e->mangled.data (), e->mangled.length ());
744 }
745
746 /* Equality function for the demangled name hash. */
747
748 static int
749 eq_demangled_name_entry (const void *a, const void *b)
750 {
751 const struct demangled_name_entry *da
752 = (const struct demangled_name_entry *) a;
753 const struct demangled_name_entry *db
754 = (const struct demangled_name_entry *) b;
755
756 return da->mangled == db->mangled;
757 }
758
759 static void
760 free_demangled_name_entry (void *data)
761 {
762 struct demangled_name_entry *e
763 = (struct demangled_name_entry *) data;
764
765 e->~demangled_name_entry();
766 }
767
768 /* Create the hash table used for demangled names. Each hash entry is
769 a pair of strings; one for the mangled name and one for the demangled
770 name. The entry is hashed via just the mangled name. */
771
772 static void
773 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
774 {
775 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
776 The hash table code will round this up to the next prime number.
777 Choosing a much larger table size wastes memory, and saves only about
778 1% in symbol reading. However, if the minsym count is already
779 initialized (e.g. because symbol name setting was deferred to
780 a background thread) we can initialize the hashtable with a count
781 based on that, because we will almost certainly have at least that
782 many entries. If we have a nonzero number but less than 256,
783 we still stay with 256 to have some space for psymbols, etc. */
784
785 /* htab will expand the table when it is 3/4th full, so we account for that
786 here. +2 to round up. */
787 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
788 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
789
790 per_bfd->demangled_names_hash.reset (htab_create_alloc
791 (count, hash_demangled_name_entry, eq_demangled_name_entry,
792 free_demangled_name_entry, xcalloc, xfree));
793 }
794
795 /* See symtab.h */
796
797 char *
798 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
799 const char *mangled)
800 {
801 char *demangled = NULL;
802 int i;
803
804 if (gsymbol->language () == language_unknown)
805 gsymbol->m_language = language_auto;
806
807 if (gsymbol->language () != language_auto)
808 {
809 const struct language_defn *lang = language_def (gsymbol->language ());
810
811 lang->sniff_from_mangled_name (mangled, &demangled);
812 return demangled;
813 }
814
815 for (i = language_unknown; i < nr_languages; ++i)
816 {
817 enum language l = (enum language) i;
818 const struct language_defn *lang = language_def (l);
819
820 if (lang->sniff_from_mangled_name (mangled, &demangled))
821 {
822 gsymbol->m_language = l;
823 return demangled;
824 }
825 }
826
827 return NULL;
828 }
829
830 /* Set both the mangled and demangled (if any) names for GSYMBOL based
831 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
832 objfile's obstack; but if COPY_NAME is 0 and if NAME is
833 NUL-terminated, then this function assumes that NAME is already
834 correctly saved (either permanently or with a lifetime tied to the
835 objfile), and it will not be copied.
836
837 The hash table corresponding to OBJFILE is used, and the memory
838 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
839 so the pointer can be discarded after calling this function. */
840
841 void
842 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
843 bool copy_name,
844 objfile_per_bfd_storage *per_bfd,
845 gdb::optional<hashval_t> hash)
846 {
847 struct demangled_name_entry **slot;
848
849 if (language () == language_ada)
850 {
851 /* In Ada, we do the symbol lookups using the mangled name, so
852 we can save some space by not storing the demangled name. */
853 if (!copy_name)
854 m_name = linkage_name.data ();
855 else
856 m_name = obstack_strndup (&per_bfd->storage_obstack,
857 linkage_name.data (),
858 linkage_name.length ());
859 set_demangled_name (NULL, &per_bfd->storage_obstack);
860
861 return;
862 }
863
864 if (per_bfd->demangled_names_hash == NULL)
865 create_demangled_names_hash (per_bfd);
866
867 struct demangled_name_entry entry (linkage_name);
868 if (!hash.has_value ())
869 hash = hash_demangled_name_entry (&entry);
870 slot = ((struct demangled_name_entry **)
871 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
872 &entry, *hash, INSERT));
873
874 /* The const_cast is safe because the only reason it is already
875 initialized is if we purposefully set it from a background
876 thread to avoid doing the work here. However, it is still
877 allocated from the heap and needs to be freed by us, just
878 like if we called symbol_find_demangled_name here. If this is
879 nullptr, we call symbol_find_demangled_name below, but we put
880 this smart pointer here to be sure that we don't leak this name. */
881 gdb::unique_xmalloc_ptr<char> demangled_name
882 (const_cast<char *> (language_specific.demangled_name));
883
884 /* If this name is not in the hash table, add it. */
885 if (*slot == NULL
886 /* A C version of the symbol may have already snuck into the table.
887 This happens to, e.g., main.init (__go_init_main). Cope. */
888 || (language () == language_go && (*slot)->demangled == nullptr))
889 {
890 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
891 to true if the string might not be nullterminated. We have to make
892 this copy because demangling needs a nullterminated string. */
893 gdb::string_view linkage_name_copy;
894 if (copy_name)
895 {
896 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
897 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
898 alloc_name[linkage_name.length ()] = '\0';
899
900 linkage_name_copy = gdb::string_view (alloc_name,
901 linkage_name.length ());
902 }
903 else
904 linkage_name_copy = linkage_name;
905
906 if (demangled_name.get () == nullptr)
907 demangled_name.reset
908 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
909
910 /* Suppose we have demangled_name==NULL, copy_name==0, and
911 linkage_name_copy==linkage_name. In this case, we already have the
912 mangled name saved, and we don't have a demangled name. So,
913 you might think we could save a little space by not recording
914 this in the hash table at all.
915
916 It turns out that it is actually important to still save such
917 an entry in the hash table, because storing this name gives
918 us better bcache hit rates for partial symbols. */
919 if (!copy_name)
920 {
921 *slot
922 = ((struct demangled_name_entry *)
923 obstack_alloc (&per_bfd->storage_obstack,
924 sizeof (demangled_name_entry)));
925 new (*slot) demangled_name_entry (linkage_name);
926 }
927 else
928 {
929 /* If we must copy the mangled name, put it directly after
930 the struct so we can have a single allocation. */
931 *slot
932 = ((struct demangled_name_entry *)
933 obstack_alloc (&per_bfd->storage_obstack,
934 sizeof (demangled_name_entry)
935 + linkage_name.length () + 1));
936 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
937 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
938 mangled_ptr [linkage_name.length ()] = '\0';
939 new (*slot) demangled_name_entry
940 (gdb::string_view (mangled_ptr, linkage_name.length ()));
941 }
942 (*slot)->demangled = std::move (demangled_name);
943 (*slot)->language = language ();
944 }
945 else if (language () == language_unknown || language () == language_auto)
946 m_language = (*slot)->language;
947
948 m_name = (*slot)->mangled.data ();
949 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
950 }
951
952 /* See symtab.h. */
953
954 const char *
955 general_symbol_info::natural_name () const
956 {
957 switch (language ())
958 {
959 case language_cplus:
960 case language_d:
961 case language_go:
962 case language_objc:
963 case language_fortran:
964 case language_rust:
965 if (language_specific.demangled_name != nullptr)
966 return language_specific.demangled_name;
967 break;
968 case language_ada:
969 return ada_decode_symbol (this);
970 default:
971 break;
972 }
973 return linkage_name ();
974 }
975
976 /* See symtab.h. */
977
978 const char *
979 general_symbol_info::demangled_name () const
980 {
981 const char *dem_name = NULL;
982
983 switch (language ())
984 {
985 case language_cplus:
986 case language_d:
987 case language_go:
988 case language_objc:
989 case language_fortran:
990 case language_rust:
991 dem_name = language_specific.demangled_name;
992 break;
993 case language_ada:
994 dem_name = ada_decode_symbol (this);
995 break;
996 default:
997 break;
998 }
999 return dem_name;
1000 }
1001
1002 /* See symtab.h. */
1003
1004 const char *
1005 general_symbol_info::search_name () const
1006 {
1007 if (language () == language_ada)
1008 return linkage_name ();
1009 else
1010 return natural_name ();
1011 }
1012
1013 /* See symtab.h. */
1014
1015 bool
1016 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1017 const lookup_name_info &name)
1018 {
1019 symbol_name_matcher_ftype *name_match
1020 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1021 return name_match (gsymbol->search_name (), name, NULL);
1022 }
1023
1024 \f
1025
1026 /* Return true if the two sections are the same, or if they could
1027 plausibly be copies of each other, one in an original object
1028 file and another in a separated debug file. */
1029
1030 bool
1031 matching_obj_sections (struct obj_section *obj_first,
1032 struct obj_section *obj_second)
1033 {
1034 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1035 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1036
1037 /* If they're the same section, then they match. */
1038 if (first == second)
1039 return true;
1040
1041 /* If either is NULL, give up. */
1042 if (first == NULL || second == NULL)
1043 return false;
1044
1045 /* This doesn't apply to absolute symbols. */
1046 if (first->owner == NULL || second->owner == NULL)
1047 return false;
1048
1049 /* If they're in the same object file, they must be different sections. */
1050 if (first->owner == second->owner)
1051 return false;
1052
1053 /* Check whether the two sections are potentially corresponding. They must
1054 have the same size, address, and name. We can't compare section indexes,
1055 which would be more reliable, because some sections may have been
1056 stripped. */
1057 if (bfd_section_size (first) != bfd_section_size (second))
1058 return false;
1059
1060 /* In-memory addresses may start at a different offset, relativize them. */
1061 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1062 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1063 return false;
1064
1065 if (bfd_section_name (first) == NULL
1066 || bfd_section_name (second) == NULL
1067 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1068 return false;
1069
1070 /* Otherwise check that they are in corresponding objfiles. */
1071
1072 struct objfile *obj = NULL;
1073 for (objfile *objfile : current_program_space->objfiles ())
1074 if (objfile->obfd == first->owner)
1075 {
1076 obj = objfile;
1077 break;
1078 }
1079 gdb_assert (obj != NULL);
1080
1081 if (obj->separate_debug_objfile != NULL
1082 && obj->separate_debug_objfile->obfd == second->owner)
1083 return true;
1084 if (obj->separate_debug_objfile_backlink != NULL
1085 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1086 return true;
1087
1088 return false;
1089 }
1090
1091 /* See symtab.h. */
1092
1093 void
1094 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1095 {
1096 struct bound_minimal_symbol msymbol;
1097
1098 /* If we know that this is not a text address, return failure. This is
1099 necessary because we loop based on texthigh and textlow, which do
1100 not include the data ranges. */
1101 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1102 if (msymbol.minsym && msymbol.minsym->data_p ())
1103 return;
1104
1105 for (objfile *objfile : current_program_space->objfiles ())
1106 {
1107 struct compunit_symtab *cust = NULL;
1108
1109 if (objfile->sf)
1110 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1111 pc, section, 0);
1112 if (cust)
1113 return;
1114 }
1115 }
1116 \f
1117 /* Hash function for the symbol cache. */
1118
1119 static unsigned int
1120 hash_symbol_entry (const struct objfile *objfile_context,
1121 const char *name, domain_enum domain)
1122 {
1123 unsigned int hash = (uintptr_t) objfile_context;
1124
1125 if (name != NULL)
1126 hash += htab_hash_string (name);
1127
1128 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1129 to map to the same slot. */
1130 if (domain == STRUCT_DOMAIN)
1131 hash += VAR_DOMAIN * 7;
1132 else
1133 hash += domain * 7;
1134
1135 return hash;
1136 }
1137
1138 /* Equality function for the symbol cache. */
1139
1140 static int
1141 eq_symbol_entry (const struct symbol_cache_slot *slot,
1142 const struct objfile *objfile_context,
1143 const char *name, domain_enum domain)
1144 {
1145 const char *slot_name;
1146 domain_enum slot_domain;
1147
1148 if (slot->state == SYMBOL_SLOT_UNUSED)
1149 return 0;
1150
1151 if (slot->objfile_context != objfile_context)
1152 return 0;
1153
1154 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1155 {
1156 slot_name = slot->value.not_found.name;
1157 slot_domain = slot->value.not_found.domain;
1158 }
1159 else
1160 {
1161 slot_name = slot->value.found.symbol->search_name ();
1162 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1163 }
1164
1165 /* NULL names match. */
1166 if (slot_name == NULL && name == NULL)
1167 {
1168 /* But there's no point in calling symbol_matches_domain in the
1169 SYMBOL_SLOT_FOUND case. */
1170 if (slot_domain != domain)
1171 return 0;
1172 }
1173 else if (slot_name != NULL && name != NULL)
1174 {
1175 /* It's important that we use the same comparison that was done
1176 the first time through. If the slot records a found symbol,
1177 then this means using the symbol name comparison function of
1178 the symbol's language with symbol->search_name (). See
1179 dictionary.c. It also means using symbol_matches_domain for
1180 found symbols. See block.c.
1181
1182 If the slot records a not-found symbol, then require a precise match.
1183 We could still be lax with whitespace like strcmp_iw though. */
1184
1185 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1186 {
1187 if (strcmp (slot_name, name) != 0)
1188 return 0;
1189 if (slot_domain != domain)
1190 return 0;
1191 }
1192 else
1193 {
1194 struct symbol *sym = slot->value.found.symbol;
1195 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1196
1197 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1198 return 0;
1199
1200 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1201 return 0;
1202 }
1203 }
1204 else
1205 {
1206 /* Only one name is NULL. */
1207 return 0;
1208 }
1209
1210 return 1;
1211 }
1212
1213 /* Given a cache of size SIZE, return the size of the struct (with variable
1214 length array) in bytes. */
1215
1216 static size_t
1217 symbol_cache_byte_size (unsigned int size)
1218 {
1219 return (sizeof (struct block_symbol_cache)
1220 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1221 }
1222
1223 /* Resize CACHE. */
1224
1225 static void
1226 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1227 {
1228 /* If there's no change in size, don't do anything.
1229 All caches have the same size, so we can just compare with the size
1230 of the global symbols cache. */
1231 if ((cache->global_symbols != NULL
1232 && cache->global_symbols->size == new_size)
1233 || (cache->global_symbols == NULL
1234 && new_size == 0))
1235 return;
1236
1237 destroy_block_symbol_cache (cache->global_symbols);
1238 destroy_block_symbol_cache (cache->static_symbols);
1239
1240 if (new_size == 0)
1241 {
1242 cache->global_symbols = NULL;
1243 cache->static_symbols = NULL;
1244 }
1245 else
1246 {
1247 size_t total_size = symbol_cache_byte_size (new_size);
1248
1249 cache->global_symbols
1250 = (struct block_symbol_cache *) xcalloc (1, total_size);
1251 cache->static_symbols
1252 = (struct block_symbol_cache *) xcalloc (1, total_size);
1253 cache->global_symbols->size = new_size;
1254 cache->static_symbols->size = new_size;
1255 }
1256 }
1257
1258 /* Return the symbol cache of PSPACE.
1259 Create one if it doesn't exist yet. */
1260
1261 static struct symbol_cache *
1262 get_symbol_cache (struct program_space *pspace)
1263 {
1264 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1265
1266 if (cache == NULL)
1267 {
1268 cache = symbol_cache_key.emplace (pspace);
1269 resize_symbol_cache (cache, symbol_cache_size);
1270 }
1271
1272 return cache;
1273 }
1274
1275 /* Set the size of the symbol cache in all program spaces. */
1276
1277 static void
1278 set_symbol_cache_size (unsigned int new_size)
1279 {
1280 for (struct program_space *pspace : program_spaces)
1281 {
1282 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1283
1284 /* The pspace could have been created but not have a cache yet. */
1285 if (cache != NULL)
1286 resize_symbol_cache (cache, new_size);
1287 }
1288 }
1289
1290 /* Called when symbol-cache-size is set. */
1291
1292 static void
1293 set_symbol_cache_size_handler (const char *args, int from_tty,
1294 struct cmd_list_element *c)
1295 {
1296 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1297 {
1298 /* Restore the previous value.
1299 This is the value the "show" command prints. */
1300 new_symbol_cache_size = symbol_cache_size;
1301
1302 error (_("Symbol cache size is too large, max is %u."),
1303 MAX_SYMBOL_CACHE_SIZE);
1304 }
1305 symbol_cache_size = new_symbol_cache_size;
1306
1307 set_symbol_cache_size (symbol_cache_size);
1308 }
1309
1310 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1311 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1312 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1313 failed (and thus this one will too), or NULL if the symbol is not present
1314 in the cache.
1315 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1316 can be used to save the result of a full lookup attempt. */
1317
1318 static struct block_symbol
1319 symbol_cache_lookup (struct symbol_cache *cache,
1320 struct objfile *objfile_context, enum block_enum block,
1321 const char *name, domain_enum domain,
1322 struct block_symbol_cache **bsc_ptr,
1323 struct symbol_cache_slot **slot_ptr)
1324 {
1325 struct block_symbol_cache *bsc;
1326 unsigned int hash;
1327 struct symbol_cache_slot *slot;
1328
1329 if (block == GLOBAL_BLOCK)
1330 bsc = cache->global_symbols;
1331 else
1332 bsc = cache->static_symbols;
1333 if (bsc == NULL)
1334 {
1335 *bsc_ptr = NULL;
1336 *slot_ptr = NULL;
1337 return {};
1338 }
1339
1340 hash = hash_symbol_entry (objfile_context, name, domain);
1341 slot = bsc->symbols + hash % bsc->size;
1342
1343 *bsc_ptr = bsc;
1344 *slot_ptr = slot;
1345
1346 if (eq_symbol_entry (slot, objfile_context, name, domain))
1347 {
1348 if (symbol_lookup_debug)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "%s block symbol cache hit%s for %s, %s\n",
1351 block == GLOBAL_BLOCK ? "Global" : "Static",
1352 slot->state == SYMBOL_SLOT_NOT_FOUND
1353 ? " (not found)" : "",
1354 name, domain_name (domain));
1355 ++bsc->hits;
1356 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1357 return SYMBOL_LOOKUP_FAILED;
1358 return slot->value.found;
1359 }
1360
1361 /* Symbol is not present in the cache. */
1362
1363 if (symbol_lookup_debug)
1364 {
1365 fprintf_unfiltered (gdb_stdlog,
1366 "%s block symbol cache miss for %s, %s\n",
1367 block == GLOBAL_BLOCK ? "Global" : "Static",
1368 name, domain_name (domain));
1369 }
1370 ++bsc->misses;
1371 return {};
1372 }
1373
1374 /* Mark SYMBOL as found in SLOT.
1375 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1376 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1377 necessarily the objfile the symbol was found in. */
1378
1379 static void
1380 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1381 struct symbol_cache_slot *slot,
1382 struct objfile *objfile_context,
1383 struct symbol *symbol,
1384 const struct block *block)
1385 {
1386 if (bsc == NULL)
1387 return;
1388 if (slot->state != SYMBOL_SLOT_UNUSED)
1389 {
1390 ++bsc->collisions;
1391 symbol_cache_clear_slot (slot);
1392 }
1393 slot->state = SYMBOL_SLOT_FOUND;
1394 slot->objfile_context = objfile_context;
1395 slot->value.found.symbol = symbol;
1396 slot->value.found.block = block;
1397 }
1398
1399 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1402
1403 static void
1404 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1405 struct symbol_cache_slot *slot,
1406 struct objfile *objfile_context,
1407 const char *name, domain_enum domain)
1408 {
1409 if (bsc == NULL)
1410 return;
1411 if (slot->state != SYMBOL_SLOT_UNUSED)
1412 {
1413 ++bsc->collisions;
1414 symbol_cache_clear_slot (slot);
1415 }
1416 slot->state = SYMBOL_SLOT_NOT_FOUND;
1417 slot->objfile_context = objfile_context;
1418 slot->value.not_found.name = xstrdup (name);
1419 slot->value.not_found.domain = domain;
1420 }
1421
1422 /* Flush the symbol cache of PSPACE. */
1423
1424 static void
1425 symbol_cache_flush (struct program_space *pspace)
1426 {
1427 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1428 int pass;
1429
1430 if (cache == NULL)
1431 return;
1432 if (cache->global_symbols == NULL)
1433 {
1434 gdb_assert (symbol_cache_size == 0);
1435 gdb_assert (cache->static_symbols == NULL);
1436 return;
1437 }
1438
1439 /* If the cache is untouched since the last flush, early exit.
1440 This is important for performance during the startup of a program linked
1441 with 100s (or 1000s) of shared libraries. */
1442 if (cache->global_symbols->misses == 0
1443 && cache->static_symbols->misses == 0)
1444 return;
1445
1446 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1447 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1448
1449 for (pass = 0; pass < 2; ++pass)
1450 {
1451 struct block_symbol_cache *bsc
1452 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1453 unsigned int i;
1454
1455 for (i = 0; i < bsc->size; ++i)
1456 symbol_cache_clear_slot (&bsc->symbols[i]);
1457 }
1458
1459 cache->global_symbols->hits = 0;
1460 cache->global_symbols->misses = 0;
1461 cache->global_symbols->collisions = 0;
1462 cache->static_symbols->hits = 0;
1463 cache->static_symbols->misses = 0;
1464 cache->static_symbols->collisions = 0;
1465 }
1466
1467 /* Dump CACHE. */
1468
1469 static void
1470 symbol_cache_dump (const struct symbol_cache *cache)
1471 {
1472 int pass;
1473
1474 if (cache->global_symbols == NULL)
1475 {
1476 printf_filtered (" <disabled>\n");
1477 return;
1478 }
1479
1480 for (pass = 0; pass < 2; ++pass)
1481 {
1482 const struct block_symbol_cache *bsc
1483 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1484 unsigned int i;
1485
1486 if (pass == 0)
1487 printf_filtered ("Global symbols:\n");
1488 else
1489 printf_filtered ("Static symbols:\n");
1490
1491 for (i = 0; i < bsc->size; ++i)
1492 {
1493 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1494
1495 QUIT;
1496
1497 switch (slot->state)
1498 {
1499 case SYMBOL_SLOT_UNUSED:
1500 break;
1501 case SYMBOL_SLOT_NOT_FOUND:
1502 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1503 host_address_to_string (slot->objfile_context),
1504 slot->value.not_found.name,
1505 domain_name (slot->value.not_found.domain));
1506 break;
1507 case SYMBOL_SLOT_FOUND:
1508 {
1509 struct symbol *found = slot->value.found.symbol;
1510 const struct objfile *context = slot->objfile_context;
1511
1512 printf_filtered (" [%4u] = %s, %s %s\n", i,
1513 host_address_to_string (context),
1514 found->print_name (),
1515 domain_name (SYMBOL_DOMAIN (found)));
1516 break;
1517 }
1518 }
1519 }
1520 }
1521 }
1522
1523 /* The "mt print symbol-cache" command. */
1524
1525 static void
1526 maintenance_print_symbol_cache (const char *args, int from_tty)
1527 {
1528 for (struct program_space *pspace : program_spaces)
1529 {
1530 struct symbol_cache *cache;
1531
1532 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1533 pspace->num,
1534 pspace->symfile_object_file != NULL
1535 ? objfile_name (pspace->symfile_object_file)
1536 : "(no object file)");
1537
1538 /* If the cache hasn't been created yet, avoid creating one. */
1539 cache = symbol_cache_key.get (pspace);
1540 if (cache == NULL)
1541 printf_filtered (" <empty>\n");
1542 else
1543 symbol_cache_dump (cache);
1544 }
1545 }
1546
1547 /* The "mt flush-symbol-cache" command. */
1548
1549 static void
1550 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 {
1552 for (struct program_space *pspace : program_spaces)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 for (struct program_space *pspace : program_spaces)
1596 {
1597 struct symbol_cache *cache;
1598
1599 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1600 pspace->num,
1601 pspace->symfile_object_file != NULL
1602 ? objfile_name (pspace->symfile_object_file)
1603 : "(no object file)");
1604
1605 /* If the cache hasn't been created yet, avoid creating one. */
1606 cache = symbol_cache_key.get (pspace);
1607 if (cache == NULL)
1608 printf_filtered (" empty, no stats available\n");
1609 else
1610 symbol_cache_stats (cache);
1611 }
1612 }
1613
1614 /* This module's 'new_objfile' observer. */
1615
1616 static void
1617 symtab_new_objfile_observer (struct objfile *objfile)
1618 {
1619 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1620 symbol_cache_flush (current_program_space);
1621 }
1622
1623 /* This module's 'free_objfile' observer. */
1624
1625 static void
1626 symtab_free_objfile_observer (struct objfile *objfile)
1627 {
1628 symbol_cache_flush (objfile->pspace);
1629 }
1630 \f
1631 /* Debug symbols usually don't have section information. We need to dig that
1632 out of the minimal symbols and stash that in the debug symbol. */
1633
1634 void
1635 fixup_section (struct general_symbol_info *ginfo,
1636 CORE_ADDR addr, struct objfile *objfile)
1637 {
1638 struct minimal_symbol *msym;
1639
1640 /* First, check whether a minimal symbol with the same name exists
1641 and points to the same address. The address check is required
1642 e.g. on PowerPC64, where the minimal symbol for a function will
1643 point to the function descriptor, while the debug symbol will
1644 point to the actual function code. */
1645 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1646 objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset needs to be
1664 subtracted from these values when performing the comparison.
