7dd41fb4f32afe382afabe481af8382618e332f9
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 /* Return the demangled name of GSYMBOL. */
694
695 const char *
696 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
697 {
698 if (gsymbol->language () == language_ada)
699 {
700 if (!gsymbol->ada_mangled)
701 return NULL;
702 /* Fall through. */
703 }
704
705 return gsymbol->language_specific.demangled_name;
706 }
707
708 \f
709 /* Initialize the language dependent portion of a symbol
710 depending upon the language for the symbol. */
711
712 void
713 general_symbol_info::set_language (enum language language,
714 struct obstack *obstack)
715 {
716 m_language = language;
717 if (language == language_cplus
718 || language == language_d
719 || language == language_go
720 || language == language_objc
721 || language == language_fortran)
722 {
723 set_demangled_name (NULL, obstack);
724 }
725 else if (language == language_ada)
726 {
727 gdb_assert (ada_mangled == 0);
728 language_specific.obstack = obstack;
729 }
730 else
731 {
732 memset (&language_specific, 0, sizeof (language_specific));
733 }
734 }
735
736 /* Functions to initialize a symbol's mangled name. */
737
738 /* Objects of this type are stored in the demangled name hash table. */
739 struct demangled_name_entry
740 {
741 demangled_name_entry (gdb::string_view mangled_name)
742 : mangled (mangled_name) {}
743
744 gdb::string_view mangled;
745 enum language language;
746 gdb::unique_xmalloc_ptr<char> demangled;
747 };
748
749 /* Hash function for the demangled name hash. */
750
751 static hashval_t
752 hash_demangled_name_entry (const void *data)
753 {
754 const struct demangled_name_entry *e
755 = (const struct demangled_name_entry *) data;
756
757 return fast_hash (e->mangled.data (), e->mangled.length ());
758 }
759
760 /* Equality function for the demangled name hash. */
761
762 static int
763 eq_demangled_name_entry (const void *a, const void *b)
764 {
765 const struct demangled_name_entry *da
766 = (const struct demangled_name_entry *) a;
767 const struct demangled_name_entry *db
768 = (const struct demangled_name_entry *) b;
769
770 return da->mangled == db->mangled;
771 }
772
773 static void
774 free_demangled_name_entry (void *data)
775 {
776 struct demangled_name_entry *e
777 = (struct demangled_name_entry *) data;
778
779 e->~demangled_name_entry();
780 }
781
782 /* Create the hash table used for demangled names. Each hash entry is
783 a pair of strings; one for the mangled name and one for the demangled
784 name. The entry is hashed via just the mangled name. */
785
786 static void
787 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
788 {
789 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
790 The hash table code will round this up to the next prime number.
791 Choosing a much larger table size wastes memory, and saves only about
792 1% in symbol reading. However, if the minsym count is already
793 initialized (e.g. because symbol name setting was deferred to
794 a background thread) we can initialize the hashtable with a count
795 based on that, because we will almost certainly have at least that
796 many entries. If we have a nonzero number but less than 256,
797 we still stay with 256 to have some space for psymbols, etc. */
798
799 /* htab will expand the table when it is 3/4th full, so we account for that
800 here. +2 to round up. */
801 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
802 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
803
804 per_bfd->demangled_names_hash.reset (htab_create_alloc
805 (count, hash_demangled_name_entry, eq_demangled_name_entry,
806 free_demangled_name_entry, xcalloc, xfree));
807 }
808
809 /* See symtab.h */
810
811 char *
812 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
813 const char *mangled)
814 {
815 char *demangled = NULL;
816 int i;
817
818 if (gsymbol->language () == language_unknown)
819 gsymbol->m_language = language_auto;
820
821 if (gsymbol->language () != language_auto)
822 {
823 const struct language_defn *lang = language_def (gsymbol->language ());
824
825 language_sniff_from_mangled_name (lang, mangled, &demangled);
826 return demangled;
827 }
828
829 for (i = language_unknown; i < nr_languages; ++i)
830 {
831 enum language l = (enum language) i;
832 const struct language_defn *lang = language_def (l);
833
834 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
835 {
836 gsymbol->m_language = l;
837 return demangled;
838 }
839 }
840
841 return NULL;
842 }
843
844 /* Set both the mangled and demangled (if any) names for GSYMBOL based
845 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
846 objfile's obstack; but if COPY_NAME is 0 and if NAME is
847 NUL-terminated, then this function assumes that NAME is already
848 correctly saved (either permanently or with a lifetime tied to the
849 objfile), and it will not be copied.
850
851 The hash table corresponding to OBJFILE is used, and the memory
852 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
853 so the pointer can be discarded after calling this function. */
854
855 void
856 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
857 bool copy_name,
858 objfile_per_bfd_storage *per_bfd,
859 gdb::optional<hashval_t> hash)
860 {
861 struct demangled_name_entry **slot;
862
863 if (language () == language_ada)
864 {
865 /* In Ada, we do the symbol lookups using the mangled name, so
866 we can save some space by not storing the demangled name. */
867 if (!copy_name)
868 m_name = linkage_name.data ();
869 else
870 m_name = obstack_strndup (&per_bfd->storage_obstack,
871 linkage_name.data (),
872 linkage_name.length ());
873 set_demangled_name (NULL, &per_bfd->storage_obstack);
874
875 return;
876 }
877
878 if (per_bfd->demangled_names_hash == NULL)
879 create_demangled_names_hash (per_bfd);
880
881 struct demangled_name_entry entry (linkage_name);
882 if (!hash.has_value ())
883 hash = hash_demangled_name_entry (&entry);
884 slot = ((struct demangled_name_entry **)
885 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
886 &entry, *hash, INSERT));
887
888 /* The const_cast is safe because the only reason it is already
889 initialized is if we purposefully set it from a background
890 thread to avoid doing the work here. However, it is still
891 allocated from the heap and needs to be freed by us, just
892 like if we called symbol_find_demangled_name here. If this is
893 nullptr, we call symbol_find_demangled_name below, but we put
894 this smart pointer here to be sure that we don't leak this name. */
895 gdb::unique_xmalloc_ptr<char> demangled_name
896 (const_cast<char *> (language_specific.demangled_name));
897
898 /* If this name is not in the hash table, add it. */
899 if (*slot == NULL
900 /* A C version of the symbol may have already snuck into the table.
901 This happens to, e.g., main.init (__go_init_main). Cope. */
902 || (language () == language_go && (*slot)->demangled == nullptr))
903 {
904 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
905 to true if the string might not be nullterminated. We have to make
906 this copy because demangling needs a nullterminated string. */
907 gdb::string_view linkage_name_copy;
908 if (copy_name)
909 {
910 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
911 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
912 alloc_name[linkage_name.length ()] = '\0';
913
914 linkage_name_copy = gdb::string_view (alloc_name,
915 linkage_name.length ());
916 }
917 else
918 linkage_name_copy = linkage_name;
919
920 if (demangled_name.get () == nullptr)
921 demangled_name.reset
922 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
923
924 /* Suppose we have demangled_name==NULL, copy_name==0, and
925 linkage_name_copy==linkage_name. In this case, we already have the
926 mangled name saved, and we don't have a demangled name. So,
927 you might think we could save a little space by not recording
928 this in the hash table at all.
929
930 It turns out that it is actually important to still save such
931 an entry in the hash table, because storing this name gives
932 us better bcache hit rates for partial symbols. */
933 if (!copy_name)
934 {
935 *slot
936 = ((struct demangled_name_entry *)
937 obstack_alloc (&per_bfd->storage_obstack,
938 sizeof (demangled_name_entry)));
939 new (*slot) demangled_name_entry (linkage_name);
940 }
941 else
942 {
943 /* If we must copy the mangled name, put it directly after
944 the struct so we can have a single allocation. */
945 *slot
946 = ((struct demangled_name_entry *)
947 obstack_alloc (&per_bfd->storage_obstack,
948 sizeof (demangled_name_entry)
949 + linkage_name.length () + 1));
950 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
951 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
952 mangled_ptr [linkage_name.length ()] = '\0';
953 new (*slot) demangled_name_entry
954 (gdb::string_view (mangled_ptr, linkage_name.length ()));
955 }
956 (*slot)->demangled = std::move (demangled_name);
957 (*slot)->language = language ();
958 }
959 else if (language () == language_unknown || language () == language_auto)
960 m_language = (*slot)->language;
961
962 m_name = (*slot)->mangled.data ();
963 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
964 }
965
966 /* See symtab.h. */
967
968 const char *
969 general_symbol_info::natural_name () const
970 {
971 switch (language ())
972 {
973 case language_cplus:
974 case language_d:
975 case language_go:
976 case language_objc:
977 case language_fortran:
978 case language_rust:
979 if (symbol_get_demangled_name (this) != NULL)
980 return symbol_get_demangled_name (this);
981 break;
982 case language_ada:
983 return ada_decode_symbol (this);
984 default:
985 break;
986 }
987 return linkage_name ();
988 }
989
990 /* See symtab.h. */
991
992 const char *
993 general_symbol_info::demangled_name () const
994 {
995 const char *dem_name = NULL;
996
997 switch (language ())
998 {
999 case language_cplus:
1000 case language_d:
1001 case language_go:
1002 case language_objc:
1003 case language_fortran:
1004 case language_rust:
1005 dem_name = symbol_get_demangled_name (this);
1006 break;
1007 case language_ada:
1008 dem_name = ada_decode_symbol (this);
1009 break;
1010 default:
1011 break;
1012 }
1013 return dem_name;
1014 }
1015
1016 /* See symtab.h. */
1017
1018 const char *
1019 general_symbol_info::search_name () const
1020 {
1021 if (language () == language_ada)
1022 return linkage_name ();
1023 else
1024 return natural_name ();
1025 }
1026
1027 /* See symtab.h. */
1028
1029 bool
1030 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1031 const lookup_name_info &name)
1032 {
1033 symbol_name_matcher_ftype *name_match
1034 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1035 return name_match (gsymbol->search_name (), name, NULL);
1036 }
1037
1038 \f
1039
1040 /* Return true if the two sections are the same, or if they could
1041 plausibly be copies of each other, one in an original object
1042 file and another in a separated debug file. */
1043
1044 bool
1045 matching_obj_sections (struct obj_section *obj_first,
1046 struct obj_section *obj_second)
1047 {
1048 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1049 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1050
1051 /* If they're the same section, then they match. */
1052 if (first == second)
1053 return true;
1054
1055 /* If either is NULL, give up. */
1056 if (first == NULL || second == NULL)
1057 return false;
1058
1059 /* This doesn't apply to absolute symbols. */
1060 if (first->owner == NULL || second->owner == NULL)
1061 return false;
1062
1063 /* If they're in the same object file, they must be different sections. */
1064 if (first->owner == second->owner)
1065 return false;
1066
1067 /* Check whether the two sections are potentially corresponding. They must
1068 have the same size, address, and name. We can't compare section indexes,
1069 which would be more reliable, because some sections may have been
1070 stripped. */
1071 if (bfd_section_size (first) != bfd_section_size (second))
1072 return false;
1073
1074 /* In-memory addresses may start at a different offset, relativize them. */
1075 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1076 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1077 return false;
1078
1079 if (bfd_section_name (first) == NULL
1080 || bfd_section_name (second) == NULL
1081 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1082 return false;
1083
1084 /* Otherwise check that they are in corresponding objfiles. */
1085
1086 struct objfile *obj = NULL;
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 if (objfile->obfd == first->owner)
1089 {
1090 obj = objfile;
1091 break;
1092 }
1093 gdb_assert (obj != NULL);
1094
1095 if (obj->separate_debug_objfile != NULL
1096 && obj->separate_debug_objfile->obfd == second->owner)
1097 return true;
1098 if (obj->separate_debug_objfile_backlink != NULL
1099 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1100 return true;
1101
1102 return false;
1103 }
1104
1105 /* See symtab.h. */
1106
1107 void
1108 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1109 {
1110 struct bound_minimal_symbol msymbol;
1111
1112 /* If we know that this is not a text address, return failure. This is
1113 necessary because we loop based on texthigh and textlow, which do
1114 not include the data ranges. */
1115 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1116 if (msymbol.minsym && msymbol.minsym->data_p ())
1117 return;
1118
1119 for (objfile *objfile : current_program_space->objfiles ())
1120 {
1121 struct compunit_symtab *cust = NULL;
1122
1123 if (objfile->sf)
1124 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1125 pc, section, 0);
1126 if (cust)
1127 return;
1128 }
1129 }
1130 \f
1131 /* Hash function for the symbol cache. */
1132
1133 static unsigned int
1134 hash_symbol_entry (const struct objfile *objfile_context,
1135 const char *name, domain_enum domain)
1136 {
1137 unsigned int hash = (uintptr_t) objfile_context;
1138
1139 if (name != NULL)
1140 hash += htab_hash_string (name);
1141
1142 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1143 to map to the same slot. */
1144 if (domain == STRUCT_DOMAIN)
1145 hash += VAR_DOMAIN * 7;
1146 else
1147 hash += domain * 7;
1148
1149 return hash;
1150 }
1151
1152 /* Equality function for the symbol cache. */
1153
1154 static int
1155 eq_symbol_entry (const struct symbol_cache_slot *slot,
1156 const struct objfile *objfile_context,
1157 const char *name, domain_enum domain)
1158 {
1159 const char *slot_name;
1160 domain_enum slot_domain;
1161
1162 if (slot->state == SYMBOL_SLOT_UNUSED)
1163 return 0;
1164
1165 if (slot->objfile_context != objfile_context)
1166 return 0;
1167
1168 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1169 {
1170 slot_name = slot->value.not_found.name;
1171 slot_domain = slot->value.not_found.domain;
1172 }
1173 else
1174 {
1175 slot_name = slot->value.found.symbol->search_name ();
1176 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1177 }
1178
1179 /* NULL names match. */
1180 if (slot_name == NULL && name == NULL)
1181 {
1182 /* But there's no point in calling symbol_matches_domain in the
1183 SYMBOL_SLOT_FOUND case. */
1184 if (slot_domain != domain)
1185 return 0;
1186 }
1187 else if (slot_name != NULL && name != NULL)
1188 {
1189 /* It's important that we use the same comparison that was done
1190 the first time through. If the slot records a found symbol,
1191 then this means using the symbol name comparison function of
1192 the symbol's language with symbol->search_name (). See
1193 dictionary.c. It also means using symbol_matches_domain for
1194 found symbols. See block.c.
1195
1196 If the slot records a not-found symbol, then require a precise match.
1197 We could still be lax with whitespace like strcmp_iw though. */
1198
1199 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1200 {
1201 if (strcmp (slot_name, name) != 0)
1202 return 0;
1203 if (slot_domain != domain)
1204 return 0;
1205 }
1206 else
1207 {
1208 struct symbol *sym = slot->value.found.symbol;
1209 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1210
1211 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1212 return 0;
1213
1214 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1215 return 0;
1216 }
1217 }
1218 else
1219 {
1220 /* Only one name is NULL. */
1221 return 0;
1222 }
1223
1224 return 1;
1225 }
1226
1227 /* Given a cache of size SIZE, return the size of the struct (with variable
1228 length array) in bytes. */
1229
1230 static size_t
1231 symbol_cache_byte_size (unsigned int size)
1232 {
1233 return (sizeof (struct block_symbol_cache)
1234 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1235 }
1236
1237 /* Resize CACHE. */
1238
1239 static void
1240 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1241 {
1242 /* If there's no change in size, don't do anything.
1243 All caches have the same size, so we can just compare with the size
1244 of the global symbols cache. */
1245 if ((cache->global_symbols != NULL
1246 && cache->global_symbols->size == new_size)
1247 || (cache->global_symbols == NULL
1248 && new_size == 0))
1249 return;
1250
1251 destroy_block_symbol_cache (cache->global_symbols);
1252 destroy_block_symbol_cache (cache->static_symbols);
1253
1254 if (new_size == 0)
1255 {
1256 cache->global_symbols = NULL;
1257 cache->static_symbols = NULL;
1258 }
1259 else
1260 {
1261 size_t total_size = symbol_cache_byte_size (new_size);
1262
1263 cache->global_symbols
1264 = (struct block_symbol_cache *) xcalloc (1, total_size);
1265 cache->static_symbols
1266 = (struct block_symbol_cache *) xcalloc (1, total_size);
1267 cache->global_symbols->size = new_size;
1268 cache->static_symbols->size = new_size;
1269 }
1270 }
1271
1272 /* Return the symbol cache of PSPACE.
1273 Create one if it doesn't exist yet. */
1274
1275 static struct symbol_cache *
1276 get_symbol_cache (struct program_space *pspace)
1277 {
1278 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1279
1280 if (cache == NULL)
1281 {
1282 cache = symbol_cache_key.emplace (pspace);
1283 resize_symbol_cache (cache, symbol_cache_size);
1284 }
1285
1286 return cache;
1287 }
1288
1289 /* Set the size of the symbol cache in all program spaces. */
1290
1291 static void
1292 set_symbol_cache_size (unsigned int new_size)
1293 {
1294 struct program_space *pspace;
1295
1296 ALL_PSPACES (pspace)
1297 {
1298 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1299
1300 /* The pspace could have been created but not have a cache yet. */
1301 if (cache != NULL)
1302 resize_symbol_cache (cache, new_size);
1303 }
1304 }
1305
1306 /* Called when symbol-cache-size is set. */
1307
1308 static void
1309 set_symbol_cache_size_handler (const char *args, int from_tty,
1310 struct cmd_list_element *c)
1311 {
1312 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1313 {
1314 /* Restore the previous value.
1315 This is the value the "show" command prints. */
1316 new_symbol_cache_size = symbol_cache_size;
1317
1318 error (_("Symbol cache size is too large, max is %u."),
1319 MAX_SYMBOL_CACHE_SIZE);
1320 }
1321 symbol_cache_size = new_symbol_cache_size;
1322
1323 set_symbol_cache_size (symbol_cache_size);
1324 }
1325
1326 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1327 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1328 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1329 failed (and thus this one will too), or NULL if the symbol is not present
1330 in the cache.
1331 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1332 can be used to save the result of a full lookup attempt. */
1333
1334 static struct block_symbol
1335 symbol_cache_lookup (struct symbol_cache *cache,
1336 struct objfile *objfile_context, enum block_enum block,
1337 const char *name, domain_enum domain,
1338 struct block_symbol_cache **bsc_ptr,
1339 struct symbol_cache_slot **slot_ptr)
1340 {
1341 struct block_symbol_cache *bsc;
1342 unsigned int hash;
1343 struct symbol_cache_slot *slot;
1344
1345 if (block == GLOBAL_BLOCK)
1346 bsc = cache->global_symbols;
1347 else
1348 bsc = cache->static_symbols;
1349 if (bsc == NULL)
1350 {
1351 *bsc_ptr = NULL;
1352 *slot_ptr = NULL;
1353 return {};
1354 }
1355
1356 hash = hash_symbol_entry (objfile_context, name, domain);
1357 slot = bsc->symbols + hash % bsc->size;
1358
1359 *bsc_ptr = bsc;
1360 *slot_ptr = slot;
1361
1362 if (eq_symbol_entry (slot, objfile_context, name, domain))
1363 {
1364 if (symbol_lookup_debug)
1365 fprintf_unfiltered (gdb_stdlog,
1366 "%s block symbol cache hit%s for %s, %s\n",
1367 block == GLOBAL_BLOCK ? "Global" : "Static",
1368 slot->state == SYMBOL_SLOT_NOT_FOUND
1369 ? " (not found)" : "",
1370 name, domain_name (domain));
1371 ++bsc->hits;
1372 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1373 return SYMBOL_LOOKUP_FAILED;
1374 return slot->value.found;
1375 }
1376
1377 /* Symbol is not present in the cache. */
1378
1379 if (symbol_lookup_debug)
1380 {
1381 fprintf_unfiltered (gdb_stdlog,
1382 "%s block symbol cache miss for %s, %s\n",
1383 block == GLOBAL_BLOCK ? "Global" : "Static",
1384 name, domain_name (domain));
1385 }
1386 ++bsc->misses;
1387 return {};
1388 }
1389
1390 /* Mark SYMBOL as found in SLOT.
1391 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1392 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1393 necessarily the objfile the symbol was found in. */
1394
1395 static void
1396 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 struct symbol *symbol,
1400 const struct block *block)
1401 {
1402 if (bsc == NULL)
1403 return;
1404 if (slot->state != SYMBOL_SLOT_UNUSED)
1405 {
1406 ++bsc->collisions;
1407 symbol_cache_clear_slot (slot);
1408 }
1409 slot->state = SYMBOL_SLOT_FOUND;
1410 slot->objfile_context = objfile_context;
1411 slot->value.found.symbol = symbol;
1412 slot->value.found.block = block;
1413 }
1414
1415 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1416 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1417 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1418
1419 static void
1420 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1421 struct symbol_cache_slot *slot,
1422 struct objfile *objfile_context,
1423 const char *name, domain_enum domain)
1424 {
1425 if (bsc == NULL)
1426 return;
1427 if (slot->state != SYMBOL_SLOT_UNUSED)
1428 {
1429 ++bsc->collisions;
1430 symbol_cache_clear_slot (slot);
1431 }
1432 slot->state = SYMBOL_SLOT_NOT_FOUND;
1433 slot->objfile_context = objfile_context;
1434 slot->value.not_found.name = xstrdup (name);
1435 slot->value.not_found.domain = domain;
1436 }
1437
1438 /* Flush the symbol cache of PSPACE. */
1439
1440 static void
1441 symbol_cache_flush (struct program_space *pspace)
1442 {
1443 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1444 int pass;
1445
1446 if (cache == NULL)
1447 return;
1448 if (cache->global_symbols == NULL)
1449 {
1450 gdb_assert (symbol_cache_size == 0);
1451 gdb_assert (cache->static_symbols == NULL);
1452 return;
1453 }
1454
1455 /* If the cache is untouched since the last flush, early exit.
