567d09d355be2a00a0c483e4e803e62e05e68542
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73
74 /* Forward declarations for local functions. */
75
76 static void rbreak_command (const char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct block_symbol
81 lookup_symbol_aux (const char *name,
82 symbol_name_match_type match_type,
83 const struct block *block,
84 const domain_enum domain,
85 enum language language,
86 struct field_of_this_result *);
87
88 static
89 struct block_symbol lookup_local_symbol (const char *name,
90 symbol_name_match_type match_type,
91 const struct block *block,
92 const domain_enum domain,
93 enum language language);
94
95 static struct block_symbol
96 lookup_symbol_in_objfile (struct objfile *objfile,
97 enum block_enum block_index,
98 const char *name, const domain_enum domain);
99
100 /* Type of the data stored on the program space. */
101
102 struct main_info
103 {
104 main_info () = default;
105
106 ~main_info ()
107 {
108 xfree (name_of_main);
109 }
110
111 /* Name of "main". */
112
113 char *name_of_main = nullptr;
114
115 /* Language of "main". */
116
117 enum language language_of_main = language_unknown;
118 };
119
120 /* Program space key for finding name and language of "main". */
121
122 static const program_space_key<main_info> main_progspace_key;
123
124 /* The default symbol cache size.
125 There is no extra cpu cost for large N (except when flushing the cache,
126 which is rare). The value here is just a first attempt. A better default
127 value may be higher or lower. A prime number can make up for a bad hash
128 computation, so that's why the number is what it is. */
129 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
130
131 /* The maximum symbol cache size.
132 There's no method to the decision of what value to use here, other than
133 there's no point in allowing a user typo to make gdb consume all memory. */
134 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
135
136 /* symbol_cache_lookup returns this if a previous lookup failed to find the
137 symbol in any objfile. */
138 #define SYMBOL_LOOKUP_FAILED \
139 ((struct block_symbol) {(struct symbol *) 1, NULL})
140 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
141
142 /* Recording lookups that don't find the symbol is just as important, if not
143 more so, than recording found symbols. */
144
145 enum symbol_cache_slot_state
146 {
147 SYMBOL_SLOT_UNUSED,
148 SYMBOL_SLOT_NOT_FOUND,
149 SYMBOL_SLOT_FOUND
150 };
151
152 struct symbol_cache_slot
153 {
154 enum symbol_cache_slot_state state;
155
156 /* The objfile that was current when the symbol was looked up.
157 This is only needed for global blocks, but for simplicity's sake
158 we allocate the space for both. If data shows the extra space used
159 for static blocks is a problem, we can split things up then.
160
161 Global blocks need cache lookup to include the objfile context because
162 we need to account for gdbarch_iterate_over_objfiles_in_search_order
163 which can traverse objfiles in, effectively, any order, depending on
164 the current objfile, thus affecting which symbol is found. Normally,
165 only the current objfile is searched first, and then the rest are
166 searched in recorded order; but putting cache lookup inside
167 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
168 Instead we just make the current objfile part of the context of
169 cache lookup. This means we can record the same symbol multiple times,
170 each with a different "current objfile" that was in effect when the
171 lookup was saved in the cache, but cache space is pretty cheap. */
172 const struct objfile *objfile_context;
173
174 union
175 {
176 struct block_symbol found;
177 struct
178 {
179 char *name;
180 domain_enum domain;
181 } not_found;
182 } value;
183 };
184
185 /* Symbols don't specify global vs static block.
186 So keep them in separate caches. */
187
188 struct block_symbol_cache
189 {
190 unsigned int hits;
191 unsigned int misses;
192 unsigned int collisions;
193
194 /* SYMBOLS is a variable length array of this size.
195 One can imagine that in general one cache (global/static) should be a
196 fraction of the size of the other, but there's no data at the moment
197 on which to decide. */
198 unsigned int size;
199
200 struct symbol_cache_slot symbols[1];
201 };
202
203 /* The symbol cache.
204
205 Searching for symbols in the static and global blocks over multiple objfiles
206 again and again can be slow, as can searching very big objfiles. This is a
207 simple cache to improve symbol lookup performance, which is critical to
208 overall gdb performance.
209
210 Symbols are hashed on the name, its domain, and block.
211 They are also hashed on their objfile for objfile-specific lookups. */
212
213 struct symbol_cache
214 {
215 symbol_cache () = default;
216
217 ~symbol_cache ()
218 {
219 xfree (global_symbols);
220 xfree (static_symbols);
221 }
222
223 struct block_symbol_cache *global_symbols = nullptr;
224 struct block_symbol_cache *static_symbols = nullptr;
225 };
226
227 /* Program space key for finding its symbol cache. */
228
229 static const program_space_key<symbol_cache> symbol_cache_key;
230
231 /* When non-zero, print debugging messages related to symtab creation. */
232 unsigned int symtab_create_debug = 0;
233
234 /* When non-zero, print debugging messages related to symbol lookup. */
235 unsigned int symbol_lookup_debug = 0;
236
237 /* The size of the cache is staged here. */
238 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
239
240 /* The current value of the symbol cache size.
241 This is saved so that if the user enters a value too big we can restore
242 the original value from here. */
243 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
244
245 /* True if a file may be known by two different basenames.
246 This is the uncommon case, and significantly slows down gdb.
247 Default set to "off" to not slow down the common case. */
248 bool basenames_may_differ = false;
249
250 /* Allow the user to configure the debugger behavior with respect
251 to multiple-choice menus when more than one symbol matches during
252 a symbol lookup. */
253
254 const char multiple_symbols_ask[] = "ask";
255 const char multiple_symbols_all[] = "all";
256 const char multiple_symbols_cancel[] = "cancel";
257 static const char *const multiple_symbols_modes[] =
258 {
259 multiple_symbols_ask,
260 multiple_symbols_all,
261 multiple_symbols_cancel,
262 NULL
263 };
264 static const char *multiple_symbols_mode = multiple_symbols_all;
265
266 /* Read-only accessor to AUTO_SELECT_MODE. */
267
268 const char *
269 multiple_symbols_select_mode (void)
270 {
271 return multiple_symbols_mode;
272 }
273
274 /* Return the name of a domain_enum. */
275
276 const char *
277 domain_name (domain_enum e)
278 {
279 switch (e)
280 {
281 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
282 case VAR_DOMAIN: return "VAR_DOMAIN";
283 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
284 case MODULE_DOMAIN: return "MODULE_DOMAIN";
285 case LABEL_DOMAIN: return "LABEL_DOMAIN";
286 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
287 default: gdb_assert_not_reached ("bad domain_enum");
288 }
289 }
290
291 /* Return the name of a search_domain . */
292
293 const char *
294 search_domain_name (enum search_domain e)
295 {
296 switch (e)
297 {
298 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
299 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
300 case TYPES_DOMAIN: return "TYPES_DOMAIN";
301 case ALL_DOMAIN: return "ALL_DOMAIN";
302 default: gdb_assert_not_reached ("bad search_domain");
303 }
304 }
305
306 /* See symtab.h. */
307
308 struct symtab *
309 compunit_primary_filetab (const struct compunit_symtab *cust)
310 {
311 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
312
313 /* The primary file symtab is the first one in the list. */
314 return COMPUNIT_FILETABS (cust);
315 }
316
317 /* See symtab.h. */
318
319 enum language
320 compunit_language (const struct compunit_symtab *cust)
321 {
322 struct symtab *symtab = compunit_primary_filetab (cust);
323
324 /* The language of the compunit symtab is the language of its primary
325 source file. */
326 return SYMTAB_LANGUAGE (symtab);
327 }
328
329 /* See symtab.h. */
330
331 bool
332 minimal_symbol::data_p () const
333 {
334 return type == mst_data
335 || type == mst_bss
336 || type == mst_abs
337 || type == mst_file_data
338 || type == mst_file_bss;
339 }
340
341 /* See symtab.h. */
342
343 bool
344 minimal_symbol::text_p () const
345 {
346 return type == mst_text
347 || type == mst_text_gnu_ifunc
348 || type == mst_data_gnu_ifunc
349 || type == mst_slot_got_plt
350 || type == mst_solib_trampoline
351 || type == mst_file_text;
352 }
353
354 /* See whether FILENAME matches SEARCH_NAME using the rule that we
355 advertise to the user. (The manual's description of linespecs
356 describes what we advertise). Returns true if they match, false
357 otherwise. */
358
359 bool
360 compare_filenames_for_search (const char *filename, const char *search_name)
361 {
362 int len = strlen (filename);
363 size_t search_len = strlen (search_name);
364
365 if (len < search_len)
366 return false;
367
368 /* The tail of FILENAME must match. */
369 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
370 return false;
371
372 /* Either the names must completely match, or the character
373 preceding the trailing SEARCH_NAME segment of FILENAME must be a
374 directory separator.
375
376 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
377 cannot match FILENAME "/path//dir/file.c" - as user has requested
378 absolute path. The sama applies for "c:\file.c" possibly
379 incorrectly hypothetically matching "d:\dir\c:\file.c".
380
381 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
382 compatible with SEARCH_NAME "file.c". In such case a compiler had
383 to put the "c:file.c" name into debug info. Such compatibility
384 works only on GDB built for DOS host. */
385 return (len == search_len
386 || (!IS_ABSOLUTE_PATH (search_name)
387 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
388 || (HAS_DRIVE_SPEC (filename)
389 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
390 }
391
392 /* Same as compare_filenames_for_search, but for glob-style patterns.
393 Heads up on the order of the arguments. They match the order of
394 compare_filenames_for_search, but it's the opposite of the order of
395 arguments to gdb_filename_fnmatch. */
396
397 bool
398 compare_glob_filenames_for_search (const char *filename,
399 const char *search_name)
400 {
401 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
402 all /s have to be explicitly specified. */
403 int file_path_elements = count_path_elements (filename);
404 int search_path_elements = count_path_elements (search_name);
405
406 if (search_path_elements > file_path_elements)
407 return false;
408
409 if (IS_ABSOLUTE_PATH (search_name))
410 {
411 return (search_path_elements == file_path_elements
412 && gdb_filename_fnmatch (search_name, filename,
413 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
414 }
415
416 {
417 const char *file_to_compare
418 = strip_leading_path_elements (filename,
419 file_path_elements - search_path_elements);
420
421 return gdb_filename_fnmatch (search_name, file_to_compare,
422 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
423 }
424 }
425
426 /* Check for a symtab of a specific name by searching some symtabs.
427 This is a helper function for callbacks of iterate_over_symtabs.
428
429 If NAME is not absolute, then REAL_PATH is NULL
430 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
431
432 The return value, NAME, REAL_PATH and CALLBACK are identical to the
433 `map_symtabs_matching_filename' method of quick_symbol_functions.
434
435 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
436 Each symtab within the specified compunit symtab is also searched.
437 AFTER_LAST is one past the last compunit symtab to search; NULL means to
438 search until the end of the list. */
439
440 bool
441 iterate_over_some_symtabs (const char *name,
442 const char *real_path,
443 struct compunit_symtab *first,
444 struct compunit_symtab *after_last,
445 gdb::function_view<bool (symtab *)> callback)
446 {
447 struct compunit_symtab *cust;
448 const char* base_name = lbasename (name);
449
450 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
451 {
452 for (symtab *s : compunit_filetabs (cust))
453 {
454 if (compare_filenames_for_search (s->filename, name))
455 {
456 if (callback (s))
457 return true;
458 continue;
459 }
460
461 /* Before we invoke realpath, which can get expensive when many
462 files are involved, do a quick comparison of the basenames. */
463 if (! basenames_may_differ
464 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
465 continue;
466
467 if (compare_filenames_for_search (symtab_to_fullname (s), name))
468 {
469 if (callback (s))
470 return true;
471 continue;
472 }
473
474 /* If the user gave us an absolute path, try to find the file in
475 this symtab and use its absolute path. */
476 if (real_path != NULL)
477 {
478 const char *fullname = symtab_to_fullname (s);
479
480 gdb_assert (IS_ABSOLUTE_PATH (real_path));
481 gdb_assert (IS_ABSOLUTE_PATH (name));
482 if (FILENAME_CMP (real_path, fullname) == 0)
483 {
484 if (callback (s))
485 return true;
486 continue;
487 }
488 }
489 }
490 }
491
492 return false;
493 }
494
495 /* Check for a symtab of a specific name; first in symtabs, then in
496 psymtabs. *If* there is no '/' in the name, a match after a '/'
497 in the symtab filename will also work.
498
499 Calls CALLBACK with each symtab that is found. If CALLBACK returns
500 true, the search stops. */
501
502 void
503 iterate_over_symtabs (const char *name,
504 gdb::function_view<bool (symtab *)> callback)
505 {
506 gdb::unique_xmalloc_ptr<char> real_path;
507
508 /* Here we are interested in canonicalizing an absolute path, not
509 absolutizing a relative path. */
510 if (IS_ABSOLUTE_PATH (name))
511 {
512 real_path = gdb_realpath (name);
513 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
514 }
515
516 for (objfile *objfile : current_program_space->objfiles ())
517 {
518 if (iterate_over_some_symtabs (name, real_path.get (),
519 objfile->compunit_symtabs, NULL,
520 callback))
521 return;
522 }
523
524 /* Same search rules as above apply here, but now we look thru the
525 psymtabs. */
526
527 for (objfile *objfile : current_program_space->objfiles ())
528 {
529 if (objfile->sf
530 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
531 name,
532 real_path.get (),
533 callback))
534 return;
535 }
536 }
537
538 /* A wrapper for iterate_over_symtabs that returns the first matching
539 symtab, or NULL. */
540
541 struct symtab *
542 lookup_symtab (const char *name)
543 {
544 struct symtab *result = NULL;
545
546 iterate_over_symtabs (name, [&] (symtab *symtab)
547 {
548 result = symtab;
549 return true;
550 });
551
552 return result;
553 }
554
555 \f
556 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
557 full method name, which consist of the class name (from T), the unadorned
558 method name from METHOD_ID, and the signature for the specific overload,
559 specified by SIGNATURE_ID. Note that this function is g++ specific. */
560
561 char *
562 gdb_mangle_name (struct type *type, int method_id, int signature_id)
563 {
564 int mangled_name_len;
565 char *mangled_name;
566 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
567 struct fn_field *method = &f[signature_id];
568 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
569 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
570 const char *newname = TYPE_NAME (type);
571
572 /* Does the form of physname indicate that it is the full mangled name
573 of a constructor (not just the args)? */
574 int is_full_physname_constructor;
575
576 int is_constructor;
577 int is_destructor = is_destructor_name (physname);
578 /* Need a new type prefix. */
579 const char *const_prefix = method->is_const ? "C" : "";
580 const char *volatile_prefix = method->is_volatile ? "V" : "";
581 char buf[20];
582 int len = (newname == NULL ? 0 : strlen (newname));
583
584 /* Nothing to do if physname already contains a fully mangled v3 abi name
585 or an operator name. */
586 if ((physname[0] == '_' && physname[1] == 'Z')
587 || is_operator_name (field_name))
588 return xstrdup (physname);
589
590 is_full_physname_constructor = is_constructor_name (physname);
591
592 is_constructor = is_full_physname_constructor
593 || (newname && strcmp (field_name, newname) == 0);
594
595 if (!is_destructor)
596 is_destructor = (startswith (physname, "__dt"));
597
598 if (is_destructor || is_full_physname_constructor)
599 {
600 mangled_name = (char *) xmalloc (strlen (physname) + 1);
601 strcpy (mangled_name, physname);
602 return mangled_name;
603 }
604
605 if (len == 0)
606 {
607 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
608 }
609 else if (physname[0] == 't' || physname[0] == 'Q')
610 {
611 /* The physname for template and qualified methods already includes
612 the class name. */
613 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
614 newname = NULL;
615 len = 0;
616 }
617 else
618 {
619 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
620 volatile_prefix, len);
621 }
622 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
623 + strlen (buf) + len + strlen (physname) + 1);
624
625 mangled_name = (char *) xmalloc (mangled_name_len);
626 if (is_constructor)
627 mangled_name[0] = '\0';
628 else
629 strcpy (mangled_name, field_name);
630
631 strcat (mangled_name, buf);
632 /* If the class doesn't have a name, i.e. newname NULL, then we just
633 mangle it using 0 for the length of the class. Thus it gets mangled
634 as something starting with `::' rather than `classname::'. */
635 if (newname != NULL)
636 strcat (mangled_name, newname);
637
638 strcat (mangled_name, physname);
639 return (mangled_name);
640 }
641
642 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
643 correctly allocated. */
644
645 void
646 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
647 const char *name,
648 struct obstack *obstack)
649 {
650 if (gsymbol->language == language_ada)
651 {
652 if (name == NULL)
653 {
654 gsymbol->ada_mangled = 0;
655 gsymbol->language_specific.obstack = obstack;
656 }
657 else
658 {
659 gsymbol->ada_mangled = 1;
660 gsymbol->language_specific.demangled_name = name;
661 }
662 }
663 else
664 gsymbol->language_specific.demangled_name = name;
665 }
666
667 /* Return the demangled name of GSYMBOL. */
668
669 const char *
670 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
671 {
672 if (gsymbol->language == language_ada)
673 {
674 if (!gsymbol->ada_mangled)
675 return NULL;
676 /* Fall through. */
677 }
678
679 return gsymbol->language_specific.demangled_name;
680 }
681
682 \f
683 /* Initialize the language dependent portion of a symbol
684 depending upon the language for the symbol. */
685
686 void
687 symbol_set_language (struct general_symbol_info *gsymbol,
688 enum language language,
689 struct obstack *obstack)
690 {
691 gsymbol->language = language;
692 if (gsymbol->language == language_cplus
693 || gsymbol->language == language_d
694 || gsymbol->language == language_go
695 || gsymbol->language == language_objc
696 || gsymbol->language == language_fortran)
697 {
698 symbol_set_demangled_name (gsymbol, NULL, obstack);
699 }
700 else if (gsymbol->language == language_ada)
701 {
702 gdb_assert (gsymbol->ada_mangled == 0);
703 gsymbol->language_specific.obstack = obstack;
704 }
705 else
706 {
707 memset (&gsymbol->language_specific, 0,
708 sizeof (gsymbol->language_specific));
709 }
710 }
711
712 /* Functions to initialize a symbol's mangled name. */
713
714 /* Objects of this type are stored in the demangled name hash table. */
715 struct demangled_name_entry
716 {
717 gdb::string_view mangled;
718 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
719 char demangled[1];
720 };
721
722 /* Hash function for the demangled name hash. */
723
724 static hashval_t
725 hash_demangled_name_entry (const void *data)
726 {
727 const struct demangled_name_entry *e
728 = (const struct demangled_name_entry *) data;
729
730 return iterative_hash (e->mangled.data (), e->mangled.length (), 0);
731 }
732
733 /* Equality function for the demangled name hash. */
734
735 static int
736 eq_demangled_name_entry (const void *a, const void *b)
737 {
738 const struct demangled_name_entry *da
739 = (const struct demangled_name_entry *) a;
740 const struct demangled_name_entry *db
741 = (const struct demangled_name_entry *) b;
742
743 return da->mangled == db->mangled;
744 }
745
746 /* Create the hash table used for demangled names. Each hash entry is
747 a pair of strings; one for the mangled name and one for the demangled
748 name. The entry is hashed via just the mangled name. */
749
750 static void
751 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
752 {
753 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
754 The hash table code will round this up to the next prime number.
755 Choosing a much larger table size wastes memory, and saves only about
756 1% in symbol reading. */
757
758 per_bfd->demangled_names_hash.reset (htab_create_alloc
759 (256, hash_demangled_name_entry, eq_demangled_name_entry,
760 NULL, xcalloc, xfree));
761 }
762
763 /* Try to determine the demangled name for a symbol, based on the
764 language of that symbol. If the language is set to language_auto,
765 it will attempt to find any demangling algorithm that works and
766 then set the language appropriately. The returned name is allocated
767 by the demangler and should be xfree'd. */
768
769 static char *
770 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
771 const char *mangled)
772 {
773 char *demangled = NULL;
774 int i;
775
776 if (gsymbol->language == language_unknown)
777 gsymbol->language = language_auto;
778
779 if (gsymbol->language != language_auto)
780 {
781 const struct language_defn *lang = language_def (gsymbol->language);
782
783 language_sniff_from_mangled_name (lang, mangled, &demangled);
784 return demangled;
785 }
786
787 for (i = language_unknown; i < nr_languages; ++i)
788 {
789 enum language l = (enum language) i;
790 const struct language_defn *lang = language_def (l);
791
792 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
793 {
794 gsymbol->language = l;
795 return demangled;
796 }
797 }
798
799 return NULL;
800 }
801
802 /* Set both the mangled and demangled (if any) names for GSYMBOL based
803 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
804 objfile's obstack; but if COPY_NAME is 0 and if NAME is
805 NUL-terminated, then this function assumes that NAME is already
806 correctly saved (either permanently or with a lifetime tied to the
807 objfile), and it will not be copied.
808
809 The hash table corresponding to OBJFILE is used, and the memory
810 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
811 so the pointer can be discarded after calling this function. */
812
813 void
814 symbol_set_names (struct general_symbol_info *gsymbol,
815 const char *linkage_name, int len, bool copy_name,
816 struct objfile_per_bfd_storage *per_bfd)
817 {
818 struct demangled_name_entry **slot;
819 /* A 0-terminated copy of the linkage name. */
820 const char *linkage_name_copy;
821 struct demangled_name_entry entry;
822
823 if (gsymbol->language == language_ada)
824 {
825 /* In Ada, we do the symbol lookups using the mangled name, so
826 we can save some space by not storing the demangled name. */
827 if (!copy_name)
828 gsymbol->name = linkage_name;
829 else
830 {
831 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
832 len + 1);
833
834 memcpy (name, linkage_name, len);
835 name[len] = '\0';
836 gsymbol->name = name;
837 }
838 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
839
840 return;
841 }
842
843 if (per_bfd->demangled_names_hash == NULL)
844 create_demangled_names_hash (per_bfd);
845
846 if (linkage_name[len] != '\0')
847 {
848 char *alloc_name;
849
850 alloc_name = (char *) alloca (len + 1);
851 memcpy (alloc_name, linkage_name, len);
852 alloc_name[len] = '\0';
853
854 linkage_name_copy = alloc_name;
855 }
856 else
857 linkage_name_copy = linkage_name;
858
859 entry.mangled = gdb::string_view (linkage_name_copy, len);
860 slot = ((struct demangled_name_entry **)
861 htab_find_slot (per_bfd->demangled_names_hash.get (),
862 &entry, INSERT));
863
864 /* If this name is not in the hash table, add it. */
865 if (*slot == NULL
866 /* A C version of the symbol may have already snuck into the table.