1665 We unconditionally subtract it, because, when no relocation
1666 has been performed, the value will simply be zero.
1667
1668 The address of the symbol whose section we're fixing up HAS
1669 NOT BEEN adjusted (relocated) yet. It can't have been since
1670 the section isn't yet known and knowing the section is
1671 necessary in order to add the correct relocation value. In
1672 other words, we wouldn't even be in this function (attempting
1673 to compute the section) if it were already known.
1674
1675 Note that it is possible to search the minimal symbols
1676 (subtracting the relocation value if necessary) to find the
1677 matching minimal symbol, but this is overkill and much less
1678 efficient. It is not necessary to find the matching minimal
1679 symbol, only its section.
1680
1681 Note that this technique (of doing a section table search)
1682 can fail when unrelocated section addresses overlap. For
1683 this reason, we still attempt a lookup by name prior to doing
1684 a search of the section table. */
1685
1686 struct obj_section *s;
1687 int fallback = -1;
1688
1689 ALL_OBJFILE_OSECTIONS (objfile, s)
1690 {
1691 int idx = s - objfile->sections;
1692 CORE_ADDR offset = objfile->section_offsets[idx];
1693
1694 if (fallback == -1)
1695 fallback = idx;
1696
1697 if (obj_section_addr (s) - offset <= addr
1698 && addr < obj_section_endaddr (s) - offset)
1699 {
1700 ginfo->section = idx;
1701 return;
1702 }
1703 }
1704
1705 /* If we didn't find the section, assume it is in the first
1706 section. If there is no allocated section, then it hardly
1707 matters what we pick, so just pick zero. */
1708 if (fallback == -1)
1709 ginfo->section = 0;
1710 else
1711 ginfo->section = fallback;
1712 }
1713 }
1714
1715 struct symbol *
1716 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1717 {
1718 CORE_ADDR addr;
1719
1720 if (!sym)
1721 return NULL;
1722
1723 if (!SYMBOL_OBJFILE_OWNED (sym))
1724 return sym;
1725
1726 /* We either have an OBJFILE, or we can get at it from the sym's
1727 symtab. Anything else is a bug. */
1728 gdb_assert (objfile || symbol_symtab (sym));
1729
1730 if (objfile == NULL)
1731 objfile = symbol_objfile (sym);
1732
1733 if (SYMBOL_OBJ_SECTION (objfile, sym))
1734 return sym;
1735
1736 /* We should have an objfile by now. */
1737 gdb_assert (objfile);
1738
1739 switch (SYMBOL_CLASS (sym))
1740 {
1741 case LOC_STATIC:
1742 case LOC_LABEL:
1743 addr = SYMBOL_VALUE_ADDRESS (sym);
1744 break;
1745 case LOC_BLOCK:
1746 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1747 break;
1748
1749 default:
1750 /* Nothing else will be listed in the minsyms -- no use looking
1751 it up. */
1752 return sym;
1753 }
1754
1755 fixup_section (sym, addr, objfile);
1756
1757 return sym;
1758 }
1759
1760 /* See symtab.h. */
1761
1762 demangle_for_lookup_info::demangle_for_lookup_info
1763 (const lookup_name_info &lookup_name, language lang)
1764 {
1765 demangle_result_storage storage;
1766
1767 if (lookup_name.ignore_parameters () && lang == language_cplus)
1768 {
1769 gdb::unique_xmalloc_ptr<char> without_params
1770 = cp_remove_params_if_any (lookup_name.c_str (),
1771 lookup_name.completion_mode ());
1772
1773 if (without_params != NULL)
1774 {
1775 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1776 m_demangled_name = demangle_for_lookup (without_params.get (),
1777 lang, storage);
1778 return;
1779 }
1780 }
1781
1782 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1783 m_demangled_name = lookup_name.c_str ();
1784 else
1785 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1786 lang, storage);
1787 }
1788
1789 /* See symtab.h. */
1790
1791 const lookup_name_info &
1792 lookup_name_info::match_any ()
1793 {
1794 /* Lookup any symbol that "" would complete. I.e., this matches all
1795 symbol names. */
1796 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1797 true);
1798
1799 return lookup_name;
1800 }
1801
1802 /* Compute the demangled form of NAME as used by the various symbol
1803 lookup functions. The result can either be the input NAME
1804 directly, or a pointer to a buffer owned by the STORAGE object.
1805
1806 For Ada, this function just returns NAME, unmodified.
1807 Normally, Ada symbol lookups are performed using the encoded name
1808 rather than the demangled name, and so it might seem to make sense
1809 for this function to return an encoded version of NAME.
1810 Unfortunately, we cannot do this, because this function is used in
1811 circumstances where it is not appropriate to try to encode NAME.
1812 For instance, when displaying the frame info, we demangle the name
1813 of each parameter, and then perform a symbol lookup inside our
1814 function using that demangled name. In Ada, certain functions
1815 have internally-generated parameters whose name contain uppercase
1816 characters. Encoding those name would result in those uppercase
1817 characters to become lowercase, and thus cause the symbol lookup
1818 to fail. */
1819
1820 const char *
1821 demangle_for_lookup (const char *name, enum language lang,
1822 demangle_result_storage &storage)
1823 {
1824 /* If we are using C++, D, or Go, demangle the name before doing a
1825 lookup, so we can always binary search. */
1826 if (lang == language_cplus)
1827 {
1828 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1829 if (demangled_name != NULL)
1830 return storage.set_malloc_ptr (demangled_name);
1831
1832 /* If we were given a non-mangled name, canonicalize it
1833 according to the language (so far only for C++). */
1834 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1835 if (canon != nullptr)
1836 return storage.set_malloc_ptr (std::move (canon));
1837 }
1838 else if (lang == language_d)
1839 {
1840 char *demangled_name = d_demangle (name, 0);
1841 if (demangled_name != NULL)
1842 return storage.set_malloc_ptr (demangled_name);
1843 }
1844 else if (lang == language_go)
1845 {
1846 char *demangled_name = go_demangle (name, 0);
1847 if (demangled_name != NULL)
1848 return storage.set_malloc_ptr (demangled_name);
1849 }
1850
1851 return name;
1852 }
1853
1854 /* See symtab.h. */
1855
1856 unsigned int
1857 search_name_hash (enum language language, const char *search_name)
1858 {
1859 return language_def (language)->search_name_hash (search_name);
1860 }
1861
1862 /* See symtab.h.
1863
1864 This function (or rather its subordinates) have a bunch of loops and
1865 it would seem to be attractive to put in some QUIT's (though I'm not really
1866 sure whether it can run long enough to be really important). But there
1867 are a few calls for which it would appear to be bad news to quit
1868 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1869 that there is C++ code below which can error(), but that probably
1870 doesn't affect these calls since they are looking for a known
1871 variable and thus can probably assume it will never hit the C++
1872 code). */
1873
1874 struct block_symbol
1875 lookup_symbol_in_language (const char *name, const struct block *block,
1876 const domain_enum domain, enum language lang,
1877 struct field_of_this_result *is_a_field_of_this)
1878 {
1879 demangle_result_storage storage;
1880 const char *modified_name = demangle_for_lookup (name, lang, storage);
1881
1882 return lookup_symbol_aux (modified_name,
1883 symbol_name_match_type::FULL,
1884 block, domain, lang,
1885 is_a_field_of_this);
1886 }
1887
1888 /* See symtab.h. */
1889
1890 struct block_symbol
1891 lookup_symbol (const char *name, const struct block *block,
1892 domain_enum domain,
1893 struct field_of_this_result *is_a_field_of_this)
1894 {
1895 return lookup_symbol_in_language (name, block, domain,
1896 current_language->la_language,
1897 is_a_field_of_this);
1898 }
1899
1900 /* See symtab.h. */
1901
1902 struct block_symbol
1903 lookup_symbol_search_name (const char *search_name, const struct block *block,
1904 domain_enum domain)
1905 {
1906 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1907 block, domain, language_asm, NULL);
1908 }
1909
1910 /* See symtab.h. */
1911
1912 struct block_symbol
1913 lookup_language_this (const struct language_defn *lang,
1914 const struct block *block)
1915 {
1916 if (lang->name_of_this () == NULL || block == NULL)
1917 return {};
1918
1919 if (symbol_lookup_debug > 1)
1920 {
1921 struct objfile *objfile = block_objfile (block);
1922
1923 fprintf_unfiltered (gdb_stdlog,
1924 "lookup_language_this (%s, %s (objfile %s))",
1925 lang->name (), host_address_to_string (block),
1926 objfile_debug_name (objfile));
1927 }
1928
1929 while (block)
1930 {
1931 struct symbol *sym;
1932
1933 sym = block_lookup_symbol (block, lang->name_of_this (),
1934 symbol_name_match_type::SEARCH_NAME,
1935 VAR_DOMAIN);
1936 if (sym != NULL)
1937 {
1938 if (symbol_lookup_debug > 1)
1939 {
1940 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1941 sym->print_name (),
1942 host_address_to_string (sym),
1943 host_address_to_string (block));
1944 }
1945 return (struct block_symbol) {sym, block};
1946 }
1947 if (BLOCK_FUNCTION (block))
1948 break;
1949 block = BLOCK_SUPERBLOCK (block);
1950 }
1951
1952 if (symbol_lookup_debug > 1)
1953 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1954 return {};
1955 }
1956
1957 /* Given TYPE, a structure/union,
1958 return 1 if the component named NAME from the ultimate target
1959 structure/union is defined, otherwise, return 0. */
1960
1961 static int
1962 check_field (struct type *type, const char *name,
1963 struct field_of_this_result *is_a_field_of_this)
1964 {
1965 int i;
1966
1967 /* The type may be a stub. */
1968 type = check_typedef (type);
1969
1970 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1971 {
1972 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1973
1974 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1975 {
1976 is_a_field_of_this->type = type;
1977 is_a_field_of_this->field = &type->field (i);
1978 return 1;
1979 }
1980 }
1981
1982 /* C++: If it was not found as a data field, then try to return it
1983 as a pointer to a method. */
1984
1985 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1986 {
1987 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1988 {
1989 is_a_field_of_this->type = type;
1990 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1991 return 1;
1992 }
1993 }
1994
1995 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1996 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1997 return 1;
1998
1999 return 0;
2000 }
2001
2002 /* Behave like lookup_symbol except that NAME is the natural name
2003 (e.g., demangled name) of the symbol that we're looking for. */
2004
2005 static struct block_symbol
2006 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2007 const struct block *block,
2008 const domain_enum domain, enum language language,
2009 struct field_of_this_result *is_a_field_of_this)
2010 {
2011 struct block_symbol result;
2012 const struct language_defn *langdef;
2013
2014 if (symbol_lookup_debug)
2015 {
2016 struct objfile *objfile = (block == nullptr
2017 ? nullptr : block_objfile (block));
2018
2019 fprintf_unfiltered (gdb_stdlog,
2020 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2021 name, host_address_to_string (block),
2022 objfile != NULL
2023 ? objfile_debug_name (objfile) : "NULL",
2024 domain_name (domain), language_str (language));
2025 }
2026
2027 /* Make sure we do something sensible with is_a_field_of_this, since
2028 the callers that set this parameter to some non-null value will
2029 certainly use it later. If we don't set it, the contents of
2030 is_a_field_of_this are undefined. */
2031 if (is_a_field_of_this != NULL)
2032 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2033
2034 /* Search specified block and its superiors. Don't search
2035 STATIC_BLOCK or GLOBAL_BLOCK. */
2036
2037 result = lookup_local_symbol (name, match_type, block, domain, language);
2038 if (result.symbol != NULL)
2039 {
2040 if (symbol_lookup_debug)
2041 {
2042 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2043 host_address_to_string (result.symbol));
2044 }
2045 return result;
2046 }
2047
2048 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2049 check to see if NAME is a field of `this'. */
2050
2051 langdef = language_def (language);
2052
2053 /* Don't do this check if we are searching for a struct. It will
2054 not be found by check_field, but will be found by other
2055 means. */
2056 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2057 {
2058 result = lookup_language_this (langdef, block);
2059
2060 if (result.symbol)
2061 {
2062 struct type *t = result.symbol->type;
2063
2064 /* I'm not really sure that type of this can ever
2065 be typedefed; just be safe. */
2066 t = check_typedef (t);
2067 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2068 t = TYPE_TARGET_TYPE (t);
2069
2070 if (t->code () != TYPE_CODE_STRUCT
2071 && t->code () != TYPE_CODE_UNION)
2072 error (_("Internal error: `%s' is not an aggregate"),
2073 langdef->name_of_this ());
2074
2075 if (check_field (t, name, is_a_field_of_this))
2076 {
2077 if (symbol_lookup_debug)
2078 {
2079 fprintf_unfiltered (gdb_stdlog,
2080 "lookup_symbol_aux (...) = NULL\n");
2081 }
2082 return {};
2083 }
2084 }
2085 }
2086
2087 /* Now do whatever is appropriate for LANGUAGE to look
2088 up static and global variables. */
2089
2090 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2091 if (result.symbol != NULL)
2092 {
2093 if (symbol_lookup_debug)
2094 {
2095 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2096 host_address_to_string (result.symbol));
2097 }
2098 return result;
2099 }
2100
2101 /* Now search all static file-level symbols. Not strictly correct,
2102 but more useful than an error. */
2103
2104 result = lookup_static_symbol (name, domain);
2105 if (symbol_lookup_debug)
2106 {
2107 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2108 result.symbol != NULL
2109 ? host_address_to_string (result.symbol)
2110 : "NULL");
2111 }
2112 return result;
2113 }
2114
2115 /* Check to see if the symbol is defined in BLOCK or its superiors.
2116 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2117
2118 static struct block_symbol
2119 lookup_local_symbol (const char *name,
2120 symbol_name_match_type match_type,
2121 const struct block *block,
2122 const domain_enum domain,
2123 enum language language)
2124 {
2125 struct symbol *sym;
2126 const struct block *static_block = block_static_block (block);
2127 const char *scope = block_scope (block);
2128
2129 /* Check if either no block is specified or it's a global block. */
2130
2131 if (static_block == NULL)
2132 return {};
2133
2134 while (block != static_block)
2135 {
2136 sym = lookup_symbol_in_block (name, match_type, block, domain);
2137 if (sym != NULL)
2138 return (struct block_symbol) {sym, block};
2139
2140 if (language == language_cplus || language == language_fortran)
2141 {
2142 struct block_symbol blocksym
2143 = cp_lookup_symbol_imports_or_template (scope, name, block,
2144 domain);
2145
2146 if (blocksym.symbol != NULL)
2147 return blocksym;
2148 }
2149
2150 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2151 break;
2152 block = BLOCK_SUPERBLOCK (block);
2153 }
2154
2155 /* We've reached the end of the function without finding a result. */
2156
2157 return {};
2158 }
2159
2160 /* See symtab.h. */
2161
2162 struct symbol *
2163 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2164 const struct block *block,
2165 const domain_enum domain)
2166 {
2167 struct symbol *sym;
2168
2169 if (symbol_lookup_debug > 1)
2170 {
2171 struct objfile *objfile = (block == nullptr
2172 ? nullptr : block_objfile (block));
2173
2174 fprintf_unfiltered (gdb_stdlog,
2175 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2176 name, host_address_to_string (block),
2177 objfile_debug_name (objfile),
2178 domain_name (domain));
2179 }
2180
2181 sym = block_lookup_symbol (block, name, match_type, domain);
2182 if (sym)
2183 {
2184 if (symbol_lookup_debug > 1)
2185 {
2186 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2187 host_address_to_string (sym));
2188 }
2189 return fixup_symbol_section (sym, NULL);
2190 }
2191
2192 if (symbol_lookup_debug > 1)
2193 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2194 return NULL;
2195 }
2196
2197 /* See symtab.h. */
2198
2199 struct block_symbol
2200 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2201 enum block_enum block_index,
2202 const char *name,
2203 const domain_enum domain)
2204 {
2205 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2206
2207 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2208 {
2209 struct block_symbol result
2210 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2211
2212 if (result.symbol != nullptr)
2213 return result;
2214 }
2215
2216 return {};
2217 }
2218
2219 /* Check to see if the symbol is defined in one of the OBJFILE's
2220 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2221 depending on whether or not we want to search global symbols or
2222 static symbols. */
2223
2224 static struct block_symbol
2225 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2226 enum block_enum block_index, const char *name,
2227 const domain_enum domain)
2228 {
2229 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2230
2231 if (symbol_lookup_debug > 1)
2232 {
2233 fprintf_unfiltered (gdb_stdlog,
2234 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2235 objfile_debug_name (objfile),
2236 block_index == GLOBAL_BLOCK
2237 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2238 name, domain_name (domain));
2239 }
2240
2241 struct block_symbol other;
2242 other.symbol = NULL;
2243 for (compunit_symtab *cust : objfile->compunits ())
2244 {
2245 const struct blockvector *bv;
2246 const struct block *block;
2247 struct block_symbol result;
2248
2249 bv = COMPUNIT_BLOCKVECTOR (cust);
2250 block = BLOCKVECTOR_BLOCK (bv, block_index);
2251 result.symbol = block_lookup_symbol_primary (block, name, domain);
2252 result.block = block;
2253 if (result.symbol == NULL)
2254 continue;
2255 if (best_symbol (result.symbol, domain))
2256 {
2257 other = result;
2258 break;
2259 }
2260 if (symbol_matches_domain (result.symbol->language (),
2261 SYMBOL_DOMAIN (result.symbol), domain))
2262 {
2263 struct symbol *better
2264 = better_symbol (other.symbol, result.symbol, domain);
2265 if (better != other.symbol)
2266 {
2267 other.symbol = better;
2268 other.block = block;
2269 }
2270 }
2271 }
2272
2273 if (other.symbol != NULL)
2274 {
2275 if (symbol_lookup_debug > 1)
2276 {
2277 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2278 host_address_to_string (other.symbol),
2279 host_address_to_string (other.block));
2280 }
2281 other.symbol = fixup_symbol_section (other.symbol, objfile);
2282 return other;
2283 }
2284
2285 if (symbol_lookup_debug > 1)
2286 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2287 return {};
2288 }
2289
2290 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2291 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2292 and all associated separate debug objfiles.
