Convert dprintf to vtable ops
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdbsupport/gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* When TRUE, ignore the prologue-end flag in linetable_entry when searching
292 for the SAL past a function prologue. */
293 static bool ignore_prologue_end_flag = false;
294
295 /* Read-only accessor to AUTO_SELECT_MODE. */
296
297 const char *
298 multiple_symbols_select_mode (void)
299 {
300 return multiple_symbols_mode;
301 }
302
303 /* Return the name of a domain_enum. */
304
305 const char *
306 domain_name (domain_enum e)
307 {
308 switch (e)
309 {
310 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
311 case VAR_DOMAIN: return "VAR_DOMAIN";
312 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
313 case MODULE_DOMAIN: return "MODULE_DOMAIN";
314 case LABEL_DOMAIN: return "LABEL_DOMAIN";
315 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
316 default: gdb_assert_not_reached ("bad domain_enum");
317 }
318 }
319
320 /* Return the name of a search_domain . */
321
322 const char *
323 search_domain_name (enum search_domain e)
324 {
325 switch (e)
326 {
327 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
328 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
329 case TYPES_DOMAIN: return "TYPES_DOMAIN";
330 case MODULES_DOMAIN: return "MODULES_DOMAIN";
331 case ALL_DOMAIN: return "ALL_DOMAIN";
332 default: gdb_assert_not_reached ("bad search_domain");
333 }
334 }
335
336 /* See symtab.h. */
337
338 call_site *
339 compunit_symtab::find_call_site (CORE_ADDR pc) const
340 {
341 if (m_call_site_htab == nullptr)
342 return nullptr;
343
344 CORE_ADDR delta
345 = this->objfile ()->section_offsets[this->block_line_section ()];
346 CORE_ADDR unrelocated_pc = pc - delta;
347
348 struct call_site call_site_local (unrelocated_pc, nullptr, nullptr);
349 void **slot
350 = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT);
351 if (slot == nullptr)
352 return nullptr;
353
354 return (call_site *) *slot;
355 }
356
357 /* See symtab.h. */
358
359 void
360 compunit_symtab::set_call_site_htab (htab_t call_site_htab)
361 {
362 gdb_assert (m_call_site_htab == nullptr);
363 m_call_site_htab = call_site_htab;
364 }
365
366 /* See symtab.h. */
367
368 void
369 compunit_symtab::set_primary_filetab (symtab *primary_filetab)
370 {
371 symtab *prev_filetab = nullptr;
372
373 /* Move PRIMARY_FILETAB to the head of the filetab list. */
374 for (symtab *filetab : this->filetabs ())
375 {
376 if (filetab == primary_filetab)
377 {
378 if (prev_filetab != nullptr)
379 {
380 prev_filetab->next = primary_filetab->next;
381 primary_filetab->next = m_filetabs;
382 m_filetabs = primary_filetab;
383 }
384
385 break;
386 }
387
388 prev_filetab = filetab;
389 }
390
391 gdb_assert (primary_filetab == m_filetabs);
392 }
393
394 /* See symtab.h. */
395
396 struct symtab *
397 compunit_symtab::primary_filetab () const
398 {
399 gdb_assert (m_filetabs != nullptr);
400
401 /* The primary file symtab is the first one in the list. */
402 return m_filetabs;
403 }
404
405 /* See symtab.h. */
406
407 enum language
408 compunit_language (const struct compunit_symtab *cust)
409 {
410 struct symtab *symtab = cust->primary_filetab ();
411
412 /* The language of the compunit symtab is the language of its primary
413 source file. */
414 return symtab->language ();
415 }
416
417 /* The relocated address of the minimal symbol, using the section
418 offsets from OBJFILE. */
419
420 CORE_ADDR
421 minimal_symbol::value_address (objfile *objfile) const
422 {
423 if (this->maybe_copied)
424 return get_msymbol_address (objfile, this);
425 else
426 return (this->value_raw_address ()
427 + objfile->section_offsets[this->section_index ()]);
428 }
429
430 /* See symtab.h. */
431
432 bool
433 minimal_symbol::data_p () const
434 {
435 return m_type == mst_data
436 || m_type == mst_bss
437 || m_type == mst_abs
438 || m_type == mst_file_data
439 || m_type == mst_file_bss;
440 }
441
442 /* See symtab.h. */
443
444 bool
445 minimal_symbol::text_p () const
446 {
447 return m_type == mst_text
448 || m_type == mst_text_gnu_ifunc
449 || m_type == mst_data_gnu_ifunc
450 || m_type == mst_slot_got_plt
451 || m_type == mst_solib_trampoline
452 || m_type == mst_file_text;
453 }
454
455 /* See whether FILENAME matches SEARCH_NAME using the rule that we
456 advertise to the user. (The manual's description of linespecs
457 describes what we advertise). Returns true if they match, false
458 otherwise. */
459
460 bool
461 compare_filenames_for_search (const char *filename, const char *search_name)
462 {
463 int len = strlen (filename);
464 size_t search_len = strlen (search_name);
465
466 if (len < search_len)
467 return false;
468
469 /* The tail of FILENAME must match. */
470 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
471 return false;
472
473 /* Either the names must completely match, or the character
474 preceding the trailing SEARCH_NAME segment of FILENAME must be a
475 directory separator.
476
477 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
478 cannot match FILENAME "/path//dir/file.c" - as user has requested
479 absolute path. The sama applies for "c:\file.c" possibly
480 incorrectly hypothetically matching "d:\dir\c:\file.c".
481
482 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
483 compatible with SEARCH_NAME "file.c". In such case a compiler had
484 to put the "c:file.c" name into debug info. Such compatibility
485 works only on GDB built for DOS host. */
486 return (len == search_len
487 || (!IS_ABSOLUTE_PATH (search_name)
488 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
489 || (HAS_DRIVE_SPEC (filename)
490 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
491 }
492
493 /* Same as compare_filenames_for_search, but for glob-style patterns.
494 Heads up on the order of the arguments. They match the order of
495 compare_filenames_for_search, but it's the opposite of the order of
496 arguments to gdb_filename_fnmatch. */
497
498 bool
499 compare_glob_filenames_for_search (const char *filename,
500 const char *search_name)
501 {
502 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
503 all /s have to be explicitly specified. */
504 int file_path_elements = count_path_elements (filename);
505 int search_path_elements = count_path_elements (search_name);
506
507 if (search_path_elements > file_path_elements)
508 return false;
509
510 if (IS_ABSOLUTE_PATH (search_name))
511 {
512 return (search_path_elements == file_path_elements
513 && gdb_filename_fnmatch (search_name, filename,
514 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
515 }
516
517 {
518 const char *file_to_compare
519 = strip_leading_path_elements (filename,
520 file_path_elements - search_path_elements);
521
522 return gdb_filename_fnmatch (search_name, file_to_compare,
523 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
524 }
525 }
526
527 /* Check for a symtab of a specific name by searching some symtabs.
528 This is a helper function for callbacks of iterate_over_symtabs.
529
530 If NAME is not absolute, then REAL_PATH is NULL
531 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
532
533 The return value, NAME, REAL_PATH and CALLBACK are identical to the
534 `map_symtabs_matching_filename' method of quick_symbol_functions.
535
536 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
537 Each symtab within the specified compunit symtab is also searched.
538 AFTER_LAST is one past the last compunit symtab to search; NULL means to
539 search until the end of the list. */
540
541 bool
542 iterate_over_some_symtabs (const char *name,
543 const char *real_path,
544 struct compunit_symtab *first,
545 struct compunit_symtab *after_last,
546 gdb::function_view<bool (symtab *)> callback)
547 {
548 struct compunit_symtab *cust;
549 const char* base_name = lbasename (name);
550
551 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
552 {
553 for (symtab *s : cust->filetabs ())
554 {
555 if (compare_filenames_for_search (s->filename, name))
556 {
557 if (callback (s))
558 return true;
559 continue;
560 }
561
562 /* Before we invoke realpath, which can get expensive when many
563 files are involved, do a quick comparison of the basenames. */
564 if (! basenames_may_differ
565 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
566 continue;
567
568 if (compare_filenames_for_search (symtab_to_fullname (s), name))
569 {
570 if (callback (s))
571 return true;
572 continue;
573 }
574
575 /* If the user gave us an absolute path, try to find the file in
576 this symtab and use its absolute path. */
577 if (real_path != NULL)
578 {
579 const char *fullname = symtab_to_fullname (s);
580
581 gdb_assert (IS_ABSOLUTE_PATH (real_path));
582 gdb_assert (IS_ABSOLUTE_PATH (name));
583 gdb::unique_xmalloc_ptr<char> fullname_real_path
584 = gdb_realpath (fullname);
585 fullname = fullname_real_path.get ();
586 if (FILENAME_CMP (real_path, fullname) == 0)
587 {
588 if (callback (s))
589 return true;
590 continue;
591 }
592 }
593 }
594 }
595
596 return false;
597 }
598
599 /* Check for a symtab of a specific name; first in symtabs, then in
600 psymtabs. *If* there is no '/' in the name, a match after a '/'
601 in the symtab filename will also work.
602
603 Calls CALLBACK with each symtab that is found. If CALLBACK returns
604 true, the search stops. */
605
606 void
607 iterate_over_symtabs (const char *name,
608 gdb::function_view<bool (symtab *)> callback)
609 {
610 gdb::unique_xmalloc_ptr<char> real_path;
611
612 /* Here we are interested in canonicalizing an absolute path, not
613 absolutizing a relative path. */
614 if (IS_ABSOLUTE_PATH (name))
615 {
616 real_path = gdb_realpath (name);
617 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
618 }
619
620 for (objfile *objfile : current_program_space->objfiles ())
621 {
622 if (iterate_over_some_symtabs (name, real_path.get (),
623 objfile->compunit_symtabs, NULL,
624 callback))
625 return;
626 }
627
628 /* Same search rules as above apply here, but now we look thru the
629 psymtabs. */
630
631 for (objfile *objfile : current_program_space->objfiles ())
632 {
633 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
634 callback))
635 return;
636 }
637 }
638
639 /* A wrapper for iterate_over_symtabs that returns the first matching
640 symtab, or NULL. */
641
642 struct symtab *
643 lookup_symtab (const char *name)
644 {
645 struct symtab *result = NULL;
646
647 iterate_over_symtabs (name, [&] (symtab *symtab)
648 {
649 result = symtab;
650 return true;
651 });
652
653 return result;
654 }
655
656 \f
657 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
658 full method name, which consist of the class name (from T), the unadorned
659 method name from METHOD_ID, and the signature for the specific overload,
660 specified by SIGNATURE_ID. Note that this function is g++ specific. */
661
662 char *
663 gdb_mangle_name (struct type *type, int method_id, int signature_id)
664 {
665 int mangled_name_len;
666 char *mangled_name;
667 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
668 struct fn_field *method = &f[signature_id];
669 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
670 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
671 const char *newname = type->name ();
672
673 /* Does the form of physname indicate that it is the full mangled name
674 of a constructor (not just the args)? */
675 int is_full_physname_constructor;
676
677 int is_constructor;
678 int is_destructor = is_destructor_name (physname);
679 /* Need a new type prefix. */
680 const char *const_prefix = method->is_const ? "C" : "";
681 const char *volatile_prefix = method->is_volatile ? "V" : "";
682 char buf[20];
683 int len = (newname == NULL ? 0 : strlen (newname));
684
685 /* Nothing to do if physname already contains a fully mangled v3 abi name
686 or an operator name. */
687 if ((physname[0] == '_' && physname[1] == 'Z')
688 || is_operator_name (field_name))
689 return xstrdup (physname);
690
691 is_full_physname_constructor = is_constructor_name (physname);
692
693 is_constructor = is_full_physname_constructor
694 || (newname && strcmp (field_name, newname) == 0);
695
696 if (!is_destructor)
697 is_destructor = (startswith (physname, "__dt"));
698
699 if (is_destructor || is_full_physname_constructor)
700 {
701 mangled_name = (char *) xmalloc (strlen (physname) + 1);
702 strcpy (mangled_name, physname);
703 return mangled_name;
704 }
705
706 if (len == 0)
707 {
708 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
709 }
710 else if (physname[0] == 't' || physname[0] == 'Q')
711 {
712 /* The physname for template and qualified methods already includes
713 the class name. */
714 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
715 newname = NULL;
716 len = 0;
717 }
718 else
719 {
720 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
721 volatile_prefix, len);
722 }
723 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
724 + strlen (buf) + len + strlen (physname) + 1);
725
726 mangled_name = (char *) xmalloc (mangled_name_len);
727 if (is_constructor)
728 mangled_name[0] = '\0';
729 else
730 strcpy (mangled_name, field_name);
731
732 strcat (mangled_name, buf);
733 /* If the class doesn't have a name, i.e. newname NULL, then we just
734 mangle it using 0 for the length of the class. Thus it gets mangled
735 as something starting with `::' rather than `classname::'. */
736 if (newname != NULL)
737 strcat (mangled_name, newname);
738
739 strcat (mangled_name, physname);
740 return (mangled_name);
741 }
742
743 /* See symtab.h. */
744
745 void
746 general_symbol_info::set_demangled_name (const char *name,
747 struct obstack *obstack)
748 {
749 if (language () == language_ada)
750 {
751 if (name == NULL)
752 {
753 ada_mangled = 0;
754 language_specific.obstack = obstack;
755 }
756 else
757 {
758 ada_mangled = 1;
759 language_specific.demangled_name = name;
760 }
761 }
762 else
763 language_specific.demangled_name = name;
764 }
765
766 \f
767 /* Initialize the language dependent portion of a symbol
768 depending upon the language for the symbol. */
769
770 void
771 general_symbol_info::set_language (enum language language,
772 struct obstack *obstack)
773 {
774 m_language = language;
775 if (language == language_cplus
776 || language == language_d
777 || language == language_go
778 || language == language_objc
779 || language == language_fortran)
780 {
781 set_demangled_name (NULL, obstack);
782 }
783 else if (language == language_ada)
784 {
785 gdb_assert (ada_mangled == 0);
786 language_specific.obstack = obstack;
787 }
788 else
789 {
790 memset (&language_specific, 0, sizeof (language_specific));
791 }
792 }
793
794 /* Functions to initialize a symbol's mangled name. */
795
796 /* Objects of this type are stored in the demangled name hash table. */
797 struct demangled_name_entry
798 {
799 demangled_name_entry (gdb::string_view mangled_name)
800 : mangled (mangled_name) {}
801
802 gdb::string_view mangled;
803 enum language language;
804 gdb::unique_xmalloc_ptr<char> demangled;
805 };
806
807 /* Hash function for the demangled name hash. */
808
809 static hashval_t
810 hash_demangled_name_entry (const void *data)
811 {
812 const struct demangled_name_entry *e
813 = (const struct demangled_name_entry *) data;
814
815 return fast_hash (e->mangled.data (), e->mangled.length ());
816 }
817
818 /* Equality function for the demangled name hash. */
819
820 static int
821 eq_demangled_name_entry (const void *a, const void *b)
822 {
823 const struct demangled_name_entry *da
824 = (const struct demangled_name_entry *) a;
825 const struct demangled_name_entry *db
826 = (const struct demangled_name_entry *) b;
827
828 return da->mangled == db->mangled;
829 }
830
831 static void
832 free_demangled_name_entry (void *data)
833 {
834 struct demangled_name_entry *e
835 = (struct demangled_name_entry *) data;
836
837 e->~demangled_name_entry();
838 }
839
840 /* Create the hash table used for demangled names. Each hash entry is
841 a pair of strings; one for the mangled name and one for the demangled
842 name. The entry is hashed via just the mangled name. */
843
844 static void
845 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
846 {
847 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
848 The hash table code will round this up to the next prime number.
849 Choosing a much larger table size wastes memory, and saves only about
850 1% in symbol reading. However, if the minsym count is already
851 initialized (e.g. because symbol name setting was deferred to
852 a background thread) we can initialize the hashtable with a count
853 based on that, because we will almost certainly have at least that
854 many entries. If we have a nonzero number but less than 256,
855 we still stay with 256 to have some space for psymbols, etc. */
856
857 /* htab will expand the table when it is 3/4th full, so we account for that
858 here. +2 to round up. */
859 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
860 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
861
862 per_bfd->demangled_names_hash.reset (htab_create_alloc
863 (count, hash_demangled_name_entry, eq_demangled_name_entry,
864 free_demangled_name_entry, xcalloc, xfree));
865 }
866
867 /* See symtab.h */
868
869 gdb::unique_xmalloc_ptr<char>
870 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
871 const char *mangled)
872 {
873 gdb::unique_xmalloc_ptr<char> demangled;
874 int i;
875
876 if (gsymbol->language () == language_unknown)
877 gsymbol->m_language = language_auto;
878
879 if (gsymbol->language () != language_auto)
880 {
881 const struct language_defn *lang = language_def (gsymbol->language ());
882
883 lang->sniff_from_mangled_name (mangled, &demangled);
884 return demangled;
885 }
886
887 for (i = language_unknown; i < nr_languages; ++i)
888 {
889 enum language l = (enum language) i;
890 const struct language_defn *lang = language_def (l);
891
892 if (lang->sniff_from_mangled_name (mangled, &demangled))
893 {
894 gsymbol->m_language = l;
895 return demangled;
896 }
897 }
898
899 return NULL;
900 }
901
902 /* Set both the mangled and demangled (if any) names for GSYMBOL based
903 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
904 objfile's obstack; but if COPY_NAME is 0 and if NAME is
905 NUL-terminated, then this function assumes that NAME is already
906 correctly saved (either permanently or with a lifetime tied to the
907 objfile), and it will not be copied.
908
909 The hash table corresponding to OBJFILE is used, and the memory
910 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
911 so the pointer can be discarded after calling this function. */
912
913 void
914 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
915 bool copy_name,
916 objfile_per_bfd_storage *per_bfd,
917 gdb::optional<hashval_t> hash)
918 {
919 struct demangled_name_entry **slot;
920
921 if (language () == language_ada)
922 {
923 /* In Ada, we do the symbol lookups using the mangled name, so
924 we can save some space by not storing the demangled name. */
925 if (!copy_name)
926 m_name = linkage_name.data ();
927 else
928 m_name = obstack_strndup (&per_bfd->storage_obstack,
929 linkage_name.data (),
930 linkage_name.length ());
931 set_demangled_name (NULL, &per_bfd->storage_obstack);
932
933 return;
934 }
935
936 if (per_bfd->demangled_names_hash == NULL)
937 create_demangled_names_hash (per_bfd);
938
939 struct demangled_name_entry entry (linkage_name);
940 if (!hash.has_value ())
941 hash = hash_demangled_name_entry (&entry);
942 slot = ((struct demangled_name_entry **)
943 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
944 &entry, *hash, INSERT));
945
946 /* The const_cast is safe because the only reason it is already
947 initialized is if we purposefully set it from a background
948 thread to avoid doing the work here. However, it is still
949 allocated from the heap and needs to be freed by us, just
950 like if we called symbol_find_demangled_name here. If this is
951 nullptr, we call symbol_find_demangled_name below, but we put
952 this smart pointer here to be sure that we don't leak this name. */
953 gdb::unique_xmalloc_ptr<char> demangled_name
954 (const_cast<char *> (language_specific.demangled_name));
955
956 /* If this name is not in the hash table, add it. */
957 if (*slot == NULL
958 /* A C version of the symbol may have already snuck into the table.
959 This happens to, e.g., main.init (__go_init_main). Cope. */
960 || (language () == language_go && (*slot)->demangled == nullptr))
961 {
962 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
963 to true if the string might not be nullterminated. We have to make
964 this copy because demangling needs a nullterminated string. */
965 gdb::string_view linkage_name_copy;
966 if (copy_name)
967 {
968 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
969 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
970 alloc_name[linkage_name.length ()] = '\0';
971
972 linkage_name_copy = gdb::string_view (alloc_name,
973 linkage_name.length ());
974 }
975 else
976 linkage_name_copy = linkage_name;
977
978 if (demangled_name.get () == nullptr)
979 demangled_name
980 = symbol_find_demangled_name (this, linkage_name_copy.data ());
981
982 /* Suppose we have demangled_name==NULL, copy_name==0, and
983 linkage_name_copy==linkage_name. In this case, we already have the
984 mangled name saved, and we don't have a demangled name. So,
985 you might think we could save a little space by not recording
986 this in the hash table at all.
987
988 It turns out that it is actually important to still save such
989 an entry in the hash table, because storing this name gives
990 us better bcache hit rates for partial symbols. */
991 if (!copy_name)
992 {
993 *slot
994 = ((struct demangled_name_entry *)
995 obstack_alloc (&per_bfd->storage_obstack,
996 sizeof (demangled_name_entry)));
997 new (*slot) demangled_name_entry (linkage_name);
998 }
999 else
1000 {
1001 /* If we must copy the mangled name, put it directly after
1002 the struct so we can have a single allocation. */
1003 *slot
1004 = ((struct demangled_name_entry *)
1005 obstack_alloc (&per_bfd->storage_obstack,
1006 sizeof (demangled_name_entry)
1007 + linkage_name.length () + 1));
1008 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
1009 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
1010 mangled_ptr [linkage_name.length ()] = '\0';
1011 new (*slot) demangled_name_entry
1012 (gdb::string_view (mangled_ptr, linkage_name.length ()));
1013 }
1014 (*slot)->demangled = std::move (demangled_name);
1015 (*slot)->language = language ();
1016 }
1017 else if (language () == language_unknown || language () == language_auto)
1018 m_language = (*slot)->language;
1019
1020 m_name = (*slot)->mangled.data ();
1021 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
1022 }
1023
1024 /* See symtab.h. */
1025
1026 const char *
1027 general_symbol_info::natural_name () const
1028 {
1029 switch (language ())
1030 {
1031 case language_cplus:
1032 case language_d:
1033 case language_go:
1034 case language_objc:
1035 case language_fortran:
1036 case language_rust:
1037 if (language_specific.demangled_name != nullptr)
1038 return language_specific.demangled_name;
1039 break;
1040 case language_ada:
1041 return ada_decode_symbol (this);
1042 default:
1043 break;
1044 }
1045 return linkage_name ();
1046 }
1047
1048 /* See symtab.h. */
1049
1050 const char *
1051 general_symbol_info::demangled_name () const
1052 {
1053 const char *dem_name = NULL;
1054
1055 switch (language ())
1056 {
1057 case language_cplus:
1058 case language_d:
1059 case language_go:
1060 case language_objc:
1061 case language_fortran:
1062 case language_rust:
1063 dem_name = language_specific.demangled_name;
1064 break;
1065 case language_ada:
1066 dem_name = ada_decode_symbol (this);
1067 break;
1068 default:
1069 break;
1070 }
1071 return dem_name;
1072 }
1073
1074 /* See symtab.h. */
1075
1076 const char *
1077 general_symbol_info::search_name () const
1078 {
1079 if (language () == language_ada)
1080 return linkage_name ();
1081 else
1082 return natural_name ();
1083 }
1084
1085 /* See symtab.h. */
1086
1087 struct obj_section *
1088 general_symbol_info::obj_section (const struct objfile *objfile) const
1089 {
1090 if (section_index () >= 0)
1091 return &objfile->sections[section_index ()];
1092 return nullptr;
1093 }
1094
1095 /* See symtab.h. */
1096
1097 bool
1098 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1099 const lookup_name_info &name)
1100 {
1101 symbol_name_matcher_ftype *name_match
1102 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1103 return name_match (gsymbol->search_name (), name, NULL);
1104 }
1105
1106 \f
1107
1108 /* Return true if the two sections are the same, or if they could
1109 plausibly be copies of each other, one in an original object
1110 file and another in a separated debug file. */
1111
1112 bool
1113 matching_obj_sections (struct obj_section *obj_first,
1114 struct obj_section *obj_second)
1115 {
1116 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1117 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1118
1119 /* If they're the same section, then they match. */
1120 if (first == second)
1121 return true;
1122
1123 /* If either is NULL, give up. */
1124 if (first == NULL || second == NULL)
1125 return false;
1126
1127 /* This doesn't apply to absolute symbols. */
1128 if (first->owner == NULL || second->owner == NULL)
1129 return false;
1130
1131 /* If they're in the same object file, they must be different sections. */
1132 if (first->owner == second->owner)
1133 return false;
1134
1135 /* Check whether the two sections are potentially corresponding. They must
1136 have the same size, address, and name. We can't compare section indexes,
1137 which would be more reliable, because some sections may have been
1138 stripped. */
1139 if (bfd_section_size (first) != bfd_section_size (second))
1140 return false;
1141
1142 /* In-memory addresses may start at a different offset, relativize them. */
1143 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1144 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1145 return false;
1146
1147 if (bfd_section_name (first) == NULL
1148 || bfd_section_name (second) == NULL
1149 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1150 return false;
1151
1152 /* Otherwise check that they are in corresponding objfiles. */
1153
1154 struct objfile *obj = NULL;
1155 for (objfile *objfile : current_program_space->objfiles ())
1156 if (objfile->obfd == first->owner)
1157 {
1158 obj = objfile;
1159 break;
1160 }
1161 gdb_assert (obj != NULL);
1162
1163 if (obj->separate_debug_objfile != NULL
1164 && obj->separate_debug_objfile->obfd == second->owner)
1165 return true;
1166 if (obj->separate_debug_objfile_backlink != NULL
1167 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1168 return true;
1169
1170 return false;
1171 }
1172
1173 /* See symtab.h. */
1174
1175 void
1176 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1177 {
1178 struct bound_minimal_symbol msymbol;
1179
1180 /* If we know that this is not a text address, return failure. This is
1181 necessary because we loop based on texthigh and textlow, which do
1182 not include the data ranges. */
1183 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1184 if (msymbol.minsym && msymbol.minsym->data_p ())
1185 return;
1186
1187 for (objfile *objfile : current_program_space->objfiles ())
1188 {
1189 struct compunit_symtab *cust
1190 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1191 if (cust)
1192 return;
1193 }
1194 }
1195 \f
1196 /* Hash function for the symbol cache. */
1197
1198 static unsigned int
1199 hash_symbol_entry (const struct objfile *objfile_context,
1200 const char *name, domain_enum domain)
1201 {
1202 unsigned int hash = (uintptr_t) objfile_context;
1203
1204 if (name != NULL)
1205 hash += htab_hash_string (name);
1206
1207 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1208 to map to the same slot. */
1209 if (domain == STRUCT_DOMAIN)
1210 hash += VAR_DOMAIN * 7;
1211 else
1212 hash += domain * 7;
1213
1214 return hash;
1215 }
1216
1217 /* Equality function for the symbol cache. */
1218
1219 static int
1220 eq_symbol_entry (const struct symbol_cache_slot *slot,
1221 const struct objfile *objfile_context,
1222 const char *name, domain_enum domain)
1223 {
1224 const char *slot_name;
1225 domain_enum slot_domain;
1226
1227 if (slot->state == SYMBOL_SLOT_UNUSED)
1228 return 0;
1229
1230 if (slot->objfile_context != objfile_context)
1231 return 0;
1232
1233 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1234 {
1235 slot_name = slot->value.not_found.name;
1236 slot_domain = slot->value.not_found.domain;
1237 }
1238 else
1239 {
1240 slot_name = slot->value.found.symbol->search_name ();
1241 slot_domain = slot->value.found.symbol->domain ();
1242 }
1243
1244 /* NULL names match. */
1245 if (slot_name == NULL && name == NULL)
1246 {
1247 /* But there's no point in calling symbol_matches_domain in the
1248 SYMBOL_SLOT_FOUND case. */
1249 if (slot_domain != domain)
1250 return 0;
1251 }
1252 else if (slot_name != NULL && name != NULL)
1253 {
1254 /* It's important that we use the same comparison that was done
1255 the first time through. If the slot records a found symbol,
1256 then this means using the symbol name comparison function of
1257 the symbol's language with symbol->search_name (). See
1258 dictionary.c. It also means using symbol_matches_domain for
1259 found symbols. See block.c.