867 This happens to, e.g., main.init (__go_init_main). Cope. */
868 || (gsymbol->language == language_go
869 && (*slot)->demangled[0] == '\0'))
870 {
871 char *demangled_name_ptr
872 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
873 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
874 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
875
876 /* Suppose we have demangled_name==NULL, copy_name==0, and
877 linkage_name_copy==linkage_name. In this case, we already have the
878 mangled name saved, and we don't have a demangled name. So,
879 you might think we could save a little space by not recording
880 this in the hash table at all.
881
882 It turns out that it is actually important to still save such
883 an entry in the hash table, because storing this name gives
884 us better bcache hit rates for partial symbols. */
885 if (!copy_name && linkage_name_copy == linkage_name)
886 {
887 *slot
888 = ((struct demangled_name_entry *)
889 obstack_alloc (&per_bfd->storage_obstack,
890 offsetof (struct demangled_name_entry, demangled)
891 + demangled_len + 1));
892 (*slot)->mangled = gdb::string_view (linkage_name, len);
893 }
894 else
895 {
896 char *mangled_ptr;
897
898 /* If we must copy the mangled name, put it directly after
899 the demangled name so we can have a single
900 allocation. */
901 *slot
902 = ((struct demangled_name_entry *)
903 obstack_alloc (&per_bfd->storage_obstack,
904 offsetof (struct demangled_name_entry, demangled)
905 + len + demangled_len + 2));
906 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
907 strcpy (mangled_ptr, linkage_name_copy);
908 (*slot)->mangled = gdb::string_view (mangled_ptr, len);
909 }
910 (*slot)->language = gsymbol->language;
911
912 if (demangled_name != NULL)
913 strcpy ((*slot)->demangled, demangled_name.get ());
914 else
915 (*slot)->demangled[0] = '\0';
916 }
917 else if (gsymbol->language == language_unknown
918 || gsymbol->language == language_auto)
919 gsymbol->language = (*slot)->language;
920
921 gsymbol->name = (*slot)->mangled.data ();
922 if ((*slot)->demangled[0] != '\0')
923 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
924 &per_bfd->storage_obstack);
925 else
926 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
927 }
928
929 /* Return the source code name of a symbol. In languages where
930 demangling is necessary, this is the demangled name. */
931
932 const char *
933 symbol_natural_name (const struct general_symbol_info *gsymbol)
934 {
935 switch (gsymbol->language)
936 {
937 case language_cplus:
938 case language_d:
939 case language_go:
940 case language_objc:
941 case language_fortran:
942 if (symbol_get_demangled_name (gsymbol) != NULL)
943 return symbol_get_demangled_name (gsymbol);
944 break;
945 case language_ada:
946 return ada_decode_symbol (gsymbol);
947 default:
948 break;
949 }
950 return gsymbol->name;
951 }
952
953 /* Return the demangled name for a symbol based on the language for
954 that symbol. If no demangled name exists, return NULL. */
955
956 const char *
957 symbol_demangled_name (const struct general_symbol_info *gsymbol)
958 {
959 const char *dem_name = NULL;
960
961 switch (gsymbol->language)
962 {
963 case language_cplus:
964 case language_d:
965 case language_go:
966 case language_objc:
967 case language_fortran:
968 dem_name = symbol_get_demangled_name (gsymbol);
969 break;
970 case language_ada:
971 dem_name = ada_decode_symbol (gsymbol);
972 break;
973 default:
974 break;
975 }
976 return dem_name;
977 }
978
979 /* Return the search name of a symbol---generally the demangled or
980 linkage name of the symbol, depending on how it will be searched for.
981 If there is no distinct demangled name, then returns the same value
982 (same pointer) as SYMBOL_LINKAGE_NAME. */
983
984 const char *
985 symbol_search_name (const struct general_symbol_info *gsymbol)
986 {
987 if (gsymbol->language == language_ada)
988 return gsymbol->name;
989 else
990 return symbol_natural_name (gsymbol);
991 }
992
993 /* See symtab.h. */
994
995 bool
996 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
997 const lookup_name_info &name)
998 {
999 symbol_name_matcher_ftype *name_match
1000 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1001 return name_match (symbol_search_name (gsymbol), name, NULL);
1002 }
1003
1004 \f
1005
1006 /* Return true if the two sections are the same, or if they could
1007 plausibly be copies of each other, one in an original object
1008 file and another in a separated debug file. */
1009
1010 bool
1011 matching_obj_sections (struct obj_section *obj_first,
1012 struct obj_section *obj_second)
1013 {
1014 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1015 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1016
1017 /* If they're the same section, then they match. */
1018 if (first == second)
1019 return true;
1020
1021 /* If either is NULL, give up. */
1022 if (first == NULL || second == NULL)
1023 return false;
1024
1025 /* This doesn't apply to absolute symbols. */
1026 if (first->owner == NULL || second->owner == NULL)
1027 return false;
1028
1029 /* If they're in the same object file, they must be different sections. */
1030 if (first->owner == second->owner)
1031 return false;
1032
1033 /* Check whether the two sections are potentially corresponding. They must
1034 have the same size, address, and name. We can't compare section indexes,
1035 which would be more reliable, because some sections may have been
1036 stripped. */
1037 if (bfd_section_size (first) != bfd_section_size (second))
1038 return false;
1039
1040 /* In-memory addresses may start at a different offset, relativize them. */
1041 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1042 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1043 return false;
1044
1045 if (bfd_section_name (first) == NULL
1046 || bfd_section_name (second) == NULL
1047 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1048 return false;
1049
1050 /* Otherwise check that they are in corresponding objfiles. */
1051
1052 struct objfile *obj = NULL;
1053 for (objfile *objfile : current_program_space->objfiles ())
1054 if (objfile->obfd == first->owner)
1055 {
1056 obj = objfile;
1057 break;
1058 }
1059 gdb_assert (obj != NULL);
1060
1061 if (obj->separate_debug_objfile != NULL
1062 && obj->separate_debug_objfile->obfd == second->owner)
1063 return true;
1064 if (obj->separate_debug_objfile_backlink != NULL
1065 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1066 return true;
1067
1068 return false;
1069 }
1070
1071 /* See symtab.h. */
1072
1073 void
1074 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1075 {
1076 struct bound_minimal_symbol msymbol;
1077
1078 /* If we know that this is not a text address, return failure. This is
1079 necessary because we loop based on texthigh and textlow, which do
1080 not include the data ranges. */
1081 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1082 if (msymbol.minsym && msymbol.minsym->data_p ())
1083 return;
1084
1085 for (objfile *objfile : current_program_space->objfiles ())
1086 {
1087 struct compunit_symtab *cust = NULL;
1088
1089 if (objfile->sf)
1090 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1091 pc, section, 0);
1092 if (cust)
1093 return;
1094 }
1095 }
1096 \f
1097 /* Hash function for the symbol cache. */
1098
1099 static unsigned int
1100 hash_symbol_entry (const struct objfile *objfile_context,
1101 const char *name, domain_enum domain)
1102 {
1103 unsigned int hash = (uintptr_t) objfile_context;
1104
1105 if (name != NULL)
1106 hash += htab_hash_string (name);
1107
1108 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1109 to map to the same slot. */
1110 if (domain == STRUCT_DOMAIN)
1111 hash += VAR_DOMAIN * 7;
1112 else
1113 hash += domain * 7;
1114
1115 return hash;
1116 }
1117
1118 /* Equality function for the symbol cache. */
1119
1120 static int
1121 eq_symbol_entry (const struct symbol_cache_slot *slot,
1122 const struct objfile *objfile_context,
1123 const char *name, domain_enum domain)
1124 {
1125 const char *slot_name;
1126 domain_enum slot_domain;
1127
1128 if (slot->state == SYMBOL_SLOT_UNUSED)
1129 return 0;
1130
1131 if (slot->objfile_context != objfile_context)
1132 return 0;
1133
1134 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1135 {
1136 slot_name = slot->value.not_found.name;
1137 slot_domain = slot->value.not_found.domain;
1138 }
1139 else
1140 {
1141 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1142 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1143 }
1144
1145 /* NULL names match. */
1146 if (slot_name == NULL && name == NULL)
1147 {
1148 /* But there's no point in calling symbol_matches_domain in the
1149 SYMBOL_SLOT_FOUND case. */
1150 if (slot_domain != domain)
1151 return 0;
1152 }
1153 else if (slot_name != NULL && name != NULL)
1154 {
1155 /* It's important that we use the same comparison that was done
1156 the first time through. If the slot records a found symbol,
1157 then this means using the symbol name comparison function of
1158 the symbol's language with SYMBOL_SEARCH_NAME. See
1159 dictionary.c. It also means using symbol_matches_domain for
1160 found symbols. See block.c.
1161
1162 If the slot records a not-found symbol, then require a precise match.
1163 We could still be lax with whitespace like strcmp_iw though. */
1164
1165 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1166 {
1167 if (strcmp (slot_name, name) != 0)
1168 return 0;
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else
1173 {
1174 struct symbol *sym = slot->value.found.symbol;
1175 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1176
1177 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1178 return 0;
1179
1180 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1181 slot_domain, domain))
1182 return 0;
1183 }
1184 }
1185 else
1186 {
1187 /* Only one name is NULL. */
1188 return 0;
1189 }
1190
1191 return 1;
1192 }
1193
1194 /* Given a cache of size SIZE, return the size of the struct (with variable
1195 length array) in bytes. */
1196
1197 static size_t
1198 symbol_cache_byte_size (unsigned int size)
1199 {
1200 return (sizeof (struct block_symbol_cache)
1201 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1202 }
1203
1204 /* Resize CACHE. */
1205
1206 static void
1207 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1208 {
1209 /* If there's no change in size, don't do anything.
1210 All caches have the same size, so we can just compare with the size
1211 of the global symbols cache. */
1212 if ((cache->global_symbols != NULL
1213 && cache->global_symbols->size == new_size)
1214 || (cache->global_symbols == NULL
1215 && new_size == 0))
1216 return;
1217
1218 xfree (cache->global_symbols);
1219 xfree (cache->static_symbols);
1220
1221 if (new_size == 0)
1222 {
1223 cache->global_symbols = NULL;
1224 cache->static_symbols = NULL;
1225 }
1226 else
1227 {
1228 size_t total_size = symbol_cache_byte_size (new_size);
1229
1230 cache->global_symbols
1231 = (struct block_symbol_cache *) xcalloc (1, total_size);
1232 cache->static_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->global_symbols->size = new_size;
1235 cache->static_symbols->size = new_size;
1236 }
1237 }
1238
1239 /* Return the symbol cache of PSPACE.
1240 Create one if it doesn't exist yet. */
1241
1242 static struct symbol_cache *
1243 get_symbol_cache (struct program_space *pspace)
1244 {
1245 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1246
1247 if (cache == NULL)
1248 {
1249 cache = symbol_cache_key.emplace (pspace);
1250 resize_symbol_cache (cache, symbol_cache_size);
1251 }
1252
1253 return cache;
1254 }
1255
1256 /* Set the size of the symbol cache in all program spaces. */
1257
1258 static void
1259 set_symbol_cache_size (unsigned int new_size)
1260 {
1261 struct program_space *pspace;
1262
1263 ALL_PSPACES (pspace)
1264 {
1265 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1266
1267 /* The pspace could have been created but not have a cache yet. */
1268 if (cache != NULL)
1269 resize_symbol_cache (cache, new_size);
1270 }
1271 }
1272
1273 /* Called when symbol-cache-size is set. */
1274
1275 static void
1276 set_symbol_cache_size_handler (const char *args, int from_tty,
1277 struct cmd_list_element *c)
1278 {
1279 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1280 {
1281 /* Restore the previous value.
1282 This is the value the "show" command prints. */
1283 new_symbol_cache_size = symbol_cache_size;
1284
1285 error (_("Symbol cache size is too large, max is %u."),
1286 MAX_SYMBOL_CACHE_SIZE);
1287 }
1288 symbol_cache_size = new_symbol_cache_size;
1289
1290 set_symbol_cache_size (symbol_cache_size);
1291 }
1292
1293 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1294 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1295 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1296 failed (and thus this one will too), or NULL if the symbol is not present
1297 in the cache.
1298 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1299 can be used to save the result of a full lookup attempt. */
1300
1301 static struct block_symbol
1302 symbol_cache_lookup (struct symbol_cache *cache,
1303 struct objfile *objfile_context, enum block_enum block,
1304 const char *name, domain_enum domain,
1305 struct block_symbol_cache **bsc_ptr,
1306 struct symbol_cache_slot **slot_ptr)
1307 {
1308 struct block_symbol_cache *bsc;
1309 unsigned int hash;
1310 struct symbol_cache_slot *slot;
1311
1312 if (block == GLOBAL_BLOCK)
1313 bsc = cache->global_symbols;
1314 else
1315 bsc = cache->static_symbols;
1316 if (bsc == NULL)
1317 {
1318 *bsc_ptr = NULL;
1319 *slot_ptr = NULL;
1320 return {};
1321 }
1322
1323 hash = hash_symbol_entry (objfile_context, name, domain);
1324 slot = bsc->symbols + hash % bsc->size;
1325
1326 *bsc_ptr = bsc;
1327 *slot_ptr = slot;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 if (symbol_lookup_debug)
1347 {
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache miss for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 name, domain_name (domain));
1352 }
1353 ++bsc->misses;
1354 return {};
1355 }
1356
1357 /* Clear out SLOT. */
1358
1359 static void
1360 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1361 {
1362 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1363 xfree (slot->value.not_found.name);
1364 slot->state = SYMBOL_SLOT_UNUSED;
1365 }
1366
1367 /* Mark SYMBOL as found in SLOT.
1368 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1369 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1370 necessarily the objfile the symbol was found in. */
1371
1372 static void
1373 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1374 struct symbol_cache_slot *slot,
1375 struct objfile *objfile_context,
1376 struct symbol *symbol,
1377 const struct block *block)
1378 {
1379 if (bsc == NULL)
1380 return;
1381 if (slot->state != SYMBOL_SLOT_UNUSED)
1382 {
1383 ++bsc->collisions;
1384 symbol_cache_clear_slot (slot);
1385 }
1386 slot->state = SYMBOL_SLOT_FOUND;
1387 slot->objfile_context = objfile_context;
1388 slot->value.found.symbol = symbol;
1389 slot->value.found.block = block;
1390 }
1391
1392 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1393 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1394 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1395
1396 static void
1397 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1398 struct symbol_cache_slot *slot,
1399 struct objfile *objfile_context,
1400 const char *name, domain_enum domain)
1401 {
1402 if (bsc == NULL)
1403 return;
1404 if (slot->state != SYMBOL_SLOT_UNUSED)
1405 {
1406 ++bsc->collisions;
1407 symbol_cache_clear_slot (slot);
1408 }
1409 slot->state = SYMBOL_SLOT_NOT_FOUND;
1410 slot->objfile_context = objfile_context;
1411 slot->value.not_found.name = xstrdup (name);
1412 slot->value.not_found.domain = domain;
1413 }
1414
1415 /* Flush the symbol cache of PSPACE. */
1416
1417 static void
1418 symbol_cache_flush (struct program_space *pspace)
1419 {
1420 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1421 int pass;
1422
1423 if (cache == NULL)
1424 return;
1425 if (cache->global_symbols == NULL)
1426 {
1427 gdb_assert (symbol_cache_size == 0);
1428 gdb_assert (cache->static_symbols == NULL);
1429 return;
1430 }
1431
1432 /* If the cache is untouched since the last flush, early exit.
1433 This is important for performance during the startup of a program linked
1434 with 100s (or 1000s) of shared libraries. */
1435 if (cache->global_symbols->misses == 0
1436 && cache->static_symbols->misses == 0)
1437 return;
1438
1439 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1440 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1441
1442 for (pass = 0; pass < 2; ++pass)
1443 {
1444 struct block_symbol_cache *bsc
1445 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1446 unsigned int i;
1447
1448 for (i = 0; i < bsc->size; ++i)
1449 symbol_cache_clear_slot (&bsc->symbols[i]);
1450 }
1451
1452 cache->global_symbols->hits = 0;
1453 cache->global_symbols->misses = 0;
1454 cache->global_symbols->collisions = 0;
1455 cache->static_symbols->hits = 0;
1456 cache->static_symbols->misses = 0;
1457 cache->static_symbols->collisions = 0;
1458 }
1459
1460 /* Dump CACHE. */
1461
1462 static void
1463 symbol_cache_dump (const struct symbol_cache *cache)
1464 {
1465 int pass;
1466
1467 if (cache->global_symbols == NULL)
1468 {
1469 printf_filtered (" <disabled>\n");
1470 return;
1471 }
1472
1473 for (pass = 0; pass < 2; ++pass)
1474 {
1475 const struct block_symbol_cache *bsc
1476 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1477 unsigned int i;
1478
1479 if (pass == 0)
1480 printf_filtered ("Global symbols:\n");
1481 else
1482 printf_filtered ("Static symbols:\n");
1483
1484 for (i = 0; i < bsc->size; ++i)
1485 {
1486 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1487
1488 QUIT;
1489
1490 switch (slot->state)
1491 {
1492 case SYMBOL_SLOT_UNUSED:
1493 break;
1494 case SYMBOL_SLOT_NOT_FOUND:
1495 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1496 host_address_to_string (slot->objfile_context),
1497 slot->value.not_found.name,
1498 domain_name (slot->value.not_found.domain));
1499 break;
1500 case SYMBOL_SLOT_FOUND:
1501 {
1502 struct symbol *found = slot->value.found.symbol;
1503 const struct objfile *context = slot->objfile_context;
1504
1505 printf_filtered (" [%4u] = %s, %s %s\n", i,
1506 host_address_to_string (context),
1507 SYMBOL_PRINT_NAME (found),
1508 domain_name (SYMBOL_DOMAIN (found)));
1509 break;
1510 }
1511 }
1512 }
1513 }
1514 }
1515
1516 /* The "mt print symbol-cache" command. */
1517
1518 static void
1519 maintenance_print_symbol_cache (const char *args, int from_tty)
1520 {
1521 struct program_space *pspace;
1522
1523 ALL_PSPACES (pspace)
1524 {
1525 struct symbol_cache *cache;
1526
1527 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1528 pspace->num,
1529 pspace->symfile_object_file != NULL
1530 ? objfile_name (pspace->symfile_object_file)
1531 : "(no object file)");
1532
1533 /* If the cache hasn't been created yet, avoid creating one. */
1534 cache = symbol_cache_key.get (pspace);
1535 if (cache == NULL)
1536 printf_filtered (" <empty>\n");
1537 else
1538 symbol_cache_dump (cache);
1539 }
1540 }
1541
1542 /* The "mt flush-symbol-cache" command. */
1543
1544 static void
1545 maintenance_flush_symbol_cache (const char *args, int from_tty)
1546 {
1547 struct program_space *pspace;
1548
1549 ALL_PSPACES (pspace)
1550 {
1551 symbol_cache_flush (pspace);
1552 }
1553 }
1554
1555 /* Print usage statistics of CACHE. */
1556
1557 static void
1558 symbol_cache_stats (struct symbol_cache *cache)
1559 {
1560 int pass;
1561
1562 if (cache->global_symbols == NULL)
1563 {
1564 printf_filtered (" <disabled>\n");
1565 return;
1566 }
1567
1568 for (pass = 0; pass < 2; ++pass)
1569 {
1570 const struct block_symbol_cache *bsc
1571 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1572
1573 QUIT;
1574
1575 if (pass == 0)
1576 printf_filtered ("Global block cache stats:\n");
1577 else
1578 printf_filtered ("Static block cache stats:\n");
1579
1580 printf_filtered (" size: %u\n", bsc->size);
1581 printf_filtered (" hits: %u\n", bsc->hits);
1582 printf_filtered (" misses: %u\n", bsc->misses);
1583 printf_filtered (" collisions: %u\n", bsc->collisions);
1584 }
1585 }
1586
1587 /* The "mt print symbol-cache-statistics" command. */
1588
1589 static void
1590 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1591 {
1592 struct program_space *pspace;
1593
1594 ALL_PSPACES (pspace)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1645 if (msym)
1646 ginfo->section = MSYMBOL_SECTION (msym);
1647 else
1648 {
1649 /* Static, function-local variables do appear in the linker
1650 (minimal) symbols, but are frequently given names that won't
1651 be found via lookup_minimal_symbol(). E.g., it has been
1652 observed in frv-uclinux (ELF) executables that a static,
1653 function-local variable named "foo" might appear in the
1654 linker symbols as "foo.6" or "foo.3". Thus, there is no
1655 point in attempting to extend the lookup-by-name mechanism to
1656 handle this case due to the fact that there can be multiple
1657 names.