2293
2294 Normally we only look in OBJFILE, and not any separate debug objfiles
2295 because the outer loop will cause them to be searched too. This case is
2296 different. Here we're called from search_symbols where it will only
2297 call us for the objfile that contains a matching minsym. */
2298
2299 static struct block_symbol
2300 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2301 const char *linkage_name,
2302 domain_enum domain)
2303 {
2304 enum language lang = current_language->la_language;
2305 struct objfile *main_objfile;
2306
2307 demangle_result_storage storage;
2308 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2309
2310 if (objfile->separate_debug_objfile_backlink)
2311 main_objfile = objfile->separate_debug_objfile_backlink;
2312 else
2313 main_objfile = objfile;
2314
2315 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2316 {
2317 struct block_symbol result;
2318
2319 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2320 modified_name, domain);
2321 if (result.symbol == NULL)
2322 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2323 modified_name, domain);
2324 if (result.symbol != NULL)
2325 return result;
2326 }
2327
2328 return {};
2329 }
2330
2331 /* A helper function that throws an exception when a symbol was found
2332 in a psymtab but not in a symtab. */
2333
2334 static void ATTRIBUTE_NORETURN
2335 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2336 struct compunit_symtab *cust)
2337 {
2338 error (_("\
2339 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2340 %s may be an inlined function, or may be a template function\n \
2341 (if a template, try specifying an instantiation: %s<type>)."),
2342 block_index == GLOBAL_BLOCK ? "global" : "static",
2343 name,
2344 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2345 name, name);
2346 }
2347
2348 /* A helper function for various lookup routines that interfaces with
2349 the "quick" symbol table functions. */
2350
2351 static struct block_symbol
2352 lookup_symbol_via_quick_fns (struct objfile *objfile,
2353 enum block_enum block_index, const char *name,
2354 const domain_enum domain)
2355 {
2356 struct compunit_symtab *cust;
2357 const struct blockvector *bv;
2358 const struct block *block;
2359 struct block_symbol result;
2360
2361 if (!objfile->sf)
2362 return {};
2363
2364 if (symbol_lookup_debug > 1)
2365 {
2366 fprintf_unfiltered (gdb_stdlog,
2367 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2368 objfile_debug_name (objfile),
2369 block_index == GLOBAL_BLOCK
2370 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2371 name, domain_name (domain));
2372 }
2373
2374 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2375 if (cust == NULL)
2376 {
2377 if (symbol_lookup_debug > 1)
2378 {
2379 fprintf_unfiltered (gdb_stdlog,
2380 "lookup_symbol_via_quick_fns (...) = NULL\n");
2381 }
2382 return {};
2383 }
2384
2385 bv = COMPUNIT_BLOCKVECTOR (cust);
2386 block = BLOCKVECTOR_BLOCK (bv, block_index);
2387 result.symbol = block_lookup_symbol (block, name,
2388 symbol_name_match_type::FULL, domain);
2389 if (result.symbol == NULL)
2390 error_in_psymtab_expansion (block_index, name, cust);
2391
2392 if (symbol_lookup_debug > 1)
2393 {
2394 fprintf_unfiltered (gdb_stdlog,
2395 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2396 host_address_to_string (result.symbol),
2397 host_address_to_string (block));
2398 }
2399
2400 result.symbol = fixup_symbol_section (result.symbol, objfile);
2401 result.block = block;
2402 return result;
2403 }
2404
2405 /* See language.h. */
2406
2407 struct block_symbol
2408 language_defn::lookup_symbol_nonlocal (const char *name,
2409 const struct block *block,
2410 const domain_enum domain) const
2411 {
2412 struct block_symbol result;
2413
2414 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2415 the current objfile. Searching the current objfile first is useful
2416 for both matching user expectations as well as performance. */
2417
2418 result = lookup_symbol_in_static_block (name, block, domain);
2419 if (result.symbol != NULL)
2420 return result;
2421
2422 /* If we didn't find a definition for a builtin type in the static block,
2423 search for it now. This is actually the right thing to do and can be
2424 a massive performance win. E.g., when debugging a program with lots of
2425 shared libraries we could search all of them only to find out the
2426 builtin type isn't defined in any of them. This is common for types
2427 like "void". */
2428 if (domain == VAR_DOMAIN)
2429 {
2430 struct gdbarch *gdbarch;
2431
2432 if (block == NULL)
2433 gdbarch = target_gdbarch ();
2434 else
2435 gdbarch = block_gdbarch (block);
2436 result.symbol = language_lookup_primitive_type_as_symbol (this,
2437 gdbarch, name);
2438 result.block = NULL;
2439 if (result.symbol != NULL)
2440 return result;
2441 }
2442
2443 return lookup_global_symbol (name, block, domain);
2444 }
2445
2446 /* See symtab.h. */
2447
2448 struct block_symbol
2449 lookup_symbol_in_static_block (const char *name,
2450 const struct block *block,
2451 const domain_enum domain)
2452 {
2453 const struct block *static_block = block_static_block (block);
2454 struct symbol *sym;
2455
2456 if (static_block == NULL)
2457 return {};
2458
2459 if (symbol_lookup_debug)
2460 {
2461 struct objfile *objfile = (block == nullptr
2462 ? nullptr : block_objfile (block));
2463
2464 fprintf_unfiltered (gdb_stdlog,
2465 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2466 " %s)\n",
2467 name,
2468 host_address_to_string (block),
2469 objfile_debug_name (objfile),
2470 domain_name (domain));
2471 }
2472
2473 sym = lookup_symbol_in_block (name,
2474 symbol_name_match_type::FULL,
2475 static_block, domain);
2476 if (symbol_lookup_debug)
2477 {
2478 fprintf_unfiltered (gdb_stdlog,
2479 "lookup_symbol_in_static_block (...) = %s\n",
2480 sym != NULL ? host_address_to_string (sym) : "NULL");
2481 }
2482 return (struct block_symbol) {sym, static_block};
2483 }
2484
2485 /* Perform the standard symbol lookup of NAME in OBJFILE:
2486 1) First search expanded symtabs, and if not found
2487 2) Search the "quick" symtabs (partial or .gdb_index).
2488 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2489
2490 static struct block_symbol
2491 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2492 const char *name, const domain_enum domain)
2493 {
2494 struct block_symbol result;
2495
2496 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2497
2498 if (symbol_lookup_debug)
2499 {
2500 fprintf_unfiltered (gdb_stdlog,
2501 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2502 objfile_debug_name (objfile),
2503 block_index == GLOBAL_BLOCK
2504 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2505 name, domain_name (domain));
2506 }
2507
2508 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2509 name, domain);
2510 if (result.symbol != NULL)
2511 {
2512 if (symbol_lookup_debug)
2513 {
2514 fprintf_unfiltered (gdb_stdlog,
2515 "lookup_symbol_in_objfile (...) = %s"
2516 " (in symtabs)\n",
2517 host_address_to_string (result.symbol));
2518 }
2519 return result;
2520 }
2521
2522 result = lookup_symbol_via_quick_fns (objfile, block_index,
2523 name, domain);
2524 if (symbol_lookup_debug)
2525 {
2526 fprintf_unfiltered (gdb_stdlog,
2527 "lookup_symbol_in_objfile (...) = %s%s\n",
2528 result.symbol != NULL
2529 ? host_address_to_string (result.symbol)
2530 : "NULL",
2531 result.symbol != NULL ? " (via quick fns)" : "");
2532 }
2533 return result;
2534 }
2535
2536 /* Find the language for partial symbol with NAME. */
2537
2538 static enum language
2539 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2540 {
2541 for (objfile *objfile : current_program_space->objfiles ())
2542 {
2543 if (objfile->sf && objfile->sf->qf
2544 && objfile->sf->qf->lookup_global_symbol_language)
2545 continue;
2546 return language_unknown;
2547 }
2548
2549 for (objfile *objfile : current_program_space->objfiles ())
2550 {
2551 bool symbol_found_p;
2552 enum language lang
2553 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2554 &symbol_found_p);
2555 if (!symbol_found_p)
2556 continue;
2557 return lang;
2558 }
2559
2560 return language_unknown;
2561 }
2562
2563 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2564
2565 struct global_or_static_sym_lookup_data
2566 {
2567 /* The name of the symbol we are searching for. */
2568 const char *name;
2569
2570 /* The domain to use for our search. */
2571 domain_enum domain;
2572
2573 /* The block index in which to search. */
2574 enum block_enum block_index;
2575
2576 /* The field where the callback should store the symbol if found.
2577 It should be initialized to {NULL, NULL} before the search is started. */
2578 struct block_symbol result;
2579 };
2580
2581 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2582 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2583 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2584 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2585
2586 static int
2587 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2588 void *cb_data)
2589 {
2590 struct global_or_static_sym_lookup_data *data =
2591 (struct global_or_static_sym_lookup_data *) cb_data;
2592
2593 gdb_assert (data->result.symbol == NULL
2594 && data->result.block == NULL);
2595
2596 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2597 data->name, data->domain);
2598
2599 /* If we found a match, tell the iterator to stop. Otherwise,
2600 keep going. */
2601 return (data->result.symbol != NULL);
2602 }
2603
2604 /* This function contains the common code of lookup_{global,static}_symbol.
2605 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2606 the objfile to start the lookup in. */
2607
2608 static struct block_symbol
2609 lookup_global_or_static_symbol (const char *name,
2610 enum block_enum block_index,
2611 struct objfile *objfile,
2612 const domain_enum domain)
2613 {
2614 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2615 struct block_symbol result;
2616 struct global_or_static_sym_lookup_data lookup_data;
2617 struct block_symbol_cache *bsc;
2618 struct symbol_cache_slot *slot;
2619
2620 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2621 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2622
2623 /* First see if we can find the symbol in the cache.
2624 This works because we use the current objfile to qualify the lookup. */
2625 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2626 &bsc, &slot);
2627 if (result.symbol != NULL)
2628 {
2629 if (SYMBOL_LOOKUP_FAILED_P (result))
2630 return {};
2631 return result;
2632 }
2633
2634 /* Do a global search (of global blocks, heh). */
2635 if (result.symbol == NULL)
2636 {
2637 memset (&lookup_data, 0, sizeof (lookup_data));
2638 lookup_data.name = name;
2639 lookup_data.block_index = block_index;
2640 lookup_data.domain = domain;
2641 gdbarch_iterate_over_objfiles_in_search_order
2642 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2643 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2644 result = lookup_data.result;
2645 }
2646
2647 if (result.symbol != NULL)
2648 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2649 else
2650 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2651
2652 return result;
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_static_symbol (const char *name, const domain_enum domain)
2659 {
2660 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_global_symbol (const char *name,
2667 const struct block *block,
2668 const domain_enum domain)
2669 {
2670 /* If a block was passed in, we want to search the corresponding
2671 global block first. This yields "more expected" behavior, and is
2672 needed to support 'FILENAME'::VARIABLE lookups. */
2673 const struct block *global_block = block_global_block (block);
2674 symbol *sym = NULL;
2675 if (global_block != nullptr)
2676 {
2677 sym = lookup_symbol_in_block (name,
2678 symbol_name_match_type::FULL,
2679 global_block, domain);
2680 if (sym != NULL && best_symbol (sym, domain))
2681 return { sym, global_block };
2682 }
2683
2684 struct objfile *objfile = nullptr;
2685 if (block != nullptr)
2686 {
2687 objfile = block_objfile (block);
2688 if (objfile->separate_debug_objfile_backlink != nullptr)
2689 objfile = objfile->separate_debug_objfile_backlink;
2690 }
2691
2692 block_symbol bs
2693 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2694 if (better_symbol (sym, bs.symbol, domain) == sym)
2695 return { sym, global_block };
2696 else
2697 return bs;
2698 }
2699
2700 bool
2701 symbol_matches_domain (enum language symbol_language,
2702 domain_enum symbol_domain,
2703 domain_enum domain)
2704 {
2705 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2706 Similarly, any Ada type declaration implicitly defines a typedef. */
2707 if (symbol_language == language_cplus
2708 || symbol_language == language_d
2709 || symbol_language == language_ada
2710 || symbol_language == language_rust)
2711 {
2712 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2713 && symbol_domain == STRUCT_DOMAIN)
2714 return true;
2715 }
2716 /* For all other languages, strict match is required. */
2717 return (symbol_domain == domain);
2718 }
2719
2720 /* See symtab.h. */
2721
2722 struct type *
2723 lookup_transparent_type (const char *name)
2724 {
2725 return current_language->lookup_transparent_type (name);
2726 }
2727
2728 /* A helper for basic_lookup_transparent_type that interfaces with the
2729 "quick" symbol table functions. */
2730
2731 static struct type *
2732 basic_lookup_transparent_type_quick (struct objfile *objfile,
2733 enum block_enum block_index,
2734 const char *name)
2735 {
2736 struct compunit_symtab *cust;
2737 const struct blockvector *bv;
2738 const struct block *block;
2739 struct symbol *sym;
2740
2741 if (!objfile->sf)
2742 return NULL;
2743 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2744 STRUCT_DOMAIN);
2745 if (cust == NULL)
2746 return NULL;
2747
2748 bv = COMPUNIT_BLOCKVECTOR (cust);
2749 block = BLOCKVECTOR_BLOCK (bv, block_index);
2750 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2751 block_find_non_opaque_type, NULL);
2752 if (sym == NULL)
2753 error_in_psymtab_expansion (block_index, name, cust);
2754 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2755 return SYMBOL_TYPE (sym);
2756 }
2757
2758 /* Subroutine of basic_lookup_transparent_type to simplify it.
2759 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2760 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2761
2762 static struct type *
2763 basic_lookup_transparent_type_1 (struct objfile *objfile,
2764 enum block_enum block_index,
2765 const char *name)
2766 {
2767 const struct blockvector *bv;
2768 const struct block *block;
2769 const struct symbol *sym;
2770
2771 for (compunit_symtab *cust : objfile->compunits ())
2772 {
2773 bv = COMPUNIT_BLOCKVECTOR (cust);
2774 block = BLOCKVECTOR_BLOCK (bv, block_index);
2775 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2776 block_find_non_opaque_type, NULL);
2777 if (sym != NULL)
2778 {
2779 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2780 return SYMBOL_TYPE (sym);
2781 }
2782 }
2783
2784 return NULL;
2785 }
2786
2787 /* The standard implementation of lookup_transparent_type. This code
2788 was modeled on lookup_symbol -- the parts not relevant to looking
2789 up types were just left out. In particular it's assumed here that
2790 types are available in STRUCT_DOMAIN and only in file-static or
2791 global blocks. */
2792
2793 struct type *
2794 basic_lookup_transparent_type (const char *name)
2795 {
2796 struct type *t;
2797
2798 /* Now search all the global symbols. Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a global, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 for (objfile *objfile : current_program_space->objfiles ())
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 for (objfile *objfile : current_program_space->objfiles ())
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 /* Now search the static file-level symbols.
2818 Not strictly correct, but more useful than an error.
2819 Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a file-level static, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 for (objfile *objfile : current_program_space->objfiles ())
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 for (objfile *objfile : current_program_space->objfiles ())
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 return (struct type *) 0;
2839 }
2840
2841 /* See symtab.h. */
2842
2843 bool
2844 iterate_over_symbols (const struct block *block,
2845 const lookup_name_info &name,
2846 const domain_enum domain,
2847 gdb::function_view<symbol_found_callback_ftype> callback)
2848 {
2849 struct block_iterator iter;
2850 struct symbol *sym;
2851
2852 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2853 {
2854 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2855 {
2856 struct block_symbol block_sym = {sym, block};
2857
2858 if (!callback (&block_sym))
2859 return false;
2860 }
2861 }
2862 return true;
2863 }
2864
2865 /* See symtab.h. */
2866
2867 bool
2868 iterate_over_symbols_terminated
2869 (const struct block *block,
2870 const lookup_name_info &name,
2871 const domain_enum domain,
2872 gdb::function_view<symbol_found_callback_ftype> callback)
2873 {
2874 if (!iterate_over_symbols (block, name, domain, callback))
2875 return false;
2876 struct block_symbol block_sym = {nullptr, block};
2877 return callback (&block_sym);
2878 }
2879
2880 /* Find the compunit symtab associated with PC and SECTION.
2881 This will read in debug info as necessary. */
2882
2883 struct compunit_symtab *
2884 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2885 {
2886 struct compunit_symtab *best_cust = NULL;
2887 CORE_ADDR best_cust_range = 0;
2888 struct bound_minimal_symbol msymbol;
2889
2890 /* If we know that this is not a text address, return failure. This is
2891 necessary because we loop based on the block's high and low code
2892 addresses, which do not include the data ranges, and because
2893 we call find_pc_sect_psymtab which has a similar restriction based
2894 on the partial_symtab's texthigh and textlow. */
2895 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2896 if (msymbol.minsym && msymbol.minsym->data_p ())
2897 return NULL;
2898
2899 /* Search all symtabs for the one whose file contains our address, and which
2900 is the smallest of all the ones containing the address. This is designed
2901 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2902 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2903 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2904
2905 This happens for native ecoff format, where code from included files
2906 gets its own symtab. The symtab for the included file should have
2907 been read in already via the dependency mechanism.
2908 It might be swifter to create several symtabs with the same name
2909 like xcoff does (I'm not sure).
2910
2911 It also happens for objfiles that have their functions reordered.
2912 For these, the symtab we are looking for is not necessarily read in. */
2913
2914 for (objfile *obj_file : current_program_space->objfiles ())
2915 {
2916 for (compunit_symtab *cust : obj_file->compunits ())
2917 {
2918 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2919 const struct block *global_block
2920 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2921 CORE_ADDR start = BLOCK_START (global_block);
2922 CORE_ADDR end = BLOCK_END (global_block);
2923 bool in_range_p = start <= pc && pc < end;
2924 if (!in_range_p)
2925 continue;
2926
2927 if (BLOCKVECTOR_MAP (bv))
2928 {
2929 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2930 continue;
2931
2932 return cust;
2933 }
2934
2935 CORE_ADDR range = end - start;
2936 if (best_cust != nullptr
2937 && range >= best_cust_range)
2938 /* Cust doesn't have a smaller range than best_cust, skip it. */
2939 continue;
2940
2941 /* For an objfile that has its functions reordered,
2942 find_pc_psymtab will find the proper partial symbol table
2943 and we simply return its corresponding symtab. */
2944 /* In order to better support objfiles that contain both
2945 stabs and coff debugging info, we continue on if a psymtab
2946 can't be found. */
2947 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2948 {
2949 struct compunit_symtab *result;
2950
2951 result
2952 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2953 msymbol,
2954 pc,
2955 section,
2956 0);
2957 if (result != NULL)
2958 return result;
2959 }
2960
2961 if (section != 0)
2962 {
2963 struct symbol *sym = NULL;
2964 struct block_iterator iter;
2965
2966 for (int b_index = GLOBAL_BLOCK;
2967 b_index <= STATIC_BLOCK && sym == NULL;
2968 ++b_index)
2969 {
2970 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2971 ALL_BLOCK_SYMBOLS (b, iter, sym)
2972 {
2973 fixup_symbol_section (sym, obj_file);
2974 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2975 sym),
2976 section))
2977 break;
2978 }
2979 }
2980 if (sym == NULL)
2981 continue; /* No symbol in this symtab matches
2982 section. */
2983 }
2984
2985 /* Cust is best found sofar, save it. */
2986 best_cust = cust;
2987 best_cust_range = range;
2988 }
2989 }
2990
2991 if (best_cust != NULL)
2992 return best_cust;
2993
2994 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2995
2996 for (objfile *objf : current_program_space->objfiles ())
2997 {
2998 struct compunit_symtab *result;
2999
3000 if (!objf->sf)
3001 continue;
3002 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3003 msymbol,
3004 pc, section,
3005 1);
3006 if (result != NULL)
3007 return result;
3008 }
3009
3010 return NULL;
3011 }
3012
3013 /* Find the compunit symtab associated with PC.
3014 This will read in debug info as necessary.
3015 Backward compatibility, no section. */
3016
3017 struct compunit_symtab *
3018 find_pc_compunit_symtab (CORE_ADDR pc)
3019 {
3020 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3021 }
3022
3023 /* See symtab.h. */
3024
3025 struct symbol *
3026 find_symbol_at_address (CORE_ADDR address)
3027 {
3028 /* A helper function to search a given symtab for a symbol matching
3029 ADDR. */
3030 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3031 {
3032 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3033
3034 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3035 {
3036 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3037 struct block_iterator iter;
3038 struct symbol *sym;
3039
3040 ALL_BLOCK_SYMBOLS (b, iter, sym)
3041 {
3042 if (SYMBOL_CLASS (sym) == LOC_STATIC
3043 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3044 return sym;
3045 }
3046 }
3047 return nullptr;
3048 };
3049
3050 for (objfile *objfile : current_program_space->objfiles ())
3051 {
3052 /* If this objfile doesn't have "quick" functions, then it may
3053 have been read with -readnow, in which case we need to search
3054 the symtabs directly. */
3055 if (objfile->sf == NULL
3056 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3057 {
3058 for (compunit_symtab *symtab : objfile->compunits ())
3059 {
3060 struct symbol *sym = search_symtab (symtab, address);
3061 if (sym != nullptr)
3062 return sym;
3063 }
3064 }
3065 else
3066 {
3067 struct compunit_symtab *symtab
3068 = objfile->sf->qf->find_compunit_symtab_by_address (objfile,
3069 address);
3070 if (symtab != NULL)
3071 {
3072 struct symbol *sym = search_symtab (symtab, address);
3073 if (sym != nullptr)
3074 return sym;
3075 }
3076 }
3077 }
3078
3079 return NULL;
3080 }
3081
3082 \f
3083
3084 /* Find the source file and line number for a given PC value and SECTION.
3085 Return a structure containing a symtab pointer, a line number,
3086 and a pc range for the entire source line.
3087 The value's .pc field is NOT the specified pc.
3088 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3089 use the line that ends there. Otherwise, in that case, the line
3090 that begins there is used. */
3091
3092 /* The big complication here is that a line may start in one file, and end just
3093 before the start of another file. This usually occurs when you #include
3094 code in the middle of a subroutine. To properly find the end of a line's PC
3095 range, we must search all symtabs associated with this compilation unit, and
3096 find the one whose first PC is closer than that of the next line in this
3097 symtab. */
3098
3099 struct symtab_and_line
3100 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3101 {
3102 struct compunit_symtab *cust;
3103 struct linetable *l;
3104 int len;
3105 struct linetable_entry *item;
3106 const struct blockvector *bv;
3107 struct bound_minimal_symbol msymbol;
3108
3109 /* Info on best line seen so far, and where it starts, and its file. */
3110
3111 struct linetable_entry *best = NULL;
3112 CORE_ADDR best_end = 0;
3113 struct symtab *best_symtab = 0;
3114
3115 /* Store here the first line number
3116 of a file which contains the line at the smallest pc after PC.
3117 If we don't find a line whose range contains PC,
3118 we will use a line one less than this,
3119 with a range from the start of that file to the first line's pc. */
3120 struct linetable_entry *alt = NULL;
3121
3122 /* Info on best line seen in this file. */
3123
3124 struct linetable_entry *prev;
3125
3126 /* If this pc is not from the current frame,
3127 it is the address of the end of a call instruction.
3128 Quite likely that is the start of the following statement.
3129 But what we want is the statement containing the instruction.
3130 Fudge the pc to make sure we get that. */
3131
3132 /* It's tempting to assume that, if we can't find debugging info for
3133 any function enclosing PC, that we shouldn't search for line
3134 number info, either. However, GAS can emit line number info for
3135 assembly files --- very helpful when debugging hand-written
3136 assembly code. In such a case, we'd have no debug info for the
3137 function, but we would have line info. */
3138
3139 if (notcurrent)
3140 pc -= 1;
3141
3142 /* elz: added this because this function returned the wrong
3143 information if the pc belongs to a stub (import/export)
3144 to call a shlib function. This stub would be anywhere between
3145 two functions in the target, and the line info was erroneously
3146 taken to be the one of the line before the pc. */
3147
3148 /* RT: Further explanation:
3149
3150 * We have stubs (trampolines) inserted between procedures.
3151 *
3152 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3153 * exists in the main image.
3154 *
3155 * In the minimal symbol table, we have a bunch of symbols
3156 * sorted by start address. The stubs are marked as "trampoline",
3157 * the others appear as text. E.g.:
3158 *
3159 * Minimal symbol table for main image
3160 * main: code for main (text symbol)
3161 * shr1: stub (trampoline symbol)
3162 * foo: code for foo (text symbol)
3163 * ...
3164 * Minimal symbol table for "shr1" image:
3165 * ...
3166 * shr1: code for shr1 (text symbol)
3167 * ...
3168 *
3169 * So the code below is trying to detect if we are in the stub
3170 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3171 * and if found, do the symbolization from the real-code address
3172 * rather than the stub address.
3173 *
3174 * Assumptions being made about the minimal symbol table:
3175 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3176 * if we're really in the trampoline.s If we're beyond it (say
3177 * we're in "foo" in the above example), it'll have a closer
3178 * symbol (the "foo" text symbol for example) and will not
3179 * return the trampoline.