1260
1261 If the slot records a not-found symbol, then require a precise match.
1262 We could still be lax with whitespace like strcmp_iw though. */
1263
1264 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1265 {
1266 if (strcmp (slot_name, name) != 0)
1267 return 0;
1268 if (slot_domain != domain)
1269 return 0;
1270 }
1271 else
1272 {
1273 struct symbol *sym = slot->value.found.symbol;
1274 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1275
1276 if (!symbol_matches_search_name (sym, lookup_name))
1277 return 0;
1278
1279 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1280 return 0;
1281 }
1282 }
1283 else
1284 {
1285 /* Only one name is NULL. */
1286 return 0;
1287 }
1288
1289 return 1;
1290 }
1291
1292 /* Given a cache of size SIZE, return the size of the struct (with variable
1293 length array) in bytes. */
1294
1295 static size_t
1296 symbol_cache_byte_size (unsigned int size)
1297 {
1298 return (sizeof (struct block_symbol_cache)
1299 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1300 }
1301
1302 /* Resize CACHE. */
1303
1304 static void
1305 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1306 {
1307 /* If there's no change in size, don't do anything.
1308 All caches have the same size, so we can just compare with the size
1309 of the global symbols cache. */
1310 if ((cache->global_symbols != NULL
1311 && cache->global_symbols->size == new_size)
1312 || (cache->global_symbols == NULL
1313 && new_size == 0))
1314 return;
1315
1316 destroy_block_symbol_cache (cache->global_symbols);
1317 destroy_block_symbol_cache (cache->static_symbols);
1318
1319 if (new_size == 0)
1320 {
1321 cache->global_symbols = NULL;
1322 cache->static_symbols = NULL;
1323 }
1324 else
1325 {
1326 size_t total_size = symbol_cache_byte_size (new_size);
1327
1328 cache->global_symbols
1329 = (struct block_symbol_cache *) xcalloc (1, total_size);
1330 cache->static_symbols
1331 = (struct block_symbol_cache *) xcalloc (1, total_size);
1332 cache->global_symbols->size = new_size;
1333 cache->static_symbols->size = new_size;
1334 }
1335 }
1336
1337 /* Return the symbol cache of PSPACE.
1338 Create one if it doesn't exist yet. */
1339
1340 static struct symbol_cache *
1341 get_symbol_cache (struct program_space *pspace)
1342 {
1343 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1344
1345 if (cache == NULL)
1346 {
1347 cache = symbol_cache_key.emplace (pspace);
1348 resize_symbol_cache (cache, symbol_cache_size);
1349 }
1350
1351 return cache;
1352 }
1353
1354 /* Set the size of the symbol cache in all program spaces. */
1355
1356 static void
1357 set_symbol_cache_size (unsigned int new_size)
1358 {
1359 for (struct program_space *pspace : program_spaces)
1360 {
1361 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1362
1363 /* The pspace could have been created but not have a cache yet. */
1364 if (cache != NULL)
1365 resize_symbol_cache (cache, new_size);
1366 }
1367 }
1368
1369 /* Called when symbol-cache-size is set. */
1370
1371 static void
1372 set_symbol_cache_size_handler (const char *args, int from_tty,
1373 struct cmd_list_element *c)
1374 {
1375 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1376 {
1377 /* Restore the previous value.
1378 This is the value the "show" command prints. */
1379 new_symbol_cache_size = symbol_cache_size;
1380
1381 error (_("Symbol cache size is too large, max is %u."),
1382 MAX_SYMBOL_CACHE_SIZE);
1383 }
1384 symbol_cache_size = new_symbol_cache_size;
1385
1386 set_symbol_cache_size (symbol_cache_size);
1387 }
1388
1389 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1390 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1391 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1392 failed (and thus this one will too), or NULL if the symbol is not present
1393 in the cache.
1394 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1395 can be used to save the result of a full lookup attempt. */
1396
1397 static struct block_symbol
1398 symbol_cache_lookup (struct symbol_cache *cache,
1399 struct objfile *objfile_context, enum block_enum block,
1400 const char *name, domain_enum domain,
1401 struct block_symbol_cache **bsc_ptr,
1402 struct symbol_cache_slot **slot_ptr)
1403 {
1404 struct block_symbol_cache *bsc;
1405 unsigned int hash;
1406 struct symbol_cache_slot *slot;
1407
1408 if (block == GLOBAL_BLOCK)
1409 bsc = cache->global_symbols;
1410 else
1411 bsc = cache->static_symbols;
1412 if (bsc == NULL)
1413 {
1414 *bsc_ptr = NULL;
1415 *slot_ptr = NULL;
1416 return {};
1417 }
1418
1419 hash = hash_symbol_entry (objfile_context, name, domain);
1420 slot = bsc->symbols + hash % bsc->size;
1421
1422 *bsc_ptr = bsc;
1423 *slot_ptr = slot;
1424
1425 if (eq_symbol_entry (slot, objfile_context, name, domain))
1426 {
1427 if (symbol_lookup_debug)
1428 gdb_printf (gdb_stdlog,
1429 "%s block symbol cache hit%s for %s, %s\n",
1430 block == GLOBAL_BLOCK ? "Global" : "Static",
1431 slot->state == SYMBOL_SLOT_NOT_FOUND
1432 ? " (not found)" : "",
1433 name, domain_name (domain));
1434 ++bsc->hits;
1435 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1436 return SYMBOL_LOOKUP_FAILED;
1437 return slot->value.found;
1438 }
1439
1440 /* Symbol is not present in the cache. */
1441
1442 if (symbol_lookup_debug)
1443 {
1444 gdb_printf (gdb_stdlog,
1445 "%s block symbol cache miss for %s, %s\n",
1446 block == GLOBAL_BLOCK ? "Global" : "Static",
1447 name, domain_name (domain));
1448 }
1449 ++bsc->misses;
1450 return {};
1451 }
1452
1453 /* Mark SYMBOL as found in SLOT.
1454 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1455 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1456 necessarily the objfile the symbol was found in. */
1457
1458 static void
1459 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1460 struct symbol_cache_slot *slot,
1461 struct objfile *objfile_context,
1462 struct symbol *symbol,
1463 const struct block *block)
1464 {
1465 if (bsc == NULL)
1466 return;
1467 if (slot->state != SYMBOL_SLOT_UNUSED)
1468 {
1469 ++bsc->collisions;
1470 symbol_cache_clear_slot (slot);
1471 }
1472 slot->state = SYMBOL_SLOT_FOUND;
1473 slot->objfile_context = objfile_context;
1474 slot->value.found.symbol = symbol;
1475 slot->value.found.block = block;
1476 }
1477
1478 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1479 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1480 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1481
1482 static void
1483 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1484 struct symbol_cache_slot *slot,
1485 struct objfile *objfile_context,
1486 const char *name, domain_enum domain)
1487 {
1488 if (bsc == NULL)
1489 return;
1490 if (slot->state != SYMBOL_SLOT_UNUSED)
1491 {
1492 ++bsc->collisions;
1493 symbol_cache_clear_slot (slot);
1494 }
1495 slot->state = SYMBOL_SLOT_NOT_FOUND;
1496 slot->objfile_context = objfile_context;
1497 slot->value.not_found.name = xstrdup (name);
1498 slot->value.not_found.domain = domain;
1499 }
1500
1501 /* Flush the symbol cache of PSPACE. */
1502
1503 static void
1504 symbol_cache_flush (struct program_space *pspace)
1505 {
1506 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1507 int pass;
1508
1509 if (cache == NULL)
1510 return;
1511 if (cache->global_symbols == NULL)
1512 {
1513 gdb_assert (symbol_cache_size == 0);
1514 gdb_assert (cache->static_symbols == NULL);
1515 return;
1516 }
1517
1518 /* If the cache is untouched since the last flush, early exit.
1519 This is important for performance during the startup of a program linked
1520 with 100s (or 1000s) of shared libraries. */
1521 if (cache->global_symbols->misses == 0
1522 && cache->static_symbols->misses == 0)
1523 return;
1524
1525 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1526 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1527
1528 for (pass = 0; pass < 2; ++pass)
1529 {
1530 struct block_symbol_cache *bsc
1531 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1532 unsigned int i;
1533
1534 for (i = 0; i < bsc->size; ++i)
1535 symbol_cache_clear_slot (&bsc->symbols[i]);
1536 }
1537
1538 cache->global_symbols->hits = 0;
1539 cache->global_symbols->misses = 0;
1540 cache->global_symbols->collisions = 0;
1541 cache->static_symbols->hits = 0;
1542 cache->static_symbols->misses = 0;
1543 cache->static_symbols->collisions = 0;
1544 }
1545
1546 /* Dump CACHE. */
1547
1548 static void
1549 symbol_cache_dump (const struct symbol_cache *cache)
1550 {
1551 int pass;
1552
1553 if (cache->global_symbols == NULL)
1554 {
1555 gdb_printf (" <disabled>\n");
1556 return;
1557 }
1558
1559 for (pass = 0; pass < 2; ++pass)
1560 {
1561 const struct block_symbol_cache *bsc
1562 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1563 unsigned int i;
1564
1565 if (pass == 0)
1566 gdb_printf ("Global symbols:\n");
1567 else
1568 gdb_printf ("Static symbols:\n");
1569
1570 for (i = 0; i < bsc->size; ++i)
1571 {
1572 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1573
1574 QUIT;
1575
1576 switch (slot->state)
1577 {
1578 case SYMBOL_SLOT_UNUSED:
1579 break;
1580 case SYMBOL_SLOT_NOT_FOUND:
1581 gdb_printf (" [%4u] = %s, %s %s (not found)\n", i,
1582 host_address_to_string (slot->objfile_context),
1583 slot->value.not_found.name,
1584 domain_name (slot->value.not_found.domain));
1585 break;
1586 case SYMBOL_SLOT_FOUND:
1587 {
1588 struct symbol *found = slot->value.found.symbol;
1589 const struct objfile *context = slot->objfile_context;
1590
1591 gdb_printf (" [%4u] = %s, %s %s\n", i,
1592 host_address_to_string (context),
1593 found->print_name (),
1594 domain_name (found->domain ()));
1595 break;
1596 }
1597 }
1598 }
1599 }
1600 }
1601
1602 /* The "mt print symbol-cache" command. */
1603
1604 static void
1605 maintenance_print_symbol_cache (const char *args, int from_tty)
1606 {
1607 for (struct program_space *pspace : program_spaces)
1608 {
1609 struct symbol_cache *cache;
1610
1611 gdb_printf (_("Symbol cache for pspace %d\n%s:\n"),
1612 pspace->num,
1613 pspace->symfile_object_file != NULL
1614 ? objfile_name (pspace->symfile_object_file)
1615 : "(no object file)");
1616
1617 /* If the cache hasn't been created yet, avoid creating one. */
1618 cache = symbol_cache_key.get (pspace);
1619 if (cache == NULL)
1620 gdb_printf (" <empty>\n");
1621 else
1622 symbol_cache_dump (cache);
1623 }
1624 }
1625
1626 /* The "mt flush-symbol-cache" command. */
1627
1628 static void
1629 maintenance_flush_symbol_cache (const char *args, int from_tty)
1630 {
1631 for (struct program_space *pspace : program_spaces)
1632 {
1633 symbol_cache_flush (pspace);
1634 }
1635 }
1636
1637 /* Print usage statistics of CACHE. */
1638
1639 static void
1640 symbol_cache_stats (struct symbol_cache *cache)
1641 {
1642 int pass;
1643
1644 if (cache->global_symbols == NULL)
1645 {
1646 gdb_printf (" <disabled>\n");
1647 return;
1648 }
1649
1650 for (pass = 0; pass < 2; ++pass)
1651 {
1652 const struct block_symbol_cache *bsc
1653 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1654
1655 QUIT;
1656
1657 if (pass == 0)
1658 gdb_printf ("Global block cache stats:\n");
1659 else
1660 gdb_printf ("Static block cache stats:\n");
1661
1662 gdb_printf (" size: %u\n", bsc->size);
1663 gdb_printf (" hits: %u\n", bsc->hits);
1664 gdb_printf (" misses: %u\n", bsc->misses);
1665 gdb_printf (" collisions: %u\n", bsc->collisions);
1666 }
1667 }
1668
1669 /* The "mt print symbol-cache-statistics" command. */
1670
1671 static void
1672 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1673 {
1674 for (struct program_space *pspace : program_spaces)
1675 {
1676 struct symbol_cache *cache;
1677
1678 gdb_printf (_("Symbol cache statistics for pspace %d\n%s:\n"),
1679 pspace->num,
1680 pspace->symfile_object_file != NULL
1681 ? objfile_name (pspace->symfile_object_file)
1682 : "(no object file)");
1683
1684 /* If the cache hasn't been created yet, avoid creating one. */
1685 cache = symbol_cache_key.get (pspace);
1686 if (cache == NULL)
1687 gdb_printf (" empty, no stats available\n");
1688 else
1689 symbol_cache_stats (cache);
1690 }
1691 }
1692
1693 /* This module's 'new_objfile' observer. */
1694
1695 static void
1696 symtab_new_objfile_observer (struct objfile *objfile)
1697 {
1698 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1699 symbol_cache_flush (current_program_space);
1700 }
1701
1702 /* This module's 'free_objfile' observer. */
1703
1704 static void
1705 symtab_free_objfile_observer (struct objfile *objfile)
1706 {
1707 symbol_cache_flush (objfile->pspace);
1708 }
1709 \f
1710 /* Debug symbols usually don't have section information. We need to dig that
1711 out of the minimal symbols and stash that in the debug symbol. */
1712
1713 void
1714 fixup_section (struct general_symbol_info *ginfo,
1715 CORE_ADDR addr, struct objfile *objfile)
1716 {
1717 struct minimal_symbol *msym;
1718
1719 /* First, check whether a minimal symbol with the same name exists
1720 and points to the same address. The address check is required
1721 e.g. on PowerPC64, where the minimal symbol for a function will
1722 point to the function descriptor, while the debug symbol will
1723 point to the actual function code. */
1724 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1725 objfile);
1726 if (msym)
1727 ginfo->set_section_index (msym->section_index ());
1728 else
1729 {
1730 /* Static, function-local variables do appear in the linker
1731 (minimal) symbols, but are frequently given names that won't
1732 be found via lookup_minimal_symbol(). E.g., it has been
1733 observed in frv-uclinux (ELF) executables that a static,
1734 function-local variable named "foo" might appear in the
1735 linker symbols as "foo.6" or "foo.3". Thus, there is no
1736 point in attempting to extend the lookup-by-name mechanism to
1737 handle this case due to the fact that there can be multiple
1738 names.
1739
1740 So, instead, search the section table when lookup by name has
1741 failed. The ``addr'' and ``endaddr'' fields may have already
1742 been relocated. If so, the relocation offset needs to be
1743 subtracted from these values when performing the comparison.
1744 We unconditionally subtract it, because, when no relocation
1745 has been performed, the value will simply be zero.
1746
1747 The address of the symbol whose section we're fixing up HAS
1748 NOT BEEN adjusted (relocated) yet. It can't have been since
1749 the section isn't yet known and knowing the section is
1750 necessary in order to add the correct relocation value. In
1751 other words, we wouldn't even be in this function (attempting
1752 to compute the section) if it were already known.
1753
1754 Note that it is possible to search the minimal symbols
1755 (subtracting the relocation value if necessary) to find the
1756 matching minimal symbol, but this is overkill and much less
1757 efficient. It is not necessary to find the matching minimal
1758 symbol, only its section.
1759
1760 Note that this technique (of doing a section table search)
1761 can fail when unrelocated section addresses overlap. For
1762 this reason, we still attempt a lookup by name prior to doing
1763 a search of the section table. */
1764
1765 struct obj_section *s;
1766 int fallback = -1;
1767
1768 ALL_OBJFILE_OSECTIONS (objfile, s)
1769 {
1770 int idx = s - objfile->sections;
1771 CORE_ADDR offset = objfile->section_offsets[idx];
1772
1773 if (fallback == -1)
1774 fallback = idx;
1775
1776 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1777 {
1778 ginfo->set_section_index (idx);
1779 return;
1780 }
1781 }
1782
1783 /* If we didn't find the section, assume it is in the first
1784 section. If there is no allocated section, then it hardly
1785 matters what we pick, so just pick zero. */
1786 if (fallback == -1)
1787 ginfo->set_section_index (0);
1788 else
1789 ginfo->set_section_index (fallback);
1790 }
1791 }
1792
1793 struct symbol *
1794 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1795 {
1796 CORE_ADDR addr;
1797
1798 if (!sym)
1799 return NULL;
1800
1801 if (!sym->is_objfile_owned ())
1802 return sym;
1803
1804 /* We either have an OBJFILE, or we can get at it from the sym's
1805 symtab. Anything else is a bug. */
1806 gdb_assert (objfile || sym->symtab ());
1807
1808 if (objfile == NULL)
1809 objfile = sym->objfile ();
1810
1811 if (sym->obj_section (objfile) != nullptr)
1812 return sym;
1813
1814 /* We should have an objfile by now. */
1815 gdb_assert (objfile);
1816
1817 switch (sym->aclass ())
1818 {
1819 case LOC_STATIC:
1820 case LOC_LABEL:
1821 addr = sym->value_address ();
1822 break;
1823 case LOC_BLOCK:
1824 addr = sym->value_block ()->entry_pc ();
1825 break;
1826
1827 default:
1828 /* Nothing else will be listed in the minsyms -- no use looking
1829 it up. */
1830 return sym;
1831 }
1832
1833 fixup_section (sym, addr, objfile);
1834
1835 return sym;
1836 }
1837
1838 /* See symtab.h. */
1839
1840 demangle_for_lookup_info::demangle_for_lookup_info
1841 (const lookup_name_info &lookup_name, language lang)
1842 {
1843 demangle_result_storage storage;
1844
1845 if (lookup_name.ignore_parameters () && lang == language_cplus)
1846 {
1847 gdb::unique_xmalloc_ptr<char> without_params
1848 = cp_remove_params_if_any (lookup_name.c_str (),
1849 lookup_name.completion_mode ());
1850
1851 if (without_params != NULL)
1852 {
1853 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1854 m_demangled_name = demangle_for_lookup (without_params.get (),
1855 lang, storage);
1856 return;
1857 }
1858 }
1859
1860 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1861 m_demangled_name = lookup_name.c_str ();
1862 else
1863 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1864 lang, storage);
1865 }
1866
1867 /* See symtab.h. */
1868
1869 const lookup_name_info &
1870 lookup_name_info::match_any ()
1871 {
1872 /* Lookup any symbol that "" would complete. I.e., this matches all
1873 symbol names. */
1874 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1875 true);
1876
1877 return lookup_name;
1878 }
1879
1880 /* Compute the demangled form of NAME as used by the various symbol
1881 lookup functions. The result can either be the input NAME
1882 directly, or a pointer to a buffer owned by the STORAGE object.
1883
1884 For Ada, this function just returns NAME, unmodified.
1885 Normally, Ada symbol lookups are performed using the encoded name
1886 rather than the demangled name, and so it might seem to make sense
1887 for this function to return an encoded version of NAME.
1888 Unfortunately, we cannot do this, because this function is used in
1889 circumstances where it is not appropriate to try to encode NAME.
1890 For instance, when displaying the frame info, we demangle the name
1891 of each parameter, and then perform a symbol lookup inside our
1892 function using that demangled name. In Ada, certain functions
1893 have internally-generated parameters whose name contain uppercase
1894 characters. Encoding those name would result in those uppercase
1895 characters to become lowercase, and thus cause the symbol lookup
1896 to fail. */
1897
1898 const char *
1899 demangle_for_lookup (const char *name, enum language lang,
1900 demangle_result_storage &storage)
1901 {
1902 /* If we are using C++, D, or Go, demangle the name before doing a
1903 lookup, so we can always binary search. */
1904 if (lang == language_cplus)
1905 {
1906 gdb::unique_xmalloc_ptr<char> demangled_name
1907 = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1908 if (demangled_name != NULL)
1909 return storage.set_malloc_ptr (std::move (demangled_name));
1910
1911 /* If we were given a non-mangled name, canonicalize it
1912 according to the language (so far only for C++). */
1913 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1914 if (canon != nullptr)
1915 return storage.set_malloc_ptr (std::move (canon));
1916 }
1917 else if (lang == language_d)
1918 {
1919 gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0);
1920 if (demangled_name != NULL)
1921 return storage.set_malloc_ptr (std::move (demangled_name));
1922 }
1923 else if (lang == language_go)
1924 {
1925 gdb::unique_xmalloc_ptr<char> demangled_name
1926 = language_def (language_go)->demangle_symbol (name, 0);
1927 if (demangled_name != NULL)
1928 return storage.set_malloc_ptr (std::move (demangled_name));
1929 }
1930
1931 return name;
1932 }
1933
1934 /* See symtab.h. */
1935
1936 unsigned int
1937 search_name_hash (enum language language, const char *search_name)
1938 {
1939 return language_def (language)->search_name_hash (search_name);
1940 }
1941
1942 /* See symtab.h.
