sim: cr16/d10v: move storage out of header
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 struct symtab *
335 compunit_primary_filetab (const struct compunit_symtab *cust)
336 {
337 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
338
339 /* The primary file symtab is the first one in the list. */
340 return COMPUNIT_FILETABS (cust);
341 }
342
343 /* See symtab.h. */
344
345 enum language
346 compunit_language (const struct compunit_symtab *cust)
347 {
348 struct symtab *symtab = compunit_primary_filetab (cust);
349
350 /* The language of the compunit symtab is the language of its primary
351 source file. */
352 return SYMTAB_LANGUAGE (symtab);
353 }
354
355 /* See symtab.h. */
356
357 bool
358 minimal_symbol::data_p () const
359 {
360 return type == mst_data
361 || type == mst_bss
362 || type == mst_abs
363 || type == mst_file_data
364 || type == mst_file_bss;
365 }
366
367 /* See symtab.h. */
368
369 bool
370 minimal_symbol::text_p () const
371 {
372 return type == mst_text
373 || type == mst_text_gnu_ifunc
374 || type == mst_data_gnu_ifunc
375 || type == mst_slot_got_plt
376 || type == mst_solib_trampoline
377 || type == mst_file_text;
378 }
379
380 /* See whether FILENAME matches SEARCH_NAME using the rule that we
381 advertise to the user. (The manual's description of linespecs
382 describes what we advertise). Returns true if they match, false
383 otherwise. */
384
385 bool
386 compare_filenames_for_search (const char *filename, const char *search_name)
387 {
388 int len = strlen (filename);
389 size_t search_len = strlen (search_name);
390
391 if (len < search_len)
392 return false;
393
394 /* The tail of FILENAME must match. */
395 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
396 return false;
397
398 /* Either the names must completely match, or the character
399 preceding the trailing SEARCH_NAME segment of FILENAME must be a
400 directory separator.
401
402 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
403 cannot match FILENAME "/path//dir/file.c" - as user has requested
404 absolute path. The sama applies for "c:\file.c" possibly
405 incorrectly hypothetically matching "d:\dir\c:\file.c".
406
407 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
408 compatible with SEARCH_NAME "file.c". In such case a compiler had
409 to put the "c:file.c" name into debug info. Such compatibility
410 works only on GDB built for DOS host. */
411 return (len == search_len
412 || (!IS_ABSOLUTE_PATH (search_name)
413 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
414 || (HAS_DRIVE_SPEC (filename)
415 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
416 }
417
418 /* Same as compare_filenames_for_search, but for glob-style patterns.
419 Heads up on the order of the arguments. They match the order of
420 compare_filenames_for_search, but it's the opposite of the order of
421 arguments to gdb_filename_fnmatch. */
422
423 bool
424 compare_glob_filenames_for_search (const char *filename,
425 const char *search_name)
426 {
427 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
428 all /s have to be explicitly specified. */
429 int file_path_elements = count_path_elements (filename);
430 int search_path_elements = count_path_elements (search_name);
431
432 if (search_path_elements > file_path_elements)
433 return false;
434
435 if (IS_ABSOLUTE_PATH (search_name))
436 {
437 return (search_path_elements == file_path_elements
438 && gdb_filename_fnmatch (search_name, filename,
439 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
440 }
441
442 {
443 const char *file_to_compare
444 = strip_leading_path_elements (filename,
445 file_path_elements - search_path_elements);
446
447 return gdb_filename_fnmatch (search_name, file_to_compare,
448 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
449 }
450 }
451
452 /* Check for a symtab of a specific name by searching some symtabs.
453 This is a helper function for callbacks of iterate_over_symtabs.
454
455 If NAME is not absolute, then REAL_PATH is NULL
456 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
457
458 The return value, NAME, REAL_PATH and CALLBACK are identical to the
459 `map_symtabs_matching_filename' method of quick_symbol_functions.
460
461 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
462 Each symtab within the specified compunit symtab is also searched.
463 AFTER_LAST is one past the last compunit symtab to search; NULL means to
464 search until the end of the list. */
465
466 bool
467 iterate_over_some_symtabs (const char *name,
468 const char *real_path,
469 struct compunit_symtab *first,
470 struct compunit_symtab *after_last,
471 gdb::function_view<bool (symtab *)> callback)
472 {
473 struct compunit_symtab *cust;
474 const char* base_name = lbasename (name);
475
476 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
477 {
478 for (symtab *s : compunit_filetabs (cust))
479 {
480 if (compare_filenames_for_search (s->filename, name))
481 {
482 if (callback (s))
483 return true;
484 continue;
485 }
486
487 /* Before we invoke realpath, which can get expensive when many
488 files are involved, do a quick comparison of the basenames. */
489 if (! basenames_may_differ
490 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
491 continue;
492
493 if (compare_filenames_for_search (symtab_to_fullname (s), name))
494 {
495 if (callback (s))
496 return true;
497 continue;
498 }
499
500 /* If the user gave us an absolute path, try to find the file in
501 this symtab and use its absolute path. */
502 if (real_path != NULL)
503 {
504 const char *fullname = symtab_to_fullname (s);
505
506 gdb_assert (IS_ABSOLUTE_PATH (real_path));
507 gdb_assert (IS_ABSOLUTE_PATH (name));
508 gdb::unique_xmalloc_ptr<char> fullname_real_path
509 = gdb_realpath (fullname);
510 fullname = fullname_real_path.get ();
511 if (FILENAME_CMP (real_path, fullname) == 0)
512 {
513 if (callback (s))
514 return true;
515 continue;
516 }
517 }
518 }
519 }
520
521 return false;
522 }
523
524 /* Check for a symtab of a specific name; first in symtabs, then in
525 psymtabs. *If* there is no '/' in the name, a match after a '/'
526 in the symtab filename will also work.
527
528 Calls CALLBACK with each symtab that is found. If CALLBACK returns
529 true, the search stops. */
530
531 void
532 iterate_over_symtabs (const char *name,
533 gdb::function_view<bool (symtab *)> callback)
534 {
535 gdb::unique_xmalloc_ptr<char> real_path;
536
537 /* Here we are interested in canonicalizing an absolute path, not
538 absolutizing a relative path. */
539 if (IS_ABSOLUTE_PATH (name))
540 {
541 real_path = gdb_realpath (name);
542 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
543 }
544
545 for (objfile *objfile : current_program_space->objfiles ())
546 {
547 if (iterate_over_some_symtabs (name, real_path.get (),
548 objfile->compunit_symtabs, NULL,
549 callback))
550 return;
551 }
552
553 /* Same search rules as above apply here, but now we look thru the
554 psymtabs. */
555
556 for (objfile *objfile : current_program_space->objfiles ())
557 {
558 if (objfile->sf
559 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
560 name,
561 real_path.get (),
562 callback))
563 return;
564 }
565 }
566
567 /* A wrapper for iterate_over_symtabs that returns the first matching
568 symtab, or NULL. */
569
570 struct symtab *
571 lookup_symtab (const char *name)
572 {
573 struct symtab *result = NULL;
574
575 iterate_over_symtabs (name, [&] (symtab *symtab)
576 {
577 result = symtab;
578 return true;
579 });
580
581 return result;
582 }
583
584 \f
585 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
586 full method name, which consist of the class name (from T), the unadorned
587 method name from METHOD_ID, and the signature for the specific overload,
588 specified by SIGNATURE_ID. Note that this function is g++ specific. */
589
590 char *
591 gdb_mangle_name (struct type *type, int method_id, int signature_id)
592 {
593 int mangled_name_len;
594 char *mangled_name;
595 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
596 struct fn_field *method = &f[signature_id];
597 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
598 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
599 const char *newname = type->name ();
600
601 /* Does the form of physname indicate that it is the full mangled name
602 of a constructor (not just the args)? */
603 int is_full_physname_constructor;
604
605 int is_constructor;
606 int is_destructor = is_destructor_name (physname);
607 /* Need a new type prefix. */
608 const char *const_prefix = method->is_const ? "C" : "";
609 const char *volatile_prefix = method->is_volatile ? "V" : "";
610 char buf[20];
611 int len = (newname == NULL ? 0 : strlen (newname));
612
613 /* Nothing to do if physname already contains a fully mangled v3 abi name
614 or an operator name. */
615 if ((physname[0] == '_' && physname[1] == 'Z')
616 || is_operator_name (field_name))
617 return xstrdup (physname);
618
619 is_full_physname_constructor = is_constructor_name (physname);
620
621 is_constructor = is_full_physname_constructor
622 || (newname && strcmp (field_name, newname) == 0);
623
624 if (!is_destructor)
625 is_destructor = (startswith (physname, "__dt"));
626
627 if (is_destructor || is_full_physname_constructor)
628 {
629 mangled_name = (char *) xmalloc (strlen (physname) + 1);
630 strcpy (mangled_name, physname);
631 return mangled_name;
632 }
633
634 if (len == 0)
635 {
636 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
637 }
638 else if (physname[0] == 't' || physname[0] == 'Q')
639 {
640 /* The physname for template and qualified methods already includes
641 the class name. */
642 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
643 newname = NULL;
644 len = 0;
645 }
646 else
647 {
648 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
649 volatile_prefix, len);
650 }
651 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
652 + strlen (buf) + len + strlen (physname) + 1);
653
654 mangled_name = (char *) xmalloc (mangled_name_len);
655 if (is_constructor)
656 mangled_name[0] = '\0';
657 else
658 strcpy (mangled_name, field_name);
659
660 strcat (mangled_name, buf);
661 /* If the class doesn't have a name, i.e. newname NULL, then we just
662 mangle it using 0 for the length of the class. Thus it gets mangled
663 as something starting with `::' rather than `classname::'. */
664 if (newname != NULL)
665 strcat (mangled_name, newname);
666
667 strcat (mangled_name, physname);
668 return (mangled_name);
669 }
670
671 /* See symtab.h. */
672
673 void
674 general_symbol_info::set_demangled_name (const char *name,
675 struct obstack *obstack)
676 {
677 if (language () == language_ada)
678 {
679 if (name == NULL)
680 {
681 ada_mangled = 0;
682 language_specific.obstack = obstack;
683 }
684 else
685 {
686 ada_mangled = 1;
687 language_specific.demangled_name = name;
688 }
689 }
690 else
691 language_specific.demangled_name = name;
692 }
693
694 \f
695 /* Initialize the language dependent portion of a symbol
696 depending upon the language for the symbol. */
697
698 void
699 general_symbol_info::set_language (enum language language,
700 struct obstack *obstack)
701 {
702 m_language = language;
703 if (language == language_cplus
704 || language == language_d
705 || language == language_go
706 || language == language_objc
707 || language == language_fortran)
708 {
709 set_demangled_name (NULL, obstack);
710 }
711 else if (language == language_ada)
712 {
713 gdb_assert (ada_mangled == 0);
714 language_specific.obstack = obstack;
715 }
716 else
717 {
718 memset (&language_specific, 0, sizeof (language_specific));
719 }
720 }
721
722 /* Functions to initialize a symbol's mangled name. */
723
724 /* Objects of this type are stored in the demangled name hash table. */
725 struct demangled_name_entry
726 {
727 demangled_name_entry (gdb::string_view mangled_name)
728 : mangled (mangled_name) {}
729
730 gdb::string_view mangled;
731 enum language language;
732 gdb::unique_xmalloc_ptr<char> demangled;
733 };
734
735 /* Hash function for the demangled name hash. */
736
737 static hashval_t
738 hash_demangled_name_entry (const void *data)
739 {
740 const struct demangled_name_entry *e
741 = (const struct demangled_name_entry *) data;
742
743 return fast_hash (e->mangled.data (), e->mangled.length ());
744 }
745
746 /* Equality function for the demangled name hash. */
747
748 static int
749 eq_demangled_name_entry (const void *a, const void *b)
750 {
751 const struct demangled_name_entry *da
752 = (const struct demangled_name_entry *) a;
753 const struct demangled_name_entry *db
754 = (const struct demangled_name_entry *) b;
755
756 return da->mangled == db->mangled;
757 }
758
759 static void
760 free_demangled_name_entry (void *data)
761 {
762 struct demangled_name_entry *e
763 = (struct demangled_name_entry *) data;
764
765 e->~demangled_name_entry();