1456 This is important for performance during the startup of a program linked
1457 with 100s (or 1000s) of shared libraries. */
1458 if (cache->global_symbols->misses == 0
1459 && cache->static_symbols->misses == 0)
1460 return;
1461
1462 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1463 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1464
1465 for (pass = 0; pass < 2; ++pass)
1466 {
1467 struct block_symbol_cache *bsc
1468 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1469 unsigned int i;
1470
1471 for (i = 0; i < bsc->size; ++i)
1472 symbol_cache_clear_slot (&bsc->symbols[i]);
1473 }
1474
1475 cache->global_symbols->hits = 0;
1476 cache->global_symbols->misses = 0;
1477 cache->global_symbols->collisions = 0;
1478 cache->static_symbols->hits = 0;
1479 cache->static_symbols->misses = 0;
1480 cache->static_symbols->collisions = 0;
1481 }
1482
1483 /* Dump CACHE. */
1484
1485 static void
1486 symbol_cache_dump (const struct symbol_cache *cache)
1487 {
1488 int pass;
1489
1490 if (cache->global_symbols == NULL)
1491 {
1492 printf_filtered (" <disabled>\n");
1493 return;
1494 }
1495
1496 for (pass = 0; pass < 2; ++pass)
1497 {
1498 const struct block_symbol_cache *bsc
1499 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1500 unsigned int i;
1501
1502 if (pass == 0)
1503 printf_filtered ("Global symbols:\n");
1504 else
1505 printf_filtered ("Static symbols:\n");
1506
1507 for (i = 0; i < bsc->size; ++i)
1508 {
1509 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1510
1511 QUIT;
1512
1513 switch (slot->state)
1514 {
1515 case SYMBOL_SLOT_UNUSED:
1516 break;
1517 case SYMBOL_SLOT_NOT_FOUND:
1518 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1519 host_address_to_string (slot->objfile_context),
1520 slot->value.not_found.name,
1521 domain_name (slot->value.not_found.domain));
1522 break;
1523 case SYMBOL_SLOT_FOUND:
1524 {
1525 struct symbol *found = slot->value.found.symbol;
1526 const struct objfile *context = slot->objfile_context;
1527
1528 printf_filtered (" [%4u] = %s, %s %s\n", i,
1529 host_address_to_string (context),
1530 found->print_name (),
1531 domain_name (SYMBOL_DOMAIN (found)));
1532 break;
1533 }
1534 }
1535 }
1536 }
1537 }
1538
1539 /* The "mt print symbol-cache" command. */
1540
1541 static void
1542 maintenance_print_symbol_cache (const char *args, int from_tty)
1543 {
1544 struct program_space *pspace;
1545
1546 ALL_PSPACES (pspace)
1547 {
1548 struct symbol_cache *cache;
1549
1550 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1551 pspace->num,
1552 pspace->symfile_object_file != NULL
1553 ? objfile_name (pspace->symfile_object_file)
1554 : "(no object file)");
1555
1556 /* If the cache hasn't been created yet, avoid creating one. */
1557 cache = symbol_cache_key.get (pspace);
1558 if (cache == NULL)
1559 printf_filtered (" <empty>\n");
1560 else
1561 symbol_cache_dump (cache);
1562 }
1563 }
1564
1565 /* The "mt flush-symbol-cache" command. */
1566
1567 static void
1568 maintenance_flush_symbol_cache (const char *args, int from_tty)
1569 {
1570 struct program_space *pspace;
1571
1572 ALL_PSPACES (pspace)
1573 {
1574 symbol_cache_flush (pspace);
1575 }
1576 }
1577
1578 /* Print usage statistics of CACHE. */
1579
1580 static void
1581 symbol_cache_stats (struct symbol_cache *cache)
1582 {
1583 int pass;
1584
1585 if (cache->global_symbols == NULL)
1586 {
1587 printf_filtered (" <disabled>\n");
1588 return;
1589 }
1590
1591 for (pass = 0; pass < 2; ++pass)
1592 {
1593 const struct block_symbol_cache *bsc
1594 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1595
1596 QUIT;
1597
1598 if (pass == 0)
1599 printf_filtered ("Global block cache stats:\n");
1600 else
1601 printf_filtered ("Static block cache stats:\n");
1602
1603 printf_filtered (" size: %u\n", bsc->size);
1604 printf_filtered (" hits: %u\n", bsc->hits);
1605 printf_filtered (" misses: %u\n", bsc->misses);
1606 printf_filtered (" collisions: %u\n", bsc->collisions);
1607 }
1608 }
1609
1610 /* The "mt print symbol-cache-statistics" command. */
1611
1612 static void
1613 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1614 {
1615 struct program_space *pspace;
1616
1617 ALL_PSPACES (pspace)
1618 {
1619 struct symbol_cache *cache;
1620
1621 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1622 pspace->num,
1623 pspace->symfile_object_file != NULL
1624 ? objfile_name (pspace->symfile_object_file)
1625 : "(no object file)");
1626
1627 /* If the cache hasn't been created yet, avoid creating one. */
1628 cache = symbol_cache_key.get (pspace);
1629 if (cache == NULL)
1630 printf_filtered (" empty, no stats available\n");
1631 else
1632 symbol_cache_stats (cache);
1633 }
1634 }
1635
1636 /* This module's 'new_objfile' observer. */
1637
1638 static void
1639 symtab_new_objfile_observer (struct objfile *objfile)
1640 {
1641 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1642 symbol_cache_flush (current_program_space);
1643 }
1644
1645 /* This module's 'free_objfile' observer. */
1646
1647 static void
1648 symtab_free_objfile_observer (struct objfile *objfile)
1649 {
1650 symbol_cache_flush (objfile->pspace);
1651 }
1652 \f
1653 /* Debug symbols usually don't have section information. We need to dig that
1654 out of the minimal symbols and stash that in the debug symbol. */
1655
1656 void
1657 fixup_section (struct general_symbol_info *ginfo,
1658 CORE_ADDR addr, struct objfile *objfile)
1659 {
1660 struct minimal_symbol *msym;
1661
1662 /* First, check whether a minimal symbol with the same name exists
1663 and points to the same address. The address check is required
1664 e.g. on PowerPC64, where the minimal symbol for a function will
1665 point to the function descriptor, while the debug symbol will
1666 point to the actual function code. */
1667 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1668 objfile);
1669 if (msym)
1670 ginfo->section = MSYMBOL_SECTION (msym);
1671 else
1672 {
1673 /* Static, function-local variables do appear in the linker
1674 (minimal) symbols, but are frequently given names that won't
1675 be found via lookup_minimal_symbol(). E.g., it has been
1676 observed in frv-uclinux (ELF) executables that a static,
1677 function-local variable named "foo" might appear in the
1678 linker symbols as "foo.6" or "foo.3". Thus, there is no
1679 point in attempting to extend the lookup-by-name mechanism to
1680 handle this case due to the fact that there can be multiple
1681 names.
1682
1683 So, instead, search the section table when lookup by name has
1684 failed. The ``addr'' and ``endaddr'' fields may have already
1685 been relocated. If so, the relocation offset needs to be
1686 subtracted from these values when performing the comparison.
1687 We unconditionally subtract it, because, when no relocation
1688 has been performed, the value will simply be zero.
1689
1690 The address of the symbol whose section we're fixing up HAS
1691 NOT BEEN adjusted (relocated) yet. It can't have been since
1692 the section isn't yet known and knowing the section is
1693 necessary in order to add the correct relocation value. In
1694 other words, we wouldn't even be in this function (attempting
1695 to compute the section) if it were already known.
1696
1697 Note that it is possible to search the minimal symbols
1698 (subtracting the relocation value if necessary) to find the
1699 matching minimal symbol, but this is overkill and much less
1700 efficient. It is not necessary to find the matching minimal
1701 symbol, only its section.
1702
1703 Note that this technique (of doing a section table search)
1704 can fail when unrelocated section addresses overlap. For
1705 this reason, we still attempt a lookup by name prior to doing
1706 a search of the section table. */
1707
1708 struct obj_section *s;
1709 int fallback = -1;
1710
1711 ALL_OBJFILE_OSECTIONS (objfile, s)
1712 {
1713 int idx = s - objfile->sections;
1714 CORE_ADDR offset = objfile->section_offsets[idx];
1715
1716 if (fallback == -1)
1717 fallback = idx;
1718
1719 if (obj_section_addr (s) - offset <= addr
1720 && addr < obj_section_endaddr (s) - offset)
1721 {
1722 ginfo->section = idx;
1723 return;
1724 }
1725 }
1726
1727 /* If we didn't find the section, assume it is in the first
1728 section. If there is no allocated section, then it hardly
1729 matters what we pick, so just pick zero. */
1730 if (fallback == -1)
1731 ginfo->section = 0;
1732 else
1733 ginfo->section = fallback;
1734 }
1735 }
1736
1737 struct symbol *
1738 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1739 {
1740 CORE_ADDR addr;
1741
1742 if (!sym)
1743 return NULL;
1744
1745 if (!SYMBOL_OBJFILE_OWNED (sym))
1746 return sym;
1747
1748 /* We either have an OBJFILE, or we can get at it from the sym's
1749 symtab. Anything else is a bug. */
1750 gdb_assert (objfile || symbol_symtab (sym));
1751
1752 if (objfile == NULL)
1753 objfile = symbol_objfile (sym);
1754
1755 if (SYMBOL_OBJ_SECTION (objfile, sym))
1756 return sym;
1757
1758 /* We should have an objfile by now. */
1759 gdb_assert (objfile);
1760
1761 switch (SYMBOL_CLASS (sym))
1762 {
1763 case LOC_STATIC:
1764 case LOC_LABEL:
1765 addr = SYMBOL_VALUE_ADDRESS (sym);
1766 break;
1767 case LOC_BLOCK:
1768 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1769 break;
1770
1771 default:
1772 /* Nothing else will be listed in the minsyms -- no use looking
1773 it up. */
1774 return sym;
1775 }
1776
1777 fixup_section (sym, addr, objfile);
1778
1779 return sym;
1780 }
1781
1782 /* See symtab.h. */
1783
1784 demangle_for_lookup_info::demangle_for_lookup_info
1785 (const lookup_name_info &lookup_name, language lang)
1786 {
1787 demangle_result_storage storage;
1788
1789 if (lookup_name.ignore_parameters () && lang == language_cplus)
1790 {
1791 gdb::unique_xmalloc_ptr<char> without_params
1792 = cp_remove_params_if_any (lookup_name.c_str (),
1793 lookup_name.completion_mode ());
1794
1795 if (without_params != NULL)
1796 {
1797 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1798 m_demangled_name = demangle_for_lookup (without_params.get (),
1799 lang, storage);
1800 return;
1801 }
1802 }
1803
1804 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1805 m_demangled_name = lookup_name.c_str ();
1806 else
1807 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1808 lang, storage);
1809 }
1810
1811 /* See symtab.h. */
1812
1813 const lookup_name_info &
1814 lookup_name_info::match_any ()
1815 {
1816 /* Lookup any symbol that "" would complete. I.e., this matches all
1817 symbol names. */
1818 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1819 true);
1820
1821 return lookup_name;
1822 }
1823
1824 /* Compute the demangled form of NAME as used by the various symbol
1825 lookup functions. The result can either be the input NAME
1826 directly, or a pointer to a buffer owned by the STORAGE object.
1827
1828 For Ada, this function just returns NAME, unmodified.
1829 Normally, Ada symbol lookups are performed using the encoded name
1830 rather than the demangled name, and so it might seem to make sense
1831 for this function to return an encoded version of NAME.
1832 Unfortunately, we cannot do this, because this function is used in
1833 circumstances where it is not appropriate to try to encode NAME.
1834 For instance, when displaying the frame info, we demangle the name
1835 of each parameter, and then perform a symbol lookup inside our
1836 function using that demangled name. In Ada, certain functions
1837 have internally-generated parameters whose name contain uppercase
1838 characters. Encoding those name would result in those uppercase
1839 characters to become lowercase, and thus cause the symbol lookup
1840 to fail. */
1841
1842 const char *
1843 demangle_for_lookup (const char *name, enum language lang,
1844 demangle_result_storage &storage)
1845 {
1846 /* If we are using C++, D, or Go, demangle the name before doing a
1847 lookup, so we can always binary search. */
1848 if (lang == language_cplus)
1849 {
1850 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1851 if (demangled_name != NULL)
1852 return storage.set_malloc_ptr (demangled_name);
1853
1854 /* If we were given a non-mangled name, canonicalize it
1855 according to the language (so far only for C++). */
1856 std::string canon = cp_canonicalize_string (name);
1857 if (!canon.empty ())
1858 return storage.swap_string (canon);
1859 }
1860 else if (lang == language_d)
1861 {
1862 char *demangled_name = d_demangle (name, 0);
1863 if (demangled_name != NULL)
1864 return storage.set_malloc_ptr (demangled_name);
1865 }
1866 else if (lang == language_go)
1867 {
1868 char *demangled_name = go_demangle (name, 0);
1869 if (demangled_name != NULL)
1870 return storage.set_malloc_ptr (demangled_name);
1871 }
1872
1873 return name;
1874 }
1875
1876 /* See symtab.h. */
1877
1878 unsigned int
1879 search_name_hash (enum language language, const char *search_name)
1880 {
1881 return language_def (language)->la_search_name_hash (search_name);
1882 }
1883
1884 /* See symtab.h.
1885
1886 This function (or rather its subordinates) have a bunch of loops and
1887 it would seem to be attractive to put in some QUIT's (though I'm not really
1888 sure whether it can run long enough to be really important). But there
1889 are a few calls for which it would appear to be bad news to quit
1890 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1891 that there is C++ code below which can error(), but that probably
1892 doesn't affect these calls since they are looking for a known
1893 variable and thus can probably assume it will never hit the C++
1894 code). */
1895
1896 struct block_symbol
1897 lookup_symbol_in_language (const char *name, const struct block *block,
1898 const domain_enum domain, enum language lang,
1899 struct field_of_this_result *is_a_field_of_this)
1900 {
1901 demangle_result_storage storage;
1902 const char *modified_name = demangle_for_lookup (name, lang, storage);
1903
1904 return lookup_symbol_aux (modified_name,
1905 symbol_name_match_type::FULL,
1906 block, domain, lang,
1907 is_a_field_of_this);
1908 }
1909
1910 /* See symtab.h. */
1911
1912 struct block_symbol
1913 lookup_symbol (const char *name, const struct block *block,
1914 domain_enum domain,
1915 struct field_of_this_result *is_a_field_of_this)
1916 {
1917 return lookup_symbol_in_language (name, block, domain,
1918 current_language->la_language,
1919 is_a_field_of_this);
1920 }
1921
1922 /* See symtab.h. */
1923
1924 struct block_symbol
1925 lookup_symbol_search_name (const char *search_name, const struct block *block,
1926 domain_enum domain)
1927 {
1928 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1929 block, domain, language_asm, NULL);
1930 }
1931
1932 /* See symtab.h. */
1933
1934 struct block_symbol
1935 lookup_language_this (const struct language_defn *lang,
1936 const struct block *block)
1937 {
1938 if (lang->la_name_of_this == NULL || block == NULL)
1939 return {};
1940
1941 if (symbol_lookup_debug > 1)
1942 {
1943 struct objfile *objfile = lookup_objfile_from_block (block);
1944
1945 fprintf_unfiltered (gdb_stdlog,
1946 "lookup_language_this (%s, %s (objfile %s))",
1947 lang->la_name, host_address_to_string (block),
1948 objfile_debug_name (objfile));
1949 }
1950
1951 while (block)
1952 {
1953 struct symbol *sym;
1954
1955 sym = block_lookup_symbol (block, lang->la_name_of_this,
1956 symbol_name_match_type::SEARCH_NAME,
1957 VAR_DOMAIN);
1958 if (sym != NULL)
1959 {
1960 if (symbol_lookup_debug > 1)
1961 {
1962 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1963 sym->print_name (),
1964 host_address_to_string (sym),
1965 host_address_to_string (block));
1966 }
1967 return (struct block_symbol) {sym, block};
1968 }
1969 if (BLOCK_FUNCTION (block))
1970 break;
1971 block = BLOCK_SUPERBLOCK (block);
1972 }
1973
1974 if (symbol_lookup_debug > 1)
1975 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1976 return {};
1977 }
1978
1979 /* Given TYPE, a structure/union,
1980 return 1 if the component named NAME from the ultimate target
1981 structure/union is defined, otherwise, return 0. */
1982
1983 static int
1984 check_field (struct type *type, const char *name,
1985 struct field_of_this_result *is_a_field_of_this)
1986 {
1987 int i;
1988
1989 /* The type may be a stub. */
1990 type = check_typedef (type);
1991
1992 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1993 {
1994 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1995
1996 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1997 {
1998 is_a_field_of_this->type = type;
1999 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2000 return 1;
2001 }
2002 }
2003
2004 /* C++: If it was not found as a data field, then try to return it
2005 as a pointer to a method. */
2006
2007 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2008 {
2009 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2010 {
2011 is_a_field_of_this->type = type;
2012 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2013 return 1;
2014 }
2015 }
2016
2017 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2018 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2019 return 1;
2020
2021 return 0;
2022 }
2023
2024 /* Behave like lookup_symbol except that NAME is the natural name
2025 (e.g., demangled name) of the symbol that we're looking for. */
2026
2027 static struct block_symbol
2028 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2029 const struct block *block,
2030 const domain_enum domain, enum language language,
2031 struct field_of_this_result *is_a_field_of_this)
2032 {
2033 struct block_symbol result;
2034 const struct language_defn *langdef;
2035
2036 if (symbol_lookup_debug)
2037 {
2038 struct objfile *objfile = lookup_objfile_from_block (block);
2039
2040 fprintf_unfiltered (gdb_stdlog,
2041 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2042 name, host_address_to_string (block),
2043 objfile != NULL
2044 ? objfile_debug_name (objfile) : "NULL",
2045 domain_name (domain), language_str (language));
2046 }
2047
2048 /* Make sure we do something sensible with is_a_field_of_this, since
2049 the callers that set this parameter to some non-null value will
2050 certainly use it later. If we don't set it, the contents of
2051 is_a_field_of_this are undefined. */
2052 if (is_a_field_of_this != NULL)
2053 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2054
2055 /* Search specified block and its superiors. Don't search
2056 STATIC_BLOCK or GLOBAL_BLOCK. */
2057
2058 result = lookup_local_symbol (name, match_type, block, domain, language);
2059 if (result.symbol != NULL)
2060 {
2061 if (symbol_lookup_debug)
2062 {
2063 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2064 host_address_to_string (result.symbol));
2065 }
2066 return result;
2067 }
2068
2069 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2070 check to see if NAME is a field of `this'. */
2071
2072 langdef = language_def (language);
2073
2074 /* Don't do this check if we are searching for a struct. It will
2075 not be found by check_field, but will be found by other
2076 means. */
2077 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2078 {
2079 result = lookup_language_this (langdef, block);
2080
2081 if (result.symbol)
2082 {
2083 struct type *t = result.symbol->type;
2084
2085 /* I'm not really sure that type of this can ever
2086 be typedefed; just be safe. */
2087 t = check_typedef (t);
2088 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2089 t = TYPE_TARGET_TYPE (t);
2090
2091 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2092 && TYPE_CODE (t) != TYPE_CODE_UNION)
2093 error (_("Internal error: `%s' is not an aggregate"),
2094 langdef->la_name_of_this);
2095
2096 if (check_field (t, name, is_a_field_of_this))
2097 {
2098 if (symbol_lookup_debug)
2099 {
2100 fprintf_unfiltered (gdb_stdlog,
2101 "lookup_symbol_aux (...) = NULL\n");
2102 }
2103 return {};
2104 }
2105 }
2106 }
2107
2108 /* Now do whatever is appropriate for LANGUAGE to look
2109 up static and global variables. */
2110
2111 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2112 if (result.symbol != NULL)
2113 {
2114 if (symbol_lookup_debug)
2115 {
2116 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2117 host_address_to_string (result.symbol));
2118 }
2119 return result;
2120 }
2121
2122 /* Now search all static file-level symbols. Not strictly correct,
2123 but more useful than an error. */
2124
2125 result = lookup_static_symbol (name, domain);
2126 if (symbol_lookup_debug)
2127 {
2128 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2129 result.symbol != NULL
2130 ? host_address_to_string (result.symbol)
2131 : "NULL");
2132 }
2133 return result;
2134 }
2135
2136 /* Check to see if the symbol is defined in BLOCK or its superiors.
2137 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2138
2139 static struct block_symbol
2140 lookup_local_symbol (const char *name,
2141 symbol_name_match_type match_type,
2142 const struct block *block,
2143 const domain_enum domain,
2144 enum language language)
2145 {
2146 struct symbol *sym;
2147 const struct block *static_block = block_static_block (block);
2148 const char *scope = block_scope (block);
2149
2150 /* Check if either no block is specified or it's a global block. */
2151
2152 if (static_block == NULL)
2153 return {};
2154
2155 while (block != static_block)
2156 {
2157 sym = lookup_symbol_in_block (name, match_type, block, domain);
2158 if (sym != NULL)
2159 return (struct block_symbol) {sym, block};
2160
2161 if (language == language_cplus || language == language_fortran)
2162 {
2163 struct block_symbol blocksym
2164 = cp_lookup_symbol_imports_or_template (scope, name, block,
2165 domain);
2166
2167 if (blocksym.symbol != NULL)
2168 return blocksym;
2169 }
2170
2171 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2172 break;
2173 block = BLOCK_SUPERBLOCK (block);
2174 }
2175
2176 /* We've reached the end of the function without finding a result. */
2177
2178 return {};
2179 }
2180
2181 /* See symtab.h. */
2182
2183 struct objfile *
2184 lookup_objfile_from_block (const struct block *block)
2185 {
2186 if (block == NULL)
2187 return NULL;
2188
2189 block = block_global_block (block);
2190 /* Look through all blockvectors. */
2191 for (objfile *obj : current_program_space->objfiles ())
2192 {
2193 for (compunit_symtab *cust : obj->compunits ())
2194 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2195 GLOBAL_BLOCK))
2196 {
2197 if (obj->separate_debug_objfile_backlink)
2198 obj = obj->separate_debug_objfile_backlink;
2199
2200 return obj;
2201 }
2202 }
2203
2204 return NULL;
2205 }
2206
2207 /* See symtab.h. */
2208
2209 struct symbol *
2210 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2211 const struct block *block,
2212 const domain_enum domain)
2213 {
2214 struct symbol *sym;
2215
2216 if (symbol_lookup_debug > 1)
2217 {
2218 struct objfile *objfile = lookup_objfile_from_block (block);
2219
2220 fprintf_unfiltered (gdb_stdlog,
2221 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2222 name, host_address_to_string (block),
2223 objfile_debug_name (objfile),
2224 domain_name (domain));
2225 }
2226
2227 sym = block_lookup_symbol (block, name, match_type, domain);
2228 if (sym)
2229 {
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2233 host_address_to_string (sym));
2234 }
2235 return fixup_symbol_section (sym, NULL);
2236 }
2237
2238 if (symbol_lookup_debug > 1)
2239 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2240 return NULL;
2241 }
2242
2243 /* See symtab.h. */
2244
2245 struct block_symbol
2246 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2247 enum block_enum block_index,
2248 const char *name,
2249 const domain_enum domain)
2250 {
2251 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2252
2253 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2254 {
2255 struct block_symbol result
2256 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2257
2258 if (result.symbol != nullptr)
2259 return result;
2260 }
2261
2262 return {};
2263 }
2264
2265 /* Check to see if the symbol is defined in one of the OBJFILE's
2266 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2267 depending on whether or not we want to search global symbols or
2268 static symbols. */
2269
2270 static struct block_symbol
2271 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2272 enum block_enum block_index, const char *name,
2273 const domain_enum domain)
2274 {
2275 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2276
2277 if (symbol_lookup_debug > 1)
2278 {
2279 fprintf_unfiltered (gdb_stdlog,
2280 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2281 objfile_debug_name (objfile),
2282 block_index == GLOBAL_BLOCK
2283 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2284 name, domain_name (domain));
2285 }
2286
2287 struct block_symbol other;
2288 other.symbol = NULL;
2289 for (compunit_symtab *cust : objfile->compunits ())
2290 {
2291 const struct blockvector *bv;
2292 const struct block *block;
2293 struct block_symbol result;
2294
2295 bv = COMPUNIT_BLOCKVECTOR (cust);
2296 block = BLOCKVECTOR_BLOCK (bv, block_index);
2297 result.symbol = block_lookup_symbol_primary (block, name, domain);
2298 result.block = block;
2299 if (result.symbol == NULL)
2300 continue;
2301 if (best_symbol (result.symbol, domain))
2302 {
2303 other = result;
2304 break;
2305 }
2306 if (symbol_matches_domain (result.symbol->language (),
2307 SYMBOL_DOMAIN (result.symbol), domain))
2308 {
2309 struct symbol *better
2310 = better_symbol (other.symbol, result.symbol, domain);
2311 if (better != other.symbol)
2312 {
2313 other.symbol = better;
2314 other.block = block;
2315 }
2316 }
2317 }
2318
2319 if (other.symbol != NULL)
2320 {
2321 if (symbol_lookup_debug > 1)
2322 {
2323 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2324 host_address_to_string (other.symbol),
2325 host_address_to_string (other.block));
2326 }
2327 other.symbol = fixup_symbol_section (other.symbol, objfile);
2328 return other;
2329 }
2330
2331 if (symbol_lookup_debug > 1)
2332 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2333 return {};
2334 }
2335
2336 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2337 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2338 and all associated separate debug objfiles.