1658
1659 So, instead, search the section table when lookup by name has
1660 failed. The ``addr'' and ``endaddr'' fields may have already
1661 been relocated. If so, the relocation offset (i.e. the
1662 ANOFFSET value) needs to be subtracted from these values when
1663 performing the comparison. We unconditionally subtract it,
1664 because, when no relocation has been performed, the ANOFFSET
1665 value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (&sym->ginfo, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.name ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 std::string canon = cp_canonicalize_string (name);
1834 if (!canon.empty ())
1835 return storage.swap_string (canon);
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->la_search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->la_name_of_this == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = lookup_objfile_from_block (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->la_name, host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->la_name_of_this,
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 SYMBOL_PRINT_NAME (sym),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = lookup_objfile_from_block (block);
2016
2017 fprintf_unfiltered (gdb_stdlog,
2018 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2019 name, host_address_to_string (block),
2020 objfile != NULL
2021 ? objfile_debug_name (objfile) : "NULL",
2022 domain_name (domain), language_str (language));
2023 }
2024
2025 /* Make sure we do something sensible with is_a_field_of_this, since
2026 the callers that set this parameter to some non-null value will
2027 certainly use it later. If we don't set it, the contents of
2028 is_a_field_of_this are undefined. */
2029 if (is_a_field_of_this != NULL)
2030 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2031
2032 /* Search specified block and its superiors. Don't search
2033 STATIC_BLOCK or GLOBAL_BLOCK. */
2034
2035 result = lookup_local_symbol (name, match_type, block, domain, language);
2036 if (result.symbol != NULL)
2037 {
2038 if (symbol_lookup_debug)
2039 {
2040 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2041 host_address_to_string (result.symbol));
2042 }
2043 return result;
2044 }
2045
2046 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2047 check to see if NAME is a field of `this'. */
2048
2049 langdef = language_def (language);
2050
2051 /* Don't do this check if we are searching for a struct. It will
2052 not be found by check_field, but will be found by other
2053 means. */
2054 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2055 {
2056 result = lookup_language_this (langdef, block);
2057
2058 if (result.symbol)
2059 {
2060 struct type *t = result.symbol->type;
2061
2062 /* I'm not really sure that type of this can ever
2063 be typedefed; just be safe. */
2064 t = check_typedef (t);
2065 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2066 t = TYPE_TARGET_TYPE (t);
2067
2068 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2069 && TYPE_CODE (t) != TYPE_CODE_UNION)
2070 error (_("Internal error: `%s' is not an aggregate"),
2071 langdef->la_name_of_this);
2072
2073 if (check_field (t, name, is_a_field_of_this))
2074 {
2075 if (symbol_lookup_debug)
2076 {
2077 fprintf_unfiltered (gdb_stdlog,
2078 "lookup_symbol_aux (...) = NULL\n");
2079 }
2080 return {};
2081 }
2082 }
2083 }
2084
2085 /* Now do whatever is appropriate for LANGUAGE to look
2086 up static and global variables. */
2087
2088 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2089 if (result.symbol != NULL)
2090 {
2091 if (symbol_lookup_debug)
2092 {
2093 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2094 host_address_to_string (result.symbol));
2095 }
2096 return result;
2097 }
2098
2099 /* Now search all static file-level symbols. Not strictly correct,
2100 but more useful than an error. */
2101
2102 result = lookup_static_symbol (name, domain);
2103 if (symbol_lookup_debug)
2104 {
2105 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2106 result.symbol != NULL
2107 ? host_address_to_string (result.symbol)
2108 : "NULL");
2109 }
2110 return result;
2111 }
2112
2113 /* Check to see if the symbol is defined in BLOCK or its superiors.
2114 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2115
2116 static struct block_symbol
2117 lookup_local_symbol (const char *name,
2118 symbol_name_match_type match_type,
2119 const struct block *block,
2120 const domain_enum domain,
2121 enum language language)
2122 {
2123 struct symbol *sym;
2124 const struct block *static_block = block_static_block (block);
2125 const char *scope = block_scope (block);
2126
2127 /* Check if either no block is specified or it's a global block. */
2128
2129 if (static_block == NULL)
2130 return {};
2131
2132 while (block != static_block)
2133 {
2134 sym = lookup_symbol_in_block (name, match_type, block, domain);
2135 if (sym != NULL)
2136 return (struct block_symbol) {sym, block};
2137
2138 if (language == language_cplus || language == language_fortran)
2139 {
2140 struct block_symbol blocksym
2141 = cp_lookup_symbol_imports_or_template (scope, name, block,
2142 domain);
2143
2144 if (blocksym.symbol != NULL)
2145 return blocksym;
2146 }
2147
2148 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2149 break;
2150 block = BLOCK_SUPERBLOCK (block);
2151 }
2152
2153 /* We've reached the end of the function without finding a result. */
2154
2155 return {};
2156 }
2157
2158 /* See symtab.h. */
2159
2160 struct objfile *
2161 lookup_objfile_from_block (const struct block *block)
2162 {
2163 if (block == NULL)
2164 return NULL;
2165
2166 block = block_global_block (block);
2167 /* Look through all blockvectors. */
2168 for (objfile *obj : current_program_space->objfiles ())
2169 {
2170 for (compunit_symtab *cust : obj->compunits ())
2171 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2172 GLOBAL_BLOCK))
2173 {
2174 if (obj->separate_debug_objfile_backlink)
2175 obj = obj->separate_debug_objfile_backlink;
2176
2177 return obj;
2178 }
2179 }
2180
2181 return NULL;
2182 }
2183
2184 /* See symtab.h. */
2185
2186 struct symbol *
2187 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2188 const struct block *block,
2189 const domain_enum domain)
2190 {
2191 struct symbol *sym;
2192
2193 if (symbol_lookup_debug > 1)
2194 {
2195 struct objfile *objfile = lookup_objfile_from_block (block);
2196
2197 fprintf_unfiltered (gdb_stdlog,
2198 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2199 name, host_address_to_string (block),
2200 objfile_debug_name (objfile),
2201 domain_name (domain));
2202 }
2203
2204 sym = block_lookup_symbol (block, name, match_type, domain);
2205 if (sym)
2206 {
2207 if (symbol_lookup_debug > 1)
2208 {
2209 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2210 host_address_to_string (sym));
2211 }
2212 return fixup_symbol_section (sym, NULL);
2213 }
2214
2215 if (symbol_lookup_debug > 1)
2216 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2217 return NULL;
2218 }
2219
2220 /* See symtab.h. */
2221
2222 struct block_symbol
2223 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2224 enum block_enum block_index,
2225 const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2231 {
2232 struct block_symbol result
2233 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2234
2235 if (result.symbol != nullptr)
2236 return result;
2237 }
2238
2239 return {};
2240 }
2241
2242 /* Check to see if the symbol is defined in one of the OBJFILE's
2243 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2244 depending on whether or not we want to search global symbols or
2245 static symbols. */
2246
2247 static struct block_symbol
2248 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2249 enum block_enum block_index, const char *name,
2250 const domain_enum domain)
2251 {
2252 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2253
2254 if (symbol_lookup_debug > 1)
2255 {
2256 fprintf_unfiltered (gdb_stdlog,
2257 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2258 objfile_debug_name (objfile),
2259 block_index == GLOBAL_BLOCK
2260 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2261 name, domain_name (domain));
2262 }
2263
2264 for (compunit_symtab *cust : objfile->compunits ())
2265 {
2266 const struct blockvector *bv;
2267 const struct block *block;
2268 struct block_symbol result;
2269
2270 bv = COMPUNIT_BLOCKVECTOR (cust);
2271 block = BLOCKVECTOR_BLOCK (bv, block_index);
2272 result.symbol = block_lookup_symbol_primary (block, name, domain);
2273 result.block = block;
2274 if (result.symbol != NULL)
2275 {
2276 if (symbol_lookup_debug > 1)
2277 {
2278 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2279 host_address_to_string (result.symbol),
2280 host_address_to_string (block));
2281 }
2282 result.symbol = fixup_symbol_section (result.symbol, objfile);
2283 return result;
2284
2285 }
2286 }
2287
2288 if (symbol_lookup_debug > 1)
2289 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2290 return {};
2291 }
2292
2293 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2294 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2295 and all associated separate debug objfiles.
2296
2297 Normally we only look in OBJFILE, and not any separate debug objfiles
2298 because the outer loop will cause them to be searched too. This case is
2299 different. Here we're called from search_symbols where it will only
2300 call us for the objfile that contains a matching minsym. */
2301
2302 static struct block_symbol
2303 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2304 const char *linkage_name,
2305 domain_enum domain)
2306 {
2307 enum language lang = current_language->la_language;
2308 struct objfile *main_objfile;
2309
2310 demangle_result_storage storage;
2311 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2312
2313 if (objfile->separate_debug_objfile_backlink)
2314 main_objfile = objfile->separate_debug_objfile_backlink;
2315 else
2316 main_objfile = objfile;
2317
2318 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2319 {
2320 struct block_symbol result;
2321
2322 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2323 modified_name, domain);
2324 if (result.symbol == NULL)
2325 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2326 modified_name, domain);
2327 if (result.symbol != NULL)
2328 return result;
2329 }
2330
2331 return {};
2332 }
2333
2334 /* A helper function that throws an exception when a symbol was found
2335 in a psymtab but not in a symtab. */
2336
2337 static void ATTRIBUTE_NORETURN
2338 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2339 struct compunit_symtab *cust)
2340 {
2341 error (_("\
2342 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2343 %s may be an inlined function, or may be a template function\n \
2344 (if a template, try specifying an instantiation: %s<type>)."),
2345 block_index == GLOBAL_BLOCK ? "global" : "static",
2346 name,
2347 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2348 name, name);
2349 }
2350
2351 /* A helper function for various lookup routines that interfaces with
2352 the "quick" symbol table functions. */
2353
2354 static struct block_symbol
2355 lookup_symbol_via_quick_fns (struct objfile *objfile,
2356 enum block_enum block_index, const char *name,
2357 const domain_enum domain)
2358 {
2359 struct compunit_symtab *cust;
2360 const struct blockvector *bv;
2361 const struct block *block;
2362 struct block_symbol result;
2363
2364 if (!objfile->sf)
2365 return {};
2366
2367 if (symbol_lookup_debug > 1)
2368 {
2369 fprintf_unfiltered (gdb_stdlog,
2370 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2371 objfile_debug_name (objfile),
2372 block_index == GLOBAL_BLOCK
2373 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2374 name, domain_name (domain));
2375 }
2376
2377 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2378 if (cust == NULL)
2379 {
2380 if (symbol_lookup_debug > 1)
2381 {
2382 fprintf_unfiltered (gdb_stdlog,
2383 "lookup_symbol_via_quick_fns (...) = NULL\n");
2384 }
2385 return {};
2386 }
2387
2388 bv = COMPUNIT_BLOCKVECTOR (cust);
2389 block = BLOCKVECTOR_BLOCK (bv, block_index);
2390 result.symbol = block_lookup_symbol (block, name,
2391 symbol_name_match_type::FULL, domain);
2392 if (result.symbol == NULL)
2393 error_in_psymtab_expansion (block_index, name, cust);
2394
2395 if (symbol_lookup_debug > 1)
2396 {
2397 fprintf_unfiltered (gdb_stdlog,
2398 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2399 host_address_to_string (result.symbol),
2400 host_address_to_string (block));
2401 }
2402
2403 result.symbol = fixup_symbol_section (result.symbol, objfile);
2404 result.block = block;
2405 return result;
2406 }
2407
2408 /* See symtab.h. */
2409
2410 struct block_symbol
2411 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2412 const char *name,
2413 const struct block *block,
2414 const domain_enum domain)
2415 {
2416 struct block_symbol result;
2417
2418 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2419 the current objfile. Searching the current objfile first is useful
2420 for both matching user expectations as well as performance. */
2421
2422 result = lookup_symbol_in_static_block (name, block, domain);
2423 if (result.symbol != NULL)
2424 return result;
2425
2426 /* If we didn't find a definition for a builtin type in the static block,
2427 search for it now. This is actually the right thing to do and can be
2428 a massive performance win. E.g., when debugging a program with lots of
2429 shared libraries we could search all of them only to find out the
2430 builtin type isn't defined in any of them. This is common for types
2431 like "void". */
2432 if (domain == VAR_DOMAIN)
2433 {
2434 struct gdbarch *gdbarch;
2435
2436 if (block == NULL)
2437 gdbarch = target_gdbarch ();
2438 else
2439 gdbarch = block_gdbarch (block);
2440 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2441 gdbarch, name);
2442 result.block = NULL;
2443 if (result.symbol != NULL)
2444 return result;
2445 }
2446
2447 return lookup_global_symbol (name, block, domain);
2448 }
2449
2450 /* See symtab.h. */
2451
2452 struct block_symbol
2453 lookup_symbol_in_static_block (const char *name,
2454 const struct block *block,
2455 const domain_enum domain)
2456 {
2457 const struct block *static_block = block_static_block (block);
2458 struct symbol *sym;
2459
2460 if (static_block == NULL)
2461 return {};
2462
2463 if (symbol_lookup_debug)
2464 {
2465 struct objfile *objfile = lookup_objfile_from_block (static_block);
2466
2467 fprintf_unfiltered (gdb_stdlog,
2468 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2469 " %s)\n",
2470 name,
2471 host_address_to_string (block),
2472 objfile_debug_name (objfile),
2473 domain_name (domain));
2474 }
2475
2476 sym = lookup_symbol_in_block (name,
2477 symbol_name_match_type::FULL,
2478 static_block, domain);
2479 if (symbol_lookup_debug)
2480 {
2481 fprintf_unfiltered (gdb_stdlog,
2482 "lookup_symbol_in_static_block (...) = %s\n",
2483 sym != NULL ? host_address_to_string (sym) : "NULL");
2484 }
2485 return (struct block_symbol) {sym, static_block};
2486 }
2487
2488 /* Perform the standard symbol lookup of NAME in OBJFILE:
2489 1) First search expanded symtabs, and if not found
2490 2) Search the "quick" symtabs (partial or .gdb_index).
2491 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2492
2493 static struct block_symbol
2494 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2495 const char *name, const domain_enum domain)
2496 {
2497 struct block_symbol result;
2498
2499 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2500
2501 if (symbol_lookup_debug)
2502 {
2503 fprintf_unfiltered (gdb_stdlog,
2504 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2505 objfile_debug_name (objfile),
2506 block_index == GLOBAL_BLOCK
2507 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2508 name, domain_name (domain));
2509 }
2510
2511 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2512 name, domain);
2513 if (result.symbol != NULL)
2514 {
2515 if (symbol_lookup_debug)
2516 {
2517 fprintf_unfiltered (gdb_stdlog,
2518 "lookup_symbol_in_objfile (...) = %s"
2519 " (in symtabs)\n",
2520 host_address_to_string (result.symbol));
2521 }
2522 return result;
2523 }
2524
2525 result = lookup_symbol_via_quick_fns (objfile, block_index,
2526 name, domain);
2527 if (symbol_lookup_debug)
2528 {
2529 fprintf_unfiltered (gdb_stdlog,
2530 "lookup_symbol_in_objfile (...) = %s%s\n",
2531 result.symbol != NULL
2532 ? host_address_to_string (result.symbol)
2533 : "NULL",
2534 result.symbol != NULL ? " (via quick fns)" : "");
2535 }
2536 return result;
2537 }
2538
2539 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2540
2541 struct global_or_static_sym_lookup_data
2542 {
2543 /* The name of the symbol we are searching for. */
2544 const char *name;
2545
2546 /* The domain to use for our search. */
2547 domain_enum domain;
2548
2549 /* The block index in which to search. */
2550 enum block_enum block_index;
2551
2552 /* The field where the callback should store the symbol if found.
2553 It should be initialized to {NULL, NULL} before the search is started. */
2554 struct block_symbol result;
2555 };
2556
2557 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2558 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2559 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2560 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2561
2562 static int
2563 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2564 void *cb_data)
2565 {
2566 struct global_or_static_sym_lookup_data *data =
2567 (struct global_or_static_sym_lookup_data *) cb_data;
2568
2569 gdb_assert (data->result.symbol == NULL
2570 && data->result.block == NULL);
2571
2572 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2573 data->name, data->domain);
2574
2575 /* If we found a match, tell the iterator to stop. Otherwise,
2576 keep going. */
2577 return (data->result.symbol != NULL);
2578 }
2579
2580 /* This function contains the common code of lookup_{global,static}_symbol.
2581 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2582 the objfile to start the lookup in. */
2583
2584 static struct block_symbol
2585 lookup_global_or_static_symbol (const char *name,
2586 enum block_enum block_index,
2587 struct objfile *objfile,
2588 const domain_enum domain)
2589 {
2590 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2591 struct block_symbol result;
2592 struct global_or_static_sym_lookup_data lookup_data;
2593 struct block_symbol_cache *bsc;
2594 struct symbol_cache_slot *slot;
2595
2596 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2597 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2598
2599 /* First see if we can find the symbol in the cache.
2600 This works because we use the current objfile to qualify the lookup. */
2601 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2602 &bsc, &slot);
2603 if (result.symbol != NULL)
2604 {
2605 if (SYMBOL_LOOKUP_FAILED_P (result))
2606 return {};
2607 return result;
2608 }
2609
2610 /* Do a global search (of global blocks, heh). */
2611 if (result.symbol == NULL)
2612 {
2613 memset (&lookup_data, 0, sizeof (lookup_data));
2614 lookup_data.name = name;
2615 lookup_data.block_index = block_index;
2616 lookup_data.domain = domain;
2617 gdbarch_iterate_over_objfiles_in_search_order
2618 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2619 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2620 result = lookup_data.result;
2621 }
2622
2623 if (result.symbol != NULL)
2624 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2625 else
2626 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2627
2628 return result;
2629 }
2630
2631 /* See symtab.h. */
2632
2633 struct block_symbol
2634 lookup_static_symbol (const char *name, const domain_enum domain)
2635 {
2636 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2637 }
2638
2639 /* See symtab.h. */
2640
2641 struct block_symbol
2642 lookup_global_symbol (const char *name,
2643 const struct block *block,
2644 const domain_enum domain)
2645 {
2646 /* If a block was passed in, we want to search the corresponding
2647 global block first. This yields "more expected" behavior, and is
2648 needed to support 'FILENAME'::VARIABLE lookups. */
2649 const struct block *global_block = block_global_block (block);
2650 if (global_block != nullptr)
2651 {
2652 symbol *sym = lookup_symbol_in_block (name,
2653 symbol_name_match_type::FULL,
2654 global_block, domain);
2655 if (sym != nullptr)
2656 return { sym, global_block };
2657 }
2658
2659 struct objfile *objfile = lookup_objfile_from_block (block);
2660 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2661 }
2662
2663 bool
2664 symbol_matches_domain (enum language symbol_language,
2665 domain_enum symbol_domain,
2666 domain_enum domain)
2667 {
2668 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2669 Similarly, any Ada type declaration implicitly defines a typedef. */
2670 if (symbol_language == language_cplus
2671 || symbol_language == language_d
2672 || symbol_language == language_ada
2673 || symbol_language == language_rust)
2674 {
2675 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2676 && symbol_domain == STRUCT_DOMAIN)
2677 return true;
2678 }
2679 /* For all other languages, strict match is required. */
2680 return (symbol_domain == domain);
2681 }
2682
2683 /* See symtab.h. */
2684
2685 struct type *
2686 lookup_transparent_type (const char *name)
2687 {
2688 return current_language->la_lookup_transparent_type (name);
2689 }
2690
2691 /* A helper for basic_lookup_transparent_type that interfaces with the
2692 "quick" symbol table functions. */
2693
2694 static struct type *
2695 basic_lookup_transparent_type_quick (struct objfile *objfile,
2696 enum block_enum block_index,
2697 const char *name)
2698 {
2699 struct compunit_symtab *cust;
2700 const struct blockvector *bv;
2701 const struct block *block;
2702 struct symbol *sym;
2703
2704 if (!objfile->sf)
2705 return NULL;
2706 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2707 STRUCT_DOMAIN);
2708 if (cust == NULL)
2709 return NULL;
2710
2711 bv = COMPUNIT_BLOCKVECTOR (cust);
2712 block = BLOCKVECTOR_BLOCK (bv, block_index);
2713 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2714 block_find_non_opaque_type, NULL);
2715 if (sym == NULL)
2716 error_in_psymtab_expansion (block_index, name, cust);
2717 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2718 return SYMBOL_TYPE (sym);
2719 }
2720
2721 /* Subroutine of basic_lookup_transparent_type to simplify it.
2722 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2723 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2724
2725 static struct type *
2726 basic_lookup_transparent_type_1 (struct objfile *objfile,
2727 enum block_enum block_index,
2728 const char *name)
2729 {
2730 const struct blockvector *bv;
2731 const struct block *block;
2732 const struct symbol *sym;
2733
2734 for (compunit_symtab *cust : objfile->compunits ())
2735 {
2736 bv = COMPUNIT_BLOCKVECTOR (cust);
2737 block = BLOCKVECTOR_BLOCK (bv, block_index);
2738 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2739 block_find_non_opaque_type, NULL);
2740 if (sym != NULL)
2741 {
2742 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2743 return SYMBOL_TYPE (sym);
2744 }
2745 }
2746
2747 return NULL;
2748 }
2749
2750 /* The standard implementation of lookup_transparent_type. This code
2751 was modeled on lookup_symbol -- the parts not relevant to looking
2752 up types were just left out. In particular it's assumed here that
2753 types are available in STRUCT_DOMAIN and only in file-static or
2754 global blocks. */
2755
2756 struct type *
2757 basic_lookup_transparent_type (const char *name)
2758 {
2759 struct type *t;
2760
2761 /* Now search all the global symbols. Do the symtab's first, then
2762 check the psymtab's. If a psymtab indicates the existence
2763 of the desired name as a global, then do psymtab-to-symtab
2764 conversion on the fly and return the found symbol. */
2765
2766 for (objfile *objfile : current_program_space->objfiles ())
2767 {
2768 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2769 if (t)
2770 return t;
2771 }
2772
2773 for (objfile *objfile : current_program_space->objfiles ())
2774 {
2775 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2776 if (t)
2777 return t;
2778 }
2779
2780 /* Now search the static file-level symbols.