766 }
767
768 /* Create the hash table used for demangled names. Each hash entry is
769 a pair of strings; one for the mangled name and one for the demangled
770 name. The entry is hashed via just the mangled name. */
771
772 static void
773 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
774 {
775 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
776 The hash table code will round this up to the next prime number.
777 Choosing a much larger table size wastes memory, and saves only about
778 1% in symbol reading. However, if the minsym count is already
779 initialized (e.g. because symbol name setting was deferred to
780 a background thread) we can initialize the hashtable with a count
781 based on that, because we will almost certainly have at least that
782 many entries. If we have a nonzero number but less than 256,
783 we still stay with 256 to have some space for psymbols, etc. */
784
785 /* htab will expand the table when it is 3/4th full, so we account for that
786 here. +2 to round up. */
787 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
788 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
789
790 per_bfd->demangled_names_hash.reset (htab_create_alloc
791 (count, hash_demangled_name_entry, eq_demangled_name_entry,
792 free_demangled_name_entry, xcalloc, xfree));
793 }
794
795 /* See symtab.h */
796
797 char *
798 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
799 const char *mangled)
800 {
801 char *demangled = NULL;
802 int i;
803
804 if (gsymbol->language () == language_unknown)
805 gsymbol->m_language = language_auto;
806
807 if (gsymbol->language () != language_auto)
808 {
809 const struct language_defn *lang = language_def (gsymbol->language ());
810
811 lang->sniff_from_mangled_name (mangled, &demangled);
812 return demangled;
813 }
814
815 for (i = language_unknown; i < nr_languages; ++i)
816 {
817 enum language l = (enum language) i;
818 const struct language_defn *lang = language_def (l);
819
820 if (lang->sniff_from_mangled_name (mangled, &demangled))
821 {
822 gsymbol->m_language = l;
823 return demangled;
824 }
825 }
826
827 return NULL;
828 }
829
830 /* Set both the mangled and demangled (if any) names for GSYMBOL based
831 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
832 objfile's obstack; but if COPY_NAME is 0 and if NAME is
833 NUL-terminated, then this function assumes that NAME is already
834 correctly saved (either permanently or with a lifetime tied to the
835 objfile), and it will not be copied.
836
837 The hash table corresponding to OBJFILE is used, and the memory
838 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
839 so the pointer can be discarded after calling this function. */
840
841 void
842 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
843 bool copy_name,
844 objfile_per_bfd_storage *per_bfd,
845 gdb::optional<hashval_t> hash)
846 {
847 struct demangled_name_entry **slot;
848
849 if (language () == language_ada)
850 {
851 /* In Ada, we do the symbol lookups using the mangled name, so
852 we can save some space by not storing the demangled name. */
853 if (!copy_name)
854 m_name = linkage_name.data ();
855 else
856 m_name = obstack_strndup (&per_bfd->storage_obstack,
857 linkage_name.data (),
858 linkage_name.length ());
859 set_demangled_name (NULL, &per_bfd->storage_obstack);
860
861 return;
862 }
863
864 if (per_bfd->demangled_names_hash == NULL)
865 create_demangled_names_hash (per_bfd);
866
867 struct demangled_name_entry entry (linkage_name);
868 if (!hash.has_value ())
869 hash = hash_demangled_name_entry (&entry);
870 slot = ((struct demangled_name_entry **)
871 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
872 &entry, *hash, INSERT));
873
874 /* The const_cast is safe because the only reason it is already
875 initialized is if we purposefully set it from a background
876 thread to avoid doing the work here. However, it is still
877 allocated from the heap and needs to be freed by us, just
878 like if we called symbol_find_demangled_name here. If this is
879 nullptr, we call symbol_find_demangled_name below, but we put
880 this smart pointer here to be sure that we don't leak this name. */
881 gdb::unique_xmalloc_ptr<char> demangled_name
882 (const_cast<char *> (language_specific.demangled_name));
883
884 /* If this name is not in the hash table, add it. */
885 if (*slot == NULL
886 /* A C version of the symbol may have already snuck into the table.
887 This happens to, e.g., main.init (__go_init_main). Cope. */
888 || (language () == language_go && (*slot)->demangled == nullptr))
889 {
890 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
891 to true if the string might not be nullterminated. We have to make
892 this copy because demangling needs a nullterminated string. */
893 gdb::string_view linkage_name_copy;
894 if (copy_name)
895 {
896 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
897 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
898 alloc_name[linkage_name.length ()] = '\0';
899
900 linkage_name_copy = gdb::string_view (alloc_name,
901 linkage_name.length ());
902 }
903 else
904 linkage_name_copy = linkage_name;
905
906 if (demangled_name.get () == nullptr)
907 demangled_name.reset
908 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
909
910 /* Suppose we have demangled_name==NULL, copy_name==0, and
911 linkage_name_copy==linkage_name. In this case, we already have the
912 mangled name saved, and we don't have a demangled name. So,
913 you might think we could save a little space by not recording
914 this in the hash table at all.
915
916 It turns out that it is actually important to still save such
917 an entry in the hash table, because storing this name gives
918 us better bcache hit rates for partial symbols. */
919 if (!copy_name)
920 {
921 *slot
922 = ((struct demangled_name_entry *)
923 obstack_alloc (&per_bfd->storage_obstack,
924 sizeof (demangled_name_entry)));
925 new (*slot) demangled_name_entry (linkage_name);
926 }
927 else
928 {
929 /* If we must copy the mangled name, put it directly after
930 the struct so we can have a single allocation. */
931 *slot
932 = ((struct demangled_name_entry *)
933 obstack_alloc (&per_bfd->storage_obstack,
934 sizeof (demangled_name_entry)
935 + linkage_name.length () + 1));
936 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
937 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
938 mangled_ptr [linkage_name.length ()] = '\0';
939 new (*slot) demangled_name_entry
940 (gdb::string_view (mangled_ptr, linkage_name.length ()));
941 }
942 (*slot)->demangled = std::move (demangled_name);
943 (*slot)->language = language ();
944 }
945 else if (language () == language_unknown || language () == language_auto)
946 m_language = (*slot)->language;
947
948 m_name = (*slot)->mangled.data ();
949 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
950 }
951
952 /* See symtab.h. */
953
954 const char *
955 general_symbol_info::natural_name () const
956 {
957 switch (language ())
958 {
959 case language_cplus:
960 case language_d:
961 case language_go:
962 case language_objc:
963 case language_fortran:
964 case language_rust:
965 if (language_specific.demangled_name != nullptr)
966 return language_specific.demangled_name;
967 break;
968 case language_ada:
969 return ada_decode_symbol (this);
970 default:
971 break;
972 }
973 return linkage_name ();
974 }
975
976 /* See symtab.h. */
977
978 const char *
979 general_symbol_info::demangled_name () const
980 {
981 const char *dem_name = NULL;
982
983 switch (language ())
984 {
985 case language_cplus:
986 case language_d:
987 case language_go:
988 case language_objc:
989 case language_fortran:
990 case language_rust:
991 dem_name = language_specific.demangled_name;
992 break;
993 case language_ada:
994 dem_name = ada_decode_symbol (this);
995 break;
996 default:
997 break;
998 }
999 return dem_name;
1000 }
1001
1002 /* See symtab.h. */
1003
1004 const char *
1005 general_symbol_info::search_name () const
1006 {
1007 if (language () == language_ada)
1008 return linkage_name ();
1009 else
1010 return natural_name ();
1011 }
1012
1013 /* See symtab.h. */
1014
1015 bool
1016 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1017 const lookup_name_info &name)
1018 {
1019 symbol_name_matcher_ftype *name_match
1020 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1021 return name_match (gsymbol->search_name (), name, NULL);
1022 }
1023
1024 \f
1025
1026 /* Return true if the two sections are the same, or if they could
1027 plausibly be copies of each other, one in an original object
1028 file and another in a separated debug file. */
1029
1030 bool
1031 matching_obj_sections (struct obj_section *obj_first,
1032 struct obj_section *obj_second)
1033 {
1034 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1035 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1036
1037 /* If they're the same section, then they match. */
1038 if (first == second)
1039 return true;
1040
1041 /* If either is NULL, give up. */
1042 if (first == NULL || second == NULL)
1043 return false;
1044
1045 /* This doesn't apply to absolute symbols. */
1046 if (first->owner == NULL || second->owner == NULL)
1047 return false;
1048
1049 /* If they're in the same object file, they must be different sections. */
1050 if (first->owner == second->owner)
1051 return false;
1052
1053 /* Check whether the two sections are potentially corresponding. They must
1054 have the same size, address, and name. We can't compare section indexes,
1055 which would be more reliable, because some sections may have been
1056 stripped. */
1057 if (bfd_section_size (first) != bfd_section_size (second))
1058 return false;
1059
1060 /* In-memory addresses may start at a different offset, relativize them. */
1061 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1062 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1063 return false;
1064
1065 if (bfd_section_name (first) == NULL
1066 || bfd_section_name (second) == NULL
1067 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1068 return false;
1069
1070 /* Otherwise check that they are in corresponding objfiles. */
1071
1072 struct objfile *obj = NULL;
1073 for (objfile *objfile : current_program_space->objfiles ())
1074 if (objfile->obfd == first->owner)
1075 {
1076 obj = objfile;
1077 break;
1078 }
1079 gdb_assert (obj != NULL);
1080
1081 if (obj->separate_debug_objfile != NULL
1082 && obj->separate_debug_objfile->obfd == second->owner)
1083 return true;
1084 if (obj->separate_debug_objfile_backlink != NULL
1085 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1086 return true;
1087
1088 return false;
1089 }
1090
1091 /* See symtab.h. */
1092
1093 void
1094 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1095 {
1096 struct bound_minimal_symbol msymbol;
1097
1098 /* If we know that this is not a text address, return failure. This is
1099 necessary because we loop based on texthigh and textlow, which do
1100 not include the data ranges. */
1101 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1102 if (msymbol.minsym && msymbol.minsym->data_p ())
1103 return;
1104
1105 for (objfile *objfile : current_program_space->objfiles ())
1106 {
1107 struct compunit_symtab *cust = NULL;
1108
1109 if (objfile->sf)
1110 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1111 pc, section, 0);
1112 if (cust)
1113 return;
1114 }
1115 }
1116 \f
1117 /* Hash function for the symbol cache. */
1118
1119 static unsigned int
1120 hash_symbol_entry (const struct objfile *objfile_context,
1121 const char *name, domain_enum domain)
1122 {
1123 unsigned int hash = (uintptr_t) objfile_context;
1124
1125 if (name != NULL)
1126 hash += htab_hash_string (name);
1127
1128 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1129 to map to the same slot. */
1130 if (domain == STRUCT_DOMAIN)
1131 hash += VAR_DOMAIN * 7;
1132 else
1133 hash += domain * 7;
1134
1135 return hash;
1136 }
1137
1138 /* Equality function for the symbol cache. */
1139
1140 static int
1141 eq_symbol_entry (const struct symbol_cache_slot *slot,
1142 const struct objfile *objfile_context,
1143 const char *name, domain_enum domain)
1144 {
1145 const char *slot_name;
1146 domain_enum slot_domain;
1147
1148 if (slot->state == SYMBOL_SLOT_UNUSED)
1149 return 0;
1150
1151 if (slot->objfile_context != objfile_context)
1152 return 0;
1153
1154 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1155 {
1156 slot_name = slot->value.not_found.name;
1157 slot_domain = slot->value.not_found.domain;
1158 }
1159 else
1160 {
1161 slot_name = slot->value.found.symbol->search_name ();
1162 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1163 }
1164
1165 /* NULL names match. */
1166 if (slot_name == NULL && name == NULL)
1167 {
1168 /* But there's no point in calling symbol_matches_domain in the
1169 SYMBOL_SLOT_FOUND case. */
1170 if (slot_domain != domain)
1171 return 0;
1172 }
1173 else if (slot_name != NULL && name != NULL)
1174 {
1175 /* It's important that we use the same comparison that was done
1176 the first time through. If the slot records a found symbol,
1177 then this means using the symbol name comparison function of
1178 the symbol's language with symbol->search_name (). See
1179 dictionary.c. It also means using symbol_matches_domain for
1180 found symbols. See block.c.