2339
2340 Normally we only look in OBJFILE, and not any separate debug objfiles
2341 because the outer loop will cause them to be searched too. This case is
2342 different. Here we're called from search_symbols where it will only
2343 call us for the objfile that contains a matching minsym. */
2344
2345 static struct block_symbol
2346 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2347 const char *linkage_name,
2348 domain_enum domain)
2349 {
2350 enum language lang = current_language->la_language;
2351 struct objfile *main_objfile;
2352
2353 demangle_result_storage storage;
2354 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2355
2356 if (objfile->separate_debug_objfile_backlink)
2357 main_objfile = objfile->separate_debug_objfile_backlink;
2358 else
2359 main_objfile = objfile;
2360
2361 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2362 {
2363 struct block_symbol result;
2364
2365 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2366 modified_name, domain);
2367 if (result.symbol == NULL)
2368 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2369 modified_name, domain);
2370 if (result.symbol != NULL)
2371 return result;
2372 }
2373
2374 return {};
2375 }
2376
2377 /* A helper function that throws an exception when a symbol was found
2378 in a psymtab but not in a symtab. */
2379
2380 static void ATTRIBUTE_NORETURN
2381 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2382 struct compunit_symtab *cust)
2383 {
2384 error (_("\
2385 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2386 %s may be an inlined function, or may be a template function\n \
2387 (if a template, try specifying an instantiation: %s<type>)."),
2388 block_index == GLOBAL_BLOCK ? "global" : "static",
2389 name,
2390 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2391 name, name);
2392 }
2393
2394 /* A helper function for various lookup routines that interfaces with
2395 the "quick" symbol table functions. */
2396
2397 static struct block_symbol
2398 lookup_symbol_via_quick_fns (struct objfile *objfile,
2399 enum block_enum block_index, const char *name,
2400 const domain_enum domain)
2401 {
2402 struct compunit_symtab *cust;
2403 const struct blockvector *bv;
2404 const struct block *block;
2405 struct block_symbol result;
2406
2407 if (!objfile->sf)
2408 return {};
2409
2410 if (symbol_lookup_debug > 1)
2411 {
2412 fprintf_unfiltered (gdb_stdlog,
2413 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2414 objfile_debug_name (objfile),
2415 block_index == GLOBAL_BLOCK
2416 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2417 name, domain_name (domain));
2418 }
2419
2420 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2421 if (cust == NULL)
2422 {
2423 if (symbol_lookup_debug > 1)
2424 {
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_via_quick_fns (...) = NULL\n");
2427 }
2428 return {};
2429 }
2430
2431 bv = COMPUNIT_BLOCKVECTOR (cust);
2432 block = BLOCKVECTOR_BLOCK (bv, block_index);
2433 result.symbol = block_lookup_symbol (block, name,
2434 symbol_name_match_type::FULL, domain);
2435 if (result.symbol == NULL)
2436 error_in_psymtab_expansion (block_index, name, cust);
2437
2438 if (symbol_lookup_debug > 1)
2439 {
2440 fprintf_unfiltered (gdb_stdlog,
2441 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2442 host_address_to_string (result.symbol),
2443 host_address_to_string (block));
2444 }
2445
2446 result.symbol = fixup_symbol_section (result.symbol, objfile);
2447 result.block = block;
2448 return result;
2449 }
2450
2451 /* See symtab.h. */
2452
2453 struct block_symbol
2454 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2455 const char *name,
2456 const struct block *block,
2457 const domain_enum domain)
2458 {
2459 struct block_symbol result;
2460
2461 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2462 the current objfile. Searching the current objfile first is useful
2463 for both matching user expectations as well as performance. */
2464
2465 result = lookup_symbol_in_static_block (name, block, domain);
2466 if (result.symbol != NULL)
2467 return result;
2468
2469 /* If we didn't find a definition for a builtin type in the static block,
2470 search for it now. This is actually the right thing to do and can be
2471 a massive performance win. E.g., when debugging a program with lots of
2472 shared libraries we could search all of them only to find out the
2473 builtin type isn't defined in any of them. This is common for types
2474 like "void". */
2475 if (domain == VAR_DOMAIN)
2476 {
2477 struct gdbarch *gdbarch;
2478
2479 if (block == NULL)
2480 gdbarch = target_gdbarch ();
2481 else
2482 gdbarch = block_gdbarch (block);
2483 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2484 gdbarch, name);
2485 result.block = NULL;
2486 if (result.symbol != NULL)
2487 return result;
2488 }
2489
2490 return lookup_global_symbol (name, block, domain);
2491 }
2492
2493 /* See symtab.h. */
2494
2495 struct block_symbol
2496 lookup_symbol_in_static_block (const char *name,
2497 const struct block *block,
2498 const domain_enum domain)
2499 {
2500 const struct block *static_block = block_static_block (block);
2501 struct symbol *sym;
2502
2503 if (static_block == NULL)
2504 return {};
2505
2506 if (symbol_lookup_debug)
2507 {
2508 struct objfile *objfile = lookup_objfile_from_block (static_block);
2509
2510 fprintf_unfiltered (gdb_stdlog,
2511 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2512 " %s)\n",
2513 name,
2514 host_address_to_string (block),
2515 objfile_debug_name (objfile),
2516 domain_name (domain));
2517 }
2518
2519 sym = lookup_symbol_in_block (name,
2520 symbol_name_match_type::FULL,
2521 static_block, domain);
2522 if (symbol_lookup_debug)
2523 {
2524 fprintf_unfiltered (gdb_stdlog,
2525 "lookup_symbol_in_static_block (...) = %s\n",
2526 sym != NULL ? host_address_to_string (sym) : "NULL");
2527 }
2528 return (struct block_symbol) {sym, static_block};
2529 }
2530
2531 /* Perform the standard symbol lookup of NAME in OBJFILE:
2532 1) First search expanded symtabs, and if not found
2533 2) Search the "quick" symtabs (partial or .gdb_index).
2534 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2535
2536 static struct block_symbol
2537 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2538 const char *name, const domain_enum domain)
2539 {
2540 struct block_symbol result;
2541
2542 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2543
2544 if (symbol_lookup_debug)
2545 {
2546 fprintf_unfiltered (gdb_stdlog,
2547 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2548 objfile_debug_name (objfile),
2549 block_index == GLOBAL_BLOCK
2550 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2551 name, domain_name (domain));
2552 }
2553
2554 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2555 name, domain);
2556 if (result.symbol != NULL)
2557 {
2558 if (symbol_lookup_debug)
2559 {
2560 fprintf_unfiltered (gdb_stdlog,
2561 "lookup_symbol_in_objfile (...) = %s"
2562 " (in symtabs)\n",
2563 host_address_to_string (result.symbol));
2564 }
2565 return result;
2566 }
2567
2568 result = lookup_symbol_via_quick_fns (objfile, block_index,
2569 name, domain);
2570 if (symbol_lookup_debug)
2571 {
2572 fprintf_unfiltered (gdb_stdlog,
2573 "lookup_symbol_in_objfile (...) = %s%s\n",
2574 result.symbol != NULL
2575 ? host_address_to_string (result.symbol)
2576 : "NULL",
2577 result.symbol != NULL ? " (via quick fns)" : "");
2578 }
2579 return result;
2580 }
2581
2582 /* Find the language for partial symbol with NAME. */
2583
2584 static enum language
2585 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2586 {
2587 for (objfile *objfile : current_program_space->objfiles ())
2588 {
2589 if (objfile->sf && objfile->sf->qf
2590 && objfile->sf->qf->lookup_global_symbol_language)
2591 continue;
2592 return language_unknown;
2593 }
2594
2595 for (objfile *objfile : current_program_space->objfiles ())
2596 {
2597 bool symbol_found_p;
2598 enum language lang
2599 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2600 &symbol_found_p);
2601 if (!symbol_found_p)
2602 continue;
2603 return lang;
2604 }
2605
2606 return language_unknown;
2607 }
2608
2609 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2610
2611 struct global_or_static_sym_lookup_data
2612 {
2613 /* The name of the symbol we are searching for. */
2614 const char *name;
2615
2616 /* The domain to use for our search. */
2617 domain_enum domain;
2618
2619 /* The block index in which to search. */
2620 enum block_enum block_index;
2621
2622 /* The field where the callback should store the symbol if found.
2623 It should be initialized to {NULL, NULL} before the search is started. */
2624 struct block_symbol result;
2625 };
2626
2627 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2628 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2629 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2630 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2631
2632 static int
2633 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2634 void *cb_data)
2635 {
2636 struct global_or_static_sym_lookup_data *data =
2637 (struct global_or_static_sym_lookup_data *) cb_data;
2638
2639 gdb_assert (data->result.symbol == NULL
2640 && data->result.block == NULL);
2641
2642 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2643 data->name, data->domain);
2644
2645 /* If we found a match, tell the iterator to stop. Otherwise,
2646 keep going. */
2647 return (data->result.symbol != NULL);
2648 }
2649
2650 /* This function contains the common code of lookup_{global,static}_symbol.
2651 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2652 the objfile to start the lookup in. */
2653
2654 static struct block_symbol
2655 lookup_global_or_static_symbol (const char *name,
2656 enum block_enum block_index,
2657 struct objfile *objfile,
2658 const domain_enum domain)
2659 {
2660 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2661 struct block_symbol result;
2662 struct global_or_static_sym_lookup_data lookup_data;
2663 struct block_symbol_cache *bsc;
2664 struct symbol_cache_slot *slot;
2665
2666 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2667 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2668
2669 /* First see if we can find the symbol in the cache.
2670 This works because we use the current objfile to qualify the lookup. */
2671 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2672 &bsc, &slot);
2673 if (result.symbol != NULL)
2674 {
2675 if (SYMBOL_LOOKUP_FAILED_P (result))
2676 return {};
2677 return result;
2678 }
2679
2680 /* Do a global search (of global blocks, heh). */
2681 if (result.symbol == NULL)
2682 {
2683 memset (&lookup_data, 0, sizeof (lookup_data));
2684 lookup_data.name = name;
2685 lookup_data.block_index = block_index;
2686 lookup_data.domain = domain;
2687 gdbarch_iterate_over_objfiles_in_search_order
2688 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2689 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2690 result = lookup_data.result;
2691 }
2692
2693 if (result.symbol != NULL)
2694 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2695 else
2696 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2697
2698 return result;
2699 }
2700
2701 /* See symtab.h. */
2702
2703 struct block_symbol
2704 lookup_static_symbol (const char *name, const domain_enum domain)
2705 {
2706 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2707 }
2708
2709 /* See symtab.h. */
2710
2711 struct block_symbol
2712 lookup_global_symbol (const char *name,
2713 const struct block *block,
2714 const domain_enum domain)
2715 {
2716 /* If a block was passed in, we want to search the corresponding
2717 global block first. This yields "more expected" behavior, and is
2718 needed to support 'FILENAME'::VARIABLE lookups. */
2719 const struct block *global_block = block_global_block (block);
2720 symbol *sym = NULL;
2721 if (global_block != nullptr)
2722 {
2723 sym = lookup_symbol_in_block (name,
2724 symbol_name_match_type::FULL,
2725 global_block, domain);
2726 if (sym != NULL && best_symbol (sym, domain))
2727 return { sym, global_block };
2728 }
2729
2730 struct objfile *objfile = lookup_objfile_from_block (block);
2731 block_symbol bs
2732 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2733 if (better_symbol (sym, bs.symbol, domain) == sym)
2734 return { sym, global_block };
2735 else
2736 return bs;
2737 }
2738
2739 bool
2740 symbol_matches_domain (enum language symbol_language,
2741 domain_enum symbol_domain,
2742 domain_enum domain)
2743 {
2744 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2745 Similarly, any Ada type declaration implicitly defines a typedef. */
2746 if (symbol_language == language_cplus
2747 || symbol_language == language_d
2748 || symbol_language == language_ada
2749 || symbol_language == language_rust)
2750 {
2751 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2752 && symbol_domain == STRUCT_DOMAIN)
2753 return true;
2754 }
2755 /* For all other languages, strict match is required. */
2756 return (symbol_domain == domain);
2757 }
2758
2759 /* See symtab.h. */
2760
2761 struct type *
2762 lookup_transparent_type (const char *name)
2763 {
2764 return current_language->la_lookup_transparent_type (name);
2765 }
2766
2767 /* A helper for basic_lookup_transparent_type that interfaces with the
2768 "quick" symbol table functions. */
2769
2770 static struct type *
2771 basic_lookup_transparent_type_quick (struct objfile *objfile,
2772 enum block_enum block_index,
2773 const char *name)
2774 {
2775 struct compunit_symtab *cust;
2776 const struct blockvector *bv;
2777 const struct block *block;
2778 struct symbol *sym;
2779
2780 if (!objfile->sf)
2781 return NULL;
2782 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2783 STRUCT_DOMAIN);
2784 if (cust == NULL)
2785 return NULL;
2786
2787 bv = COMPUNIT_BLOCKVECTOR (cust);
2788 block = BLOCKVECTOR_BLOCK (bv, block_index);
2789 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2790 block_find_non_opaque_type, NULL);
2791 if (sym == NULL)
2792 error_in_psymtab_expansion (block_index, name, cust);
2793 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2794 return SYMBOL_TYPE (sym);
2795 }
2796
2797 /* Subroutine of basic_lookup_transparent_type to simplify it.
2798 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2799 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2800
2801 static struct type *
2802 basic_lookup_transparent_type_1 (struct objfile *objfile,
2803 enum block_enum block_index,
2804 const char *name)
2805 {
2806 const struct blockvector *bv;
2807 const struct block *block;
2808 const struct symbol *sym;
2809
2810 for (compunit_symtab *cust : objfile->compunits ())
2811 {
2812 bv = COMPUNIT_BLOCKVECTOR (cust);
2813 block = BLOCKVECTOR_BLOCK (bv, block_index);
2814 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2815 block_find_non_opaque_type, NULL);
2816 if (sym != NULL)
2817 {
2818 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2819 return SYMBOL_TYPE (sym);
2820 }
2821 }
2822
2823 return NULL;
2824 }
2825
2826 /* The standard implementation of lookup_transparent_type. This code
2827 was modeled on lookup_symbol -- the parts not relevant to looking
2828 up types were just left out. In particular it's assumed here that
2829 types are available in STRUCT_DOMAIN and only in file-static or
2830 global blocks. */
2831
2832 struct type *
2833 basic_lookup_transparent_type (const char *name)
2834 {
2835 struct type *t;
2836
2837 /* Now search all the global symbols. Do the symtab's first, then
2838 check the psymtab's. If a psymtab indicates the existence
2839 of the desired name as a global, then do psymtab-to-symtab
2840 conversion on the fly and return the found symbol. */
2841
2842 for (objfile *objfile : current_program_space->objfiles ())
2843 {
2844 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2845 if (t)
2846 return t;
2847 }
2848
2849 for (objfile *objfile : current_program_space->objfiles ())
2850 {
2851 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2852 if (t)
2853 return t;
2854 }
2855
2856 /* Now search the static file-level symbols.
2857 Not strictly correct, but more useful than an error.
2858 Do the symtab's first, then
2859 check the psymtab's. If a psymtab indicates the existence
2860 of the desired name as a file-level static, then do psymtab-to-symtab
2861 conversion on the fly and return the found symbol. */
2862
2863 for (objfile *objfile : current_program_space->objfiles ())
2864 {
2865 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2866 if (t)
2867 return t;
2868 }
2869
2870 for (objfile *objfile : current_program_space->objfiles ())
2871 {
2872 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2873 if (t)
2874 return t;
2875 }
2876
2877 return (struct type *) 0;
2878 }
2879
2880 /* See symtab.h. */
2881
2882 bool
2883 iterate_over_symbols (const struct block *block,
2884 const lookup_name_info &name,
2885 const domain_enum domain,
2886 gdb::function_view<symbol_found_callback_ftype> callback)
2887 {
2888 struct block_iterator iter;
2889 struct symbol *sym;
2890
2891 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2892 {
2893 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2894 {
2895 struct block_symbol block_sym = {sym, block};
2896
2897 if (!callback (&block_sym))
2898 return false;
2899 }
2900 }
2901 return true;
2902 }
2903
2904 /* See symtab.h. */
2905
2906 bool
2907 iterate_over_symbols_terminated
2908 (const struct block *block,
2909 const lookup_name_info &name,
2910 const domain_enum domain,
2911 gdb::function_view<symbol_found_callback_ftype> callback)
2912 {
2913 if (!iterate_over_symbols (block, name, domain, callback))
2914 return false;
2915 struct block_symbol block_sym = {nullptr, block};
2916 return callback (&block_sym);
2917 }
2918
2919 /* Find the compunit symtab associated with PC and SECTION.
2920 This will read in debug info as necessary. */
2921
2922 struct compunit_symtab *
2923 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2924 {
2925 struct compunit_symtab *best_cust = NULL;
2926 CORE_ADDR distance = 0;
2927 struct bound_minimal_symbol msymbol;
2928
2929 /* If we know that this is not a text address, return failure. This is
2930 necessary because we loop based on the block's high and low code
2931 addresses, which do not include the data ranges, and because
2932 we call find_pc_sect_psymtab which has a similar restriction based
2933 on the partial_symtab's texthigh and textlow. */
2934 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2935 if (msymbol.minsym && msymbol.minsym->data_p ())
2936 return NULL;
2937
2938 /* Search all symtabs for the one whose file contains our address, and which
2939 is the smallest of all the ones containing the address. This is designed
2940 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2941 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2942 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2943
2944 This happens for native ecoff format, where code from included files
2945 gets its own symtab. The symtab for the included file should have
2946 been read in already via the dependency mechanism.
2947 It might be swifter to create several symtabs with the same name
2948 like xcoff does (I'm not sure).
2949
2950 It also happens for objfiles that have their functions reordered.
2951 For these, the symtab we are looking for is not necessarily read in. */
2952
2953 for (objfile *obj_file : current_program_space->objfiles ())
2954 {
2955 for (compunit_symtab *cust : obj_file->compunits ())
2956 {
2957 const struct block *b;
2958 const struct blockvector *bv;
2959
2960 bv = COMPUNIT_BLOCKVECTOR (cust);
2961 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2962
2963 if (BLOCK_START (b) <= pc
2964 && BLOCK_END (b) > pc
2965 && (distance == 0
2966 || BLOCK_END (b) - BLOCK_START (b) < distance))
2967 {
2968 /* For an objfile that has its functions reordered,
2969 find_pc_psymtab will find the proper partial symbol table
2970 and we simply return its corresponding symtab. */
2971 /* In order to better support objfiles that contain both
2972 stabs and coff debugging info, we continue on if a psymtab
2973 can't be found. */
2974 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2975 {
2976 struct compunit_symtab *result;
2977
2978 result
2979 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2980 msymbol,
2981 pc,
2982 section,
2983 0);
2984 if (result != NULL)
2985 return result;
2986 }
2987 if (section != 0)
2988 {
2989 struct block_iterator iter;
2990 struct symbol *sym = NULL;
2991
2992 ALL_BLOCK_SYMBOLS (b, iter, sym)
2993 {
2994 fixup_symbol_section (sym, obj_file);
2995 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2996 sym),
2997 section))
2998 break;
2999 }
3000 if (sym == NULL)
3001 continue; /* No symbol in this symtab matches
3002 section. */
3003 }
3004 distance = BLOCK_END (b) - BLOCK_START (b);
3005 best_cust = cust;
3006 }
3007 }
3008 }
3009
3010 if (best_cust != NULL)
3011 return best_cust;
3012
3013 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3014
3015 for (objfile *objf : current_program_space->objfiles ())
3016 {
3017 struct compunit_symtab *result;
3018
3019 if (!objf->sf)
3020 continue;
3021 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3022 msymbol,
3023 pc, section,
3024 1);
3025 if (result != NULL)
3026 return result;
3027 }
3028
3029 return NULL;
3030 }
3031
3032 /* Find the compunit symtab associated with PC.
3033 This will read in debug info as necessary.
3034 Backward compatibility, no section. */
3035
3036 struct compunit_symtab *
3037 find_pc_compunit_symtab (CORE_ADDR pc)
3038 {
3039 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3040 }
3041
3042 /* See symtab.h. */
3043
3044 struct symbol *
3045 find_symbol_at_address (CORE_ADDR address)
3046 {
3047 for (objfile *objfile : current_program_space->objfiles ())
3048 {
3049 if (objfile->sf == NULL
3050 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3051 continue;
3052
3053 struct compunit_symtab *symtab
3054 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3055 if (symtab != NULL)
3056 {
3057 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3058
3059 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3060 {
3061 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3062 struct block_iterator iter;
3063 struct symbol *sym;
3064
3065 ALL_BLOCK_SYMBOLS (b, iter, sym)
3066 {
3067 if (SYMBOL_CLASS (sym) == LOC_STATIC
3068 && SYMBOL_VALUE_ADDRESS (sym) == address)
3069 return sym;
3070 }
3071 }
3072 }
3073 }
3074
3075 return NULL;
3076 }
3077
3078 \f
3079
3080 /* Find the source file and line number for a given PC value and SECTION.
3081 Return a structure containing a symtab pointer, a line number,
3082 and a pc range for the entire source line.
3083 The value's .pc field is NOT the specified pc.
3084 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3085 use the line that ends there. Otherwise, in that case, the line
3086 that begins there is used. */
3087
3088 /* The big complication here is that a line may start in one file, and end just
3089 before the start of another file. This usually occurs when you #include
3090 code in the middle of a subroutine. To properly find the end of a line's PC
3091 range, we must search all symtabs associated with this compilation unit, and
3092 find the one whose first PC is closer than that of the next line in this
3093 symtab. */
3094
3095 struct symtab_and_line
3096 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3097 {
3098 struct compunit_symtab *cust;
3099 struct linetable *l;
3100 int len;
3101 struct linetable_entry *item;
3102 const struct blockvector *bv;
3103 struct bound_minimal_symbol msymbol;
3104
3105 /* Info on best line seen so far, and where it starts, and its file. */
3106
3107 struct linetable_entry *best = NULL;
3108 CORE_ADDR best_end = 0;
3109 struct symtab *best_symtab = 0;
3110
3111 /* Store here the first line number
3112 of a file which contains the line at the smallest pc after PC.