3180 * 2. lookup_minimal_symbol_text() will find a real text symbol
3181 * corresponding to the trampoline, and whose address will
3182 * be different than the trampoline address. I put in a sanity
3183 * check for the address being the same, to avoid an
3184 * infinite recursion.
3185 */
3186 msymbol = lookup_minimal_symbol_by_pc (pc);
3187 if (msymbol.minsym != NULL)
3188 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3189 {
3190 struct bound_minimal_symbol mfunsym
3191 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3192 NULL);
3193
3194 if (mfunsym.minsym == NULL)
3195 /* I eliminated this warning since it is coming out
3196 * in the following situation:
3197 * gdb shmain // test program with shared libraries
3198 * (gdb) break shr1 // function in shared lib
3199 * Warning: In stub for ...
3200 * In the above situation, the shared lib is not loaded yet,
3201 * so of course we can't find the real func/line info,
3202 * but the "break" still works, and the warning is annoying.
3203 * So I commented out the warning. RT */
3204 /* warning ("In stub for %s; unable to find real function/line info",
3205 msymbol->linkage_name ()); */
3206 ;
3207 /* fall through */
3208 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3209 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3210 /* Avoid infinite recursion */
3211 /* See above comment about why warning is commented out. */
3212 /* warning ("In stub for %s; unable to find real function/line info",
3213 msymbol->linkage_name ()); */
3214 ;
3215 /* fall through */
3216 else
3217 {
3218 /* Detect an obvious case of infinite recursion. If this
3219 should occur, we'd like to know about it, so error out,
3220 fatally. */
3221 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3222 internal_error (__FILE__, __LINE__,
3223 _("Infinite recursion detected in find_pc_sect_line;"
3224 "please file a bug report"));
3225
3226 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3227 }
3228 }
3229
3230 symtab_and_line val;
3231 val.pspace = current_program_space;
3232
3233 cust = find_pc_sect_compunit_symtab (pc, section);
3234 if (cust == NULL)
3235 {
3236 /* If no symbol information, return previous pc. */
3237 if (notcurrent)
3238 pc++;
3239 val.pc = pc;
3240 return val;
3241 }
3242
3243 bv = COMPUNIT_BLOCKVECTOR (cust);
3244
3245 /* Look at all the symtabs that share this blockvector.
3246 They all have the same apriori range, that we found was right;
3247 but they have different line tables. */
3248
3249 for (symtab *iter_s : compunit_filetabs (cust))
3250 {
3251 /* Find the best line in this symtab. */
3252 l = SYMTAB_LINETABLE (iter_s);
3253 if (!l)
3254 continue;
3255 len = l->nitems;
3256 if (len <= 0)
3257 {
3258 /* I think len can be zero if the symtab lacks line numbers
3259 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3260 I'm not sure which, and maybe it depends on the symbol
3261 reader). */
3262 continue;
3263 }
3264
3265 prev = NULL;
3266 item = l->item; /* Get first line info. */
3267
3268 /* Is this file's first line closer than the first lines of other files?
3269 If so, record this file, and its first line, as best alternate. */
3270 if (item->pc > pc && (!alt || item->pc < alt->pc))
3271 alt = item;
3272
3273 auto pc_compare = [](const CORE_ADDR & comp_pc,
3274 const struct linetable_entry & lhs)->bool
3275 {
3276 return comp_pc < lhs.pc;
3277 };
3278
3279 struct linetable_entry *first = item;
3280 struct linetable_entry *last = item + len;
3281 item = std::upper_bound (first, last, pc, pc_compare);
3282 if (item != first)
3283 prev = item - 1; /* Found a matching item. */
3284
3285 /* At this point, prev points at the line whose start addr is <= pc, and
3286 item points at the next line. If we ran off the end of the linetable
3287 (pc >= start of the last line), then prev == item. If pc < start of
3288 the first line, prev will not be set. */
3289
3290 /* Is this file's best line closer than the best in the other files?
3291 If so, record this file, and its best line, as best so far. Don't
3292 save prev if it represents the end of a function (i.e. line number
3293 0) instead of a real line. */
3294
3295 if (prev && prev->line && (!best || prev->pc > best->pc))
3296 {
3297 best = prev;
3298 best_symtab = iter_s;
3299
3300 /* If during the binary search we land on a non-statement entry,
3301 scan backward through entries at the same address to see if
3302 there is an entry marked as is-statement. In theory this
3303 duplication should have been removed from the line table
3304 during construction, this is just a double check. If the line
3305 table has had the duplication removed then this should be
3306 pretty cheap. */
3307 if (!best->is_stmt)
3308 {
3309 struct linetable_entry *tmp = best;
3310 while (tmp > first && (tmp - 1)->pc == tmp->pc
3311 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3312 --tmp;
3313 if (tmp->is_stmt)
3314 best = tmp;
3315 }
3316
3317 /* Discard BEST_END if it's before the PC of the current BEST. */
3318 if (best_end <= best->pc)
3319 best_end = 0;
3320 }
3321
3322 /* If another line (denoted by ITEM) is in the linetable and its
3323 PC is after BEST's PC, but before the current BEST_END, then
3324 use ITEM's PC as the new best_end. */
3325 if (best && item < last && item->pc > best->pc
3326 && (best_end == 0 || best_end > item->pc))
3327 best_end = item->pc;
3328 }
3329
3330 if (!best_symtab)
3331 {
3332 /* If we didn't find any line number info, just return zeros.
3333 We used to return alt->line - 1 here, but that could be
3334 anywhere; if we don't have line number info for this PC,
3335 don't make some up. */
3336 val.pc = pc;
3337 }
3338 else if (best->line == 0)
3339 {
3340 /* If our best fit is in a range of PC's for which no line
3341 number info is available (line number is zero) then we didn't
3342 find any valid line information. */
3343 val.pc = pc;
3344 }
3345 else
3346 {
3347 val.is_stmt = best->is_stmt;
3348 val.symtab = best_symtab;
3349 val.line = best->line;
3350 val.pc = best->pc;
3351 if (best_end && (!alt || best_end < alt->pc))
3352 val.end = best_end;
3353 else if (alt)
3354 val.end = alt->pc;
3355 else
3356 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3357 }
3358 val.section = section;
3359 return val;
3360 }
3361
3362 /* Backward compatibility (no section). */
3363
3364 struct symtab_and_line
3365 find_pc_line (CORE_ADDR pc, int notcurrent)
3366 {
3367 struct obj_section *section;
3368
3369 section = find_pc_overlay (pc);
3370 if (!pc_in_unmapped_range (pc, section))
3371 return find_pc_sect_line (pc, section, notcurrent);
3372
3373 /* If the original PC was an unmapped address then we translate this to a
3374 mapped address in order to lookup the sal. However, as the user
3375 passed us an unmapped address it makes more sense to return a result
3376 that has the pc and end fields translated to unmapped addresses. */
3377 pc = overlay_mapped_address (pc, section);
3378 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3379 sal.pc = overlay_unmapped_address (sal.pc, section);
3380 sal.end = overlay_unmapped_address (sal.end, section);
3381 return sal;
3382 }
3383
3384 /* See symtab.h. */
3385
3386 struct symtab *
3387 find_pc_line_symtab (CORE_ADDR pc)
3388 {
3389 struct symtab_and_line sal;
3390
3391 /* This always passes zero for NOTCURRENT to find_pc_line.
3392 There are currently no callers that ever pass non-zero. */
3393 sal = find_pc_line (pc, 0);
3394 return sal.symtab;
3395 }
3396 \f
3397 /* Find line number LINE in any symtab whose name is the same as
3398 SYMTAB.
3399
3400 If found, return the symtab that contains the linetable in which it was
3401 found, set *INDEX to the index in the linetable of the best entry
3402 found, and set *EXACT_MATCH to true if the value returned is an
3403 exact match.
3404
3405 If not found, return NULL. */
3406
3407 struct symtab *
3408 find_line_symtab (struct symtab *sym_tab, int line,
3409 int *index, bool *exact_match)
3410 {
3411 int exact = 0; /* Initialized here to avoid a compiler warning. */
3412
3413 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3414 so far seen. */
3415
3416 int best_index;
3417 struct linetable *best_linetable;
3418 struct symtab *best_symtab;
3419
3420 /* First try looking it up in the given symtab. */
3421 best_linetable = SYMTAB_LINETABLE (sym_tab);
3422 best_symtab = sym_tab;
3423 best_index = find_line_common (best_linetable, line, &exact, 0);
3424 if (best_index < 0 || !exact)
3425 {
3426 /* Didn't find an exact match. So we better keep looking for
3427 another symtab with the same name. In the case of xcoff,
3428 multiple csects for one source file (produced by IBM's FORTRAN
3429 compiler) produce multiple symtabs (this is unavoidable
3430 assuming csects can be at arbitrary places in memory and that
3431 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3432
3433 /* BEST is the smallest linenumber > LINE so far seen,
3434 or 0 if none has been seen so far.
3435 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3436 int best;
3437
3438 if (best_index >= 0)
3439 best = best_linetable->item[best_index].line;
3440 else
3441 best = 0;
3442
3443 for (objfile *objfile : current_program_space->objfiles ())
3444 {
3445 if (objfile->sf)
3446 objfile->sf->qf->expand_symtabs_with_fullname
3447 (objfile, symtab_to_fullname (sym_tab));
3448 }
3449
3450 for (objfile *objfile : current_program_space->objfiles ())
3451 {
3452 for (compunit_symtab *cu : objfile->compunits ())
3453 {
3454 for (symtab *s : compunit_filetabs (cu))
3455 {
3456 struct linetable *l;
3457 int ind;
3458
3459 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3460 continue;
3461 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3462 symtab_to_fullname (s)) != 0)
3463 continue;
3464 l = SYMTAB_LINETABLE (s);
3465 ind = find_line_common (l, line, &exact, 0);
3466 if (ind >= 0)
3467 {
3468 if (exact)
3469 {
3470 best_index = ind;
3471 best_linetable = l;
3472 best_symtab = s;
3473 goto done;
3474 }
3475 if (best == 0 || l->item[ind].line < best)
3476 {
3477 best = l->item[ind].line;
3478 best_index = ind;
3479 best_linetable = l;
3480 best_symtab = s;
3481 }
3482 }
3483 }
3484 }
3485 }
3486 }
3487 done:
3488 if (best_index < 0)
3489 return NULL;
3490
3491 if (index)
3492 *index = best_index;
3493 if (exact_match)
3494 *exact_match = (exact != 0);
3495
3496 return best_symtab;
3497 }
3498
3499 /* Given SYMTAB, returns all the PCs function in the symtab that
3500 exactly match LINE. Returns an empty vector if there are no exact
3501 matches, but updates BEST_ITEM in this case. */
3502
3503 std::vector<CORE_ADDR>
3504 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3505 struct linetable_entry **best_item)
3506 {
3507 int start = 0;
3508 std::vector<CORE_ADDR> result;
3509
3510 /* First, collect all the PCs that are at this line. */
3511 while (1)
3512 {
3513 int was_exact;
3514 int idx;
3515
3516 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3517 start);
3518 if (idx < 0)
3519 break;
3520
3521 if (!was_exact)
3522 {
3523 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3524
3525 if (*best_item == NULL
3526 || (item->line < (*best_item)->line && item->is_stmt))
3527 *best_item = item;
3528
3529 break;
3530 }
3531
3532 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3533 start = idx + 1;
3534 }
3535
3536 return result;
3537 }
3538
3539 \f
3540 /* Set the PC value for a given source file and line number and return true.
3541 Returns false for invalid line number (and sets the PC to 0).
3542 The source file is specified with a struct symtab. */
3543
3544 bool
3545 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3546 {
3547 struct linetable *l;
3548 int ind;
3549
3550 *pc = 0;
3551 if (symtab == 0)
3552 return false;
3553
3554 symtab = find_line_symtab (symtab, line, &ind, NULL);
3555 if (symtab != NULL)
3556 {
3557 l = SYMTAB_LINETABLE (symtab);
3558 *pc = l->item[ind].pc;
3559 return true;
3560 }
3561 else
3562 return false;
3563 }
3564
3565 /* Find the range of pc values in a line.
3566 Store the starting pc of the line into *STARTPTR
3567 and the ending pc (start of next line) into *ENDPTR.
3568 Returns true to indicate success.
3569 Returns false if could not find the specified line. */
3570
3571 bool
3572 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3573 CORE_ADDR *endptr)
3574 {
3575 CORE_ADDR startaddr;
3576 struct symtab_and_line found_sal;
3577
3578 startaddr = sal.pc;
3579 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3580 return false;
3581
3582 /* This whole function is based on address. For example, if line 10 has
3583 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3584 "info line *0x123" should say the line goes from 0x100 to 0x200
3585 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3586 This also insures that we never give a range like "starts at 0x134
3587 and ends at 0x12c". */
3588
3589 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3590 if (found_sal.line != sal.line)
3591 {
3592 /* The specified line (sal) has zero bytes. */
3593 *startptr = found_sal.pc;
3594 *endptr = found_sal.pc;
3595 }
3596 else
3597 {
3598 *startptr = found_sal.pc;
3599 *endptr = found_sal.end;
3600 }
3601 return true;
3602 }
3603
3604 /* Given a line table and a line number, return the index into the line
3605 table for the pc of the nearest line whose number is >= the specified one.
3606 Return -1 if none is found. The value is >= 0 if it is an index.
3607 START is the index at which to start searching the line table.
3608
3609 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3610
3611 static int
3612 find_line_common (struct linetable *l, int lineno,
3613 int *exact_match, int start)
3614 {
3615 int i;
3616 int len;
3617
3618 /* BEST is the smallest linenumber > LINENO so far seen,
3619 or 0 if none has been seen so far.
3620 BEST_INDEX identifies the item for it. */
3621
3622 int best_index = -1;
3623 int best = 0;
3624
3625 *exact_match = 0;
3626
3627 if (lineno <= 0)
3628 return -1;
3629 if (l == 0)
3630 return -1;
3631
3632 len = l->nitems;
3633 for (i = start; i < len; i++)
3634 {
3635 struct linetable_entry *item = &(l->item[i]);
3636
3637 /* Ignore non-statements. */
3638 if (!item->is_stmt)
3639 continue;
3640
3641 if (item->line == lineno)
3642 {
3643 /* Return the first (lowest address) entry which matches. */
3644 *exact_match = 1;
3645 return i;
3646 }
3647
3648 if (item->line > lineno && (best == 0 || item->line < best))
3649 {
3650 best = item->line;
3651 best_index = i;
3652 }
3653 }
3654
3655 /* If we got here, we didn't get an exact match. */
3656 return best_index;
3657 }
3658
3659 bool
3660 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3661 {
3662 struct symtab_and_line sal;
3663
3664 sal = find_pc_line (pc, 0);
3665 *startptr = sal.pc;
3666 *endptr = sal.end;
3667 return sal.symtab != 0;
3668 }
3669
3670 /* Helper for find_function_start_sal. Does most of the work, except
3671 setting the sal's symbol. */
3672
3673 static symtab_and_line
3674 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3675 bool funfirstline)
3676 {
3677 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3678
3679 if (funfirstline && sal.symtab != NULL
3680 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3681 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3682 {
3683 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3684
3685 sal.pc = func_addr;
3686 if (gdbarch_skip_entrypoint_p (gdbarch))
3687 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3688 return sal;
3689 }
3690
3691 /* We always should have a line for the function start address.
3692 If we don't, something is odd. Create a plain SAL referring
3693 just the PC and hope that skip_prologue_sal (if requested)
3694 can find a line number for after the prologue. */
3695 if (sal.pc < func_addr)
3696 {
3697 sal = {};
3698 sal.pspace = current_program_space;
3699 sal.pc = func_addr;
3700 sal.section = section;
3701 }
3702
3703 if (funfirstline)
3704 skip_prologue_sal (&sal);
3705
3706 return sal;
3707 }
3708
3709 /* See symtab.h. */
3710
3711 symtab_and_line
3712 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3713 bool funfirstline)
3714 {
3715 symtab_and_line sal
3716 = find_function_start_sal_1 (func_addr, section, funfirstline);
3717
3718 /* find_function_start_sal_1 does a linetable search, so it finds
3719 the symtab and linenumber, but not a symbol. Fill in the
3720 function symbol too. */
3721 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3722
3723 return sal;
3724 }
3725
3726 /* See symtab.h. */
3727
3728 symtab_and_line
3729 find_function_start_sal (symbol *sym, bool funfirstline)
3730 {
3731 fixup_symbol_section (sym, NULL);
3732 symtab_and_line sal
3733 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3734 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3735 funfirstline);
3736 sal.symbol = sym;
3737 return sal;
3738 }
3739
3740
3741 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3742 address for that function that has an entry in SYMTAB's line info
3743 table. If such an entry cannot be found, return FUNC_ADDR
3744 unaltered. */
3745
3746 static CORE_ADDR
3747 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3748 {
3749 CORE_ADDR func_start, func_end;
3750 struct linetable *l;
3751 int i;
3752
3753 /* Give up if this symbol has no lineinfo table. */
3754 l = SYMTAB_LINETABLE (symtab);
3755 if (l == NULL)
3756 return func_addr;
3757
3758 /* Get the range for the function's PC values, or give up if we
3759 cannot, for some reason. */
3760 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3761 return func_addr;
3762
3763 /* Linetable entries are ordered by PC values, see the commentary in
3764 symtab.h where `struct linetable' is defined. Thus, the first
3765 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3766 address we are looking for. */
3767 for (i = 0; i < l->nitems; i++)
3768 {
3769 struct linetable_entry *item = &(l->item[i]);
3770
3771 /* Don't use line numbers of zero, they mark special entries in
3772 the table. See the commentary on symtab.h before the
3773 definition of struct linetable. */
3774 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3775 return item->pc;
3776 }
3777
3778 return func_addr;
3779 }
3780
3781 /* Adjust SAL to the first instruction past the function prologue.
3782 If the PC was explicitly specified, the SAL is not changed.
3783 If the line number was explicitly specified then the SAL can still be
3784 updated, unless the language for SAL is assembler, in which case the SAL
3785 will be left unchanged.
3786 If SAL is already past the prologue, then do nothing. */
3787
3788 void
3789 skip_prologue_sal (struct symtab_and_line *sal)
3790 {
3791 struct symbol *sym;
3792 struct symtab_and_line start_sal;
3793 CORE_ADDR pc, saved_pc;
3794 struct obj_section *section;
3795 const char *name;
3796 struct objfile *objfile;
3797 struct gdbarch *gdbarch;
3798 const struct block *b, *function_block;
3799 int force_skip, skip;
3800
3801 /* Do not change the SAL if PC was specified explicitly. */
3802 if (sal->explicit_pc)
3803 return;
3804
3805 /* In assembly code, if the user asks for a specific line then we should
3806 not adjust the SAL. The user already has instruction level
3807 visibility in this case, so selecting a line other than one requested
3808 is likely to be the wrong choice. */
3809 if (sal->symtab != nullptr
3810 && sal->explicit_line
3811 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3812 return;
3813
3814 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3815
3816 switch_to_program_space_and_thread (sal->pspace);
3817
3818 sym = find_pc_sect_function (sal->pc, sal->section);
3819 if (sym != NULL)
3820 {
3821 fixup_symbol_section (sym, NULL);
3822
3823 objfile = symbol_objfile (sym);
3824 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3825 section = SYMBOL_OBJ_SECTION (objfile, sym);
3826 name = sym->linkage_name ();
3827 }
3828 else
3829 {
3830 struct bound_minimal_symbol msymbol
3831 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3832
3833 if (msymbol.minsym == NULL)
3834 return;
3835
3836 objfile = msymbol.objfile;
3837 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3838 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3839 name = msymbol.minsym->linkage_name ();
3840 }
3841
3842 gdbarch = objfile->arch ();
3843
3844 /* Process the prologue in two passes. In the first pass try to skip the
3845 prologue (SKIP is true) and verify there is a real need for it (indicated
3846 by FORCE_SKIP). If no such reason was found run a second pass where the
3847 prologue is not skipped (SKIP is false). */
3848
3849 skip = 1;
3850 force_skip = 1;
3851
3852 /* Be conservative - allow direct PC (without skipping prologue) only if we
3853 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3854 have to be set by the caller so we use SYM instead. */
3855 if (sym != NULL
3856 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3857 force_skip = 0;
3858
3859 saved_pc = pc;
3860 do
3861 {
3862 pc = saved_pc;
3863
3864 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3865 so that gdbarch_skip_prologue has something unique to work on. */
3866 if (section_is_overlay (section) && !section_is_mapped (section))
3867 pc = overlay_unmapped_address (pc, section);
3868
3869 /* Skip "first line" of function (which is actually its prologue). */
3870 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3871 if (gdbarch_skip_entrypoint_p (gdbarch))
3872 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3873 if (skip)
3874 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3875
3876 /* For overlays, map pc back into its mapped VMA range. */
3877 pc = overlay_mapped_address (pc, section);
3878
3879 /* Calculate line number. */
3880 start_sal = find_pc_sect_line (pc, section, 0);
3881
3882 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3883 line is still part of the same function. */
3884 if (skip && start_sal.pc != pc
3885 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3886 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3887 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3888 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3889 {
3890 /* First pc of next line */
3891 pc = start_sal.end;
3892 /* Recalculate the line number (might not be N+1). */
3893 start_sal = find_pc_sect_line (pc, section, 0);
3894 }
3895
3896 /* On targets with executable formats that don't have a concept of
3897 constructors (ELF with .init has, PE doesn't), gcc emits a call
3898 to `__main' in `main' between the prologue and before user
3899 code. */
3900 if (gdbarch_skip_main_prologue_p (gdbarch)
3901 && name && strcmp_iw (name, "main") == 0)
3902 {
3903 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3904 /* Recalculate the line number (might not be N+1). */
3905 start_sal = find_pc_sect_line (pc, section, 0);
3906 force_skip = 1;
3907 }
3908 }
3909 while (!force_skip && skip--);
3910
3911 /* If we still don't have a valid source line, try to find the first
3912 PC in the lineinfo table that belongs to the same function. This
3913 happens with COFF debug info, which does not seem to have an
3914 entry in lineinfo table for the code after the prologue which has
3915 no direct relation to source. For example, this was found to be
3916 the case with the DJGPP target using "gcc -gcoff" when the
3917 compiler inserted code after the prologue to make sure the stack
3918 is aligned. */
3919 if (!force_skip && sym && start_sal.symtab == NULL)
3920 {
3921 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3922 /* Recalculate the line number. */
3923 start_sal = find_pc_sect_line (pc, section, 0);
3924 }
3925
3926 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3927 forward SAL to the end of the prologue. */
3928 if (sal->pc >= pc)
3929 return;
3930
3931 sal->pc = pc;
3932 sal->section = section;
3933 sal->symtab = start_sal.symtab;
3934 sal->line = start_sal.line;
3935 sal->end = start_sal.end;
3936
3937 /* Check if we are now inside an inlined function. If we can,
3938 use the call site of the function instead. */
3939 b = block_for_pc_sect (sal->pc, sal->section);
3940 function_block = NULL;
3941 while (b != NULL)
3942 {
3943 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3944 function_block = b;
3945 else if (BLOCK_FUNCTION (b) != NULL)
3946 break;
3947 b = BLOCK_SUPERBLOCK (b);
3948 }
3949 if (function_block != NULL
3950 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3951 {
3952 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3953 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3954 }
3955 }
3956
3957 /* Given PC at the function's start address, attempt to find the
3958 prologue end using SAL information. Return zero if the skip fails.