1943
1944 This function (or rather its subordinates) have a bunch of loops and
1945 it would seem to be attractive to put in some QUIT's (though I'm not really
1946 sure whether it can run long enough to be really important). But there
1947 are a few calls for which it would appear to be bad news to quit
1948 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1949 that there is C++ code below which can error(), but that probably
1950 doesn't affect these calls since they are looking for a known
1951 variable and thus can probably assume it will never hit the C++
1952 code). */
1953
1954 struct block_symbol
1955 lookup_symbol_in_language (const char *name, const struct block *block,
1956 const domain_enum domain, enum language lang,
1957 struct field_of_this_result *is_a_field_of_this)
1958 {
1959 demangle_result_storage storage;
1960 const char *modified_name = demangle_for_lookup (name, lang, storage);
1961
1962 return lookup_symbol_aux (modified_name,
1963 symbol_name_match_type::FULL,
1964 block, domain, lang,
1965 is_a_field_of_this);
1966 }
1967
1968 /* See symtab.h. */
1969
1970 struct block_symbol
1971 lookup_symbol (const char *name, const struct block *block,
1972 domain_enum domain,
1973 struct field_of_this_result *is_a_field_of_this)
1974 {
1975 return lookup_symbol_in_language (name, block, domain,
1976 current_language->la_language,
1977 is_a_field_of_this);
1978 }
1979
1980 /* See symtab.h. */
1981
1982 struct block_symbol
1983 lookup_symbol_search_name (const char *search_name, const struct block *block,
1984 domain_enum domain)
1985 {
1986 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1987 block, domain, language_asm, NULL);
1988 }
1989
1990 /* See symtab.h. */
1991
1992 struct block_symbol
1993 lookup_language_this (const struct language_defn *lang,
1994 const struct block *block)
1995 {
1996 if (lang->name_of_this () == NULL || block == NULL)
1997 return {};
1998
1999 if (symbol_lookup_debug > 1)
2000 {
2001 struct objfile *objfile = block_objfile (block);
2002
2003 gdb_printf (gdb_stdlog,
2004 "lookup_language_this (%s, %s (objfile %s))",
2005 lang->name (), host_address_to_string (block),
2006 objfile_debug_name (objfile));
2007 }
2008
2009 while (block)
2010 {
2011 struct symbol *sym;
2012
2013 sym = block_lookup_symbol (block, lang->name_of_this (),
2014 symbol_name_match_type::SEARCH_NAME,
2015 VAR_DOMAIN);
2016 if (sym != NULL)
2017 {
2018 if (symbol_lookup_debug > 1)
2019 {
2020 gdb_printf (gdb_stdlog, " = %s (%s, block %s)\n",
2021 sym->print_name (),
2022 host_address_to_string (sym),
2023 host_address_to_string (block));
2024 }
2025 return (struct block_symbol) {sym, block};
2026 }
2027 if (block->function ())
2028 break;
2029 block = block->superblock ();
2030 }
2031
2032 if (symbol_lookup_debug > 1)
2033 gdb_printf (gdb_stdlog, " = NULL\n");
2034 return {};
2035 }
2036
2037 /* Given TYPE, a structure/union,
2038 return 1 if the component named NAME from the ultimate target
2039 structure/union is defined, otherwise, return 0. */
2040
2041 static int
2042 check_field (struct type *type, const char *name,
2043 struct field_of_this_result *is_a_field_of_this)
2044 {
2045 int i;
2046
2047 /* The type may be a stub. */
2048 type = check_typedef (type);
2049
2050 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
2051 {
2052 const char *t_field_name = type->field (i).name ();
2053
2054 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2055 {
2056 is_a_field_of_this->type = type;
2057 is_a_field_of_this->field = &type->field (i);
2058 return 1;
2059 }
2060 }
2061
2062 /* C++: If it was not found as a data field, then try to return it
2063 as a pointer to a method. */
2064
2065 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2066 {
2067 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2068 {
2069 is_a_field_of_this->type = type;
2070 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2071 return 1;
2072 }
2073 }
2074
2075 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2076 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2077 return 1;
2078
2079 return 0;
2080 }
2081
2082 /* Behave like lookup_symbol except that NAME is the natural name
2083 (e.g., demangled name) of the symbol that we're looking for. */
2084
2085 static struct block_symbol
2086 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2087 const struct block *block,
2088 const domain_enum domain, enum language language,
2089 struct field_of_this_result *is_a_field_of_this)
2090 {
2091 struct block_symbol result;
2092 const struct language_defn *langdef;
2093
2094 if (symbol_lookup_debug)
2095 {
2096 struct objfile *objfile = (block == nullptr
2097 ? nullptr : block_objfile (block));
2098
2099 gdb_printf (gdb_stdlog,
2100 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2101 name, host_address_to_string (block),
2102 objfile != NULL
2103 ? objfile_debug_name (objfile) : "NULL",
2104 domain_name (domain), language_str (language));
2105 }
2106
2107 /* Make sure we do something sensible with is_a_field_of_this, since
2108 the callers that set this parameter to some non-null value will
2109 certainly use it later. If we don't set it, the contents of
2110 is_a_field_of_this are undefined. */
2111 if (is_a_field_of_this != NULL)
2112 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2113
2114 /* Search specified block and its superiors. Don't search
2115 STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 result = lookup_local_symbol (name, match_type, block, domain, language);
2118 if (result.symbol != NULL)
2119 {
2120 if (symbol_lookup_debug)
2121 {
2122 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2123 host_address_to_string (result.symbol));
2124 }
2125 return result;
2126 }
2127
2128 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2129 check to see if NAME is a field of `this'. */
2130
2131 langdef = language_def (language);
2132
2133 /* Don't do this check if we are searching for a struct. It will
2134 not be found by check_field, but will be found by other
2135 means. */
2136 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2137 {
2138 result = lookup_language_this (langdef, block);
2139
2140 if (result.symbol)
2141 {
2142 struct type *t = result.symbol->type ();
2143
2144 /* I'm not really sure that type of this can ever
2145 be typedefed; just be safe. */
2146 t = check_typedef (t);
2147 if (t->is_pointer_or_reference ())
2148 t = TYPE_TARGET_TYPE (t);
2149
2150 if (t->code () != TYPE_CODE_STRUCT
2151 && t->code () != TYPE_CODE_UNION)
2152 error (_("Internal error: `%s' is not an aggregate"),
2153 langdef->name_of_this ());
2154
2155 if (check_field (t, name, is_a_field_of_this))
2156 {
2157 if (symbol_lookup_debug)
2158 {
2159 gdb_printf (gdb_stdlog,
2160 "lookup_symbol_aux (...) = NULL\n");
2161 }
2162 return {};
2163 }
2164 }
2165 }
2166
2167 /* Now do whatever is appropriate for LANGUAGE to look
2168 up static and global variables. */
2169
2170 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2171 if (result.symbol != NULL)
2172 {
2173 if (symbol_lookup_debug)
2174 {
2175 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2176 host_address_to_string (result.symbol));
2177 }
2178 return result;
2179 }
2180
2181 /* Now search all static file-level symbols. Not strictly correct,
2182 but more useful than an error. */
2183
2184 result = lookup_static_symbol (name, domain);
2185 if (symbol_lookup_debug)
2186 {
2187 gdb_printf (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2188 result.symbol != NULL
2189 ? host_address_to_string (result.symbol)
2190 : "NULL");
2191 }
2192 return result;
2193 }
2194
2195 /* Check to see if the symbol is defined in BLOCK or its superiors.
2196 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2197
2198 static struct block_symbol
2199 lookup_local_symbol (const char *name,
2200 symbol_name_match_type match_type,
2201 const struct block *block,
2202 const domain_enum domain,
2203 enum language language)
2204 {
2205 struct symbol *sym;
2206 const struct block *static_block = block_static_block (block);
2207 const char *scope = block_scope (block);
2208
2209 /* Check if either no block is specified or it's a global block. */
2210
2211 if (static_block == NULL)
2212 return {};
2213
2214 while (block != static_block)
2215 {
2216 sym = lookup_symbol_in_block (name, match_type, block, domain);
2217 if (sym != NULL)
2218 return (struct block_symbol) {sym, block};
2219
2220 if (language == language_cplus || language == language_fortran)
2221 {
2222 struct block_symbol blocksym
2223 = cp_lookup_symbol_imports_or_template (scope, name, block,
2224 domain);
2225
2226 if (blocksym.symbol != NULL)
2227 return blocksym;
2228 }
2229
2230 if (block->function () != NULL && block_inlined_p (block))
2231 break;
2232 block = block->superblock ();
2233 }
2234
2235 /* We've reached the end of the function without finding a result. */
2236
2237 return {};
2238 }
2239
2240 /* See symtab.h. */
2241
2242 struct symbol *
2243 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2244 const struct block *block,
2245 const domain_enum domain)
2246 {
2247 struct symbol *sym;
2248
2249 if (symbol_lookup_debug > 1)
2250 {
2251 struct objfile *objfile = (block == nullptr
2252 ? nullptr : block_objfile (block));
2253
2254 gdb_printf (gdb_stdlog,
2255 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2256 name, host_address_to_string (block),
2257 objfile_debug_name (objfile),
2258 domain_name (domain));
2259 }
2260
2261 sym = block_lookup_symbol (block, name, match_type, domain);
2262 if (sym)
2263 {
2264 if (symbol_lookup_debug > 1)
2265 {
2266 gdb_printf (gdb_stdlog, " = %s\n",
2267 host_address_to_string (sym));
2268 }
2269 return fixup_symbol_section (sym, NULL);
2270 }
2271
2272 if (symbol_lookup_debug > 1)
2273 gdb_printf (gdb_stdlog, " = NULL\n");
2274 return NULL;
2275 }
2276
2277 /* See symtab.h. */
2278
2279 struct block_symbol
2280 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2281 enum block_enum block_index,
2282 const char *name,
2283 const domain_enum domain)
2284 {
2285 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2286
2287 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2288 {
2289 struct block_symbol result
2290 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2291
2292 if (result.symbol != nullptr)
2293 return result;
2294 }
2295
2296 return {};
2297 }
2298
2299 /* Check to see if the symbol is defined in one of the OBJFILE's
2300 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2301 depending on whether or not we want to search global symbols or
2302 static symbols. */
2303
2304 static struct block_symbol
2305 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2306 enum block_enum block_index, const char *name,
2307 const domain_enum domain)
2308 {
2309 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2310
2311 if (symbol_lookup_debug > 1)
2312 {
2313 gdb_printf (gdb_stdlog,
2314 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2315 objfile_debug_name (objfile),
2316 block_index == GLOBAL_BLOCK
2317 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2318 name, domain_name (domain));
2319 }
2320
2321 struct block_symbol other;
2322 other.symbol = NULL;
2323 for (compunit_symtab *cust : objfile->compunits ())
2324 {
2325 const struct blockvector *bv;
2326 const struct block *block;
2327 struct block_symbol result;
2328
2329 bv = cust->blockvector ();
2330 block = bv->block (block_index);
2331 result.symbol = block_lookup_symbol_primary (block, name, domain);
2332 result.block = block;
2333 if (result.symbol == NULL)
2334 continue;
2335 if (best_symbol (result.symbol, domain))
2336 {
2337 other = result;
2338 break;
2339 }
2340 if (symbol_matches_domain (result.symbol->language (),
2341 result.symbol->domain (), domain))
2342 {
2343 struct symbol *better
2344 = better_symbol (other.symbol, result.symbol, domain);
2345 if (better != other.symbol)
2346 {
2347 other.symbol = better;
2348 other.block = block;
2349 }
2350 }
2351 }
2352
2353 if (other.symbol != NULL)
2354 {
2355 if (symbol_lookup_debug > 1)
2356 {
2357 gdb_printf (gdb_stdlog, " = %s (block %s)\n",
2358 host_address_to_string (other.symbol),
2359 host_address_to_string (other.block));
2360 }
2361 other.symbol = fixup_symbol_section (other.symbol, objfile);
2362 return other;
2363 }
2364
2365 if (symbol_lookup_debug > 1)
2366 gdb_printf (gdb_stdlog, " = NULL\n");
2367 return {};
2368 }
2369
2370 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2371 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2372 and all associated separate debug objfiles.
2373
2374 Normally we only look in OBJFILE, and not any separate debug objfiles
2375 because the outer loop will cause them to be searched too. This case is
2376 different. Here we're called from search_symbols where it will only
2377 call us for the objfile that contains a matching minsym. */
2378
2379 static struct block_symbol
2380 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2381 const char *linkage_name,
2382 domain_enum domain)
2383 {
2384 enum language lang = current_language->la_language;
2385 struct objfile *main_objfile;
2386
2387 demangle_result_storage storage;
2388 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2389
2390 if (objfile->separate_debug_objfile_backlink)
2391 main_objfile = objfile->separate_debug_objfile_backlink;
2392 else
2393 main_objfile = objfile;
2394
2395 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2396 {
2397 struct block_symbol result;
2398
2399 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2400 modified_name, domain);
2401 if (result.symbol == NULL)
2402 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2403 modified_name, domain);
2404 if (result.symbol != NULL)
2405 return result;
2406 }
2407
2408 return {};
2409 }
2410
2411 /* A helper function that throws an exception when a symbol was found
2412 in a psymtab but not in a symtab. */
2413
2414 static void ATTRIBUTE_NORETURN
2415 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2416 struct compunit_symtab *cust)
2417 {
2418 error (_("\
2419 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2420 %s may be an inlined function, or may be a template function\n \
2421 (if a template, try specifying an instantiation: %s<type>)."),
2422 block_index == GLOBAL_BLOCK ? "global" : "static",
2423 name,
2424 symtab_to_filename_for_display (cust->primary_filetab ()),
2425 name, name);
2426 }
2427
2428 /* A helper function for various lookup routines that interfaces with
2429 the "quick" symbol table functions. */
2430
2431 static struct block_symbol
2432 lookup_symbol_via_quick_fns (struct objfile *objfile,
2433 enum block_enum block_index, const char *name,
2434 const domain_enum domain)
2435 {
2436 struct compunit_symtab *cust;
2437 const struct blockvector *bv;
2438 const struct block *block;
2439 struct block_symbol result;
2440
2441 if (symbol_lookup_debug > 1)
2442 {
2443 gdb_printf (gdb_stdlog,
2444 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2445 objfile_debug_name (objfile),
2446 block_index == GLOBAL_BLOCK
2447 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2448 name, domain_name (domain));
2449 }
2450
2451 cust = objfile->lookup_symbol (block_index, name, domain);
2452 if (cust == NULL)
2453 {
2454 if (symbol_lookup_debug > 1)
2455 {
2456 gdb_printf (gdb_stdlog,
2457 "lookup_symbol_via_quick_fns (...) = NULL\n");
2458 }
2459 return {};
2460 }
2461
2462 bv = cust->blockvector ();
2463 block = bv->block (block_index);
2464 result.symbol = block_lookup_symbol (block, name,
2465 symbol_name_match_type::FULL, domain);
2466 if (result.symbol == NULL)
2467 error_in_psymtab_expansion (block_index, name, cust);
2468
2469 if (symbol_lookup_debug > 1)
2470 {
2471 gdb_printf (gdb_stdlog,
2472 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2473 host_address_to_string (result.symbol),
2474 host_address_to_string (block));
2475 }
2476
2477 result.symbol = fixup_symbol_section (result.symbol, objfile);
2478 result.block = block;
2479 return result;
2480 }
2481
2482 /* See language.h. */
2483
2484 struct block_symbol
2485 language_defn::lookup_symbol_nonlocal (const char *name,
2486 const struct block *block,
2487 const domain_enum domain) const
2488 {
2489 struct block_symbol result;
2490
2491 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2492 the current objfile. Searching the current objfile first is useful
2493 for both matching user expectations as well as performance. */
2494
2495 result = lookup_symbol_in_static_block (name, block, domain);
2496 if (result.symbol != NULL)
2497 return result;
2498
2499 /* If we didn't find a definition for a builtin type in the static block,
2500 search for it now. This is actually the right thing to do and can be
2501 a massive performance win. E.g., when debugging a program with lots of
2502 shared libraries we could search all of them only to find out the
2503 builtin type isn't defined in any of them. This is common for types
2504 like "void". */
2505 if (domain == VAR_DOMAIN)
2506 {
2507 struct gdbarch *gdbarch;
2508
2509 if (block == NULL)
2510 gdbarch = target_gdbarch ();
2511 else
2512 gdbarch = block_gdbarch (block);
2513 result.symbol = language_lookup_primitive_type_as_symbol (this,
2514 gdbarch, name);
2515 result.block = NULL;
2516 if (result.symbol != NULL)
2517 return result;
2518 }
2519
2520 return lookup_global_symbol (name, block, domain);
2521 }
2522
2523 /* See symtab.h. */
2524
2525 struct block_symbol
2526 lookup_symbol_in_static_block (const char *name,
2527 const struct block *block,
2528 const domain_enum domain)
2529 {
2530 const struct block *static_block = block_static_block (block);
2531 struct symbol *sym;
2532
2533 if (static_block == NULL)
2534 return {};
2535
2536 if (symbol_lookup_debug)
2537 {
2538 struct objfile *objfile = (block == nullptr
2539 ? nullptr : block_objfile (block));
2540
2541 gdb_printf (gdb_stdlog,
2542 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2543 " %s)\n",
2544 name,
2545 host_address_to_string (block),
2546 objfile_debug_name (objfile),
2547 domain_name (domain));
2548 }
2549
2550 sym = lookup_symbol_in_block (name,
2551 symbol_name_match_type::FULL,
2552 static_block, domain);
2553 if (symbol_lookup_debug)
2554 {
2555 gdb_printf (gdb_stdlog,
2556 "lookup_symbol_in_static_block (...) = %s\n",
2557 sym != NULL ? host_address_to_string (sym) : "NULL");
2558 }
2559 return (struct block_symbol) {sym, static_block};
2560 }
2561
2562 /* Perform the standard symbol lookup of NAME in OBJFILE:
2563 1) First search expanded symtabs, and if not found
2564 2) Search the "quick" symtabs (partial or .gdb_index).
2565 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2566
2567 static struct block_symbol
2568 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2569 const char *name, const domain_enum domain)
2570 {
2571 struct block_symbol result;
2572
2573 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2574
2575 if (symbol_lookup_debug)
2576 {
2577 gdb_printf (gdb_stdlog,
2578 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2579 objfile_debug_name (objfile),
2580 block_index == GLOBAL_BLOCK
2581 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2582 name, domain_name (domain));
2583 }
2584
2585 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2586 name, domain);
2587 if (result.symbol != NULL)
2588 {
2589 if (symbol_lookup_debug)
2590 {
2591 gdb_printf (gdb_stdlog,
2592 "lookup_symbol_in_objfile (...) = %s"
2593 " (in symtabs)\n",
2594 host_address_to_string (result.symbol));
2595 }
2596 return result;
2597 }
2598
2599 result = lookup_symbol_via_quick_fns (objfile, block_index,
2600 name, domain);
2601 if (symbol_lookup_debug)
2602 {
2603 gdb_printf (gdb_stdlog,
2604 "lookup_symbol_in_objfile (...) = %s%s\n",
2605 result.symbol != NULL
2606 ? host_address_to_string (result.symbol)
2607 : "NULL",
2608 result.symbol != NULL ? " (via quick fns)" : "");
2609 }
2610 return result;
2611 }
2612
2613 /* Find the language for partial symbol with NAME. */
2614
2615 static enum language
2616 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2617 {
2618 for (objfile *objfile : current_program_space->objfiles ())
2619 {
2620 bool symbol_found_p;
2621 enum language lang
2622 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2623 if (symbol_found_p)
2624 return lang;
2625 }
2626
2627 return language_unknown;
2628 }
2629
2630 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2631
2632 struct global_or_static_sym_lookup_data
2633 {
2634 /* The name of the symbol we are searching for. */
2635 const char *name;
2636
2637 /* The domain to use for our search. */
2638 domain_enum domain;
2639
2640 /* The block index in which to search. */
2641 enum block_enum block_index;
2642
2643 /* The field where the callback should store the symbol if found.
2644 It should be initialized to {NULL, NULL} before the search is started. */
2645 struct block_symbol result;
2646 };
2647
2648 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2649 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2650 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2651 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2652
2653 static int
2654 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2655 void *cb_data)
2656 {
2657 struct global_or_static_sym_lookup_data *data =
2658 (struct global_or_static_sym_lookup_data *) cb_data;
2659
2660 gdb_assert (data->result.symbol == NULL
2661 && data->result.block == NULL);
2662
2663 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2664 data->name, data->domain);
2665
2666 /* If we found a match, tell the iterator to stop. Otherwise,
2667 keep going. */
2668 return (data->result.symbol != NULL);
2669 }
2670
2671 /* This function contains the common code of lookup_{global,static}_symbol.
2672 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2673 the objfile to start the lookup in. */
2674
2675 static struct block_symbol
2676 lookup_global_or_static_symbol (const char *name,
2677 enum block_enum block_index,
2678 struct objfile *objfile,
2679 const domain_enum domain)
2680 {
2681 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2682 struct block_symbol result;
2683 struct global_or_static_sym_lookup_data lookup_data;
2684 struct block_symbol_cache *bsc;
2685 struct symbol_cache_slot *slot;
2686
2687 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2688 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2689
2690 /* First see if we can find the symbol in the cache.
2691 This works because we use the current objfile to qualify the lookup. */
2692 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2693 &bsc, &slot);
2694 if (result.symbol != NULL)
2695 {
2696 if (SYMBOL_LOOKUP_FAILED_P (result))
2697 return {};
2698 return result;
2699 }
2700
2701 /* Do a global search (of global blocks, heh). */
2702 if (result.symbol == NULL)
2703 {
2704 memset (&lookup_data, 0, sizeof (lookup_data));
2705 lookup_data.name = name;
2706 lookup_data.block_index = block_index;
2707 lookup_data.domain = domain;
2708 gdbarch_iterate_over_objfiles_in_search_order
2709 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2710 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2711 result = lookup_data.result;
2712 }
2713
2714 if (result.symbol != NULL)
2715 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2716 else
2717 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2718
2719 return result;
2720 }
2721
2722 /* See symtab.h. */
2723
2724 struct block_symbol
2725 lookup_static_symbol (const char *name, const domain_enum domain)
2726 {
2727 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2728 }
2729
2730 /* See symtab.h. */
2731
2732 struct block_symbol
2733 lookup_global_symbol (const char *name,
2734 const struct block *block,
2735 const domain_enum domain)
2736 {
2737 /* If a block was passed in, we want to search the corresponding
2738 global block first. This yields "more expected" behavior, and is
2739 needed to support 'FILENAME'::VARIABLE lookups. */
2740 const struct block *global_block = block_global_block (block);
2741 symbol *sym = NULL;
2742 if (global_block != nullptr)
2743 {
2744 sym = lookup_symbol_in_block (name,
2745 symbol_name_match_type::FULL,
2746 global_block, domain);
2747 if (sym != NULL && best_symbol (sym, domain))
2748 return { sym, global_block };
2749 }
2750
2751 struct objfile *objfile = nullptr;
2752 if (block != nullptr)
2753 {
2754 objfile = block_objfile (block);
2755 if (objfile->separate_debug_objfile_backlink != nullptr)
2756 objfile = objfile->separate_debug_objfile_backlink;
2757 }
2758
2759 block_symbol bs
2760 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2761 if (better_symbol (sym, bs.symbol, domain) == sym)
2762 return { sym, global_block };
2763 else
2764 return bs;
2765 }
2766
2767 bool
2768 symbol_matches_domain (enum language symbol_language,
2769 domain_enum symbol_domain,
2770 domain_enum domain)
2771 {
2772 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2773 Similarly, any Ada type declaration implicitly defines a typedef. */
2774 if (symbol_language == language_cplus
2775 || symbol_language == language_d
2776 || symbol_language == language_ada
2777 || symbol_language == language_rust)
2778 {
2779 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2780 && symbol_domain == STRUCT_DOMAIN)
2781 return true;
2782 }
2783 /* For all other languages, strict match is required. */
2784 return (symbol_domain == domain);
2785 }
2786
2787 /* See symtab.h. */
2788
2789 struct type *
2790 lookup_transparent_type (const char *name)
2791 {
2792 return current_language->lookup_transparent_type (name);
2793 }
2794
2795 /* A helper for basic_lookup_transparent_type that interfaces with the
2796 "quick" symbol table functions. */
2797
2798 static struct type *
2799 basic_lookup_transparent_type_quick (struct objfile *objfile,
2800 enum block_enum block_index,
2801 const char *name)
2802 {
2803 struct compunit_symtab *cust;
2804 const struct blockvector *bv;
2805 const struct block *block;
2806 struct symbol *sym;
2807
2808 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2809 if (cust == NULL)
2810 return NULL;
2811
2812 bv = cust->blockvector ();
2813 block = bv->block (block_index);
2814 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2815 block_find_non_opaque_type, NULL);
2816 if (sym == NULL)
2817 error_in_psymtab_expansion (block_index, name, cust);
2818 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2819 return sym->type ();
2820 }
2821
2822 /* Subroutine of basic_lookup_transparent_type to simplify it.
2823 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2824 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2825
2826 static struct type *
2827 basic_lookup_transparent_type_1 (struct objfile *objfile,
2828 enum block_enum block_index,
2829 const char *name)
2830 {
2831 const struct blockvector *bv;
2832 const struct block *block;
2833 const struct symbol *sym;
2834
2835 for (compunit_symtab *cust : objfile->compunits ())
2836 {
2837 bv = cust->blockvector ();
2838 block = bv->block (block_index);
2839 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2840 block_find_non_opaque_type, NULL);
2841 if (sym != NULL)
2842 {
2843 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2844 return sym->type ();
2845 }
2846 }
2847
2848 return NULL;
2849 }
2850
2851 /* The standard implementation of lookup_transparent_type. This code
2852 was modeled on lookup_symbol -- the parts not relevant to looking
2853 up types were just left out. In particular it's assumed here that
2854 types are available in STRUCT_DOMAIN and only in file-static or
2855 global blocks. */
2856
2857 struct type *
2858 basic_lookup_transparent_type (const char *name)
2859 {
2860 struct type *t;
2861
2862 /* Now search all the global symbols. Do the symtab's first, then
2863 check the psymtab's. If a psymtab indicates the existence
2864 of the desired name as a global, then do psymtab-to-symtab
2865 conversion on the fly and return the found symbol. */
2866
2867 for (objfile *objfile : current_program_space->objfiles ())
2868 {
2869 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2870 if (t)
2871 return t;
2872 }
2873
2874 for (objfile *objfile : current_program_space->objfiles ())
2875 {
2876 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2877 if (t)
2878 return t;
2879 }
2880
2881 /* Now search the static file-level symbols.
2882 Not strictly correct, but more useful than an error.
2883 Do the symtab's first, then
2884 check the psymtab's. If a psymtab indicates the existence
2885 of the desired name as a file-level static, then do psymtab-to-symtab
2886 conversion on the fly and return the found symbol. */
2887
2888 for (objfile *objfile : current_program_space->objfiles ())
2889 {
2890 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2891 if (t)
2892 return t;
2893 }
2894
2895 for (objfile *objfile : current_program_space->objfiles ())
2896 {
2897 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2898 if (t)
2899 return t;
2900 }
2901
2902 return (struct type *) 0;
2903 }
2904
2905 /* See symtab.h. */
2906
2907 bool
2908 iterate_over_symbols (const struct block *block,
2909 const lookup_name_info &name,
2910 const domain_enum domain,
2911 gdb::function_view<symbol_found_callback_ftype> callback)
2912 {
2913 struct block_iterator iter;
2914 struct symbol *sym;
2915
2916 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2917 {
2918 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
2919 {
2920 struct block_symbol block_sym = {sym, block};
2921
2922 if (!callback (&block_sym))
2923 return false;
2924 }
2925 }
2926 return true;
2927 }
2928
2929 /* See symtab.h. */
2930
2931 bool
2932 iterate_over_symbols_terminated
2933 (const struct block *block,
2934 const lookup_name_info &name,
2935 const domain_enum domain,
2936 gdb::function_view<symbol_found_callback_ftype> callback)
2937 {
2938 if (!iterate_over_symbols (block, name, domain, callback))
2939 return false;
2940 struct block_symbol block_sym = {nullptr, block};
2941 return callback (&block_sym);
2942 }
2943
2944 /* Find the compunit symtab associated with PC and SECTION.
2945 This will read in debug info as necessary. */
2946
2947 struct compunit_symtab *
2948 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2949 {
2950 struct compunit_symtab *best_cust = NULL;
2951 CORE_ADDR best_cust_range = 0;
2952 struct bound_minimal_symbol msymbol;
2953
2954 /* If we know that this is not a text address, return failure. This is
2955 necessary because we loop based on the block's high and low code
2956 addresses, which do not include the data ranges, and because
2957 we call find_pc_sect_psymtab which has a similar restriction based
2958 on the partial_symtab's texthigh and textlow. */
2959 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2960 if (msymbol.minsym && msymbol.minsym->data_p ())
2961 return NULL;
2962
2963 /* Search all symtabs for the one whose file contains our address, and which
2964 is the smallest of all the ones containing the address. This is designed
2965 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2966 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2967 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2968
2969 This happens for native ecoff format, where code from included files
2970 gets its own symtab. The symtab for the included file should have
2971 been read in already via the dependency mechanism.
2972 It might be swifter to create several symtabs with the same name
2973 like xcoff does (I'm not sure).