2781 Not strictly correct, but more useful than an error.
2782 Do the symtab's first, then
2783 check the psymtab's. If a psymtab indicates the existence
2784 of the desired name as a file-level static, then do psymtab-to-symtab
2785 conversion on the fly and return the found symbol. */
2786
2787 for (objfile *objfile : current_program_space->objfiles ())
2788 {
2789 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2790 if (t)
2791 return t;
2792 }
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 return (struct type *) 0;
2802 }
2803
2804 /* See symtab.h. */
2805
2806 bool
2807 iterate_over_symbols (const struct block *block,
2808 const lookup_name_info &name,
2809 const domain_enum domain,
2810 gdb::function_view<symbol_found_callback_ftype> callback)
2811 {
2812 struct block_iterator iter;
2813 struct symbol *sym;
2814
2815 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2816 {
2817 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2818 SYMBOL_DOMAIN (sym), domain))
2819 {
2820 struct block_symbol block_sym = {sym, block};
2821
2822 if (!callback (&block_sym))
2823 return false;
2824 }
2825 }
2826 return true;
2827 }
2828
2829 /* See symtab.h. */
2830
2831 bool
2832 iterate_over_symbols_terminated
2833 (const struct block *block,
2834 const lookup_name_info &name,
2835 const domain_enum domain,
2836 gdb::function_view<symbol_found_callback_ftype> callback)
2837 {
2838 if (!iterate_over_symbols (block, name, domain, callback))
2839 return false;
2840 struct block_symbol block_sym = {nullptr, block};
2841 return callback (&block_sym);
2842 }
2843
2844 /* Find the compunit symtab associated with PC and SECTION.
2845 This will read in debug info as necessary. */
2846
2847 struct compunit_symtab *
2848 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2849 {
2850 struct compunit_symtab *best_cust = NULL;
2851 CORE_ADDR distance = 0;
2852 struct bound_minimal_symbol msymbol;
2853
2854 /* If we know that this is not a text address, return failure. This is
2855 necessary because we loop based on the block's high and low code
2856 addresses, which do not include the data ranges, and because
2857 we call find_pc_sect_psymtab which has a similar restriction based
2858 on the partial_symtab's texthigh and textlow. */
2859 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2860 if (msymbol.minsym && msymbol.minsym->data_p ())
2861 return NULL;
2862
2863 /* Search all symtabs for the one whose file contains our address, and which
2864 is the smallest of all the ones containing the address. This is designed
2865 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2866 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2867 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2868
2869 This happens for native ecoff format, where code from included files
2870 gets its own symtab. The symtab for the included file should have
2871 been read in already via the dependency mechanism.
2872 It might be swifter to create several symtabs with the same name
2873 like xcoff does (I'm not sure).
2874
2875 It also happens for objfiles that have their functions reordered.
2876 For these, the symtab we are looking for is not necessarily read in. */
2877
2878 for (objfile *obj_file : current_program_space->objfiles ())
2879 {
2880 for (compunit_symtab *cust : obj_file->compunits ())
2881 {
2882 const struct block *b;
2883 const struct blockvector *bv;
2884
2885 bv = COMPUNIT_BLOCKVECTOR (cust);
2886 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2887
2888 if (BLOCK_START (b) <= pc
2889 && BLOCK_END (b) > pc
2890 && (distance == 0
2891 || BLOCK_END (b) - BLOCK_START (b) < distance))
2892 {
2893 /* For an objfile that has its functions reordered,
2894 find_pc_psymtab will find the proper partial symbol table
2895 and we simply return its corresponding symtab. */
2896 /* In order to better support objfiles that contain both
2897 stabs and coff debugging info, we continue on if a psymtab
2898 can't be found. */
2899 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2900 {
2901 struct compunit_symtab *result;
2902
2903 result
2904 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2905 msymbol,
2906 pc,
2907 section,
2908 0);
2909 if (result != NULL)
2910 return result;
2911 }
2912 if (section != 0)
2913 {
2914 struct block_iterator iter;
2915 struct symbol *sym = NULL;
2916
2917 ALL_BLOCK_SYMBOLS (b, iter, sym)
2918 {
2919 fixup_symbol_section (sym, obj_file);
2920 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2921 sym),
2922 section))
2923 break;
2924 }
2925 if (sym == NULL)
2926 continue; /* No symbol in this symtab matches
2927 section. */
2928 }
2929 distance = BLOCK_END (b) - BLOCK_START (b);
2930 best_cust = cust;
2931 }
2932 }
2933 }
2934
2935 if (best_cust != NULL)
2936 return best_cust;
2937
2938 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2939
2940 for (objfile *objf : current_program_space->objfiles ())
2941 {
2942 struct compunit_symtab *result;
2943
2944 if (!objf->sf)
2945 continue;
2946 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2947 msymbol,
2948 pc, section,
2949 1);
2950 if (result != NULL)
2951 return result;
2952 }
2953
2954 return NULL;
2955 }
2956
2957 /* Find the compunit symtab associated with PC.
2958 This will read in debug info as necessary.
2959 Backward compatibility, no section. */
2960
2961 struct compunit_symtab *
2962 find_pc_compunit_symtab (CORE_ADDR pc)
2963 {
2964 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2965 }
2966
2967 /* See symtab.h. */
2968
2969 struct symbol *
2970 find_symbol_at_address (CORE_ADDR address)
2971 {
2972 for (objfile *objfile : current_program_space->objfiles ())
2973 {
2974 if (objfile->sf == NULL
2975 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2976 continue;
2977
2978 struct compunit_symtab *symtab
2979 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2980 if (symtab != NULL)
2981 {
2982 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2983
2984 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2985 {
2986 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
2987 struct block_iterator iter;
2988 struct symbol *sym;
2989
2990 ALL_BLOCK_SYMBOLS (b, iter, sym)
2991 {
2992 if (SYMBOL_CLASS (sym) == LOC_STATIC
2993 && SYMBOL_VALUE_ADDRESS (sym) == address)
2994 return sym;
2995 }
2996 }
2997 }
2998 }
2999
3000 return NULL;
3001 }
3002
3003 \f
3004
3005 /* Find the source file and line number for a given PC value and SECTION.
3006 Return a structure containing a symtab pointer, a line number,
3007 and a pc range for the entire source line.
3008 The value's .pc field is NOT the specified pc.
3009 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3010 use the line that ends there. Otherwise, in that case, the line
3011 that begins there is used. */
3012
3013 /* The big complication here is that a line may start in one file, and end just
3014 before the start of another file. This usually occurs when you #include
3015 code in the middle of a subroutine. To properly find the end of a line's PC
3016 range, we must search all symtabs associated with this compilation unit, and
3017 find the one whose first PC is closer than that of the next line in this
3018 symtab. */
3019
3020 struct symtab_and_line
3021 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3022 {
3023 struct compunit_symtab *cust;
3024 struct linetable *l;
3025 int len;
3026 struct linetable_entry *item;
3027 const struct blockvector *bv;
3028 struct bound_minimal_symbol msymbol;
3029
3030 /* Info on best line seen so far, and where it starts, and its file. */
3031
3032 struct linetable_entry *best = NULL;
3033 CORE_ADDR best_end = 0;
3034 struct symtab *best_symtab = 0;
3035
3036 /* Store here the first line number
3037 of a file which contains the line at the smallest pc after PC.
3038 If we don't find a line whose range contains PC,
3039 we will use a line one less than this,
3040 with a range from the start of that file to the first line's pc. */
3041 struct linetable_entry *alt = NULL;
3042
3043 /* Info on best line seen in this file. */
3044
3045 struct linetable_entry *prev;
3046
3047 /* If this pc is not from the current frame,
3048 it is the address of the end of a call instruction.
3049 Quite likely that is the start of the following statement.
3050 But what we want is the statement containing the instruction.
3051 Fudge the pc to make sure we get that. */
3052
3053 /* It's tempting to assume that, if we can't find debugging info for
3054 any function enclosing PC, that we shouldn't search for line
3055 number info, either. However, GAS can emit line number info for
3056 assembly files --- very helpful when debugging hand-written
3057 assembly code. In such a case, we'd have no debug info for the
3058 function, but we would have line info. */
3059
3060 if (notcurrent)
3061 pc -= 1;
3062
3063 /* elz: added this because this function returned the wrong
3064 information if the pc belongs to a stub (import/export)
3065 to call a shlib function. This stub would be anywhere between
3066 two functions in the target, and the line info was erroneously
3067 taken to be the one of the line before the pc. */
3068
3069 /* RT: Further explanation:
3070
3071 * We have stubs (trampolines) inserted between procedures.
3072 *
3073 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3074 * exists in the main image.
3075 *
3076 * In the minimal symbol table, we have a bunch of symbols
3077 * sorted by start address. The stubs are marked as "trampoline",
3078 * the others appear as text. E.g.:
3079 *
3080 * Minimal symbol table for main image
3081 * main: code for main (text symbol)
3082 * shr1: stub (trampoline symbol)
3083 * foo: code for foo (text symbol)
3084 * ...
3085 * Minimal symbol table for "shr1" image:
3086 * ...
3087 * shr1: code for shr1 (text symbol)
3088 * ...
3089 *
3090 * So the code below is trying to detect if we are in the stub
3091 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3092 * and if found, do the symbolization from the real-code address
3093 * rather than the stub address.
3094 *
3095 * Assumptions being made about the minimal symbol table:
3096 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3097 * if we're really in the trampoline.s If we're beyond it (say
3098 * we're in "foo" in the above example), it'll have a closer
3099 * symbol (the "foo" text symbol for example) and will not
3100 * return the trampoline.
3101 * 2. lookup_minimal_symbol_text() will find a real text symbol
3102 * corresponding to the trampoline, and whose address will
3103 * be different than the trampoline address. I put in a sanity
3104 * check for the address being the same, to avoid an
3105 * infinite recursion.
3106 */
3107 msymbol = lookup_minimal_symbol_by_pc (pc);
3108 if (msymbol.minsym != NULL)
3109 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3110 {
3111 struct bound_minimal_symbol mfunsym
3112 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3113 NULL);
3114
3115 if (mfunsym.minsym == NULL)
3116 /* I eliminated this warning since it is coming out
3117 * in the following situation:
3118 * gdb shmain // test program with shared libraries
3119 * (gdb) break shr1 // function in shared lib
3120 * Warning: In stub for ...
3121 * In the above situation, the shared lib is not loaded yet,
3122 * so of course we can't find the real func/line info,
3123 * but the "break" still works, and the warning is annoying.
3124 * So I commented out the warning. RT */
3125 /* warning ("In stub for %s; unable to find real function/line info",
3126 SYMBOL_LINKAGE_NAME (msymbol)); */
3127 ;
3128 /* fall through */
3129 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3130 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3131 /* Avoid infinite recursion */
3132 /* See above comment about why warning is commented out. */
3133 /* warning ("In stub for %s; unable to find real function/line info",
3134 SYMBOL_LINKAGE_NAME (msymbol)); */
3135 ;
3136 /* fall through */
3137 else
3138 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3139 }
3140
3141 symtab_and_line val;
3142 val.pspace = current_program_space;
3143
3144 cust = find_pc_sect_compunit_symtab (pc, section);
3145 if (cust == NULL)
3146 {
3147 /* If no symbol information, return previous pc. */
3148 if (notcurrent)
3149 pc++;
3150 val.pc = pc;
3151 return val;
3152 }
3153
3154 bv = COMPUNIT_BLOCKVECTOR (cust);
3155
3156 /* Look at all the symtabs that share this blockvector.
3157 They all have the same apriori range, that we found was right;
3158 but they have different line tables. */
3159
3160 for (symtab *iter_s : compunit_filetabs (cust))
3161 {
3162 /* Find the best line in this symtab. */
3163 l = SYMTAB_LINETABLE (iter_s);
3164 if (!l)
3165 continue;
3166 len = l->nitems;
3167 if (len <= 0)
3168 {
3169 /* I think len can be zero if the symtab lacks line numbers
3170 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3171 I'm not sure which, and maybe it depends on the symbol
3172 reader). */
3173 continue;
3174 }
3175
3176 prev = NULL;
3177 item = l->item; /* Get first line info. */
3178
3179 /* Is this file's first line closer than the first lines of other files?
3180 If so, record this file, and its first line, as best alternate. */
3181 if (item->pc > pc && (!alt || item->pc < alt->pc))
3182 alt = item;
3183
3184 auto pc_compare = [](const CORE_ADDR & comp_pc,
3185 const struct linetable_entry & lhs)->bool
3186 {
3187 return comp_pc < lhs.pc;
3188 };
3189
3190 struct linetable_entry *first = item;
3191 struct linetable_entry *last = item + len;
3192 item = std::upper_bound (first, last, pc, pc_compare);
3193 if (item != first)
3194 prev = item - 1; /* Found a matching item. */
3195
3196 /* At this point, prev points at the line whose start addr is <= pc, and
3197 item points at the next line. If we ran off the end of the linetable
3198 (pc >= start of the last line), then prev == item. If pc < start of
3199 the first line, prev will not be set. */
3200
3201 /* Is this file's best line closer than the best in the other files?
3202 If so, record this file, and its best line, as best so far. Don't
3203 save prev if it represents the end of a function (i.e. line number
3204 0) instead of a real line. */
3205
3206 if (prev && prev->line && (!best || prev->pc > best->pc))
3207 {
3208 best = prev;
3209 best_symtab = iter_s;
3210
3211 /* Discard BEST_END if it's before the PC of the current BEST. */
3212 if (best_end <= best->pc)
3213 best_end = 0;
3214 }
3215
3216 /* If another line (denoted by ITEM) is in the linetable and its
3217 PC is after BEST's PC, but before the current BEST_END, then
3218 use ITEM's PC as the new best_end. */
3219 if (best && item < last && item->pc > best->pc
3220 && (best_end == 0 || best_end > item->pc))
3221 best_end = item->pc;
3222 }
3223
3224 if (!best_symtab)
3225 {
3226 /* If we didn't find any line number info, just return zeros.
3227 We used to return alt->line - 1 here, but that could be
3228 anywhere; if we don't have line number info for this PC,
3229 don't make some up. */
3230 val.pc = pc;
3231 }
3232 else if (best->line == 0)
3233 {
3234 /* If our best fit is in a range of PC's for which no line
3235 number info is available (line number is zero) then we didn't
3236 find any valid line information. */
3237 val.pc = pc;
3238 }
3239 else
3240 {
3241 val.symtab = best_symtab;
3242 val.line = best->line;
3243 val.pc = best->pc;
3244 if (best_end && (!alt || best_end < alt->pc))
3245 val.end = best_end;
3246 else if (alt)
3247 val.end = alt->pc;
3248 else
3249 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3250 }
3251 val.section = section;
3252 return val;
3253 }
3254
3255 /* Backward compatibility (no section). */
3256
3257 struct symtab_and_line
3258 find_pc_line (CORE_ADDR pc, int notcurrent)
3259 {
3260 struct obj_section *section;
3261
3262 section = find_pc_overlay (pc);
3263 if (pc_in_unmapped_range (pc, section))
3264 pc = overlay_mapped_address (pc, section);
3265 return find_pc_sect_line (pc, section, notcurrent);
3266 }
3267
3268 /* See symtab.h. */
3269
3270 struct symtab *
3271 find_pc_line_symtab (CORE_ADDR pc)
3272 {
3273 struct symtab_and_line sal;
3274
3275 /* This always passes zero for NOTCURRENT to find_pc_line.
3276 There are currently no callers that ever pass non-zero. */
3277 sal = find_pc_line (pc, 0);
3278 return sal.symtab;
3279 }
3280 \f
3281 /* Find line number LINE in any symtab whose name is the same as
3282 SYMTAB.
3283
3284 If found, return the symtab that contains the linetable in which it was
3285 found, set *INDEX to the index in the linetable of the best entry
3286 found, and set *EXACT_MATCH to true if the value returned is an
3287 exact match.
3288
3289 If not found, return NULL. */
3290
3291 struct symtab *
3292 find_line_symtab (struct symtab *sym_tab, int line,
3293 int *index, bool *exact_match)
3294 {
3295 int exact = 0; /* Initialized here to avoid a compiler warning. */
3296
3297 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3298 so far seen. */
3299
3300 int best_index;
3301 struct linetable *best_linetable;
3302 struct symtab *best_symtab;
3303
3304 /* First try looking it up in the given symtab. */
3305 best_linetable = SYMTAB_LINETABLE (sym_tab);
3306 best_symtab = sym_tab;
3307 best_index = find_line_common (best_linetable, line, &exact, 0);
3308 if (best_index < 0 || !exact)
3309 {
3310 /* Didn't find an exact match. So we better keep looking for
3311 another symtab with the same name. In the case of xcoff,
3312 multiple csects for one source file (produced by IBM's FORTRAN
3313 compiler) produce multiple symtabs (this is unavoidable
3314 assuming csects can be at arbitrary places in memory and that
3315 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3316
3317 /* BEST is the smallest linenumber > LINE so far seen,
3318 or 0 if none has been seen so far.
3319 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3320 int best;
3321
3322 if (best_index >= 0)
3323 best = best_linetable->item[best_index].line;
3324 else
3325 best = 0;
3326
3327 for (objfile *objfile : current_program_space->objfiles ())
3328 {
3329 if (objfile->sf)
3330 objfile->sf->qf->expand_symtabs_with_fullname
3331 (objfile, symtab_to_fullname (sym_tab));
3332 }
3333
3334 for (objfile *objfile : current_program_space->objfiles ())
3335 {
3336 for (compunit_symtab *cu : objfile->compunits ())
3337 {
3338 for (symtab *s : compunit_filetabs (cu))
3339 {
3340 struct linetable *l;
3341 int ind;
3342
3343 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3344 continue;
3345 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3346 symtab_to_fullname (s)) != 0)
3347 continue;
3348 l = SYMTAB_LINETABLE (s);
3349 ind = find_line_common (l, line, &exact, 0);
3350 if (ind >= 0)
3351 {
3352 if (exact)
3353 {
3354 best_index = ind;
3355 best_linetable = l;
3356 best_symtab = s;
3357 goto done;
3358 }
3359 if (best == 0 || l->item[ind].line < best)
3360 {
3361 best = l->item[ind].line;
3362 best_index = ind;
3363 best_linetable = l;
3364 best_symtab = s;
3365 }
3366 }
3367 }
3368 }
3369 }
3370 }
3371 done:
3372 if (best_index < 0)
3373 return NULL;
3374
3375 if (index)
3376 *index = best_index;
3377 if (exact_match)
3378 *exact_match = (exact != 0);
3379
3380 return best_symtab;
3381 }
3382
3383 /* Given SYMTAB, returns all the PCs function in the symtab that
3384 exactly match LINE. Returns an empty vector if there are no exact
3385 matches, but updates BEST_ITEM in this case. */
3386
3387 std::vector<CORE_ADDR>
3388 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3389 struct linetable_entry **best_item)
3390 {
3391 int start = 0;
3392 std::vector<CORE_ADDR> result;
3393
3394 /* First, collect all the PCs that are at this line. */
3395 while (1)
3396 {
3397 int was_exact;
3398 int idx;
3399
3400 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3401 start);
3402 if (idx < 0)
3403 break;
3404
3405 if (!was_exact)
3406 {
3407 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3408
3409 if (*best_item == NULL || item->line < (*best_item)->line)
3410 *best_item = item;
3411
3412 break;
3413 }
3414
3415 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3416 start = idx + 1;
3417 }
3418
3419 return result;
3420 }
3421
3422 \f
3423 /* Set the PC value for a given source file and line number and return true.
3424 Returns false for invalid line number (and sets the PC to 0).
3425 The source file is specified with a struct symtab. */
3426
3427 bool
3428 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3429 {
3430 struct linetable *l;
3431 int ind;
3432
3433 *pc = 0;
3434 if (symtab == 0)
3435 return false;
3436
3437 symtab = find_line_symtab (symtab, line, &ind, NULL);
3438 if (symtab != NULL)
3439 {
3440 l = SYMTAB_LINETABLE (symtab);
3441 *pc = l->item[ind].pc;
3442 return true;
3443 }
3444 else
3445 return false;
3446 }
3447
3448 /* Find the range of pc values in a line.
3449 Store the starting pc of the line into *STARTPTR
3450 and the ending pc (start of next line) into *ENDPTR.
3451 Returns true to indicate success.
3452 Returns false if could not find the specified line. */
3453
3454 bool
3455 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3456 CORE_ADDR *endptr)
3457 {
3458 CORE_ADDR startaddr;
3459 struct symtab_and_line found_sal;
3460
3461 startaddr = sal.pc;
3462 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3463 return false;
3464
3465 /* This whole function is based on address. For example, if line 10 has
3466 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3467 "info line *0x123" should say the line goes from 0x100 to 0x200
3468 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3469 This also insures that we never give a range like "starts at 0x134
3470 and ends at 0x12c". */
3471
3472 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3473 if (found_sal.line != sal.line)
3474 {
3475 /* The specified line (sal) has zero bytes. */
3476 *startptr = found_sal.pc;
3477 *endptr = found_sal.pc;
3478 }
3479 else
3480 {
3481 *startptr = found_sal.pc;
3482 *endptr = found_sal.end;
3483 }
3484 return true;
3485 }
3486
3487 /* Given a line table and a line number, return the index into the line
3488 table for the pc of the nearest line whose number is >= the specified one.
3489 Return -1 if none is found. The value is >= 0 if it is an index.
3490 START is the index at which to start searching the line table.
3491
3492 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3493
3494 static int
3495 find_line_common (struct linetable *l, int lineno,
3496 int *exact_match, int start)
3497 {
3498 int i;
3499 int len;
3500
3501 /* BEST is the smallest linenumber > LINENO so far seen,
3502 or 0 if none has been seen so far.