3113 If we don't find a line whose range contains PC,
3114 we will use a line one less than this,
3115 with a range from the start of that file to the first line's pc. */
3116 struct linetable_entry *alt = NULL;
3117
3118 /* Info on best line seen in this file. */
3119
3120 struct linetable_entry *prev;
3121
3122 /* If this pc is not from the current frame,
3123 it is the address of the end of a call instruction.
3124 Quite likely that is the start of the following statement.
3125 But what we want is the statement containing the instruction.
3126 Fudge the pc to make sure we get that. */
3127
3128 /* It's tempting to assume that, if we can't find debugging info for
3129 any function enclosing PC, that we shouldn't search for line
3130 number info, either. However, GAS can emit line number info for
3131 assembly files --- very helpful when debugging hand-written
3132 assembly code. In such a case, we'd have no debug info for the
3133 function, but we would have line info. */
3134
3135 if (notcurrent)
3136 pc -= 1;
3137
3138 /* elz: added this because this function returned the wrong
3139 information if the pc belongs to a stub (import/export)
3140 to call a shlib function. This stub would be anywhere between
3141 two functions in the target, and the line info was erroneously
3142 taken to be the one of the line before the pc. */
3143
3144 /* RT: Further explanation:
3145
3146 * We have stubs (trampolines) inserted between procedures.
3147 *
3148 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3149 * exists in the main image.
3150 *
3151 * In the minimal symbol table, we have a bunch of symbols
3152 * sorted by start address. The stubs are marked as "trampoline",
3153 * the others appear as text. E.g.:
3154 *
3155 * Minimal symbol table for main image
3156 * main: code for main (text symbol)
3157 * shr1: stub (trampoline symbol)
3158 * foo: code for foo (text symbol)
3159 * ...
3160 * Minimal symbol table for "shr1" image:
3161 * ...
3162 * shr1: code for shr1 (text symbol)
3163 * ...
3164 *
3165 * So the code below is trying to detect if we are in the stub
3166 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3167 * and if found, do the symbolization from the real-code address
3168 * rather than the stub address.
3169 *
3170 * Assumptions being made about the minimal symbol table:
3171 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3172 * if we're really in the trampoline.s If we're beyond it (say
3173 * we're in "foo" in the above example), it'll have a closer
3174 * symbol (the "foo" text symbol for example) and will not
3175 * return the trampoline.
3176 * 2. lookup_minimal_symbol_text() will find a real text symbol
3177 * corresponding to the trampoline, and whose address will
3178 * be different than the trampoline address. I put in a sanity
3179 * check for the address being the same, to avoid an
3180 * infinite recursion.
3181 */
3182 msymbol = lookup_minimal_symbol_by_pc (pc);
3183 if (msymbol.minsym != NULL)
3184 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3185 {
3186 struct bound_minimal_symbol mfunsym
3187 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3188 NULL);
3189
3190 if (mfunsym.minsym == NULL)
3191 /* I eliminated this warning since it is coming out
3192 * in the following situation:
3193 * gdb shmain // test program with shared libraries
3194 * (gdb) break shr1 // function in shared lib
3195 * Warning: In stub for ...
3196 * In the above situation, the shared lib is not loaded yet,
3197 * so of course we can't find the real func/line info,
3198 * but the "break" still works, and the warning is annoying.
3199 * So I commented out the warning. RT */
3200 /* warning ("In stub for %s; unable to find real function/line info",
3201 msymbol->linkage_name ()); */
3202 ;
3203 /* fall through */
3204 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3205 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3206 /* Avoid infinite recursion */
3207 /* See above comment about why warning is commented out. */
3208 /* warning ("In stub for %s; unable to find real function/line info",
3209 msymbol->linkage_name ()); */
3210 ;
3211 /* fall through */
3212 else
3213 {
3214 /* Detect an obvious case of infinite recursion. If this
3215 should occur, we'd like to know about it, so error out,
3216 fatally. */
3217 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3218 internal_error (__FILE__, __LINE__,
3219 _("Infinite recursion detected in find_pc_sect_line;"
3220 "please file a bug report"));
3221
3222 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3223 }
3224 }
3225
3226 symtab_and_line val;
3227 val.pspace = current_program_space;
3228
3229 cust = find_pc_sect_compunit_symtab (pc, section);
3230 if (cust == NULL)
3231 {
3232 /* If no symbol information, return previous pc. */
3233 if (notcurrent)
3234 pc++;
3235 val.pc = pc;
3236 return val;
3237 }
3238
3239 bv = COMPUNIT_BLOCKVECTOR (cust);
3240
3241 /* Look at all the symtabs that share this blockvector.
3242 They all have the same apriori range, that we found was right;
3243 but they have different line tables. */
3244
3245 for (symtab *iter_s : compunit_filetabs (cust))
3246 {
3247 /* Find the best line in this symtab. */
3248 l = SYMTAB_LINETABLE (iter_s);
3249 if (!l)
3250 continue;
3251 len = l->nitems;
3252 if (len <= 0)
3253 {
3254 /* I think len can be zero if the symtab lacks line numbers
3255 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3256 I'm not sure which, and maybe it depends on the symbol
3257 reader). */
3258 continue;
3259 }
3260
3261 prev = NULL;
3262 item = l->item; /* Get first line info. */
3263
3264 /* Is this file's first line closer than the first lines of other files?
3265 If so, record this file, and its first line, as best alternate. */
3266 if (item->pc > pc && (!alt || item->pc < alt->pc))
3267 alt = item;
3268
3269 auto pc_compare = [](const CORE_ADDR & comp_pc,
3270 const struct linetable_entry & lhs)->bool
3271 {
3272 return comp_pc < lhs.pc;
3273 };
3274
3275 struct linetable_entry *first = item;
3276 struct linetable_entry *last = item + len;
3277 item = std::upper_bound (first, last, pc, pc_compare);
3278 if (item != first)
3279 {
3280 /* Found a matching item. Skip backwards over any end of
3281 sequence markers. */
3282 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3283 /* Nothing. */;
3284 }
3285
3286 /* At this point, prev points at the line whose start addr is <= pc, and
3287 item points at the next line. If we ran off the end of the linetable
3288 (pc >= start of the last line), then prev == item. If pc < start of
3289 the first line, prev will not be set. */
3290
3291 /* Is this file's best line closer than the best in the other files?
3292 If so, record this file, and its best line, as best so far. Don't
3293 save prev if it represents the end of a function (i.e. line number
3294 0) instead of a real line. */
3295
3296 if (prev && prev->line && (!best || prev->pc > best->pc))
3297 {
3298 best = prev;
3299 best_symtab = iter_s;
3300
3301 /* If during the binary search we land on a non-statement entry,
3302 scan backward through entries at the same address to see if
3303 there is an entry marked as is-statement. In theory this
3304 duplication should have been removed from the line table
3305 during construction, this is just a double check. If the line
3306 table has had the duplication removed then this should be
3307 pretty cheap. */
3308 if (!best->is_stmt)
3309 {
3310 struct linetable_entry *tmp = best;
3311 while (tmp > first && (tmp - 1)->pc == tmp->pc
3312 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3313 --tmp;
3314 if (tmp->is_stmt)
3315 best = tmp;
3316 }
3317
3318 /* Discard BEST_END if it's before the PC of the current BEST. */
3319 if (best_end <= best->pc)
3320 best_end = 0;
3321 }
3322
3323 /* If another line (denoted by ITEM) is in the linetable and its
3324 PC is after BEST's PC, but before the current BEST_END, then
3325 use ITEM's PC as the new best_end. */
3326 if (best && item < last && item->pc > best->pc
3327 && (best_end == 0 || best_end > item->pc))
3328 best_end = item->pc;
3329 }
3330
3331 if (!best_symtab)
3332 {
3333 /* If we didn't find any line number info, just return zeros.
3334 We used to return alt->line - 1 here, but that could be
3335 anywhere; if we don't have line number info for this PC,
3336 don't make some up. */
3337 val.pc = pc;
3338 }
3339 else if (best->line == 0)
3340 {
3341 /* If our best fit is in a range of PC's for which no line
3342 number info is available (line number is zero) then we didn't
3343 find any valid line information. */
3344 val.pc = pc;
3345 }
3346 else
3347 {
3348 val.is_stmt = best->is_stmt;
3349 val.symtab = best_symtab;
3350 val.line = best->line;
3351 val.pc = best->pc;
3352 if (best_end && (!alt || best_end < alt->pc))
3353 val.end = best_end;
3354 else if (alt)
3355 val.end = alt->pc;
3356 else
3357 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3358 }
3359 val.section = section;
3360 return val;
3361 }
3362
3363 /* Backward compatibility (no section). */
3364
3365 struct symtab_and_line
3366 find_pc_line (CORE_ADDR pc, int notcurrent)
3367 {
3368 struct obj_section *section;
3369
3370 section = find_pc_overlay (pc);
3371 if (pc_in_unmapped_range (pc, section))
3372 pc = overlay_mapped_address (pc, section);
3373 return find_pc_sect_line (pc, section, notcurrent);
3374 }
3375
3376 /* See symtab.h. */
3377
3378 struct symtab *
3379 find_pc_line_symtab (CORE_ADDR pc)
3380 {
3381 struct symtab_and_line sal;
3382
3383 /* This always passes zero for NOTCURRENT to find_pc_line.
3384 There are currently no callers that ever pass non-zero. */
3385 sal = find_pc_line (pc, 0);
3386 return sal.symtab;
3387 }
3388 \f
3389 /* Find line number LINE in any symtab whose name is the same as
3390 SYMTAB.
3391
3392 If found, return the symtab that contains the linetable in which it was
3393 found, set *INDEX to the index in the linetable of the best entry
3394 found, and set *EXACT_MATCH to true if the value returned is an
3395 exact match.
3396
3397 If not found, return NULL. */
3398
3399 struct symtab *
3400 find_line_symtab (struct symtab *sym_tab, int line,
3401 int *index, bool *exact_match)
3402 {
3403 int exact = 0; /* Initialized here to avoid a compiler warning. */
3404
3405 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3406 so far seen. */
3407
3408 int best_index;
3409 struct linetable *best_linetable;
3410 struct symtab *best_symtab;
3411
3412 /* First try looking it up in the given symtab. */
3413 best_linetable = SYMTAB_LINETABLE (sym_tab);
3414 best_symtab = sym_tab;
3415 best_index = find_line_common (best_linetable, line, &exact, 0);
3416 if (best_index < 0 || !exact)
3417 {
3418 /* Didn't find an exact match. So we better keep looking for
3419 another symtab with the same name. In the case of xcoff,
3420 multiple csects for one source file (produced by IBM's FORTRAN
3421 compiler) produce multiple symtabs (this is unavoidable
3422 assuming csects can be at arbitrary places in memory and that
3423 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3424
3425 /* BEST is the smallest linenumber > LINE so far seen,
3426 or 0 if none has been seen so far.
3427 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3428 int best;
3429
3430 if (best_index >= 0)
3431 best = best_linetable->item[best_index].line;
3432 else
3433 best = 0;
3434
3435 for (objfile *objfile : current_program_space->objfiles ())
3436 {
3437 if (objfile->sf)
3438 objfile->sf->qf->expand_symtabs_with_fullname
3439 (objfile, symtab_to_fullname (sym_tab));
3440 }
3441
3442 for (objfile *objfile : current_program_space->objfiles ())
3443 {
3444 for (compunit_symtab *cu : objfile->compunits ())
3445 {
3446 for (symtab *s : compunit_filetabs (cu))
3447 {
3448 struct linetable *l;
3449 int ind;
3450
3451 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3452 continue;
3453 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3454 symtab_to_fullname (s)) != 0)
3455 continue;
3456 l = SYMTAB_LINETABLE (s);
3457 ind = find_line_common (l, line, &exact, 0);
3458 if (ind >= 0)
3459 {
3460 if (exact)
3461 {
3462 best_index = ind;
3463 best_linetable = l;
3464 best_symtab = s;
3465 goto done;
3466 }
3467 if (best == 0 || l->item[ind].line < best)
3468 {
3469 best = l->item[ind].line;
3470 best_index = ind;
3471 best_linetable = l;
3472 best_symtab = s;
3473 }
3474 }
3475 }
3476 }
3477 }
3478 }
3479 done:
3480 if (best_index < 0)
3481 return NULL;
3482
3483 if (index)
3484 *index = best_index;
3485 if (exact_match)
3486 *exact_match = (exact != 0);
3487
3488 return best_symtab;
3489 }
3490
3491 /* Given SYMTAB, returns all the PCs function in the symtab that
3492 exactly match LINE. Returns an empty vector if there are no exact
3493 matches, but updates BEST_ITEM in this case. */
3494
3495 std::vector<CORE_ADDR>
3496 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3497 struct linetable_entry **best_item)
3498 {
3499 int start = 0;
3500 std::vector<CORE_ADDR> result;
3501
3502 /* First, collect all the PCs that are at this line. */
3503 while (1)
3504 {
3505 int was_exact;
3506 int idx;
3507
3508 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3509 start);
3510 if (idx < 0)
3511 break;
3512
3513 if (!was_exact)
3514 {
3515 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3516
3517 if (*best_item == NULL
3518 || (item->line < (*best_item)->line && item->is_stmt))
3519 *best_item = item;
3520
3521 break;
3522 }
3523
3524 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3525 start = idx + 1;
3526 }
3527
3528 return result;
3529 }
3530
3531 \f
3532 /* Set the PC value for a given source file and line number and return true.
3533 Returns false for invalid line number (and sets the PC to 0).
3534 The source file is specified with a struct symtab. */
3535
3536 bool
3537 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3538 {
3539 struct linetable *l;
3540 int ind;
3541
3542 *pc = 0;
3543 if (symtab == 0)
3544 return false;
3545
3546 symtab = find_line_symtab (symtab, line, &ind, NULL);
3547 if (symtab != NULL)
3548 {
3549 l = SYMTAB_LINETABLE (symtab);
3550 *pc = l->item[ind].pc;
3551 return true;
3552 }
3553 else
3554 return false;
3555 }
3556
3557 /* Find the range of pc values in a line.
3558 Store the starting pc of the line into *STARTPTR
3559 and the ending pc (start of next line) into *ENDPTR.
3560 Returns true to indicate success.
3561 Returns false if could not find the specified line. */
3562
3563 bool
3564 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3565 CORE_ADDR *endptr)
3566 {
3567 CORE_ADDR startaddr;
3568 struct symtab_and_line found_sal;
3569
3570 startaddr = sal.pc;
3571 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3572 return false;
3573
3574 /* This whole function is based on address. For example, if line 10 has
3575 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3576 "info line *0x123" should say the line goes from 0x100 to 0x200
3577 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3578 This also insures that we never give a range like "starts at 0x134
3579 and ends at 0x12c". */
3580
3581 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3582 if (found_sal.line != sal.line)
3583 {
3584 /* The specified line (sal) has zero bytes. */
3585 *startptr = found_sal.pc;
3586 *endptr = found_sal.pc;
3587 }
3588 else
3589 {
3590 *startptr = found_sal.pc;
3591 *endptr = found_sal.end;
3592 }
3593 return true;
3594 }
3595
3596 /* Given a line table and a line number, return the index into the line
3597 table for the pc of the nearest line whose number is >= the specified one.
3598 Return -1 if none is found. The value is >= 0 if it is an index.
3599 START is the index at which to start searching the line table.
3600
3601 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3602
3603 static int
3604 find_line_common (struct linetable *l, int lineno,
3605 int *exact_match, int start)
3606 {
3607 int i;
3608 int len;
3609
3610 /* BEST is the smallest linenumber > LINENO so far seen,
3611 or 0 if none has been seen so far.
3612 BEST_INDEX identifies the item for it. */
3613
3614 int best_index = -1;
3615 int best = 0;
3616
3617 *exact_match = 0;
3618
3619 if (lineno <= 0)
3620 return -1;
3621 if (l == 0)
3622 return -1;
3623
3624 len = l->nitems;
3625 for (i = start; i < len; i++)
3626 {
3627 struct linetable_entry *item = &(l->item[i]);
3628
3629 /* Ignore non-statements. */
3630 if (!item->is_stmt)
3631 continue;
3632
3633 if (item->line == lineno)
3634 {
3635 /* Return the first (lowest address) entry which matches. */
3636 *exact_match = 1;
3637 return i;
3638 }
3639
3640 if (item->line > lineno && (best == 0 || item->line < best))
3641 {
3642 best = item->line;
3643 best_index = i;
3644 }
3645 }
3646
3647 /* If we got here, we didn't get an exact match. */
3648 return best_index;
3649 }
3650
3651 bool
3652 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3653 {
3654 struct symtab_and_line sal;
3655
3656 sal = find_pc_line (pc, 0);
3657 *startptr = sal.pc;
3658 *endptr = sal.end;
3659 return sal.symtab != 0;
3660 }
3661
3662 /* Helper for find_function_start_sal. Does most of the work, except
3663 setting the sal's symbol. */
3664
3665 static symtab_and_line
3666 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3667 bool funfirstline)
3668 {
3669 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3670
3671 if (funfirstline && sal.symtab != NULL
3672 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3673 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3674 {
3675 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3676
3677 sal.pc = func_addr;
3678 if (gdbarch_skip_entrypoint_p (gdbarch))
3679 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3680 return sal;
3681 }
3682
3683 /* We always should have a line for the function start address.
3684 If we don't, something is odd. Create a plain SAL referring
3685 just the PC and hope that skip_prologue_sal (if requested)
3686 can find a line number for after the prologue. */
3687 if (sal.pc < func_addr)
3688 {
3689 sal = {};
3690 sal.pspace = current_program_space;
3691 sal.pc = func_addr;
3692 sal.section = section;
3693 }
3694
3695 if (funfirstline)
3696 skip_prologue_sal (&sal);
3697
3698 return sal;
3699 }
3700
3701 /* See symtab.h. */
3702
3703 symtab_and_line
3704 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3705 bool funfirstline)
3706 {
3707 symtab_and_line sal
3708 = find_function_start_sal_1 (func_addr, section, funfirstline);
3709
3710 /* find_function_start_sal_1 does a linetable search, so it finds
3711 the symtab and linenumber, but not a symbol. Fill in the
3712 function symbol too. */
3713 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3714
3715 return sal;
3716 }
3717
3718 /* See symtab.h. */
3719
3720 symtab_and_line
3721 find_function_start_sal (symbol *sym, bool funfirstline)
3722 {
3723 fixup_symbol_section (sym, NULL);
3724 symtab_and_line sal
3725 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3726 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3727 funfirstline);
3728 sal.symbol = sym;
3729 return sal;
3730 }
3731
3732
3733 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3734 address for that function that has an entry in SYMTAB's line info
3735 table. If such an entry cannot be found, return FUNC_ADDR
3736 unaltered. */
3737
3738 static CORE_ADDR
3739 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3740 {
3741 CORE_ADDR func_start, func_end;
3742 struct linetable *l;
3743 int i;
3744
3745 /* Give up if this symbol has no lineinfo table. */
3746 l = SYMTAB_LINETABLE (symtab);
3747 if (l == NULL)
3748 return func_addr;
3749
3750 /* Get the range for the function's PC values, or give up if we
3751 cannot, for some reason. */
3752 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3753 return func_addr;
3754
3755 /* Linetable entries are ordered by PC values, see the commentary in
3756 symtab.h where `struct linetable' is defined. Thus, the first
3757 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3758 address we are looking for. */
3759 for (i = 0; i < l->nitems; i++)
3760 {
3761 struct linetable_entry *item = &(l->item[i]);
3762
3763 /* Don't use line numbers of zero, they mark special entries in
3764 the table. See the commentary on symtab.h before the
3765 definition of struct linetable. */
3766 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3767 return item->pc;
3768 }
3769
3770 return func_addr;
3771 }
3772
3773 /* Adjust SAL to the first instruction past the function prologue.
3774 If the PC was explicitly specified, the SAL is not changed.
3775 If the line number was explicitly specified then the SAL can still be
3776 updated, unless the language for SAL is assembler, in which case the SAL
3777 will be left unchanged.
3778 If SAL is already past the prologue, then do nothing. */
3779
3780 void
3781 skip_prologue_sal (struct symtab_and_line *sal)
3782 {
3783 struct symbol *sym;
3784 struct symtab_and_line start_sal;
3785 CORE_ADDR pc, saved_pc;
3786 struct obj_section *section;
3787 const char *name;
3788 struct objfile *objfile;
3789 struct gdbarch *gdbarch;
3790 const struct block *b, *function_block;
3791 int force_skip, skip;
3792
3793 /* Do not change the SAL if PC was specified explicitly. */
3794 if (sal->explicit_pc)
3795 return;
3796
3797 /* In assembly code, if the user asks for a specific line then we should
3798 not adjust the SAL. The user already has instruction level
3799 visibility in this case, so selecting a line other than one requested
3800 is likely to be the wrong choice. */
3801 if (sal->symtab != nullptr
3802 && sal->explicit_line
3803 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3804 return;
3805
3806 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3807
3808 switch_to_program_space_and_thread (sal->pspace);
3809
3810 sym = find_pc_sect_function (sal->pc, sal->section);
3811 if (sym != NULL)
3812 {
3813 fixup_symbol_section (sym, NULL);
3814
3815 objfile = symbol_objfile (sym);
3816 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3817 section = SYMBOL_OBJ_SECTION (objfile, sym);
3818 name = sym->linkage_name ();
3819 }
3820 else
3821 {
3822 struct bound_minimal_symbol msymbol
3823 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3824
3825 if (msymbol.minsym == NULL)
3826 return;
3827
3828 objfile = msymbol.objfile;
3829 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3830 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3831 name = msymbol.minsym->linkage_name ();
3832 }
3833
3834 gdbarch = objfile->arch ();
3835
3836 /* Process the prologue in two passes. In the first pass try to skip the
3837 prologue (SKIP is true) and verify there is a real need for it (indicated
3838 by FORCE_SKIP). If no such reason was found run a second pass where the
3839 prologue is not skipped (SKIP is false). */
3840
3841 skip = 1;
3842 force_skip = 1;
3843
3844 /* Be conservative - allow direct PC (without skipping prologue) only if we
3845 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3846 have to be set by the caller so we use SYM instead. */
3847 if (sym != NULL
3848 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3849 force_skip = 0;
3850
3851 saved_pc = pc;
3852 do
3853 {
3854 pc = saved_pc;
3855
3856 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3857 so that gdbarch_skip_prologue has something unique to work on. */
3858 if (section_is_overlay (section) && !section_is_mapped (section))
3859 pc = overlay_unmapped_address (pc, section);
3860
3861 /* Skip "first line" of function (which is actually its prologue). */
3862 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3863 if (gdbarch_skip_entrypoint_p (gdbarch))
3864 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3865 if (skip)
3866 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3867
3868 /* For overlays, map pc back into its mapped VMA range. */
3869 pc = overlay_mapped_address (pc, section);
3870
3871 /* Calculate line number. */
3872 start_sal = find_pc_sect_line (pc, section, 0);
3873
3874 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3875 line is still part of the same function. */
3876 if (skip && start_sal.pc != pc
3877 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3878 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3879 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3880 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3881 {
3882 /* First pc of next line */
3883 pc = start_sal.end;
3884 /* Recalculate the line number (might not be N+1). */
3885 start_sal = find_pc_sect_line (pc, section, 0);
3886 }
3887
3888 /* On targets with executable formats that don't have a concept of
3889 constructors (ELF with .init has, PE doesn't), gcc emits a call
3890 to `__main' in `main' between the prologue and before user
3891 code. */
3892 if (gdbarch_skip_main_prologue_p (gdbarch)
3893 && name && strcmp_iw (name, "main") == 0)
3894 {
3895 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3896 /* Recalculate the line number (might not be N+1). */
3897 start_sal = find_pc_sect_line (pc, section, 0);
3898 force_skip = 1;
3899 }
3900 }
3901 while (!force_skip && skip--);
3902
3903 /* If we still don't have a valid source line, try to find the first
3904 PC in the lineinfo table that belongs to the same function. This
3905 happens with COFF debug info, which does not seem to have an
3906 entry in lineinfo table for the code after the prologue which has
3907 no direct relation to source. For example, this was found to be
3908 the case with the DJGPP target using "gcc -gcoff" when the
3909 compiler inserted code after the prologue to make sure the stack
3910 is aligned. */
3911 if (!force_skip && sym && start_sal.symtab == NULL)
3912 {
3913 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3914 /* Recalculate the line number. */
3915 start_sal = find_pc_sect_line (pc, section, 0);
3916 }
3917
3918 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3919 forward SAL to the end of the prologue. */
3920 if (sal->pc >= pc)
3921 return;
3922
3923 sal->pc = pc;
3924 sal->section = section;
3925 sal->symtab = start_sal.symtab;
3926 sal->line = start_sal.line;
3927 sal->end = start_sal.end;
3928
3929 /* Check if we are now inside an inlined function. If we can,
3930 use the call site of the function instead. */
3931 b = block_for_pc_sect (sal->pc, sal->section);
3932 function_block = NULL;
3933 while (b != NULL)
3934 {
3935 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3936 function_block = b;
3937 else if (BLOCK_FUNCTION (b) != NULL)
3938 break;
3939 b = BLOCK_SUPERBLOCK (b);
3940 }
3941 if (function_block != NULL
3942 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3943 {
3944 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3945 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3946 }
3947 }
3948
3949 /* Given PC at the function's start address, attempt to find the
3950 prologue end using SAL information. Return zero if the skip fails.