1181
1182 If the slot records a not-found symbol, then require a precise match.
1183 We could still be lax with whitespace like strcmp_iw though. */
1184
1185 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1186 {
1187 if (strcmp (slot_name, name) != 0)
1188 return 0;
1189 if (slot_domain != domain)
1190 return 0;
1191 }
1192 else
1193 {
1194 struct symbol *sym = slot->value.found.symbol;
1195 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1196
1197 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1198 return 0;
1199
1200 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1201 return 0;
1202 }
1203 }
1204 else
1205 {
1206 /* Only one name is NULL. */
1207 return 0;
1208 }
1209
1210 return 1;
1211 }
1212
1213 /* Given a cache of size SIZE, return the size of the struct (with variable
1214 length array) in bytes. */
1215
1216 static size_t
1217 symbol_cache_byte_size (unsigned int size)
1218 {
1219 return (sizeof (struct block_symbol_cache)
1220 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1221 }
1222
1223 /* Resize CACHE. */
1224
1225 static void
1226 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1227 {
1228 /* If there's no change in size, don't do anything.
1229 All caches have the same size, so we can just compare with the size
1230 of the global symbols cache. */
1231 if ((cache->global_symbols != NULL
1232 && cache->global_symbols->size == new_size)
1233 || (cache->global_symbols == NULL
1234 && new_size == 0))
1235 return;
1236
1237 destroy_block_symbol_cache (cache->global_symbols);
1238 destroy_block_symbol_cache (cache->static_symbols);
1239
1240 if (new_size == 0)
1241 {
1242 cache->global_symbols = NULL;
1243 cache->static_symbols = NULL;
1244 }
1245 else
1246 {
1247 size_t total_size = symbol_cache_byte_size (new_size);
1248
1249 cache->global_symbols
1250 = (struct block_symbol_cache *) xcalloc (1, total_size);
1251 cache->static_symbols
1252 = (struct block_symbol_cache *) xcalloc (1, total_size);
1253 cache->global_symbols->size = new_size;
1254 cache->static_symbols->size = new_size;
1255 }
1256 }
1257
1258 /* Return the symbol cache of PSPACE.
1259 Create one if it doesn't exist yet. */
1260
1261 static struct symbol_cache *
1262 get_symbol_cache (struct program_space *pspace)
1263 {
1264 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1265
1266 if (cache == NULL)
1267 {
1268 cache = symbol_cache_key.emplace (pspace);
1269 resize_symbol_cache (cache, symbol_cache_size);
1270 }
1271
1272 return cache;
1273 }
1274
1275 /* Set the size of the symbol cache in all program spaces. */
1276
1277 static void
1278 set_symbol_cache_size (unsigned int new_size)
1279 {
1280 for (struct program_space *pspace : program_spaces)
1281 {
1282 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1283
1284 /* The pspace could have been created but not have a cache yet. */
1285 if (cache != NULL)
1286 resize_symbol_cache (cache, new_size);
1287 }
1288 }
1289
1290 /* Called when symbol-cache-size is set. */
1291
1292 static void
1293 set_symbol_cache_size_handler (const char *args, int from_tty,
1294 struct cmd_list_element *c)
1295 {
1296 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1297 {
1298 /* Restore the previous value.
1299 This is the value the "show" command prints. */
1300 new_symbol_cache_size = symbol_cache_size;
1301
1302 error (_("Symbol cache size is too large, max is %u."),
1303 MAX_SYMBOL_CACHE_SIZE);
1304 }
1305 symbol_cache_size = new_symbol_cache_size;
1306
1307 set_symbol_cache_size (symbol_cache_size);
1308 }
1309
1310 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1311 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1312 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1313 failed (and thus this one will too), or NULL if the symbol is not present
1314 in the cache.
1315 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1316 can be used to save the result of a full lookup attempt. */
1317
1318 static struct block_symbol
1319 symbol_cache_lookup (struct symbol_cache *cache,
1320 struct objfile *objfile_context, enum block_enum block,
1321 const char *name, domain_enum domain,
1322 struct block_symbol_cache **bsc_ptr,
1323 struct symbol_cache_slot **slot_ptr)
1324 {
1325 struct block_symbol_cache *bsc;
1326 unsigned int hash;
1327 struct symbol_cache_slot *slot;
1328
1329 if (block == GLOBAL_BLOCK)
1330 bsc = cache->global_symbols;
1331 else
1332 bsc = cache->static_symbols;
1333 if (bsc == NULL)
1334 {
1335 *bsc_ptr = NULL;
1336 *slot_ptr = NULL;
1337 return {};
1338 }
1339
1340 hash = hash_symbol_entry (objfile_context, name, domain);
1341 slot = bsc->symbols + hash % bsc->size;
1342
1343 *bsc_ptr = bsc;
1344 *slot_ptr = slot;
1345
1346 if (eq_symbol_entry (slot, objfile_context, name, domain))
1347 {
1348 if (symbol_lookup_debug)
1349 fprintf_unfiltered (gdb_stdlog,
1350 "%s block symbol cache hit%s for %s, %s\n",
1351 block == GLOBAL_BLOCK ? "Global" : "Static",
1352 slot->state == SYMBOL_SLOT_NOT_FOUND
1353 ? " (not found)" : "",
1354 name, domain_name (domain));
1355 ++bsc->hits;
1356 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1357 return SYMBOL_LOOKUP_FAILED;
1358 return slot->value.found;
1359 }
1360
1361 /* Symbol is not present in the cache. */
1362
1363 if (symbol_lookup_debug)
1364 {
1365 fprintf_unfiltered (gdb_stdlog,
1366 "%s block symbol cache miss for %s, %s\n",
1367 block == GLOBAL_BLOCK ? "Global" : "Static",
1368 name, domain_name (domain));
1369 }
1370 ++bsc->misses;
1371 return {};
1372 }
1373
1374 /* Mark SYMBOL as found in SLOT.
1375 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1376 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1377 necessarily the objfile the symbol was found in. */
1378
1379 static void
1380 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1381 struct symbol_cache_slot *slot,
1382 struct objfile *objfile_context,
1383 struct symbol *symbol,
1384 const struct block *block)
1385 {
1386 if (bsc == NULL)
1387 return;
1388 if (slot->state != SYMBOL_SLOT_UNUSED)
1389 {
1390 ++bsc->collisions;
1391 symbol_cache_clear_slot (slot);
1392 }
1393 slot->state = SYMBOL_SLOT_FOUND;
1394 slot->objfile_context = objfile_context;
1395 slot->value.found.symbol = symbol;
1396 slot->value.found.block = block;
1397 }
1398
1399 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1402
1403 static void
1404 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1405 struct symbol_cache_slot *slot,
1406 struct objfile *objfile_context,
1407 const char *name, domain_enum domain)
1408 {
1409 if (bsc == NULL)
1410 return;
1411 if (slot->state != SYMBOL_SLOT_UNUSED)
1412 {
1413 ++bsc->collisions;
1414 symbol_cache_clear_slot (slot);
1415 }
1416 slot->state = SYMBOL_SLOT_NOT_FOUND;
1417 slot->objfile_context = objfile_context;
1418 slot->value.not_found.name = xstrdup (name);
1419 slot->value.not_found.domain = domain;
1420 }
1421
1422 /* Flush the symbol cache of PSPACE. */
1423
1424 static void
1425 symbol_cache_flush (struct program_space *pspace)
1426 {
1427 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1428 int pass;
1429
1430 if (cache == NULL)
1431 return;
1432 if (cache->global_symbols == NULL)
1433 {
1434 gdb_assert (symbol_cache_size == 0);
1435 gdb_assert (cache->static_symbols == NULL);
1436 return;
1437 }
1438
1439 /* If the cache is untouched since the last flush, early exit.