3503 BEST_INDEX identifies the item for it. */
3504
3505 int best_index = -1;
3506 int best = 0;
3507
3508 *exact_match = 0;
3509
3510 if (lineno <= 0)
3511 return -1;
3512 if (l == 0)
3513 return -1;
3514
3515 len = l->nitems;
3516 for (i = start; i < len; i++)
3517 {
3518 struct linetable_entry *item = &(l->item[i]);
3519
3520 if (item->line == lineno)
3521 {
3522 /* Return the first (lowest address) entry which matches. */
3523 *exact_match = 1;
3524 return i;
3525 }
3526
3527 if (item->line > lineno && (best == 0 || item->line < best))
3528 {
3529 best = item->line;
3530 best_index = i;
3531 }
3532 }
3533
3534 /* If we got here, we didn't get an exact match. */
3535 return best_index;
3536 }
3537
3538 bool
3539 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3540 {
3541 struct symtab_and_line sal;
3542
3543 sal = find_pc_line (pc, 0);
3544 *startptr = sal.pc;
3545 *endptr = sal.end;
3546 return sal.symtab != 0;
3547 }
3548
3549 /* Helper for find_function_start_sal. Does most of the work, except
3550 setting the sal's symbol. */
3551
3552 static symtab_and_line
3553 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3554 bool funfirstline)
3555 {
3556 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3557
3558 if (funfirstline && sal.symtab != NULL
3559 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3560 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3561 {
3562 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3563
3564 sal.pc = func_addr;
3565 if (gdbarch_skip_entrypoint_p (gdbarch))
3566 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3567 return sal;
3568 }
3569
3570 /* We always should have a line for the function start address.
3571 If we don't, something is odd. Create a plain SAL referring
3572 just the PC and hope that skip_prologue_sal (if requested)
3573 can find a line number for after the prologue. */
3574 if (sal.pc < func_addr)
3575 {
3576 sal = {};
3577 sal.pspace = current_program_space;
3578 sal.pc = func_addr;
3579 sal.section = section;
3580 }
3581
3582 if (funfirstline)
3583 skip_prologue_sal (&sal);
3584
3585 return sal;
3586 }
3587
3588 /* See symtab.h. */
3589
3590 symtab_and_line
3591 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3592 bool funfirstline)
3593 {
3594 symtab_and_line sal
3595 = find_function_start_sal_1 (func_addr, section, funfirstline);
3596
3597 /* find_function_start_sal_1 does a linetable search, so it finds
3598 the symtab and linenumber, but not a symbol. Fill in the
3599 function symbol too. */
3600 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3601
3602 return sal;
3603 }
3604
3605 /* See symtab.h. */
3606
3607 symtab_and_line
3608 find_function_start_sal (symbol *sym, bool funfirstline)
3609 {
3610 fixup_symbol_section (sym, NULL);
3611 symtab_and_line sal
3612 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3613 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3614 funfirstline);
3615 sal.symbol = sym;
3616 return sal;
3617 }
3618
3619
3620 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3621 address for that function that has an entry in SYMTAB's line info
3622 table. If such an entry cannot be found, return FUNC_ADDR
3623 unaltered. */
3624
3625 static CORE_ADDR
3626 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3627 {
3628 CORE_ADDR func_start, func_end;
3629 struct linetable *l;
3630 int i;
3631
3632 /* Give up if this symbol has no lineinfo table. */
3633 l = SYMTAB_LINETABLE (symtab);
3634 if (l == NULL)
3635 return func_addr;
3636
3637 /* Get the range for the function's PC values, or give up if we
3638 cannot, for some reason. */
3639 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3640 return func_addr;
3641
3642 /* Linetable entries are ordered by PC values, see the commentary in
3643 symtab.h where `struct linetable' is defined. Thus, the first
3644 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3645 address we are looking for. */
3646 for (i = 0; i < l->nitems; i++)
3647 {
3648 struct linetable_entry *item = &(l->item[i]);
3649
3650 /* Don't use line numbers of zero, they mark special entries in
3651 the table. See the commentary on symtab.h before the
3652 definition of struct linetable. */
3653 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3654 return item->pc;
3655 }
3656
3657 return func_addr;
3658 }
3659
3660 /* Adjust SAL to the first instruction past the function prologue.
3661 If the PC was explicitly specified, the SAL is not changed.
3662 If the line number was explicitly specified then the SAL can still be
3663 updated, unless the language for SAL is assembler, in which case the SAL
3664 will be left unchanged.
3665 If SAL is already past the prologue, then do nothing. */
3666
3667 void
3668 skip_prologue_sal (struct symtab_and_line *sal)
3669 {
3670 struct symbol *sym;
3671 struct symtab_and_line start_sal;
3672 CORE_ADDR pc, saved_pc;
3673 struct obj_section *section;
3674 const char *name;
3675 struct objfile *objfile;
3676 struct gdbarch *gdbarch;
3677 const struct block *b, *function_block;
3678 int force_skip, skip;
3679
3680 /* Do not change the SAL if PC was specified explicitly. */
3681 if (sal->explicit_pc)
3682 return;
3683
3684 /* In assembly code, if the user asks for a specific line then we should
3685 not adjust the SAL. The user already has instruction level
3686 visibility in this case, so selecting a line other than one requested
3687 is likely to be the wrong choice. */
3688 if (sal->symtab != nullptr
3689 && sal->explicit_line
3690 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3691 return;
3692
3693 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3694
3695 switch_to_program_space_and_thread (sal->pspace);
3696
3697 sym = find_pc_sect_function (sal->pc, sal->section);
3698 if (sym != NULL)
3699 {
3700 fixup_symbol_section (sym, NULL);
3701
3702 objfile = symbol_objfile (sym);
3703 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3704 section = SYMBOL_OBJ_SECTION (objfile, sym);
3705 name = SYMBOL_LINKAGE_NAME (sym);
3706 }
3707 else
3708 {
3709 struct bound_minimal_symbol msymbol
3710 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3711
3712 if (msymbol.minsym == NULL)
3713 return;
3714
3715 objfile = msymbol.objfile;
3716 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3717 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3718 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3719 }
3720
3721 gdbarch = get_objfile_arch (objfile);
3722
3723 /* Process the prologue in two passes. In the first pass try to skip the
3724 prologue (SKIP is true) and verify there is a real need for it (indicated
3725 by FORCE_SKIP). If no such reason was found run a second pass where the
3726 prologue is not skipped (SKIP is false). */
3727
3728 skip = 1;
3729 force_skip = 1;
3730
3731 /* Be conservative - allow direct PC (without skipping prologue) only if we
3732 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3733 have to be set by the caller so we use SYM instead. */
3734 if (sym != NULL
3735 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3736 force_skip = 0;
3737
3738 saved_pc = pc;
3739 do
3740 {
3741 pc = saved_pc;
3742
3743 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3744 so that gdbarch_skip_prologue has something unique to work on. */
3745 if (section_is_overlay (section) && !section_is_mapped (section))
3746 pc = overlay_unmapped_address (pc, section);
3747
3748 /* Skip "first line" of function (which is actually its prologue). */
3749 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3750 if (gdbarch_skip_entrypoint_p (gdbarch))
3751 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3752 if (skip)
3753 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3754
3755 /* For overlays, map pc back into its mapped VMA range. */
3756 pc = overlay_mapped_address (pc, section);
3757
3758 /* Calculate line number. */
3759 start_sal = find_pc_sect_line (pc, section, 0);
3760
3761 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3762 line is still part of the same function. */
3763 if (skip && start_sal.pc != pc
3764 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3765 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3766 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3767 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3768 {
3769 /* First pc of next line */
3770 pc = start_sal.end;
3771 /* Recalculate the line number (might not be N+1). */
3772 start_sal = find_pc_sect_line (pc, section, 0);
3773 }
3774
3775 /* On targets with executable formats that don't have a concept of
3776 constructors (ELF with .init has, PE doesn't), gcc emits a call
3777 to `__main' in `main' between the prologue and before user
3778 code. */
3779 if (gdbarch_skip_main_prologue_p (gdbarch)
3780 && name && strcmp_iw (name, "main") == 0)
3781 {
3782 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3783 /* Recalculate the line number (might not be N+1). */
3784 start_sal = find_pc_sect_line (pc, section, 0);
3785 force_skip = 1;
3786 }
3787 }
3788 while (!force_skip && skip--);
3789
3790 /* If we still don't have a valid source line, try to find the first
3791 PC in the lineinfo table that belongs to the same function. This
3792 happens with COFF debug info, which does not seem to have an
3793 entry in lineinfo table for the code after the prologue which has
3794 no direct relation to source. For example, this was found to be
3795 the case with the DJGPP target using "gcc -gcoff" when the
3796 compiler inserted code after the prologue to make sure the stack
3797 is aligned. */
3798 if (!force_skip && sym && start_sal.symtab == NULL)
3799 {
3800 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3801 /* Recalculate the line number. */
3802 start_sal = find_pc_sect_line (pc, section, 0);
3803 }
3804
3805 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3806 forward SAL to the end of the prologue. */
3807 if (sal->pc >= pc)
3808 return;
3809
3810 sal->pc = pc;
3811 sal->section = section;
3812 sal->symtab = start_sal.symtab;
3813 sal->line = start_sal.line;
3814 sal->end = start_sal.end;
3815
3816 /* Check if we are now inside an inlined function. If we can,
3817 use the call site of the function instead. */
3818 b = block_for_pc_sect (sal->pc, sal->section);
3819 function_block = NULL;
3820 while (b != NULL)
3821 {
3822 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3823 function_block = b;
3824 else if (BLOCK_FUNCTION (b) != NULL)
3825 break;
3826 b = BLOCK_SUPERBLOCK (b);
3827 }
3828 if (function_block != NULL
3829 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3830 {
3831 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3832 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3833 }
3834 }
3835
3836 /* Given PC at the function's start address, attempt to find the
3837 prologue end using SAL information. Return zero if the skip fails.
3838
3839 A non-optimized prologue traditionally has one SAL for the function
3840 and a second for the function body. A single line function has
3841 them both pointing at the same line.
3842
3843 An optimized prologue is similar but the prologue may contain
3844 instructions (SALs) from the instruction body. Need to skip those
3845 while not getting into the function body.
3846
3847 The functions end point and an increasing SAL line are used as
3848 indicators of the prologue's endpoint.
3849
3850 This code is based on the function refine_prologue_limit
3851 (found in ia64). */
3852
3853 CORE_ADDR
3854 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3855 {
3856 struct symtab_and_line prologue_sal;
3857 CORE_ADDR start_pc;
3858 CORE_ADDR end_pc;
3859 const struct block *bl;
3860
3861 /* Get an initial range for the function. */
3862 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3863 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3864
3865 prologue_sal = find_pc_line (start_pc, 0);
3866 if (prologue_sal.line != 0)
3867 {
3868 /* For languages other than assembly, treat two consecutive line
3869 entries at the same address as a zero-instruction prologue.
3870 The GNU assembler emits separate line notes for each instruction
3871 in a multi-instruction macro, but compilers generally will not
3872 do this. */
3873 if (prologue_sal.symtab->language != language_asm)
3874 {
3875 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3876 int idx = 0;
3877
3878 /* Skip any earlier lines, and any end-of-sequence marker
3879 from a previous function. */
3880 while (linetable->item[idx].pc != prologue_sal.pc
3881 || linetable->item[idx].line == 0)
3882 idx++;
3883
3884 if (idx+1 < linetable->nitems
3885 && linetable->item[idx+1].line != 0
3886 && linetable->item[idx+1].pc == start_pc)
3887 return start_pc;
3888 }
3889
3890 /* If there is only one sal that covers the entire function,
3891 then it is probably a single line function, like
3892 "foo(){}". */
3893 if (prologue_sal.end >= end_pc)
3894 return 0;
3895
3896 while (prologue_sal.end < end_pc)
3897 {
3898 struct symtab_and_line sal;
3899
3900 sal = find_pc_line (prologue_sal.end, 0);
3901 if (sal.line == 0)
3902 break;
3903 /* Assume that a consecutive SAL for the same (or larger)
3904 line mark the prologue -> body transition. */
3905 if (sal.line >= prologue_sal.line)
3906 break;
3907 /* Likewise if we are in a different symtab altogether
3908 (e.g. within a file included via #include).  */
3909 if (sal.symtab != prologue_sal.symtab)
3910 break;
3911
3912 /* The line number is smaller. Check that it's from the
3913 same function, not something inlined. If it's inlined,
3914 then there is no point comparing the line numbers. */
3915 bl = block_for_pc (prologue_sal.end);
3916 while (bl)
3917 {
3918 if (block_inlined_p (bl))
3919 break;
3920 if (BLOCK_FUNCTION (bl))
3921 {
3922 bl = NULL;
3923 break;
3924 }
3925 bl = BLOCK_SUPERBLOCK (bl);
3926 }
3927 if (bl != NULL)
3928 break;
3929
3930 /* The case in which compiler's optimizer/scheduler has
3931 moved instructions into the prologue. We look ahead in
3932 the function looking for address ranges whose
3933 corresponding line number is less the first one that we
3934 found for the function. This is more conservative then
3935 refine_prologue_limit which scans a large number of SALs
3936 looking for any in the prologue. */
3937 prologue_sal = sal;
3938 }
3939 }
3940
3941 if (prologue_sal.end < end_pc)
3942 /* Return the end of this line, or zero if we could not find a
3943 line. */
3944 return prologue_sal.end;
3945 else
3946 /* Don't return END_PC, which is past the end of the function. */
3947 return prologue_sal.pc;
3948 }
3949
3950 /* See symtab.h. */
3951
3952 symbol *
3953 find_function_alias_target (bound_minimal_symbol msymbol)
3954 {
3955 CORE_ADDR func_addr;
3956 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3957 return NULL;
3958
3959 symbol *sym = find_pc_function (func_addr);
3960 if (sym != NULL
3961 && SYMBOL_CLASS (sym) == LOC_BLOCK
3962 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3963 return sym;
3964
3965 return NULL;
3966 }
3967
3968 \f
3969 /* If P is of the form "operator[ \t]+..." where `...' is
3970 some legitimate operator text, return a pointer to the
3971 beginning of the substring of the operator text.
3972 Otherwise, return "". */
3973
3974 static const char *
3975 operator_chars (const char *p, const char **end)
3976 {
3977 *end = "";
3978 if (!startswith (p, CP_OPERATOR_STR))
3979 return *end;
3980 p += CP_OPERATOR_LEN;
3981
3982 /* Don't get faked out by `operator' being part of a longer
3983 identifier. */
3984 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3985 return *end;
3986
3987 /* Allow some whitespace between `operator' and the operator symbol. */
3988 while (*p == ' ' || *p == '\t')
3989 p++;
3990
3991 /* Recognize 'operator TYPENAME'. */
3992
3993 if (isalpha (*p) || *p == '_' || *p == '$')
3994 {
3995 const char *q = p + 1;
3996
3997 while (isalnum (*q) || *q == '_' || *q == '$')
3998 q++;
3999 *end = q;
4000 return p;
4001 }
4002
4003 while (*p)
4004 switch (*p)
4005 {
4006 case '\\': /* regexp quoting */
4007 if (p[1] == '*')
4008 {
4009 if (p[2] == '=') /* 'operator\*=' */
4010 *end = p + 3;
4011 else /* 'operator\*' */
4012 *end = p + 2;
4013 return p;
4014 }
4015 else if (p[1] == '[')
4016 {
4017 if (p[2] == ']')
4018 error (_("mismatched quoting on brackets, "
4019 "try 'operator\\[\\]'"));
4020 else if (p[2] == '\\' && p[3] == ']')
4021 {
4022 *end = p + 4; /* 'operator\[\]' */
4023 return p;
4024 }
4025 else
4026 error (_("nothing is allowed between '[' and ']'"));
4027 }
4028 else
4029 {
4030 /* Gratuitous quote: skip it and move on. */
4031 p++;
4032 continue;
4033 }
4034 break;
4035 case '!':
4036 case '=':
4037 case '*':
4038 case '/':
4039 case '%':
4040 case '^':
4041 if (p[1] == '=')
4042 *end = p + 2;
4043 else
4044 *end = p + 1;
4045 return p;
4046 case '<':
4047 case '>':
4048 case '+':
4049 case '-':
4050 case '&':
4051 case '|':
4052 if (p[0] == '-' && p[1] == '>')
4053 {
4054 /* Struct pointer member operator 'operator->'. */
4055 if (p[2] == '*')
4056 {
4057 *end = p + 3; /* 'operator->*' */
4058 return p;
4059 }
4060 else if (p[2] == '\\')
4061 {
4062 *end = p + 4; /* Hopefully 'operator->\*' */
4063 return p;
4064 }
4065 else
4066 {
4067 *end = p + 2; /* 'operator->' */
4068 return p;
4069 }
4070 }
4071 if (p[1] == '=' || p[1] == p[0])
4072 *end = p + 2;
4073 else
4074 *end = p + 1;
4075 return p;
4076 case '~':
4077 case ',':
4078 *end = p + 1;
4079 return p;
4080 case '(':
4081 if (p[1] != ')')
4082 error (_("`operator ()' must be specified "
4083 "without whitespace in `()'"));
4084 *end = p + 2;
4085 return p;
4086 case '?':
4087 if (p[1] != ':')
4088 error (_("`operator ?:' must be specified "
4089 "without whitespace in `?:'"));
4090 *end = p + 2;
4091 return p;
4092 case '[':
4093 if (p[1] != ']')
4094 error (_("`operator []' must be specified "
4095 "without whitespace in `[]'"));
4096 *end = p + 2;
4097 return p;
4098 default:
4099 error (_("`operator %s' not supported"), p);
4100 break;
4101 }
4102
4103 *end = "";
4104 return *end;
4105 }
4106 \f
4107
4108 /* What part to match in a file name. */
4109
4110 struct filename_partial_match_opts
4111 {
4112 /* Only match the directory name part. */
4113 bool dirname = false;
4114
4115 /* Only match the basename part. */
4116 bool basename = false;
4117 };
4118
4119 /* Data structure to maintain printing state for output_source_filename. */
4120
4121 struct output_source_filename_data
4122 {
4123 /* Output only filenames matching REGEXP. */
4124 std::string regexp;
4125 gdb::optional<compiled_regex> c_regexp;
4126 /* Possibly only match a part of the filename. */
4127 filename_partial_match_opts partial_match;
4128
4129
4130 /* Cache of what we've seen so far. */
4131 struct filename_seen_cache *filename_seen_cache;
4132
4133 /* Flag of whether we're printing the first one. */
4134 int first;
4135 };
4136
4137 /* Slave routine for sources_info. Force line breaks at ,'s.