3951
3952 A non-optimized prologue traditionally has one SAL for the function
3953 and a second for the function body. A single line function has
3954 them both pointing at the same line.
3955
3956 An optimized prologue is similar but the prologue may contain
3957 instructions (SALs) from the instruction body. Need to skip those
3958 while not getting into the function body.
3959
3960 The functions end point and an increasing SAL line are used as
3961 indicators of the prologue's endpoint.
3962
3963 This code is based on the function refine_prologue_limit
3964 (found in ia64). */
3965
3966 CORE_ADDR
3967 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3968 {
3969 struct symtab_and_line prologue_sal;
3970 CORE_ADDR start_pc;
3971 CORE_ADDR end_pc;
3972 const struct block *bl;
3973
3974 /* Get an initial range for the function. */
3975 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3976 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3977
3978 prologue_sal = find_pc_line (start_pc, 0);
3979 if (prologue_sal.line != 0)
3980 {
3981 /* For languages other than assembly, treat two consecutive line
3982 entries at the same address as a zero-instruction prologue.
3983 The GNU assembler emits separate line notes for each instruction
3984 in a multi-instruction macro, but compilers generally will not
3985 do this. */
3986 if (prologue_sal.symtab->language != language_asm)
3987 {
3988 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3989 int idx = 0;
3990
3991 /* Skip any earlier lines, and any end-of-sequence marker
3992 from a previous function. */
3993 while (linetable->item[idx].pc != prologue_sal.pc
3994 || linetable->item[idx].line == 0)
3995 idx++;
3996
3997 if (idx+1 < linetable->nitems
3998 && linetable->item[idx+1].line != 0
3999 && linetable->item[idx+1].pc == start_pc)
4000 return start_pc;
4001 }
4002
4003 /* If there is only one sal that covers the entire function,
4004 then it is probably a single line function, like
4005 "foo(){}". */
4006 if (prologue_sal.end >= end_pc)
4007 return 0;
4008
4009 while (prologue_sal.end < end_pc)
4010 {
4011 struct symtab_and_line sal;
4012
4013 sal = find_pc_line (prologue_sal.end, 0);
4014 if (sal.line == 0)
4015 break;
4016 /* Assume that a consecutive SAL for the same (or larger)
4017 line mark the prologue -> body transition. */
4018 if (sal.line >= prologue_sal.line)
4019 break;
4020 /* Likewise if we are in a different symtab altogether
4021 (e.g. within a file included via #include).  */
4022 if (sal.symtab != prologue_sal.symtab)
4023 break;
4024
4025 /* The line number is smaller. Check that it's from the
4026 same function, not something inlined. If it's inlined,
4027 then there is no point comparing the line numbers. */
4028 bl = block_for_pc (prologue_sal.end);
4029 while (bl)
4030 {
4031 if (block_inlined_p (bl))
4032 break;
4033 if (BLOCK_FUNCTION (bl))
4034 {
4035 bl = NULL;
4036 break;
4037 }
4038 bl = BLOCK_SUPERBLOCK (bl);
4039 }
4040 if (bl != NULL)
4041 break;
4042
4043 /* The case in which compiler's optimizer/scheduler has
4044 moved instructions into the prologue. We look ahead in
4045 the function looking for address ranges whose
4046 corresponding line number is less the first one that we
4047 found for the function. This is more conservative then
4048 refine_prologue_limit which scans a large number of SALs
4049 looking for any in the prologue. */
4050 prologue_sal = sal;
4051 }
4052 }
4053
4054 if (prologue_sal.end < end_pc)
4055 /* Return the end of this line, or zero if we could not find a
4056 line. */
4057 return prologue_sal.end;
4058 else
4059 /* Don't return END_PC, which is past the end of the function. */
4060 return prologue_sal.pc;
4061 }
4062
4063 /* See symtab.h. */
4064
4065 symbol *
4066 find_function_alias_target (bound_minimal_symbol msymbol)
4067 {
4068 CORE_ADDR func_addr;
4069 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4070 return NULL;
4071
4072 symbol *sym = find_pc_function (func_addr);
4073 if (sym != NULL
4074 && SYMBOL_CLASS (sym) == LOC_BLOCK
4075 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4076 return sym;
4077
4078 return NULL;
4079 }
4080
4081 \f
4082 /* If P is of the form "operator[ \t]+..." where `...' is
4083 some legitimate operator text, return a pointer to the
4084 beginning of the substring of the operator text.
4085 Otherwise, return "". */
4086
4087 static const char *
4088 operator_chars (const char *p, const char **end)
4089 {
4090 *end = "";
4091 if (!startswith (p, CP_OPERATOR_STR))
4092 return *end;
4093 p += CP_OPERATOR_LEN;
4094
4095 /* Don't get faked out by `operator' being part of a longer
4096 identifier. */
4097 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4098 return *end;
4099
4100 /* Allow some whitespace between `operator' and the operator symbol. */
4101 while (*p == ' ' || *p == '\t')
4102 p++;
4103
4104 /* Recognize 'operator TYPENAME'. */
4105
4106 if (isalpha (*p) || *p == '_' || *p == '$')
4107 {
4108 const char *q = p + 1;
4109
4110 while (isalnum (*q) || *q == '_' || *q == '$')
4111 q++;
4112 *end = q;
4113 return p;
4114 }
4115
4116 while (*p)
4117 switch (*p)
4118 {
4119 case '\\': /* regexp quoting */
4120 if (p[1] == '*')
4121 {
4122 if (p[2] == '=') /* 'operator\*=' */
4123 *end = p + 3;
4124 else /* 'operator\*' */
4125 *end = p + 2;
4126 return p;
4127 }
4128 else if (p[1] == '[')
4129 {
4130 if (p[2] == ']')
4131 error (_("mismatched quoting on brackets, "
4132 "try 'operator\\[\\]'"));
4133 else if (p[2] == '\\' && p[3] == ']')
4134 {
4135 *end = p + 4; /* 'operator\[\]' */
4136 return p;
4137 }
4138 else
4139 error (_("nothing is allowed between '[' and ']'"));
4140 }
4141 else
4142 {
4143 /* Gratuitous quote: skip it and move on. */
4144 p++;
4145 continue;
4146 }
4147 break;
4148 case '!':
4149 case '=':
4150 case '*':
4151 case '/':
4152 case '%':
4153 case '^':
4154 if (p[1] == '=')
4155 *end = p + 2;
4156 else
4157 *end = p + 1;
4158 return p;
4159 case '<':
4160 case '>':
4161 case '+':
4162 case '-':
4163 case '&':
4164 case '|':
4165 if (p[0] == '-' && p[1] == '>')
4166 {
4167 /* Struct pointer member operator 'operator->'. */
4168 if (p[2] == '*')
4169 {
4170 *end = p + 3; /* 'operator->*' */
4171 return p;
4172 }
4173 else if (p[2] == '\\')
4174 {
4175 *end = p + 4; /* Hopefully 'operator->\*' */
4176 return p;
4177 }
4178 else
4179 {
4180 *end = p + 2; /* 'operator->' */
4181 return p;
4182 }
4183 }
4184 if (p[1] == '=' || p[1] == p[0])
4185 *end = p + 2;
4186 else
4187 *end = p + 1;
4188 return p;
4189 case '~':
4190 case ',':
4191 *end = p + 1;
4192 return p;
4193 case '(':
4194 if (p[1] != ')')
4195 error (_("`operator ()' must be specified "
4196 "without whitespace in `()'"));
4197 *end = p + 2;
4198 return p;
4199 case '?':
4200 if (p[1] != ':')
4201 error (_("`operator ?:' must be specified "
4202 "without whitespace in `?:'"));
4203 *end = p + 2;
4204 return p;
4205 case '[':
4206 if (p[1] != ']')
4207 error (_("`operator []' must be specified "
4208 "without whitespace in `[]'"));
4209 *end = p + 2;
4210 return p;
4211 default:
4212 error (_("`operator %s' not supported"), p);
4213 break;
4214 }
4215
4216 *end = "";
4217 return *end;
4218 }
4219 \f
4220
4221 /* What part to match in a file name. */
4222
4223 struct filename_partial_match_opts
4224 {
4225 /* Only match the directory name part. */
4226 bool dirname = false;
4227
4228 /* Only match the basename part. */
4229 bool basename = false;
4230 };
4231
4232 /* Data structure to maintain printing state for output_source_filename. */
4233
4234 struct output_source_filename_data
4235 {
4236 /* Output only filenames matching REGEXP. */
4237 std::string regexp;
4238 gdb::optional<compiled_regex> c_regexp;
4239 /* Possibly only match a part of the filename. */
4240 filename_partial_match_opts partial_match;
4241
4242
4243 /* Cache of what we've seen so far. */
4244 struct filename_seen_cache *filename_seen_cache;
4245
4246 /* Flag of whether we're printing the first one. */
4247 int first;
4248 };
4249
4250 /* Slave routine for sources_info. Force line breaks at ,'s.
4251 NAME is the name to print.
4252 DATA contains the state for printing and watching for duplicates. */
4253
4254 static void
4255 output_source_filename (const char *name,
4256 struct output_source_filename_data *data)
4257 {
4258 /* Since a single source file can result in several partial symbol
4259 tables, we need to avoid printing it more than once. Note: if
4260 some of the psymtabs are read in and some are not, it gets
4261 printed both under "Source files for which symbols have been
4262 read" and "Source files for which symbols will be read in on
4263 demand". I consider this a reasonable way to deal with the
4264 situation. I'm not sure whether this can also happen for
4265 symtabs; it doesn't hurt to check. */
4266
4267 /* Was NAME already seen? */
4268 if (data->filename_seen_cache->seen (name))
4269 {
4270 /* Yes; don't print it again. */
4271 return;
4272 }
4273
4274 /* Does it match data->regexp? */
4275 if (data->c_regexp.has_value ())
4276 {
4277 const char *to_match;
4278 std::string dirname;
4279
4280 if (data->partial_match.dirname)
4281 {
4282 dirname = ldirname (name);
4283 to_match = dirname.c_str ();
4284 }
4285 else if (data->partial_match.basename)
4286 to_match = lbasename (name);
4287 else
4288 to_match = name;
4289
4290 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4291 return;
4292 }
4293
4294 /* Print it and reset *FIRST. */
4295 if (! data->first)
4296 printf_filtered (", ");
4297 data->first = 0;
4298
4299 wrap_here ("");
4300 fputs_styled (name, file_name_style.style (), gdb_stdout);
4301 }
4302
4303 /* A callback for map_partial_symbol_filenames. */
4304
4305 static void
4306 output_partial_symbol_filename (const char *filename, const char *fullname,
4307 void *data)
4308 {
4309 output_source_filename (fullname ? fullname : filename,
4310 (struct output_source_filename_data *) data);
4311 }
4312
4313 using isrc_flag_option_def
4314 = gdb::option::flag_option_def<filename_partial_match_opts>;
4315
4316 static const gdb::option::option_def info_sources_option_defs[] = {
4317
4318 isrc_flag_option_def {
4319 "dirname",
4320 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4321 N_("Show only the files having a dirname matching REGEXP."),
4322 },
4323
4324 isrc_flag_option_def {
4325 "basename",
4326 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4327 N_("Show only the files having a basename matching REGEXP."),
4328 },
4329
4330 };
4331
4332 /* Create an option_def_group for the "info sources" options, with
4333 ISRC_OPTS as context. */
4334
4335 static inline gdb::option::option_def_group
4336 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4337 {
4338 return {{info_sources_option_defs}, isrc_opts};
4339 }
4340
4341 /* Prints the header message for the source files that will be printed
4342 with the matching info present in DATA. SYMBOL_MSG is a message
4343 that tells what will or has been done with the symbols of the
4344 matching source files. */
4345
4346 static void
4347 print_info_sources_header (const char *symbol_msg,
4348 const struct output_source_filename_data *data)
4349 {
4350 puts_filtered (symbol_msg);
4351 if (!data->regexp.empty ())
4352 {
4353 if (data->partial_match.dirname)
4354 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4355 data->regexp.c_str ());
4356 else if (data->partial_match.basename)
4357 printf_filtered (_("(basename matching regular expression \"%s\")"),
4358 data->regexp.c_str ());
4359 else
4360 printf_filtered (_("(filename matching regular expression \"%s\")"),
4361 data->regexp.c_str ());
4362 }
4363 puts_filtered ("\n");
4364 }
4365
4366 /* Completer for "info sources". */
4367
4368 static void
4369 info_sources_command_completer (cmd_list_element *ignore,
4370 completion_tracker &tracker,
4371 const char *text, const char *word)
4372 {
4373 const auto group = make_info_sources_options_def_group (nullptr);
4374 if (gdb::option::complete_options
4375 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4376 return;
4377 }
4378
4379 static void
4380 info_sources_command (const char *args, int from_tty)
4381 {
4382 struct output_source_filename_data data;
4383
4384 if (!have_full_symbols () && !have_partial_symbols ())
4385 {
4386 error (_("No symbol table is loaded. Use the \"file\" command."));
4387 }
4388
4389 filename_seen_cache filenames_seen;
4390
4391 auto group = make_info_sources_options_def_group (&data.partial_match);
4392
4393 gdb::option::process_options
4394 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4395
4396 if (args != NULL && *args != '\000')
4397 data.regexp = args;
4398
4399 data.filename_seen_cache = &filenames_seen;
4400 data.first = 1;
4401
4402 if (data.partial_match.dirname && data.partial_match.basename)
4403 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4404 if ((data.partial_match.dirname || data.partial_match.basename)
4405 && data.regexp.empty ())
4406 error (_("Missing REGEXP for 'info sources'."));
4407
4408 if (data.regexp.empty ())
4409 data.c_regexp.reset ();
4410 else
4411 {
4412 int cflags = REG_NOSUB;
4413 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4414 cflags |= REG_ICASE;
4415 #endif
4416 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4417 _("Invalid regexp"));
4418 }
4419
4420 print_info_sources_header
4421 (_("Source files for which symbols have been read in:\n"), &data);
4422
4423 for (objfile *objfile : current_program_space->objfiles ())
4424 {
4425 for (compunit_symtab *cu : objfile->compunits ())
4426 {
4427 for (symtab *s : compunit_filetabs (cu))
4428 {
4429 const char *fullname = symtab_to_fullname (s);
4430
4431 output_source_filename (fullname, &data);
4432 }
4433 }
4434 }
4435 printf_filtered ("\n\n");
4436
4437 print_info_sources_header
4438 (_("Source files for which symbols will be read in on demand:\n"), &data);
4439
4440 filenames_seen.clear ();
4441 data.first = 1;
4442 map_symbol_filenames (output_partial_symbol_filename, &data,
4443 1 /*need_fullname*/);
4444 printf_filtered ("\n");
4445 }
4446
4447 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4448 true compare only lbasename of FILENAMES. */
4449
4450 static bool
4451 file_matches (const char *file, const std::vector<const char *> &filenames,
4452 bool basenames)
4453 {
4454 if (filenames.empty ())
4455 return true;
4456
4457 for (const char *name : filenames)
4458 {
4459 name = (basenames ? lbasename (name) : name);
4460 if (compare_filenames_for_search (file, name))
4461 return true;
4462 }
4463
4464 return false;
4465 }
4466
4467 /* Helper function for std::sort on symbol_search objects. Can only sort
4468 symbols, not minimal symbols. */
4469
4470 int
4471 symbol_search::compare_search_syms (const symbol_search &sym_a,
4472 const symbol_search &sym_b)
4473 {
4474 int c;
4475
4476 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4477 symbol_symtab (sym_b.symbol)->filename);
4478 if (c != 0)
4479 return c;
4480
4481 if (sym_a.block != sym_b.block)
4482 return sym_a.block - sym_b.block;
4483
4484 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4485 }
4486
4487 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4488 If SYM has no symbol_type or symbol_name, returns false. */
4489
4490 bool
4491 treg_matches_sym_type_name (const compiled_regex &treg,
4492 const struct symbol *sym)
4493 {
4494 struct type *sym_type;
4495 std::string printed_sym_type_name;
4496
4497 if (symbol_lookup_debug > 1)
4498 {
4499 fprintf_unfiltered (gdb_stdlog,
4500 "treg_matches_sym_type_name\n sym %s\n",
4501 sym->natural_name ());
4502 }
4503
4504 sym_type = SYMBOL_TYPE (sym);
4505 if (sym_type == NULL)
4506 return false;
4507
4508 {
4509 scoped_switch_to_sym_language_if_auto l (sym);
4510
4511 printed_sym_type_name = type_to_string (sym_type);
4512 }
4513
4514
4515 if (symbol_lookup_debug > 1)
4516 {
4517 fprintf_unfiltered (gdb_stdlog,
4518 " sym_type_name %s\n",
4519 printed_sym_type_name.c_str ());
4520 }
4521
4522
4523 if (printed_sym_type_name.empty ())
4524 return false;
4525
4526 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4527 }
4528
4529 /* See symtab.h. */
4530
4531 bool
4532 global_symbol_searcher::is_suitable_msymbol
4533 (const enum search_domain kind, const minimal_symbol *msymbol)
4534 {
4535 switch (MSYMBOL_TYPE (msymbol))
4536 {
4537 case mst_data:
4538 case mst_bss:
4539 case mst_file_data:
4540 case mst_file_bss:
4541 return kind == VARIABLES_DOMAIN;
4542 case mst_text:
4543 case mst_file_text:
4544 case mst_solib_trampoline:
4545 case mst_text_gnu_ifunc:
4546 return kind == FUNCTIONS_DOMAIN;
4547 default:
4548 return false;
4549 }
4550 }
4551
4552 /* See symtab.h. */
4553
4554 bool
4555 global_symbol_searcher::expand_symtabs
4556 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4557 {
4558 enum search_domain kind = m_kind;
4559 bool found_msymbol = false;
4560
4561 if (objfile->sf)
4562 objfile->sf->qf->expand_symtabs_matching
4563 (objfile,
4564 [&] (const char *filename, bool basenames)
4565 {
4566 return file_matches (filename, filenames, basenames);
4567 },
4568 &lookup_name_info::match_any (),
4569 [&] (const char *symname)
4570 {
4571 return (!preg.has_value ()
4572 || preg->exec (symname, 0, NULL, 0) == 0);
4573 },
4574 NULL,
4575 kind);
4576
4577 /* Here, we search through the minimal symbol tables for functions and
4578 variables that match, and force their symbols to be read. This is in
4579 particular necessary for demangled variable names, which are no longer
4580 put into the partial symbol tables. The symbol will then be found
4581 during the scan of symtabs later.
4582
4583 For functions, find_pc_symtab should succeed if we have debug info for
4584 the function, for variables we have to call
4585 lookup_symbol_in_objfile_from_linkage_name to determine if the
4586 variable has debug info. If the lookup fails, set found_msymbol so
4587 that we will rescan to print any matching symbols without debug info.