1440 This is important for performance during the startup of a program linked
1441 with 100s (or 1000s) of shared libraries. */
1442 if (cache->global_symbols->misses == 0
1443 && cache->static_symbols->misses == 0)
1444 return;
1445
1446 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1447 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1448
1449 for (pass = 0; pass < 2; ++pass)
1450 {
1451 struct block_symbol_cache *bsc
1452 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1453 unsigned int i;
1454
1455 for (i = 0; i < bsc->size; ++i)
1456 symbol_cache_clear_slot (&bsc->symbols[i]);
1457 }
1458
1459 cache->global_symbols->hits = 0;
1460 cache->global_symbols->misses = 0;
1461 cache->global_symbols->collisions = 0;
1462 cache->static_symbols->hits = 0;
1463 cache->static_symbols->misses = 0;
1464 cache->static_symbols->collisions = 0;
1465 }
1466
1467 /* Dump CACHE. */
1468
1469 static void
1470 symbol_cache_dump (const struct symbol_cache *cache)
1471 {
1472 int pass;
1473
1474 if (cache->global_symbols == NULL)
1475 {
1476 printf_filtered (" <disabled>\n");
1477 return;
1478 }
1479
1480 for (pass = 0; pass < 2; ++pass)
1481 {
1482 const struct block_symbol_cache *bsc
1483 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1484 unsigned int i;
1485
1486 if (pass == 0)
1487 printf_filtered ("Global symbols:\n");
1488 else
1489 printf_filtered ("Static symbols:\n");
1490
1491 for (i = 0; i < bsc->size; ++i)
1492 {
1493 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1494
1495 QUIT;
1496
1497 switch (slot->state)
1498 {
1499 case SYMBOL_SLOT_UNUSED:
1500 break;
1501 case SYMBOL_SLOT_NOT_FOUND:
1502 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1503 host_address_to_string (slot->objfile_context),
1504 slot->value.not_found.name,
1505 domain_name (slot->value.not_found.domain));
1506 break;
1507 case SYMBOL_SLOT_FOUND:
1508 {
1509 struct symbol *found = slot->value.found.symbol;
1510 const struct objfile *context = slot->objfile_context;
1511
1512 printf_filtered (" [%4u] = %s, %s %s\n", i,
1513 host_address_to_string (context),
1514 found->print_name (),
1515 domain_name (SYMBOL_DOMAIN (found)));
1516 break;
1517 }
1518 }
1519 }
1520 }
1521 }
1522
1523 /* The "mt print symbol-cache" command. */
1524
1525 static void
1526 maintenance_print_symbol_cache (const char *args, int from_tty)
1527 {
1528 for (struct program_space *pspace : program_spaces)
1529 {
1530 struct symbol_cache *cache;
1531
1532 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1533 pspace->num,
1534 pspace->symfile_object_file != NULL
1535 ? objfile_name (pspace->symfile_object_file)
1536 : "(no object file)");
1537
1538 /* If the cache hasn't been created yet, avoid creating one. */
1539 cache = symbol_cache_key.get (pspace);
1540 if (cache == NULL)
1541 printf_filtered (" <empty>\n");
1542 else
1543 symbol_cache_dump (cache);
1544 }
1545 }
1546
1547 /* The "mt flush-symbol-cache" command. */
1548
1549 static void
1550 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 {
1552 for (struct program_space *pspace : program_spaces)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 for (struct program_space *pspace : program_spaces)
1596 {
1597 struct symbol_cache *cache;
1598
1599 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1600 pspace->num,
1601 pspace->symfile_object_file != NULL
1602 ? objfile_name (pspace->symfile_object_file)
1603 : "(no object file)");
1604
1605 /* If the cache hasn't been created yet, avoid creating one. */
1606 cache = symbol_cache_key.get (pspace);
1607 if (cache == NULL)
1608 printf_filtered (" empty, no stats available\n");
1609 else
1610 symbol_cache_stats (cache);
1611 }
1612 }
1613
1614 /* This module's 'new_objfile' observer. */
1615
1616 static void
1617 symtab_new_objfile_observer (struct objfile *objfile)
1618 {
1619 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1620 symbol_cache_flush (current_program_space);
1621 }
1622
1623 /* This module's 'free_objfile' observer. */
1624
1625 static void
1626 symtab_free_objfile_observer (struct objfile *objfile)
1627 {
1628 symbol_cache_flush (objfile->pspace);
1629 }
1630 \f
1631 /* Debug symbols usually don't have section information. We need to dig that
1632 out of the minimal symbols and stash that in the debug symbol. */
1633
1634 void
1635 fixup_section (struct general_symbol_info *ginfo,
1636 CORE_ADDR addr, struct objfile *objfile)
1637 {
1638 struct minimal_symbol *msym;
1639
1640 /* First, check whether a minimal symbol with the same name exists
1641 and points to the same address. The address check is required
1642 e.g. on PowerPC64, where the minimal symbol for a function will
1643 point to the function descriptor, while the debug symbol will
1644 point to the actual function code. */
1645 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1646 objfile);
1647 if (msym)
1648 ginfo->section = MSYMBOL_SECTION (msym);
1649 else
1650 {
1651 /* Static, function-local variables do appear in the linker
1652 (minimal) symbols, but are frequently given names that won't
1653 be found via lookup_minimal_symbol(). E.g., it has been
1654 observed in frv-uclinux (ELF) executables that a static,
1655 function-local variable named "foo" might appear in the
1656 linker symbols as "foo.6" or "foo.3". Thus, there is no
1657 point in attempting to extend the lookup-by-name mechanism to
1658 handle this case due to the fact that there can be multiple
1659 names.
1660
1661 So, instead, search the section table when lookup by name has
1662 failed. The ``addr'' and ``endaddr'' fields may have already
1663 been relocated. If so, the relocation offset needs to be
1664 subtracted from these values when performing the comparison.
1665 We unconditionally subtract it, because, when no relocation
1666 has been performed, the value will simply be zero.
1667
1668 The address of the symbol whose section we're fixing up HAS
1669 NOT BEEN adjusted (relocated) yet. It can't have been since
1670 the section isn't yet known and knowing the section is
1671 necessary in order to add the correct relocation value. In
1672 other words, we wouldn't even be in this function (attempting
1673 to compute the section) if it were already known.
1674
1675 Note that it is possible to search the minimal symbols
1676 (subtracting the relocation value if necessary) to find the
1677 matching minimal symbol, but this is overkill and much less
1678 efficient. It is not necessary to find the matching minimal
1679 symbol, only its section.
1680
1681 Note that this technique (of doing a section table search)
1682 can fail when unrelocated section addresses overlap. For
1683 this reason, we still attempt a lookup by name prior to doing
1684 a search of the section table. */
1685
1686 struct obj_section *s;
1687 int fallback = -1;
1688
1689 ALL_OBJFILE_OSECTIONS (objfile, s)
1690 {
1691 int idx = s - objfile->sections;
1692 CORE_ADDR offset = objfile->section_offsets[idx];
1693
1694 if (fallback == -1)
1695 fallback = idx;
1696
1697 if (obj_section_addr (s) - offset <= addr
1698 && addr < obj_section_endaddr (s) - offset)
1699 {
1700 ginfo->section = idx;
1701 return;
1702 }
1703 }
1704
1705 /* If we didn't find the section, assume it is in the first
1706 section. If there is no allocated section, then it hardly
1707 matters what we pick, so just pick zero. */
1708 if (fallback == -1)
1709 ginfo->section = 0;
1710 else
1711 ginfo->section = fallback;
1712 }
1713 }
1714
1715 struct symbol *
1716 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1717 {
1718 CORE_ADDR addr;
1719
1720 if (!sym)
1721 return NULL;
1722
1723 if (!SYMBOL_OBJFILE_OWNED (sym))
1724 return sym;
1725
1726 /* We either have an OBJFILE, or we can get at it from the sym's
1727 symtab. Anything else is a bug. */
1728 gdb_assert (objfile || symbol_symtab (sym));
1729
1730 if (objfile == NULL)
1731 objfile = symbol_objfile (sym);
1732
1733 if (SYMBOL_OBJ_SECTION (objfile, sym))
1734 return sym;
1735
1736 /* We should have an objfile by now. */
1737 gdb_assert (objfile);
1738
1739 switch (SYMBOL_CLASS (sym))
1740 {
1741 case LOC_STATIC:
1742 case LOC_LABEL:
1743 addr = SYMBOL_VALUE_ADDRESS (sym);
1744 break;
1745 case LOC_BLOCK:
1746 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1747 break;
1748
1749 default:
1750 /* Nothing else will be listed in the minsyms -- no use looking
1751 it up. */
1752 return sym;
1753 }
1754
1755 fixup_section (sym, addr, objfile);
1756
1757 return sym;
1758 }
1759
1760 /* See symtab.h. */
1761
1762 demangle_for_lookup_info::demangle_for_lookup_info
1763 (const lookup_name_info &lookup_name, language lang)
1764 {
1765 demangle_result_storage storage;
1766
1767 if (lookup_name.ignore_parameters () && lang == language_cplus)
1768 {
1769 gdb::unique_xmalloc_ptr<char> without_params
1770 = cp_remove_params_if_any (lookup_name.c_str (),
1771 lookup_name.completion_mode ());
1772
1773 if (without_params != NULL)
1774 {
1775 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1776 m_demangled_name = demangle_for_lookup (without_params.get (),
1777 lang, storage);
1778 return;
1779 }
1780 }
1781
1782 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1783 m_demangled_name = lookup_name.c_str ();
1784 else
1785 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1786 lang, storage);
1787 }
1788
1789 /* See symtab.h. */
1790
1791 const lookup_name_info &
1792 lookup_name_info::match_any ()
1793 {
1794 /* Lookup any symbol that "" would complete. I.e., this matches all
1795 symbol names. */
1796 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1797 true);
1798
1799 return lookup_name;
1800 }
1801
1802 /* Compute the demangled form of NAME as used by the various symbol
1803 lookup functions. The result can either be the input NAME
1804 directly, or a pointer to a buffer owned by the STORAGE object.
1805
1806 For Ada, this function just returns NAME, unmodified.
1807 Normally, Ada symbol lookups are performed using the encoded name
1808 rather than the demangled name, and so it might seem to make sense
1809 for this function to return an encoded version of NAME.
1810 Unfortunately, we cannot do this, because this function is used in
1811 circumstances where it is not appropriate to try to encode NAME.
1812 For instance, when displaying the frame info, we demangle the name
1813 of each parameter, and then perform a symbol lookup inside our
1814 function using that demangled name. In Ada, certain functions
1815 have internally-generated parameters whose name contain uppercase
1816 characters. Encoding those name would result in those uppercase
1817 characters to become lowercase, and thus cause the symbol lookup
1818 to fail. */
1819
1820 const char *
1821 demangle_for_lookup (const char *name, enum language lang,
1822 demangle_result_storage &storage)
1823 {
1824 /* If we are using C++, D, or Go, demangle the name before doing a
1825 lookup, so we can always binary search. */
1826 if (lang == language_cplus)
1827 {
1828 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1829 if (demangled_name != NULL)
1830 return storage.set_malloc_ptr (demangled_name);
1831
1832 /* If we were given a non-mangled name, canonicalize it
1833 according to the language (so far only for C++). */
1834 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1835 if (canon != nullptr)
1836 return storage.set_malloc_ptr (std::move (canon));
1837 }
1838 else if (lang == language_d)
1839 {
1840 char *demangled_name = d_demangle (name, 0);
1841 if (demangled_name != NULL)
1842 return storage.set_malloc_ptr (demangled_name);
1843 }
1844 else if (lang == language_go)
1845 {
1846 char *demangled_name
1847 = language_def (language_go)->demangle_symbol (name, 0);
1848 if (demangled_name != NULL)
1849 return storage.set_malloc_ptr (demangled_name);
1850 }
1851
1852 return name;
1853 }
1854
1855 /* See symtab.h. */
1856
1857 unsigned int
1858 search_name_hash (enum language language, const char *search_name)
1859 {
1860 return language_def (language)->search_name_hash (search_name);
1861 }
1862
1863 /* See symtab.h.