3959
3960 A non-optimized prologue traditionally has one SAL for the function
3961 and a second for the function body. A single line function has
3962 them both pointing at the same line.
3963
3964 An optimized prologue is similar but the prologue may contain
3965 instructions (SALs) from the instruction body. Need to skip those
3966 while not getting into the function body.
3967
3968 The functions end point and an increasing SAL line are used as
3969 indicators of the prologue's endpoint.
3970
3971 This code is based on the function refine_prologue_limit
3972 (found in ia64). */
3973
3974 CORE_ADDR
3975 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3976 {
3977 struct symtab_and_line prologue_sal;
3978 CORE_ADDR start_pc;
3979 CORE_ADDR end_pc;
3980 const struct block *bl;
3981
3982 /* Get an initial range for the function. */
3983 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3984 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3985
3986 prologue_sal = find_pc_line (start_pc, 0);
3987 if (prologue_sal.line != 0)
3988 {
3989 /* For languages other than assembly, treat two consecutive line
3990 entries at the same address as a zero-instruction prologue.
3991 The GNU assembler emits separate line notes for each instruction
3992 in a multi-instruction macro, but compilers generally will not
3993 do this. */
3994 if (prologue_sal.symtab->language != language_asm)
3995 {
3996 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3997 int idx = 0;
3998
3999 /* Skip any earlier lines, and any end-of-sequence marker
4000 from a previous function. */
4001 while (linetable->item[idx].pc != prologue_sal.pc
4002 || linetable->item[idx].line == 0)
4003 idx++;
4004
4005 if (idx+1 < linetable->nitems
4006 && linetable->item[idx+1].line != 0
4007 && linetable->item[idx+1].pc == start_pc)
4008 return start_pc;
4009 }
4010
4011 /* If there is only one sal that covers the entire function,
4012 then it is probably a single line function, like
4013 "foo(){}". */
4014 if (prologue_sal.end >= end_pc)
4015 return 0;
4016
4017 while (prologue_sal.end < end_pc)
4018 {
4019 struct symtab_and_line sal;
4020
4021 sal = find_pc_line (prologue_sal.end, 0);
4022 if (sal.line == 0)
4023 break;
4024 /* Assume that a consecutive SAL for the same (or larger)
4025 line mark the prologue -> body transition. */
4026 if (sal.line >= prologue_sal.line)
4027 break;
4028 /* Likewise if we are in a different symtab altogether
4029 (e.g. within a file included via #include).  */
4030 if (sal.symtab != prologue_sal.symtab)
4031 break;
4032
4033 /* The line number is smaller. Check that it's from the
4034 same function, not something inlined. If it's inlined,
4035 then there is no point comparing the line numbers. */
4036 bl = block_for_pc (prologue_sal.end);
4037 while (bl)
4038 {
4039 if (block_inlined_p (bl))
4040 break;
4041 if (BLOCK_FUNCTION (bl))
4042 {
4043 bl = NULL;
4044 break;
4045 }
4046 bl = BLOCK_SUPERBLOCK (bl);
4047 }
4048 if (bl != NULL)
4049 break;
4050
4051 /* The case in which compiler's optimizer/scheduler has
4052 moved instructions into the prologue. We look ahead in
4053 the function looking for address ranges whose
4054 corresponding line number is less the first one that we
4055 found for the function. This is more conservative then
4056 refine_prologue_limit which scans a large number of SALs
4057 looking for any in the prologue. */
4058 prologue_sal = sal;
4059 }
4060 }
4061
4062 if (prologue_sal.end < end_pc)
4063 /* Return the end of this line, or zero if we could not find a
4064 line. */
4065 return prologue_sal.end;
4066 else
4067 /* Don't return END_PC, which is past the end of the function. */
4068 return prologue_sal.pc;
4069 }
4070
4071 /* See symtab.h. */
4072
4073 symbol *
4074 find_function_alias_target (bound_minimal_symbol msymbol)
4075 {
4076 CORE_ADDR func_addr;
4077 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4078 return NULL;
4079
4080 symbol *sym = find_pc_function (func_addr);
4081 if (sym != NULL
4082 && SYMBOL_CLASS (sym) == LOC_BLOCK
4083 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4084 return sym;
4085
4086 return NULL;
4087 }
4088
4089 \f
4090 /* If P is of the form "operator[ \t]+..." where `...' is
4091 some legitimate operator text, return a pointer to the
4092 beginning of the substring of the operator text.
4093 Otherwise, return "". */
4094
4095 static const char *
4096 operator_chars (const char *p, const char **end)
4097 {
4098 *end = "";
4099 if (!startswith (p, CP_OPERATOR_STR))
4100 return *end;
4101 p += CP_OPERATOR_LEN;
4102
4103 /* Don't get faked out by `operator' being part of a longer
4104 identifier. */
4105 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4106 return *end;
4107
4108 /* Allow some whitespace between `operator' and the operator symbol. */
4109 while (*p == ' ' || *p == '\t')
4110 p++;
4111
4112 /* Recognize 'operator TYPENAME'. */
4113
4114 if (isalpha (*p) || *p == '_' || *p == '$')
4115 {
4116 const char *q = p + 1;
4117
4118 while (isalnum (*q) || *q == '_' || *q == '$')
4119 q++;
4120 *end = q;
4121 return p;
4122 }
4123
4124 while (*p)
4125 switch (*p)
4126 {
4127 case '\\': /* regexp quoting */
4128 if (p[1] == '*')
4129 {
4130 if (p[2] == '=') /* 'operator\*=' */
4131 *end = p + 3;
4132 else /* 'operator\*' */
4133 *end = p + 2;
4134 return p;
4135 }
4136 else if (p[1] == '[')
4137 {
4138 if (p[2] == ']')
4139 error (_("mismatched quoting on brackets, "
4140 "try 'operator\\[\\]'"));
4141 else if (p[2] == '\\' && p[3] == ']')
4142 {
4143 *end = p + 4; /* 'operator\[\]' */
4144 return p;
4145 }
4146 else
4147 error (_("nothing is allowed between '[' and ']'"));
4148 }
4149 else
4150 {
4151 /* Gratuitous quote: skip it and move on. */
4152 p++;
4153 continue;
4154 }
4155 break;
4156 case '!':
4157 case '=':
4158 case '*':
4159 case '/':
4160 case '%':
4161 case '^':
4162 if (p[1] == '=')
4163 *end = p + 2;
4164 else
4165 *end = p + 1;
4166 return p;
4167 case '<':
4168 case '>':
4169 case '+':
4170 case '-':
4171 case '&':
4172 case '|':
4173 if (p[0] == '-' && p[1] == '>')
4174 {
4175 /* Struct pointer member operator 'operator->'. */
4176 if (p[2] == '*')
4177 {
4178 *end = p + 3; /* 'operator->*' */
4179 return p;
4180 }
4181 else if (p[2] == '\\')
4182 {
4183 *end = p + 4; /* Hopefully 'operator->\*' */
4184 return p;
4185 }
4186 else
4187 {
4188 *end = p + 2; /* 'operator->' */
4189 return p;
4190 }
4191 }
4192 if (p[1] == '=' || p[1] == p[0])
4193 *end = p + 2;
4194 else
4195 *end = p + 1;
4196 return p;
4197 case '~':
4198 case ',':
4199 *end = p + 1;
4200 return p;
4201 case '(':
4202 if (p[1] != ')')
4203 error (_("`operator ()' must be specified "
4204 "without whitespace in `()'"));
4205 *end = p + 2;
4206 return p;
4207 case '?':
4208 if (p[1] != ':')
4209 error (_("`operator ?:' must be specified "
4210 "without whitespace in `?:'"));
4211 *end = p + 2;
4212 return p;
4213 case '[':
4214 if (p[1] != ']')
4215 error (_("`operator []' must be specified "
4216 "without whitespace in `[]'"));
4217 *end = p + 2;
4218 return p;
4219 default:
4220 error (_("`operator %s' not supported"), p);
4221 break;
4222 }
4223
4224 *end = "";
4225 return *end;
4226 }
4227 \f
4228
4229 /* What part to match in a file name. */
4230
4231 struct filename_partial_match_opts
4232 {
4233 /* Only match the directory name part. */
4234 bool dirname = false;
4235
4236 /* Only match the basename part. */
4237 bool basename = false;
4238 };
4239
4240 /* Data structure to maintain printing state for output_source_filename. */
4241
4242 struct output_source_filename_data
4243 {
4244 /* Output only filenames matching REGEXP. */
4245 std::string regexp;
4246 gdb::optional<compiled_regex> c_regexp;
4247 /* Possibly only match a part of the filename. */
4248 filename_partial_match_opts partial_match;
4249
4250
4251 /* Cache of what we've seen so far. */
4252 struct filename_seen_cache *filename_seen_cache;
4253
4254 /* Flag of whether we're printing the first one. */
4255 int first;
4256 };
4257
4258 /* Slave routine for sources_info. Force line breaks at ,'s.
4259 NAME is the name to print.
4260 DATA contains the state for printing and watching for duplicates. */
4261
4262 static void
4263 output_source_filename (const char *name,
4264 struct output_source_filename_data *data)
4265 {
4266 /* Since a single source file can result in several partial symbol
4267 tables, we need to avoid printing it more than once. Note: if
4268 some of the psymtabs are read in and some are not, it gets
4269 printed both under "Source files for which symbols have been
4270 read" and "Source files for which symbols will be read in on
4271 demand". I consider this a reasonable way to deal with the
4272 situation. I'm not sure whether this can also happen for
4273 symtabs; it doesn't hurt to check. */
4274
4275 /* Was NAME already seen? */
4276 if (data->filename_seen_cache->seen (name))
4277 {
4278 /* Yes; don't print it again. */
4279 return;
4280 }
4281
4282 /* Does it match data->regexp? */
4283 if (data->c_regexp.has_value ())
4284 {
4285 const char *to_match;
4286 std::string dirname;
4287
4288 if (data->partial_match.dirname)
4289 {
4290 dirname = ldirname (name);
4291 to_match = dirname.c_str ();
4292 }
4293 else if (data->partial_match.basename)
4294 to_match = lbasename (name);
4295 else
4296 to_match = name;
4297
4298 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4299 return;
4300 }
4301
4302 /* Print it and reset *FIRST. */
4303 if (! data->first)
4304 printf_filtered (", ");
4305 data->first = 0;
4306
4307 wrap_here ("");
4308 fputs_styled (name, file_name_style.style (), gdb_stdout);
4309 }
4310
4311 /* A callback for map_partial_symbol_filenames. */
4312
4313 static void
4314 output_partial_symbol_filename (const char *filename, const char *fullname,
4315 void *data)
4316 {
4317 output_source_filename (fullname ? fullname : filename,
4318 (struct output_source_filename_data *) data);
4319 }
4320
4321 using isrc_flag_option_def
4322 = gdb::option::flag_option_def<filename_partial_match_opts>;
4323
4324 static const gdb::option::option_def info_sources_option_defs[] = {
4325
4326 isrc_flag_option_def {
4327 "dirname",
4328 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4329 N_("Show only the files having a dirname matching REGEXP."),
4330 },
4331
4332 isrc_flag_option_def {
4333 "basename",
4334 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4335 N_("Show only the files having a basename matching REGEXP."),
4336 },
4337
4338 };
4339
4340 /* Create an option_def_group for the "info sources" options, with
4341 ISRC_OPTS as context. */
4342
4343 static inline gdb::option::option_def_group
4344 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4345 {
4346 return {{info_sources_option_defs}, isrc_opts};
4347 }
4348
4349 /* Prints the header message for the source files that will be printed
4350 with the matching info present in DATA. SYMBOL_MSG is a message
4351 that tells what will or has been done with the symbols of the
4352 matching source files. */
4353
4354 static void
4355 print_info_sources_header (const char *symbol_msg,
4356 const struct output_source_filename_data *data)
4357 {
4358 puts_filtered (symbol_msg);
4359 if (!data->regexp.empty ())
4360 {
4361 if (data->partial_match.dirname)
4362 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4363 data->regexp.c_str ());
4364 else if (data->partial_match.basename)
4365 printf_filtered (_("(basename matching regular expression \"%s\")"),
4366 data->regexp.c_str ());
4367 else
4368 printf_filtered (_("(filename matching regular expression \"%s\")"),
4369 data->regexp.c_str ());
4370 }
4371 puts_filtered ("\n");
4372 }
4373
4374 /* Completer for "info sources". */
4375
4376 static void
4377 info_sources_command_completer (cmd_list_element *ignore,
4378 completion_tracker &tracker,
4379 const char *text, const char *word)
4380 {
4381 const auto group = make_info_sources_options_def_group (nullptr);
4382 if (gdb::option::complete_options
4383 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4384 return;
4385 }
4386
4387 static void
4388 info_sources_command (const char *args, int from_tty)
4389 {
4390 struct output_source_filename_data data;
4391
4392 if (!have_full_symbols () && !have_partial_symbols ())
4393 {
4394 error (_("No symbol table is loaded. Use the \"file\" command."));
4395 }
4396
4397 filename_seen_cache filenames_seen;
4398
4399 auto group = make_info_sources_options_def_group (&data.partial_match);
4400
4401 gdb::option::process_options
4402 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4403
4404 if (args != NULL && *args != '\000')
4405 data.regexp = args;
4406
4407 data.filename_seen_cache = &filenames_seen;
4408 data.first = 1;
4409
4410 if (data.partial_match.dirname && data.partial_match.basename)
4411 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4412 if ((data.partial_match.dirname || data.partial_match.basename)
4413 && data.regexp.empty ())
4414 error (_("Missing REGEXP for 'info sources'."));
4415
4416 if (data.regexp.empty ())
4417 data.c_regexp.reset ();
4418 else
4419 {
4420 int cflags = REG_NOSUB;
4421 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4422 cflags |= REG_ICASE;
4423 #endif
4424 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4425 _("Invalid regexp"));
4426 }
4427
4428 print_info_sources_header
4429 (_("Source files for which symbols have been read in:\n"), &data);
4430
4431 for (objfile *objfile : current_program_space->objfiles ())
4432 {
4433 for (compunit_symtab *cu : objfile->compunits ())
4434 {
4435 for (symtab *s : compunit_filetabs (cu))
4436 {
4437 const char *fullname = symtab_to_fullname (s);
4438
4439 output_source_filename (fullname, &data);
4440 }
4441 }
4442 }
4443 printf_filtered ("\n\n");
4444
4445 print_info_sources_header
4446 (_("Source files for which symbols will be read in on demand:\n"), &data);
4447
4448 filenames_seen.clear ();
4449 data.first = 1;
4450 map_symbol_filenames (output_partial_symbol_filename, &data,
4451 1 /*need_fullname*/);
4452 printf_filtered ("\n");
4453 }
4454
4455 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4456 true compare only lbasename of FILENAMES. */
4457
4458 static bool
4459 file_matches (const char *file, const std::vector<const char *> &filenames,
4460 bool basenames)
4461 {
4462 if (filenames.empty ())
4463 return true;
4464
4465 for (const char *name : filenames)
4466 {
4467 name = (basenames ? lbasename (name) : name);
4468 if (compare_filenames_for_search (file, name))
4469 return true;
4470 }
4471
4472 return false;
4473 }
4474
4475 /* Helper function for std::sort on symbol_search objects. Can only sort
4476 symbols, not minimal symbols. */
4477
4478 int
4479 symbol_search::compare_search_syms (const symbol_search &sym_a,
4480 const symbol_search &sym_b)
4481 {
4482 int c;
4483
4484 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4485 symbol_symtab (sym_b.symbol)->filename);
4486 if (c != 0)
4487 return c;
4488
4489 if (sym_a.block != sym_b.block)
4490 return sym_a.block - sym_b.block;
4491
4492 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4493 }
4494
4495 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4496 If SYM has no symbol_type or symbol_name, returns false. */
4497
4498 bool
4499 treg_matches_sym_type_name (const compiled_regex &treg,
4500 const struct symbol *sym)
4501 {
4502 struct type *sym_type;
4503 std::string printed_sym_type_name;
4504
4505 if (symbol_lookup_debug > 1)
4506 {
4507 fprintf_unfiltered (gdb_stdlog,
4508 "treg_matches_sym_type_name\n sym %s\n",
4509 sym->natural_name ());
4510 }
4511
4512 sym_type = SYMBOL_TYPE (sym);
4513 if (sym_type == NULL)
4514 return false;
4515
4516 {
4517 scoped_switch_to_sym_language_if_auto l (sym);
4518
4519 printed_sym_type_name = type_to_string (sym_type);
4520 }
4521
4522
4523 if (symbol_lookup_debug > 1)
4524 {
4525 fprintf_unfiltered (gdb_stdlog,
4526 " sym_type_name %s\n",
4527 printed_sym_type_name.c_str ());
4528 }
4529
4530
4531 if (printed_sym_type_name.empty ())
4532 return false;
4533
4534 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4535 }
4536
4537 /* See symtab.h. */
4538
4539 bool
4540 global_symbol_searcher::is_suitable_msymbol
4541 (const enum search_domain kind, const minimal_symbol *msymbol)
4542 {
4543 switch (MSYMBOL_TYPE (msymbol))
4544 {
4545 case mst_data:
4546 case mst_bss:
4547 case mst_file_data:
4548 case mst_file_bss:
4549 return kind == VARIABLES_DOMAIN;
4550 case mst_text:
4551 case mst_file_text:
4552 case mst_solib_trampoline:
4553 case mst_text_gnu_ifunc:
4554 return kind == FUNCTIONS_DOMAIN;
4555 default:
4556 return false;
4557 }
4558 }
4559
4560 /* See symtab.h. */
4561
4562 bool
4563 global_symbol_searcher::expand_symtabs
4564 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4565 {
4566 enum search_domain kind = m_kind;
4567 bool found_msymbol = false;
4568
4569 if (objfile->sf)
4570 objfile->sf->qf->expand_symtabs_matching
4571 (objfile,
4572 [&] (const char *filename, bool basenames)
4573 {
4574 return file_matches (filename, filenames, basenames);
4575 },
4576 &lookup_name_info::match_any (),
4577 [&] (const char *symname)
4578 {
4579 return (!preg.has_value ()
4580 || preg->exec (symname, 0, NULL, 0) == 0);
4581 },
4582 NULL,
4583 kind);
4584
4585 /* Here, we search through the minimal symbol tables for functions and
4586 variables that match, and force their symbols to be read. This is in
4587 particular necessary for demangled variable names, which are no longer
4588 put into the partial symbol tables. The symbol will then be found
4589 during the scan of symtabs later.
4590
4591 For functions, find_pc_symtab should succeed if we have debug info for
4592 the function, for variables we have to call
4593 lookup_symbol_in_objfile_from_linkage_name to determine if the
4594 variable has debug info. If the lookup fails, set found_msymbol so
4595 that we will rescan to print any matching symbols without debug info.
4596 We only search the objfile the msymbol came from, we no longer search
4597 all objfiles. In large programs (1000s of shared libs) searching all
4598 objfiles is not worth the pain. */
4599 if (filenames.empty ()
4600 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4601 {
4602 for (minimal_symbol *msymbol : objfile->msymbols ())
4603 {
4604 QUIT;
4605
4606 if (msymbol->created_by_gdb)
4607 continue;
4608
4609 if (is_suitable_msymbol (kind, msymbol))
4610 {
4611 if (!preg.has_value ()
4612 || preg->exec (msymbol->natural_name (), 0,
4613 NULL, 0) == 0)
4614 {
4615 /* An important side-effect of these lookup functions is
4616 to expand the symbol table if msymbol is found, later
4617 in the process we will add matching symbols or
4618 msymbols to the results list, and that requires that
4619 the symbols tables are expanded. */
4620 if (kind == FUNCTIONS_DOMAIN
4621 ? (find_pc_compunit_symtab
4622 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4623 == NULL)
4624 : (lookup_symbol_in_objfile_from_linkage_name
4625 (objfile, msymbol->linkage_name (),
4626 VAR_DOMAIN)
4627 .symbol == NULL))
4628 found_msymbol = true;
4629 }
4630 }
4631 }
4632 }
4633
4634 return found_msymbol;
4635 }
4636
4637 /* See symtab.h. */
4638
4639 bool
4640 global_symbol_searcher::add_matching_symbols
4641 (objfile *objfile,
4642 const gdb::optional<compiled_regex> &preg,
4643 const gdb::optional<compiled_regex> &treg,
4644 std::set<symbol_search> *result_set) const
4645 {
4646 enum search_domain kind = m_kind;
4647
4648 /* Add matching symbols (if not already present). */
4649 for (compunit_symtab *cust : objfile->compunits ())
4650 {
4651 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4652
4653 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4654 {
4655 struct block_iterator iter;
4656 struct symbol *sym;
4657 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4658
4659 ALL_BLOCK_SYMBOLS (b, iter, sym)
4660 {
4661 struct symtab *real_symtab = symbol_symtab (sym);
4662
4663 QUIT;
4664
4665 /* Check first sole REAL_SYMTAB->FILENAME. It does
4666 not need to be a substring of symtab_to_fullname as
4667 it may contain "./" etc. */
4668 if ((file_matches (real_symtab->filename, filenames, false)
4669 || ((basenames_may_differ
4670 || file_matches (lbasename (real_symtab->filename),
4671 filenames, true))
4672 && file_matches (symtab_to_fullname (real_symtab),
4673 filenames, false)))
4674 && ((!preg.has_value ()
4675 || preg->exec (sym->natural_name (), 0,
4676 NULL, 0) == 0)
4677 && ((kind == VARIABLES_DOMAIN
4678 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4679 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4680 && SYMBOL_CLASS (sym) != LOC_BLOCK
4681 /* LOC_CONST can be used for more than
4682 just enums, e.g., c++ static const
4683 members. We only want to skip enums
4684 here. */
4685 && !(SYMBOL_CLASS (sym) == LOC_CONST
4686 && (SYMBOL_TYPE (sym)->code ()
4687 == TYPE_CODE_ENUM))
4688 && (!treg.has_value ()
4689 || treg_matches_sym_type_name (*treg, sym)))
4690 || (kind == FUNCTIONS_DOMAIN
4691 && SYMBOL_CLASS (sym) == LOC_BLOCK
4692 && (!treg.has_value ()
4693 || treg_matches_sym_type_name (*treg,
4694 sym)))
4695 || (kind == TYPES_DOMAIN
4696 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4697 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4698 || (kind == MODULES_DOMAIN
4699 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4700 && SYMBOL_LINE (sym) != 0))))
4701 {
4702 if (result_set->size () < m_max_search_results)
4703 {
4704 /* Match, insert if not already in the results. */
4705 symbol_search ss (block, sym);
4706 if (result_set->find (ss) == result_set->end ())
4707 result_set->insert (ss);
4708 }
4709 else
4710 return false;
4711 }
4712 }
4713 }
4714 }
4715
4716 return true;
4717 }
4718
4719 /* See symtab.h. */
4720
4721 bool
4722 global_symbol_searcher::add_matching_msymbols
4723 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4724 std::vector<symbol_search> *results) const
4725 {
4726 enum search_domain kind = m_kind;
4727
4728 for (minimal_symbol *msymbol : objfile->msymbols ())
4729 {
4730 QUIT;
4731
4732 if (msymbol->created_by_gdb)
4733 continue;
4734
4735 if (is_suitable_msymbol (kind, msymbol))
4736 {
4737 if (!preg.has_value ()
4738 || preg->exec (msymbol->natural_name (), 0,
4739 NULL, 0) == 0)
4740 {
4741 /* For functions we can do a quick check of whether the
4742 symbol might be found via find_pc_symtab. */
4743 if (kind != FUNCTIONS_DOMAIN
4744 || (find_pc_compunit_symtab
4745 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4746 == NULL))
4747 {
4748 if (lookup_symbol_in_objfile_from_linkage_name
4749 (objfile, msymbol->linkage_name (),
4750 VAR_DOMAIN).symbol == NULL)
4751 {
4752 /* Matching msymbol, add it to the results list. */
4753 if (results->size () < m_max_search_results)
4754 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4755 else
4756 return false;
4757 }
4758 }
4759 }
4760 }
4761 }
4762
4763 return true;
4764 }
4765
4766 /* See symtab.h. */
4767
4768 std::vector<symbol_search>
4769 global_symbol_searcher::search () const
4770 {
4771 gdb::optional<compiled_regex> preg;
4772 gdb::optional<compiled_regex> treg;
4773
4774 gdb_assert (m_kind != ALL_DOMAIN);
4775
4776 if (m_symbol_name_regexp != NULL)
4777 {
4778 const char *symbol_name_regexp = m_symbol_name_regexp;
4779
4780 /* Make sure spacing is right for C++ operators.