2974
2975 It also happens for objfiles that have their functions reordered.
2976 For these, the symtab we are looking for is not necessarily read in. */
2977
2978 for (objfile *obj_file : current_program_space->objfiles ())
2979 {
2980 for (compunit_symtab *cust : obj_file->compunits ())
2981 {
2982 const struct blockvector *bv = cust->blockvector ();
2983 const struct block *global_block = bv->global_block ();
2984 CORE_ADDR start = global_block->start ();
2985 CORE_ADDR end = global_block->end ();
2986 bool in_range_p = start <= pc && pc < end;
2987 if (!in_range_p)
2988 continue;
2989
2990 if (bv->map () != nullptr)
2991 {
2992 if (addrmap_find (bv->map (), pc) == nullptr)
2993 continue;
2994
2995 return cust;
2996 }
2997
2998 CORE_ADDR range = end - start;
2999 if (best_cust != nullptr
3000 && range >= best_cust_range)
3001 /* Cust doesn't have a smaller range than best_cust, skip it. */
3002 continue;
3003
3004 /* For an objfile that has its functions reordered,
3005 find_pc_psymtab will find the proper partial symbol table
3006 and we simply return its corresponding symtab. */
3007 /* In order to better support objfiles that contain both
3008 stabs and coff debugging info, we continue on if a psymtab
3009 can't be found. */
3010 if ((obj_file->flags & OBJF_REORDERED) != 0)
3011 {
3012 struct compunit_symtab *result;
3013
3014 result
3015 = obj_file->find_pc_sect_compunit_symtab (msymbol,
3016 pc,
3017 section,
3018 0);
3019 if (result != NULL)
3020 return result;
3021 }
3022
3023 if (section != 0)
3024 {
3025 struct symbol *sym = NULL;
3026 struct block_iterator iter;
3027
3028 for (int b_index = GLOBAL_BLOCK;
3029 b_index <= STATIC_BLOCK && sym == NULL;
3030 ++b_index)
3031 {
3032 const struct block *b = bv->block (b_index);
3033 ALL_BLOCK_SYMBOLS (b, iter, sym)
3034 {
3035 fixup_symbol_section (sym, obj_file);
3036 if (matching_obj_sections (sym->obj_section (obj_file),
3037 section))
3038 break;
3039 }
3040 }
3041 if (sym == NULL)
3042 continue; /* No symbol in this symtab matches
3043 section. */
3044 }
3045
3046 /* Cust is best found sofar, save it. */
3047 best_cust = cust;
3048 best_cust_range = range;
3049 }
3050 }
3051
3052 if (best_cust != NULL)
3053 return best_cust;
3054
3055 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3056
3057 for (objfile *objf : current_program_space->objfiles ())
3058 {
3059 struct compunit_symtab *result
3060 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
3061 if (result != NULL)
3062 return result;
3063 }
3064
3065 return NULL;
3066 }
3067
3068 /* Find the compunit symtab associated with PC.
3069 This will read in debug info as necessary.
3070 Backward compatibility, no section. */
3071
3072 struct compunit_symtab *
3073 find_pc_compunit_symtab (CORE_ADDR pc)
3074 {
3075 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3076 }
3077
3078 /* See symtab.h. */
3079
3080 struct symbol *
3081 find_symbol_at_address (CORE_ADDR address)
3082 {
3083 /* A helper function to search a given symtab for a symbol matching
3084 ADDR. */
3085 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3086 {
3087 const struct blockvector *bv = symtab->blockvector ();
3088
3089 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3090 {
3091 const struct block *b = bv->block (i);
3092 struct block_iterator iter;
3093 struct symbol *sym;
3094
3095 ALL_BLOCK_SYMBOLS (b, iter, sym)
3096 {
3097 if (sym->aclass () == LOC_STATIC
3098 && sym->value_address () == addr)
3099 return sym;
3100 }
3101 }
3102 return nullptr;
3103 };
3104
3105 for (objfile *objfile : current_program_space->objfiles ())
3106 {
3107 /* If this objfile was read with -readnow, then we need to
3108 search the symtabs directly. */
3109 if ((objfile->flags & OBJF_READNOW) != 0)
3110 {
3111 for (compunit_symtab *symtab : objfile->compunits ())
3112 {
3113 struct symbol *sym = search_symtab (symtab, address);
3114 if (sym != nullptr)
3115 return sym;
3116 }
3117 }
3118 else
3119 {
3120 struct compunit_symtab *symtab
3121 = objfile->find_compunit_symtab_by_address (address);
3122 if (symtab != NULL)
3123 {
3124 struct symbol *sym = search_symtab (symtab, address);
3125 if (sym != nullptr)
3126 return sym;
3127 }
3128 }
3129 }
3130
3131 return NULL;
3132 }
3133
3134 \f
3135
3136 /* Find the source file and line number for a given PC value and SECTION.
3137 Return a structure containing a symtab pointer, a line number,
3138 and a pc range for the entire source line.
3139 The value's .pc field is NOT the specified pc.
3140 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3141 use the line that ends there. Otherwise, in that case, the line
3142 that begins there is used. */
3143
3144 /* The big complication here is that a line may start in one file, and end just
3145 before the start of another file. This usually occurs when you #include
3146 code in the middle of a subroutine. To properly find the end of a line's PC
3147 range, we must search all symtabs associated with this compilation unit, and
3148 find the one whose first PC is closer than that of the next line in this
3149 symtab. */
3150
3151 struct symtab_and_line
3152 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3153 {
3154 struct compunit_symtab *cust;
3155 struct linetable *l;
3156 int len;
3157 struct linetable_entry *item;
3158 const struct blockvector *bv;
3159 struct bound_minimal_symbol msymbol;
3160
3161 /* Info on best line seen so far, and where it starts, and its file. */
3162
3163 struct linetable_entry *best = NULL;
3164 CORE_ADDR best_end = 0;
3165 struct symtab *best_symtab = 0;
3166
3167 /* Store here the first line number
3168 of a file which contains the line at the smallest pc after PC.
3169 If we don't find a line whose range contains PC,
3170 we will use a line one less than this,
3171 with a range from the start of that file to the first line's pc. */
3172 struct linetable_entry *alt = NULL;
3173
3174 /* Info on best line seen in this file. */
3175
3176 struct linetable_entry *prev;
3177
3178 /* If this pc is not from the current frame,
3179 it is the address of the end of a call instruction.
3180 Quite likely that is the start of the following statement.
3181 But what we want is the statement containing the instruction.
3182 Fudge the pc to make sure we get that. */
3183
3184 /* It's tempting to assume that, if we can't find debugging info for
3185 any function enclosing PC, that we shouldn't search for line
3186 number info, either. However, GAS can emit line number info for
3187 assembly files --- very helpful when debugging hand-written
3188 assembly code. In such a case, we'd have no debug info for the
3189 function, but we would have line info. */
3190
3191 if (notcurrent)
3192 pc -= 1;
3193
3194 /* elz: added this because this function returned the wrong
3195 information if the pc belongs to a stub (import/export)
3196 to call a shlib function. This stub would be anywhere between
3197 two functions in the target, and the line info was erroneously
3198 taken to be the one of the line before the pc. */
3199
3200 /* RT: Further explanation:
3201
3202 * We have stubs (trampolines) inserted between procedures.
3203 *
3204 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3205 * exists in the main image.
3206 *
3207 * In the minimal symbol table, we have a bunch of symbols
3208 * sorted by start address. The stubs are marked as "trampoline",
3209 * the others appear as text. E.g.:
3210 *
3211 * Minimal symbol table for main image
3212 * main: code for main (text symbol)
3213 * shr1: stub (trampoline symbol)
3214 * foo: code for foo (text symbol)
3215 * ...
3216 * Minimal symbol table for "shr1" image:
3217 * ...
3218 * shr1: code for shr1 (text symbol)
3219 * ...
3220 *
3221 * So the code below is trying to detect if we are in the stub
3222 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3223 * and if found, do the symbolization from the real-code address
3224 * rather than the stub address.
3225 *
3226 * Assumptions being made about the minimal symbol table:
3227 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3228 * if we're really in the trampoline.s If we're beyond it (say
3229 * we're in "foo" in the above example), it'll have a closer
3230 * symbol (the "foo" text symbol for example) and will not
3231 * return the trampoline.
3232 * 2. lookup_minimal_symbol_text() will find a real text symbol
3233 * corresponding to the trampoline, and whose address will
3234 * be different than the trampoline address. I put in a sanity
3235 * check for the address being the same, to avoid an
3236 * infinite recursion.
3237 */
3238 msymbol = lookup_minimal_symbol_by_pc (pc);
3239 if (msymbol.minsym != NULL)
3240 if (msymbol.minsym->type () == mst_solib_trampoline)
3241 {
3242 struct bound_minimal_symbol mfunsym
3243 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3244 NULL);
3245
3246 if (mfunsym.minsym == NULL)
3247 /* I eliminated this warning since it is coming out
3248 * in the following situation:
3249 * gdb shmain // test program with shared libraries
3250 * (gdb) break shr1 // function in shared lib
3251 * Warning: In stub for ...
3252 * In the above situation, the shared lib is not loaded yet,
3253 * so of course we can't find the real func/line info,
3254 * but the "break" still works, and the warning is annoying.
3255 * So I commented out the warning. RT */
3256 /* warning ("In stub for %s; unable to find real function/line info",
3257 msymbol->linkage_name ()); */
3258 ;
3259 /* fall through */
3260 else if (mfunsym.value_address ()
3261 == msymbol.value_address ())
3262 /* Avoid infinite recursion */
3263 /* See above comment about why warning is commented out. */
3264 /* warning ("In stub for %s; unable to find real function/line info",
3265 msymbol->linkage_name ()); */
3266 ;
3267 /* fall through */
3268 else
3269 {
3270 /* Detect an obvious case of infinite recursion. If this
3271 should occur, we'd like to know about it, so error out,
3272 fatally. */
3273 if (mfunsym.value_address () == pc)
3274 internal_error (__FILE__, __LINE__,
3275 _("Infinite recursion detected in find_pc_sect_line;"
3276 "please file a bug report"));
3277
3278 return find_pc_line (mfunsym.value_address (), 0);
3279 }
3280 }
3281
3282 symtab_and_line val;
3283 val.pspace = current_program_space;
3284
3285 cust = find_pc_sect_compunit_symtab (pc, section);
3286 if (cust == NULL)
3287 {
3288 /* If no symbol information, return previous pc. */
3289 if (notcurrent)
3290 pc++;
3291 val.pc = pc;
3292 return val;
3293 }
3294
3295 bv = cust->blockvector ();
3296
3297 /* Look at all the symtabs that share this blockvector.
3298 They all have the same apriori range, that we found was right;
3299 but they have different line tables. */
3300
3301 for (symtab *iter_s : cust->filetabs ())
3302 {
3303 /* Find the best line in this symtab. */
3304 l = iter_s->linetable ();
3305 if (!l)
3306 continue;
3307 len = l->nitems;
3308 if (len <= 0)
3309 {
3310 /* I think len can be zero if the symtab lacks line numbers
3311 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3312 I'm not sure which, and maybe it depends on the symbol
3313 reader). */
3314 continue;
3315 }
3316
3317 prev = NULL;
3318 item = l->item; /* Get first line info. */
3319
3320 /* Is this file's first line closer than the first lines of other files?
3321 If so, record this file, and its first line, as best alternate. */
3322 if (item->pc > pc && (!alt || item->pc < alt->pc))
3323 alt = item;
3324
3325 auto pc_compare = [](const CORE_ADDR & comp_pc,
3326 const struct linetable_entry & lhs)->bool
3327 {
3328 return comp_pc < lhs.pc;
3329 };
3330
3331 struct linetable_entry *first = item;
3332 struct linetable_entry *last = item + len;
3333 item = std::upper_bound (first, last, pc, pc_compare);
3334 if (item != first)
3335 prev = item - 1; /* Found a matching item. */
3336
3337 /* At this point, prev points at the line whose start addr is <= pc, and
3338 item points at the next line. If we ran off the end of the linetable
3339 (pc >= start of the last line), then prev == item. If pc < start of
3340 the first line, prev will not be set. */
3341
3342 /* Is this file's best line closer than the best in the other files?
3343 If so, record this file, and its best line, as best so far. Don't
3344 save prev if it represents the end of a function (i.e. line number
3345 0) instead of a real line. */
3346
3347 if (prev && prev->line && (!best || prev->pc > best->pc))
3348 {
3349 best = prev;
3350 best_symtab = iter_s;
3351
3352 /* If during the binary search we land on a non-statement entry,
3353 scan backward through entries at the same address to see if
3354 there is an entry marked as is-statement. In theory this
3355 duplication should have been removed from the line table
3356 during construction, this is just a double check. If the line
3357 table has had the duplication removed then this should be
3358 pretty cheap. */
3359 if (!best->is_stmt)
3360 {
3361 struct linetable_entry *tmp = best;
3362 while (tmp > first && (tmp - 1)->pc == tmp->pc
3363 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3364 --tmp;
3365 if (tmp->is_stmt)
3366 best = tmp;
3367 }
3368
3369 /* Discard BEST_END if it's before the PC of the current BEST. */
3370 if (best_end <= best->pc)
3371 best_end = 0;
3372 }
3373
3374 /* If another line (denoted by ITEM) is in the linetable and its
3375 PC is after BEST's PC, but before the current BEST_END, then
3376 use ITEM's PC as the new best_end. */
3377 if (best && item < last && item->pc > best->pc
3378 && (best_end == 0 || best_end > item->pc))
3379 best_end = item->pc;
3380 }
3381
3382 if (!best_symtab)
3383 {
3384 /* If we didn't find any line number info, just return zeros.
3385 We used to return alt->line - 1 here, but that could be
3386 anywhere; if we don't have line number info for this PC,
3387 don't make some up. */
3388 val.pc = pc;
3389 }
3390 else if (best->line == 0)
3391 {
3392 /* If our best fit is in a range of PC's for which no line
3393 number info is available (line number is zero) then we didn't
3394 find any valid line information. */
3395 val.pc = pc;
3396 }
3397 else
3398 {
3399 val.is_stmt = best->is_stmt;
3400 val.symtab = best_symtab;
3401 val.line = best->line;
3402 val.pc = best->pc;
3403 if (best_end && (!alt || best_end < alt->pc))
3404 val.end = best_end;
3405 else if (alt)
3406 val.end = alt->pc;
3407 else
3408 val.end = bv->global_block ()->end ();
3409 }
3410 val.section = section;
3411 return val;
3412 }
3413
3414 /* Backward compatibility (no section). */
3415
3416 struct symtab_and_line
3417 find_pc_line (CORE_ADDR pc, int notcurrent)
3418 {
3419 struct obj_section *section;
3420
3421 section = find_pc_overlay (pc);
3422 if (!pc_in_unmapped_range (pc, section))
3423 return find_pc_sect_line (pc, section, notcurrent);
3424
3425 /* If the original PC was an unmapped address then we translate this to a
3426 mapped address in order to lookup the sal. However, as the user
3427 passed us an unmapped address it makes more sense to return a result
3428 that has the pc and end fields translated to unmapped addresses. */
3429 pc = overlay_mapped_address (pc, section);
3430 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3431 sal.pc = overlay_unmapped_address (sal.pc, section);
3432 sal.end = overlay_unmapped_address (sal.end, section);
3433 return sal;
3434 }
3435
3436 /* See symtab.h. */
3437
3438 struct symtab *
3439 find_pc_line_symtab (CORE_ADDR pc)
3440 {
3441 struct symtab_and_line sal;
3442
3443 /* This always passes zero for NOTCURRENT to find_pc_line.
3444 There are currently no callers that ever pass non-zero. */
3445 sal = find_pc_line (pc, 0);
3446 return sal.symtab;
3447 }
3448 \f
3449 /* Find line number LINE in any symtab whose name is the same as
3450 SYMTAB.
3451
3452 If found, return the symtab that contains the linetable in which it was
3453 found, set *INDEX to the index in the linetable of the best entry
3454 found, and set *EXACT_MATCH to true if the value returned is an
3455 exact match.
3456
3457 If not found, return NULL. */
3458
3459 struct symtab *
3460 find_line_symtab (struct symtab *sym_tab, int line,
3461 int *index, bool *exact_match)
3462 {
3463 int exact = 0; /* Initialized here to avoid a compiler warning. */
3464
3465 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3466 so far seen. */
3467
3468 int best_index;
3469 struct linetable *best_linetable;
3470 struct symtab *best_symtab;
3471
3472 /* First try looking it up in the given symtab. */
3473 best_linetable = sym_tab->linetable ();
3474 best_symtab = sym_tab;
3475 best_index = find_line_common (best_linetable, line, &exact, 0);
3476 if (best_index < 0 || !exact)
3477 {
3478 /* Didn't find an exact match. So we better keep looking for
3479 another symtab with the same name. In the case of xcoff,
3480 multiple csects for one source file (produced by IBM's FORTRAN
3481 compiler) produce multiple symtabs (this is unavoidable
3482 assuming csects can be at arbitrary places in memory and that
3483 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3484
3485 /* BEST is the smallest linenumber > LINE so far seen,
3486 or 0 if none has been seen so far.
3487 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3488 int best;
3489
3490 if (best_index >= 0)
3491 best = best_linetable->item[best_index].line;
3492 else
3493 best = 0;
3494
3495 for (objfile *objfile : current_program_space->objfiles ())
3496 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3497
3498 for (objfile *objfile : current_program_space->objfiles ())
3499 {
3500 for (compunit_symtab *cu : objfile->compunits ())
3501 {
3502 for (symtab *s : cu->filetabs ())
3503 {
3504 struct linetable *l;
3505 int ind;
3506
3507 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3508 continue;
3509 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3510 symtab_to_fullname (s)) != 0)
3511 continue;
3512 l = s->linetable ();
3513 ind = find_line_common (l, line, &exact, 0);
3514 if (ind >= 0)
3515 {
3516 if (exact)
3517 {
3518 best_index = ind;
3519 best_linetable = l;
3520 best_symtab = s;
3521 goto done;
3522 }
3523 if (best == 0 || l->item[ind].line < best)
3524 {
3525 best = l->item[ind].line;
3526 best_index = ind;
3527 best_linetable = l;
3528 best_symtab = s;
3529 }
3530 }
3531 }
3532 }
3533 }
3534 }
3535 done:
3536 if (best_index < 0)
3537 return NULL;
3538
3539 if (index)
3540 *index = best_index;
3541 if (exact_match)
3542 *exact_match = (exact != 0);
3543
3544 return best_symtab;
3545 }
3546
3547 /* Given SYMTAB, returns all the PCs function in the symtab that
3548 exactly match LINE. Returns an empty vector if there are no exact
3549 matches, but updates BEST_ITEM in this case. */
3550
3551 std::vector<CORE_ADDR>
3552 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3553 struct linetable_entry **best_item)
3554 {
3555 int start = 0;
3556 std::vector<CORE_ADDR> result;
3557
3558 /* First, collect all the PCs that are at this line. */
3559 while (1)
3560 {
3561 int was_exact;
3562 int idx;
3563
3564 idx = find_line_common (symtab->linetable (), line, &was_exact,
3565 start);
3566 if (idx < 0)
3567 break;
3568
3569 if (!was_exact)
3570 {
3571 struct linetable_entry *item = &symtab->linetable ()->item[idx];
3572
3573 if (*best_item == NULL
3574 || (item->line < (*best_item)->line && item->is_stmt))
3575 *best_item = item;
3576
3577 break;
3578 }
3579
3580 result.push_back (symtab->linetable ()->item[idx].pc);
3581 start = idx + 1;
3582 }
3583
3584 return result;
3585 }
3586
3587 \f
3588 /* Set the PC value for a given source file and line number and return true.
3589 Returns false for invalid line number (and sets the PC to 0).
3590 The source file is specified with a struct symtab. */
3591
3592 bool
3593 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3594 {
3595 struct linetable *l;
3596 int ind;
3597
3598 *pc = 0;
3599 if (symtab == 0)
3600 return false;
3601
3602 symtab = find_line_symtab (symtab, line, &ind, NULL);
3603 if (symtab != NULL)
3604 {
3605 l = symtab->linetable ();
3606 *pc = l->item[ind].pc;
3607 return true;
3608 }
3609 else
3610 return false;
3611 }
3612
3613 /* Find the range of pc values in a line.
3614 Store the starting pc of the line into *STARTPTR
3615 and the ending pc (start of next line) into *ENDPTR.
3616 Returns true to indicate success.
3617 Returns false if could not find the specified line. */
3618
3619 bool
3620 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3621 CORE_ADDR *endptr)
3622 {
3623 CORE_ADDR startaddr;
3624 struct symtab_and_line found_sal;
3625
3626 startaddr = sal.pc;
3627 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3628 return false;
3629
3630 /* This whole function is based on address. For example, if line 10 has
3631 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3632 "info line *0x123" should say the line goes from 0x100 to 0x200
3633 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3634 This also insures that we never give a range like "starts at 0x134
3635 and ends at 0x12c". */
3636
3637 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3638 if (found_sal.line != sal.line)
3639 {
3640 /* The specified line (sal) has zero bytes. */
3641 *startptr = found_sal.pc;
3642 *endptr = found_sal.pc;
3643 }
3644 else
3645 {
3646 *startptr = found_sal.pc;
3647 *endptr = found_sal.end;
3648 }
3649 return true;
3650 }
3651
3652 /* Given a line table and a line number, return the index into the line
3653 table for the pc of the nearest line whose number is >= the specified one.
3654 Return -1 if none is found. The value is >= 0 if it is an index.
3655 START is the index at which to start searching the line table.
3656
3657 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3658
3659 static int
3660 find_line_common (struct linetable *l, int lineno,
3661 int *exact_match, int start)
3662 {
3663 int i;
3664 int len;
3665
3666 /* BEST is the smallest linenumber > LINENO so far seen,
3667 or 0 if none has been seen so far.
3668 BEST_INDEX identifies the item for it. */
3669
3670 int best_index = -1;
3671 int best = 0;
3672
3673 *exact_match = 0;
3674
3675 if (lineno <= 0)
3676 return -1;
3677 if (l == 0)
3678 return -1;
3679
3680 len = l->nitems;
3681 for (i = start; i < len; i++)
3682 {
3683 struct linetable_entry *item = &(l->item[i]);
3684
3685 /* Ignore non-statements. */
3686 if (!item->is_stmt)
3687 continue;
3688
3689 if (item->line == lineno)
3690 {
3691 /* Return the first (lowest address) entry which matches. */
3692 *exact_match = 1;
3693 return i;
3694 }
3695
3696 if (item->line > lineno && (best == 0 || item->line < best))
3697 {
3698 best = item->line;
3699 best_index = i;
3700 }
3701 }
3702
3703 /* If we got here, we didn't get an exact match. */
3704 return best_index;
3705 }
3706
3707 bool
3708 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3709 {
3710 struct symtab_and_line sal;
3711
3712 sal = find_pc_line (pc, 0);
3713 *startptr = sal.pc;
3714 *endptr = sal.end;
3715 return sal.symtab != 0;
3716 }
3717
3718 /* Helper for find_function_start_sal. Does most of the work, except
3719 setting the sal's symbol. */
3720
3721 static symtab_and_line
3722 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3723 bool funfirstline)
3724 {
3725 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3726
3727 if (funfirstline && sal.symtab != NULL
3728 && (sal.symtab->compunit ()->locations_valid ()
3729 || sal.symtab->language () == language_asm))
3730 {
3731 struct gdbarch *gdbarch = sal.symtab->compunit ()->objfile ()->arch ();
3732
3733 sal.pc = func_addr;
3734 if (gdbarch_skip_entrypoint_p (gdbarch))
3735 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3736 return sal;
3737 }
3738
3739 /* We always should have a line for the function start address.
3740 If we don't, something is odd. Create a plain SAL referring
3741 just the PC and hope that skip_prologue_sal (if requested)
3742 can find a line number for after the prologue. */
3743 if (sal.pc < func_addr)
3744 {
3745 sal = {};
3746 sal.pspace = current_program_space;
3747 sal.pc = func_addr;
3748 sal.section = section;
3749 }
3750
3751 if (funfirstline)
3752 skip_prologue_sal (&sal);
3753
3754 return sal;
3755 }
3756
3757 /* See symtab.h. */
3758
3759 symtab_and_line
3760 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3761 bool funfirstline)
3762 {
3763 symtab_and_line sal
3764 = find_function_start_sal_1 (func_addr, section, funfirstline);
3765
3766 /* find_function_start_sal_1 does a linetable search, so it finds
3767 the symtab and linenumber, but not a symbol. Fill in the
3768 function symbol too. */
3769 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3770
3771 return sal;
3772 }
3773
3774 /* See symtab.h. */
3775
3776 symtab_and_line
3777 find_function_start_sal (symbol *sym, bool funfirstline)
3778 {
3779 fixup_symbol_section (sym, NULL);
3780 symtab_and_line sal
3781 = find_function_start_sal_1 (sym->value_block ()->entry_pc (),
3782 sym->obj_section (sym->objfile ()),
3783 funfirstline);
3784 sal.symbol = sym;
3785 return sal;
3786 }
3787
3788
3789 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3790 address for that function that has an entry in SYMTAB's line info
3791 table. If such an entry cannot be found, return FUNC_ADDR
3792 unaltered. */
3793
3794 static CORE_ADDR
3795 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3796 {
3797 CORE_ADDR func_start, func_end;
3798 struct linetable *l;
3799 int i;
3800
3801 /* Give up if this symbol has no lineinfo table. */
3802 l = symtab->linetable ();
3803 if (l == NULL)
3804 return func_addr;
3805
3806 /* Get the range for the function's PC values, or give up if we
3807 cannot, for some reason. */
3808 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3809 return func_addr;
3810
3811 /* Linetable entries are ordered by PC values, see the commentary in
3812 symtab.h where `struct linetable' is defined. Thus, the first
3813 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3814 address we are looking for. */
3815 for (i = 0; i < l->nitems; i++)
3816 {
3817 struct linetable_entry *item = &(l->item[i]);
3818
3819 /* Don't use line numbers of zero, they mark special entries in
3820 the table. See the commentary on symtab.h before the
3821 definition of struct linetable. */
3822 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3823 return item->pc;
3824 }
3825
3826 return func_addr;
3827 }
3828
3829 /* Try to locate the address where a breakpoint should be placed past the
3830 prologue of function starting at FUNC_ADDR using the line table.