1864
1865 This function (or rather its subordinates) have a bunch of loops and
1866 it would seem to be attractive to put in some QUIT's (though I'm not really
1867 sure whether it can run long enough to be really important). But there
1868 are a few calls for which it would appear to be bad news to quit
1869 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1870 that there is C++ code below which can error(), but that probably
1871 doesn't affect these calls since they are looking for a known
1872 variable and thus can probably assume it will never hit the C++
1873 code). */
1874
1875 struct block_symbol
1876 lookup_symbol_in_language (const char *name, const struct block *block,
1877 const domain_enum domain, enum language lang,
1878 struct field_of_this_result *is_a_field_of_this)
1879 {
1880 demangle_result_storage storage;
1881 const char *modified_name = demangle_for_lookup (name, lang, storage);
1882
1883 return lookup_symbol_aux (modified_name,
1884 symbol_name_match_type::FULL,
1885 block, domain, lang,
1886 is_a_field_of_this);
1887 }
1888
1889 /* See symtab.h. */
1890
1891 struct block_symbol
1892 lookup_symbol (const char *name, const struct block *block,
1893 domain_enum domain,
1894 struct field_of_this_result *is_a_field_of_this)
1895 {
1896 return lookup_symbol_in_language (name, block, domain,
1897 current_language->la_language,
1898 is_a_field_of_this);
1899 }
1900
1901 /* See symtab.h. */
1902
1903 struct block_symbol
1904 lookup_symbol_search_name (const char *search_name, const struct block *block,
1905 domain_enum domain)
1906 {
1907 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1908 block, domain, language_asm, NULL);
1909 }
1910
1911 /* See symtab.h. */
1912
1913 struct block_symbol
1914 lookup_language_this (const struct language_defn *lang,
1915 const struct block *block)
1916 {
1917 if (lang->name_of_this () == NULL || block == NULL)
1918 return {};
1919
1920 if (symbol_lookup_debug > 1)
1921 {
1922 struct objfile *objfile = block_objfile (block);
1923
1924 fprintf_unfiltered (gdb_stdlog,
1925 "lookup_language_this (%s, %s (objfile %s))",
1926 lang->name (), host_address_to_string (block),
1927 objfile_debug_name (objfile));
1928 }
1929
1930 while (block)
1931 {
1932 struct symbol *sym;
1933
1934 sym = block_lookup_symbol (block, lang->name_of_this (),
1935 symbol_name_match_type::SEARCH_NAME,
1936 VAR_DOMAIN);
1937 if (sym != NULL)
1938 {
1939 if (symbol_lookup_debug > 1)
1940 {
1941 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1942 sym->print_name (),
1943 host_address_to_string (sym),
1944 host_address_to_string (block));
1945 }
1946 return (struct block_symbol) {sym, block};
1947 }
1948 if (BLOCK_FUNCTION (block))
1949 break;
1950 block = BLOCK_SUPERBLOCK (block);
1951 }
1952
1953 if (symbol_lookup_debug > 1)
1954 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1955 return {};
1956 }
1957
1958 /* Given TYPE, a structure/union,
1959 return 1 if the component named NAME from the ultimate target
1960 structure/union is defined, otherwise, return 0. */
1961
1962 static int
1963 check_field (struct type *type, const char *name,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 int i;
1967
1968 /* The type may be a stub. */
1969 type = check_typedef (type);
1970
1971 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1972 {
1973 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1974
1975 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1976 {
1977 is_a_field_of_this->type = type;
1978 is_a_field_of_this->field = &type->field (i);
1979 return 1;
1980 }
1981 }
1982
1983 /* C++: If it was not found as a data field, then try to return it
1984 as a pointer to a method. */
1985
1986 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1987 {
1988 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1989 {
1990 is_a_field_of_this->type = type;
1991 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1992 return 1;
1993 }
1994 }
1995
1996 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1997 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1998 return 1;
1999
2000 return 0;
2001 }
2002
2003 /* Behave like lookup_symbol except that NAME is the natural name
2004 (e.g., demangled name) of the symbol that we're looking for. */
2005
2006 static struct block_symbol
2007 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2008 const struct block *block,
2009 const domain_enum domain, enum language language,
2010 struct field_of_this_result *is_a_field_of_this)
2011 {
2012 struct block_symbol result;
2013 const struct language_defn *langdef;
2014
2015 if (symbol_lookup_debug)
2016 {
2017 struct objfile *objfile = (block == nullptr
2018 ? nullptr : block_objfile (block));
2019
2020 fprintf_unfiltered (gdb_stdlog,
2021 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2022 name, host_address_to_string (block),
2023 objfile != NULL
2024 ? objfile_debug_name (objfile) : "NULL",
2025 domain_name (domain), language_str (language));
2026 }
2027
2028 /* Make sure we do something sensible with is_a_field_of_this, since
2029 the callers that set this parameter to some non-null value will
2030 certainly use it later. If we don't set it, the contents of
2031 is_a_field_of_this are undefined. */
2032 if (is_a_field_of_this != NULL)
2033 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2034
2035 /* Search specified block and its superiors. Don't search
2036 STATIC_BLOCK or GLOBAL_BLOCK. */
2037
2038 result = lookup_local_symbol (name, match_type, block, domain, language);
2039 if (result.symbol != NULL)
2040 {
2041 if (symbol_lookup_debug)
2042 {
2043 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2044 host_address_to_string (result.symbol));
2045 }
2046 return result;
2047 }
2048
2049 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2050 check to see if NAME is a field of `this'. */
2051
2052 langdef = language_def (language);
2053
2054 /* Don't do this check if we are searching for a struct. It will
2055 not be found by check_field, but will be found by other
2056 means. */
2057 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2058 {
2059 result = lookup_language_this (langdef, block);
2060
2061 if (result.symbol)
2062 {
2063 struct type *t = result.symbol->type;
2064
2065 /* I'm not really sure that type of this can ever
2066 be typedefed; just be safe. */
2067 t = check_typedef (t);
2068 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2069 t = TYPE_TARGET_TYPE (t);
2070
2071 if (t->code () != TYPE_CODE_STRUCT
2072 && t->code () != TYPE_CODE_UNION)
2073 error (_("Internal error: `%s' is not an aggregate"),
2074 langdef->name_of_this ());
2075
2076 if (check_field (t, name, is_a_field_of_this))
2077 {
2078 if (symbol_lookup_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "lookup_symbol_aux (...) = NULL\n");
2082 }
2083 return {};
2084 }
2085 }
2086 }
2087
2088 /* Now do whatever is appropriate for LANGUAGE to look
2089 up static and global variables. */
2090
2091 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2092 if (result.symbol != NULL)
2093 {
2094 if (symbol_lookup_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2097 host_address_to_string (result.symbol));
2098 }
2099 return result;
2100 }
2101
2102 /* Now search all static file-level symbols. Not strictly correct,
2103 but more useful than an error. */
2104
2105 result = lookup_static_symbol (name, domain);
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 result.symbol != NULL
2110 ? host_address_to_string (result.symbol)
2111 : "NULL");
2112 }
2113 return result;
2114 }
2115
2116 /* Check to see if the symbol is defined in BLOCK or its superiors.
2117 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2118
2119 static struct block_symbol
2120 lookup_local_symbol (const char *name,
2121 symbol_name_match_type match_type,
2122 const struct block *block,
2123 const domain_enum domain,
2124 enum language language)
2125 {
2126 struct symbol *sym;
2127 const struct block *static_block = block_static_block (block);
2128 const char *scope = block_scope (block);
2129
2130 /* Check if either no block is specified or it's a global block. */
2131
2132 if (static_block == NULL)
2133 return {};
2134
2135 while (block != static_block)
2136 {
2137 sym = lookup_symbol_in_block (name, match_type, block, domain);
2138 if (sym != NULL)
2139 return (struct block_symbol) {sym, block};
2140
2141 if (language == language_cplus || language == language_fortran)
2142 {
2143 struct block_symbol blocksym
2144 = cp_lookup_symbol_imports_or_template (scope, name, block,
2145 domain);
2146
2147 if (blocksym.symbol != NULL)
2148 return blocksym;
2149 }
2150
2151 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2152 break;
2153 block = BLOCK_SUPERBLOCK (block);
2154 }
2155
2156 /* We've reached the end of the function without finding a result. */
2157
2158 return {};
2159 }
2160
2161 /* See symtab.h. */
2162
2163 struct symbol *
2164 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2165 const struct block *block,
2166 const domain_enum domain)
2167 {
2168 struct symbol *sym;
2169
2170 if (symbol_lookup_debug > 1)
2171 {
2172 struct objfile *objfile = (block == nullptr
2173 ? nullptr : block_objfile (block));
2174
2175 fprintf_unfiltered (gdb_stdlog,
2176 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2177 name, host_address_to_string (block),
2178 objfile_debug_name (objfile),
2179 domain_name (domain));
2180 }
2181
2182 sym = block_lookup_symbol (block, name, match_type, domain);
2183 if (sym)
2184 {
2185 if (symbol_lookup_debug > 1)
2186 {
2187 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2188 host_address_to_string (sym));
2189 }
2190 return fixup_symbol_section (sym, NULL);
2191 }
2192
2193 if (symbol_lookup_debug > 1)
2194 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2195 return NULL;
2196 }
2197
2198 /* See symtab.h. */
2199
2200 struct block_symbol
2201 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2202 enum block_enum block_index,
2203 const char *name,
2204 const domain_enum domain)
2205 {
2206 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2207
2208 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2209 {
2210 struct block_symbol result
2211 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2212
2213 if (result.symbol != nullptr)
2214 return result;
2215 }
2216
2217 return {};
2218 }
2219
2220 /* Check to see if the symbol is defined in one of the OBJFILE's
2221 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2222 depending on whether or not we want to search global symbols or
2223 static symbols. */
2224
2225 static struct block_symbol
2226 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2227 enum block_enum block_index, const char *name,
2228 const domain_enum domain)
2229 {
2230 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2231
2232 if (symbol_lookup_debug > 1)
2233 {
2234 fprintf_unfiltered (gdb_stdlog,
2235 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2236 objfile_debug_name (objfile),
2237 block_index == GLOBAL_BLOCK
2238 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2239 name, domain_name (domain));
2240 }
2241
2242 struct block_symbol other;
2243 other.symbol = NULL;
2244 for (compunit_symtab *cust : objfile->compunits ())
2245 {
2246 const struct blockvector *bv;
2247 const struct block *block;
2248 struct block_symbol result;
2249
2250 bv = COMPUNIT_BLOCKVECTOR (cust);
2251 block = BLOCKVECTOR_BLOCK (bv, block_index);
2252 result.symbol = block_lookup_symbol_primary (block, name, domain);
2253 result.block = block;
2254 if (result.symbol == NULL)
2255 continue;
2256 if (best_symbol (result.symbol, domain))
2257 {
2258 other = result;
2259 break;
2260 }
2261 if (symbol_matches_domain (result.symbol->language (),
2262 SYMBOL_DOMAIN (result.symbol), domain))
2263 {
2264 struct symbol *better
2265 = better_symbol (other.symbol, result.symbol, domain);
2266 if (better != other.symbol)
2267 {
2268 other.symbol = better;
2269 other.block = block;
2270 }
2271 }
2272 }
2273
2274 if (other.symbol != NULL)
2275 {
2276 if (symbol_lookup_debug > 1)
2277 {
2278 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2279 host_address_to_string (other.symbol),
2280 host_address_to_string (other.block));
2281 }
2282 other.symbol = fixup_symbol_section (other.symbol, objfile);
2283 return other;
2284 }
2285
2286 if (symbol_lookup_debug > 1)
2287 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2288 return {};
2289 }
2290
2291 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2292 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2293 and all associated separate debug objfiles.