4781 This is just a courtesy to make the matching less sensitive
4782 to how many spaces the user leaves between 'operator'
4783 and <TYPENAME> or <OPERATOR>. */
4784 const char *opend;
4785 const char *opname = operator_chars (symbol_name_regexp, &opend);
4786
4787 if (*opname)
4788 {
4789 int fix = -1; /* -1 means ok; otherwise number of
4790 spaces needed. */
4791
4792 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4793 {
4794 /* There should 1 space between 'operator' and 'TYPENAME'. */
4795 if (opname[-1] != ' ' || opname[-2] == ' ')
4796 fix = 1;
4797 }
4798 else
4799 {
4800 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4801 if (opname[-1] == ' ')
4802 fix = 0;
4803 }
4804 /* If wrong number of spaces, fix it. */
4805 if (fix >= 0)
4806 {
4807 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4808
4809 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4810 symbol_name_regexp = tmp;
4811 }
4812 }
4813
4814 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4815 ? REG_ICASE : 0);
4816 preg.emplace (symbol_name_regexp, cflags,
4817 _("Invalid regexp"));
4818 }
4819
4820 if (m_symbol_type_regexp != NULL)
4821 {
4822 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4823 ? REG_ICASE : 0);
4824 treg.emplace (m_symbol_type_regexp, cflags,
4825 _("Invalid regexp"));
4826 }
4827
4828 bool found_msymbol = false;
4829 std::set<symbol_search> result_set;
4830 for (objfile *objfile : current_program_space->objfiles ())
4831 {
4832 /* Expand symtabs within objfile that possibly contain matching
4833 symbols. */
4834 found_msymbol |= expand_symtabs (objfile, preg);
4835
4836 /* Find matching symbols within OBJFILE and add them in to the
4837 RESULT_SET set. Use a set here so that we can easily detect
4838 duplicates as we go, and can therefore track how many unique
4839 matches we have found so far. */
4840 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4841 break;
4842 }
4843
4844 /* Convert the result set into a sorted result list, as std::set is
4845 defined to be sorted then no explicit call to std::sort is needed. */
4846 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4847
4848 /* If there are no debug symbols, then add matching minsyms. But if the
4849 user wants to see symbols matching a type regexp, then never give a
4850 minimal symbol, as we assume that a minimal symbol does not have a
4851 type. */
4852 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4853 && !m_exclude_minsyms
4854 && !treg.has_value ())
4855 {
4856 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4857 for (objfile *objfile : current_program_space->objfiles ())
4858 if (!add_matching_msymbols (objfile, preg, &result))
4859 break;
4860 }
4861
4862 return result;
4863 }
4864
4865 /* See symtab.h. */
4866
4867 std::string
4868 symbol_to_info_string (struct symbol *sym, int block,
4869 enum search_domain kind)
4870 {
4871 std::string str;
4872
4873 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4874
4875 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4876 str += "static ";
4877
4878 /* Typedef that is not a C++ class. */
4879 if (kind == TYPES_DOMAIN
4880 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4881 {
4882 string_file tmp_stream;
4883
4884 /* FIXME: For C (and C++) we end up with a difference in output here
4885 between how a typedef is printed, and non-typedefs are printed.
4886 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4887 appear C-like, while TYPE_PRINT doesn't.
4888
4889 For the struct printing case below, things are worse, we force
4890 printing of the ";" in this function, which is going to be wrong
4891 for languages that don't require a ";" between statements. */
4892 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4893 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4894 else
4895 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4896 str += tmp_stream.string ();
4897 }
4898 /* variable, func, or typedef-that-is-c++-class. */
4899 else if (kind < TYPES_DOMAIN
4900 || (kind == TYPES_DOMAIN
4901 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4902 {
4903 string_file tmp_stream;
4904
4905 type_print (SYMBOL_TYPE (sym),
4906 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4907 ? "" : sym->print_name ()),
4908 &tmp_stream, 0);
4909
4910 str += tmp_stream.string ();
4911 str += ";";
4912 }
4913 /* Printing of modules is currently done here, maybe at some future
4914 point we might want a language specific method to print the module
4915 symbol so that we can customise the output more. */
4916 else if (kind == MODULES_DOMAIN)
4917 str += sym->print_name ();
4918
4919 return str;
4920 }
4921
4922 /* Helper function for symbol info commands, for example 'info functions',
4923 'info variables', etc. KIND is the kind of symbol we searched for, and
4924 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4925 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4926 print file and line number information for the symbol as well. Skip
4927 printing the filename if it matches LAST. */
4928
4929 static void
4930 print_symbol_info (enum search_domain kind,
4931 struct symbol *sym,
4932 int block, const char *last)
4933 {
4934 scoped_switch_to_sym_language_if_auto l (sym);
4935 struct symtab *s = symbol_symtab (sym);
4936
4937 if (last != NULL)
4938 {
4939 const char *s_filename = symtab_to_filename_for_display (s);
4940
4941 if (filename_cmp (last, s_filename) != 0)
4942 {
4943 printf_filtered (_("\nFile %ps:\n"),
4944 styled_string (file_name_style.style (),
4945 s_filename));
4946 }
4947
4948 if (SYMBOL_LINE (sym) != 0)
4949 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4950 else
4951 puts_filtered ("\t");
4952 }
4953
4954 std::string str = symbol_to_info_string (sym, block, kind);
4955 printf_filtered ("%s\n", str.c_str ());
4956 }
4957
4958 /* This help function for symtab_symbol_info() prints information
4959 for non-debugging symbols to gdb_stdout. */
4960
4961 static void
4962 print_msymbol_info (struct bound_minimal_symbol msymbol)
4963 {
4964 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4965 char *tmp;
4966
4967 if (gdbarch_addr_bit (gdbarch) <= 32)
4968 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4969 & (CORE_ADDR) 0xffffffff,
4970 8);
4971 else
4972 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4973 16);
4974
4975 ui_file_style sym_style = (msymbol.minsym->text_p ()
4976 ? function_name_style.style ()
4977 : ui_file_style ());
4978
4979 printf_filtered (_("%ps %ps\n"),
4980 styled_string (address_style.style (), tmp),
4981 styled_string (sym_style, msymbol.minsym->print_name ()));
4982 }
4983
4984 /* This is the guts of the commands "info functions", "info types", and
4985 "info variables". It calls search_symbols to find all matches and then
4986 print_[m]symbol_info to print out some useful information about the
4987 matches. */
4988
4989 static void
4990 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4991 const char *regexp, enum search_domain kind,
4992 const char *t_regexp, int from_tty)
4993 {
4994 static const char * const classnames[] =
4995 {"variable", "function", "type", "module"};
4996 const char *last_filename = "";
4997 int first = 1;
4998
4999 gdb_assert (kind != ALL_DOMAIN);
5000
5001 if (regexp != nullptr && *regexp == '\0')
5002 regexp = nullptr;
5003
5004 global_symbol_searcher spec (kind, regexp);
5005 spec.set_symbol_type_regexp (t_regexp);
5006 spec.set_exclude_minsyms (exclude_minsyms);
5007 std::vector<symbol_search> symbols = spec.search ();
5008
5009 if (!quiet)
5010 {
5011 if (regexp != NULL)
5012 {
5013 if (t_regexp != NULL)
5014 printf_filtered
5015 (_("All %ss matching regular expression \"%s\""
5016 " with type matching regular expression \"%s\":\n"),
5017 classnames[kind], regexp, t_regexp);
5018 else
5019 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5020 classnames[kind], regexp);
5021 }
5022 else
5023 {
5024 if (t_regexp != NULL)
5025 printf_filtered
5026 (_("All defined %ss"
5027 " with type matching regular expression \"%s\" :\n"),
5028 classnames[kind], t_regexp);
5029 else
5030 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5031 }
5032 }
5033
5034 for (const symbol_search &p : symbols)
5035 {
5036 QUIT;
5037
5038 if (p.msymbol.minsym != NULL)
5039 {
5040 if (first)
5041 {
5042 if (!quiet)
5043 printf_filtered (_("\nNon-debugging symbols:\n"));
5044 first = 0;
5045 }
5046 print_msymbol_info (p.msymbol);
5047 }
5048 else
5049 {
5050 print_symbol_info (kind,
5051 p.symbol,
5052 p.block,
5053 last_filename);
5054 last_filename
5055 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5056 }
5057 }
5058 }
5059
5060 /* Structure to hold the values of the options used by the 'info variables'
5061 and 'info functions' commands. These correspond to the -q, -t, and -n
5062 options. */
5063
5064 struct info_vars_funcs_options
5065 {
5066 bool quiet = false;
5067 bool exclude_minsyms = false;
5068 char *type_regexp = nullptr;
5069
5070 ~info_vars_funcs_options ()
5071 {
5072 xfree (type_regexp);
5073 }
5074 };
5075
5076 /* The options used by the 'info variables' and 'info functions'
5077 commands. */
5078
5079 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5080 gdb::option::boolean_option_def<info_vars_funcs_options> {
5081 "q",
5082 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5083 nullptr, /* show_cmd_cb */
5084 nullptr /* set_doc */
5085 },
5086
5087 gdb::option::boolean_option_def<info_vars_funcs_options> {
5088 "n",
5089 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5090 nullptr, /* show_cmd_cb */
5091 nullptr /* set_doc */
5092 },
5093
5094 gdb::option::string_option_def<info_vars_funcs_options> {
5095 "t",
5096 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5097 },
5098 nullptr, /* show_cmd_cb */
5099 nullptr /* set_doc */
5100 }
5101 };
5102
5103 /* Returns the option group used by 'info variables' and 'info
5104 functions'. */
5105
5106 static gdb::option::option_def_group
5107 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5108 {
5109 return {{info_vars_funcs_options_defs}, opts};
5110 }
5111
5112 /* Command completer for 'info variables' and 'info functions'. */
5113
5114 static void
5115 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5116 completion_tracker &tracker,
5117 const char *text, const char * /* word */)
5118 {
5119 const auto group
5120 = make_info_vars_funcs_options_def_group (nullptr);
5121 if (gdb::option::complete_options
5122 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5123 return;
5124
5125 const char *word = advance_to_expression_complete_word_point (tracker, text);
5126 symbol_completer (ignore, tracker, text, word);
5127 }
5128
5129 /* Implement the 'info variables' command. */
5130
5131 static void
5132 info_variables_command (const char *args, int from_tty)
5133 {
5134 info_vars_funcs_options opts;
5135 auto grp = make_info_vars_funcs_options_def_group (&opts);
5136 gdb::option::process_options
5137 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5138 if (args != nullptr && *args == '\0')
5139 args = nullptr;
5140
5141 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5142 opts.type_regexp, from_tty);
5143 }
5144
5145 /* Implement the 'info functions' command. */
5146
5147 static void
5148 info_functions_command (const char *args, int from_tty)
5149 {
5150 info_vars_funcs_options opts;
5151
5152 auto grp = make_info_vars_funcs_options_def_group (&opts);
5153 gdb::option::process_options
5154 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5155 if (args != nullptr && *args == '\0')
5156 args = nullptr;
5157
5158 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5159 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5160 }
5161
5162 /* Holds the -q option for the 'info types' command. */
5163
5164 struct info_types_options
5165 {
5166 bool quiet = false;
5167 };
5168
5169 /* The options used by the 'info types' command. */
5170
5171 static const gdb::option::option_def info_types_options_defs[] = {
5172 gdb::option::boolean_option_def<info_types_options> {
5173 "q",
5174 [] (info_types_options *opt) { return &opt->quiet; },
5175 nullptr, /* show_cmd_cb */
5176 nullptr /* set_doc */
5177 }
5178 };
5179
5180 /* Returns the option group used by 'info types'. */
5181
5182 static gdb::option::option_def_group
5183 make_info_types_options_def_group (info_types_options *opts)
5184 {
5185 return {{info_types_options_defs}, opts};
5186 }
5187
5188 /* Implement the 'info types' command. */
5189
5190 static void
5191 info_types_command (const char *args, int from_tty)
5192 {
5193 info_types_options opts;
5194
5195 auto grp = make_info_types_options_def_group (&opts);
5196 gdb::option::process_options
5197 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5198 if (args != nullptr && *args == '\0')
5199 args = nullptr;
5200 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5201 }
5202
5203 /* Command completer for 'info types' command. */
5204
5205 static void
5206 info_types_command_completer (struct cmd_list_element *ignore,
5207 completion_tracker &tracker,
5208 const char *text, const char * /* word */)
5209 {
5210 const auto group
5211 = make_info_types_options_def_group (nullptr);
5212 if (gdb::option::complete_options
5213 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5214 return;
5215
5216 const char *word = advance_to_expression_complete_word_point (tracker, text);
5217 symbol_completer (ignore, tracker, text, word);
5218 }
5219
5220 /* Implement the 'info modules' command. */
5221
5222 static void
5223 info_modules_command (const char *args, int from_tty)
5224 {
5225 info_types_options opts;
5226
5227 auto grp = make_info_types_options_def_group (&opts);
5228 gdb::option::process_options
5229 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5230 if (args != nullptr && *args == '\0')
5231 args = nullptr;
5232 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5233 from_tty);
5234 }
5235
5236 static void
5237 rbreak_command (const char *regexp, int from_tty)
5238 {
5239 std::string string;
5240 const char *file_name = nullptr;
5241
5242 if (regexp != nullptr)
5243 {
5244 const char *colon = strchr (regexp, ':');
5245
5246 /* Ignore the colon if it is part of a Windows drive. */
5247 if (HAS_DRIVE_SPEC (regexp)
5248 && (regexp[2] == '/' || regexp[2] == '\\'))
5249 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5250
5251 if (colon && *(colon + 1) != ':')
5252 {
5253 int colon_index;
5254 char *local_name;
5255
5256 colon_index = colon - regexp;
5257 local_name = (char *) alloca (colon_index + 1);
5258 memcpy (local_name, regexp, colon_index);
5259 local_name[colon_index--] = 0;
5260 while (isspace (local_name[colon_index]))
5261 local_name[colon_index--] = 0;
5262 file_name = local_name;
5263 regexp = skip_spaces (colon + 1);
5264 }
5265 }
5266
5267 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5268 if (file_name != nullptr)
5269 spec.filenames.push_back (file_name);
5270 std::vector<symbol_search> symbols = spec.search ();
5271
5272 scoped_rbreak_breakpoints finalize;
5273 for (const symbol_search &p : symbols)
5274 {
5275 if (p.msymbol.minsym == NULL)
5276 {
5277 struct symtab *symtab = symbol_symtab (p.symbol);
5278 const char *fullname = symtab_to_fullname (symtab);
5279
5280 string = string_printf ("%s:'%s'", fullname,
5281 p.symbol->linkage_name ());
5282 break_command (&string[0], from_tty);
5283 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5284 }
5285 else
5286 {
5287 string = string_printf ("'%s'",
5288 p.msymbol.minsym->linkage_name ());
5289
5290 break_command (&string[0], from_tty);
5291 printf_filtered ("<function, no debug info> %s;\n",
5292 p.msymbol.minsym->print_name ());
5293 }
5294 }
5295 }
5296 \f
5297
5298 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5299
5300 static int
5301 compare_symbol_name (const char *symbol_name, language symbol_language,
5302 const lookup_name_info &lookup_name,
5303 completion_match_result &match_res)
5304 {
5305 const language_defn *lang = language_def (symbol_language);
5306
5307 symbol_name_matcher_ftype *name_match
5308 = lang->get_symbol_name_matcher (lookup_name);
5309
5310 return name_match (symbol_name, lookup_name, &match_res);
5311 }
5312
5313 /* See symtab.h. */
5314
5315 bool
5316 completion_list_add_name (completion_tracker &tracker,
5317 language symbol_language,
5318 const char *symname,
5319 const lookup_name_info &lookup_name,
5320 const char *text, const char *word)
5321 {
5322 completion_match_result &match_res
5323 = tracker.reset_completion_match_result ();
5324
5325 /* Clip symbols that cannot match. */
5326 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5327 return false;
5328
5329 /* Refresh SYMNAME from the match string. It's potentially
5330 different depending on language. (E.g., on Ada, the match may be
5331 the encoded symbol name wrapped in "<>"). */
5332 symname = match_res.match.match ();
5333 gdb_assert (symname != NULL);
5334
5335 /* We have a match for a completion, so add SYMNAME to the current list
5336 of matches. Note that the name is moved to freshly malloc'd space. */
5337
5338 {
5339 gdb::unique_xmalloc_ptr<char> completion
5340 = make_completion_match_str (symname, text, word);
5341
5342 /* Here we pass the match-for-lcd object to add_completion. Some
5343 languages match the user text against substrings of symbol
5344 names in some cases. E.g., in C++, "b push_ba" completes to
5345 "std::vector::push_back", "std::string::push_back", etc., and
5346 in this case we want the completion lowest common denominator
5347 to be "push_back" instead of "std::". */
5348 tracker.add_completion (std::move (completion),
5349 &match_res.match_for_lcd, text, word);
5350 }
5351
5352 return true;
5353 }
5354
5355 /* completion_list_add_name wrapper for struct symbol. */
5356
5357 static void
5358 completion_list_add_symbol (completion_tracker &tracker,
5359 symbol *sym,
5360 const lookup_name_info &lookup_name,
5361 const char *text, const char *word)
5362 {
5363 if (!completion_list_add_name (tracker, sym->language (),
5364 sym->natural_name (),
5365 lookup_name, text, word))
5366 return;
5367
5368 /* C++ function symbols include the parameters within both the msymbol
5369 name and the symbol name. The problem is that the msymbol name will
5370 describe the parameters in the most basic way, with typedefs stripped
5371 out, while the symbol name will represent the types as they appear in
5372 the program. This means we will see duplicate entries in the
5373 completion tracker. The following converts the symbol name back to
5374 the msymbol name and removes the msymbol name from the completion
5375 tracker. */
5376 if (sym->language () == language_cplus
5377 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5378 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5379 {
5380 /* The call to canonicalize returns the empty string if the input
5381 string is already in canonical form, thanks to this we don't
5382 remove the symbol we just added above. */
5383 gdb::unique_xmalloc_ptr<char> str
5384 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5385 if (str != nullptr)
5386 tracker.remove_completion (str.get ());
5387 }
5388 }
5389
5390 /* completion_list_add_name wrapper for struct minimal_symbol. */
5391
5392 static void
5393 completion_list_add_msymbol (completion_tracker &tracker,
5394 minimal_symbol *sym,
5395 const lookup_name_info &lookup_name,
5396 const char *text, const char *word)
5397 {
5398 completion_list_add_name (tracker, sym->language (),
5399 sym->natural_name (),
5400 lookup_name, text, word);
5401 }
5402
5403
5404 /* ObjC: In case we are completing on a selector, look as the msymbol
5405 again and feed all the selectors into the mill. */
5406
5407 static void
5408 completion_list_objc_symbol (completion_tracker &tracker,
5409 struct minimal_symbol *msymbol,
5410 const lookup_name_info &lookup_name,
5411 const char *text, const char *word)
5412 {
5413 static char *tmp = NULL;
5414 static unsigned int tmplen = 0;
5415
5416 const char *method, *category, *selector;
5417 char *tmp2 = NULL;
5418
5419 method = msymbol->natural_name ();
5420
5421 /* Is it a method? */
5422 if ((method[0] != '-') && (method[0] != '+'))
5423 return;
5424
5425 if (text[0] == '[')
5426 /* Complete on shortened method method. */
5427 completion_list_add_name (tracker, language_objc,
5428 method + 1,
5429 lookup_name,
5430 text, word);
5431
5432 while ((strlen (method) + 1) >= tmplen)
5433 {
5434 if (tmplen == 0)
5435 tmplen = 1024;
5436 else
5437 tmplen *= 2;
5438 tmp = (char *) xrealloc (tmp, tmplen);
5439 }
5440 selector = strchr (method, ' ');
5441 if (selector != NULL)
5442 selector++;
5443
5444 category = strchr (method, '(');
5445
5446 if ((category != NULL) && (selector != NULL))
5447 {
5448 memcpy (tmp, method, (category - method));
5449 tmp[category - method] = ' ';
5450 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5451 completion_list_add_name (tracker, language_objc, tmp,
5452 lookup_name, text, word);
5453 if (text[0] == '[')
5454 completion_list_add_name (tracker, language_objc, tmp + 1,
5455 lookup_name, text, word);
5456 }
5457
5458 if (selector != NULL)
5459 {
5460 /* Complete on selector only. */
5461 strcpy (tmp, selector);
5462 tmp2 = strchr (tmp, ']');
5463 if (tmp2 != NULL)
5464 *tmp2 = '\0';
5465
5466 completion_list_add_name (tracker, language_objc, tmp,
5467 lookup_name, text, word);
5468 }
5469 }
5470
5471 /* Break the non-quoted text based on the characters which are in
5472 symbols. FIXME: This should probably be language-specific. */
5473
5474 static const char *
5475 language_search_unquoted_string (const char *text, const char *p)
5476 {
5477 for (; p > text; --p)
5478 {
5479 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5480 continue;
5481 else
5482 {
5483 if ((current_language->la_language == language_objc))
5484 {
5485 if (p[-1] == ':') /* Might be part of a method name. */
5486 continue;
5487 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5488 p -= 2; /* Beginning of a method name. */
5489 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5490 { /* Might be part of a method name. */
5491 const char *t = p;
5492
5493 /* Seeing a ' ' or a '(' is not conclusive evidence
5494 that we are in the middle of a method name. However,
5495 finding "-[" or "+[" should be pretty un-ambiguous.