3831
3832 Return the address associated with the first entry in the line-table for
3833 the function starting at FUNC_ADDR which has prologue_end set to true if
3834 such entry exist, otherwise return an empty optional. */
3835
3836 static gdb::optional<CORE_ADDR>
3837 skip_prologue_using_linetable (CORE_ADDR func_addr)
3838 {
3839 CORE_ADDR start_pc, end_pc;
3840
3841 if (!find_pc_partial_function (func_addr, nullptr, &start_pc, &end_pc))
3842 return {};
3843
3844 const struct symtab_and_line prologue_sal = find_pc_line (start_pc, 0);
3845 if (prologue_sal.symtab != nullptr
3846 && prologue_sal.symtab->language () != language_asm)
3847 {
3848 struct linetable *linetable = prologue_sal.symtab->linetable ();
3849
3850 auto it = std::lower_bound
3851 (linetable->item, linetable->item + linetable->nitems, start_pc,
3852 [] (const linetable_entry &lte, CORE_ADDR pc) -> bool
3853 {
3854 return lte.pc < pc;
3855 });
3856
3857 for (;
3858 it < linetable->item + linetable->nitems && it->pc <= end_pc;
3859 it++)
3860 if (it->prologue_end)
3861 return {it->pc};
3862 }
3863
3864 return {};
3865 }
3866
3867 /* Adjust SAL to the first instruction past the function prologue.
3868 If the PC was explicitly specified, the SAL is not changed.
3869 If the line number was explicitly specified then the SAL can still be
3870 updated, unless the language for SAL is assembler, in which case the SAL
3871 will be left unchanged.
3872 If SAL is already past the prologue, then do nothing. */
3873
3874 void
3875 skip_prologue_sal (struct symtab_and_line *sal)
3876 {
3877 struct symbol *sym;
3878 struct symtab_and_line start_sal;
3879 CORE_ADDR pc, saved_pc;
3880 struct obj_section *section;
3881 const char *name;
3882 struct objfile *objfile;
3883 struct gdbarch *gdbarch;
3884 const struct block *b, *function_block;
3885 int force_skip, skip;
3886
3887 /* Do not change the SAL if PC was specified explicitly. */
3888 if (sal->explicit_pc)
3889 return;
3890
3891 /* In assembly code, if the user asks for a specific line then we should
3892 not adjust the SAL. The user already has instruction level
3893 visibility in this case, so selecting a line other than one requested
3894 is likely to be the wrong choice. */
3895 if (sal->symtab != nullptr
3896 && sal->explicit_line
3897 && sal->symtab->language () == language_asm)
3898 return;
3899
3900 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3901
3902 switch_to_program_space_and_thread (sal->pspace);
3903
3904 sym = find_pc_sect_function (sal->pc, sal->section);
3905 if (sym != NULL)
3906 {
3907 fixup_symbol_section (sym, NULL);
3908
3909 objfile = sym->objfile ();
3910 pc = sym->value_block ()->entry_pc ();
3911 section = sym->obj_section (objfile);
3912 name = sym->linkage_name ();
3913 }
3914 else
3915 {
3916 struct bound_minimal_symbol msymbol
3917 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3918
3919 if (msymbol.minsym == NULL)
3920 return;
3921
3922 objfile = msymbol.objfile;
3923 pc = msymbol.value_address ();
3924 section = msymbol.minsym->obj_section (objfile);
3925 name = msymbol.minsym->linkage_name ();
3926 }
3927
3928 gdbarch = objfile->arch ();
3929
3930 /* Process the prologue in two passes. In the first pass try to skip the
3931 prologue (SKIP is true) and verify there is a real need for it (indicated
3932 by FORCE_SKIP). If no such reason was found run a second pass where the
3933 prologue is not skipped (SKIP is false). */
3934
3935 skip = 1;
3936 force_skip = 1;
3937
3938 /* Be conservative - allow direct PC (without skipping prologue) only if we
3939 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3940 have to be set by the caller so we use SYM instead. */
3941 if (sym != NULL
3942 && sym->symtab ()->compunit ()->locations_valid ())
3943 force_skip = 0;
3944
3945 saved_pc = pc;
3946 do
3947 {
3948 pc = saved_pc;
3949
3950 /* Check if the compiler explicitly indicated where a breakpoint should
3951 be placed to skip the prologue. */
3952 if (!ignore_prologue_end_flag && skip)
3953 {
3954 gdb::optional<CORE_ADDR> linetable_pc
3955 = skip_prologue_using_linetable (pc);
3956 if (linetable_pc)
3957 {
3958 pc = *linetable_pc;
3959 start_sal = find_pc_sect_line (pc, section, 0);
3960 force_skip = 1;
3961 continue;
3962 }
3963 }
3964
3965 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3966 so that gdbarch_skip_prologue has something unique to work on. */
3967 if (section_is_overlay (section) && !section_is_mapped (section))
3968 pc = overlay_unmapped_address (pc, section);
3969
3970 /* Skip "first line" of function (which is actually its prologue). */
3971 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3972 if (gdbarch_skip_entrypoint_p (gdbarch))
3973 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3974 if (skip)
3975 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3976
3977 /* For overlays, map pc back into its mapped VMA range. */
3978 pc = overlay_mapped_address (pc, section);
3979
3980 /* Calculate line number. */
3981 start_sal = find_pc_sect_line (pc, section, 0);
3982
3983 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3984 line is still part of the same function. */
3985 if (skip && start_sal.pc != pc
3986 && (sym ? (sym->value_block ()->entry_pc () <= start_sal.end
3987 && start_sal.end < sym->value_block()->end ())
3988 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3989 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3990 {
3991 /* First pc of next line */
3992 pc = start_sal.end;
3993 /* Recalculate the line number (might not be N+1). */
3994 start_sal = find_pc_sect_line (pc, section, 0);
3995 }
3996
3997 /* On targets with executable formats that don't have a concept of
3998 constructors (ELF with .init has, PE doesn't), gcc emits a call
3999 to `__main' in `main' between the prologue and before user
4000 code. */
4001 if (gdbarch_skip_main_prologue_p (gdbarch)
4002 && name && strcmp_iw (name, "main") == 0)
4003 {
4004 pc = gdbarch_skip_main_prologue (gdbarch, pc);
4005 /* Recalculate the line number (might not be N+1). */
4006 start_sal = find_pc_sect_line (pc, section, 0);
4007 force_skip = 1;
4008 }
4009 }
4010 while (!force_skip && skip--);
4011
4012 /* If we still don't have a valid source line, try to find the first
4013 PC in the lineinfo table that belongs to the same function. This
4014 happens with COFF debug info, which does not seem to have an
4015 entry in lineinfo table for the code after the prologue which has
4016 no direct relation to source. For example, this was found to be
4017 the case with the DJGPP target using "gcc -gcoff" when the
4018 compiler inserted code after the prologue to make sure the stack
4019 is aligned. */
4020 if (!force_skip && sym && start_sal.symtab == NULL)
4021 {
4022 pc = skip_prologue_using_lineinfo (pc, sym->symtab ());
4023 /* Recalculate the line number. */
4024 start_sal = find_pc_sect_line (pc, section, 0);
4025 }
4026
4027 /* If we're already past the prologue, leave SAL unchanged. Otherwise
4028 forward SAL to the end of the prologue. */
4029 if (sal->pc >= pc)
4030 return;
4031
4032 sal->pc = pc;
4033 sal->section = section;
4034 sal->symtab = start_sal.symtab;
4035 sal->line = start_sal.line;
4036 sal->end = start_sal.end;
4037
4038 /* Check if we are now inside an inlined function. If we can,
4039 use the call site of the function instead. */
4040 b = block_for_pc_sect (sal->pc, sal->section);
4041 function_block = NULL;
4042 while (b != NULL)
4043 {
4044 if (b->function () != NULL && block_inlined_p (b))
4045 function_block = b;
4046 else if (b->function () != NULL)
4047 break;
4048 b = b->superblock ();
4049 }
4050 if (function_block != NULL
4051 && function_block->function ()->line () != 0)
4052 {
4053 sal->line = function_block->function ()->line ();
4054 sal->symtab = function_block->function ()->symtab ();
4055 }
4056 }
4057
4058 /* Given PC at the function's start address, attempt to find the
4059 prologue end using SAL information. Return zero if the skip fails.
4060
4061 A non-optimized prologue traditionally has one SAL for the function
4062 and a second for the function body. A single line function has
4063 them both pointing at the same line.
4064
4065 An optimized prologue is similar but the prologue may contain
4066 instructions (SALs) from the instruction body. Need to skip those
4067 while not getting into the function body.
4068
4069 The functions end point and an increasing SAL line are used as
4070 indicators of the prologue's endpoint.
4071
4072 This code is based on the function refine_prologue_limit
4073 (found in ia64). */
4074
4075 CORE_ADDR
4076 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4077 {
4078 struct symtab_and_line prologue_sal;
4079 CORE_ADDR start_pc;
4080 CORE_ADDR end_pc;
4081 const struct block *bl;
4082
4083 /* Get an initial range for the function. */
4084 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4085 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4086
4087 prologue_sal = find_pc_line (start_pc, 0);
4088 if (prologue_sal.line != 0)
4089 {
4090 /* For languages other than assembly, treat two consecutive line
4091 entries at the same address as a zero-instruction prologue.
4092 The GNU assembler emits separate line notes for each instruction
4093 in a multi-instruction macro, but compilers generally will not
4094 do this. */
4095 if (prologue_sal.symtab->language () != language_asm)
4096 {
4097 struct linetable *linetable = prologue_sal.symtab->linetable ();
4098 int idx = 0;
4099
4100 /* Skip any earlier lines, and any end-of-sequence marker
4101 from a previous function. */
4102 while (linetable->item[idx].pc != prologue_sal.pc
4103 || linetable->item[idx].line == 0)
4104 idx++;
4105
4106 if (idx+1 < linetable->nitems
4107 && linetable->item[idx+1].line != 0
4108 && linetable->item[idx+1].pc == start_pc)
4109 return start_pc;
4110 }
4111
4112 /* If there is only one sal that covers the entire function,
4113 then it is probably a single line function, like
4114 "foo(){}". */
4115 if (prologue_sal.end >= end_pc)
4116 return 0;
4117
4118 while (prologue_sal.end < end_pc)
4119 {
4120 struct symtab_and_line sal;
4121
4122 sal = find_pc_line (prologue_sal.end, 0);
4123 if (sal.line == 0)
4124 break;
4125 /* Assume that a consecutive SAL for the same (or larger)
4126 line mark the prologue -> body transition. */
4127 if (sal.line >= prologue_sal.line)
4128 break;
4129 /* Likewise if we are in a different symtab altogether
4130 (e.g. within a file included via #include).  */
4131 if (sal.symtab != prologue_sal.symtab)
4132 break;
4133
4134 /* The line number is smaller. Check that it's from the
4135 same function, not something inlined. If it's inlined,
4136 then there is no point comparing the line numbers. */
4137 bl = block_for_pc (prologue_sal.end);
4138 while (bl)
4139 {
4140 if (block_inlined_p (bl))
4141 break;
4142 if (bl->function ())
4143 {
4144 bl = NULL;
4145 break;
4146 }
4147 bl = bl->superblock ();
4148 }
4149 if (bl != NULL)
4150 break;
4151
4152 /* The case in which compiler's optimizer/scheduler has
4153 moved instructions into the prologue. We look ahead in
4154 the function looking for address ranges whose
4155 corresponding line number is less the first one that we
4156 found for the function. This is more conservative then
4157 refine_prologue_limit which scans a large number of SALs
4158 looking for any in the prologue. */
4159 prologue_sal = sal;
4160 }
4161 }
4162
4163 if (prologue_sal.end < end_pc)
4164 /* Return the end of this line, or zero if we could not find a
4165 line. */
4166 return prologue_sal.end;
4167 else
4168 /* Don't return END_PC, which is past the end of the function. */
4169 return prologue_sal.pc;
4170 }
4171
4172 /* See symtab.h. */
4173
4174 symbol *
4175 find_function_alias_target (bound_minimal_symbol msymbol)
4176 {
4177 CORE_ADDR func_addr;
4178 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4179 return NULL;
4180
4181 symbol *sym = find_pc_function (func_addr);
4182 if (sym != NULL
4183 && sym->aclass () == LOC_BLOCK
4184 && sym->value_block ()->entry_pc () == func_addr)
4185 return sym;
4186
4187 return NULL;
4188 }
4189
4190 \f
4191 /* If P is of the form "operator[ \t]+..." where `...' is
4192 some legitimate operator text, return a pointer to the
4193 beginning of the substring of the operator text.
4194 Otherwise, return "". */
4195
4196 static const char *
4197 operator_chars (const char *p, const char **end)
4198 {
4199 *end = "";
4200 if (!startswith (p, CP_OPERATOR_STR))
4201 return *end;
4202 p += CP_OPERATOR_LEN;
4203
4204 /* Don't get faked out by `operator' being part of a longer
4205 identifier. */
4206 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4207 return *end;
4208
4209 /* Allow some whitespace between `operator' and the operator symbol. */
4210 while (*p == ' ' || *p == '\t')
4211 p++;
4212
4213 /* Recognize 'operator TYPENAME'. */
4214
4215 if (isalpha (*p) || *p == '_' || *p == '$')
4216 {
4217 const char *q = p + 1;
4218
4219 while (isalnum (*q) || *q == '_' || *q == '$')
4220 q++;
4221 *end = q;
4222 return p;
4223 }
4224
4225 while (*p)
4226 switch (*p)
4227 {
4228 case '\\': /* regexp quoting */
4229 if (p[1] == '*')
4230 {
4231 if (p[2] == '=') /* 'operator\*=' */
4232 *end = p + 3;
4233 else /* 'operator\*' */
4234 *end = p + 2;
4235 return p;
4236 }
4237 else if (p[1] == '[')
4238 {
4239 if (p[2] == ']')
4240 error (_("mismatched quoting on brackets, "
4241 "try 'operator\\[\\]'"));
4242 else if (p[2] == '\\' && p[3] == ']')
4243 {
4244 *end = p + 4; /* 'operator\[\]' */
4245 return p;
4246 }
4247 else
4248 error (_("nothing is allowed between '[' and ']'"));
4249 }
4250 else
4251 {
4252 /* Gratuitous quote: skip it and move on. */
4253 p++;
4254 continue;
4255 }
4256 break;
4257 case '!':
4258 case '=':
4259 case '*':
4260 case '/':
4261 case '%':
4262 case '^':
4263 if (p[1] == '=')
4264 *end = p + 2;
4265 else
4266 *end = p + 1;
4267 return p;
4268 case '<':
4269 case '>':
4270 case '+':
4271 case '-':
4272 case '&':
4273 case '|':
4274 if (p[0] == '-' && p[1] == '>')
4275 {
4276 /* Struct pointer member operator 'operator->'. */
4277 if (p[2] == '*')
4278 {
4279 *end = p + 3; /* 'operator->*' */
4280 return p;
4281 }
4282 else if (p[2] == '\\')
4283 {
4284 *end = p + 4; /* Hopefully 'operator->\*' */
4285 return p;
4286 }
4287 else
4288 {
4289 *end = p + 2; /* 'operator->' */
4290 return p;
4291 }
4292 }
4293 if (p[1] == '=' || p[1] == p[0])
4294 *end = p + 2;
4295 else
4296 *end = p + 1;
4297 return p;
4298 case '~':
4299 case ',':
4300 *end = p + 1;
4301 return p;
4302 case '(':
4303 if (p[1] != ')')
4304 error (_("`operator ()' must be specified "
4305 "without whitespace in `()'"));
4306 *end = p + 2;
4307 return p;
4308 case '?':
4309 if (p[1] != ':')
4310 error (_("`operator ?:' must be specified "
4311 "without whitespace in `?:'"));
4312 *end = p + 2;
4313 return p;
4314 case '[':
4315 if (p[1] != ']')
4316 error (_("`operator []' must be specified "
4317 "without whitespace in `[]'"));
4318 *end = p + 2;
4319 return p;
4320 default:
4321 error (_("`operator %s' not supported"), p);
4322 break;
4323 }
4324
4325 *end = "";
4326 return *end;
4327 }
4328 \f
4329
4330 /* See class declaration. */
4331
4332 info_sources_filter::info_sources_filter (match_on match_type,
4333 const char *regexp)
4334 : m_match_type (match_type),
4335 m_regexp (regexp)
4336 {
4337 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4338 if (m_regexp != nullptr && *m_regexp != '\0')
4339 {
4340 gdb_assert (m_regexp != nullptr);
4341
4342 int cflags = REG_NOSUB;
4343 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4344 cflags |= REG_ICASE;
4345 #endif
4346 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4347 }
4348 }
4349
4350 /* See class declaration. */
4351
4352 bool
4353 info_sources_filter::matches (const char *fullname) const
4354 {
4355 /* Does it match regexp? */
4356 if (m_c_regexp.has_value ())
4357 {
4358 const char *to_match;
4359 std::string dirname;
4360
4361 switch (m_match_type)
4362 {
4363 case match_on::DIRNAME:
4364 dirname = ldirname (fullname);
4365 to_match = dirname.c_str ();
4366 break;
4367 case match_on::BASENAME:
4368 to_match = lbasename (fullname);
4369 break;
4370 case match_on::FULLNAME:
4371 to_match = fullname;
4372 break;
4373 default:
4374 gdb_assert_not_reached ("bad m_match_type");
4375 }
4376
4377 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4378 return false;
4379 }
4380
4381 return true;
4382 }
4383
4384 /* Data structure to maintain the state used for printing the results of
4385 the 'info sources' command. */
4386
4387 struct output_source_filename_data
4388 {
4389 /* Create an object for displaying the results of the 'info sources'
4390 command to UIOUT. FILTER must remain valid and unchanged for the
4391 lifetime of this object as this object retains a reference to FILTER. */
4392 output_source_filename_data (struct ui_out *uiout,
4393 const info_sources_filter &filter)
4394 : m_filter (filter),
4395 m_uiout (uiout)
4396 { /* Nothing. */ }
4397
4398 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4399
4400 /* Reset enough state of this object so we can match against a new set of
4401 files. The existing regular expression is retained though. */
4402 void reset_output ()
4403 {
4404 m_first = true;
4405 m_filename_seen_cache.clear ();
4406 }
4407
4408 /* Worker for sources_info, outputs the file name formatted for either
4409 cli or mi (based on the current_uiout). In cli mode displays
4410 FULLNAME with a comma separating this name from any previously
4411 printed name (line breaks are added at the comma). In MI mode
4412 outputs a tuple containing DISP_NAME (the files display name),
4413 FULLNAME, and EXPANDED_P (true when this file is from a fully
4414 expanded symtab, otherwise false). */
4415 void output (const char *disp_name, const char *fullname, bool expanded_p);
4416
4417 /* An overload suitable for use as a callback to
4418 quick_symbol_functions::map_symbol_filenames. */
4419 void operator() (const char *filename, const char *fullname)
4420 {
4421 /* The false here indicates that this file is from an unexpanded
4422 symtab. */
4423 output (filename, fullname, false);
4424 }
4425
4426 /* Return true if at least one filename has been printed (after a call to
4427 output) since either this object was created, or the last call to
4428 reset_output. */
4429 bool printed_filename_p () const
4430 {
4431 return !m_first;
4432 }
4433
4434 private:
4435
4436 /* Flag of whether we're printing the first one. */
4437 bool m_first = true;
4438
4439 /* Cache of what we've seen so far. */
4440 filename_seen_cache m_filename_seen_cache;
4441
4442 /* How source filename should be filtered. */
4443 const info_sources_filter &m_filter;
4444
4445 /* The object to which output is sent. */
4446 struct ui_out *m_uiout;
4447 };
4448
4449 /* See comment in class declaration above. */
4450
4451 void
4452 output_source_filename_data::output (const char *disp_name,
4453 const char *fullname,
4454 bool expanded_p)
4455 {
4456 /* Since a single source file can result in several partial symbol
4457 tables, we need to avoid printing it more than once. Note: if
4458 some of the psymtabs are read in and some are not, it gets
4459 printed both under "Source files for which symbols have been
4460 read" and "Source files for which symbols will be read in on
4461 demand". I consider this a reasonable way to deal with the
4462 situation. I'm not sure whether this can also happen for
4463 symtabs; it doesn't hurt to check. */
4464
4465 /* Was NAME already seen? If so, then don't print it again. */
4466 if (m_filename_seen_cache.seen (fullname))
4467 return;
4468
4469 /* If the filter rejects this file then don't print it. */
4470 if (!m_filter.matches (fullname))
4471 return;
4472
4473 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4474
4475 /* Print it and reset *FIRST. */
4476 if (!m_first)
4477 m_uiout->text (", ");
4478 m_first = false;
4479
4480 m_uiout->wrap_hint (0);
4481 if (m_uiout->is_mi_like_p ())
4482 {
4483 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4484 if (fullname != nullptr)
4485 m_uiout->field_string ("fullname", fullname,
4486 file_name_style.style ());
4487 m_uiout->field_string ("debug-fully-read",
4488 (expanded_p ? "true" : "false"));
4489 }
4490 else
4491 {
4492 if (fullname == nullptr)
4493 fullname = disp_name;
4494 m_uiout->field_string ("fullname", fullname,
4495 file_name_style.style ());
4496 }
4497 }
4498
4499 /* For the 'info sources' command, what part of the file names should we be
4500 matching the user supplied regular expression against? */
4501
4502 struct filename_partial_match_opts
4503 {
4504 /* Only match the directory name part. */
4505 bool dirname = false;
4506
4507 /* Only match the basename part. */
4508 bool basename = false;
4509 };
4510
4511 using isrc_flag_option_def
4512 = gdb::option::flag_option_def<filename_partial_match_opts>;
4513
4514 static const gdb::option::option_def info_sources_option_defs[] = {
4515
4516 isrc_flag_option_def {
4517 "dirname",
4518 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4519 N_("Show only the files having a dirname matching REGEXP."),
4520 },
4521
4522 isrc_flag_option_def {
4523 "basename",
4524 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4525 N_("Show only the files having a basename matching REGEXP."),
4526 },
4527
4528 };
4529
4530 /* Create an option_def_group for the "info sources" options, with
4531 ISRC_OPTS as context. */
4532
4533 static inline gdb::option::option_def_group
4534 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4535 {
4536 return {{info_sources_option_defs}, isrc_opts};
4537 }
4538
4539 /* Completer for "info sources". */
4540
4541 static void
4542 info_sources_command_completer (cmd_list_element *ignore,
4543 completion_tracker &tracker,
4544 const char *text, const char *word)
4545 {
4546 const auto group = make_info_sources_options_def_group (nullptr);
4547 if (gdb::option::complete_options
4548 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4549 return;
4550 }
4551
4552 /* See symtab.h. */
4553
4554 void
4555 info_sources_worker (struct ui_out *uiout,
4556 bool group_by_objfile,
4557 const info_sources_filter &filter)
4558 {
4559 output_source_filename_data data (uiout, filter);
4560
4561 ui_out_emit_list results_emitter (uiout, "files");
4562 gdb::optional<ui_out_emit_tuple> output_tuple;
4563 gdb::optional<ui_out_emit_list> sources_list;
4564
4565 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4566
4567 for (objfile *objfile : current_program_space->objfiles ())
4568 {
4569 if (group_by_objfile)
4570 {
4571 output_tuple.emplace (uiout, nullptr);
4572 uiout->field_string ("filename", objfile_name (objfile),
4573 file_name_style.style ());
4574 uiout->text (":\n");
4575 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4576 if (uiout->is_mi_like_p ())
4577 {
4578 const char *debug_info_state;
4579 if (objfile_has_symbols (objfile))
4580 {
4581 if (debug_fully_readin)
4582 debug_info_state = "fully-read";
4583 else
4584 debug_info_state = "partially-read";
4585 }
4586 else
4587 debug_info_state = "none";
4588 current_uiout->field_string ("debug-info", debug_info_state);
4589 }
4590 else
4591 {
4592 if (!debug_fully_readin)
4593 uiout->text ("(Full debug information has not yet been read "
4594 "for this file.)\n");
4595 if (!objfile_has_symbols (objfile))
4596 uiout->text ("(Objfile has no debug information.)\n");
4597 uiout->text ("\n");
4598 }
4599 sources_list.emplace (uiout, "sources");
4600 }
4601
4602 for (compunit_symtab *cu : objfile->compunits ())
4603 {
4604 for (symtab *s : cu->filetabs ())
4605 {
4606 const char *file = symtab_to_filename_for_display (s);
4607 const char *fullname = symtab_to_fullname (s);
4608 data.output (file, fullname, true);
4609 }
4610 }
4611
4612 if (group_by_objfile)
4613 {
4614 objfile->map_symbol_filenames (data, true /* need_fullname */);
4615 if (data.printed_filename_p ())
4616 uiout->text ("\n\n");
4617 data.reset_output ();
4618 sources_list.reset ();
4619 output_tuple.reset ();
4620 }
4621 }
4622
4623 if (!group_by_objfile)
4624 {
4625 data.reset_output ();
4626 map_symbol_filenames (data, true /*need_fullname*/);
4627 }
4628 }
4629
4630 /* Implement the 'info sources' command. */
4631
4632 static void
4633 info_sources_command (const char *args, int from_tty)
4634 {
4635 if (!have_full_symbols () && !have_partial_symbols ())
4636 error (_("No symbol table is loaded. Use the \"file\" command."));
4637
4638 filename_partial_match_opts match_opts;
4639 auto group = make_info_sources_options_def_group (&match_opts);
4640 gdb::option::process_options
4641 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4642
4643 if (match_opts.dirname && match_opts.basename)
4644 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4645
4646 const char *regex = nullptr;
4647 if (args != NULL && *args != '\000')
4648 regex = args;
4649
4650 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4651 error (_("Missing REGEXP for 'info sources'."));
4652
4653 info_sources_filter::match_on match_type;
4654 if (match_opts.dirname)
4655 match_type = info_sources_filter::match_on::DIRNAME;
4656 else if (match_opts.basename)
4657 match_type = info_sources_filter::match_on::BASENAME;
4658 else
4659 match_type = info_sources_filter::match_on::FULLNAME;
4660
4661 info_sources_filter filter (match_type, regex);
4662 info_sources_worker (current_uiout, true, filter);
4663 }
4664
4665 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4666 true compare only lbasename of FILENAMES. */
4667
4668 static bool
4669 file_matches (const char *file, const std::vector<const char *> &filenames,
4670 bool basenames)
4671 {
4672 if (filenames.empty ())
4673 return true;
4674
4675 for (const char *name : filenames)
4676 {
4677 name = (basenames ? lbasename (name) : name);
4678 if (compare_filenames_for_search (file, name))
4679 return true;
4680 }
4681
4682 return false;
4683 }
4684
4685 /* Helper function for std::sort on symbol_search objects. Can only sort
4686 symbols, not minimal symbols. */
4687
4688 int
4689 symbol_search::compare_search_syms (const symbol_search &sym_a,
4690 const symbol_search &sym_b)
4691 {
4692 int c;
4693
4694 c = FILENAME_CMP (sym_a.symbol->symtab ()->filename,
4695 sym_b.symbol->symtab ()->filename);
4696 if (c != 0)
4697 return c;
4698
4699 if (sym_a.block != sym_b.block)
4700 return sym_a.block - sym_b.block;
4701
4702 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4703 }
4704
4705 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4706 If SYM has no symbol_type or symbol_name, returns false. */
4707
4708 bool
4709 treg_matches_sym_type_name (const compiled_regex &treg,
4710 const struct symbol *sym)
4711 {
4712 struct type *sym_type;
4713 std::string printed_sym_type_name;
4714
4715 if (symbol_lookup_debug > 1)
4716 {
4717 gdb_printf (gdb_stdlog,
4718 "treg_matches_sym_type_name\n sym %s\n",
4719 sym->natural_name ());
4720 }
4721
4722 sym_type = sym->type ();
4723 if (sym_type == NULL)
4724 return false;
4725
4726 {
4727 scoped_switch_to_sym_language_if_auto l (sym);
4728
4729 printed_sym_type_name = type_to_string (sym_type);
4730 }
4731
4732
4733 if (symbol_lookup_debug > 1)
4734 {
4735 gdb_printf (gdb_stdlog,
4736 " sym_type_name %s\n",
4737 printed_sym_type_name.c_str ());
4738 }
4739
4740
4741 if (printed_sym_type_name.empty ())
4742 return false;
4743
4744 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4745 }
4746
4747 /* See symtab.h. */
4748
4749 bool
4750 global_symbol_searcher::is_suitable_msymbol
4751 (const enum search_domain kind, const minimal_symbol *msymbol)
4752 {
4753 switch (msymbol->type ())
4754 {
4755 case mst_data:
4756 case mst_bss:
4757 case mst_file_data:
4758 case mst_file_bss:
4759 return kind == VARIABLES_DOMAIN;
4760 case mst_text:
4761 case mst_file_text:
4762 case mst_solib_trampoline:
4763 case mst_text_gnu_ifunc:
4764 return kind == FUNCTIONS_DOMAIN;
4765 default:
4766 return false;
4767 }
4768 }
4769
4770 /* See symtab.h. */
4771
4772 bool
4773 global_symbol_searcher::expand_symtabs
4774 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4775 {
4776 enum search_domain kind = m_kind;
4777 bool found_msymbol = false;
4778
4779 auto do_file_match = [&] (const char *filename, bool basenames)
4780 {
4781 return file_matches (filename, filenames, basenames);
4782 };
4783 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr;
4784 if (!filenames.empty ())
4785 file_matcher = do_file_match;
4786
4787 objfile->expand_symtabs_matching
4788 (file_matcher,
4789 &lookup_name_info::match_any (),
4790 [&] (const char *symname)
4791 {
4792 return (!preg.has_value ()
4793 || preg->exec (symname, 0, NULL, 0) == 0);
4794 },
4795 NULL,
4796 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4797 UNDEF_DOMAIN,
4798 kind);
4799
4800 /* Here, we search through the minimal symbol tables for functions and
4801 variables that match, and force their symbols to be read. This is in
4802 particular necessary for demangled variable names, which are no longer
4803 put into the partial symbol tables. The symbol will then be found
4804 during the scan of symtabs later.