4138 NAME is the name to print.
4139 DATA contains the state for printing and watching for duplicates. */
4140
4141 static void
4142 output_source_filename (const char *name,
4143 struct output_source_filename_data *data)
4144 {
4145 /* Since a single source file can result in several partial symbol
4146 tables, we need to avoid printing it more than once. Note: if
4147 some of the psymtabs are read in and some are not, it gets
4148 printed both under "Source files for which symbols have been
4149 read" and "Source files for which symbols will be read in on
4150 demand". I consider this a reasonable way to deal with the
4151 situation. I'm not sure whether this can also happen for
4152 symtabs; it doesn't hurt to check. */
4153
4154 /* Was NAME already seen? */
4155 if (data->filename_seen_cache->seen (name))
4156 {
4157 /* Yes; don't print it again. */
4158 return;
4159 }
4160
4161 /* Does it match data->regexp? */
4162 if (data->c_regexp.has_value ())
4163 {
4164 const char *to_match;
4165 std::string dirname;
4166
4167 if (data->partial_match.dirname)
4168 {
4169 dirname = ldirname (name);
4170 to_match = dirname.c_str ();
4171 }
4172 else if (data->partial_match.basename)
4173 to_match = lbasename (name);
4174 else
4175 to_match = name;
4176
4177 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4178 return;
4179 }
4180
4181 /* Print it and reset *FIRST. */
4182 if (! data->first)
4183 printf_filtered (", ");
4184 data->first = 0;
4185
4186 wrap_here ("");
4187 fputs_styled (name, file_name_style.style (), gdb_stdout);
4188 }
4189
4190 /* A callback for map_partial_symbol_filenames. */
4191
4192 static void
4193 output_partial_symbol_filename (const char *filename, const char *fullname,
4194 void *data)
4195 {
4196 output_source_filename (fullname ? fullname : filename,
4197 (struct output_source_filename_data *) data);
4198 }
4199
4200 using isrc_flag_option_def
4201 = gdb::option::flag_option_def<filename_partial_match_opts>;
4202
4203 static const gdb::option::option_def info_sources_option_defs[] = {
4204
4205 isrc_flag_option_def {
4206 "dirname",
4207 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4208 N_("Show only the files having a dirname matching REGEXP."),
4209 },
4210
4211 isrc_flag_option_def {
4212 "basename",
4213 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4214 N_("Show only the files having a basename matching REGEXP."),
4215 },
4216
4217 };
4218
4219 /* Create an option_def_group for the "info sources" options, with
4220 ISRC_OPTS as context. */
4221
4222 static inline gdb::option::option_def_group
4223 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4224 {
4225 return {{info_sources_option_defs}, isrc_opts};
4226 }
4227
4228 /* Prints the header message for the source files that will be printed
4229 with the matching info present in DATA. SYMBOL_MSG is a message
4230 that tells what will or has been done with the symbols of the
4231 matching source files. */
4232
4233 static void
4234 print_info_sources_header (const char *symbol_msg,
4235 const struct output_source_filename_data *data)
4236 {
4237 puts_filtered (symbol_msg);
4238 if (!data->regexp.empty ())
4239 {
4240 if (data->partial_match.dirname)
4241 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4242 data->regexp.c_str ());
4243 else if (data->partial_match.basename)
4244 printf_filtered (_("(basename matching regular expression \"%s\")"),
4245 data->regexp.c_str ());
4246 else
4247 printf_filtered (_("(filename matching regular expression \"%s\")"),
4248 data->regexp.c_str ());
4249 }
4250 puts_filtered ("\n");
4251 }
4252
4253 /* Completer for "info sources". */
4254
4255 static void
4256 info_sources_command_completer (cmd_list_element *ignore,
4257 completion_tracker &tracker,
4258 const char *text, const char *word)
4259 {
4260 const auto group = make_info_sources_options_def_group (nullptr);
4261 if (gdb::option::complete_options
4262 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4263 return;
4264 }
4265
4266 static void
4267 info_sources_command (const char *args, int from_tty)
4268 {
4269 struct output_source_filename_data data;
4270
4271 if (!have_full_symbols () && !have_partial_symbols ())
4272 {
4273 error (_("No symbol table is loaded. Use the \"file\" command."));
4274 }
4275
4276 filename_seen_cache filenames_seen;
4277
4278 auto group = make_info_sources_options_def_group (&data.partial_match);
4279
4280 gdb::option::process_options
4281 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4282
4283 if (args != NULL && *args != '\000')
4284 data.regexp = args;
4285
4286 data.filename_seen_cache = &filenames_seen;
4287 data.first = 1;
4288
4289 if (data.partial_match.dirname && data.partial_match.basename)
4290 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4291 if ((data.partial_match.dirname || data.partial_match.basename)
4292 && data.regexp.empty ())
4293 error (_("Missing REGEXP for 'info sources'."));
4294
4295 if (data.regexp.empty ())
4296 data.c_regexp.reset ();
4297 else
4298 {
4299 int cflags = REG_NOSUB;
4300 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4301 cflags |= REG_ICASE;
4302 #endif
4303 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4304 _("Invalid regexp"));
4305 }
4306
4307 print_info_sources_header
4308 (_("Source files for which symbols have been read in:\n"), &data);
4309
4310 for (objfile *objfile : current_program_space->objfiles ())
4311 {
4312 for (compunit_symtab *cu : objfile->compunits ())
4313 {
4314 for (symtab *s : compunit_filetabs (cu))
4315 {
4316 const char *fullname = symtab_to_fullname (s);
4317
4318 output_source_filename (fullname, &data);
4319 }
4320 }
4321 }
4322 printf_filtered ("\n\n");
4323
4324 print_info_sources_header
4325 (_("Source files for which symbols will be read in on demand:\n"), &data);
4326
4327 filenames_seen.clear ();
4328 data.first = 1;
4329 map_symbol_filenames (output_partial_symbol_filename, &data,
4330 1 /*need_fullname*/);
4331 printf_filtered ("\n");
4332 }
4333
4334 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4335 non-zero compare only lbasename of FILES. */
4336
4337 static int
4338 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4339 {
4340 int i;
4341
4342 if (file != NULL && nfiles != 0)
4343 {
4344 for (i = 0; i < nfiles; i++)
4345 {
4346 if (compare_filenames_for_search (file, (basenames
4347 ? lbasename (files[i])
4348 : files[i])))
4349 return 1;
4350 }
4351 }
4352 else if (nfiles == 0)
4353 return 1;
4354 return 0;
4355 }
4356
4357 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4358 sort symbols, not minimal symbols. */
4359
4360 int
4361 symbol_search::compare_search_syms (const symbol_search &sym_a,
4362 const symbol_search &sym_b)
4363 {
4364 int c;
4365
4366 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4367 symbol_symtab (sym_b.symbol)->filename);
4368 if (c != 0)
4369 return c;
4370
4371 if (sym_a.block != sym_b.block)
4372 return sym_a.block - sym_b.block;
4373
4374 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4375 SYMBOL_PRINT_NAME (sym_b.symbol));
4376 }
4377
4378 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4379 If SYM has no symbol_type or symbol_name, returns false. */
4380
4381 bool
4382 treg_matches_sym_type_name (const compiled_regex &treg,
4383 const struct symbol *sym)
4384 {
4385 struct type *sym_type;
4386 std::string printed_sym_type_name;
4387
4388 if (symbol_lookup_debug > 1)
4389 {
4390 fprintf_unfiltered (gdb_stdlog,
4391 "treg_matches_sym_type_name\n sym %s\n",
4392 SYMBOL_NATURAL_NAME (sym));
4393 }
4394
4395 sym_type = SYMBOL_TYPE (sym);
4396 if (sym_type == NULL)
4397 return false;
4398
4399 {
4400 scoped_switch_to_sym_language_if_auto l (sym);
4401
4402 printed_sym_type_name = type_to_string (sym_type);
4403 }
4404
4405
4406 if (symbol_lookup_debug > 1)
4407 {
4408 fprintf_unfiltered (gdb_stdlog,
4409 " sym_type_name %s\n",
4410 printed_sym_type_name.c_str ());
4411 }
4412
4413
4414 if (printed_sym_type_name.empty ())
4415 return false;
4416
4417 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4418 }
4419
4420
4421 /* Sort the symbols in RESULT and remove duplicates. */
4422
4423 static void
4424 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4425 {
4426 std::sort (result->begin (), result->end ());
4427 result->erase (std::unique (result->begin (), result->end ()),
4428 result->end ());
4429 }
4430
4431 /* Search the symbol table for matches to the regular expression REGEXP,
4432 returning the results.
4433
4434 Only symbols of KIND are searched:
4435 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4436 and constants (enums).
4437 if T_REGEXP is not NULL, only returns var that have
4438 a type matching regular expression T_REGEXP.
4439 FUNCTIONS_DOMAIN - search all functions
4440 TYPES_DOMAIN - search all type names
4441 ALL_DOMAIN - an internal error for this function
4442
4443 Within each file the results are sorted locally; each symtab's global and
4444 static blocks are separately alphabetized.
4445 Duplicate entries are removed.
4446
4447 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4448 otherwise they are excluded. */
4449
4450 std::vector<symbol_search>
4451 search_symbols (const char *regexp, enum search_domain kind,
4452 const char *t_regexp,
4453 int nfiles, const char *files[],
4454 bool exclude_minsyms)
4455 {
4456 const struct blockvector *bv;
4457 const struct block *b;
4458 int i = 0;
4459 struct block_iterator iter;
4460 struct symbol *sym;
4461 int found_misc = 0;
4462 static const enum minimal_symbol_type types[]
4463 = {mst_data, mst_text, mst_unknown};
4464 static const enum minimal_symbol_type types2[]
4465 = {mst_bss, mst_file_text, mst_unknown};
4466 static const enum minimal_symbol_type types3[]
4467 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4468 static const enum minimal_symbol_type types4[]
4469 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4470 enum minimal_symbol_type ourtype;
4471 enum minimal_symbol_type ourtype2;
4472 enum minimal_symbol_type ourtype3;
4473 enum minimal_symbol_type ourtype4;
4474 std::vector<symbol_search> result;
4475 gdb::optional<compiled_regex> preg;
4476 gdb::optional<compiled_regex> treg;
4477
4478 gdb_assert (kind <= TYPES_DOMAIN);
4479
4480 ourtype = types[kind];
4481 ourtype2 = types2[kind];
4482 ourtype3 = types3[kind];
4483 ourtype4 = types4[kind];
4484
4485 if (regexp != NULL)
4486 {
4487 /* Make sure spacing is right for C++ operators.
4488 This is just a courtesy to make the matching less sensitive
4489 to how many spaces the user leaves between 'operator'
4490 and <TYPENAME> or <OPERATOR>. */
4491 const char *opend;
4492 const char *opname = operator_chars (regexp, &opend);
4493
4494 if (*opname)
4495 {
4496 int fix = -1; /* -1 means ok; otherwise number of
4497 spaces needed. */
4498
4499 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4500 {
4501 /* There should 1 space between 'operator' and 'TYPENAME'. */
4502 if (opname[-1] != ' ' || opname[-2] == ' ')
4503 fix = 1;
4504 }
4505 else
4506 {
4507 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4508 if (opname[-1] == ' ')
4509 fix = 0;
4510 }
4511 /* If wrong number of spaces, fix it. */
4512 if (fix >= 0)
4513 {
4514 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4515
4516 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4517 regexp = tmp;
4518 }
4519 }
4520
4521 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4522 ? REG_ICASE : 0);
4523 preg.emplace (regexp, cflags, _("Invalid regexp"));
4524 }
4525
4526 if (t_regexp != NULL)
4527 {
4528 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4529 ? REG_ICASE : 0);
4530 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4531 }
4532
4533 /* Search through the partial symtabs *first* for all symbols
4534 matching the regexp. That way we don't have to reproduce all of
4535 the machinery below. */
4536 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4537 {
4538 return file_matches (filename, files, nfiles,
4539 basenames);
4540 },
4541 lookup_name_info::match_any (),
4542 [&] (const char *symname)
4543 {
4544 return (!preg.has_value ()
4545 || preg->exec (symname,
4546 0, NULL, 0) == 0);
4547 },
4548 NULL,
4549 kind);
4550
4551 /* Here, we search through the minimal symbol tables for functions
4552 and variables that match, and force their symbols to be read.
4553 This is in particular necessary for demangled variable names,
4554 which are no longer put into the partial symbol tables.
4555 The symbol will then be found during the scan of symtabs below.
4556
4557 For functions, find_pc_symtab should succeed if we have debug info
4558 for the function, for variables we have to call
4559 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4560 has debug info.
4561 If the lookup fails, set found_misc so that we will rescan to print
4562 any matching symbols without debug info.
4563 We only search the objfile the msymbol came from, we no longer search
4564 all objfiles. In large programs (1000s of shared libs) searching all
4565 objfiles is not worth the pain. */
4566
4567 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4568 {
4569 for (objfile *objfile : current_program_space->objfiles ())
4570 {
4571 for (minimal_symbol *msymbol : objfile->msymbols ())
4572 {
4573 QUIT;
4574
4575 if (msymbol->created_by_gdb)
4576 continue;
4577
4578 if (MSYMBOL_TYPE (msymbol) == ourtype
4579 || MSYMBOL_TYPE (msymbol) == ourtype2
4580 || MSYMBOL_TYPE (msymbol) == ourtype3
4581 || MSYMBOL_TYPE (msymbol) == ourtype4)
4582 {
4583 if (!preg.has_value ()
4584 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4585 NULL, 0) == 0)
4586 {
4587 /* Note: An important side-effect of these
4588 lookup functions is to expand the symbol
4589 table if msymbol is found, for the benefit of
4590 the next loop on compunits. */
4591 if (kind == FUNCTIONS_DOMAIN
4592 ? (find_pc_compunit_symtab
4593 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4594 == NULL)
4595 : (lookup_symbol_in_objfile_from_linkage_name
4596 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4597 VAR_DOMAIN)
4598 .symbol == NULL))
4599 found_misc = 1;
4600 }
4601 }
4602 }
4603 }
4604 }
4605
4606 for (objfile *objfile : current_program_space->objfiles ())
4607 {
4608 for (compunit_symtab *cust : objfile->compunits ())
4609 {
4610 bv = COMPUNIT_BLOCKVECTOR (cust);
4611 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4612 {
4613 b = BLOCKVECTOR_BLOCK (bv, i);
4614 ALL_BLOCK_SYMBOLS (b, iter, sym)
4615 {
4616 struct symtab *real_symtab = symbol_symtab (sym);
4617
4618 QUIT;
4619
4620 /* Check first sole REAL_SYMTAB->FILENAME. It does
4621 not need to be a substring of symtab_to_fullname as
4622 it may contain "./" etc. */
4623 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4624 || ((basenames_may_differ
4625 || file_matches (lbasename (real_symtab->filename),
4626 files, nfiles, 1))
4627 && file_matches (symtab_to_fullname (real_symtab),
4628 files, nfiles, 0)))
4629 && ((!preg.has_value ()
4630 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4631 NULL, 0) == 0)
4632 && ((kind == VARIABLES_DOMAIN
4633 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4634 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4635 && SYMBOL_CLASS (sym) != LOC_BLOCK
4636 /* LOC_CONST can be used for more than
4637 just enums, e.g., c++ static const
4638 members. We only want to skip enums
4639 here. */
4640 && !(SYMBOL_CLASS (sym) == LOC_CONST
4641 && (TYPE_CODE (SYMBOL_TYPE (sym))
4642 == TYPE_CODE_ENUM))
4643 && (!treg.has_value ()
4644 || treg_matches_sym_type_name (*treg, sym)))
4645 || (kind == FUNCTIONS_DOMAIN
4646 && SYMBOL_CLASS (sym) == LOC_BLOCK
4647 && (!treg.has_value ()
4648 || treg_matches_sym_type_name (*treg,
4649 sym)))
4650 || (kind == TYPES_DOMAIN
4651 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4652 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4653 {
4654 /* match */
4655 result.emplace_back (i, sym);
4656 }
4657 }
4658 }
4659 }
4660 }
4661
4662 if (!result.empty ())
4663 sort_search_symbols_remove_dups (&result);
4664
4665 /* If there are no eyes, avoid all contact. I mean, if there are
4666 no debug symbols, then add matching minsyms. But if the user wants
4667 to see symbols matching a type regexp, then never give a minimal symbol,
4668 as we assume that a minimal symbol does not have a type. */
4669
4670 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4671 && !exclude_minsyms
4672 && !treg.has_value ())
4673 {
4674 for (objfile *objfile : current_program_space->objfiles ())
4675 {
4676 for (minimal_symbol *msymbol : objfile->msymbols ())
4677 {
4678 QUIT;
4679
4680 if (msymbol->created_by_gdb)
4681 continue;
4682
4683 if (MSYMBOL_TYPE (msymbol) == ourtype
4684 || MSYMBOL_TYPE (msymbol) == ourtype2
4685 || MSYMBOL_TYPE (msymbol) == ourtype3
4686 || MSYMBOL_TYPE (msymbol) == ourtype4)
4687 {
4688 if (!preg.has_value ()
4689 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4690 NULL, 0) == 0)
4691 {
4692 /* For functions we can do a quick check of whether the
4693 symbol might be found via find_pc_symtab. */
4694 if (kind != FUNCTIONS_DOMAIN
4695 || (find_pc_compunit_symtab
4696 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4697 == NULL))
4698 {
4699 if (lookup_symbol_in_objfile_from_linkage_name
4700 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4701 VAR_DOMAIN)
4702 .symbol == NULL)
4703 {
4704 /* match */
4705 result.emplace_back (i, msymbol, objfile);
4706 }
4707 }
4708 }
4709 }
4710 }
4711 }
4712 }
4713
4714 return result;
4715 }
4716
4717 /* Helper function for symtab_symbol_info, this function uses
4718 the data returned from search_symbols() to print information
4719 regarding the match to gdb_stdout. If LAST is not NULL,
4720 print file and line number information for the symbol as
4721 well. Skip printing the filename if it matches LAST. */
4722
4723 static void
4724 print_symbol_info (enum search_domain kind,
4725 struct symbol *sym,
4726 int block, const char *last)
4727 {
4728 scoped_switch_to_sym_language_if_auto l (sym);
4729 struct symtab *s = symbol_symtab (sym);
4730
4731 if (last != NULL)
4732 {
4733 const char *s_filename = symtab_to_filename_for_display (s);
4734
4735 if (filename_cmp (last, s_filename) != 0)
4736 {
4737 printf_filtered (_("\nFile %ps:\n"),
4738 styled_string (file_name_style.style (),
4739 s_filename));
4740 }
4741
4742 if (SYMBOL_LINE (sym) != 0)
4743 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4744 else
4745 puts_filtered ("\t");
4746 }
4747
4748 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4749 printf_filtered ("static ");
4750
4751 /* Typedef that is not a C++ class. */
4752 if (kind == TYPES_DOMAIN
4753 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4754 {
4755 /* FIXME: For C (and C++) we end up with a difference in output here
4756 between how a typedef is printed, and non-typedefs are printed.
4757 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4758 appear C-like, while TYPE_PRINT doesn't.