5496 Unfortunately we have to find it now to decide. */
5497
5498 while (t > text)
5499 if (isalnum (t[-1]) || t[-1] == '_' ||
5500 t[-1] == ' ' || t[-1] == ':' ||
5501 t[-1] == '(' || t[-1] == ')')
5502 --t;
5503 else
5504 break;
5505
5506 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5507 p = t - 2; /* Method name detected. */
5508 /* Else we leave with p unchanged. */
5509 }
5510 }
5511 break;
5512 }
5513 }
5514 return p;
5515 }
5516
5517 static void
5518 completion_list_add_fields (completion_tracker &tracker,
5519 struct symbol *sym,
5520 const lookup_name_info &lookup_name,
5521 const char *text, const char *word)
5522 {
5523 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5524 {
5525 struct type *t = SYMBOL_TYPE (sym);
5526 enum type_code c = t->code ();
5527 int j;
5528
5529 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5530 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5531 if (TYPE_FIELD_NAME (t, j))
5532 completion_list_add_name (tracker, sym->language (),
5533 TYPE_FIELD_NAME (t, j),
5534 lookup_name, text, word);
5535 }
5536 }
5537
5538 /* See symtab.h. */
5539
5540 bool
5541 symbol_is_function_or_method (symbol *sym)
5542 {
5543 switch (SYMBOL_TYPE (sym)->code ())
5544 {
5545 case TYPE_CODE_FUNC:
5546 case TYPE_CODE_METHOD:
5547 return true;
5548 default:
5549 return false;
5550 }
5551 }
5552
5553 /* See symtab.h. */
5554
5555 bool
5556 symbol_is_function_or_method (minimal_symbol *msymbol)
5557 {
5558 switch (MSYMBOL_TYPE (msymbol))
5559 {
5560 case mst_text:
5561 case mst_text_gnu_ifunc:
5562 case mst_solib_trampoline:
5563 case mst_file_text:
5564 return true;
5565 default:
5566 return false;
5567 }
5568 }
5569
5570 /* See symtab.h. */
5571
5572 bound_minimal_symbol
5573 find_gnu_ifunc (const symbol *sym)
5574 {
5575 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5576 return {};
5577
5578 lookup_name_info lookup_name (sym->search_name (),
5579 symbol_name_match_type::SEARCH_NAME);
5580 struct objfile *objfile = symbol_objfile (sym);
5581
5582 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5583 minimal_symbol *ifunc = NULL;
5584
5585 iterate_over_minimal_symbols (objfile, lookup_name,
5586 [&] (minimal_symbol *minsym)
5587 {
5588 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5589 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5590 {
5591 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5592 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5593 {
5594 struct gdbarch *gdbarch = objfile->arch ();
5595 msym_addr
5596 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5597 msym_addr,
5598 current_top_target ());
5599 }
5600 if (msym_addr == address)
5601 {
5602 ifunc = minsym;
5603 return true;
5604 }
5605 }
5606 return false;
5607 });
5608
5609 if (ifunc != NULL)
5610 return {ifunc, objfile};
5611 return {};
5612 }
5613
5614 /* Add matching symbols from SYMTAB to the current completion list. */
5615
5616 static void
5617 add_symtab_completions (struct compunit_symtab *cust,
5618 completion_tracker &tracker,
5619 complete_symbol_mode mode,
5620 const lookup_name_info &lookup_name,
5621 const char *text, const char *word,
5622 enum type_code code)
5623 {
5624 struct symbol *sym;
5625 const struct block *b;
5626 struct block_iterator iter;
5627 int i;
5628
5629 if (cust == NULL)
5630 return;
5631
5632 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5633 {
5634 QUIT;
5635 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5636 ALL_BLOCK_SYMBOLS (b, iter, sym)
5637 {
5638 if (completion_skip_symbol (mode, sym))
5639 continue;
5640
5641 if (code == TYPE_CODE_UNDEF
5642 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5643 && SYMBOL_TYPE (sym)->code () == code))
5644 completion_list_add_symbol (tracker, sym,
5645 lookup_name,
5646 text, word);
5647 }
5648 }
5649 }
5650
5651 void
5652 default_collect_symbol_completion_matches_break_on
5653 (completion_tracker &tracker, complete_symbol_mode mode,
5654 symbol_name_match_type name_match_type,
5655 const char *text, const char *word,
5656 const char *break_on, enum type_code code)
5657 {
5658 /* Problem: All of the symbols have to be copied because readline
5659 frees them. I'm not going to worry about this; hopefully there
5660 won't be that many. */
5661
5662 struct symbol *sym;
5663 const struct block *b;
5664 const struct block *surrounding_static_block, *surrounding_global_block;
5665 struct block_iterator iter;
5666 /* The symbol we are completing on. Points in same buffer as text. */
5667 const char *sym_text;
5668
5669 /* Now look for the symbol we are supposed to complete on. */
5670 if (mode == complete_symbol_mode::LINESPEC)
5671 sym_text = text;
5672 else
5673 {
5674 const char *p;
5675 char quote_found;
5676 const char *quote_pos = NULL;
5677
5678 /* First see if this is a quoted string. */
5679 quote_found = '\0';
5680 for (p = text; *p != '\0'; ++p)
5681 {
5682 if (quote_found != '\0')
5683 {
5684 if (*p == quote_found)
5685 /* Found close quote. */
5686 quote_found = '\0';
5687 else if (*p == '\\' && p[1] == quote_found)
5688 /* A backslash followed by the quote character
5689 doesn't end the string. */
5690 ++p;
5691 }
5692 else if (*p == '\'' || *p == '"')
5693 {
5694 quote_found = *p;
5695 quote_pos = p;
5696 }
5697 }
5698 if (quote_found == '\'')
5699 /* A string within single quotes can be a symbol, so complete on it. */
5700 sym_text = quote_pos + 1;
5701 else if (quote_found == '"')
5702 /* A double-quoted string is never a symbol, nor does it make sense
5703 to complete it any other way. */
5704 {
5705 return;
5706 }
5707 else
5708 {
5709 /* It is not a quoted string. Break it based on the characters
5710 which are in symbols. */
5711 while (p > text)
5712 {
5713 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5714 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5715 --p;
5716 else
5717 break;
5718 }
5719 sym_text = p;
5720 }
5721 }
5722
5723 lookup_name_info lookup_name (sym_text, name_match_type, true);
5724
5725 /* At this point scan through the misc symbol vectors and add each
5726 symbol you find to the list. Eventually we want to ignore
5727 anything that isn't a text symbol (everything else will be
5728 handled by the psymtab code below). */
5729
5730 if (code == TYPE_CODE_UNDEF)
5731 {
5732 for (objfile *objfile : current_program_space->objfiles ())
5733 {
5734 for (minimal_symbol *msymbol : objfile->msymbols ())
5735 {
5736 QUIT;
5737
5738 if (completion_skip_symbol (mode, msymbol))
5739 continue;
5740
5741 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5742 sym_text, word);
5743
5744 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5745 sym_text, word);
5746 }
5747 }
5748 }
5749
5750 /* Add completions for all currently loaded symbol tables. */
5751 for (objfile *objfile : current_program_space->objfiles ())
5752 {
5753 for (compunit_symtab *cust : objfile->compunits ())
5754 add_symtab_completions (cust, tracker, mode, lookup_name,
5755 sym_text, word, code);
5756 }
5757
5758 /* Look through the partial symtabs for all symbols which begin by
5759 matching SYM_TEXT. Expand all CUs that you find to the list. */
5760 expand_symtabs_matching (NULL,
5761 lookup_name,
5762 NULL,
5763 [&] (compunit_symtab *symtab) /* expansion notify */
5764 {
5765 add_symtab_completions (symtab,
5766 tracker, mode, lookup_name,
5767 sym_text, word, code);
5768 },
5769 ALL_DOMAIN);
5770
5771 /* Search upwards from currently selected frame (so that we can
5772 complete on local vars). Also catch fields of types defined in
5773 this places which match our text string. Only complete on types
5774 visible from current context. */
5775
5776 b = get_selected_block (0);
5777 surrounding_static_block = block_static_block (b);
5778 surrounding_global_block = block_global_block (b);
5779 if (surrounding_static_block != NULL)
5780 while (b != surrounding_static_block)
5781 {
5782 QUIT;
5783
5784 ALL_BLOCK_SYMBOLS (b, iter, sym)
5785 {
5786 if (code == TYPE_CODE_UNDEF)
5787 {
5788 completion_list_add_symbol (tracker, sym, lookup_name,
5789 sym_text, word);
5790 completion_list_add_fields (tracker, sym, lookup_name,
5791 sym_text, word);
5792 }
5793 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5794 && SYMBOL_TYPE (sym)->code () == code)
5795 completion_list_add_symbol (tracker, sym, lookup_name,
5796 sym_text, word);
5797 }
5798
5799 /* Stop when we encounter an enclosing function. Do not stop for
5800 non-inlined functions - the locals of the enclosing function
5801 are in scope for a nested function. */
5802 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5803 break;
5804 b = BLOCK_SUPERBLOCK (b);
5805 }
5806
5807 /* Add fields from the file's types; symbols will be added below. */
5808
5809 if (code == TYPE_CODE_UNDEF)
5810 {
5811 if (surrounding_static_block != NULL)
5812 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5813 completion_list_add_fields (tracker, sym, lookup_name,
5814 sym_text, word);
5815
5816 if (surrounding_global_block != NULL)
5817 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5818 completion_list_add_fields (tracker, sym, lookup_name,
5819 sym_text, word);
5820 }
5821
5822 /* Skip macros if we are completing a struct tag -- arguable but
5823 usually what is expected. */
5824 if (current_language->macro_expansion () == macro_expansion_c
5825 && code == TYPE_CODE_UNDEF)
5826 {
5827 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5828
5829 /* This adds a macro's name to the current completion list. */
5830 auto add_macro_name = [&] (const char *macro_name,
5831 const macro_definition *,
5832 macro_source_file *,
5833 int)
5834 {
5835 completion_list_add_name (tracker, language_c, macro_name,
5836 lookup_name, sym_text, word);
5837 };
5838
5839 /* Add any macros visible in the default scope. Note that this
5840 may yield the occasional wrong result, because an expression
5841 might be evaluated in a scope other than the default. For
5842 example, if the user types "break file:line if <TAB>", the
5843 resulting expression will be evaluated at "file:line" -- but
5844 at there does not seem to be a way to detect this at
5845 completion time. */
5846 scope = default_macro_scope ();
5847 if (scope)
5848 macro_for_each_in_scope (scope->file, scope->line,
5849 add_macro_name);
5850
5851 /* User-defined macros are always visible. */
5852 macro_for_each (macro_user_macros, add_macro_name);
5853 }
5854 }
5855
5856 /* Collect all symbols (regardless of class) which begin by matching
5857 TEXT. */
5858
5859 void
5860 collect_symbol_completion_matches (completion_tracker &tracker,
5861 complete_symbol_mode mode,
5862 symbol_name_match_type name_match_type,
5863 const char *text, const char *word)
5864 {
5865 current_language->collect_symbol_completion_matches (tracker, mode,
5866 name_match_type,
5867 text, word,
5868 TYPE_CODE_UNDEF);
5869 }
5870
5871 /* Like collect_symbol_completion_matches, but only collect
5872 STRUCT_DOMAIN symbols whose type code is CODE. */
5873
5874 void
5875 collect_symbol_completion_matches_type (completion_tracker &tracker,
5876 const char *text, const char *word,
5877 enum type_code code)
5878 {
5879 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5880 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5881
5882 gdb_assert (code == TYPE_CODE_UNION
5883 || code == TYPE_CODE_STRUCT
5884 || code == TYPE_CODE_ENUM);
5885 current_language->collect_symbol_completion_matches (tracker, mode,
5886 name_match_type,
5887 text, word, code);
5888 }
5889
5890 /* Like collect_symbol_completion_matches, but collects a list of
5891 symbols defined in all source files named SRCFILE. */
5892
5893 void
5894 collect_file_symbol_completion_matches (completion_tracker &tracker,
5895 complete_symbol_mode mode,
5896 symbol_name_match_type name_match_type,
5897 const char *text, const char *word,
5898 const char *srcfile)
5899 {
5900 /* The symbol we are completing on. Points in same buffer as text. */
5901 const char *sym_text;
5902
5903 /* Now look for the symbol we are supposed to complete on.
5904 FIXME: This should be language-specific. */
5905 if (mode == complete_symbol_mode::LINESPEC)
5906 sym_text = text;
5907 else
5908 {
5909 const char *p;
5910 char quote_found;
5911 const char *quote_pos = NULL;
5912
5913 /* First see if this is a quoted string. */
5914 quote_found = '\0';
5915 for (p = text; *p != '\0'; ++p)
5916 {
5917 if (quote_found != '\0')
5918 {
5919 if (*p == quote_found)
5920 /* Found close quote. */
5921 quote_found = '\0';
5922 else if (*p == '\\' && p[1] == quote_found)
5923 /* A backslash followed by the quote character
5924 doesn't end the string. */
5925 ++p;
5926 }
5927 else if (*p == '\'' || *p == '"')
5928 {
5929 quote_found = *p;
5930 quote_pos = p;
5931 }
5932 }
5933 if (quote_found == '\'')
5934 /* A string within single quotes can be a symbol, so complete on it. */
5935 sym_text = quote_pos + 1;
5936 else if (quote_found == '"')
5937 /* A double-quoted string is never a symbol, nor does it make sense
5938 to complete it any other way. */
5939 {
5940 return;
5941 }
5942 else
5943 {
5944 /* Not a quoted string. */
5945 sym_text = language_search_unquoted_string (text, p);
5946 }
5947 }
5948
5949 lookup_name_info lookup_name (sym_text, name_match_type, true);
5950
5951 /* Go through symtabs for SRCFILE and check the externs and statics
5952 for symbols which match. */
5953 iterate_over_symtabs (srcfile, [&] (symtab *s)
5954 {
5955 add_symtab_completions (SYMTAB_COMPUNIT (s),
5956 tracker, mode, lookup_name,
5957 sym_text, word, TYPE_CODE_UNDEF);
5958 return false;
5959 });
5960 }
5961
5962 /* A helper function for make_source_files_completion_list. It adds
5963 another file name to a list of possible completions, growing the
5964 list as necessary. */
5965
5966 static void
5967 add_filename_to_list (const char *fname, const char *text, const char *word,
5968 completion_list *list)
5969 {
5970 list->emplace_back (make_completion_match_str (fname, text, word));
5971 }
5972
5973 static int
5974 not_interesting_fname (const char *fname)
5975 {
5976 static const char *illegal_aliens[] = {
5977 "_globals_", /* inserted by coff_symtab_read */
5978 NULL
5979 };
5980 int i;
5981
5982 for (i = 0; illegal_aliens[i]; i++)
5983 {
5984 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5985 return 1;
5986 }
5987 return 0;
5988 }
5989
5990 /* An object of this type is passed as the user_data argument to
5991 map_partial_symbol_filenames. */
5992 struct add_partial_filename_data
5993 {
5994 struct filename_seen_cache *filename_seen_cache;
5995 const char *text;
5996 const char *word;
5997 int text_len;
5998 completion_list *list;
5999 };
6000
6001 /* A callback for map_partial_symbol_filenames. */
6002
6003 static void
6004 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6005 void *user_data)
6006 {
6007 struct add_partial_filename_data *data
6008 = (struct add_partial_filename_data *) user_data;
6009
6010 if (not_interesting_fname (filename))
6011 return;
6012 if (!data->filename_seen_cache->seen (filename)
6013 && filename_ncmp (filename, data->text, data->text_len) == 0)
6014 {
6015 /* This file matches for a completion; add it to the
6016 current list of matches. */
6017 add_filename_to_list (filename, data->text, data->word, data->list);
6018 }
6019 else
6020 {
6021 const char *base_name = lbasename (filename);
6022
6023 if (base_name != filename
6024 && !data->filename_seen_cache->seen (base_name)
6025 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6026 add_filename_to_list (base_name, data->text, data->word, data->list);
6027 }
6028 }
6029
6030 /* Return a list of all source files whose names begin with matching
6031 TEXT. The file names are looked up in the symbol tables of this
6032 program. */
6033
6034 completion_list
6035 make_source_files_completion_list (const char *text, const char *word)
6036 {
6037 size_t text_len = strlen (text);
6038 completion_list list;
6039 const char *base_name;
6040 struct add_partial_filename_data datum;
6041
6042 if (!have_full_symbols () && !have_partial_symbols ())
6043 return list;
6044
6045 filename_seen_cache filenames_seen;
6046
6047 for (objfile *objfile : current_program_space->objfiles ())
6048 {
6049 for (compunit_symtab *cu : objfile->compunits ())
6050 {
6051 for (symtab *s : compunit_filetabs (cu))
6052 {
6053 if (not_interesting_fname (s->filename))
6054 continue;
6055 if (!filenames_seen.seen (s->filename)
6056 && filename_ncmp (s->filename, text, text_len) == 0)
6057 {
6058 /* This file matches for a completion; add it to the current
6059 list of matches. */
6060 add_filename_to_list (s->filename, text, word, &list);
6061 }
6062 else
6063 {
6064 /* NOTE: We allow the user to type a base name when the
6065 debug info records leading directories, but not the other
6066 way around. This is what subroutines of breakpoint
6067 command do when they parse file names. */
6068 base_name = lbasename (s->filename);
6069 if (base_name != s->filename
6070 && !filenames_seen.seen (base_name)
6071 && filename_ncmp (base_name, text, text_len) == 0)
6072 add_filename_to_list (base_name, text, word, &list);
6073 }
6074 }
6075 }
6076 }
6077
6078 datum.filename_seen_cache = &filenames_seen;
6079 datum.text = text;
6080 datum.word = word;
6081 datum.text_len = text_len;
6082 datum.list = &list;
6083 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6084 0 /*need_fullname*/);
6085
6086 return list;
6087 }
6088 \f
6089 /* Track MAIN */
6090
6091 /* Return the "main_info" object for the current program space. If
6092 the object has not yet been created, create it and fill in some
6093 default values. */
6094
6095 static struct main_info *
6096 get_main_info (void)
6097 {
6098 struct main_info *info = main_progspace_key.get (current_program_space);
6099
6100 if (info == NULL)
6101 {
6102 /* It may seem strange to store the main name in the progspace
6103 and also in whatever objfile happens to see a main name in
6104 its debug info. The reason for this is mainly historical:
6105 gdb returned "main" as the name even if no function named
6106 "main" was defined the program; and this approach lets us
6107 keep compatibility. */
6108 info = main_progspace_key.emplace (current_program_space);
6109 }
6110
6111 return info;
6112 }
6113
6114 static void
6115 set_main_name (const char *name, enum language lang)
6116 {
6117 struct main_info *info = get_main_info ();
6118
6119 if (info->name_of_main != NULL)
6120 {
6121 xfree (info->name_of_main);
6122 info->name_of_main = NULL;
6123 info->language_of_main = language_unknown;
6124 }
6125 if (name != NULL)
6126 {
6127 info->name_of_main = xstrdup (name);
6128 info->language_of_main = lang;
6129 }
6130 }
6131
6132 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6133 accordingly. */
6134
6135 static void
6136 find_main_name (void)
6137 {
6138 const char *new_main_name;
6139
6140 /* First check the objfiles to see whether a debuginfo reader has
6141 picked up the appropriate main name. Historically the main name
6142 was found in a more or less random way; this approach instead
6143 relies on the order of objfile creation -- which still isn't
6144 guaranteed to get the correct answer, but is just probably more
6145 accurate. */
6146 for (objfile *objfile : current_program_space->objfiles ())
6147 {
6148 if (objfile->per_bfd->name_of_main != NULL)
6149 {
6150 set_main_name (objfile->per_bfd->name_of_main,
6151 objfile->per_bfd->language_of_main);
6152 return;
6153 }
6154 }
6155
6156 /* Try to see if the main procedure is in Ada. */
6157 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6158 be to add a new method in the language vector, and call this
6159 method for each language until one of them returns a non-empty
6160 name. This would allow us to remove this hard-coded call to
6161 an Ada function. It is not clear that this is a better approach
6162 at this point, because all methods need to be written in a way
6163 such that false positives never be returned. For instance, it is
6164 important that a method does not return a wrong name for the main
6165 procedure if the main procedure is actually written in a different
6166 language. It is easy to guaranty this with Ada, since we use a
6167 special symbol generated only when the main in Ada to find the name
6168 of the main procedure. It is difficult however to see how this can
6169 be guarantied for languages such as C, for instance. This suggests
6170 that order of call for these methods becomes important, which means
6171 a more complicated approach. */
6172 new_main_name = ada_main_name ();
6173 if (new_main_name != NULL)
6174 {
6175 set_main_name (new_main_name, language_ada);
6176 return;
6177 }
6178
6179 new_main_name = d_main_name ();
6180 if (new_main_name != NULL)
6181 {
6182 set_main_name (new_main_name, language_d);
6183 return;
6184 }
6185
6186 new_main_name = go_main_name ();
6187 if (new_main_name != NULL)
6188 {
6189 set_main_name (new_main_name, language_go);
6190 return;
6191 }
6192
6193 new_main_name = pascal_main_name ();
6194 if (new_main_name != NULL)
6195 {
6196 set_main_name (new_main_name, language_pascal);
6197 return;
6198 }
6199
6200 /* The languages above didn't identify the name of the main procedure.