4805
4806 For functions, find_pc_symtab should succeed if we have debug info for
4807 the function, for variables we have to call
4808 lookup_symbol_in_objfile_from_linkage_name to determine if the
4809 variable has debug info. If the lookup fails, set found_msymbol so
4810 that we will rescan to print any matching symbols without debug info.
4811 We only search the objfile the msymbol came from, we no longer search
4812 all objfiles. In large programs (1000s of shared libs) searching all
4813 objfiles is not worth the pain. */
4814 if (filenames.empty ()
4815 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4816 {
4817 for (minimal_symbol *msymbol : objfile->msymbols ())
4818 {
4819 QUIT;
4820
4821 if (msymbol->created_by_gdb)
4822 continue;
4823
4824 if (is_suitable_msymbol (kind, msymbol))
4825 {
4826 if (!preg.has_value ()
4827 || preg->exec (msymbol->natural_name (), 0,
4828 NULL, 0) == 0)
4829 {
4830 /* An important side-effect of these lookup functions is
4831 to expand the symbol table if msymbol is found, later
4832 in the process we will add matching symbols or
4833 msymbols to the results list, and that requires that
4834 the symbols tables are expanded. */
4835 if (kind == FUNCTIONS_DOMAIN
4836 ? (find_pc_compunit_symtab
4837 (msymbol->value_address (objfile)) == NULL)
4838 : (lookup_symbol_in_objfile_from_linkage_name
4839 (objfile, msymbol->linkage_name (),
4840 VAR_DOMAIN)
4841 .symbol == NULL))
4842 found_msymbol = true;
4843 }
4844 }
4845 }
4846 }
4847
4848 return found_msymbol;
4849 }
4850
4851 /* See symtab.h. */
4852
4853 bool
4854 global_symbol_searcher::add_matching_symbols
4855 (objfile *objfile,
4856 const gdb::optional<compiled_regex> &preg,
4857 const gdb::optional<compiled_regex> &treg,
4858 std::set<symbol_search> *result_set) const
4859 {
4860 enum search_domain kind = m_kind;
4861
4862 /* Add matching symbols (if not already present). */
4863 for (compunit_symtab *cust : objfile->compunits ())
4864 {
4865 const struct blockvector *bv = cust->blockvector ();
4866
4867 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4868 {
4869 struct block_iterator iter;
4870 struct symbol *sym;
4871 const struct block *b = bv->block (block);
4872
4873 ALL_BLOCK_SYMBOLS (b, iter, sym)
4874 {
4875 struct symtab *real_symtab = sym->symtab ();
4876
4877 QUIT;
4878
4879 /* Check first sole REAL_SYMTAB->FILENAME. It does
4880 not need to be a substring of symtab_to_fullname as
4881 it may contain "./" etc. */
4882 if ((file_matches (real_symtab->filename, filenames, false)
4883 || ((basenames_may_differ
4884 || file_matches (lbasename (real_symtab->filename),
4885 filenames, true))
4886 && file_matches (symtab_to_fullname (real_symtab),
4887 filenames, false)))
4888 && ((!preg.has_value ()
4889 || preg->exec (sym->natural_name (), 0,
4890 NULL, 0) == 0)
4891 && ((kind == VARIABLES_DOMAIN
4892 && sym->aclass () != LOC_TYPEDEF
4893 && sym->aclass () != LOC_UNRESOLVED
4894 && sym->aclass () != LOC_BLOCK
4895 /* LOC_CONST can be used for more than
4896 just enums, e.g., c++ static const
4897 members. We only want to skip enums
4898 here. */
4899 && !(sym->aclass () == LOC_CONST
4900 && (sym->type ()->code ()
4901 == TYPE_CODE_ENUM))
4902 && (!treg.has_value ()
4903 || treg_matches_sym_type_name (*treg, sym)))
4904 || (kind == FUNCTIONS_DOMAIN
4905 && sym->aclass () == LOC_BLOCK
4906 && (!treg.has_value ()
4907 || treg_matches_sym_type_name (*treg,
4908 sym)))
4909 || (kind == TYPES_DOMAIN
4910 && sym->aclass () == LOC_TYPEDEF
4911 && sym->domain () != MODULE_DOMAIN)
4912 || (kind == MODULES_DOMAIN
4913 && sym->domain () == MODULE_DOMAIN
4914 && sym->line () != 0))))
4915 {
4916 if (result_set->size () < m_max_search_results)
4917 {
4918 /* Match, insert if not already in the results. */
4919 symbol_search ss (block, sym);
4920 if (result_set->find (ss) == result_set->end ())
4921 result_set->insert (ss);
4922 }
4923 else
4924 return false;
4925 }
4926 }
4927 }
4928 }
4929
4930 return true;
4931 }
4932
4933 /* See symtab.h. */
4934
4935 bool
4936 global_symbol_searcher::add_matching_msymbols
4937 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4938 std::vector<symbol_search> *results) const
4939 {
4940 enum search_domain kind = m_kind;
4941
4942 for (minimal_symbol *msymbol : objfile->msymbols ())
4943 {
4944 QUIT;
4945
4946 if (msymbol->created_by_gdb)
4947 continue;
4948
4949 if (is_suitable_msymbol (kind, msymbol))
4950 {
4951 if (!preg.has_value ()
4952 || preg->exec (msymbol->natural_name (), 0,
4953 NULL, 0) == 0)
4954 {
4955 /* For functions we can do a quick check of whether the
4956 symbol might be found via find_pc_symtab. */
4957 if (kind != FUNCTIONS_DOMAIN
4958 || (find_pc_compunit_symtab
4959 (msymbol->value_address (objfile)) == NULL))
4960 {
4961 if (lookup_symbol_in_objfile_from_linkage_name
4962 (objfile, msymbol->linkage_name (),
4963 VAR_DOMAIN).symbol == NULL)
4964 {
4965 /* Matching msymbol, add it to the results list. */
4966 if (results->size () < m_max_search_results)
4967 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4968 else
4969 return false;
4970 }
4971 }
4972 }
4973 }
4974 }
4975
4976 return true;
4977 }
4978
4979 /* See symtab.h. */
4980
4981 std::vector<symbol_search>
4982 global_symbol_searcher::search () const
4983 {
4984 gdb::optional<compiled_regex> preg;
4985 gdb::optional<compiled_regex> treg;
4986
4987 gdb_assert (m_kind != ALL_DOMAIN);
4988
4989 if (m_symbol_name_regexp != NULL)
4990 {
4991 const char *symbol_name_regexp = m_symbol_name_regexp;
4992
4993 /* Make sure spacing is right for C++ operators.
4994 This is just a courtesy to make the matching less sensitive
4995 to how many spaces the user leaves between 'operator'
4996 and <TYPENAME> or <OPERATOR>. */
4997 const char *opend;
4998 const char *opname = operator_chars (symbol_name_regexp, &opend);
4999
5000 if (*opname)
5001 {
5002 int fix = -1; /* -1 means ok; otherwise number of
5003 spaces needed. */
5004
5005 if (isalpha (*opname) || *opname == '_' || *opname == '$')
5006 {
5007 /* There should 1 space between 'operator' and 'TYPENAME'. */
5008 if (opname[-1] != ' ' || opname[-2] == ' ')
5009 fix = 1;
5010 }
5011 else
5012 {
5013 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
5014 if (opname[-1] == ' ')
5015 fix = 0;
5016 }
5017 /* If wrong number of spaces, fix it. */
5018 if (fix >= 0)
5019 {
5020 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
5021
5022 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
5023 symbol_name_regexp = tmp;
5024 }
5025 }
5026
5027 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
5028 ? REG_ICASE : 0);
5029 preg.emplace (symbol_name_regexp, cflags,
5030 _("Invalid regexp"));
5031 }
5032
5033 if (m_symbol_type_regexp != NULL)
5034 {
5035 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
5036 ? REG_ICASE : 0);
5037 treg.emplace (m_symbol_type_regexp, cflags,
5038 _("Invalid regexp"));
5039 }
5040
5041 bool found_msymbol = false;
5042 std::set<symbol_search> result_set;
5043 for (objfile *objfile : current_program_space->objfiles ())
5044 {
5045 /* Expand symtabs within objfile that possibly contain matching
5046 symbols. */
5047 found_msymbol |= expand_symtabs (objfile, preg);
5048
5049 /* Find matching symbols within OBJFILE and add them in to the
5050 RESULT_SET set. Use a set here so that we can easily detect
5051 duplicates as we go, and can therefore track how many unique
5052 matches we have found so far. */
5053 if (!add_matching_symbols (objfile, preg, treg, &result_set))
5054 break;
5055 }
5056
5057 /* Convert the result set into a sorted result list, as std::set is
5058 defined to be sorted then no explicit call to std::sort is needed. */
5059 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
5060
5061 /* If there are no debug symbols, then add matching minsyms. But if the
5062 user wants to see symbols matching a type regexp, then never give a
5063 minimal symbol, as we assume that a minimal symbol does not have a
5064 type. */
5065 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
5066 && !m_exclude_minsyms
5067 && !treg.has_value ())
5068 {
5069 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
5070 for (objfile *objfile : current_program_space->objfiles ())
5071 if (!add_matching_msymbols (objfile, preg, &result))
5072 break;
5073 }
5074
5075 return result;
5076 }
5077
5078 /* See symtab.h. */
5079
5080 std::string
5081 symbol_to_info_string (struct symbol *sym, int block,
5082 enum search_domain kind)
5083 {
5084 std::string str;
5085
5086 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
5087
5088 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
5089 str += "static ";
5090
5091 /* Typedef that is not a C++ class. */
5092 if (kind == TYPES_DOMAIN
5093 && sym->domain () != STRUCT_DOMAIN)
5094 {
5095 string_file tmp_stream;
5096
5097 /* FIXME: For C (and C++) we end up with a difference in output here
5098 between how a typedef is printed, and non-typedefs are printed.
5099 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
5100 appear C-like, while TYPE_PRINT doesn't.
5101
5102 For the struct printing case below, things are worse, we force
5103 printing of the ";" in this function, which is going to be wrong
5104 for languages that don't require a ";" between statements. */
5105 if (sym->type ()->code () == TYPE_CODE_TYPEDEF)
5106 typedef_print (sym->type (), sym, &tmp_stream);
5107 else
5108 type_print (sym->type (), "", &tmp_stream, -1);
5109 str += tmp_stream.string ();
5110 }
5111 /* variable, func, or typedef-that-is-c++-class. */
5112 else if (kind < TYPES_DOMAIN
5113 || (kind == TYPES_DOMAIN
5114 && sym->domain () == STRUCT_DOMAIN))
5115 {
5116 string_file tmp_stream;
5117
5118 type_print (sym->type (),
5119 (sym->aclass () == LOC_TYPEDEF
5120 ? "" : sym->print_name ()),
5121 &tmp_stream, 0);
5122
5123 str += tmp_stream.string ();
5124 str += ";";
5125 }
5126 /* Printing of modules is currently done here, maybe at some future
5127 point we might want a language specific method to print the module
5128 symbol so that we can customise the output more. */
5129 else if (kind == MODULES_DOMAIN)
5130 str += sym->print_name ();
5131
5132 return str;
5133 }
5134
5135 /* Helper function for symbol info commands, for example 'info functions',
5136 'info variables', etc. KIND is the kind of symbol we searched for, and
5137 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5138 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5139 print file and line number information for the symbol as well. Skip
5140 printing the filename if it matches LAST. */
5141
5142 static void
5143 print_symbol_info (enum search_domain kind,
5144 struct symbol *sym,
5145 int block, const char *last)
5146 {
5147 scoped_switch_to_sym_language_if_auto l (sym);
5148 struct symtab *s = sym->symtab ();
5149
5150 if (last != NULL)
5151 {
5152 const char *s_filename = symtab_to_filename_for_display (s);
5153
5154 if (filename_cmp (last, s_filename) != 0)
5155 {
5156 gdb_printf (_("\nFile %ps:\n"),
5157 styled_string (file_name_style.style (),
5158 s_filename));
5159 }
5160
5161 if (sym->line () != 0)
5162 gdb_printf ("%d:\t", sym->line ());
5163 else
5164 gdb_puts ("\t");
5165 }
5166
5167 std::string str = symbol_to_info_string (sym, block, kind);
5168 gdb_printf ("%s\n", str.c_str ());
5169 }
5170
5171 /* This help function for symtab_symbol_info() prints information
5172 for non-debugging symbols to gdb_stdout. */
5173
5174 static void
5175 print_msymbol_info (struct bound_minimal_symbol msymbol)
5176 {
5177 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5178 char *tmp;
5179
5180 if (gdbarch_addr_bit (gdbarch) <= 32)
5181 tmp = hex_string_custom (msymbol.value_address ()
5182 & (CORE_ADDR) 0xffffffff,
5183 8);
5184 else
5185 tmp = hex_string_custom (msymbol.value_address (),
5186 16);
5187
5188 ui_file_style sym_style = (msymbol.minsym->text_p ()
5189 ? function_name_style.style ()
5190 : ui_file_style ());
5191
5192 gdb_printf (_("%ps %ps\n"),
5193 styled_string (address_style.style (), tmp),
5194 styled_string (sym_style, msymbol.minsym->print_name ()));
5195 }
5196
5197 /* This is the guts of the commands "info functions", "info types", and
5198 "info variables". It calls search_symbols to find all matches and then
5199 print_[m]symbol_info to print out some useful information about the
5200 matches. */
5201
5202 static void
5203 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5204 const char *regexp, enum search_domain kind,
5205 const char *t_regexp, int from_tty)
5206 {
5207 static const char * const classnames[] =
5208 {"variable", "function", "type", "module"};
5209 const char *last_filename = "";
5210 int first = 1;
5211
5212 gdb_assert (kind != ALL_DOMAIN);
5213
5214 if (regexp != nullptr && *regexp == '\0')
5215 regexp = nullptr;
5216
5217 global_symbol_searcher spec (kind, regexp);
5218 spec.set_symbol_type_regexp (t_regexp);
5219 spec.set_exclude_minsyms (exclude_minsyms);
5220 std::vector<symbol_search> symbols = spec.search ();
5221
5222 if (!quiet)
5223 {
5224 if (regexp != NULL)
5225 {
5226 if (t_regexp != NULL)
5227 gdb_printf
5228 (_("All %ss matching regular expression \"%s\""
5229 " with type matching regular expression \"%s\":\n"),
5230 classnames[kind], regexp, t_regexp);
5231 else
5232 gdb_printf (_("All %ss matching regular expression \"%s\":\n"),
5233 classnames[kind], regexp);
5234 }
5235 else
5236 {
5237 if (t_regexp != NULL)
5238 gdb_printf
5239 (_("All defined %ss"
5240 " with type matching regular expression \"%s\" :\n"),
5241 classnames[kind], t_regexp);
5242 else
5243 gdb_printf (_("All defined %ss:\n"), classnames[kind]);
5244 }
5245 }
5246
5247 for (const symbol_search &p : symbols)
5248 {
5249 QUIT;
5250
5251 if (p.msymbol.minsym != NULL)
5252 {
5253 if (first)
5254 {
5255 if (!quiet)
5256 gdb_printf (_("\nNon-debugging symbols:\n"));
5257 first = 0;
5258 }
5259 print_msymbol_info (p.msymbol);
5260 }
5261 else
5262 {
5263 print_symbol_info (kind,
5264 p.symbol,
5265 p.block,
5266 last_filename);
5267 last_filename
5268 = symtab_to_filename_for_display (p.symbol->symtab ());
5269 }
5270 }
5271 }
5272
5273 /* Structure to hold the values of the options used by the 'info variables'
5274 and 'info functions' commands. These correspond to the -q, -t, and -n
5275 options. */
5276
5277 struct info_vars_funcs_options
5278 {
5279 bool quiet = false;
5280 bool exclude_minsyms = false;
5281 std::string type_regexp;
5282 };
5283
5284 /* The options used by the 'info variables' and 'info functions'
5285 commands. */
5286
5287 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5288 gdb::option::boolean_option_def<info_vars_funcs_options> {
5289 "q",
5290 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5291 nullptr, /* show_cmd_cb */
5292 nullptr /* set_doc */
5293 },
5294
5295 gdb::option::boolean_option_def<info_vars_funcs_options> {
5296 "n",
5297 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5298 nullptr, /* show_cmd_cb */
5299 nullptr /* set_doc */
5300 },
5301
5302 gdb::option::string_option_def<info_vars_funcs_options> {
5303 "t",
5304 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; },
5305 nullptr, /* show_cmd_cb */
5306 nullptr /* set_doc */
5307 }
5308 };
5309
5310 /* Returns the option group used by 'info variables' and 'info
5311 functions'. */
5312
5313 static gdb::option::option_def_group
5314 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5315 {
5316 return {{info_vars_funcs_options_defs}, opts};
5317 }
5318
5319 /* Command completer for 'info variables' and 'info functions'. */
5320
5321 static void
5322 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5323 completion_tracker &tracker,
5324 const char *text, const char * /* word */)
5325 {
5326 const auto group
5327 = make_info_vars_funcs_options_def_group (nullptr);
5328 if (gdb::option::complete_options
5329 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5330 return;
5331
5332 const char *word = advance_to_expression_complete_word_point (tracker, text);
5333 symbol_completer (ignore, tracker, text, word);
5334 }
5335
5336 /* Implement the 'info variables' command. */
5337
5338 static void
5339 info_variables_command (const char *args, int from_tty)
5340 {
5341 info_vars_funcs_options opts;
5342 auto grp = make_info_vars_funcs_options_def_group (&opts);
5343 gdb::option::process_options
5344 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5345 if (args != nullptr && *args == '\0')
5346 args = nullptr;
5347
5348 symtab_symbol_info
5349 (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5350 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5351 from_tty);
5352 }
5353
5354 /* Implement the 'info functions' command. */
5355
5356 static void
5357 info_functions_command (const char *args, int from_tty)
5358 {
5359 info_vars_funcs_options opts;
5360
5361 auto grp = make_info_vars_funcs_options_def_group (&opts);
5362 gdb::option::process_options
5363 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5364 if (args != nullptr && *args == '\0')
5365 args = nullptr;
5366
5367 symtab_symbol_info
5368 (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN,
5369 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5370 from_tty);
5371 }
5372
5373 /* Holds the -q option for the 'info types' command. */
5374
5375 struct info_types_options
5376 {
5377 bool quiet = false;
5378 };
5379
5380 /* The options used by the 'info types' command. */
5381
5382 static const gdb::option::option_def info_types_options_defs[] = {
5383 gdb::option::boolean_option_def<info_types_options> {
5384 "q",
5385 [] (info_types_options *opt) { return &opt->quiet; },
5386 nullptr, /* show_cmd_cb */
5387 nullptr /* set_doc */
5388 }
5389 };
5390
5391 /* Returns the option group used by 'info types'. */
5392
5393 static gdb::option::option_def_group
5394 make_info_types_options_def_group (info_types_options *opts)
5395 {
5396 return {{info_types_options_defs}, opts};
5397 }
5398
5399 /* Implement the 'info types' command. */
5400
5401 static void
5402 info_types_command (const char *args, int from_tty)
5403 {
5404 info_types_options opts;
5405
5406 auto grp = make_info_types_options_def_group (&opts);
5407 gdb::option::process_options
5408 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5409 if (args != nullptr && *args == '\0')
5410 args = nullptr;
5411 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5412 }
5413
5414 /* Command completer for 'info types' command. */
5415
5416 static void
5417 info_types_command_completer (struct cmd_list_element *ignore,
5418 completion_tracker &tracker,
5419 const char *text, const char * /* word */)
5420 {
5421 const auto group
5422 = make_info_types_options_def_group (nullptr);
5423 if (gdb::option::complete_options
5424 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5425 return;
5426
5427 const char *word = advance_to_expression_complete_word_point (tracker, text);
5428 symbol_completer (ignore, tracker, text, word);
5429 }
5430
5431 /* Implement the 'info modules' command. */
5432
5433 static void
5434 info_modules_command (const char *args, int from_tty)
5435 {
5436 info_types_options opts;
5437
5438 auto grp = make_info_types_options_def_group (&opts);
5439 gdb::option::process_options
5440 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5441 if (args != nullptr && *args == '\0')
5442 args = nullptr;
5443 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5444 from_tty);
5445 }
5446
5447 static void
5448 rbreak_command (const char *regexp, int from_tty)
5449 {
5450 std::string string;
5451 const char *file_name = nullptr;
5452
5453 if (regexp != nullptr)
5454 {
5455 const char *colon = strchr (regexp, ':');
5456
5457 /* Ignore the colon if it is part of a Windows drive. */
5458 if (HAS_DRIVE_SPEC (regexp)
5459 && (regexp[2] == '/' || regexp[2] == '\\'))
5460 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5461
5462 if (colon && *(colon + 1) != ':')
5463 {
5464 int colon_index;
5465 char *local_name;
5466
5467 colon_index = colon - regexp;
5468 local_name = (char *) alloca (colon_index + 1);
5469 memcpy (local_name, regexp, colon_index);
5470 local_name[colon_index--] = 0;
5471 while (isspace (local_name[colon_index]))
5472 local_name[colon_index--] = 0;
5473 file_name = local_name;
5474 regexp = skip_spaces (colon + 1);
5475 }
5476 }
5477
5478 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5479 if (file_name != nullptr)
5480 spec.filenames.push_back (file_name);
5481 std::vector<symbol_search> symbols = spec.search ();
5482
5483 scoped_rbreak_breakpoints finalize;
5484 for (const symbol_search &p : symbols)
5485 {
5486 if (p.msymbol.minsym == NULL)
5487 {
5488 struct symtab *symtab = p.symbol->symtab ();
5489 const char *fullname = symtab_to_fullname (symtab);
5490
5491 string = string_printf ("%s:'%s'", fullname,
5492 p.symbol->linkage_name ());
5493 break_command (&string[0], from_tty);
5494 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5495 }
5496 else
5497 {
5498 string = string_printf ("'%s'",
5499 p.msymbol.minsym->linkage_name ());
5500
5501 break_command (&string[0], from_tty);
5502 gdb_printf ("<function, no debug info> %s;\n",
5503 p.msymbol.minsym->print_name ());
5504 }
5505 }
5506 }
5507 \f
5508
5509 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5510
5511 static int
5512 compare_symbol_name (const char *symbol_name, language symbol_language,
5513 const lookup_name_info &lookup_name,
5514 completion_match_result &match_res)
5515 {
5516 const language_defn *lang = language_def (symbol_language);
5517
5518 symbol_name_matcher_ftype *name_match
5519 = lang->get_symbol_name_matcher (lookup_name);
5520
5521 return name_match (symbol_name, lookup_name, &match_res);
5522 }
5523
5524 /* See symtab.h. */
5525
5526 bool
5527 completion_list_add_name (completion_tracker &tracker,
5528 language symbol_language,
5529 const char *symname,
5530 const lookup_name_info &lookup_name,
5531 const char *text, const char *word)
5532 {
5533 completion_match_result &match_res
5534 = tracker.reset_completion_match_result ();
5535
5536 /* Clip symbols that cannot match. */
5537 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5538 return false;
5539
5540 /* Refresh SYMNAME from the match string. It's potentially
5541 different depending on language. (E.g., on Ada, the match may be
5542 the encoded symbol name wrapped in "<>"). */
5543 symname = match_res.match.match ();
5544 gdb_assert (symname != NULL);
5545
5546 /* We have a match for a completion, so add SYMNAME to the current list
5547 of matches. Note that the name is moved to freshly malloc'd space. */
5548
5549 {
5550 gdb::unique_xmalloc_ptr<char> completion
5551 = make_completion_match_str (symname, text, word);
5552
5553 /* Here we pass the match-for-lcd object to add_completion. Some
5554 languages match the user text against substrings of symbol
5555 names in some cases. E.g., in C++, "b push_ba" completes to
5556 "std::vector::push_back", "std::string::push_back", etc., and
5557 in this case we want the completion lowest common denominator
5558 to be "push_back" instead of "std::". */
5559 tracker.add_completion (std::move (completion),
5560 &match_res.match_for_lcd, text, word);
5561 }
5562
5563 return true;
5564 }
5565
5566 /* completion_list_add_name wrapper for struct symbol. */
5567
5568 static void
5569 completion_list_add_symbol (completion_tracker &tracker,
5570 symbol *sym,
5571 const lookup_name_info &lookup_name,
5572 const char *text, const char *word)
5573 {
5574 if (!completion_list_add_name (tracker, sym->language (),
5575 sym->natural_name (),
5576 lookup_name, text, word))
5577 return;
5578
5579 /* C++ function symbols include the parameters within both the msymbol
5580 name and the symbol name. The problem is that the msymbol name will
5581 describe the parameters in the most basic way, with typedefs stripped
5582 out, while the symbol name will represent the types as they appear in
5583 the program. This means we will see duplicate entries in the
5584 completion tracker. The following converts the symbol name back to
5585 the msymbol name and removes the msymbol name from the completion
5586 tracker. */
5587 if (sym->language () == language_cplus
5588 && sym->domain () == VAR_DOMAIN
5589 && sym->aclass () == LOC_BLOCK)
5590 {
5591 /* The call to canonicalize returns the empty string if the input
5592 string is already in canonical form, thanks to this we don't
5593 remove the symbol we just added above. */
5594 gdb::unique_xmalloc_ptr<char> str
5595 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5596 if (str != nullptr)
5597 tracker.remove_completion (str.get ());
5598 }
5599 }
5600
5601 /* completion_list_add_name wrapper for struct minimal_symbol. */
5602
5603 static void
5604 completion_list_add_msymbol (completion_tracker &tracker,
5605 minimal_symbol *sym,
5606 const lookup_name_info &lookup_name,
5607 const char *text, const char *word)
5608 {
5609 completion_list_add_name (tracker, sym->language (),
5610 sym->natural_name (),
5611 lookup_name, text, word);
5612 }
5613
5614
5615 /* ObjC: In case we are completing on a selector, look as the msymbol
5616 again and feed all the selectors into the mill. */
5617
5618 static void
5619 completion_list_objc_symbol (completion_tracker &tracker,
5620 struct minimal_symbol *msymbol,
5621 const lookup_name_info &lookup_name,
5622 const char *text, const char *word)
5623 {
5624 static char *tmp = NULL;
5625 static unsigned int tmplen = 0;
5626
5627 const char *method, *category, *selector;
5628 char *tmp2 = NULL;
5629
5630 method = msymbol->natural_name ();
5631
5632 /* Is it a method? */
5633 if ((method[0] != '-') && (method[0] != '+'))
5634 return;
5635
5636 if (text[0] == '[')
5637 /* Complete on shortened method method. */
5638 completion_list_add_name (tracker, language_objc,
5639 method + 1,
5640 lookup_name,
5641 text, word);
5642
5643 while ((strlen (method) + 1) >= tmplen)
5644 {
5645 if (tmplen == 0)
5646 tmplen = 1024;
5647 else
5648 tmplen *= 2;
5649 tmp = (char *) xrealloc (tmp, tmplen);
5650 }
5651 selector = strchr (method, ' ');
5652 if (selector != NULL)
5653 selector++;
5654
5655 category = strchr (method, '(');
5656
5657 if ((category != NULL) && (selector != NULL))
5658 {
5659 memcpy (tmp, method, (category - method));
5660 tmp[category - method] = ' ';
5661 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5662 completion_list_add_name (tracker, language_objc, tmp,
5663 lookup_name, text, word);
5664 if (text[0] == '[')
5665 completion_list_add_name (tracker, language_objc, tmp + 1,
5666 lookup_name, text, word);
5667 }
5668
5669 if (selector != NULL)
5670 {
5671 /* Complete on selector only. */
5672 strcpy (tmp, selector);
5673 tmp2 = strchr (tmp, ']');
5674 if (tmp2 != NULL)
5675 *tmp2 = '\0';
5676
5677 completion_list_add_name (tracker, language_objc, tmp,
5678 lookup_name, text, word);
5679 }
5680 }
5681
5682 /* Break the non-quoted text based on the characters which are in
5683 symbols. FIXME: This should probably be language-specific. */
5684
5685 static const char *
5686 language_search_unquoted_string (const char *text, const char *p)
5687 {
5688 for (; p > text; --p)
5689 {
5690 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5691 continue;
5692 else
5693 {
5694 if ((current_language->la_language == language_objc))
5695 {
5696 if (p[-1] == ':') /* Might be part of a method name. */
5697 continue;
5698 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5699 p -= 2; /* Beginning of a method name. */
5700 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5701 { /* Might be part of a method name. */
5702 const char *t = p;
5703
5704 /* Seeing a ' ' or a '(' is not conclusive evidence
5705 that we are in the middle of a method name. However,
5706 finding "-[" or "+[" should be pretty un-ambiguous.