4588 We only search the objfile the msymbol came from, we no longer search
4589 all objfiles. In large programs (1000s of shared libs) searching all
4590 objfiles is not worth the pain. */
4591 if (filenames.empty ()
4592 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4593 {
4594 for (minimal_symbol *msymbol : objfile->msymbols ())
4595 {
4596 QUIT;
4597
4598 if (msymbol->created_by_gdb)
4599 continue;
4600
4601 if (is_suitable_msymbol (kind, msymbol))
4602 {
4603 if (!preg.has_value ()
4604 || preg->exec (msymbol->natural_name (), 0,
4605 NULL, 0) == 0)
4606 {
4607 /* An important side-effect of these lookup functions is
4608 to expand the symbol table if msymbol is found, later
4609 in the process we will add matching symbols or
4610 msymbols to the results list, and that requires that
4611 the symbols tables are expanded. */
4612 if (kind == FUNCTIONS_DOMAIN
4613 ? (find_pc_compunit_symtab
4614 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4615 == NULL)
4616 : (lookup_symbol_in_objfile_from_linkage_name
4617 (objfile, msymbol->linkage_name (),
4618 VAR_DOMAIN)
4619 .symbol == NULL))
4620 found_msymbol = true;
4621 }
4622 }
4623 }
4624 }
4625
4626 return found_msymbol;
4627 }
4628
4629 /* See symtab.h. */
4630
4631 bool
4632 global_symbol_searcher::add_matching_symbols
4633 (objfile *objfile,
4634 const gdb::optional<compiled_regex> &preg,
4635 const gdb::optional<compiled_regex> &treg,
4636 std::set<symbol_search> *result_set) const
4637 {
4638 enum search_domain kind = m_kind;
4639
4640 /* Add matching symbols (if not already present). */
4641 for (compunit_symtab *cust : objfile->compunits ())
4642 {
4643 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4644
4645 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4646 {
4647 struct block_iterator iter;
4648 struct symbol *sym;
4649 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4650
4651 ALL_BLOCK_SYMBOLS (b, iter, sym)
4652 {
4653 struct symtab *real_symtab = symbol_symtab (sym);
4654
4655 QUIT;
4656
4657 /* Check first sole REAL_SYMTAB->FILENAME. It does
4658 not need to be a substring of symtab_to_fullname as
4659 it may contain "./" etc. */
4660 if ((file_matches (real_symtab->filename, filenames, false)
4661 || ((basenames_may_differ
4662 || file_matches (lbasename (real_symtab->filename),
4663 filenames, true))
4664 && file_matches (symtab_to_fullname (real_symtab),
4665 filenames, false)))
4666 && ((!preg.has_value ()
4667 || preg->exec (sym->natural_name (), 0,
4668 NULL, 0) == 0)
4669 && ((kind == VARIABLES_DOMAIN
4670 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4671 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4672 && SYMBOL_CLASS (sym) != LOC_BLOCK
4673 /* LOC_CONST can be used for more than
4674 just enums, e.g., c++ static const
4675 members. We only want to skip enums
4676 here. */
4677 && !(SYMBOL_CLASS (sym) == LOC_CONST
4678 && (TYPE_CODE (SYMBOL_TYPE (sym))
4679 == TYPE_CODE_ENUM))
4680 && (!treg.has_value ()
4681 || treg_matches_sym_type_name (*treg, sym)))
4682 || (kind == FUNCTIONS_DOMAIN
4683 && SYMBOL_CLASS (sym) == LOC_BLOCK
4684 && (!treg.has_value ()
4685 || treg_matches_sym_type_name (*treg,
4686 sym)))
4687 || (kind == TYPES_DOMAIN
4688 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4689 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4690 || (kind == MODULES_DOMAIN
4691 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4692 && SYMBOL_LINE (sym) != 0))))
4693 {
4694 if (result_set->size () < m_max_search_results)
4695 {
4696 /* Match, insert if not already in the results. */
4697 symbol_search ss (block, sym);
4698 if (result_set->find (ss) == result_set->end ())
4699 result_set->insert (ss);
4700 }
4701 else
4702 return false;
4703 }
4704 }
4705 }
4706 }
4707
4708 return true;
4709 }
4710
4711 /* See symtab.h. */
4712
4713 bool
4714 global_symbol_searcher::add_matching_msymbols
4715 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4716 std::vector<symbol_search> *results) const
4717 {
4718 enum search_domain kind = m_kind;
4719
4720 for (minimal_symbol *msymbol : objfile->msymbols ())
4721 {
4722 QUIT;
4723
4724 if (msymbol->created_by_gdb)
4725 continue;
4726
4727 if (is_suitable_msymbol (kind, msymbol))
4728 {
4729 if (!preg.has_value ()
4730 || preg->exec (msymbol->natural_name (), 0,
4731 NULL, 0) == 0)
4732 {
4733 /* For functions we can do a quick check of whether the
4734 symbol might be found via find_pc_symtab. */
4735 if (kind != FUNCTIONS_DOMAIN
4736 || (find_pc_compunit_symtab
4737 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4738 == NULL))
4739 {
4740 if (lookup_symbol_in_objfile_from_linkage_name
4741 (objfile, msymbol->linkage_name (),
4742 VAR_DOMAIN).symbol == NULL)
4743 {
4744 /* Matching msymbol, add it to the results list. */
4745 if (results->size () < m_max_search_results)
4746 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4747 else
4748 return false;
4749 }
4750 }
4751 }
4752 }
4753 }
4754
4755 return true;
4756 }
4757
4758 /* See symtab.h. */
4759
4760 std::vector<symbol_search>
4761 global_symbol_searcher::search () const
4762 {
4763 gdb::optional<compiled_regex> preg;
4764 gdb::optional<compiled_regex> treg;
4765
4766 gdb_assert (m_kind != ALL_DOMAIN);
4767
4768 if (m_symbol_name_regexp != NULL)
4769 {
4770 const char *symbol_name_regexp = m_symbol_name_regexp;
4771
4772 /* Make sure spacing is right for C++ operators.
4773 This is just a courtesy to make the matching less sensitive
4774 to how many spaces the user leaves between 'operator'
4775 and <TYPENAME> or <OPERATOR>. */
4776 const char *opend;
4777 const char *opname = operator_chars (symbol_name_regexp, &opend);
4778
4779 if (*opname)
4780 {
4781 int fix = -1; /* -1 means ok; otherwise number of
4782 spaces needed. */
4783
4784 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4785 {
4786 /* There should 1 space between 'operator' and 'TYPENAME'. */
4787 if (opname[-1] != ' ' || opname[-2] == ' ')
4788 fix = 1;
4789 }
4790 else
4791 {
4792 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4793 if (opname[-1] == ' ')
4794 fix = 0;
4795 }
4796 /* If wrong number of spaces, fix it. */
4797 if (fix >= 0)
4798 {
4799 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4800
4801 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4802 symbol_name_regexp = tmp;
4803 }
4804 }
4805
4806 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4807 ? REG_ICASE : 0);
4808 preg.emplace (symbol_name_regexp, cflags,
4809 _("Invalid regexp"));
4810 }
4811
4812 if (m_symbol_type_regexp != NULL)
4813 {
4814 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4815 ? REG_ICASE : 0);
4816 treg.emplace (m_symbol_type_regexp, cflags,
4817 _("Invalid regexp"));
4818 }
4819
4820 bool found_msymbol = false;
4821 std::set<symbol_search> result_set;
4822 for (objfile *objfile : current_program_space->objfiles ())
4823 {
4824 /* Expand symtabs within objfile that possibly contain matching
4825 symbols. */
4826 found_msymbol |= expand_symtabs (objfile, preg);
4827
4828 /* Find matching symbols within OBJFILE and add them in to the
4829 RESULT_SET set. Use a set here so that we can easily detect
4830 duplicates as we go, and can therefore track how many unique
4831 matches we have found so far. */
4832 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4833 break;
4834 }
4835
4836 /* Convert the result set into a sorted result list, as std::set is
4837 defined to be sorted then no explicit call to std::sort is needed. */
4838 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4839
4840 /* If there are no debug symbols, then add matching minsyms. But if the
4841 user wants to see symbols matching a type regexp, then never give a
4842 minimal symbol, as we assume that a minimal symbol does not have a
4843 type. */
4844 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4845 && !m_exclude_minsyms
4846 && !treg.has_value ())
4847 {
4848 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4849 for (objfile *objfile : current_program_space->objfiles ())
4850 if (!add_matching_msymbols (objfile, preg, &result))
4851 break;
4852 }
4853
4854 return result;
4855 }
4856
4857 /* See symtab.h. */
4858
4859 std::string
4860 symbol_to_info_string (struct symbol *sym, int block,
4861 enum search_domain kind)
4862 {
4863 std::string str;
4864
4865 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4866
4867 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4868 str += "static ";
4869
4870 /* Typedef that is not a C++ class. */
4871 if (kind == TYPES_DOMAIN
4872 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4873 {
4874 string_file tmp_stream;
4875
4876 /* FIXME: For C (and C++) we end up with a difference in output here
4877 between how a typedef is printed, and non-typedefs are printed.
4878 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4879 appear C-like, while TYPE_PRINT doesn't.
4880
4881 For the struct printing case below, things are worse, we force
4882 printing of the ";" in this function, which is going to be wrong
4883 for languages that don't require a ";" between statements. */
4884 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4885 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4886 else
4887 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4888 str += tmp_stream.string ();
4889 }
4890 /* variable, func, or typedef-that-is-c++-class. */
4891 else if (kind < TYPES_DOMAIN
4892 || (kind == TYPES_DOMAIN
4893 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4894 {
4895 string_file tmp_stream;
4896
4897 type_print (SYMBOL_TYPE (sym),
4898 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4899 ? "" : sym->print_name ()),
4900 &tmp_stream, 0);
4901
4902 str += tmp_stream.string ();
4903 str += ";";
4904 }
4905 /* Printing of modules is currently done here, maybe at some future
4906 point we might want a language specific method to print the module
4907 symbol so that we can customise the output more. */
4908 else if (kind == MODULES_DOMAIN)
4909 str += sym->print_name ();
4910
4911 return str;
4912 }
4913
4914 /* Helper function for symbol info commands, for example 'info functions',
4915 'info variables', etc. KIND is the kind of symbol we searched for, and
4916 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4917 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4918 print file and line number information for the symbol as well. Skip
4919 printing the filename if it matches LAST. */
4920
4921 static void
4922 print_symbol_info (enum search_domain kind,
4923 struct symbol *sym,
4924 int block, const char *last)
4925 {
4926 scoped_switch_to_sym_language_if_auto l (sym);
4927 struct symtab *s = symbol_symtab (sym);
4928
4929 if (last != NULL)
4930 {
4931 const char *s_filename = symtab_to_filename_for_display (s);
4932
4933 if (filename_cmp (last, s_filename) != 0)
4934 {
4935 printf_filtered (_("\nFile %ps:\n"),
4936 styled_string (file_name_style.style (),
4937 s_filename));
4938 }
4939
4940 if (SYMBOL_LINE (sym) != 0)
4941 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4942 else
4943 puts_filtered ("\t");
4944 }
4945
4946 std::string str = symbol_to_info_string (sym, block, kind);
4947 printf_filtered ("%s\n", str.c_str ());
4948 }
4949
4950 /* This help function for symtab_symbol_info() prints information
4951 for non-debugging symbols to gdb_stdout. */
4952
4953 static void
4954 print_msymbol_info (struct bound_minimal_symbol msymbol)
4955 {
4956 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4957 char *tmp;
4958
4959 if (gdbarch_addr_bit (gdbarch) <= 32)
4960 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4961 & (CORE_ADDR) 0xffffffff,
4962 8);
4963 else
4964 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4965 16);
4966
4967 ui_file_style sym_style = (msymbol.minsym->text_p ()
4968 ? function_name_style.style ()
4969 : ui_file_style ());
4970
4971 printf_filtered (_("%ps %ps\n"),
4972 styled_string (address_style.style (), tmp),
4973 styled_string (sym_style, msymbol.minsym->print_name ()));
4974 }
4975
4976 /* This is the guts of the commands "info functions", "info types", and
4977 "info variables". It calls search_symbols to find all matches and then
4978 print_[m]symbol_info to print out some useful information about the
4979 matches. */
4980
4981 static void
4982 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4983 const char *regexp, enum search_domain kind,
4984 const char *t_regexp, int from_tty)
4985 {
4986 static const char * const classnames[] =
4987 {"variable", "function", "type", "module"};
4988 const char *last_filename = "";
4989 int first = 1;
4990
4991 gdb_assert (kind != ALL_DOMAIN);
4992
4993 if (regexp != nullptr && *regexp == '\0')
4994 regexp = nullptr;
4995
4996 global_symbol_searcher spec (kind, regexp);
4997 spec.set_symbol_type_regexp (t_regexp);
4998 spec.set_exclude_minsyms (exclude_minsyms);
4999 std::vector<symbol_search> symbols = spec.search ();
5000
5001 if (!quiet)
5002 {
5003 if (regexp != NULL)
5004 {
5005 if (t_regexp != NULL)
5006 printf_filtered
5007 (_("All %ss matching regular expression \"%s\""
5008 " with type matching regular expression \"%s\":\n"),
5009 classnames[kind], regexp, t_regexp);
5010 else
5011 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5012 classnames[kind], regexp);
5013 }
5014 else
5015 {
5016 if (t_regexp != NULL)
5017 printf_filtered
5018 (_("All defined %ss"
5019 " with type matching regular expression \"%s\" :\n"),
5020 classnames[kind], t_regexp);
5021 else
5022 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5023 }
5024 }
5025
5026 for (const symbol_search &p : symbols)
5027 {
5028 QUIT;
5029
5030 if (p.msymbol.minsym != NULL)
5031 {
5032 if (first)
5033 {
5034 if (!quiet)
5035 printf_filtered (_("\nNon-debugging symbols:\n"));
5036 first = 0;
5037 }
5038 print_msymbol_info (p.msymbol);
5039 }
5040 else
5041 {
5042 print_symbol_info (kind,
5043 p.symbol,
5044 p.block,
5045 last_filename);
5046 last_filename
5047 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5048 }
5049 }
5050 }
5051
5052 /* Structure to hold the values of the options used by the 'info variables'
5053 and 'info functions' commands. These correspond to the -q, -t, and -n
5054 options. */
5055
5056 struct info_vars_funcs_options
5057 {
5058 bool quiet = false;
5059 bool exclude_minsyms = false;
5060 char *type_regexp = nullptr;
5061
5062 ~info_vars_funcs_options ()
5063 {
5064 xfree (type_regexp);
5065 }
5066 };
5067
5068 /* The options used by the 'info variables' and 'info functions'
5069 commands. */
5070
5071 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5072 gdb::option::boolean_option_def<info_vars_funcs_options> {
5073 "q",
5074 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5075 nullptr, /* show_cmd_cb */
5076 nullptr /* set_doc */
5077 },
5078
5079 gdb::option::boolean_option_def<info_vars_funcs_options> {
5080 "n",
5081 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5082 nullptr, /* show_cmd_cb */
5083 nullptr /* set_doc */
5084 },
5085
5086 gdb::option::string_option_def<info_vars_funcs_options> {
5087 "t",
5088 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5089 },
5090 nullptr, /* show_cmd_cb */
5091 nullptr /* set_doc */
5092 }
5093 };
5094
5095 /* Returns the option group used by 'info variables' and 'info
5096 functions'. */
5097
5098 static gdb::option::option_def_group
5099 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5100 {
5101 return {{info_vars_funcs_options_defs}, opts};
5102 }
5103
5104 /* Command completer for 'info variables' and 'info functions'. */
5105
5106 static void
5107 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5108 completion_tracker &tracker,
5109 const char *text, const char * /* word */)
5110 {
5111 const auto group
5112 = make_info_vars_funcs_options_def_group (nullptr);
5113 if (gdb::option::complete_options
5114 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5115 return;
5116
5117 const char *word = advance_to_expression_complete_word_point (tracker, text);
5118 symbol_completer (ignore, tracker, text, word);
5119 }
5120
5121 /* Implement the 'info variables' command. */
5122
5123 static void
5124 info_variables_command (const char *args, int from_tty)
5125 {
5126 info_vars_funcs_options opts;
5127 auto grp = make_info_vars_funcs_options_def_group (&opts);
5128 gdb::option::process_options
5129 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5130 if (args != nullptr && *args == '\0')
5131 args = nullptr;
5132
5133 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5134 opts.type_regexp, from_tty);
5135 }
5136
5137 /* Implement the 'info functions' command. */
5138
5139 static void
5140 info_functions_command (const char *args, int from_tty)
5141 {
5142 info_vars_funcs_options opts;
5143
5144 auto grp = make_info_vars_funcs_options_def_group (&opts);
5145 gdb::option::process_options
5146 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5147 if (args != nullptr && *args == '\0')
5148 args = nullptr;
5149
5150 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5151 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5152 }
5153
5154 /* Holds the -q option for the 'info types' command. */
5155
5156 struct info_types_options
5157 {
5158 bool quiet = false;
5159 };
5160
5161 /* The options used by the 'info types' command. */
5162
5163 static const gdb::option::option_def info_types_options_defs[] = {
5164 gdb::option::boolean_option_def<info_types_options> {
5165 "q",
5166 [] (info_types_options *opt) { return &opt->quiet; },
5167 nullptr, /* show_cmd_cb */
5168 nullptr /* set_doc */
5169 }
5170 };
5171
5172 /* Returns the option group used by 'info types'. */
5173
5174 static gdb::option::option_def_group
5175 make_info_types_options_def_group (info_types_options *opts)
5176 {
5177 return {{info_types_options_defs}, opts};
5178 }
5179
5180 /* Implement the 'info types' command. */
5181
5182 static void
5183 info_types_command (const char *args, int from_tty)
5184 {
5185 info_types_options opts;
5186
5187 auto grp = make_info_types_options_def_group (&opts);
5188 gdb::option::process_options
5189 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5190 if (args != nullptr && *args == '\0')
5191 args = nullptr;
5192 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5193 }
5194
5195 /* Command completer for 'info types' command. */
5196
5197 static void
5198 info_types_command_completer (struct cmd_list_element *ignore,
5199 completion_tracker &tracker,
5200 const char *text, const char * /* word */)
5201 {
5202 const auto group
5203 = make_info_types_options_def_group (nullptr);
5204 if (gdb::option::complete_options
5205 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5206 return;
5207
5208 const char *word = advance_to_expression_complete_word_point (tracker, text);
5209 symbol_completer (ignore, tracker, text, word);
5210 }
5211
5212 /* Implement the 'info modules' command. */
5213
5214 static void
5215 info_modules_command (const char *args, int from_tty)
5216 {
5217 info_types_options opts;
5218
5219 auto grp = make_info_types_options_def_group (&opts);
5220 gdb::option::process_options
5221 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5222 if (args != nullptr && *args == '\0')
5223 args = nullptr;
5224 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5225 from_tty);
5226 }
5227
5228 static void
5229 rbreak_command (const char *regexp, int from_tty)
5230 {
5231 std::string string;
5232 const char *file_name = nullptr;
5233
5234 if (regexp != nullptr)
5235 {
5236 const char *colon = strchr (regexp, ':');
5237
5238 if (colon && *(colon + 1) != ':')
5239 {
5240 int colon_index;
5241 char *local_name;
5242
5243 colon_index = colon - regexp;
5244 local_name = (char *) alloca (colon_index + 1);
5245 memcpy (local_name, regexp, colon_index);
5246 local_name[colon_index--] = 0;
5247 while (isspace (local_name[colon_index]))
5248 local_name[colon_index--] = 0;
5249 file_name = local_name;
5250 regexp = skip_spaces (colon + 1);
5251 }
5252 }
5253
5254 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5255 if (file_name != nullptr)
5256 spec.filenames.push_back (file_name);
5257 std::vector<symbol_search> symbols = spec.search ();
5258
5259 scoped_rbreak_breakpoints finalize;
5260 for (const symbol_search &p : symbols)
5261 {
5262 if (p.msymbol.minsym == NULL)
5263 {
5264 struct symtab *symtab = symbol_symtab (p.symbol);
5265 const char *fullname = symtab_to_fullname (symtab);
5266
5267 string = string_printf ("%s:'%s'", fullname,
5268 p.symbol->linkage_name ());
5269 break_command (&string[0], from_tty);
5270 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5271 }
5272 else
5273 {
5274 string = string_printf ("'%s'",
5275 p.msymbol.minsym->linkage_name ());
5276
5277 break_command (&string[0], from_tty);
5278 printf_filtered ("<function, no debug info> %s;\n",
5279 p.msymbol.minsym->print_name ());
5280 }
5281 }
5282 }
5283 \f
5284
5285 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5286
5287 static int
5288 compare_symbol_name (const char *symbol_name, language symbol_language,
5289 const lookup_name_info &lookup_name,
5290 completion_match_result &match_res)
5291 {
5292 const language_defn *lang = language_def (symbol_language);
5293
5294 symbol_name_matcher_ftype *name_match
5295 = get_symbol_name_matcher (lang, lookup_name);
5296
5297 return name_match (symbol_name, lookup_name, &match_res);
5298 }
5299
5300 /* See symtab.h. */
5301
5302 void
5303 completion_list_add_name (completion_tracker &tracker,
5304 language symbol_language,
5305 const char *symname,
5306 const lookup_name_info &lookup_name,
5307 const char *text, const char *word)
5308 {
5309 completion_match_result &match_res
5310 = tracker.reset_completion_match_result ();
5311
5312 /* Clip symbols that cannot match. */
5313 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5314 return;
5315
5316 /* Refresh SYMNAME from the match string. It's potentially
5317 different depending on language. (E.g., on Ada, the match may be
5318 the encoded symbol name wrapped in "<>"). */
5319 symname = match_res.match.match ();
5320 gdb_assert (symname != NULL);
5321
5322 /* We have a match for a completion, so add SYMNAME to the current list
5323 of matches. Note that the name is moved to freshly malloc'd space. */
5324
5325 {
5326 gdb::unique_xmalloc_ptr<char> completion
5327 = make_completion_match_str (symname, text, word);
5328
5329 /* Here we pass the match-for-lcd object to add_completion. Some
5330 languages match the user text against substrings of symbol
5331 names in some cases. E.g., in C++, "b push_ba" completes to
5332 "std::vector::push_back", "std::string::push_back", etc., and
5333 in this case we want the completion lowest common denominator
5334 to be "push_back" instead of "std::". */
5335 tracker.add_completion (std::move (completion),
5336 &match_res.match_for_lcd, text, word);
5337 }
5338 }
5339
5340 /* completion_list_add_name wrapper for struct symbol. */
5341
5342 static void
5343 completion_list_add_symbol (completion_tracker &tracker,
5344 symbol *sym,
5345 const lookup_name_info &lookup_name,
5346 const char *text, const char *word)
5347 {
5348 completion_list_add_name (tracker, sym->language (),
5349 sym->natural_name (),
5350 lookup_name, text, word);
5351
5352 /* C++ function symbols include the parameters within both the msymbol
5353 name and the symbol name. The problem is that the msymbol name will
5354 describe the parameters in the most basic way, with typedefs stripped
5355 out, while the symbol name will represent the types as they appear in
5356 the program. This means we will see duplicate entries in the
5357 completion tracker. The following converts the symbol name back to
5358 the msymbol name and removes the msymbol name from the completion
5359 tracker. */
5360 if (sym->language () == language_cplus
5361 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5362 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5363 {
5364 /* The call to canonicalize returns the empty string if the input
5365 string is already in canonical form, thanks to this we don't
5366 remove the symbol we just added above. */
5367 std::string str
5368 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5369 if (!str.empty ())
5370 tracker.remove_completion (str.c_str ());
5371 }
5372 }
5373
5374 /* completion_list_add_name wrapper for struct minimal_symbol. */
5375
5376 static void
5377 completion_list_add_msymbol (completion_tracker &tracker,
5378 minimal_symbol *sym,
5379 const lookup_name_info &lookup_name,
5380 const char *text, const char *word)
5381 {
5382 completion_list_add_name (tracker, sym->language (),
5383 sym->natural_name (),
5384 lookup_name, text, word);
5385 }
5386
5387
5388 /* ObjC: In case we are completing on a selector, look as the msymbol
5389 again and feed all the selectors into the mill. */
5390
5391 static void
5392 completion_list_objc_symbol (completion_tracker &tracker,
5393 struct minimal_symbol *msymbol,
5394 const lookup_name_info &lookup_name,
5395 const char *text, const char *word)
5396 {
5397 static char *tmp = NULL;
5398 static unsigned int tmplen = 0;
5399
5400 const char *method, *category, *selector;
5401 char *tmp2 = NULL;
5402
5403 method = msymbol->natural_name ();
5404
5405 /* Is it a method? */
5406 if ((method[0] != '-') && (method[0] != '+'))
5407 return;
5408
5409 if (text[0] == '[')
5410 /* Complete on shortened method method. */
5411 completion_list_add_name (tracker, language_objc,
5412 method + 1,
5413 lookup_name,
5414 text, word);
5415
5416 while ((strlen (method) + 1) >= tmplen)
5417 {
5418 if (tmplen == 0)
5419 tmplen = 1024;
5420 else
5421 tmplen *= 2;
5422 tmp = (char *) xrealloc (tmp, tmplen);
5423 }
5424 selector = strchr (method, ' ');
5425 if (selector != NULL)
5426 selector++;
5427
5428 category = strchr (method, '(');
5429
5430 if ((category != NULL) && (selector != NULL))
5431 {
5432 memcpy (tmp, method, (category - method));
5433 tmp[category - method] = ' ';
5434 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5435 completion_list_add_name (tracker, language_objc, tmp,
5436 lookup_name, text, word);
5437 if (text[0] == '[')
5438 completion_list_add_name (tracker, language_objc, tmp + 1,
5439 lookup_name, text, word);
5440 }
5441
5442 if (selector != NULL)
5443 {
5444 /* Complete on selector only. */
5445 strcpy (tmp, selector);
5446 tmp2 = strchr (tmp, ']');
5447 if (tmp2 != NULL)
5448 *tmp2 = '\0';
5449
5450 completion_list_add_name (tracker, language_objc, tmp,
5451 lookup_name, text, word);
5452 }
5453 }
5454
5455 /* Break the non-quoted text based on the characters which are in
5456 symbols. FIXME: This should probably be language-specific. */
5457
5458 static const char *
5459 language_search_unquoted_string (const char *text, const char *p)
5460 {
5461 for (; p > text; --p)
5462 {
5463 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5464 continue;
5465 else
5466 {
5467 if ((current_language->la_language == language_objc))
5468 {
5469 if (p[-1] == ':') /* Might be part of a method name. */
5470 continue;
5471 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5472 p -= 2; /* Beginning of a method name. */
5473 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5474 { /* Might be part of a method name. */
5475 const char *t = p;
5476
5477 /* Seeing a ' ' or a '(' is not conclusive evidence
5478 that we are in the middle of a method name. However,
5479 finding "-[" or "+[" should be pretty un-ambiguous.