6201 Fallback to "main". */
6202
6203 /* Try to find language for main in psymtabs. */
6204 enum language lang
6205 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6206 if (lang != language_unknown)
6207 {
6208 set_main_name ("main", lang);
6209 return;
6210 }
6211
6212 set_main_name ("main", language_unknown);
6213 }
6214
6215 /* See symtab.h. */
6216
6217 const char *
6218 main_name ()
6219 {
6220 struct main_info *info = get_main_info ();
6221
6222 if (info->name_of_main == NULL)
6223 find_main_name ();
6224
6225 return info->name_of_main;
6226 }
6227
6228 /* Return the language of the main function. If it is not known,
6229 return language_unknown. */
6230
6231 enum language
6232 main_language (void)
6233 {
6234 struct main_info *info = get_main_info ();
6235
6236 if (info->name_of_main == NULL)
6237 find_main_name ();
6238
6239 return info->language_of_main;
6240 }
6241
6242 /* Handle ``executable_changed'' events for the symtab module. */
6243
6244 static void
6245 symtab_observer_executable_changed (void)
6246 {
6247 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6248 set_main_name (NULL, language_unknown);
6249 }
6250
6251 /* Return 1 if the supplied producer string matches the ARM RealView
6252 compiler (armcc). */
6253
6254 bool
6255 producer_is_realview (const char *producer)
6256 {
6257 static const char *const arm_idents[] = {
6258 "ARM C Compiler, ADS",
6259 "Thumb C Compiler, ADS",
6260 "ARM C++ Compiler, ADS",
6261 "Thumb C++ Compiler, ADS",
6262 "ARM/Thumb C/C++ Compiler, RVCT",
6263 "ARM C/C++ Compiler, RVCT"
6264 };
6265 int i;
6266
6267 if (producer == NULL)
6268 return false;
6269
6270 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6271 if (startswith (producer, arm_idents[i]))
6272 return true;
6273
6274 return false;
6275 }
6276
6277 \f
6278
6279 /* The next index to hand out in response to a registration request. */
6280
6281 static int next_aclass_value = LOC_FINAL_VALUE;
6282
6283 /* The maximum number of "aclass" registrations we support. This is
6284 constant for convenience. */
6285 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6286
6287 /* The objects representing the various "aclass" values. The elements
6288 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6289 elements are those registered at gdb initialization time. */
6290
6291 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6292
6293 /* The globally visible pointer. This is separate from 'symbol_impl'
6294 so that it can be const. */
6295
6296 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6297
6298 /* Make sure we saved enough room in struct symbol. */
6299
6300 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6301
6302 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6303 is the ops vector associated with this index. This returns the new
6304 index, which should be used as the aclass_index field for symbols
6305 of this type. */
6306
6307 int
6308 register_symbol_computed_impl (enum address_class aclass,
6309 const struct symbol_computed_ops *ops)
6310 {
6311 int result = next_aclass_value++;
6312
6313 gdb_assert (aclass == LOC_COMPUTED);
6314 gdb_assert (result < MAX_SYMBOL_IMPLS);
6315 symbol_impl[result].aclass = aclass;
6316 symbol_impl[result].ops_computed = ops;
6317
6318 /* Sanity check OPS. */
6319 gdb_assert (ops != NULL);
6320 gdb_assert (ops->tracepoint_var_ref != NULL);
6321 gdb_assert (ops->describe_location != NULL);
6322 gdb_assert (ops->get_symbol_read_needs != NULL);
6323 gdb_assert (ops->read_variable != NULL);
6324
6325 return result;
6326 }
6327
6328 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6329 OPS is the ops vector associated with this index. This returns the
6330 new index, which should be used as the aclass_index field for symbols
6331 of this type. */
6332
6333 int
6334 register_symbol_block_impl (enum address_class aclass,
6335 const struct symbol_block_ops *ops)
6336 {
6337 int result = next_aclass_value++;
6338
6339 gdb_assert (aclass == LOC_BLOCK);
6340 gdb_assert (result < MAX_SYMBOL_IMPLS);
6341 symbol_impl[result].aclass = aclass;
6342 symbol_impl[result].ops_block = ops;
6343
6344 /* Sanity check OPS. */
6345 gdb_assert (ops != NULL);
6346 gdb_assert (ops->find_frame_base_location != NULL);
6347
6348 return result;
6349 }
6350
6351 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6352 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6353 this index. This returns the new index, which should be used as
6354 the aclass_index field for symbols of this type. */
6355
6356 int
6357 register_symbol_register_impl (enum address_class aclass,
6358 const struct symbol_register_ops *ops)
6359 {
6360 int result = next_aclass_value++;
6361
6362 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6363 gdb_assert (result < MAX_SYMBOL_IMPLS);
6364 symbol_impl[result].aclass = aclass;
6365 symbol_impl[result].ops_register = ops;
6366
6367 return result;
6368 }
6369
6370 /* Initialize elements of 'symbol_impl' for the constants in enum
6371 address_class. */
6372
6373 static void
6374 initialize_ordinary_address_classes (void)
6375 {
6376 int i;
6377
6378 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6379 symbol_impl[i].aclass = (enum address_class) i;
6380 }
6381
6382 \f
6383
6384 /* See symtab.h. */
6385
6386 struct objfile *
6387 symbol_objfile (const struct symbol *symbol)
6388 {
6389 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6390 return SYMTAB_OBJFILE (symbol->owner.symtab);
6391 }
6392
6393 /* See symtab.h. */
6394
6395 struct gdbarch *
6396 symbol_arch (const struct symbol *symbol)
6397 {
6398 if (!SYMBOL_OBJFILE_OWNED (symbol))
6399 return symbol->owner.arch;
6400 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6401 }
6402
6403 /* See symtab.h. */
6404
6405 struct symtab *
6406 symbol_symtab (const struct symbol *symbol)
6407 {
6408 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6409 return symbol->owner.symtab;
6410 }
6411
6412 /* See symtab.h. */
6413
6414 void
6415 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6416 {
6417 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6418 symbol->owner.symtab = symtab;
6419 }
6420
6421 /* See symtab.h. */
6422
6423 CORE_ADDR
6424 get_symbol_address (const struct symbol *sym)
6425 {
6426 gdb_assert (sym->maybe_copied);
6427 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6428
6429 const char *linkage_name = sym->linkage_name ();
6430
6431 for (objfile *objfile : current_program_space->objfiles ())
6432 {
6433 if (objfile->separate_debug_objfile_backlink != nullptr)
6434 continue;
6435
6436 bound_minimal_symbol minsym
6437 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6438 if (minsym.minsym != nullptr)
6439 return BMSYMBOL_VALUE_ADDRESS (minsym);
6440 }
6441 return sym->value.address;
6442 }
6443
6444 /* See symtab.h. */
6445
6446 CORE_ADDR
6447 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6448 {
6449 gdb_assert (minsym->maybe_copied);
6450 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6451
6452 const char *linkage_name = minsym->linkage_name ();
6453
6454 for (objfile *objfile : current_program_space->objfiles ())
6455 {
6456 if (objfile->separate_debug_objfile_backlink == nullptr
6457 && (objfile->flags & OBJF_MAINLINE) != 0)
6458 {
6459 bound_minimal_symbol found
6460 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6461 if (found.minsym != nullptr)
6462 return BMSYMBOL_VALUE_ADDRESS (found);
6463 }
6464 }
6465 return minsym->value.address + objf->section_offsets[minsym->section];
6466 }
6467
6468 \f
6469
6470 /* Hold the sub-commands of 'info module'. */
6471
6472 static struct cmd_list_element *info_module_cmdlist = NULL;
6473
6474 /* See symtab.h. */
6475
6476 std::vector<module_symbol_search>
6477 search_module_symbols (const char *module_regexp, const char *regexp,
6478 const char *type_regexp, search_domain kind)
6479 {
6480 std::vector<module_symbol_search> results;
6481
6482 /* Search for all modules matching MODULE_REGEXP. */
6483 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6484 spec1.set_exclude_minsyms (true);
6485 std::vector<symbol_search> modules = spec1.search ();
6486
6487 /* Now search for all symbols of the required KIND matching the required
6488 regular expressions. We figure out which ones are in which modules
6489 below. */
6490 global_symbol_searcher spec2 (kind, regexp);
6491 spec2.set_symbol_type_regexp (type_regexp);
6492 spec2.set_exclude_minsyms (true);
6493 std::vector<symbol_search> symbols = spec2.search ();
6494
6495 /* Now iterate over all MODULES, checking to see which items from
6496 SYMBOLS are in each module. */
6497 for (const symbol_search &p : modules)
6498 {
6499 QUIT;
6500
6501 /* This is a module. */
6502 gdb_assert (p.symbol != nullptr);
6503
6504 std::string prefix = p.symbol->print_name ();
6505 prefix += "::";
6506
6507 for (const symbol_search &q : symbols)
6508 {
6509 if (q.symbol == nullptr)
6510 continue;
6511
6512 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6513 prefix.size ()) != 0)
6514 continue;
6515
6516 results.push_back ({p, q});
6517 }
6518 }
6519
6520 return results;
6521 }
6522
6523 /* Implement the core of both 'info module functions' and 'info module
6524 variables'. */
6525
6526 static void
6527 info_module_subcommand (bool quiet, const char *module_regexp,
6528 const char *regexp, const char *type_regexp,
6529 search_domain kind)
6530 {
6531 /* Print a header line. Don't build the header line bit by bit as this
6532 prevents internationalisation. */
6533 if (!quiet)
6534 {
6535 if (module_regexp == nullptr)
6536 {
6537 if (type_regexp == nullptr)
6538 {
6539 if (regexp == nullptr)
6540 printf_filtered ((kind == VARIABLES_DOMAIN
6541 ? _("All variables in all modules:")
6542 : _("All functions in all modules:")));
6543 else
6544 printf_filtered
6545 ((kind == VARIABLES_DOMAIN
6546 ? _("All variables matching regular expression"
6547 " \"%s\" in all modules:")
6548 : _("All functions matching regular expression"
6549 " \"%s\" in all modules:")),
6550 regexp);
6551 }
6552 else
6553 {
6554 if (regexp == nullptr)
6555 printf_filtered
6556 ((kind == VARIABLES_DOMAIN
6557 ? _("All variables with type matching regular "
6558 "expression \"%s\" in all modules:")
6559 : _("All functions with type matching regular "
6560 "expression \"%s\" in all modules:")),
6561 type_regexp);
6562 else
6563 printf_filtered
6564 ((kind == VARIABLES_DOMAIN
6565 ? _("All variables matching regular expression "
6566 "\"%s\",\n\twith type matching regular "
6567 "expression \"%s\" in all modules:")
6568 : _("All functions matching regular expression "
6569 "\"%s\",\n\twith type matching regular "
6570 "expression \"%s\" in all modules:")),
6571 regexp, type_regexp);
6572 }
6573 }
6574 else
6575 {
6576 if (type_regexp == nullptr)
6577 {
6578 if (regexp == nullptr)
6579 printf_filtered
6580 ((kind == VARIABLES_DOMAIN
6581 ? _("All variables in all modules matching regular "
6582 "expression \"%s\":")
6583 : _("All functions in all modules matching regular "
6584 "expression \"%s\":")),
6585 module_regexp);
6586 else
6587 printf_filtered
6588 ((kind == VARIABLES_DOMAIN
6589 ? _("All variables matching regular expression "
6590 "\"%s\",\n\tin all modules matching regular "
6591 "expression \"%s\":")
6592 : _("All functions matching regular expression "
6593 "\"%s\",\n\tin all modules matching regular "
6594 "expression \"%s\":")),
6595 regexp, module_regexp);
6596 }
6597 else
6598 {
6599 if (regexp == nullptr)
6600 printf_filtered
6601 ((kind == VARIABLES_DOMAIN
6602 ? _("All variables with type matching regular "
6603 "expression \"%s\"\n\tin all modules matching "
6604 "regular expression \"%s\":")
6605 : _("All functions with type matching regular "
6606 "expression \"%s\"\n\tin all modules matching "
6607 "regular expression \"%s\":")),
6608 type_regexp, module_regexp);
6609 else
6610 printf_filtered
6611 ((kind == VARIABLES_DOMAIN
6612 ? _("All variables matching regular expression "
6613 "\"%s\",\n\twith type matching regular expression "
6614 "\"%s\",\n\tin all modules matching regular "
6615 "expression \"%s\":")
6616 : _("All functions matching regular expression "
6617 "\"%s\",\n\twith type matching regular expression "
6618 "\"%s\",\n\tin all modules matching regular "
6619 "expression \"%s\":")),
6620 regexp, type_regexp, module_regexp);
6621 }
6622 }
6623 printf_filtered ("\n");
6624 }
6625
6626 /* Find all symbols of type KIND matching the given regular expressions
6627 along with the symbols for the modules in which those symbols
6628 reside. */
6629 std::vector<module_symbol_search> module_symbols
6630 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6631
6632 std::sort (module_symbols.begin (), module_symbols.end (),
6633 [] (const module_symbol_search &a, const module_symbol_search &b)
6634 {
6635 if (a.first < b.first)
6636 return true;
6637 else if (a.first == b.first)
6638 return a.second < b.second;
6639 else
6640 return false;
6641 });
6642
6643 const char *last_filename = "";
6644 const symbol *last_module_symbol = nullptr;
6645 for (const module_symbol_search &ms : module_symbols)
6646 {
6647 const symbol_search &p = ms.first;
6648 const symbol_search &q = ms.second;
6649
6650 gdb_assert (q.symbol != nullptr);
6651
6652 if (last_module_symbol != p.symbol)
6653 {
6654 printf_filtered ("\n");
6655 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6656 last_module_symbol = p.symbol;
6657 last_filename = "";
6658 }
6659
6660 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6661 last_filename);
6662 last_filename
6663 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6664 }
6665 }
6666
6667 /* Hold the option values for the 'info module .....' sub-commands. */
6668
6669 struct info_modules_var_func_options
6670 {
6671 bool quiet = false;
6672 char *type_regexp = nullptr;
6673 char *module_regexp = nullptr;
6674
6675 ~info_modules_var_func_options ()
6676 {
6677 xfree (type_regexp);
6678 xfree (module_regexp);
6679 }
6680 };
6681
6682 /* The options used by 'info module variables' and 'info module functions'
6683 commands. */
6684
6685 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6686 gdb::option::boolean_option_def<info_modules_var_func_options> {
6687 "q",
6688 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6689 nullptr, /* show_cmd_cb */
6690 nullptr /* set_doc */
6691 },
6692
6693 gdb::option::string_option_def<info_modules_var_func_options> {
6694 "t",
6695 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6696 nullptr, /* show_cmd_cb */
6697 nullptr /* set_doc */
6698 },
6699
6700 gdb::option::string_option_def<info_modules_var_func_options> {
6701 "m",
6702 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6703 nullptr, /* show_cmd_cb */
6704 nullptr /* set_doc */
6705 }
6706 };
6707
6708 /* Return the option group used by the 'info module ...' sub-commands. */
6709
6710 static inline gdb::option::option_def_group
6711 make_info_modules_var_func_options_def_group
6712 (info_modules_var_func_options *opts)
6713 {
6714 return {{info_modules_var_func_options_defs}, opts};
6715 }
6716
6717 /* Implements the 'info module functions' command. */
6718
6719 static void
6720 info_module_functions_command (const char *args, int from_tty)
6721 {
6722 info_modules_var_func_options opts;
6723 auto grp = make_info_modules_var_func_options_def_group (&opts);
6724 gdb::option::process_options
6725 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6726 if (args != nullptr && *args == '\0')
6727 args = nullptr;
6728
6729 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6730 opts.type_regexp, FUNCTIONS_DOMAIN);
6731 }
6732
6733 /* Implements the 'info module variables' command. */
6734
6735 static void
6736 info_module_variables_command (const char *args, int from_tty)
6737 {
6738 info_modules_var_func_options opts;
6739 auto grp = make_info_modules_var_func_options_def_group (&opts);
6740 gdb::option::process_options
6741 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6742 if (args != nullptr && *args == '\0')
6743 args = nullptr;
6744
6745 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6746 opts.type_regexp, VARIABLES_DOMAIN);
6747 }
6748
6749 /* Command completer for 'info module ...' sub-commands. */
6750
6751 static void
6752 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6753 completion_tracker &tracker,
6754 const char *text,
6755 const char * /* word */)
6756 {
6757
6758 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6759 if (gdb::option::complete_options
6760 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6761 return;
6762
6763 const char *word = advance_to_expression_complete_word_point (tracker, text);
6764 symbol_completer (ignore, tracker, text, word);
6765 }
6766
6767 \f
6768
6769 void _initialize_symtab ();
6770 void
6771 _initialize_symtab ()
6772 {
6773 cmd_list_element *c;
6774
6775 initialize_ordinary_address_classes ();
6776
6777 c = add_info ("variables", info_variables_command,
6778 info_print_args_help (_("\
6779 All global and static variable names or those matching REGEXPs.\n\
6780 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6781 Prints the global and static variables.\n"),
6782 _("global and static variables"),
6783 true));
6784 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6785 if (dbx_commands)
6786 {
6787 c = add_com ("whereis", class_info, info_variables_command,
6788 info_print_args_help (_("\
6789 All global and static variable names, or those matching REGEXPs.\n\
6790 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6791 Prints the global and static variables.\n"),
6792 _("global and static variables"),
6793 true));
6794 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6795 }
6796
6797 c = add_info ("functions", info_functions_command,
6798 info_print_args_help (_("\
6799 All function names or those matching REGEXPs.\n\
6800 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6801 Prints the functions.\n"),
6802 _("functions"),
6803 true));
6804 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6805
6806 c = add_info ("types", info_types_command, _("\
6807 All type names, or those matching REGEXP.\n\
6808 Usage: info types [-q] [REGEXP]\n\
6809 Print information about all types matching REGEXP, or all types if no\n\
6810 REGEXP is given. The optional flag -q disables printing of headers."));
6811 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6812
6813 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6814
6815 static std::string info_sources_help
6816 = gdb::option::build_help (_("\
6817 All source files in the program or those matching REGEXP.\n\
6818 Usage: info sources [OPTION]... [REGEXP]\n\
6819 By default, REGEXP is used to match anywhere in the filename.\n\
6820 \n\
6821 Options:\n\
6822 %OPTIONS%"),
6823 info_sources_opts);
6824
6825 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6826 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6827
6828 c = add_info ("modules", info_modules_command,
6829 _("All module names, or those matching REGEXP."));
6830 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6831
6832 add_basic_prefix_cmd ("module", class_info, _("\
6833 Print information about modules."),
6834 &info_module_cmdlist, "info module ",
6835 0, &infolist);
6836
6837 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6838 Display functions arranged by modules.\n\
6839 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6840 Print a summary of all functions within each Fortran module, grouped by\n\
6841 module and file. For each function the line on which the function is\n\
6842 defined is given along with the type signature and name of the function.\n\
6843 \n\
6844 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6845 listed. If MODREGEXP is provided then only functions in modules matching\n\
6846 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6847 type signature matches TYPEREGEXP are listed.\n\
6848 \n\
6849 The -q flag suppresses printing some header information."),
6850 &info_module_cmdlist);
6851 set_cmd_completer_handle_brkchars
6852 (c, info_module_var_func_command_completer);
6853
6854 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6855 Display variables arranged by modules.\n\
6856 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6857 Print a summary of all variables within each Fortran module, grouped by\n\
6858 module and file. For each variable the line on which the variable is\n\
6859 defined is given along with the type and name of the variable.\n\
6860 \n\
6861 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6862 listed. If MODREGEXP is provided then only variables in modules matching\n\
6863 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6864 type matches TYPEREGEXP are listed.\n\
6865 \n\
6866 The -q flag suppresses printing some header information."),
6867 &info_module_cmdlist);
6868 set_cmd_completer_handle_brkchars
6869 (c, info_module_var_func_command_completer);
6870
6871 add_com ("rbreak", class_breakpoint, rbreak_command,
6872 _("Set a breakpoint for all functions matching REGEXP."));
6873
6874 add_setshow_enum_cmd ("multiple-symbols", no_class,
6875 multiple_symbols_modes, &multiple_symbols_mode,
6876 _("\
6877 Set how the debugger handles ambiguities in expressions."), _("\
6878 Show how the debugger handles ambiguities in expressions."), _("\
6879 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6880 NULL, NULL, &setlist, &showlist);
6881
6882 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6883 &basenames_may_differ, _("\
6884 Set whether a source file may have multiple base names."), _("\
6885 Show whether a source file may have multiple base names."), _("\
6886 (A \"base name\" is the name of a file with the directory part removed.\n\
6887 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6888 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6889 before comparing them. Canonicalization is an expensive operation,\n\
6890 but it allows the same file be known by more than one base name.\n\
6891 If not set (the default), all source files are assumed to have just\n\
6892 one base name, and gdb will do file name comparisons more efficiently."),
6893 NULL, NULL,
6894 &setlist, &showlist);
6895
6896 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6897 _("Set debugging of symbol table creation."),
6898 _("Show debugging of symbol table creation."), _("\
6899 When enabled (non-zero), debugging messages are printed when building\n\
6900 symbol tables. A value of 1 (one) normally provides enough information.\n\
6901 A value greater than 1 provides more verbose information."),
6902 NULL,
6903 NULL,
6904 &setdebuglist, &showdebuglist);
6905
6906 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6907 _("\
6908 Set debugging of symbol lookup."), _("\
6909 Show debugging of symbol lookup."), _("\
6910 When enabled (non-zero), symbol lookups are logged."),
6911 NULL, NULL,
6912 &setdebuglist, &showdebuglist);
6913
6914 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6915 &new_symbol_cache_size,
6916 _("Set the size of the symbol cache."),
6917 _("Show the size of the symbol cache."), _("\
6918 The size of the symbol cache.\n\
6919 If zero then the symbol cache is disabled."),
6920 set_symbol_cache_size_handler, NULL,
6921 &maintenance_set_cmdlist,
6922 &maintenance_show_cmdlist);
6923
6924 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6925 _("Dump the symbol cache for each program space."),
6926 &maintenanceprintlist);
6927
6928 add_cmd ("symbol-cache-statistics", class_maintenance,
6929 maintenance_print_symbol_cache_statistics,
6930 _("Print symbol cache statistics for each program space."),
6931 &maintenanceprintlist);
6932
6933 add_cmd ("symbol-cache", class_maintenance,
6934 maintenance_flush_symbol_cache,
6935 _("Flush the symbol cache for each program space."),
6936 &maintenanceflushlist);
6937 c = add_alias_cmd ("flush-symbol-cache", "flush symbol-cache",
6938 class_maintenance, 0, &maintenancelist);
6939 deprecate_cmd (c, "maintenancelist flush symbol-cache");
6940
6941 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6942 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6943 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6944 }