5707 Unfortunately we have to find it now to decide. */
5708
5709 while (t > text)
5710 if (isalnum (t[-1]) || t[-1] == '_' ||
5711 t[-1] == ' ' || t[-1] == ':' ||
5712 t[-1] == '(' || t[-1] == ')')
5713 --t;
5714 else
5715 break;
5716
5717 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5718 p = t - 2; /* Method name detected. */
5719 /* Else we leave with p unchanged. */
5720 }
5721 }
5722 break;
5723 }
5724 }
5725 return p;
5726 }
5727
5728 static void
5729 completion_list_add_fields (completion_tracker &tracker,
5730 struct symbol *sym,
5731 const lookup_name_info &lookup_name,
5732 const char *text, const char *word)
5733 {
5734 if (sym->aclass () == LOC_TYPEDEF)
5735 {
5736 struct type *t = sym->type ();
5737 enum type_code c = t->code ();
5738 int j;
5739
5740 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5741 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5742 if (t->field (j).name ())
5743 completion_list_add_name (tracker, sym->language (),
5744 t->field (j).name (),
5745 lookup_name, text, word);
5746 }
5747 }
5748
5749 /* See symtab.h. */
5750
5751 bool
5752 symbol_is_function_or_method (symbol *sym)
5753 {
5754 switch (sym->type ()->code ())
5755 {
5756 case TYPE_CODE_FUNC:
5757 case TYPE_CODE_METHOD:
5758 return true;
5759 default:
5760 return false;
5761 }
5762 }
5763
5764 /* See symtab.h. */
5765
5766 bool
5767 symbol_is_function_or_method (minimal_symbol *msymbol)
5768 {
5769 switch (msymbol->type ())
5770 {
5771 case mst_text:
5772 case mst_text_gnu_ifunc:
5773 case mst_solib_trampoline:
5774 case mst_file_text:
5775 return true;
5776 default:
5777 return false;
5778 }
5779 }
5780
5781 /* See symtab.h. */
5782
5783 bound_minimal_symbol
5784 find_gnu_ifunc (const symbol *sym)
5785 {
5786 if (sym->aclass () != LOC_BLOCK)
5787 return {};
5788
5789 lookup_name_info lookup_name (sym->search_name (),
5790 symbol_name_match_type::SEARCH_NAME);
5791 struct objfile *objfile = sym->objfile ();
5792
5793 CORE_ADDR address = sym->value_block ()->entry_pc ();
5794 minimal_symbol *ifunc = NULL;
5795
5796 iterate_over_minimal_symbols (objfile, lookup_name,
5797 [&] (minimal_symbol *minsym)
5798 {
5799 if (minsym->type () == mst_text_gnu_ifunc
5800 || minsym->type () == mst_data_gnu_ifunc)
5801 {
5802 CORE_ADDR msym_addr = minsym->value_address (objfile);
5803 if (minsym->type () == mst_data_gnu_ifunc)
5804 {
5805 struct gdbarch *gdbarch = objfile->arch ();
5806 msym_addr = gdbarch_convert_from_func_ptr_addr
5807 (gdbarch, msym_addr, current_inferior ()->top_target ());
5808 }
5809 if (msym_addr == address)
5810 {
5811 ifunc = minsym;
5812 return true;
5813 }
5814 }
5815 return false;
5816 });
5817
5818 if (ifunc != NULL)
5819 return {ifunc, objfile};
5820 return {};
5821 }
5822
5823 /* Add matching symbols from SYMTAB to the current completion list. */
5824
5825 static void
5826 add_symtab_completions (struct compunit_symtab *cust,
5827 completion_tracker &tracker,
5828 complete_symbol_mode mode,
5829 const lookup_name_info &lookup_name,
5830 const char *text, const char *word,
5831 enum type_code code)
5832 {
5833 struct symbol *sym;
5834 struct block_iterator iter;
5835 int i;
5836
5837 if (cust == NULL)
5838 return;
5839
5840 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5841 {
5842 QUIT;
5843
5844 const struct block *b = cust->blockvector ()->block (i);
5845 ALL_BLOCK_SYMBOLS (b, iter, sym)
5846 {
5847 if (completion_skip_symbol (mode, sym))
5848 continue;
5849
5850 if (code == TYPE_CODE_UNDEF
5851 || (sym->domain () == STRUCT_DOMAIN
5852 && sym->type ()->code () == code))
5853 completion_list_add_symbol (tracker, sym,
5854 lookup_name,
5855 text, word);
5856 }
5857 }
5858 }
5859
5860 void
5861 default_collect_symbol_completion_matches_break_on
5862 (completion_tracker &tracker, complete_symbol_mode mode,
5863 symbol_name_match_type name_match_type,
5864 const char *text, const char *word,
5865 const char *break_on, enum type_code code)
5866 {
5867 /* Problem: All of the symbols have to be copied because readline
5868 frees them. I'm not going to worry about this; hopefully there
5869 won't be that many. */
5870
5871 struct symbol *sym;
5872 const struct block *b;
5873 const struct block *surrounding_static_block, *surrounding_global_block;
5874 struct block_iterator iter;
5875 /* The symbol we are completing on. Points in same buffer as text. */
5876 const char *sym_text;
5877
5878 /* Now look for the symbol we are supposed to complete on. */
5879 if (mode == complete_symbol_mode::LINESPEC)
5880 sym_text = text;
5881 else
5882 {
5883 const char *p;
5884 char quote_found;
5885 const char *quote_pos = NULL;
5886
5887 /* First see if this is a quoted string. */
5888 quote_found = '\0';
5889 for (p = text; *p != '\0'; ++p)
5890 {
5891 if (quote_found != '\0')
5892 {
5893 if (*p == quote_found)
5894 /* Found close quote. */
5895 quote_found = '\0';
5896 else if (*p == '\\' && p[1] == quote_found)
5897 /* A backslash followed by the quote character
5898 doesn't end the string. */
5899 ++p;
5900 }
5901 else if (*p == '\'' || *p == '"')
5902 {
5903 quote_found = *p;
5904 quote_pos = p;
5905 }
5906 }
5907 if (quote_found == '\'')
5908 /* A string within single quotes can be a symbol, so complete on it. */
5909 sym_text = quote_pos + 1;
5910 else if (quote_found == '"')
5911 /* A double-quoted string is never a symbol, nor does it make sense
5912 to complete it any other way. */
5913 {
5914 return;
5915 }
5916 else
5917 {
5918 /* It is not a quoted string. Break it based on the characters
5919 which are in symbols. */
5920 while (p > text)
5921 {
5922 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5923 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5924 --p;
5925 else
5926 break;
5927 }
5928 sym_text = p;
5929 }
5930 }
5931
5932 lookup_name_info lookup_name (sym_text, name_match_type, true);
5933
5934 /* At this point scan through the misc symbol vectors and add each
5935 symbol you find to the list. Eventually we want to ignore
5936 anything that isn't a text symbol (everything else will be
5937 handled by the psymtab code below). */
5938
5939 if (code == TYPE_CODE_UNDEF)
5940 {
5941 for (objfile *objfile : current_program_space->objfiles ())
5942 {
5943 for (minimal_symbol *msymbol : objfile->msymbols ())
5944 {
5945 QUIT;
5946
5947 if (completion_skip_symbol (mode, msymbol))
5948 continue;
5949
5950 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5951 sym_text, word);
5952
5953 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5954 sym_text, word);
5955 }
5956 }
5957 }
5958
5959 /* Add completions for all currently loaded symbol tables. */
5960 for (objfile *objfile : current_program_space->objfiles ())
5961 {
5962 for (compunit_symtab *cust : objfile->compunits ())
5963 add_symtab_completions (cust, tracker, mode, lookup_name,
5964 sym_text, word, code);
5965 }
5966
5967 /* Look through the partial symtabs for all symbols which begin by
5968 matching SYM_TEXT. Expand all CUs that you find to the list. */
5969 expand_symtabs_matching (NULL,
5970 lookup_name,
5971 NULL,
5972 [&] (compunit_symtab *symtab) /* expansion notify */
5973 {
5974 add_symtab_completions (symtab,
5975 tracker, mode, lookup_name,
5976 sym_text, word, code);
5977 return true;
5978 },
5979 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5980 ALL_DOMAIN);
5981
5982 /* Search upwards from currently selected frame (so that we can
5983 complete on local vars). Also catch fields of types defined in
5984 this places which match our text string. Only complete on types
5985 visible from current context. */
5986
5987 b = get_selected_block (0);
5988 surrounding_static_block = block_static_block (b);
5989 surrounding_global_block = block_global_block (b);
5990 if (surrounding_static_block != NULL)
5991 while (b != surrounding_static_block)
5992 {
5993 QUIT;
5994
5995 ALL_BLOCK_SYMBOLS (b, iter, sym)
5996 {
5997 if (code == TYPE_CODE_UNDEF)
5998 {
5999 completion_list_add_symbol (tracker, sym, lookup_name,
6000 sym_text, word);
6001 completion_list_add_fields (tracker, sym, lookup_name,
6002 sym_text, word);
6003 }
6004 else if (sym->domain () == STRUCT_DOMAIN
6005 && sym->type ()->code () == code)
6006 completion_list_add_symbol (tracker, sym, lookup_name,
6007 sym_text, word);
6008 }
6009
6010 /* Stop when we encounter an enclosing function. Do not stop for
6011 non-inlined functions - the locals of the enclosing function
6012 are in scope for a nested function. */
6013 if (b->function () != NULL && block_inlined_p (b))
6014 break;
6015 b = b->superblock ();
6016 }
6017
6018 /* Add fields from the file's types; symbols will be added below. */
6019
6020 if (code == TYPE_CODE_UNDEF)
6021 {
6022 if (surrounding_static_block != NULL)
6023 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
6024 completion_list_add_fields (tracker, sym, lookup_name,
6025 sym_text, word);
6026
6027 if (surrounding_global_block != NULL)
6028 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
6029 completion_list_add_fields (tracker, sym, lookup_name,
6030 sym_text, word);
6031 }
6032
6033 /* Skip macros if we are completing a struct tag -- arguable but
6034 usually what is expected. */
6035 if (current_language->macro_expansion () == macro_expansion_c
6036 && code == TYPE_CODE_UNDEF)
6037 {
6038 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
6039
6040 /* This adds a macro's name to the current completion list. */
6041 auto add_macro_name = [&] (const char *macro_name,
6042 const macro_definition *,
6043 macro_source_file *,
6044 int)
6045 {
6046 completion_list_add_name (tracker, language_c, macro_name,
6047 lookup_name, sym_text, word);
6048 };
6049
6050 /* Add any macros visible in the default scope. Note that this
6051 may yield the occasional wrong result, because an expression
6052 might be evaluated in a scope other than the default. For
6053 example, if the user types "break file:line if <TAB>", the
6054 resulting expression will be evaluated at "file:line" -- but
6055 at there does not seem to be a way to detect this at
6056 completion time. */
6057 scope = default_macro_scope ();
6058 if (scope)
6059 macro_for_each_in_scope (scope->file, scope->line,
6060 add_macro_name);
6061
6062 /* User-defined macros are always visible. */
6063 macro_for_each (macro_user_macros, add_macro_name);
6064 }
6065 }
6066
6067 /* Collect all symbols (regardless of class) which begin by matching
6068 TEXT. */
6069
6070 void
6071 collect_symbol_completion_matches (completion_tracker &tracker,
6072 complete_symbol_mode mode,
6073 symbol_name_match_type name_match_type,
6074 const char *text, const char *word)
6075 {
6076 current_language->collect_symbol_completion_matches (tracker, mode,
6077 name_match_type,
6078 text, word,
6079 TYPE_CODE_UNDEF);
6080 }
6081
6082 /* Like collect_symbol_completion_matches, but only collect
6083 STRUCT_DOMAIN symbols whose type code is CODE. */
6084
6085 void
6086 collect_symbol_completion_matches_type (completion_tracker &tracker,
6087 const char *text, const char *word,
6088 enum type_code code)
6089 {
6090 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
6091 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
6092
6093 gdb_assert (code == TYPE_CODE_UNION
6094 || code == TYPE_CODE_STRUCT
6095 || code == TYPE_CODE_ENUM);
6096 current_language->collect_symbol_completion_matches (tracker, mode,
6097 name_match_type,
6098 text, word, code);
6099 }
6100
6101 /* Like collect_symbol_completion_matches, but collects a list of
6102 symbols defined in all source files named SRCFILE. */
6103
6104 void
6105 collect_file_symbol_completion_matches (completion_tracker &tracker,
6106 complete_symbol_mode mode,
6107 symbol_name_match_type name_match_type,
6108 const char *text, const char *word,
6109 const char *srcfile)
6110 {
6111 /* The symbol we are completing on. Points in same buffer as text. */
6112 const char *sym_text;
6113
6114 /* Now look for the symbol we are supposed to complete on.
6115 FIXME: This should be language-specific. */
6116 if (mode == complete_symbol_mode::LINESPEC)
6117 sym_text = text;
6118 else
6119 {
6120 const char *p;
6121 char quote_found;
6122 const char *quote_pos = NULL;
6123
6124 /* First see if this is a quoted string. */
6125 quote_found = '\0';
6126 for (p = text; *p != '\0'; ++p)
6127 {
6128 if (quote_found != '\0')
6129 {
6130 if (*p == quote_found)
6131 /* Found close quote. */
6132 quote_found = '\0';
6133 else if (*p == '\\' && p[1] == quote_found)
6134 /* A backslash followed by the quote character
6135 doesn't end the string. */
6136 ++p;
6137 }
6138 else if (*p == '\'' || *p == '"')
6139 {
6140 quote_found = *p;
6141 quote_pos = p;
6142 }
6143 }
6144 if (quote_found == '\'')
6145 /* A string within single quotes can be a symbol, so complete on it. */
6146 sym_text = quote_pos + 1;
6147 else if (quote_found == '"')
6148 /* A double-quoted string is never a symbol, nor does it make sense
6149 to complete it any other way. */
6150 {
6151 return;
6152 }
6153 else
6154 {
6155 /* Not a quoted string. */
6156 sym_text = language_search_unquoted_string (text, p);
6157 }
6158 }
6159
6160 lookup_name_info lookup_name (sym_text, name_match_type, true);
6161
6162 /* Go through symtabs for SRCFILE and check the externs and statics
6163 for symbols which match. */
6164 iterate_over_symtabs (srcfile, [&] (symtab *s)
6165 {
6166 add_symtab_completions (s->compunit (),
6167 tracker, mode, lookup_name,
6168 sym_text, word, TYPE_CODE_UNDEF);
6169 return false;
6170 });
6171 }
6172
6173 /* A helper function for make_source_files_completion_list. It adds
6174 another file name to a list of possible completions, growing the
6175 list as necessary. */
6176
6177 static void
6178 add_filename_to_list (const char *fname, const char *text, const char *word,
6179 completion_list *list)
6180 {
6181 list->emplace_back (make_completion_match_str (fname, text, word));
6182 }
6183
6184 static int
6185 not_interesting_fname (const char *fname)
6186 {
6187 static const char *illegal_aliens[] = {
6188 "_globals_", /* inserted by coff_symtab_read */
6189 NULL
6190 };
6191 int i;
6192
6193 for (i = 0; illegal_aliens[i]; i++)
6194 {
6195 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6196 return 1;
6197 }
6198 return 0;
6199 }
6200
6201 /* An object of this type is passed as the callback argument to
6202 map_partial_symbol_filenames. */
6203 struct add_partial_filename_data
6204 {
6205 struct filename_seen_cache *filename_seen_cache;
6206 const char *text;
6207 const char *word;
6208 int text_len;
6209 completion_list *list;
6210
6211 void operator() (const char *filename, const char *fullname);
6212 };
6213
6214 /* A callback for map_partial_symbol_filenames. */
6215
6216 void
6217 add_partial_filename_data::operator() (const char *filename,
6218 const char *fullname)
6219 {
6220 if (not_interesting_fname (filename))
6221 return;
6222 if (!filename_seen_cache->seen (filename)
6223 && filename_ncmp (filename, text, text_len) == 0)
6224 {
6225 /* This file matches for a completion; add it to the
6226 current list of matches. */
6227 add_filename_to_list (filename, text, word, list);
6228 }
6229 else
6230 {
6231 const char *base_name = lbasename (filename);
6232
6233 if (base_name != filename
6234 && !filename_seen_cache->seen (base_name)
6235 && filename_ncmp (base_name, text, text_len) == 0)
6236 add_filename_to_list (base_name, text, word, list);
6237 }
6238 }
6239
6240 /* Return a list of all source files whose names begin with matching
6241 TEXT. The file names are looked up in the symbol tables of this
6242 program. */
6243
6244 completion_list
6245 make_source_files_completion_list (const char *text, const char *word)
6246 {
6247 size_t text_len = strlen (text);
6248 completion_list list;
6249 const char *base_name;
6250 struct add_partial_filename_data datum;
6251
6252 if (!have_full_symbols () && !have_partial_symbols ())
6253 return list;
6254
6255 filename_seen_cache filenames_seen;
6256
6257 for (objfile *objfile : current_program_space->objfiles ())
6258 {
6259 for (compunit_symtab *cu : objfile->compunits ())
6260 {
6261 for (symtab *s : cu->filetabs ())
6262 {
6263 if (not_interesting_fname (s->filename))
6264 continue;
6265 if (!filenames_seen.seen (s->filename)
6266 && filename_ncmp (s->filename, text, text_len) == 0)
6267 {
6268 /* This file matches for a completion; add it to the current
6269 list of matches. */
6270 add_filename_to_list (s->filename, text, word, &list);
6271 }
6272 else
6273 {
6274 /* NOTE: We allow the user to type a base name when the
6275 debug info records leading directories, but not the other
6276 way around. This is what subroutines of breakpoint
6277 command do when they parse file names. */
6278 base_name = lbasename (s->filename);
6279 if (base_name != s->filename
6280 && !filenames_seen.seen (base_name)
6281 && filename_ncmp (base_name, text, text_len) == 0)
6282 add_filename_to_list (base_name, text, word, &list);
6283 }
6284 }
6285 }
6286 }
6287
6288 datum.filename_seen_cache = &filenames_seen;
6289 datum.text = text;
6290 datum.word = word;
6291 datum.text_len = text_len;
6292 datum.list = &list;
6293 map_symbol_filenames (datum, false /*need_fullname*/);
6294
6295 return list;
6296 }
6297 \f
6298 /* Track MAIN */
6299
6300 /* Return the "main_info" object for the current program space. If
6301 the object has not yet been created, create it and fill in some
6302 default values. */
6303
6304 static struct main_info *
6305 get_main_info (void)
6306 {
6307 struct main_info *info = main_progspace_key.get (current_program_space);
6308
6309 if (info == NULL)
6310 {
6311 /* It may seem strange to store the main name in the progspace
6312 and also in whatever objfile happens to see a main name in
6313 its debug info. The reason for this is mainly historical:
6314 gdb returned "main" as the name even if no function named
6315 "main" was defined the program; and this approach lets us
6316 keep compatibility. */
6317 info = main_progspace_key.emplace (current_program_space);
6318 }
6319
6320 return info;
6321 }
6322
6323 static void
6324 set_main_name (const char *name, enum language lang)
6325 {
6326 struct main_info *info = get_main_info ();
6327
6328 if (info->name_of_main != NULL)
6329 {
6330 xfree (info->name_of_main);
6331 info->name_of_main = NULL;
6332 info->language_of_main = language_unknown;
6333 }
6334 if (name != NULL)
6335 {
6336 info->name_of_main = xstrdup (name);
6337 info->language_of_main = lang;
6338 }
6339 }
6340
6341 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6342 accordingly. */
6343
6344 static void
6345 find_main_name (void)
6346 {
6347 const char *new_main_name;
6348
6349 /* First check the objfiles to see whether a debuginfo reader has
6350 picked up the appropriate main name. Historically the main name
6351 was found in a more or less random way; this approach instead
6352 relies on the order of objfile creation -- which still isn't
6353 guaranteed to get the correct answer, but is just probably more
6354 accurate. */
6355 for (objfile *objfile : current_program_space->objfiles ())
6356 {
6357 if (objfile->per_bfd->name_of_main != NULL)
6358 {
6359 set_main_name (objfile->per_bfd->name_of_main,
6360 objfile->per_bfd->language_of_main);
6361 return;
6362 }
6363 }
6364
6365 /* Try to see if the main procedure is in Ada. */
6366 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6367 be to add a new method in the language vector, and call this
6368 method for each language until one of them returns a non-empty
6369 name. This would allow us to remove this hard-coded call to
6370 an Ada function. It is not clear that this is a better approach
6371 at this point, because all methods need to be written in a way
6372 such that false positives never be returned. For instance, it is
6373 important that a method does not return a wrong name for the main
6374 procedure if the main procedure is actually written in a different
6375 language. It is easy to guaranty this with Ada, since we use a
6376 special symbol generated only when the main in Ada to find the name
6377 of the main procedure. It is difficult however to see how this can
6378 be guarantied for languages such as C, for instance. This suggests
6379 that order of call for these methods becomes important, which means
6380 a more complicated approach. */
6381 new_main_name = ada_main_name ();
6382 if (new_main_name != NULL)
6383 {
6384 set_main_name (new_main_name, language_ada);
6385 return;
6386 }
6387
6388 new_main_name = d_main_name ();
6389 if (new_main_name != NULL)
6390 {
6391 set_main_name (new_main_name, language_d);
6392 return;
6393 }
6394
6395 new_main_name = go_main_name ();
6396 if (new_main_name != NULL)
6397 {
6398 set_main_name (new_main_name, language_go);
6399 return;
6400 }
6401
6402 new_main_name = pascal_main_name ();
6403 if (new_main_name != NULL)
6404 {
6405 set_main_name (new_main_name, language_pascal);
6406 return;
6407 }
6408
6409 /* The languages above didn't identify the name of the main procedure.