5480 Unfortunately we have to find it now to decide. */
5481
5482 while (t > text)
5483 if (isalnum (t[-1]) || t[-1] == '_' ||
5484 t[-1] == ' ' || t[-1] == ':' ||
5485 t[-1] == '(' || t[-1] == ')')
5486 --t;
5487 else
5488 break;
5489
5490 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5491 p = t - 2; /* Method name detected. */
5492 /* Else we leave with p unchanged. */
5493 }
5494 }
5495 break;
5496 }
5497 }
5498 return p;
5499 }
5500
5501 static void
5502 completion_list_add_fields (completion_tracker &tracker,
5503 struct symbol *sym,
5504 const lookup_name_info &lookup_name,
5505 const char *text, const char *word)
5506 {
5507 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5508 {
5509 struct type *t = SYMBOL_TYPE (sym);
5510 enum type_code c = TYPE_CODE (t);
5511 int j;
5512
5513 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5514 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5515 if (TYPE_FIELD_NAME (t, j))
5516 completion_list_add_name (tracker, sym->language (),
5517 TYPE_FIELD_NAME (t, j),
5518 lookup_name, text, word);
5519 }
5520 }
5521
5522 /* See symtab.h. */
5523
5524 bool
5525 symbol_is_function_or_method (symbol *sym)
5526 {
5527 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5528 {
5529 case TYPE_CODE_FUNC:
5530 case TYPE_CODE_METHOD:
5531 return true;
5532 default:
5533 return false;
5534 }
5535 }
5536
5537 /* See symtab.h. */
5538
5539 bool
5540 symbol_is_function_or_method (minimal_symbol *msymbol)
5541 {
5542 switch (MSYMBOL_TYPE (msymbol))
5543 {
5544 case mst_text:
5545 case mst_text_gnu_ifunc:
5546 case mst_solib_trampoline:
5547 case mst_file_text:
5548 return true;
5549 default:
5550 return false;
5551 }
5552 }
5553
5554 /* See symtab.h. */
5555
5556 bound_minimal_symbol
5557 find_gnu_ifunc (const symbol *sym)
5558 {
5559 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5560 return {};
5561
5562 lookup_name_info lookup_name (sym->search_name (),
5563 symbol_name_match_type::SEARCH_NAME);
5564 struct objfile *objfile = symbol_objfile (sym);
5565
5566 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5567 minimal_symbol *ifunc = NULL;
5568
5569 iterate_over_minimal_symbols (objfile, lookup_name,
5570 [&] (minimal_symbol *minsym)
5571 {
5572 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5573 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5574 {
5575 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5576 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5577 {
5578 struct gdbarch *gdbarch = objfile->arch ();
5579 msym_addr
5580 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5581 msym_addr,
5582 current_top_target ());
5583 }
5584 if (msym_addr == address)
5585 {
5586 ifunc = minsym;
5587 return true;
5588 }
5589 }
5590 return false;
5591 });
5592
5593 if (ifunc != NULL)
5594 return {ifunc, objfile};
5595 return {};
5596 }
5597
5598 /* Add matching symbols from SYMTAB to the current completion list. */
5599
5600 static void
5601 add_symtab_completions (struct compunit_symtab *cust,
5602 completion_tracker &tracker,
5603 complete_symbol_mode mode,
5604 const lookup_name_info &lookup_name,
5605 const char *text, const char *word,
5606 enum type_code code)
5607 {
5608 struct symbol *sym;
5609 const struct block *b;
5610 struct block_iterator iter;
5611 int i;
5612
5613 if (cust == NULL)
5614 return;
5615
5616 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5617 {
5618 QUIT;
5619 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5620 ALL_BLOCK_SYMBOLS (b, iter, sym)
5621 {
5622 if (completion_skip_symbol (mode, sym))
5623 continue;
5624
5625 if (code == TYPE_CODE_UNDEF
5626 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5627 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5628 completion_list_add_symbol (tracker, sym,
5629 lookup_name,
5630 text, word);
5631 }
5632 }
5633 }
5634
5635 void
5636 default_collect_symbol_completion_matches_break_on
5637 (completion_tracker &tracker, complete_symbol_mode mode,
5638 symbol_name_match_type name_match_type,
5639 const char *text, const char *word,
5640 const char *break_on, enum type_code code)
5641 {
5642 /* Problem: All of the symbols have to be copied because readline
5643 frees them. I'm not going to worry about this; hopefully there
5644 won't be that many. */
5645
5646 struct symbol *sym;
5647 const struct block *b;
5648 const struct block *surrounding_static_block, *surrounding_global_block;
5649 struct block_iterator iter;
5650 /* The symbol we are completing on. Points in same buffer as text. */
5651 const char *sym_text;
5652
5653 /* Now look for the symbol we are supposed to complete on. */
5654 if (mode == complete_symbol_mode::LINESPEC)
5655 sym_text = text;
5656 else
5657 {
5658 const char *p;
5659 char quote_found;
5660 const char *quote_pos = NULL;
5661
5662 /* First see if this is a quoted string. */
5663 quote_found = '\0';
5664 for (p = text; *p != '\0'; ++p)
5665 {
5666 if (quote_found != '\0')
5667 {
5668 if (*p == quote_found)
5669 /* Found close quote. */
5670 quote_found = '\0';
5671 else if (*p == '\\' && p[1] == quote_found)
5672 /* A backslash followed by the quote character
5673 doesn't end the string. */
5674 ++p;
5675 }
5676 else if (*p == '\'' || *p == '"')
5677 {
5678 quote_found = *p;
5679 quote_pos = p;
5680 }
5681 }
5682 if (quote_found == '\'')
5683 /* A string within single quotes can be a symbol, so complete on it. */
5684 sym_text = quote_pos + 1;
5685 else if (quote_found == '"')
5686 /* A double-quoted string is never a symbol, nor does it make sense
5687 to complete it any other way. */
5688 {
5689 return;
5690 }
5691 else
5692 {
5693 /* It is not a quoted string. Break it based on the characters
5694 which are in symbols. */
5695 while (p > text)
5696 {
5697 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5698 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5699 --p;
5700 else
5701 break;
5702 }
5703 sym_text = p;
5704 }
5705 }
5706
5707 lookup_name_info lookup_name (sym_text, name_match_type, true);
5708
5709 /* At this point scan through the misc symbol vectors and add each
5710 symbol you find to the list. Eventually we want to ignore
5711 anything that isn't a text symbol (everything else will be
5712 handled by the psymtab code below). */
5713
5714 if (code == TYPE_CODE_UNDEF)
5715 {
5716 for (objfile *objfile : current_program_space->objfiles ())
5717 {
5718 for (minimal_symbol *msymbol : objfile->msymbols ())
5719 {
5720 QUIT;
5721
5722 if (completion_skip_symbol (mode, msymbol))
5723 continue;
5724
5725 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5726 sym_text, word);
5727
5728 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5729 sym_text, word);
5730 }
5731 }
5732 }
5733
5734 /* Add completions for all currently loaded symbol tables. */
5735 for (objfile *objfile : current_program_space->objfiles ())
5736 {
5737 for (compunit_symtab *cust : objfile->compunits ())
5738 add_symtab_completions (cust, tracker, mode, lookup_name,
5739 sym_text, word, code);
5740 }
5741
5742 /* Look through the partial symtabs for all symbols which begin by
5743 matching SYM_TEXT. Expand all CUs that you find to the list. */
5744 expand_symtabs_matching (NULL,
5745 lookup_name,
5746 NULL,
5747 [&] (compunit_symtab *symtab) /* expansion notify */
5748 {
5749 add_symtab_completions (symtab,
5750 tracker, mode, lookup_name,
5751 sym_text, word, code);
5752 },
5753 ALL_DOMAIN);
5754
5755 /* Search upwards from currently selected frame (so that we can
5756 complete on local vars). Also catch fields of types defined in
5757 this places which match our text string. Only complete on types
5758 visible from current context. */
5759
5760 b = get_selected_block (0);
5761 surrounding_static_block = block_static_block (b);
5762 surrounding_global_block = block_global_block (b);
5763 if (surrounding_static_block != NULL)
5764 while (b != surrounding_static_block)
5765 {
5766 QUIT;
5767
5768 ALL_BLOCK_SYMBOLS (b, iter, sym)
5769 {
5770 if (code == TYPE_CODE_UNDEF)
5771 {
5772 completion_list_add_symbol (tracker, sym, lookup_name,
5773 sym_text, word);
5774 completion_list_add_fields (tracker, sym, lookup_name,
5775 sym_text, word);
5776 }
5777 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5778 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5779 completion_list_add_symbol (tracker, sym, lookup_name,
5780 sym_text, word);
5781 }
5782
5783 /* Stop when we encounter an enclosing function. Do not stop for
5784 non-inlined functions - the locals of the enclosing function
5785 are in scope for a nested function. */
5786 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5787 break;
5788 b = BLOCK_SUPERBLOCK (b);
5789 }
5790
5791 /* Add fields from the file's types; symbols will be added below. */
5792
5793 if (code == TYPE_CODE_UNDEF)
5794 {
5795 if (surrounding_static_block != NULL)
5796 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5797 completion_list_add_fields (tracker, sym, lookup_name,
5798 sym_text, word);
5799
5800 if (surrounding_global_block != NULL)
5801 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5802 completion_list_add_fields (tracker, sym, lookup_name,
5803 sym_text, word);
5804 }
5805
5806 /* Skip macros if we are completing a struct tag -- arguable but
5807 usually what is expected. */
5808 if (current_language->la_macro_expansion == macro_expansion_c
5809 && code == TYPE_CODE_UNDEF)
5810 {
5811 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5812
5813 /* This adds a macro's name to the current completion list. */
5814 auto add_macro_name = [&] (const char *macro_name,
5815 const macro_definition *,
5816 macro_source_file *,
5817 int)
5818 {
5819 completion_list_add_name (tracker, language_c, macro_name,
5820 lookup_name, sym_text, word);
5821 };
5822
5823 /* Add any macros visible in the default scope. Note that this
5824 may yield the occasional wrong result, because an expression
5825 might be evaluated in a scope other than the default. For
5826 example, if the user types "break file:line if <TAB>", the
5827 resulting expression will be evaluated at "file:line" -- but
5828 at there does not seem to be a way to detect this at
5829 completion time. */
5830 scope = default_macro_scope ();
5831 if (scope)
5832 macro_for_each_in_scope (scope->file, scope->line,
5833 add_macro_name);
5834
5835 /* User-defined macros are always visible. */
5836 macro_for_each (macro_user_macros, add_macro_name);
5837 }
5838 }
5839
5840 void
5841 default_collect_symbol_completion_matches (completion_tracker &tracker,
5842 complete_symbol_mode mode,
5843 symbol_name_match_type name_match_type,
5844 const char *text, const char *word,
5845 enum type_code code)
5846 {
5847 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5848 name_match_type,
5849 text, word, "",
5850 code);
5851 }
5852
5853 /* Collect all symbols (regardless of class) which begin by matching
5854 TEXT. */
5855
5856 void
5857 collect_symbol_completion_matches (completion_tracker &tracker,
5858 complete_symbol_mode mode,
5859 symbol_name_match_type name_match_type,
5860 const char *text, const char *word)
5861 {
5862 current_language->la_collect_symbol_completion_matches (tracker, mode,
5863 name_match_type,
5864 text, word,
5865 TYPE_CODE_UNDEF);
5866 }
5867
5868 /* Like collect_symbol_completion_matches, but only collect
5869 STRUCT_DOMAIN symbols whose type code is CODE. */
5870
5871 void
5872 collect_symbol_completion_matches_type (completion_tracker &tracker,
5873 const char *text, const char *word,
5874 enum type_code code)
5875 {
5876 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5877 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5878
5879 gdb_assert (code == TYPE_CODE_UNION
5880 || code == TYPE_CODE_STRUCT
5881 || code == TYPE_CODE_ENUM);
5882 current_language->la_collect_symbol_completion_matches (tracker, mode,
5883 name_match_type,
5884 text, word, code);
5885 }
5886
5887 /* Like collect_symbol_completion_matches, but collects a list of
5888 symbols defined in all source files named SRCFILE. */
5889
5890 void
5891 collect_file_symbol_completion_matches (completion_tracker &tracker,
5892 complete_symbol_mode mode,
5893 symbol_name_match_type name_match_type,
5894 const char *text, const char *word,
5895 const char *srcfile)
5896 {
5897 /* The symbol we are completing on. Points in same buffer as text. */
5898 const char *sym_text;
5899
5900 /* Now look for the symbol we are supposed to complete on.
5901 FIXME: This should be language-specific. */
5902 if (mode == complete_symbol_mode::LINESPEC)
5903 sym_text = text;
5904 else
5905 {
5906 const char *p;
5907 char quote_found;
5908 const char *quote_pos = NULL;
5909
5910 /* First see if this is a quoted string. */
5911 quote_found = '\0';
5912 for (p = text; *p != '\0'; ++p)
5913 {
5914 if (quote_found != '\0')
5915 {
5916 if (*p == quote_found)
5917 /* Found close quote. */
5918 quote_found = '\0';
5919 else if (*p == '\\' && p[1] == quote_found)
5920 /* A backslash followed by the quote character
5921 doesn't end the string. */
5922 ++p;
5923 }
5924 else if (*p == '\'' || *p == '"')
5925 {
5926 quote_found = *p;
5927 quote_pos = p;
5928 }
5929 }
5930 if (quote_found == '\'')
5931 /* A string within single quotes can be a symbol, so complete on it. */
5932 sym_text = quote_pos + 1;
5933 else if (quote_found == '"')
5934 /* A double-quoted string is never a symbol, nor does it make sense
5935 to complete it any other way. */
5936 {
5937 return;
5938 }
5939 else
5940 {
5941 /* Not a quoted string. */
5942 sym_text = language_search_unquoted_string (text, p);
5943 }
5944 }
5945
5946 lookup_name_info lookup_name (sym_text, name_match_type, true);
5947
5948 /* Go through symtabs for SRCFILE and check the externs and statics
5949 for symbols which match. */
5950 iterate_over_symtabs (srcfile, [&] (symtab *s)
5951 {
5952 add_symtab_completions (SYMTAB_COMPUNIT (s),
5953 tracker, mode, lookup_name,
5954 sym_text, word, TYPE_CODE_UNDEF);
5955 return false;
5956 });
5957 }
5958
5959 /* A helper function for make_source_files_completion_list. It adds
5960 another file name to a list of possible completions, growing the
5961 list as necessary. */
5962
5963 static void
5964 add_filename_to_list (const char *fname, const char *text, const char *word,
5965 completion_list *list)
5966 {
5967 list->emplace_back (make_completion_match_str (fname, text, word));
5968 }
5969
5970 static int
5971 not_interesting_fname (const char *fname)
5972 {
5973 static const char *illegal_aliens[] = {
5974 "_globals_", /* inserted by coff_symtab_read */
5975 NULL
5976 };
5977 int i;
5978
5979 for (i = 0; illegal_aliens[i]; i++)
5980 {
5981 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5982 return 1;
5983 }
5984 return 0;
5985 }
5986
5987 /* An object of this type is passed as the user_data argument to
5988 map_partial_symbol_filenames. */
5989 struct add_partial_filename_data
5990 {
5991 struct filename_seen_cache *filename_seen_cache;
5992 const char *text;
5993 const char *word;
5994 int text_len;
5995 completion_list *list;
5996 };
5997
5998 /* A callback for map_partial_symbol_filenames. */
5999
6000 static void
6001 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6002 void *user_data)
6003 {
6004 struct add_partial_filename_data *data
6005 = (struct add_partial_filename_data *) user_data;
6006
6007 if (not_interesting_fname (filename))
6008 return;
6009 if (!data->filename_seen_cache->seen (filename)
6010 && filename_ncmp (filename, data->text, data->text_len) == 0)
6011 {
6012 /* This file matches for a completion; add it to the
6013 current list of matches. */
6014 add_filename_to_list (filename, data->text, data->word, data->list);
6015 }
6016 else
6017 {
6018 const char *base_name = lbasename (filename);
6019
6020 if (base_name != filename
6021 && !data->filename_seen_cache->seen (base_name)
6022 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6023 add_filename_to_list (base_name, data->text, data->word, data->list);
6024 }
6025 }
6026
6027 /* Return a list of all source files whose names begin with matching
6028 TEXT. The file names are looked up in the symbol tables of this
6029 program. */
6030
6031 completion_list
6032 make_source_files_completion_list (const char *text, const char *word)
6033 {
6034 size_t text_len = strlen (text);
6035 completion_list list;
6036 const char *base_name;
6037 struct add_partial_filename_data datum;
6038
6039 if (!have_full_symbols () && !have_partial_symbols ())
6040 return list;
6041
6042 filename_seen_cache filenames_seen;
6043
6044 for (objfile *objfile : current_program_space->objfiles ())
6045 {
6046 for (compunit_symtab *cu : objfile->compunits ())
6047 {
6048 for (symtab *s : compunit_filetabs (cu))
6049 {
6050 if (not_interesting_fname (s->filename))
6051 continue;
6052 if (!filenames_seen.seen (s->filename)
6053 && filename_ncmp (s->filename, text, text_len) == 0)
6054 {
6055 /* This file matches for a completion; add it to the current
6056 list of matches. */
6057 add_filename_to_list (s->filename, text, word, &list);
6058 }
6059 else
6060 {
6061 /* NOTE: We allow the user to type a base name when the
6062 debug info records leading directories, but not the other
6063 way around. This is what subroutines of breakpoint
6064 command do when they parse file names. */
6065 base_name = lbasename (s->filename);
6066 if (base_name != s->filename
6067 && !filenames_seen.seen (base_name)
6068 && filename_ncmp (base_name, text, text_len) == 0)
6069 add_filename_to_list (base_name, text, word, &list);
6070 }
6071 }
6072 }
6073 }
6074
6075 datum.filename_seen_cache = &filenames_seen;
6076 datum.text = text;
6077 datum.word = word;
6078 datum.text_len = text_len;
6079 datum.list = &list;
6080 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6081 0 /*need_fullname*/);
6082
6083 return list;
6084 }
6085 \f
6086 /* Track MAIN */
6087
6088 /* Return the "main_info" object for the current program space. If
6089 the object has not yet been created, create it and fill in some
6090 default values. */
6091
6092 static struct main_info *
6093 get_main_info (void)
6094 {
6095 struct main_info *info = main_progspace_key.get (current_program_space);
6096
6097 if (info == NULL)
6098 {
6099 /* It may seem strange to store the main name in the progspace
6100 and also in whatever objfile happens to see a main name in
6101 its debug info. The reason for this is mainly historical:
6102 gdb returned "main" as the name even if no function named
6103 "main" was defined the program; and this approach lets us
6104 keep compatibility. */
6105 info = main_progspace_key.emplace (current_program_space);
6106 }
6107
6108 return info;
6109 }
6110
6111 static void
6112 set_main_name (const char *name, enum language lang)
6113 {
6114 struct main_info *info = get_main_info ();
6115
6116 if (info->name_of_main != NULL)
6117 {
6118 xfree (info->name_of_main);
6119 info->name_of_main = NULL;
6120 info->language_of_main = language_unknown;
6121 }
6122 if (name != NULL)
6123 {
6124 info->name_of_main = xstrdup (name);
6125 info->language_of_main = lang;
6126 }
6127 }
6128
6129 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6130 accordingly. */
6131
6132 static void
6133 find_main_name (void)
6134 {
6135 const char *new_main_name;
6136
6137 /* First check the objfiles to see whether a debuginfo reader has
6138 picked up the appropriate main name. Historically the main name
6139 was found in a more or less random way; this approach instead
6140 relies on the order of objfile creation -- which still isn't
6141 guaranteed to get the correct answer, but is just probably more
6142 accurate. */
6143 for (objfile *objfile : current_program_space->objfiles ())
6144 {
6145 if (objfile->per_bfd->name_of_main != NULL)
6146 {
6147 set_main_name (objfile->per_bfd->name_of_main,
6148 objfile->per_bfd->language_of_main);
6149 return;
6150 }
6151 }
6152
6153 /* Try to see if the main procedure is in Ada. */
6154 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6155 be to add a new method in the language vector, and call this
6156 method for each language until one of them returns a non-empty
6157 name. This would allow us to remove this hard-coded call to
6158 an Ada function. It is not clear that this is a better approach
6159 at this point, because all methods need to be written in a way
6160 such that false positives never be returned. For instance, it is
6161 important that a method does not return a wrong name for the main
6162 procedure if the main procedure is actually written in a different
6163 language. It is easy to guaranty this with Ada, since we use a
6164 special symbol generated only when the main in Ada to find the name
6165 of the main procedure. It is difficult however to see how this can
6166 be guarantied for languages such as C, for instance. This suggests
6167 that order of call for these methods becomes important, which means
6168 a more complicated approach. */
6169 new_main_name = ada_main_name ();
6170 if (new_main_name != NULL)
6171 {
6172 set_main_name (new_main_name, language_ada);
6173 return;
6174 }
6175
6176 new_main_name = d_main_name ();
6177 if (new_main_name != NULL)
6178 {
6179 set_main_name (new_main_name, language_d);
6180 return;
6181 }
6182
6183 new_main_name = go_main_name ();
6184 if (new_main_name != NULL)
6185 {
6186 set_main_name (new_main_name, language_go);
6187 return;
6188 }
6189
6190 new_main_name = pascal_main_name ();
6191 if (new_main_name != NULL)
6192 {
6193 set_main_name (new_main_name, language_pascal);
6194 return;
6195 }
6196
6197 /* The languages above didn't identify the name of the main procedure.