4759
4760 For the struct printing case below, things are worse, we force
4761 printing of the ";" in this function, which is going to be wrong
4762 for languages that don't require a ";" between statements. */
4763 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4764 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4765 else
4766 {
4767 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4768 printf_filtered ("\n");
4769 }
4770 }
4771 /* variable, func, or typedef-that-is-c++-class. */
4772 else if (kind < TYPES_DOMAIN
4773 || (kind == TYPES_DOMAIN
4774 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4775 {
4776 type_print (SYMBOL_TYPE (sym),
4777 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4778 ? "" : SYMBOL_PRINT_NAME (sym)),
4779 gdb_stdout, 0);
4780
4781 printf_filtered (";\n");
4782 }
4783 }
4784
4785 /* This help function for symtab_symbol_info() prints information
4786 for non-debugging symbols to gdb_stdout. */
4787
4788 static void
4789 print_msymbol_info (struct bound_minimal_symbol msymbol)
4790 {
4791 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4792 char *tmp;
4793
4794 if (gdbarch_addr_bit (gdbarch) <= 32)
4795 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4796 & (CORE_ADDR) 0xffffffff,
4797 8);
4798 else
4799 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4800 16);
4801
4802 ui_file_style sym_style = (msymbol.minsym->text_p ()
4803 ? function_name_style.style ()
4804 : ui_file_style ());
4805
4806 printf_filtered (_("%ps %ps\n"),
4807 styled_string (address_style.style (), tmp),
4808 styled_string (sym_style,
4809 MSYMBOL_PRINT_NAME (msymbol.minsym)));
4810 }
4811
4812 /* This is the guts of the commands "info functions", "info types", and
4813 "info variables". It calls search_symbols to find all matches and then
4814 print_[m]symbol_info to print out some useful information about the
4815 matches. */
4816
4817 static void
4818 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4819 const char *regexp, enum search_domain kind,
4820 const char *t_regexp, int from_tty)
4821 {
4822 static const char * const classnames[] =
4823 {"variable", "function", "type"};
4824 const char *last_filename = "";
4825 int first = 1;
4826
4827 gdb_assert (kind <= TYPES_DOMAIN);
4828
4829 if (regexp != nullptr && *regexp == '\0')
4830 regexp = nullptr;
4831
4832 /* Must make sure that if we're interrupted, symbols gets freed. */
4833 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4834 t_regexp, 0, NULL,
4835 exclude_minsyms);
4836
4837 if (!quiet)
4838 {
4839 if (regexp != NULL)
4840 {
4841 if (t_regexp != NULL)
4842 printf_filtered
4843 (_("All %ss matching regular expression \"%s\""
4844 " with type matching regular expression \"%s\":\n"),
4845 classnames[kind], regexp, t_regexp);
4846 else
4847 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4848 classnames[kind], regexp);
4849 }
4850 else
4851 {
4852 if (t_regexp != NULL)
4853 printf_filtered
4854 (_("All defined %ss"
4855 " with type matching regular expression \"%s\" :\n"),
4856 classnames[kind], t_regexp);
4857 else
4858 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4859 }
4860 }
4861
4862 for (const symbol_search &p : symbols)
4863 {
4864 QUIT;
4865
4866 if (p.msymbol.minsym != NULL)
4867 {
4868 if (first)
4869 {
4870 if (!quiet)
4871 printf_filtered (_("\nNon-debugging symbols:\n"));
4872 first = 0;
4873 }
4874 print_msymbol_info (p.msymbol);
4875 }
4876 else
4877 {
4878 print_symbol_info (kind,
4879 p.symbol,
4880 p.block,
4881 last_filename);
4882 last_filename
4883 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4884 }
4885 }
4886 }
4887
4888 /* Structure to hold the values of the options used by the 'info variables'
4889 and 'info functions' commands. These correspond to the -q, -t, and -n
4890 options. */
4891
4892 struct info_print_options
4893 {
4894 bool quiet = false;
4895 bool exclude_minsyms = false;
4896 char *type_regexp = nullptr;
4897
4898 ~info_print_options ()
4899 {
4900 xfree (type_regexp);
4901 }
4902 };
4903
4904 /* The options used by the 'info variables' and 'info functions'
4905 commands. */
4906
4907 static const gdb::option::option_def info_print_options_defs[] = {
4908 gdb::option::boolean_option_def<info_print_options> {
4909 "q",
4910 [] (info_print_options *opt) { return &opt->quiet; },
4911 nullptr, /* show_cmd_cb */
4912 nullptr /* set_doc */
4913 },
4914
4915 gdb::option::boolean_option_def<info_print_options> {
4916 "n",
4917 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4918 nullptr, /* show_cmd_cb */
4919 nullptr /* set_doc */
4920 },
4921
4922 gdb::option::string_option_def<info_print_options> {
4923 "t",
4924 [] (info_print_options *opt) { return &opt->type_regexp; },
4925 nullptr, /* show_cmd_cb */
4926 nullptr /* set_doc */
4927 }
4928 };
4929
4930 /* Returns the option group used by 'info variables' and 'info
4931 functions'. */
4932
4933 static gdb::option::option_def_group
4934 make_info_print_options_def_group (info_print_options *opts)
4935 {
4936 return {{info_print_options_defs}, opts};
4937 }
4938
4939 /* Command completer for 'info variables' and 'info functions'. */
4940
4941 static void
4942 info_print_command_completer (struct cmd_list_element *ignore,
4943 completion_tracker &tracker,
4944 const char *text, const char * /* word */)
4945 {
4946 const auto group
4947 = make_info_print_options_def_group (nullptr);
4948 if (gdb::option::complete_options
4949 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4950 return;
4951
4952 const char *word = advance_to_expression_complete_word_point (tracker, text);
4953 symbol_completer (ignore, tracker, text, word);
4954 }
4955
4956 /* Implement the 'info variables' command. */
4957
4958 static void
4959 info_variables_command (const char *args, int from_tty)
4960 {
4961 info_print_options opts;
4962 auto grp = make_info_print_options_def_group (&opts);
4963 gdb::option::process_options
4964 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4965 if (args != nullptr && *args == '\0')
4966 args = nullptr;
4967
4968 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4969 opts.type_regexp, from_tty);
4970 }
4971
4972 /* Implement the 'info functions' command. */
4973
4974 static void
4975 info_functions_command (const char *args, int from_tty)
4976 {
4977 info_print_options opts;
4978 auto grp = make_info_print_options_def_group (&opts);
4979 gdb::option::process_options
4980 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4981 if (args != nullptr && *args == '\0')
4982 args = nullptr;
4983
4984 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4985 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
4986 }
4987
4988 /* Holds the -q option for the 'info types' command. */
4989
4990 struct info_types_options
4991 {
4992 bool quiet = false;
4993 };
4994
4995 /* The options used by the 'info types' command. */
4996
4997 static const gdb::option::option_def info_types_options_defs[] = {
4998 gdb::option::boolean_option_def<info_types_options> {
4999 "q",
5000 [] (info_types_options *opt) { return &opt->quiet; },
5001 nullptr, /* show_cmd_cb */
5002 nullptr /* set_doc */
5003 }
5004 };
5005
5006 /* Returns the option group used by 'info types'. */
5007
5008 static gdb::option::option_def_group
5009 make_info_types_options_def_group (info_types_options *opts)
5010 {
5011 return {{info_types_options_defs}, opts};
5012 }
5013
5014 /* Implement the 'info types' command. */
5015
5016 static void
5017 info_types_command (const char *args, int from_tty)
5018 {
5019 info_types_options opts;
5020
5021 auto grp = make_info_types_options_def_group (&opts);
5022 gdb::option::process_options
5023 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5024 if (args != nullptr && *args == '\0')
5025 args = nullptr;
5026 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5027 }
5028
5029 /* Command completer for 'info types' command. */
5030
5031 static void
5032 info_types_command_completer (struct cmd_list_element *ignore,
5033 completion_tracker &tracker,
5034 const char *text, const char * /* word */)
5035 {
5036 const auto group
5037 = make_info_types_options_def_group (nullptr);
5038 if (gdb::option::complete_options
5039 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5040 return;
5041
5042 const char *word = advance_to_expression_complete_word_point (tracker, text);
5043 symbol_completer (ignore, tracker, text, word);
5044 }
5045
5046 /* Breakpoint all functions matching regular expression. */
5047
5048 void
5049 rbreak_command_wrapper (char *regexp, int from_tty)
5050 {
5051 rbreak_command (regexp, from_tty);
5052 }
5053
5054 static void
5055 rbreak_command (const char *regexp, int from_tty)
5056 {
5057 std::string string;
5058 const char **files = NULL;
5059 const char *file_name;
5060 int nfiles = 0;
5061
5062 if (regexp)
5063 {
5064 const char *colon = strchr (regexp, ':');
5065
5066 if (colon && *(colon + 1) != ':')
5067 {
5068 int colon_index;
5069 char *local_name;
5070
5071 colon_index = colon - regexp;
5072 local_name = (char *) alloca (colon_index + 1);
5073 memcpy (local_name, regexp, colon_index);
5074 local_name[colon_index--] = 0;
5075 while (isspace (local_name[colon_index]))
5076 local_name[colon_index--] = 0;
5077 file_name = local_name;
5078 files = &file_name;
5079 nfiles = 1;
5080 regexp = skip_spaces (colon + 1);
5081 }
5082 }
5083
5084 std::vector<symbol_search> symbols = search_symbols (regexp,
5085 FUNCTIONS_DOMAIN,
5086 NULL,
5087 nfiles, files,
5088 false);
5089
5090 scoped_rbreak_breakpoints finalize;
5091 for (const symbol_search &p : symbols)
5092 {
5093 if (p.msymbol.minsym == NULL)
5094 {
5095 struct symtab *symtab = symbol_symtab (p.symbol);
5096 const char *fullname = symtab_to_fullname (symtab);
5097
5098 string = string_printf ("%s:'%s'", fullname,
5099 SYMBOL_LINKAGE_NAME (p.symbol));
5100 break_command (&string[0], from_tty);
5101 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5102 }
5103 else
5104 {
5105 string = string_printf ("'%s'",
5106 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5107
5108 break_command (&string[0], from_tty);
5109 printf_filtered ("<function, no debug info> %s;\n",
5110 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5111 }
5112 }
5113 }
5114 \f
5115
5116 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5117
5118 static int
5119 compare_symbol_name (const char *symbol_name, language symbol_language,
5120 const lookup_name_info &lookup_name,
5121 completion_match_result &match_res)
5122 {
5123 const language_defn *lang = language_def (symbol_language);
5124
5125 symbol_name_matcher_ftype *name_match
5126 = get_symbol_name_matcher (lang, lookup_name);
5127
5128 return name_match (symbol_name, lookup_name, &match_res);
5129 }
5130
5131 /* See symtab.h. */
5132
5133 void
5134 completion_list_add_name (completion_tracker &tracker,
5135 language symbol_language,
5136 const char *symname,
5137 const lookup_name_info &lookup_name,
5138 const char *text, const char *word)
5139 {
5140 completion_match_result &match_res
5141 = tracker.reset_completion_match_result ();
5142
5143 /* Clip symbols that cannot match. */
5144 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5145 return;
5146
5147 /* Refresh SYMNAME from the match string. It's potentially
5148 different depending on language. (E.g., on Ada, the match may be
5149 the encoded symbol name wrapped in "<>"). */
5150 symname = match_res.match.match ();
5151 gdb_assert (symname != NULL);
5152
5153 /* We have a match for a completion, so add SYMNAME to the current list
5154 of matches. Note that the name is moved to freshly malloc'd space. */
5155
5156 {
5157 gdb::unique_xmalloc_ptr<char> completion
5158 = make_completion_match_str (symname, text, word);
5159
5160 /* Here we pass the match-for-lcd object to add_completion. Some
5161 languages match the user text against substrings of symbol
5162 names in some cases. E.g., in C++, "b push_ba" completes to
5163 "std::vector::push_back", "std::string::push_back", etc., and
5164 in this case we want the completion lowest common denominator
5165 to be "push_back" instead of "std::". */
5166 tracker.add_completion (std::move (completion),
5167 &match_res.match_for_lcd, text, word);
5168 }
5169 }
5170
5171 /* completion_list_add_name wrapper for struct symbol. */
5172
5173 static void
5174 completion_list_add_symbol (completion_tracker &tracker,
5175 symbol *sym,
5176 const lookup_name_info &lookup_name,
5177 const char *text, const char *word)
5178 {
5179 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5180 SYMBOL_NATURAL_NAME (sym),
5181 lookup_name, text, word);
5182 }
5183
5184 /* completion_list_add_name wrapper for struct minimal_symbol. */
5185
5186 static void
5187 completion_list_add_msymbol (completion_tracker &tracker,
5188 minimal_symbol *sym,
5189 const lookup_name_info &lookup_name,
5190 const char *text, const char *word)
5191 {
5192 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5193 MSYMBOL_NATURAL_NAME (sym),
5194 lookup_name, text, word);
5195 }
5196
5197
5198 /* ObjC: In case we are completing on a selector, look as the msymbol
5199 again and feed all the selectors into the mill. */
5200
5201 static void
5202 completion_list_objc_symbol (completion_tracker &tracker,
5203 struct minimal_symbol *msymbol,
5204 const lookup_name_info &lookup_name,
5205 const char *text, const char *word)
5206 {
5207 static char *tmp = NULL;
5208 static unsigned int tmplen = 0;
5209
5210 const char *method, *category, *selector;
5211 char *tmp2 = NULL;
5212
5213 method = MSYMBOL_NATURAL_NAME (msymbol);
5214
5215 /* Is it a method? */
5216 if ((method[0] != '-') && (method[0] != '+'))
5217 return;
5218
5219 if (text[0] == '[')
5220 /* Complete on shortened method method. */
5221 completion_list_add_name (tracker, language_objc,
5222 method + 1,
5223 lookup_name,
5224 text, word);
5225
5226 while ((strlen (method) + 1) >= tmplen)
5227 {
5228 if (tmplen == 0)
5229 tmplen = 1024;
5230 else
5231 tmplen *= 2;
5232 tmp = (char *) xrealloc (tmp, tmplen);
5233 }
5234 selector = strchr (method, ' ');
5235 if (selector != NULL)
5236 selector++;
5237
5238 category = strchr (method, '(');
5239
5240 if ((category != NULL) && (selector != NULL))
5241 {
5242 memcpy (tmp, method, (category - method));
5243 tmp[category - method] = ' ';
5244 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5245 completion_list_add_name (tracker, language_objc, tmp,
5246 lookup_name, text, word);
5247 if (text[0] == '[')
5248 completion_list_add_name (tracker, language_objc, tmp + 1,
5249 lookup_name, text, word);
5250 }
5251
5252 if (selector != NULL)
5253 {
5254 /* Complete on selector only. */
5255 strcpy (tmp, selector);
5256 tmp2 = strchr (tmp, ']');
5257 if (tmp2 != NULL)
5258 *tmp2 = '\0';
5259
5260 completion_list_add_name (tracker, language_objc, tmp,
5261 lookup_name, text, word);
5262 }
5263 }
5264
5265 /* Break the non-quoted text based on the characters which are in
5266 symbols. FIXME: This should probably be language-specific. */
5267
5268 static const char *
5269 language_search_unquoted_string (const char *text, const char *p)
5270 {
5271 for (; p > text; --p)
5272 {
5273 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5274 continue;
5275 else
5276 {
5277 if ((current_language->la_language == language_objc))
5278 {
5279 if (p[-1] == ':') /* Might be part of a method name. */
5280 continue;
5281 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5282 p -= 2; /* Beginning of a method name. */
5283 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5284 { /* Might be part of a method name. */
5285 const char *t = p;
5286
5287 /* Seeing a ' ' or a '(' is not conclusive evidence
5288 that we are in the middle of a method name. However,
5289 finding "-[" or "+[" should be pretty un-ambiguous.
5290 Unfortunately we have to find it now to decide. */
5291
5292 while (t > text)
5293 if (isalnum (t[-1]) || t[-1] == '_' ||
5294 t[-1] == ' ' || t[-1] == ':' ||
5295 t[-1] == '(' || t[-1] == ')')
5296 --t;
5297 else
5298 break;
5299
5300 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5301 p = t - 2; /* Method name detected. */
5302 /* Else we leave with p unchanged. */
5303 }
5304 }
5305 break;
5306 }
5307 }
5308 return p;
5309 }
5310
5311 static void
5312 completion_list_add_fields (completion_tracker &tracker,
5313 struct symbol *sym,
5314 const lookup_name_info &lookup_name,
5315 const char *text, const char *word)
5316 {
5317 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5318 {
5319 struct type *t = SYMBOL_TYPE (sym);
5320 enum type_code c = TYPE_CODE (t);
5321 int j;
5322
5323 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5324 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5325 if (TYPE_FIELD_NAME (t, j))
5326 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5327 TYPE_FIELD_NAME (t, j),
5328 lookup_name, text, word);
5329 }
5330 }
5331
5332 /* See symtab.h. */
5333
5334 bool
5335 symbol_is_function_or_method (symbol *sym)
5336 {
5337 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5338 {
5339 case TYPE_CODE_FUNC:
5340 case TYPE_CODE_METHOD:
5341 return true;
5342 default:
5343 return false;
5344 }
5345 }
5346
5347 /* See symtab.h. */
5348
5349 bool
5350 symbol_is_function_or_method (minimal_symbol *msymbol)
5351 {
5352 switch (MSYMBOL_TYPE (msymbol))
5353 {
5354 case mst_text:
5355 case mst_text_gnu_ifunc:
5356 case mst_solib_trampoline:
5357 case mst_file_text:
5358 return true;
5359 default:
5360 return false;
5361 }
5362 }
5363
5364 /* See symtab.h. */
5365
5366 bound_minimal_symbol
5367 find_gnu_ifunc (const symbol *sym)
5368 {
5369 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5370 return {};
5371
5372 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5373 symbol_name_match_type::SEARCH_NAME);
5374 struct objfile *objfile = symbol_objfile (sym);
5375
5376 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5377 minimal_symbol *ifunc = NULL;
5378
5379 iterate_over_minimal_symbols (objfile, lookup_name,
5380 [&] (minimal_symbol *minsym)
5381 {
5382 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5383 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5384 {
5385 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5386 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5387 {
5388 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5389 msym_addr
5390 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5391 msym_addr,
5392 current_top_target ());
5393 }
5394 if (msym_addr == address)
5395 {
5396 ifunc = minsym;
5397 return true;
5398 }
5399 }
5400 return false;
5401 });
5402
5403 if (ifunc != NULL)
5404 return {ifunc, objfile};
5405 return {};
5406 }
5407
5408 /* Add matching symbols from SYMTAB to the current completion list. */
5409
5410 static void
5411 add_symtab_completions (struct compunit_symtab *cust,
5412 completion_tracker &tracker,
5413 complete_symbol_mode mode,
5414 const lookup_name_info &lookup_name,
5415 const char *text, const char *word,
5416 enum type_code code)
5417 {
5418 struct symbol *sym;
5419 const struct block *b;
5420 struct block_iterator iter;
5421 int i;
5422
5423 if (cust == NULL)
5424 return;
5425
5426 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5427 {
5428 QUIT;
5429 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5430 ALL_BLOCK_SYMBOLS (b, iter, sym)
5431 {
5432 if (completion_skip_symbol (mode, sym))
5433 continue;
5434
5435 if (code == TYPE_CODE_UNDEF
5436 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5437 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5438 completion_list_add_symbol (tracker, sym,
5439 lookup_name,
5440 text, word);
5441 }
5442 }
5443 }
5444
5445 void
5446 default_collect_symbol_completion_matches_break_on
5447 (completion_tracker &tracker, complete_symbol_mode mode,
5448 symbol_name_match_type name_match_type,
5449 const char *text, const char *word,
5450 const char *break_on, enum type_code code)
5451 {
5452 /* Problem: All of the symbols have to be copied because readline
5453 frees them. I'm not going to worry about this; hopefully there
5454 won't be that many. */
5455
5456 struct symbol *sym;
5457 const struct block *b;
5458 const struct block *surrounding_static_block, *surrounding_global_block;
5459 struct block_iterator iter;
5460 /* The symbol we are completing on. Points in same buffer as text. */
5461 const char *sym_text;
5462
5463 /* Now look for the symbol we are supposed to complete on. */
5464 if (mode == complete_symbol_mode::LINESPEC)
5465 sym_text = text;
5466 else
5467 {
5468 const char *p;
5469 char quote_found;
5470 const char *quote_pos = NULL;
5471
5472 /* First see if this is a quoted string. */
5473 quote_found = '\0';
5474 for (p = text; *p != '\0'; ++p)
5475 {
5476 if (quote_found != '\0')
5477 {
5478 if (*p == quote_found)
5479 /* Found close quote. */
5480 quote_found = '\0';
5481 else if (*p == '\\' && p[1] == quote_found)
5482 /* A backslash followed by the quote character
5483 doesn't end the string. */
5484 ++p;
5485 }
5486 else if (*p == '\'' || *p == '"')
5487 {
5488 quote_found = *p;
5489 quote_pos = p;
5490 }
5491 }
5492 if (quote_found == '\'')
5493 /* A string within single quotes can be a symbol, so complete on it. */
5494 sym_text = quote_pos + 1;
5495 else if (quote_found == '"')
5496 /* A double-quoted string is never a symbol, nor does it make sense
5497 to complete it any other way. */
5498 {
5499 return;
5500 }
5501 else
5502 {
5503 /* It is not a quoted string. Break it based on the characters
5504 which are in symbols. */
5505 while (p > text)
5506 {
5507 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5508 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5509 --p;
5510 else
5511 break;
5512 }
5513 sym_text = p;
5514 }
5515 }
5516
5517 lookup_name_info lookup_name (sym_text, name_match_type, true);
5518
5519 /* At this point scan through the misc symbol vectors and add each
5520 symbol you find to the list. Eventually we want to ignore
5521 anything that isn't a text symbol (everything else will be
5522 handled by the psymtab code below). */
5523
5524 if (code == TYPE_CODE_UNDEF)
5525 {
5526 for (objfile *objfile : current_program_space->objfiles ())
5527 {
5528 for (minimal_symbol *msymbol : objfile->msymbols ())
5529 {
5530 QUIT;
5531
5532 if (completion_skip_symbol (mode, msymbol))
5533 continue;
5534
5535 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5536 sym_text, word);
5537
5538 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5539 sym_text, word);
5540 }
5541 }
5542 }
5543
5544 /* Add completions for all currently loaded symbol tables. */
5545 for (objfile *objfile : current_program_space->objfiles ())
5546 {
5547 for (compunit_symtab *cust : objfile->compunits ())
5548 add_symtab_completions (cust, tracker, mode, lookup_name,
5549 sym_text, word, code);
5550 }
5551
5552 /* Look through the partial symtabs for all symbols which begin by
5553 matching SYM_TEXT. Expand all CUs that you find to the list. */
5554 expand_symtabs_matching (NULL,
5555 lookup_name,
5556 NULL,
5557 [&] (compunit_symtab *symtab) /* expansion notify */
5558 {
5559 add_symtab_completions (symtab,
5560 tracker, mode, lookup_name,
5561 sym_text, word, code);
5562 },
5563 ALL_DOMAIN);
5564
5565 /* Search upwards from currently selected frame (so that we can
5566 complete on local vars). Also catch fields of types defined in
5567 this places which match our text string. Only complete on types
5568 visible from current context. */
5569
5570 b = get_selected_block (0);
5571 surrounding_static_block = block_static_block (b);
5572 surrounding_global_block = block_global_block (b);
5573 if (surrounding_static_block != NULL)
5574 while (b != surrounding_static_block)
5575 {
5576 QUIT;
5577
5578 ALL_BLOCK_SYMBOLS (b, iter, sym)
5579 {
5580 if (code == TYPE_CODE_UNDEF)
5581 {
5582 completion_list_add_symbol (tracker, sym, lookup_name,
5583 sym_text, word);
5584 completion_list_add_fields (tracker, sym, lookup_name,
5585 sym_text, word);
5586 }
5587 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5588 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5589 completion_list_add_symbol (tracker, sym, lookup_name,
5590 sym_text, word);
5591 }
5592
5593 /* Stop when we encounter an enclosing function. Do not stop for
5594 non-inlined functions - the locals of the enclosing function
5595 are in scope for a nested function. */
5596 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5597 break;
5598 b = BLOCK_SUPERBLOCK (b);
5599 }
5600
5601 /* Add fields from the file's types; symbols will be added below. */
5602
5603 if (code == TYPE_CODE_UNDEF)
5604 {
5605 if (surrounding_static_block != NULL)
5606 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5607 completion_list_add_fields (tracker, sym, lookup_name,
5608 sym_text, word);
5609
5610 if (surrounding_global_block != NULL)
5611 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5612 completion_list_add_fields (tracker, sym, lookup_name,
5613 sym_text, word);
5614 }
5615
5616 /* Skip macros if we are completing a struct tag -- arguable but
5617 usually what is expected. */
5618 if (current_language->la_macro_expansion == macro_expansion_c
5619 && code == TYPE_CODE_UNDEF)
5620 {
5621 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5622
5623 /* This adds a macro's name to the current completion list. */
5624 auto add_macro_name = [&] (const char *macro_name,
5625 const macro_definition *,
5626 macro_source_file *,
5627 int)
5628 {
5629 completion_list_add_name (tracker, language_c, macro_name,
5630 lookup_name, sym_text, word);
5631 };
5632
5633 /* Add any macros visible in the default scope. Note that this
5634 may yield the occasional wrong result, because an expression
5635 might be evaluated in a scope other than the default. For
5636 example, if the user types "break file:line if <TAB>", the
5637 resulting expression will be evaluated at "file:line" -- but
5638 at there does not seem to be a way to detect this at
5639 completion time. */
5640 scope = default_macro_scope ();
5641 if (scope)
5642 macro_for_each_in_scope (scope->file, scope->line,
5643 add_macro_name);
5644
5645 /* User-defined macros are always visible. */
5646 macro_for_each (macro_user_macros, add_macro_name);
5647 }
5648 }
5649
5650 void
5651 default_collect_symbol_completion_matches (completion_tracker &tracker,
5652 complete_symbol_mode mode,
5653 symbol_name_match_type name_match_type,
5654 const char *text, const char *word,
5655 enum type_code code)
5656 {
5657 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5658 name_match_type,
5659 text, word, "",
5660 code);
5661 }
5662
5663 /* Collect all symbols (regardless of class) which begin by matching
5664 TEXT. */
5665
5666 void
5667 collect_symbol_completion_matches (completion_tracker &tracker,
5668 complete_symbol_mode mode,
5669 symbol_name_match_type name_match_type,
5670 const char *text, const char *word)
5671 {
5672 current_language->la_collect_symbol_completion_matches (tracker, mode,
5673 name_match_type,
5674 text, word,
5675 TYPE_CODE_UNDEF);
5676 }
5677
5678 /* Like collect_symbol_completion_matches, but only collect
5679 STRUCT_DOMAIN symbols whose type code is CODE. */
5680
5681 void
5682 collect_symbol_completion_matches_type (completion_tracker &tracker,
5683 const char *text, const char *word,
5684 enum type_code code)
5685 {
5686 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5687 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5688
5689 gdb_assert (code == TYPE_CODE_UNION
5690 || code == TYPE_CODE_STRUCT
5691 || code == TYPE_CODE_ENUM);
5692 current_language->la_collect_symbol_completion_matches (tracker, mode,
5693 name_match_type,
5694 text, word, code);
5695 }
5696
5697 /* Like collect_symbol_completion_matches, but collects a list of
5698 symbols defined in all source files named SRCFILE. */
5699
5700 void
5701 collect_file_symbol_completion_matches (completion_tracker &tracker,
5702 complete_symbol_mode mode,
5703 symbol_name_match_type name_match_type,
5704 const char *text, const char *word,
5705 const char *srcfile)
5706 {
5707 /* The symbol we are completing on. Points in same buffer as text. */
5708 const char *sym_text;
5709
5710 /* Now look for the symbol we are supposed to complete on.