6410 Fallback to "main". */
6411
6412 /* Try to find language for main in psymtabs. */
6413 enum language lang
6414 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6415 if (lang != language_unknown)
6416 {
6417 set_main_name ("main", lang);
6418 return;
6419 }
6420
6421 set_main_name ("main", language_unknown);
6422 }
6423
6424 /* See symtab.h. */
6425
6426 const char *
6427 main_name ()
6428 {
6429 struct main_info *info = get_main_info ();
6430
6431 if (info->name_of_main == NULL)
6432 find_main_name ();
6433
6434 return info->name_of_main;
6435 }
6436
6437 /* Return the language of the main function. If it is not known,
6438 return language_unknown. */
6439
6440 enum language
6441 main_language (void)
6442 {
6443 struct main_info *info = get_main_info ();
6444
6445 if (info->name_of_main == NULL)
6446 find_main_name ();
6447
6448 return info->language_of_main;
6449 }
6450
6451 /* Handle ``executable_changed'' events for the symtab module. */
6452
6453 static void
6454 symtab_observer_executable_changed (void)
6455 {
6456 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6457 set_main_name (NULL, language_unknown);
6458 }
6459
6460 /* Return 1 if the supplied producer string matches the ARM RealView
6461 compiler (armcc). */
6462
6463 bool
6464 producer_is_realview (const char *producer)
6465 {
6466 static const char *const arm_idents[] = {
6467 "ARM C Compiler, ADS",
6468 "Thumb C Compiler, ADS",
6469 "ARM C++ Compiler, ADS",
6470 "Thumb C++ Compiler, ADS",
6471 "ARM/Thumb C/C++ Compiler, RVCT",
6472 "ARM C/C++ Compiler, RVCT"
6473 };
6474
6475 if (producer == NULL)
6476 return false;
6477
6478 for (const char *ident : arm_idents)
6479 if (startswith (producer, ident))
6480 return true;
6481
6482 return false;
6483 }
6484
6485 \f
6486
6487 /* The next index to hand out in response to a registration request. */
6488
6489 static int next_aclass_value = LOC_FINAL_VALUE;
6490
6491 /* The maximum number of "aclass" registrations we support. This is
6492 constant for convenience. */
6493 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6494
6495 /* The objects representing the various "aclass" values. The elements
6496 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6497 elements are those registered at gdb initialization time. */
6498
6499 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6500
6501 /* The globally visible pointer. This is separate from 'symbol_impl'
6502 so that it can be const. */
6503
6504 gdb::array_view<const struct symbol_impl> symbol_impls (symbol_impl);
6505
6506 /* Make sure we saved enough room in struct symbol. */
6507
6508 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6509
6510 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6511 is the ops vector associated with this index. This returns the new
6512 index, which should be used as the aclass_index field for symbols
6513 of this type. */
6514
6515 int
6516 register_symbol_computed_impl (enum address_class aclass,
6517 const struct symbol_computed_ops *ops)
6518 {
6519 int result = next_aclass_value++;
6520
6521 gdb_assert (aclass == LOC_COMPUTED);
6522 gdb_assert (result < MAX_SYMBOL_IMPLS);
6523 symbol_impl[result].aclass = aclass;
6524 symbol_impl[result].ops_computed = ops;
6525
6526 /* Sanity check OPS. */
6527 gdb_assert (ops != NULL);
6528 gdb_assert (ops->tracepoint_var_ref != NULL);
6529 gdb_assert (ops->describe_location != NULL);
6530 gdb_assert (ops->get_symbol_read_needs != NULL);
6531 gdb_assert (ops->read_variable != NULL);
6532
6533 return result;
6534 }
6535
6536 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6537 OPS is the ops vector associated with this index. This returns the
6538 new index, which should be used as the aclass_index field for symbols
6539 of this type. */
6540
6541 int
6542 register_symbol_block_impl (enum address_class aclass,
6543 const struct symbol_block_ops *ops)
6544 {
6545 int result = next_aclass_value++;
6546
6547 gdb_assert (aclass == LOC_BLOCK);
6548 gdb_assert (result < MAX_SYMBOL_IMPLS);
6549 symbol_impl[result].aclass = aclass;
6550 symbol_impl[result].ops_block = ops;
6551
6552 /* Sanity check OPS. */
6553 gdb_assert (ops != NULL);
6554 gdb_assert (ops->find_frame_base_location != NULL);
6555
6556 return result;
6557 }
6558
6559 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6560 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6561 this index. This returns the new index, which should be used as
6562 the aclass_index field for symbols of this type. */
6563
6564 int
6565 register_symbol_register_impl (enum address_class aclass,
6566 const struct symbol_register_ops *ops)
6567 {
6568 int result = next_aclass_value++;
6569
6570 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6571 gdb_assert (result < MAX_SYMBOL_IMPLS);
6572 symbol_impl[result].aclass = aclass;
6573 symbol_impl[result].ops_register = ops;
6574
6575 return result;
6576 }
6577
6578 /* Initialize elements of 'symbol_impl' for the constants in enum
6579 address_class. */
6580
6581 static void
6582 initialize_ordinary_address_classes (void)
6583 {
6584 int i;
6585
6586 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6587 symbol_impl[i].aclass = (enum address_class) i;
6588 }
6589
6590 \f
6591
6592 /* See symtab.h. */
6593
6594 struct objfile *
6595 symbol::objfile () const
6596 {
6597 gdb_assert (is_objfile_owned ());
6598 return owner.symtab->compunit ()->objfile ();
6599 }
6600
6601 /* See symtab.h. */
6602
6603 struct gdbarch *
6604 symbol::arch () const
6605 {
6606 if (!is_objfile_owned ())
6607 return owner.arch;
6608 return owner.symtab->compunit ()->objfile ()->arch ();
6609 }
6610
6611 /* See symtab.h. */
6612
6613 struct symtab *
6614 symbol::symtab () const
6615 {
6616 gdb_assert (is_objfile_owned ());
6617 return owner.symtab;
6618 }
6619
6620 /* See symtab.h. */
6621
6622 void
6623 symbol::set_symtab (struct symtab *symtab)
6624 {
6625 gdb_assert (is_objfile_owned ());
6626 owner.symtab = symtab;
6627 }
6628
6629 /* See symtab.h. */
6630
6631 CORE_ADDR
6632 get_symbol_address (const struct symbol *sym)
6633 {
6634 gdb_assert (sym->maybe_copied);
6635 gdb_assert (sym->aclass () == LOC_STATIC);
6636
6637 const char *linkage_name = sym->linkage_name ();
6638
6639 for (objfile *objfile : current_program_space->objfiles ())
6640 {
6641 if (objfile->separate_debug_objfile_backlink != nullptr)
6642 continue;
6643
6644 bound_minimal_symbol minsym
6645 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6646 if (minsym.minsym != nullptr)
6647 return minsym.value_address ();
6648 }
6649 return sym->m_value.address;
6650 }
6651
6652 /* See symtab.h. */
6653
6654 CORE_ADDR
6655 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6656 {
6657 gdb_assert (minsym->maybe_copied);
6658 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6659
6660 const char *linkage_name = minsym->linkage_name ();
6661
6662 for (objfile *objfile : current_program_space->objfiles ())
6663 {
6664 if (objfile->separate_debug_objfile_backlink == nullptr
6665 && (objfile->flags & OBJF_MAINLINE) != 0)
6666 {
6667 bound_minimal_symbol found
6668 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6669 if (found.minsym != nullptr)
6670 return found.value_address ();
6671 }
6672 }
6673 return (minsym->m_value.address
6674 + objf->section_offsets[minsym->section_index ()]);
6675 }
6676
6677 \f
6678
6679 /* Hold the sub-commands of 'info module'. */
6680
6681 static struct cmd_list_element *info_module_cmdlist = NULL;
6682
6683 /* See symtab.h. */
6684
6685 std::vector<module_symbol_search>
6686 search_module_symbols (const char *module_regexp, const char *regexp,
6687 const char *type_regexp, search_domain kind)
6688 {
6689 std::vector<module_symbol_search> results;
6690
6691 /* Search for all modules matching MODULE_REGEXP. */
6692 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6693 spec1.set_exclude_minsyms (true);
6694 std::vector<symbol_search> modules = spec1.search ();
6695
6696 /* Now search for all symbols of the required KIND matching the required
6697 regular expressions. We figure out which ones are in which modules
6698 below. */
6699 global_symbol_searcher spec2 (kind, regexp);
6700 spec2.set_symbol_type_regexp (type_regexp);
6701 spec2.set_exclude_minsyms (true);
6702 std::vector<symbol_search> symbols = spec2.search ();
6703
6704 /* Now iterate over all MODULES, checking to see which items from
6705 SYMBOLS are in each module. */
6706 for (const symbol_search &p : modules)
6707 {
6708 QUIT;
6709
6710 /* This is a module. */
6711 gdb_assert (p.symbol != nullptr);
6712
6713 std::string prefix = p.symbol->print_name ();
6714 prefix += "::";
6715
6716 for (const symbol_search &q : symbols)
6717 {
6718 if (q.symbol == nullptr)
6719 continue;
6720
6721 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6722 prefix.size ()) != 0)
6723 continue;
6724
6725 results.push_back ({p, q});
6726 }
6727 }
6728
6729 return results;
6730 }
6731
6732 /* Implement the core of both 'info module functions' and 'info module
6733 variables'. */
6734
6735 static void
6736 info_module_subcommand (bool quiet, const char *module_regexp,
6737 const char *regexp, const char *type_regexp,
6738 search_domain kind)
6739 {
6740 /* Print a header line. Don't build the header line bit by bit as this
6741 prevents internationalisation. */
6742 if (!quiet)
6743 {
6744 if (module_regexp == nullptr)
6745 {
6746 if (type_regexp == nullptr)
6747 {
6748 if (regexp == nullptr)
6749 gdb_printf ((kind == VARIABLES_DOMAIN
6750 ? _("All variables in all modules:")
6751 : _("All functions in all modules:")));
6752 else
6753 gdb_printf
6754 ((kind == VARIABLES_DOMAIN
6755 ? _("All variables matching regular expression"
6756 " \"%s\" in all modules:")
6757 : _("All functions matching regular expression"
6758 " \"%s\" in all modules:")),
6759 regexp);
6760 }
6761 else
6762 {
6763 if (regexp == nullptr)
6764 gdb_printf
6765 ((kind == VARIABLES_DOMAIN
6766 ? _("All variables with type matching regular "
6767 "expression \"%s\" in all modules:")
6768 : _("All functions with type matching regular "
6769 "expression \"%s\" in all modules:")),
6770 type_regexp);
6771 else
6772 gdb_printf
6773 ((kind == VARIABLES_DOMAIN
6774 ? _("All variables matching regular expression "
6775 "\"%s\",\n\twith type matching regular "
6776 "expression \"%s\" in all modules:")
6777 : _("All functions matching regular expression "
6778 "\"%s\",\n\twith type matching regular "
6779 "expression \"%s\" in all modules:")),
6780 regexp, type_regexp);
6781 }
6782 }
6783 else
6784 {
6785 if (type_regexp == nullptr)
6786 {
6787 if (regexp == nullptr)
6788 gdb_printf
6789 ((kind == VARIABLES_DOMAIN
6790 ? _("All variables in all modules matching regular "
6791 "expression \"%s\":")
6792 : _("All functions in all modules matching regular "
6793 "expression \"%s\":")),
6794 module_regexp);
6795 else
6796 gdb_printf
6797 ((kind == VARIABLES_DOMAIN
6798 ? _("All variables matching regular expression "
6799 "\"%s\",\n\tin all modules matching regular "
6800 "expression \"%s\":")
6801 : _("All functions matching regular expression "
6802 "\"%s\",\n\tin all modules matching regular "
6803 "expression \"%s\":")),
6804 regexp, module_regexp);
6805 }
6806 else
6807 {
6808 if (regexp == nullptr)
6809 gdb_printf
6810 ((kind == VARIABLES_DOMAIN
6811 ? _("All variables with type matching regular "
6812 "expression \"%s\"\n\tin all modules matching "
6813 "regular expression \"%s\":")
6814 : _("All functions with type matching regular "
6815 "expression \"%s\"\n\tin all modules matching "
6816 "regular expression \"%s\":")),
6817 type_regexp, module_regexp);
6818 else
6819 gdb_printf
6820 ((kind == VARIABLES_DOMAIN
6821 ? _("All variables matching regular expression "
6822 "\"%s\",\n\twith type matching regular expression "
6823 "\"%s\",\n\tin all modules matching regular "
6824 "expression \"%s\":")
6825 : _("All functions matching regular expression "
6826 "\"%s\",\n\twith type matching regular expression "
6827 "\"%s\",\n\tin all modules matching regular "
6828 "expression \"%s\":")),
6829 regexp, type_regexp, module_regexp);
6830 }
6831 }
6832 gdb_printf ("\n");
6833 }
6834
6835 /* Find all symbols of type KIND matching the given regular expressions
6836 along with the symbols for the modules in which those symbols
6837 reside. */
6838 std::vector<module_symbol_search> module_symbols
6839 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6840
6841 std::sort (module_symbols.begin (), module_symbols.end (),
6842 [] (const module_symbol_search &a, const module_symbol_search &b)
6843 {
6844 if (a.first < b.first)
6845 return true;
6846 else if (a.first == b.first)
6847 return a.second < b.second;
6848 else
6849 return false;
6850 });
6851
6852 const char *last_filename = "";
6853 const symbol *last_module_symbol = nullptr;
6854 for (const module_symbol_search &ms : module_symbols)
6855 {
6856 const symbol_search &p = ms.first;
6857 const symbol_search &q = ms.second;
6858
6859 gdb_assert (q.symbol != nullptr);
6860
6861 if (last_module_symbol != p.symbol)
6862 {
6863 gdb_printf ("\n");
6864 gdb_printf (_("Module \"%s\":\n"), p.symbol->print_name ());
6865 last_module_symbol = p.symbol;
6866 last_filename = "";
6867 }
6868
6869 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6870 last_filename);
6871 last_filename
6872 = symtab_to_filename_for_display (q.symbol->symtab ());
6873 }
6874 }
6875
6876 /* Hold the option values for the 'info module .....' sub-commands. */
6877
6878 struct info_modules_var_func_options
6879 {
6880 bool quiet = false;
6881 std::string type_regexp;
6882 std::string module_regexp;
6883 };
6884
6885 /* The options used by 'info module variables' and 'info module functions'
6886 commands. */
6887
6888 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6889 gdb::option::boolean_option_def<info_modules_var_func_options> {
6890 "q",
6891 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6892 nullptr, /* show_cmd_cb */
6893 nullptr /* set_doc */
6894 },
6895
6896 gdb::option::string_option_def<info_modules_var_func_options> {
6897 "t",
6898 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6899 nullptr, /* show_cmd_cb */
6900 nullptr /* set_doc */
6901 },
6902
6903 gdb::option::string_option_def<info_modules_var_func_options> {
6904 "m",
6905 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6906 nullptr, /* show_cmd_cb */
6907 nullptr /* set_doc */
6908 }
6909 };
6910
6911 /* Return the option group used by the 'info module ...' sub-commands. */
6912
6913 static inline gdb::option::option_def_group
6914 make_info_modules_var_func_options_def_group
6915 (info_modules_var_func_options *opts)
6916 {
6917 return {{info_modules_var_func_options_defs}, opts};
6918 }
6919
6920 /* Implements the 'info module functions' command. */
6921
6922 static void
6923 info_module_functions_command (const char *args, int from_tty)
6924 {
6925 info_modules_var_func_options opts;
6926 auto grp = make_info_modules_var_func_options_def_group (&opts);
6927 gdb::option::process_options
6928 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6929 if (args != nullptr && *args == '\0')
6930 args = nullptr;
6931
6932 info_module_subcommand
6933 (opts.quiet,
6934 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6935 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6936 FUNCTIONS_DOMAIN);
6937 }
6938
6939 /* Implements the 'info module variables' command. */
6940
6941 static void
6942 info_module_variables_command (const char *args, int from_tty)
6943 {
6944 info_modules_var_func_options opts;
6945 auto grp = make_info_modules_var_func_options_def_group (&opts);
6946 gdb::option::process_options
6947 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6948 if (args != nullptr && *args == '\0')
6949 args = nullptr;
6950
6951 info_module_subcommand
6952 (opts.quiet,
6953 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6954 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6955 VARIABLES_DOMAIN);
6956 }
6957
6958 /* Command completer for 'info module ...' sub-commands. */
6959
6960 static void
6961 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6962 completion_tracker &tracker,
6963 const char *text,
6964 const char * /* word */)
6965 {
6966
6967 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6968 if (gdb::option::complete_options
6969 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6970 return;
6971
6972 const char *word = advance_to_expression_complete_word_point (tracker, text);
6973 symbol_completer (ignore, tracker, text, word);
6974 }
6975
6976 \f
6977
6978 void _initialize_symtab ();
6979 void
6980 _initialize_symtab ()
6981 {
6982 cmd_list_element *c;
6983
6984 initialize_ordinary_address_classes ();
6985
6986 c = add_info ("variables", info_variables_command,
6987 info_print_args_help (_("\
6988 All global and static variable names or those matching REGEXPs.\n\
6989 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6990 Prints the global and static variables.\n"),
6991 _("global and static variables"),
6992 true));
6993 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6994
6995 c = add_info ("functions", info_functions_command,
6996 info_print_args_help (_("\
6997 All function names or those matching REGEXPs.\n\
6998 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6999 Prints the functions.\n"),
7000 _("functions"),
7001 true));
7002 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
7003
7004 c = add_info ("types", info_types_command, _("\
7005 All type names, or those matching REGEXP.\n\
7006 Usage: info types [-q] [REGEXP]\n\
7007 Print information about all types matching REGEXP, or all types if no\n\
7008 REGEXP is given. The optional flag -q disables printing of headers."));
7009 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
7010
7011 const auto info_sources_opts
7012 = make_info_sources_options_def_group (nullptr);
7013
7014 static std::string info_sources_help
7015 = gdb::option::build_help (_("\
7016 All source files in the program or those matching REGEXP.\n\
7017 Usage: info sources [OPTION]... [REGEXP]\n\
7018 By default, REGEXP is used to match anywhere in the filename.\n\
7019 \n\
7020 Options:\n\
7021 %OPTIONS%"),
7022 info_sources_opts);
7023
7024 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
7025 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
7026
7027 c = add_info ("modules", info_modules_command,
7028 _("All module names, or those matching REGEXP."));
7029 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
7030
7031 add_basic_prefix_cmd ("module", class_info, _("\
7032 Print information about modules."),
7033 &info_module_cmdlist, 0, &infolist);
7034
7035 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
7036 Display functions arranged by modules.\n\
7037 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7038 Print a summary of all functions within each Fortran module, grouped by\n\
7039 module and file. For each function the line on which the function is\n\
7040 defined is given along with the type signature and name of the function.\n\
7041 \n\
7042 If REGEXP is provided then only functions whose name matches REGEXP are\n\
7043 listed. If MODREGEXP is provided then only functions in modules matching\n\
7044 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
7045 type signature matches TYPEREGEXP are listed.\n\
7046 \n\
7047 The -q flag suppresses printing some header information."),
7048 &info_module_cmdlist);
7049 set_cmd_completer_handle_brkchars
7050 (c, info_module_var_func_command_completer);
7051
7052 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
7053 Display variables arranged by modules.\n\
7054 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7055 Print a summary of all variables within each Fortran module, grouped by\n\
7056 module and file. For each variable the line on which the variable is\n\
7057 defined is given along with the type and name of the variable.\n\
7058 \n\
7059 If REGEXP is provided then only variables whose name matches REGEXP are\n\
7060 listed. If MODREGEXP is provided then only variables in modules matching\n\
7061 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
7062 type matches TYPEREGEXP are listed.\n\
7063 \n\
7064 The -q flag suppresses printing some header information."),
7065 &info_module_cmdlist);
7066 set_cmd_completer_handle_brkchars
7067 (c, info_module_var_func_command_completer);
7068
7069 add_com ("rbreak", class_breakpoint, rbreak_command,
7070 _("Set a breakpoint for all functions matching REGEXP."));
7071
7072 add_setshow_enum_cmd ("multiple-symbols", no_class,
7073 multiple_symbols_modes, &multiple_symbols_mode,
7074 _("\
7075 Set how the debugger handles ambiguities in expressions."), _("\
7076 Show how the debugger handles ambiguities in expressions."), _("\
7077 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
7078 NULL, NULL, &setlist, &showlist);
7079
7080 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
7081 &basenames_may_differ, _("\
7082 Set whether a source file may have multiple base names."), _("\
7083 Show whether a source file may have multiple base names."), _("\
7084 (A \"base name\" is the name of a file with the directory part removed.\n\
7085 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
7086 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
7087 before comparing them. Canonicalization is an expensive operation,\n\
7088 but it allows the same file be known by more than one base name.\n\
7089 If not set (the default), all source files are assumed to have just\n\
7090 one base name, and gdb will do file name comparisons more efficiently."),
7091 NULL, NULL,
7092 &setlist, &showlist);
7093
7094 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
7095 _("Set debugging of symbol table creation."),
7096 _("Show debugging of symbol table creation."), _("\
7097 When enabled (non-zero), debugging messages are printed when building\n\
7098 symbol tables. A value of 1 (one) normally provides enough information.\n\
7099 A value greater than 1 provides more verbose information."),
7100 NULL,
7101 NULL,
7102 &setdebuglist, &showdebuglist);
7103
7104 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
7105 _("\
7106 Set debugging of symbol lookup."), _("\
7107 Show debugging of symbol lookup."), _("\
7108 When enabled (non-zero), symbol lookups are logged."),
7109 NULL, NULL,
7110 &setdebuglist, &showdebuglist);
7111
7112 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
7113 &new_symbol_cache_size,
7114 _("Set the size of the symbol cache."),
7115 _("Show the size of the symbol cache."), _("\
7116 The size of the symbol cache.\n\
7117 If zero then the symbol cache is disabled."),
7118 set_symbol_cache_size_handler, NULL,
7119 &maintenance_set_cmdlist,
7120 &maintenance_show_cmdlist);
7121
7122 add_setshow_boolean_cmd ("ignore-prologue-end-flag", no_class,
7123 &ignore_prologue_end_flag,
7124 _("Set if the PROLOGUE-END flag is ignored."),
7125 _("Show if the PROLOGUE-END flag is ignored."),
7126 _("\
7127 The PROLOGUE-END flag from the line-table entries is used to place \
7128 breakpoints past the prologue of functions. Disabeling its use use forces \
7129 the use of prologue scanners."),
7130 nullptr, nullptr,
7131 &maintenance_set_cmdlist,
7132 &maintenance_show_cmdlist);
7133
7134
7135 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
7136 _("Dump the symbol cache for each program space."),
7137 &maintenanceprintlist);
7138
7139 add_cmd ("symbol-cache-statistics", class_maintenance,
7140 maintenance_print_symbol_cache_statistics,
7141 _("Print symbol cache statistics for each program space."),
7142 &maintenanceprintlist);
7143
7144 cmd_list_element *maintenance_flush_symbol_cache_cmd
7145 = add_cmd ("symbol-cache", class_maintenance,
7146 maintenance_flush_symbol_cache,
7147 _("Flush the symbol cache for each program space."),
7148 &maintenanceflushlist);
7149 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7150 class_maintenance, 0, &maintenancelist);
7151 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7152
7153 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7154 "symtab");
7155 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7156 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7157 }