6198 Fallback to "main". */
6199
6200 /* Try to find language for main in psymtabs. */
6201 enum language lang
6202 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6203 if (lang != language_unknown)
6204 {
6205 set_main_name ("main", lang);
6206 return;
6207 }
6208
6209 set_main_name ("main", language_unknown);
6210 }
6211
6212 /* See symtab.h. */
6213
6214 const char *
6215 main_name ()
6216 {
6217 struct main_info *info = get_main_info ();
6218
6219 if (info->name_of_main == NULL)
6220 find_main_name ();
6221
6222 return info->name_of_main;
6223 }
6224
6225 /* Return the language of the main function. If it is not known,
6226 return language_unknown. */
6227
6228 enum language
6229 main_language (void)
6230 {
6231 struct main_info *info = get_main_info ();
6232
6233 if (info->name_of_main == NULL)
6234 find_main_name ();
6235
6236 return info->language_of_main;
6237 }
6238
6239 /* Handle ``executable_changed'' events for the symtab module. */
6240
6241 static void
6242 symtab_observer_executable_changed (void)
6243 {
6244 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6245 set_main_name (NULL, language_unknown);
6246 }
6247
6248 /* Return 1 if the supplied producer string matches the ARM RealView
6249 compiler (armcc). */
6250
6251 bool
6252 producer_is_realview (const char *producer)
6253 {
6254 static const char *const arm_idents[] = {
6255 "ARM C Compiler, ADS",
6256 "Thumb C Compiler, ADS",
6257 "ARM C++ Compiler, ADS",
6258 "Thumb C++ Compiler, ADS",
6259 "ARM/Thumb C/C++ Compiler, RVCT",
6260 "ARM C/C++ Compiler, RVCT"
6261 };
6262 int i;
6263
6264 if (producer == NULL)
6265 return false;
6266
6267 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6268 if (startswith (producer, arm_idents[i]))
6269 return true;
6270
6271 return false;
6272 }
6273
6274 \f
6275
6276 /* The next index to hand out in response to a registration request. */
6277
6278 static int next_aclass_value = LOC_FINAL_VALUE;
6279
6280 /* The maximum number of "aclass" registrations we support. This is
6281 constant for convenience. */
6282 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6283
6284 /* The objects representing the various "aclass" values. The elements
6285 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6286 elements are those registered at gdb initialization time. */
6287
6288 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6289
6290 /* The globally visible pointer. This is separate from 'symbol_impl'
6291 so that it can be const. */
6292
6293 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6294
6295 /* Make sure we saved enough room in struct symbol. */
6296
6297 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6298
6299 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6300 is the ops vector associated with this index. This returns the new
6301 index, which should be used as the aclass_index field for symbols
6302 of this type. */
6303
6304 int
6305 register_symbol_computed_impl (enum address_class aclass,
6306 const struct symbol_computed_ops *ops)
6307 {
6308 int result = next_aclass_value++;
6309
6310 gdb_assert (aclass == LOC_COMPUTED);
6311 gdb_assert (result < MAX_SYMBOL_IMPLS);
6312 symbol_impl[result].aclass = aclass;
6313 symbol_impl[result].ops_computed = ops;
6314
6315 /* Sanity check OPS. */
6316 gdb_assert (ops != NULL);
6317 gdb_assert (ops->tracepoint_var_ref != NULL);
6318 gdb_assert (ops->describe_location != NULL);
6319 gdb_assert (ops->get_symbol_read_needs != NULL);
6320 gdb_assert (ops->read_variable != NULL);
6321
6322 return result;
6323 }
6324
6325 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6326 OPS is the ops vector associated with this index. This returns the
6327 new index, which should be used as the aclass_index field for symbols
6328 of this type. */
6329
6330 int
6331 register_symbol_block_impl (enum address_class aclass,
6332 const struct symbol_block_ops *ops)
6333 {
6334 int result = next_aclass_value++;
6335
6336 gdb_assert (aclass == LOC_BLOCK);
6337 gdb_assert (result < MAX_SYMBOL_IMPLS);
6338 symbol_impl[result].aclass = aclass;
6339 symbol_impl[result].ops_block = ops;
6340
6341 /* Sanity check OPS. */
6342 gdb_assert (ops != NULL);
6343 gdb_assert (ops->find_frame_base_location != NULL);
6344
6345 return result;
6346 }
6347
6348 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6349 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6350 this index. This returns the new index, which should be used as
6351 the aclass_index field for symbols of this type. */
6352
6353 int
6354 register_symbol_register_impl (enum address_class aclass,
6355 const struct symbol_register_ops *ops)
6356 {
6357 int result = next_aclass_value++;
6358
6359 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6360 gdb_assert (result < MAX_SYMBOL_IMPLS);
6361 symbol_impl[result].aclass = aclass;
6362 symbol_impl[result].ops_register = ops;
6363
6364 return result;
6365 }
6366
6367 /* Initialize elements of 'symbol_impl' for the constants in enum
6368 address_class. */
6369
6370 static void
6371 initialize_ordinary_address_classes (void)
6372 {
6373 int i;
6374
6375 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6376 symbol_impl[i].aclass = (enum address_class) i;
6377 }
6378
6379 \f
6380
6381 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6382
6383 void
6384 initialize_objfile_symbol (struct symbol *sym)
6385 {
6386 SYMBOL_OBJFILE_OWNED (sym) = 1;
6387 SYMBOL_SECTION (sym) = -1;
6388 }
6389
6390 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6391 obstack. */
6392
6393 struct symbol *
6394 allocate_symbol (struct objfile *objfile)
6395 {
6396 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6397
6398 initialize_objfile_symbol (result);
6399
6400 return result;
6401 }
6402
6403 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6404 obstack. */
6405
6406 struct template_symbol *
6407 allocate_template_symbol (struct objfile *objfile)
6408 {
6409 struct template_symbol *result;
6410
6411 result = new (&objfile->objfile_obstack) template_symbol ();
6412 initialize_objfile_symbol (result);
6413
6414 return result;
6415 }
6416
6417 /* See symtab.h. */
6418
6419 struct objfile *
6420 symbol_objfile (const struct symbol *symbol)
6421 {
6422 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6423 return SYMTAB_OBJFILE (symbol->owner.symtab);
6424 }
6425
6426 /* See symtab.h. */
6427
6428 struct gdbarch *
6429 symbol_arch (const struct symbol *symbol)
6430 {
6431 if (!SYMBOL_OBJFILE_OWNED (symbol))
6432 return symbol->owner.arch;
6433 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6434 }
6435
6436 /* See symtab.h. */
6437
6438 struct symtab *
6439 symbol_symtab (const struct symbol *symbol)
6440 {
6441 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6442 return symbol->owner.symtab;
6443 }
6444
6445 /* See symtab.h. */
6446
6447 void
6448 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6449 {
6450 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6451 symbol->owner.symtab = symtab;
6452 }
6453
6454 /* See symtab.h. */
6455
6456 CORE_ADDR
6457 get_symbol_address (const struct symbol *sym)
6458 {
6459 gdb_assert (sym->maybe_copied);
6460 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6461
6462 const char *linkage_name = sym->linkage_name ();
6463
6464 for (objfile *objfile : current_program_space->objfiles ())
6465 {
6466 if (objfile->separate_debug_objfile_backlink != nullptr)
6467 continue;
6468
6469 bound_minimal_symbol minsym
6470 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6471 if (minsym.minsym != nullptr)
6472 return BMSYMBOL_VALUE_ADDRESS (minsym);
6473 }
6474 return sym->value.address;
6475 }
6476
6477 /* See symtab.h. */
6478
6479 CORE_ADDR
6480 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6481 {
6482 gdb_assert (minsym->maybe_copied);
6483 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6484
6485 const char *linkage_name = minsym->linkage_name ();
6486
6487 for (objfile *objfile : current_program_space->objfiles ())
6488 {
6489 if (objfile->separate_debug_objfile_backlink == nullptr
6490 && (objfile->flags & OBJF_MAINLINE) != 0)
6491 {
6492 bound_minimal_symbol found
6493 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6494 if (found.minsym != nullptr)
6495 return BMSYMBOL_VALUE_ADDRESS (found);
6496 }
6497 }
6498 return minsym->value.address + objf->section_offsets[minsym->section];
6499 }
6500
6501 \f
6502
6503 /* Hold the sub-commands of 'info module'. */
6504
6505 static struct cmd_list_element *info_module_cmdlist = NULL;
6506
6507 /* See symtab.h. */
6508
6509 std::vector<module_symbol_search>
6510 search_module_symbols (const char *module_regexp, const char *regexp,
6511 const char *type_regexp, search_domain kind)
6512 {
6513 std::vector<module_symbol_search> results;
6514
6515 /* Search for all modules matching MODULE_REGEXP. */
6516 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6517 spec1.set_exclude_minsyms (true);
6518 std::vector<symbol_search> modules = spec1.search ();
6519
6520 /* Now search for all symbols of the required KIND matching the required
6521 regular expressions. We figure out which ones are in which modules
6522 below. */
6523 global_symbol_searcher spec2 (kind, regexp);
6524 spec2.set_symbol_type_regexp (type_regexp);
6525 spec2.set_exclude_minsyms (true);
6526 std::vector<symbol_search> symbols = spec2.search ();
6527
6528 /* Now iterate over all MODULES, checking to see which items from
6529 SYMBOLS are in each module. */
6530 for (const symbol_search &p : modules)
6531 {
6532 QUIT;
6533
6534 /* This is a module. */
6535 gdb_assert (p.symbol != nullptr);
6536
6537 std::string prefix = p.symbol->print_name ();
6538 prefix += "::";
6539
6540 for (const symbol_search &q : symbols)
6541 {
6542 if (q.symbol == nullptr)
6543 continue;
6544
6545 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6546 prefix.size ()) != 0)
6547 continue;
6548
6549 results.push_back ({p, q});
6550 }
6551 }
6552
6553 return results;
6554 }
6555
6556 /* Implement the core of both 'info module functions' and 'info module
6557 variables'. */
6558
6559 static void
6560 info_module_subcommand (bool quiet, const char *module_regexp,
6561 const char *regexp, const char *type_regexp,
6562 search_domain kind)
6563 {
6564 /* Print a header line. Don't build the header line bit by bit as this
6565 prevents internationalisation. */
6566 if (!quiet)
6567 {
6568 if (module_regexp == nullptr)
6569 {
6570 if (type_regexp == nullptr)
6571 {
6572 if (regexp == nullptr)
6573 printf_filtered ((kind == VARIABLES_DOMAIN
6574 ? _("All variables in all modules:")
6575 : _("All functions in all modules:")));
6576 else
6577 printf_filtered
6578 ((kind == VARIABLES_DOMAIN
6579 ? _("All variables matching regular expression"
6580 " \"%s\" in all modules:")
6581 : _("All functions matching regular expression"
6582 " \"%s\" in all modules:")),
6583 regexp);
6584 }
6585 else
6586 {
6587 if (regexp == nullptr)
6588 printf_filtered
6589 ((kind == VARIABLES_DOMAIN
6590 ? _("All variables with type matching regular "
6591 "expression \"%s\" in all modules:")
6592 : _("All functions with type matching regular "
6593 "expression \"%s\" in all modules:")),
6594 type_regexp);
6595 else
6596 printf_filtered
6597 ((kind == VARIABLES_DOMAIN
6598 ? _("All variables matching regular expression "
6599 "\"%s\",\n\twith type matching regular "
6600 "expression \"%s\" in all modules:")
6601 : _("All functions matching regular expression "
6602 "\"%s\",\n\twith type matching regular "
6603 "expression \"%s\" in all modules:")),
6604 regexp, type_regexp);
6605 }
6606 }
6607 else
6608 {
6609 if (type_regexp == nullptr)
6610 {
6611 if (regexp == nullptr)
6612 printf_filtered
6613 ((kind == VARIABLES_DOMAIN
6614 ? _("All variables in all modules matching regular "
6615 "expression \"%s\":")
6616 : _("All functions in all modules matching regular "
6617 "expression \"%s\":")),
6618 module_regexp);
6619 else
6620 printf_filtered
6621 ((kind == VARIABLES_DOMAIN
6622 ? _("All variables matching regular expression "
6623 "\"%s\",\n\tin all modules matching regular "
6624 "expression \"%s\":")
6625 : _("All functions matching regular expression "
6626 "\"%s\",\n\tin all modules matching regular "
6627 "expression \"%s\":")),
6628 regexp, module_regexp);
6629 }
6630 else
6631 {
6632 if (regexp == nullptr)
6633 printf_filtered
6634 ((kind == VARIABLES_DOMAIN
6635 ? _("All variables with type matching regular "
6636 "expression \"%s\"\n\tin all modules matching "
6637 "regular expression \"%s\":")
6638 : _("All functions with type matching regular "
6639 "expression \"%s\"\n\tin all modules matching "
6640 "regular expression \"%s\":")),
6641 type_regexp, module_regexp);
6642 else
6643 printf_filtered
6644 ((kind == VARIABLES_DOMAIN
6645 ? _("All variables matching regular expression "
6646 "\"%s\",\n\twith type matching regular expression "
6647 "\"%s\",\n\tin all modules matching regular "
6648 "expression \"%s\":")
6649 : _("All functions matching regular expression "
6650 "\"%s\",\n\twith type matching regular expression "
6651 "\"%s\",\n\tin all modules matching regular "
6652 "expression \"%s\":")),
6653 regexp, type_regexp, module_regexp);
6654 }
6655 }
6656 printf_filtered ("\n");
6657 }
6658
6659 /* Find all symbols of type KIND matching the given regular expressions
6660 along with the symbols for the modules in which those symbols
6661 reside. */
6662 std::vector<module_symbol_search> module_symbols
6663 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6664
6665 std::sort (module_symbols.begin (), module_symbols.end (),
6666 [] (const module_symbol_search &a, const module_symbol_search &b)
6667 {
6668 if (a.first < b.first)
6669 return true;
6670 else if (a.first == b.first)
6671 return a.second < b.second;
6672 else
6673 return false;
6674 });
6675
6676 const char *last_filename = "";
6677 const symbol *last_module_symbol = nullptr;
6678 for (const module_symbol_search &ms : module_symbols)
6679 {
6680 const symbol_search &p = ms.first;
6681 const symbol_search &q = ms.second;
6682
6683 gdb_assert (q.symbol != nullptr);
6684
6685 if (last_module_symbol != p.symbol)
6686 {
6687 printf_filtered ("\n");
6688 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6689 last_module_symbol = p.symbol;
6690 last_filename = "";
6691 }
6692
6693 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6694 last_filename);
6695 last_filename
6696 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6697 }
6698 }
6699
6700 /* Hold the option values for the 'info module .....' sub-commands. */
6701
6702 struct info_modules_var_func_options
6703 {
6704 bool quiet = false;
6705 char *type_regexp = nullptr;
6706 char *module_regexp = nullptr;
6707
6708 ~info_modules_var_func_options ()
6709 {
6710 xfree (type_regexp);
6711 xfree (module_regexp);
6712 }
6713 };
6714
6715 /* The options used by 'info module variables' and 'info module functions'
6716 commands. */
6717
6718 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6719 gdb::option::boolean_option_def<info_modules_var_func_options> {
6720 "q",
6721 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6722 nullptr, /* show_cmd_cb */
6723 nullptr /* set_doc */
6724 },
6725
6726 gdb::option::string_option_def<info_modules_var_func_options> {
6727 "t",
6728 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6729 nullptr, /* show_cmd_cb */
6730 nullptr /* set_doc */
6731 },
6732
6733 gdb::option::string_option_def<info_modules_var_func_options> {
6734 "m",
6735 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6736 nullptr, /* show_cmd_cb */
6737 nullptr /* set_doc */
6738 }
6739 };
6740
6741 /* Return the option group used by the 'info module ...' sub-commands. */
6742
6743 static inline gdb::option::option_def_group
6744 make_info_modules_var_func_options_def_group
6745 (info_modules_var_func_options *opts)
6746 {
6747 return {{info_modules_var_func_options_defs}, opts};
6748 }
6749
6750 /* Implements the 'info module functions' command. */
6751
6752 static void
6753 info_module_functions_command (const char *args, int from_tty)
6754 {
6755 info_modules_var_func_options opts;
6756 auto grp = make_info_modules_var_func_options_def_group (&opts);
6757 gdb::option::process_options
6758 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6759 if (args != nullptr && *args == '\0')
6760 args = nullptr;
6761
6762 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6763 opts.type_regexp, FUNCTIONS_DOMAIN);
6764 }
6765
6766 /* Implements the 'info module variables' command. */
6767
6768 static void
6769 info_module_variables_command (const char *args, int from_tty)
6770 {
6771 info_modules_var_func_options opts;
6772 auto grp = make_info_modules_var_func_options_def_group (&opts);
6773 gdb::option::process_options
6774 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6775 if (args != nullptr && *args == '\0')
6776 args = nullptr;
6777
6778 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6779 opts.type_regexp, VARIABLES_DOMAIN);
6780 }
6781
6782 /* Command completer for 'info module ...' sub-commands. */
6783
6784 static void
6785 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6786 completion_tracker &tracker,
6787 const char *text,
6788 const char * /* word */)
6789 {
6790
6791 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6792 if (gdb::option::complete_options
6793 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6794 return;
6795
6796 const char *word = advance_to_expression_complete_word_point (tracker, text);
6797 symbol_completer (ignore, tracker, text, word);
6798 }
6799
6800 \f
6801
6802 void _initialize_symtab ();
6803 void
6804 _initialize_symtab ()
6805 {
6806 cmd_list_element *c;
6807
6808 initialize_ordinary_address_classes ();
6809
6810 c = add_info ("variables", info_variables_command,
6811 info_print_args_help (_("\
6812 All global and static variable names or those matching REGEXPs.\n\
6813 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6814 Prints the global and static variables.\n"),
6815 _("global and static variables"),
6816 true));
6817 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6818 if (dbx_commands)
6819 {
6820 c = add_com ("whereis", class_info, info_variables_command,
6821 info_print_args_help (_("\
6822 All global and static variable names, or those matching REGEXPs.\n\
6823 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6824 Prints the global and static variables.\n"),
6825 _("global and static variables"),
6826 true));
6827 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6828 }
6829
6830 c = add_info ("functions", info_functions_command,
6831 info_print_args_help (_("\
6832 All function names or those matching REGEXPs.\n\
6833 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6834 Prints the functions.\n"),
6835 _("functions"),
6836 true));
6837 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6838
6839 c = add_info ("types", info_types_command, _("\
6840 All type names, or those matching REGEXP.\n\
6841 Usage: info types [-q] [REGEXP]\n\
6842 Print information about all types matching REGEXP, or all types if no\n\
6843 REGEXP is given. The optional flag -q disables printing of headers."));
6844 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6845
6846 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6847
6848 static std::string info_sources_help
6849 = gdb::option::build_help (_("\
6850 All source files in the program or those matching REGEXP.\n\
6851 Usage: info sources [OPTION]... [REGEXP]\n\
6852 By default, REGEXP is used to match anywhere in the filename.\n\
6853 \n\
6854 Options:\n\
6855 %OPTIONS%"),
6856 info_sources_opts);
6857
6858 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6859 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6860
6861 c = add_info ("modules", info_modules_command,
6862 _("All module names, or those matching REGEXP."));
6863 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6864
6865 add_basic_prefix_cmd ("module", class_info, _("\
6866 Print information about modules."),
6867 &info_module_cmdlist, "info module ",
6868 0, &infolist);
6869
6870 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6871 Display functions arranged by modules.\n\
6872 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6873 Print a summary of all functions within each Fortran module, grouped by\n\
6874 module and file. For each function the line on which the function is\n\
6875 defined is given along with the type signature and name of the function.\n\
6876 \n\
6877 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6878 listed. If MODREGEXP is provided then only functions in modules matching\n\
6879 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6880 type signature matches TYPEREGEXP are listed.\n\
6881 \n\
6882 The -q flag suppresses printing some header information."),
6883 &info_module_cmdlist);
6884 set_cmd_completer_handle_brkchars
6885 (c, info_module_var_func_command_completer);
6886
6887 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6888 Display variables arranged by modules.\n\
6889 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6890 Print a summary of all variables within each Fortran module, grouped by\n\
6891 module and file. For each variable the line on which the variable is\n\
6892 defined is given along with the type and name of the variable.\n\
6893 \n\
6894 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6895 listed. If MODREGEXP is provided then only variables in modules matching\n\
6896 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6897 type matches TYPEREGEXP are listed.\n\
6898 \n\
6899 The -q flag suppresses printing some header information."),
6900 &info_module_cmdlist);
6901 set_cmd_completer_handle_brkchars
6902 (c, info_module_var_func_command_completer);
6903
6904 add_com ("rbreak", class_breakpoint, rbreak_command,
6905 _("Set a breakpoint for all functions matching REGEXP."));
6906
6907 add_setshow_enum_cmd ("multiple-symbols", no_class,
6908 multiple_symbols_modes, &multiple_symbols_mode,
6909 _("\
6910 Set how the debugger handles ambiguities in expressions."), _("\
6911 Show how the debugger handles ambiguities in expressions."), _("\
6912 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6913 NULL, NULL, &setlist, &showlist);
6914
6915 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6916 &basenames_may_differ, _("\
6917 Set whether a source file may have multiple base names."), _("\
6918 Show whether a source file may have multiple base names."), _("\
6919 (A \"base name\" is the name of a file with the directory part removed.\n\
6920 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6921 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6922 before comparing them. Canonicalization is an expensive operation,\n\
6923 but it allows the same file be known by more than one base name.\n\
6924 If not set (the default), all source files are assumed to have just\n\
6925 one base name, and gdb will do file name comparisons more efficiently."),
6926 NULL, NULL,
6927 &setlist, &showlist);
6928
6929 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6930 _("Set debugging of symbol table creation."),
6931 _("Show debugging of symbol table creation."), _("\
6932 When enabled (non-zero), debugging messages are printed when building\n\
6933 symbol tables. A value of 1 (one) normally provides enough information.\n\
6934 A value greater than 1 provides more verbose information."),
6935 NULL,
6936 NULL,
6937 &setdebuglist, &showdebuglist);
6938
6939 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6940 _("\
6941 Set debugging of symbol lookup."), _("\
6942 Show debugging of symbol lookup."), _("\
6943 When enabled (non-zero), symbol lookups are logged."),
6944 NULL, NULL,
6945 &setdebuglist, &showdebuglist);
6946
6947 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6948 &new_symbol_cache_size,
6949 _("Set the size of the symbol cache."),
6950 _("Show the size of the symbol cache."), _("\
6951 The size of the symbol cache.\n\
6952 If zero then the symbol cache is disabled."),
6953 set_symbol_cache_size_handler, NULL,
6954 &maintenance_set_cmdlist,
6955 &maintenance_show_cmdlist);
6956
6957 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6958 _("Dump the symbol cache for each program space."),
6959 &maintenanceprintlist);
6960
6961 add_cmd ("symbol-cache-statistics", class_maintenance,
6962 maintenance_print_symbol_cache_statistics,
6963 _("Print symbol cache statistics for each program space."),
6964 &maintenanceprintlist);
6965
6966 add_cmd ("flush-symbol-cache", class_maintenance,
6967 maintenance_flush_symbol_cache,
6968 _("Flush the symbol cache for each program space."),
6969 &maintenancelist);
6970
6971 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6972 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6973 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6974 }