5711 FIXME: This should be language-specific. */
5712 if (mode == complete_symbol_mode::LINESPEC)
5713 sym_text = text;
5714 else
5715 {
5716 const char *p;
5717 char quote_found;
5718 const char *quote_pos = NULL;
5719
5720 /* First see if this is a quoted string. */
5721 quote_found = '\0';
5722 for (p = text; *p != '\0'; ++p)
5723 {
5724 if (quote_found != '\0')
5725 {
5726 if (*p == quote_found)
5727 /* Found close quote. */
5728 quote_found = '\0';
5729 else if (*p == '\\' && p[1] == quote_found)
5730 /* A backslash followed by the quote character
5731 doesn't end the string. */
5732 ++p;
5733 }
5734 else if (*p == '\'' || *p == '"')
5735 {
5736 quote_found = *p;
5737 quote_pos = p;
5738 }
5739 }
5740 if (quote_found == '\'')
5741 /* A string within single quotes can be a symbol, so complete on it. */
5742 sym_text = quote_pos + 1;
5743 else if (quote_found == '"')
5744 /* A double-quoted string is never a symbol, nor does it make sense
5745 to complete it any other way. */
5746 {
5747 return;
5748 }
5749 else
5750 {
5751 /* Not a quoted string. */
5752 sym_text = language_search_unquoted_string (text, p);
5753 }
5754 }
5755
5756 lookup_name_info lookup_name (sym_text, name_match_type, true);
5757
5758 /* Go through symtabs for SRCFILE and check the externs and statics
5759 for symbols which match. */
5760 iterate_over_symtabs (srcfile, [&] (symtab *s)
5761 {
5762 add_symtab_completions (SYMTAB_COMPUNIT (s),
5763 tracker, mode, lookup_name,
5764 sym_text, word, TYPE_CODE_UNDEF);
5765 return false;
5766 });
5767 }
5768
5769 /* A helper function for make_source_files_completion_list. It adds
5770 another file name to a list of possible completions, growing the
5771 list as necessary. */
5772
5773 static void
5774 add_filename_to_list (const char *fname, const char *text, const char *word,
5775 completion_list *list)
5776 {
5777 list->emplace_back (make_completion_match_str (fname, text, word));
5778 }
5779
5780 static int
5781 not_interesting_fname (const char *fname)
5782 {
5783 static const char *illegal_aliens[] = {
5784 "_globals_", /* inserted by coff_symtab_read */
5785 NULL
5786 };
5787 int i;
5788
5789 for (i = 0; illegal_aliens[i]; i++)
5790 {
5791 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5792 return 1;
5793 }
5794 return 0;
5795 }
5796
5797 /* An object of this type is passed as the user_data argument to
5798 map_partial_symbol_filenames. */
5799 struct add_partial_filename_data
5800 {
5801 struct filename_seen_cache *filename_seen_cache;
5802 const char *text;
5803 const char *word;
5804 int text_len;
5805 completion_list *list;
5806 };
5807
5808 /* A callback for map_partial_symbol_filenames. */
5809
5810 static void
5811 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5812 void *user_data)
5813 {
5814 struct add_partial_filename_data *data
5815 = (struct add_partial_filename_data *) user_data;
5816
5817 if (not_interesting_fname (filename))
5818 return;
5819 if (!data->filename_seen_cache->seen (filename)
5820 && filename_ncmp (filename, data->text, data->text_len) == 0)
5821 {
5822 /* This file matches for a completion; add it to the
5823 current list of matches. */
5824 add_filename_to_list (filename, data->text, data->word, data->list);
5825 }
5826 else
5827 {
5828 const char *base_name = lbasename (filename);
5829
5830 if (base_name != filename
5831 && !data->filename_seen_cache->seen (base_name)
5832 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5833 add_filename_to_list (base_name, data->text, data->word, data->list);
5834 }
5835 }
5836
5837 /* Return a list of all source files whose names begin with matching
5838 TEXT. The file names are looked up in the symbol tables of this
5839 program. */
5840
5841 completion_list
5842 make_source_files_completion_list (const char *text, const char *word)
5843 {
5844 size_t text_len = strlen (text);
5845 completion_list list;
5846 const char *base_name;
5847 struct add_partial_filename_data datum;
5848
5849 if (!have_full_symbols () && !have_partial_symbols ())
5850 return list;
5851
5852 filename_seen_cache filenames_seen;
5853
5854 for (objfile *objfile : current_program_space->objfiles ())
5855 {
5856 for (compunit_symtab *cu : objfile->compunits ())
5857 {
5858 for (symtab *s : compunit_filetabs (cu))
5859 {
5860 if (not_interesting_fname (s->filename))
5861 continue;
5862 if (!filenames_seen.seen (s->filename)
5863 && filename_ncmp (s->filename, text, text_len) == 0)
5864 {
5865 /* This file matches for a completion; add it to the current
5866 list of matches. */
5867 add_filename_to_list (s->filename, text, word, &list);
5868 }
5869 else
5870 {
5871 /* NOTE: We allow the user to type a base name when the
5872 debug info records leading directories, but not the other
5873 way around. This is what subroutines of breakpoint
5874 command do when they parse file names. */
5875 base_name = lbasename (s->filename);
5876 if (base_name != s->filename
5877 && !filenames_seen.seen (base_name)
5878 && filename_ncmp (base_name, text, text_len) == 0)
5879 add_filename_to_list (base_name, text, word, &list);
5880 }
5881 }
5882 }
5883 }
5884
5885 datum.filename_seen_cache = &filenames_seen;
5886 datum.text = text;
5887 datum.word = word;
5888 datum.text_len = text_len;
5889 datum.list = &list;
5890 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5891 0 /*need_fullname*/);
5892
5893 return list;
5894 }
5895 \f
5896 /* Track MAIN */
5897
5898 /* Return the "main_info" object for the current program space. If
5899 the object has not yet been created, create it and fill in some
5900 default values. */
5901
5902 static struct main_info *
5903 get_main_info (void)
5904 {
5905 struct main_info *info = main_progspace_key.get (current_program_space);
5906
5907 if (info == NULL)
5908 {
5909 /* It may seem strange to store the main name in the progspace
5910 and also in whatever objfile happens to see a main name in
5911 its debug info. The reason for this is mainly historical:
5912 gdb returned "main" as the name even if no function named
5913 "main" was defined the program; and this approach lets us
5914 keep compatibility. */
5915 info = main_progspace_key.emplace (current_program_space);
5916 }
5917
5918 return info;
5919 }
5920
5921 static void
5922 set_main_name (const char *name, enum language lang)
5923 {
5924 struct main_info *info = get_main_info ();
5925
5926 if (info->name_of_main != NULL)
5927 {
5928 xfree (info->name_of_main);
5929 info->name_of_main = NULL;
5930 info->language_of_main = language_unknown;
5931 }
5932 if (name != NULL)
5933 {
5934 info->name_of_main = xstrdup (name);
5935 info->language_of_main = lang;
5936 }
5937 }
5938
5939 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5940 accordingly. */
5941
5942 static void
5943 find_main_name (void)
5944 {
5945 const char *new_main_name;
5946
5947 /* First check the objfiles to see whether a debuginfo reader has
5948 picked up the appropriate main name. Historically the main name
5949 was found in a more or less random way; this approach instead
5950 relies on the order of objfile creation -- which still isn't
5951 guaranteed to get the correct answer, but is just probably more
5952 accurate. */
5953 for (objfile *objfile : current_program_space->objfiles ())
5954 {
5955 if (objfile->per_bfd->name_of_main != NULL)
5956 {
5957 set_main_name (objfile->per_bfd->name_of_main,
5958 objfile->per_bfd->language_of_main);
5959 return;
5960 }
5961 }
5962
5963 /* Try to see if the main procedure is in Ada. */
5964 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5965 be to add a new method in the language vector, and call this
5966 method for each language until one of them returns a non-empty
5967 name. This would allow us to remove this hard-coded call to
5968 an Ada function. It is not clear that this is a better approach
5969 at this point, because all methods need to be written in a way
5970 such that false positives never be returned. For instance, it is
5971 important that a method does not return a wrong name for the main
5972 procedure if the main procedure is actually written in a different
5973 language. It is easy to guaranty this with Ada, since we use a
5974 special symbol generated only when the main in Ada to find the name
5975 of the main procedure. It is difficult however to see how this can
5976 be guarantied for languages such as C, for instance. This suggests
5977 that order of call for these methods becomes important, which means
5978 a more complicated approach. */
5979 new_main_name = ada_main_name ();
5980 if (new_main_name != NULL)
5981 {
5982 set_main_name (new_main_name, language_ada);
5983 return;
5984 }
5985
5986 new_main_name = d_main_name ();
5987 if (new_main_name != NULL)
5988 {
5989 set_main_name (new_main_name, language_d);
5990 return;
5991 }
5992
5993 new_main_name = go_main_name ();
5994 if (new_main_name != NULL)
5995 {
5996 set_main_name (new_main_name, language_go);
5997 return;
5998 }
5999
6000 new_main_name = pascal_main_name ();
6001 if (new_main_name != NULL)
6002 {
6003 set_main_name (new_main_name, language_pascal);
6004 return;
6005 }
6006
6007 /* The languages above didn't identify the name of the main procedure.
6008 Fallback to "main". */
6009 set_main_name ("main", language_unknown);
6010 }
6011
6012 /* See symtab.h. */
6013
6014 const char *
6015 main_name ()
6016 {
6017 struct main_info *info = get_main_info ();
6018
6019 if (info->name_of_main == NULL)
6020 find_main_name ();
6021
6022 return info->name_of_main;
6023 }
6024
6025 /* Return the language of the main function. If it is not known,
6026 return language_unknown. */
6027
6028 enum language
6029 main_language (void)
6030 {
6031 struct main_info *info = get_main_info ();
6032
6033 if (info->name_of_main == NULL)
6034 find_main_name ();
6035
6036 return info->language_of_main;
6037 }
6038
6039 /* Handle ``executable_changed'' events for the symtab module. */
6040
6041 static void
6042 symtab_observer_executable_changed (void)
6043 {
6044 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6045 set_main_name (NULL, language_unknown);
6046 }
6047
6048 /* Return 1 if the supplied producer string matches the ARM RealView
6049 compiler (armcc). */
6050
6051 bool
6052 producer_is_realview (const char *producer)
6053 {
6054 static const char *const arm_idents[] = {
6055 "ARM C Compiler, ADS",
6056 "Thumb C Compiler, ADS",
6057 "ARM C++ Compiler, ADS",
6058 "Thumb C++ Compiler, ADS",
6059 "ARM/Thumb C/C++ Compiler, RVCT",
6060 "ARM C/C++ Compiler, RVCT"
6061 };
6062 int i;
6063
6064 if (producer == NULL)
6065 return false;
6066
6067 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6068 if (startswith (producer, arm_idents[i]))
6069 return true;
6070
6071 return false;
6072 }
6073
6074 \f
6075
6076 /* The next index to hand out in response to a registration request. */
6077
6078 static int next_aclass_value = LOC_FINAL_VALUE;
6079
6080 /* The maximum number of "aclass" registrations we support. This is
6081 constant for convenience. */
6082 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6083
6084 /* The objects representing the various "aclass" values. The elements
6085 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6086 elements are those registered at gdb initialization time. */
6087
6088 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6089
6090 /* The globally visible pointer. This is separate from 'symbol_impl'
6091 so that it can be const. */
6092
6093 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6094
6095 /* Make sure we saved enough room in struct symbol. */
6096
6097 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6098
6099 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6100 is the ops vector associated with this index. This returns the new
6101 index, which should be used as the aclass_index field for symbols
6102 of this type. */
6103
6104 int
6105 register_symbol_computed_impl (enum address_class aclass,
6106 const struct symbol_computed_ops *ops)
6107 {
6108 int result = next_aclass_value++;
6109
6110 gdb_assert (aclass == LOC_COMPUTED);
6111 gdb_assert (result < MAX_SYMBOL_IMPLS);
6112 symbol_impl[result].aclass = aclass;
6113 symbol_impl[result].ops_computed = ops;
6114
6115 /* Sanity check OPS. */
6116 gdb_assert (ops != NULL);
6117 gdb_assert (ops->tracepoint_var_ref != NULL);
6118 gdb_assert (ops->describe_location != NULL);
6119 gdb_assert (ops->get_symbol_read_needs != NULL);
6120 gdb_assert (ops->read_variable != NULL);
6121
6122 return result;
6123 }
6124
6125 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6126 OPS is the ops vector associated with this index. This returns the
6127 new index, which should be used as the aclass_index field for symbols
6128 of this type. */
6129
6130 int
6131 register_symbol_block_impl (enum address_class aclass,
6132 const struct symbol_block_ops *ops)
6133 {
6134 int result = next_aclass_value++;
6135
6136 gdb_assert (aclass == LOC_BLOCK);
6137 gdb_assert (result < MAX_SYMBOL_IMPLS);
6138 symbol_impl[result].aclass = aclass;
6139 symbol_impl[result].ops_block = ops;
6140
6141 /* Sanity check OPS. */
6142 gdb_assert (ops != NULL);
6143 gdb_assert (ops->find_frame_base_location != NULL);
6144
6145 return result;
6146 }
6147
6148 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6149 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6150 this index. This returns the new index, which should be used as
6151 the aclass_index field for symbols of this type. */
6152
6153 int
6154 register_symbol_register_impl (enum address_class aclass,
6155 const struct symbol_register_ops *ops)
6156 {
6157 int result = next_aclass_value++;
6158
6159 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6160 gdb_assert (result < MAX_SYMBOL_IMPLS);
6161 symbol_impl[result].aclass = aclass;
6162 symbol_impl[result].ops_register = ops;
6163
6164 return result;
6165 }
6166
6167 /* Initialize elements of 'symbol_impl' for the constants in enum
6168 address_class. */
6169
6170 static void
6171 initialize_ordinary_address_classes (void)
6172 {
6173 int i;
6174
6175 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6176 symbol_impl[i].aclass = (enum address_class) i;
6177 }
6178
6179 \f
6180
6181 /* Helper function to initialize the fields of an objfile-owned symbol.
6182 It assumed that *SYM is already all zeroes. */
6183
6184 static void
6185 initialize_objfile_symbol_1 (struct symbol *sym)
6186 {
6187 SYMBOL_OBJFILE_OWNED (sym) = 1;
6188 SYMBOL_SECTION (sym) = -1;
6189 }
6190
6191 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6192
6193 void
6194 initialize_objfile_symbol (struct symbol *sym)
6195 {
6196 memset (sym, 0, sizeof (*sym));
6197 initialize_objfile_symbol_1 (sym);
6198 }
6199
6200 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6201 obstack. */
6202
6203 struct symbol *
6204 allocate_symbol (struct objfile *objfile)
6205 {
6206 struct symbol *result;
6207
6208 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6209 initialize_objfile_symbol_1 (result);
6210
6211 return result;
6212 }
6213
6214 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6215 obstack. */
6216
6217 struct template_symbol *
6218 allocate_template_symbol (struct objfile *objfile)
6219 {
6220 struct template_symbol *result;
6221
6222 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6223 initialize_objfile_symbol_1 (result);
6224
6225 return result;
6226 }
6227
6228 /* See symtab.h. */
6229
6230 struct objfile *
6231 symbol_objfile (const struct symbol *symbol)
6232 {
6233 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6234 return SYMTAB_OBJFILE (symbol->owner.symtab);
6235 }
6236
6237 /* See symtab.h. */
6238
6239 struct gdbarch *
6240 symbol_arch (const struct symbol *symbol)
6241 {
6242 if (!SYMBOL_OBJFILE_OWNED (symbol))
6243 return symbol->owner.arch;
6244 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6245 }
6246
6247 /* See symtab.h. */
6248
6249 struct symtab *
6250 symbol_symtab (const struct symbol *symbol)
6251 {
6252 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6253 return symbol->owner.symtab;
6254 }
6255
6256 /* See symtab.h. */
6257
6258 void
6259 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6260 {
6261 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6262 symbol->owner.symtab = symtab;
6263 }
6264
6265 /* See symtab.h. */
6266
6267 CORE_ADDR
6268 get_symbol_address (const struct symbol *sym)
6269 {
6270 gdb_assert (sym->maybe_copied);
6271 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6272
6273 const char *linkage_name = SYMBOL_LINKAGE_NAME (sym);
6274
6275 for (objfile *objfile : current_program_space->objfiles ())
6276 {
6277 bound_minimal_symbol minsym
6278 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6279 if (minsym.minsym != nullptr)
6280 return BMSYMBOL_VALUE_ADDRESS (minsym);
6281 }
6282 return sym->ginfo.value.address;
6283 }
6284
6285 /* See symtab.h. */
6286
6287 CORE_ADDR
6288 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6289 {
6290 gdb_assert (minsym->maybe_copied);
6291 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6292
6293 const char *linkage_name = MSYMBOL_LINKAGE_NAME (minsym);
6294
6295 for (objfile *objfile : current_program_space->objfiles ())
6296 {
6297 if ((objfile->flags & OBJF_MAINLINE) != 0)
6298 {
6299 bound_minimal_symbol found
6300 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6301 if (found.minsym != nullptr)
6302 return BMSYMBOL_VALUE_ADDRESS (found);
6303 }
6304 }
6305 return (minsym->value.address
6306 + ANOFFSET (objf->section_offsets, minsym->section));
6307 }
6308
6309 \f
6310
6311 void
6312 _initialize_symtab (void)
6313 {
6314 cmd_list_element *c;
6315
6316 initialize_ordinary_address_classes ();
6317
6318 c = add_info ("variables", info_variables_command,
6319 info_print_args_help (_("\
6320 All global and static variable names or those matching REGEXPs.\n\
6321 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6322 Prints the global and static variables.\n"),
6323 _("global and static variables"),
6324 true));
6325 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6326 if (dbx_commands)
6327 {
6328 c = add_com ("whereis", class_info, info_variables_command,
6329 info_print_args_help (_("\
6330 All global and static variable names, or those matching REGEXPs.\n\
6331 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6332 Prints the global and static variables.\n"),
6333 _("global and static variables"),
6334 true));
6335 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6336 }
6337
6338 c = add_info ("functions", info_functions_command,
6339 info_print_args_help (_("\
6340 All function names or those matching REGEXPs.\n\
6341 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6342 Prints the functions.\n"),
6343 _("functions"),
6344 true));
6345 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6346
6347 c = add_info ("types", info_types_command, _("\
6348 All type names, or those matching REGEXP.\n\
6349 Usage: info types [-q] [REGEXP]\n\
6350 Print information about all types matching REGEXP, or all types if no\n\
6351 REGEXP is given. The optional flag -q disables printing of headers."));
6352 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6353
6354 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6355
6356 static std::string info_sources_help
6357 = gdb::option::build_help (_("\
6358 All source files in the program or those matching REGEXP.\n\
6359 Usage: info sources [OPTION]... [REGEXP]\n\
6360 By default, REGEXP is used to match anywhere in the filename.\n\
6361 \n\
6362 Options:\n\
6363 %OPTIONS%"),
6364 info_sources_opts);
6365
6366 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6367 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6368
6369 add_com ("rbreak", class_breakpoint, rbreak_command,
6370 _("Set a breakpoint for all functions matching REGEXP."));
6371
6372 add_setshow_enum_cmd ("multiple-symbols", no_class,
6373 multiple_symbols_modes, &multiple_symbols_mode,
6374 _("\
6375 Set how the debugger handles ambiguities in expressions."), _("\
6376 Show how the debugger handles ambiguities in expressions."), _("\
6377 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6378 NULL, NULL, &setlist, &showlist);
6379
6380 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6381 &basenames_may_differ, _("\
6382 Set whether a source file may have multiple base names."), _("\
6383 Show whether a source file may have multiple base names."), _("\
6384 (A \"base name\" is the name of a file with the directory part removed.\n\
6385 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6386 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6387 before comparing them. Canonicalization is an expensive operation,\n\
6388 but it allows the same file be known by more than one base name.\n\
6389 If not set (the default), all source files are assumed to have just\n\
6390 one base name, and gdb will do file name comparisons more efficiently."),
6391 NULL, NULL,
6392 &setlist, &showlist);
6393
6394 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6395 _("Set debugging of symbol table creation."),
6396 _("Show debugging of symbol table creation."), _("\
6397 When enabled (non-zero), debugging messages are printed when building\n\
6398 symbol tables. A value of 1 (one) normally provides enough information.\n\
6399 A value greater than 1 provides more verbose information."),
6400 NULL,
6401 NULL,
6402 &setdebuglist, &showdebuglist);
6403
6404 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6405 _("\
6406 Set debugging of symbol lookup."), _("\
6407 Show debugging of symbol lookup."), _("\
6408 When enabled (non-zero), symbol lookups are logged."),
6409 NULL, NULL,
6410 &setdebuglist, &showdebuglist);
6411
6412 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6413 &new_symbol_cache_size,
6414 _("Set the size of the symbol cache."),
6415 _("Show the size of the symbol cache."), _("\
6416 The size of the symbol cache.\n\
6417 If zero then the symbol cache is disabled."),
6418 set_symbol_cache_size_handler, NULL,
6419 &maintenance_set_cmdlist,
6420 &maintenance_show_cmdlist);
6421
6422 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6423 _("Dump the symbol cache for each program space."),
6424 &maintenanceprintlist);
6425
6426 add_cmd ("symbol-cache-statistics", class_maintenance,
6427 maintenance_print_symbol_cache_statistics,
6428 _("Print symbol cache statistics for each program space."),
6429 &maintenanceprintlist);
6430
6431 add_cmd ("flush-symbol-cache", class_maintenance,
6432 maintenance_flush_symbol_cache,
6433 _("Flush the symbol cache for each program space."),
6434 &maintenancelist);
6435
6436 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6437 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6438 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6439 }