2294
2295 Normally we only look in OBJFILE, and not any separate debug objfiles
2296 because the outer loop will cause them to be searched too. This case is
2297 different. Here we're called from search_symbols where it will only
2298 call us for the objfile that contains a matching minsym. */
2299
2300 static struct block_symbol
2301 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2302 const char *linkage_name,
2303 domain_enum domain)
2304 {
2305 enum language lang = current_language->la_language;
2306 struct objfile *main_objfile;
2307
2308 demangle_result_storage storage;
2309 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2310
2311 if (objfile->separate_debug_objfile_backlink)
2312 main_objfile = objfile->separate_debug_objfile_backlink;
2313 else
2314 main_objfile = objfile;
2315
2316 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2317 {
2318 struct block_symbol result;
2319
2320 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2321 modified_name, domain);
2322 if (result.symbol == NULL)
2323 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2324 modified_name, domain);
2325 if (result.symbol != NULL)
2326 return result;
2327 }
2328
2329 return {};
2330 }
2331
2332 /* A helper function that throws an exception when a symbol was found
2333 in a psymtab but not in a symtab. */
2334
2335 static void ATTRIBUTE_NORETURN
2336 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2337 struct compunit_symtab *cust)
2338 {
2339 error (_("\
2340 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2341 %s may be an inlined function, or may be a template function\n \
2342 (if a template, try specifying an instantiation: %s<type>)."),
2343 block_index == GLOBAL_BLOCK ? "global" : "static",
2344 name,
2345 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2346 name, name);
2347 }
2348
2349 /* A helper function for various lookup routines that interfaces with
2350 the "quick" symbol table functions. */
2351
2352 static struct block_symbol
2353 lookup_symbol_via_quick_fns (struct objfile *objfile,
2354 enum block_enum block_index, const char *name,
2355 const domain_enum domain)
2356 {
2357 struct compunit_symtab *cust;
2358 const struct blockvector *bv;
2359 const struct block *block;
2360 struct block_symbol result;
2361
2362 if (!objfile->sf)
2363 return {};
2364
2365 if (symbol_lookup_debug > 1)
2366 {
2367 fprintf_unfiltered (gdb_stdlog,
2368 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2369 objfile_debug_name (objfile),
2370 block_index == GLOBAL_BLOCK
2371 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2372 name, domain_name (domain));
2373 }
2374
2375 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2376 if (cust == NULL)
2377 {
2378 if (symbol_lookup_debug > 1)
2379 {
2380 fprintf_unfiltered (gdb_stdlog,
2381 "lookup_symbol_via_quick_fns (...) = NULL\n");
2382 }
2383 return {};
2384 }
2385
2386 bv = COMPUNIT_BLOCKVECTOR (cust);
2387 block = BLOCKVECTOR_BLOCK (bv, block_index);
2388 result.symbol = block_lookup_symbol (block, name,
2389 symbol_name_match_type::FULL, domain);
2390 if (result.symbol == NULL)
2391 error_in_psymtab_expansion (block_index, name, cust);
2392
2393 if (symbol_lookup_debug > 1)
2394 {
2395 fprintf_unfiltered (gdb_stdlog,
2396 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2397 host_address_to_string (result.symbol),
2398 host_address_to_string (block));
2399 }
2400
2401 result.symbol = fixup_symbol_section (result.symbol, objfile);
2402 result.block = block;
2403 return result;
2404 }
2405
2406 /* See language.h. */
2407
2408 struct block_symbol
2409 language_defn::lookup_symbol_nonlocal (const char *name,
2410 const struct block *block,
2411 const domain_enum domain) const
2412 {
2413 struct block_symbol result;
2414
2415 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2416 the current objfile. Searching the current objfile first is useful
2417 for both matching user expectations as well as performance. */
2418
2419 result = lookup_symbol_in_static_block (name, block, domain);
2420 if (result.symbol != NULL)
2421 return result;
2422
2423 /* If we didn't find a definition for a builtin type in the static block,
2424 search for it now. This is actually the right thing to do and can be
2425 a massive performance win. E.g., when debugging a program with lots of
2426 shared libraries we could search all of them only to find out the
2427 builtin type isn't defined in any of them. This is common for types
2428 like "void". */
2429 if (domain == VAR_DOMAIN)
2430 {
2431 struct gdbarch *gdbarch;
2432
2433 if (block == NULL)
2434 gdbarch = target_gdbarch ();
2435 else
2436 gdbarch = block_gdbarch (block);
2437 result.symbol = language_lookup_primitive_type_as_symbol (this,
2438 gdbarch, name);
2439 result.block = NULL;
2440 if (result.symbol != NULL)
2441 return result;
2442 }
2443
2444 return lookup_global_symbol (name, block, domain);
2445 }
2446
2447 /* See symtab.h. */
2448
2449 struct block_symbol
2450 lookup_symbol_in_static_block (const char *name,
2451 const struct block *block,
2452 const domain_enum domain)
2453 {
2454 const struct block *static_block = block_static_block (block);
2455 struct symbol *sym;
2456
2457 if (static_block == NULL)
2458 return {};
2459
2460 if (symbol_lookup_debug)
2461 {
2462 struct objfile *objfile = (block == nullptr
2463 ? nullptr : block_objfile (block));
2464
2465 fprintf_unfiltered (gdb_stdlog,
2466 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2467 " %s)\n",
2468 name,
2469 host_address_to_string (block),
2470 objfile_debug_name (objfile),
2471 domain_name (domain));
2472 }
2473
2474 sym = lookup_symbol_in_block (name,
2475 symbol_name_match_type::FULL,
2476 static_block, domain);
2477 if (symbol_lookup_debug)
2478 {
2479 fprintf_unfiltered (gdb_stdlog,
2480 "lookup_symbol_in_static_block (...) = %s\n",
2481 sym != NULL ? host_address_to_string (sym) : "NULL");
2482 }
2483 return (struct block_symbol) {sym, static_block};
2484 }
2485
2486 /* Perform the standard symbol lookup of NAME in OBJFILE:
2487 1) First search expanded symtabs, and if not found
2488 2) Search the "quick" symtabs (partial or .gdb_index).
2489 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2490
2491 static struct block_symbol
2492 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2493 const char *name, const domain_enum domain)
2494 {
2495 struct block_symbol result;
2496
2497 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2498
2499 if (symbol_lookup_debug)
2500 {
2501 fprintf_unfiltered (gdb_stdlog,
2502 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2503 objfile_debug_name (objfile),
2504 block_index == GLOBAL_BLOCK
2505 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2506 name, domain_name (domain));
2507 }
2508
2509 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2510 name, domain);
2511 if (result.symbol != NULL)
2512 {
2513 if (symbol_lookup_debug)
2514 {
2515 fprintf_unfiltered (gdb_stdlog,
2516 "lookup_symbol_in_objfile (...) = %s"
2517 " (in symtabs)\n",
2518 host_address_to_string (result.symbol));
2519 }
2520 return result;
2521 }
2522
2523 result = lookup_symbol_via_quick_fns (objfile, block_index,
2524 name, domain);
2525 if (symbol_lookup_debug)
2526 {
2527 fprintf_unfiltered (gdb_stdlog,
2528 "lookup_symbol_in_objfile (...) = %s%s\n",
2529 result.symbol != NULL
2530 ? host_address_to_string (result.symbol)
2531 : "NULL",
2532 result.symbol != NULL ? " (via quick fns)" : "");
2533 }
2534 return result;
2535 }
2536
2537 /* Find the language for partial symbol with NAME. */
2538
2539 static enum language
2540 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2541 {
2542 for (objfile *objfile : current_program_space->objfiles ())
2543 {
2544 if (objfile->sf && objfile->sf->qf
2545 && objfile->sf->qf->lookup_global_symbol_language)
2546 continue;
2547 return language_unknown;
2548 }
2549
2550 for (objfile *objfile : current_program_space->objfiles ())
2551 {
2552 bool symbol_found_p;
2553 enum language lang
2554 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2555 &symbol_found_p);
2556 if (!symbol_found_p)
2557 continue;
2558 return lang;
2559 }
2560
2561 return language_unknown;
2562 }
2563
2564 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2565
2566 struct global_or_static_sym_lookup_data
2567 {
2568 /* The name of the symbol we are searching for. */
2569 const char *name;
2570
2571 /* The domain to use for our search. */
2572 domain_enum domain;
2573
2574 /* The block index in which to search. */
2575 enum block_enum block_index;
2576
2577 /* The field where the callback should store the symbol if found.
2578 It should be initialized to {NULL, NULL} before the search is started. */
2579 struct block_symbol result;
2580 };
2581
2582 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2583 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2584 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2585 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2586
2587 static int
2588 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2589 void *cb_data)
2590 {
2591 struct global_or_static_sym_lookup_data *data =
2592 (struct global_or_static_sym_lookup_data *) cb_data;
2593
2594 gdb_assert (data->result.symbol == NULL
2595 && data->result.block == NULL);
2596
2597 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2598 data->name, data->domain);
2599
2600 /* If we found a match, tell the iterator to stop. Otherwise,
2601 keep going. */
2602 return (data->result.symbol != NULL);
2603 }
2604
2605 /* This function contains the common code of lookup_{global,static}_symbol.
2606 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2607 the objfile to start the lookup in. */
2608
2609 static struct block_symbol
2610 lookup_global_or_static_symbol (const char *name,
2611 enum block_enum block_index,
2612 struct objfile *objfile,
2613 const domain_enum domain)
2614 {
2615 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2616 struct block_symbol result;
2617 struct global_or_static_sym_lookup_data lookup_data;
2618 struct block_symbol_cache *bsc;
2619 struct symbol_cache_slot *slot;
2620
2621 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2622 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2623
2624 /* First see if we can find the symbol in the cache.
2625 This works because we use the current objfile to qualify the lookup. */
2626 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2627 &bsc, &slot);
2628 if (result.symbol != NULL)
2629 {
2630 if (SYMBOL_LOOKUP_FAILED_P (result))
2631 return {};
2632 return result;
2633 }
2634
2635 /* Do a global search (of global blocks, heh). */
2636 if (result.symbol == NULL)
2637 {
2638 memset (&lookup_data, 0, sizeof (lookup_data));
2639 lookup_data.name = name;
2640 lookup_data.block_index = block_index;
2641 lookup_data.domain = domain;
2642 gdbarch_iterate_over_objfiles_in_search_order
2643 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2644 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2645 result = lookup_data.result;
2646 }
2647
2648 if (result.symbol != NULL)
2649 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2650 else
2651 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2652
2653 return result;
2654 }
2655
2656 /* See symtab.h. */
2657
2658 struct block_symbol
2659 lookup_static_symbol (const char *name, const domain_enum domain)
2660 {
2661 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2662 }
2663
2664 /* See symtab.h. */
2665
2666 struct block_symbol
2667 lookup_global_symbol (const char *name,
2668 const struct block *block,
2669 const domain_enum domain)
2670 {
2671 /* If a block was passed in, we want to search the corresponding
2672 global block first. This yields "more expected" behavior, and is
2673 needed to support 'FILENAME'::VARIABLE lookups. */
2674 const struct block *global_block = block_global_block (block);
2675 symbol *sym = NULL;
2676 if (global_block != nullptr)
2677 {
2678 sym = lookup_symbol_in_block (name,
2679 symbol_name_match_type::FULL,
2680 global_block, domain);
2681 if (sym != NULL && best_symbol (sym, domain))
2682 return { sym, global_block };
2683 }
2684
2685 struct objfile *objfile = nullptr;
2686 if (block != nullptr)
2687 {
2688 objfile = block_objfile (block);
2689 if (objfile->separate_debug_objfile_backlink != nullptr)
2690 objfile = objfile->separate_debug_objfile_backlink;
2691 }
2692
2693 block_symbol bs
2694 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2695 if (better_symbol (sym, bs.symbol, domain) == sym)
2696 return { sym, global_block };
2697 else
2698 return bs;
2699 }
2700
2701 bool
2702 symbol_matches_domain (enum language symbol_language,
2703 domain_enum symbol_domain,
2704 domain_enum domain)
2705 {
2706 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2707 Similarly, any Ada type declaration implicitly defines a typedef. */
2708 if (symbol_language == language_cplus
2709 || symbol_language == language_d
2710 || symbol_language == language_ada
2711 || symbol_language == language_rust)
2712 {
2713 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2714 && symbol_domain == STRUCT_DOMAIN)
2715 return true;
2716 }
2717 /* For all other languages, strict match is required. */
2718 return (symbol_domain == domain);
2719 }
2720
2721 /* See symtab.h. */
2722
2723 struct type *
2724 lookup_transparent_type (const char *name)
2725 {
2726 return current_language->lookup_transparent_type (name);
2727 }
2728
2729 /* A helper for basic_lookup_transparent_type that interfaces with the
2730 "quick" symbol table functions. */
2731
2732 static struct type *
2733 basic_lookup_transparent_type_quick (struct objfile *objfile,
2734 enum block_enum block_index,
2735 const char *name)
2736 {
2737 struct compunit_symtab *cust;
2738 const struct blockvector *bv;
2739 const struct block *block;
2740 struct symbol *sym;
2741
2742 if (!objfile->sf)
2743 return NULL;
2744 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2745 STRUCT_DOMAIN);
2746 if (cust == NULL)
2747 return NULL;
2748
2749 bv = COMPUNIT_BLOCKVECTOR (cust);
2750 block = BLOCKVECTOR_BLOCK (bv, block_index);
2751 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2752 block_find_non_opaque_type, NULL);
2753 if (sym == NULL)
2754 error_in_psymtab_expansion (block_index, name, cust);
2755 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2756 return SYMBOL_TYPE (sym);
2757 }
2758
2759 /* Subroutine of basic_lookup_transparent_type to simplify it.
2760 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2761 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2762
2763 static struct type *
2764 basic_lookup_transparent_type_1 (struct objfile *objfile,
2765 enum block_enum block_index,
2766 const char *name)
2767 {
2768 const struct blockvector *bv;
2769 const struct block *block;
2770 const struct symbol *sym;
2771
2772 for (compunit_symtab *cust : objfile->compunits ())
2773 {
2774 bv = COMPUNIT_BLOCKVECTOR (cust);
2775 block = BLOCKVECTOR_BLOCK (bv, block_index);
2776 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2777 block_find_non_opaque_type, NULL);
2778 if (sym != NULL)
2779 {
2780 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2781 return SYMBOL_TYPE (sym);
2782 }
2783 }
2784
2785 return NULL;
2786 }
2787
2788 /* The standard implementation of lookup_transparent_type. This code
2789 was modeled on lookup_symbol -- the parts not relevant to looking
2790 up types were just left out. In particular it's assumed here that
2791 types are available in STRUCT_DOMAIN and only in file-static or
2792 global blocks. */
2793
2794 struct type *
2795 basic_lookup_transparent_type (const char *name)
2796 {
2797 struct type *t;
2798
2799 /* Now search all the global symbols. Do the symtab's first, then
2800 check the psymtab's. If a psymtab indicates the existence
2801 of the desired name as a global, then do psymtab-to-symtab
2802 conversion on the fly and return the found symbol. */
2803
2804 for (objfile *objfile : current_program_space->objfiles ())
2805 {
2806 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 for (objfile *objfile : current_program_space->objfiles ())
2812 {
2813 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2814 if (t)
2815 return t;
2816 }
2817
2818 /* Now search the static file-level symbols.
2819 Not strictly correct, but more useful than an error.
2820 Do the symtab's first, then
2821 check the psymtab's. If a psymtab indicates the existence
2822 of the desired name as a file-level static, then do psymtab-to-symtab
2823 conversion on the fly and return the found symbol. */
2824
2825 for (objfile *objfile : current_program_space->objfiles ())
2826 {
2827 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2828 if (t)
2829 return t;
2830 }
2831
2832 for (objfile *objfile : current_program_space->objfiles ())
2833 {
2834 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2835 if (t)
2836 return t;
2837 }
2838
2839 return (struct type *) 0;
2840 }
2841
2842 /* See symtab.h. */
2843
2844 bool
2845 iterate_over_symbols (const struct block *block,
2846 const lookup_name_info &name,
2847 const domain_enum domain,
2848 gdb::function_view<symbol_found_callback_ftype> callback)
2849 {
2850 struct block_iterator iter;
2851 struct symbol *sym;
2852
2853 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2854 {
2855 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2856 {
2857 struct block_symbol block_sym = {sym, block};
2858
2859 if (!callback (&block_sym))
2860 return false;
2861 }
2862 }
2863 return true;
2864 }
2865
2866 /* See symtab.h. */
2867
2868 bool
2869 iterate_over_symbols_terminated
2870 (const struct block *block,
2871 const lookup_name_info &name,
2872 const domain_enum domain,
2873 gdb::function_view<symbol_found_callback_ftype> callback)
2874 {
2875 if (!iterate_over_symbols (block, name, domain, callback))
2876 return false;
2877 struct block_symbol block_sym = {nullptr, block};
2878 return callback (&block_sym);
2879 }
2880
2881 /* Find the compunit symtab associated with PC and SECTION.
2882 This will read in debug info as necessary. */
2883
2884 struct compunit_symtab *
2885 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2886 {
2887 struct compunit_symtab *best_cust = NULL;
2888 CORE_ADDR best_cust_range = 0;
2889 struct bound_minimal_symbol msymbol;
2890
2891 /* If we know that this is not a text address, return failure. This is
2892 necessary because we loop based on the block's high and low code
2893 addresses, which do not include the data ranges, and because
2894 we call find_pc_sect_psymtab which has a similar restriction based
2895 on the partial_symtab's texthigh and textlow. */
2896 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2897 if (msymbol.minsym && msymbol.minsym->data_p ())
2898 return NULL;
2899
2900 /* Search all symtabs for the one whose file contains our address, and which
2901 is the smallest of all the ones containing the address. This is designed
2902 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2903 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2904 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2905
2906 This happens for native ecoff format, where code from included files
2907 gets its own symtab. The symtab for the included file should have
2908 been read in already via the dependency mechanism.
2909 It might be swifter to create several symtabs with the same name
2910 like xcoff does (I'm not sure).
2911
2912 It also happens for objfiles that have their functions reordered.
2913 For these, the symtab we are looking for is not necessarily read in. */
2914
2915 for (objfile *obj_file : current_program_space->objfiles ())
2916 {
2917 for (compunit_symtab *cust : obj_file->compunits ())
2918 {
2919 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2920 const struct block *global_block
2921 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2922 CORE_ADDR start = BLOCK_START (global_block);
2923 CORE_ADDR end = BLOCK_END (global_block);
2924 bool in_range_p = start <= pc && pc < end;
2925 if (!in_range_p)
2926 continue;
2927
2928 if (BLOCKVECTOR_MAP (bv))
2929 {
2930 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2931 continue;
2932
2933 return cust;
2934 }
2935
2936 CORE_ADDR range = end - start;
2937 if (best_cust != nullptr
2938 && range >= best_cust_range)
2939 /* Cust doesn't have a smaller range than best_cust, skip it. */
2940 continue;
2941
2942 /* For an objfile that has its functions reordered,
2943 find_pc_psymtab will find the proper partial symbol table
2944 and we simply return its corresponding symtab. */
2945 /* In order to better support objfiles that contain both
2946 stabs and coff debugging info, we continue on if a psymtab
2947 can't be found. */
2948 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2949 {
2950 struct compunit_symtab *result;
2951
2952 result
2953 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2954 msymbol,
2955 pc,
2956 section,
2957 0);
2958 if (result != NULL)
2959 return result;
2960 }
2961
2962 if (section != 0)
2963 {
2964 struct symbol *sym = NULL;
2965 struct block_iterator iter;
2966
2967 for (int b_index = GLOBAL_BLOCK;
2968 b_index <= STATIC_BLOCK && sym == NULL;
2969 ++b_index)
2970 {
2971 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2972 ALL_BLOCK_SYMBOLS (b, iter, sym)
2973 {
2974 fixup_symbol_section (sym, obj_file);
2975 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2976 sym),
2977 section))
2978 break;
2979 }
2980 }
2981 if (sym == NULL)
2982 continue; /* No symbol in this symtab matches
2983 section. */
2984 }
2985
2986 /* Cust is best found sofar, save it. */
2987 best_cust = cust;
2988 best_cust_range = range;
2989 }
2990 }
2991
2992 if (best_cust != NULL)
2993 return best_cust;
2994
2995 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2996
2997 for (objfile *objf : current_program_space->objfiles ())
2998 {
2999 struct compunit_symtab *result;
3000
3001 if (!objf->sf)
3002 continue;
3003 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3004 msymbol,
3005 pc, section,
3006 1);
3007 if (result != NULL)
3008 return result;
3009 }
3010
3011 return NULL;
3012 }
3013
3014 /* Find the compunit symtab associated with PC.
3015 This will read in debug info as necessary.
3016 Backward compatibility, no section. */
3017
3018 struct compunit_symtab *
3019 find_pc_compunit_symtab (CORE_ADDR pc)
3020 {
3021 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3022 }
3023
3024 /* See symtab.h. */
3025
3026 struct symbol *
3027 find_symbol_at_address (CORE_ADDR address)
3028 {
3029 /* A helper function to search a given symtab for a symbol matching
3030 ADDR. */
3031 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3032 {
3033 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3034
3035 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3036 {
3037 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3038 struct block_iterator iter;
3039 struct symbol *sym;
3040
3041 ALL_BLOCK_SYMBOLS (b, iter, sym)
3042 {
3043 if (SYMBOL_CLASS (sym) == LOC_STATIC
3044 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3045 return sym;
3046 }
3047 }
3048 return nullptr;
3049 };
3050
3051 for (objfile *objfile : current_program_space->objfiles ())
3052 {
3053 /* If this objfile doesn't have "quick" functions, then it may
3054 have been read with -readnow, in which case we need to search
3055 the symtabs directly. */
3056 if (objfile->sf == NULL
3057 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3058 {
3059 for (compunit_symtab *symtab : objfile->compunits ())
3060 {
3061 struct symbol *sym = search_symtab (symtab, address);
3062 if (sym != nullptr)
3063 return sym;
3064 }
3065 }
3066 else
3067 {
3068 struct compunit_symtab *symtab
3069 = objfile->sf->qf->find_compunit_symtab_by_address (objfile,
3070 address);
3071 if (symtab != NULL)
3072 {
3073 struct symbol *sym = search_symtab (symtab, address);
3074 if (sym != nullptr)
3075 return sym;
3076 }
3077 }
3078 }
3079
3080 return NULL;
3081 }
3082
3083 \f
3084
3085 /* Find the source file and line number for a given PC value and SECTION.
3086 Return a structure containing a symtab pointer, a line number,
3087 and a pc range for the entire source line.
3088 The value's .pc field is NOT the specified pc.
3089 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3090 use the line that ends there. Otherwise, in that case, the line
3091 that begins there is used. */
3092
3093 /* The big complication here is that a line may start in one file, and end just
3094 before the start of another file. This usually occurs when you #include
3095 code in the middle of a subroutine. To properly find the end of a line's PC
3096 range, we must search all symtabs associated with this compilation unit, and
3097 find the one whose first PC is closer than that of the next line in this
3098 symtab. */
3099
3100 struct symtab_and_line
3101 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3102 {
3103 struct compunit_symtab *cust;
3104 struct linetable *l;
3105 int len;
3106 struct linetable_entry *item;
3107 const struct blockvector *bv;
3108 struct bound_minimal_symbol msymbol;
3109
3110 /* Info on best line seen so far, and where it starts, and its file. */
3111
3112 struct linetable_entry *best = NULL;
3113 CORE_ADDR best_end = 0;
3114 struct symtab *best_symtab = 0;
3115
3116 /* Store here the first line number
3117 of a file which contains the line at the smallest pc after PC.
3118 If we don't find a line whose range contains PC,
3119 we will use a line one less than this,
3120 with a range from the start of that file to the first line's pc. */
3121 struct linetable_entry *alt = NULL;
3122
3123 /* Info on best line seen in this file. */
3124
3125 struct linetable_entry *prev;
3126
3127 /* If this pc is not from the current frame,
3128 it is the address of the end of a call instruction.
3129 Quite likely that is the start of the following statement.
3130 But what we want is the statement containing the instruction.
3131 Fudge the pc to make sure we get that. */
3132
3133 /* It's tempting to assume that, if we can't find debugging info for
3134 any function enclosing PC, that we shouldn't search for line
3135 number info, either. However, GAS can emit line number info for
3136 assembly files --- very helpful when debugging hand-written
3137 assembly code. In such a case, we'd have no debug info for the
3138 function, but we would have line info. */
3139
3140 if (notcurrent)
3141 pc -= 1;
3142
3143 /* elz: added this because this function returned the wrong
3144 information if the pc belongs to a stub (import/export)
3145 to call a shlib function. This stub would be anywhere between
3146 two functions in the target, and the line info was erroneously
3147 taken to be the one of the line before the pc. */
3148
3149 /* RT: Further explanation:
3150
3151 * We have stubs (trampolines) inserted between procedures.
3152 *
3153 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3154 * exists in the main image.
3155 *
3156 * In the minimal symbol table, we have a bunch of symbols
3157 * sorted by start address. The stubs are marked as "trampoline",
3158 * the others appear as text. E.g.:
3159 *
3160 * Minimal symbol table for main image
3161 * main: code for main (text symbol)
3162 * shr1: stub (trampoline symbol)
3163 * foo: code for foo (text symbol)
3164 * ...
3165 * Minimal symbol table for "shr1" image:
3166 * ...
3167 * shr1: code for shr1 (text symbol)
3168 * ...
3169 *
3170 * So the code below is trying to detect if we are in the stub
3171 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3172 * and if found, do the symbolization from the real-code address
3173 * rather than the stub address.
3174 *
3175 * Assumptions being made about the minimal symbol table:
3176 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3177 * if we're really in the trampoline.s If we're beyond it (say
3178 * we're in "foo" in the above example), it'll have a closer
3179 * symbol (the "foo" text symbol for example) and will not
3180 * return the trampoline.
3181 * 2. lookup_minimal_symbol_text() will find a real text symbol
3182 * corresponding to the trampoline, and whose address will
3183 * be different than the trampoline address. I put in a sanity
3184 * check for the address being the same, to avoid an
3185 * infinite recursion.
3186 */
3187 msymbol = lookup_minimal_symbol_by_pc (pc);
3188 if (msymbol.minsym != NULL)
3189 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3190 {
3191 struct bound_minimal_symbol mfunsym
3192 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3193 NULL);
3194
3195 if (mfunsym.minsym == NULL)
3196 /* I eliminated this warning since it is coming out
3197 * in the following situation:
3198 * gdb shmain // test program with shared libraries
3199 * (gdb) break shr1 // function in shared lib
3200 * Warning: In stub for ...
3201 * In the above situation, the shared lib is not loaded yet,
3202 * so of course we can't find the real func/line info,
3203 * but the "break" still works, and the warning is annoying.
3204 * So I commented out the warning. RT */
3205 /* warning ("In stub for %s; unable to find real function/line info",
3206 msymbol->linkage_name ()); */
3207 ;
3208 /* fall through */
3209 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3210 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3211 /* Avoid infinite recursion */
3212 /* See above comment about why warning is commented out. */
3213 /* warning ("In stub for %s; unable to find real function/line info",
3214 msymbol->linkage_name ()); */
3215 ;
3216 /* fall through */
3217 else
3218 {
3219 /* Detect an obvious case of infinite recursion. If this
3220 should occur, we'd like to know about it, so error out,
3221 fatally. */
3222 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3223 internal_error (__FILE__, __LINE__,
3224 _("Infinite recursion detected in find_pc_sect_line;"
3225 "please file a bug report"));
3226
3227 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3228 }
3229 }
3230
3231 symtab_and_line val;
3232 val.pspace = current_program_space;
3233
3234 cust = find_pc_sect_compunit_symtab (pc, section);
3235 if (cust == NULL)
3236 {
3237 /* If no symbol information, return previous pc. */
3238 if (notcurrent)
3239 pc++;
3240 val.pc = pc;
3241 return val;
3242 }
3243
3244 bv = COMPUNIT_BLOCKVECTOR (cust);
3245
3246 /* Look at all the symtabs that share this blockvector.
3247 They all have the same apriori range, that we found was right;
3248 but they have different line tables. */
3249
3250 for (symtab *iter_s : compunit_filetabs (cust))
3251 {
3252 /* Find the best line in this symtab. */
3253 l = SYMTAB_LINETABLE (iter_s);
3254 if (!l)
3255 continue;
3256 len = l->nitems;
3257 if (len <= 0)
3258 {
3259 /* I think len can be zero if the symtab lacks line numbers
3260 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3261 I'm not sure which, and maybe it depends on the symbol
3262 reader). */
3263 continue;
3264 }
3265
3266 prev = NULL;
3267 item = l->item; /* Get first line info. */
3268
3269 /* Is this file's first line closer than the first lines of other files?
3270 If so, record this file, and its first line, as best alternate. */
3271 if (item->pc > pc && (!alt || item->pc < alt->pc))
3272 alt = item;
3273
3274 auto pc_compare = [](const CORE_ADDR & comp_pc,
3275 const struct linetable_entry & lhs)->bool
3276 {
3277 return comp_pc < lhs.pc;
3278 };
3279
3280 struct linetable_entry *first = item;
3281 struct linetable_entry *last = item + len;
3282 item = std::upper_bound (first, last, pc, pc_compare);
3283 if (item != first)
3284 prev = item - 1; /* Found a matching item. */
3285
3286 /* At this point, prev points at the line whose start addr is <= pc, and
3287 item points at the next line. If we ran off the end of the linetable
3288 (pc >= start of the last line), then prev == item. If pc < start of
3289 the first line, prev will not be set. */
3290
3291 /* Is this file's best line closer than the best in the other files?
3292 If so, record this file, and its best line, as best so far. Don't
3293 save prev if it represents the end of a function (i.e. line number
3294 0) instead of a real line. */
3295
3296 if (prev && prev->line && (!best || prev->pc > best->pc))
3297 {
3298 best = prev;
3299 best_symtab = iter_s;
3300
3301 /* If during the binary search we land on a non-statement entry,
3302 scan backward through entries at the same address to see if
3303 there is an entry marked as is-statement. In theory this
3304 duplication should have been removed from the line table
3305 during construction, this is just a double check. If the line
3306 table has had the duplication removed then this should be
3307 pretty cheap. */
3308 if (!best->is_stmt)
3309 {
3310 struct linetable_entry *tmp = best;
3311 while (tmp > first && (tmp - 1)->pc == tmp->pc
3312 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3313 --tmp;
3314 if (tmp->is_stmt)
3315 best = tmp;
3316 }
3317
3318 /* Discard BEST_END if it's before the PC of the current BEST. */
3319 if (best_end <= best->pc)
3320 best_end = 0;
3321 }
3322
3323 /* If another line (denoted by ITEM) is in the linetable and its
3324 PC is after BEST's PC, but before the current BEST_END, then
3325 use ITEM's PC as the new best_end. */
3326 if (best && item < last && item->pc > best->pc
3327 && (best_end == 0 || best_end > item->pc))
3328 best_end = item->pc;
3329 }
3330
3331 if (!best_symtab)
3332 {
3333 /* If we didn't find any line number info, just return zeros.
3334 We used to return alt->line - 1 here, but that could be
3335 anywhere; if we don't have line number info for this PC,
3336 don't make some up. */
3337 val.pc = pc;
3338 }
3339 else if (best->line == 0)
3340 {
3341 /* If our best fit is in a range of PC's for which no line
3342 number info is available (line number is zero) then we didn't
3343 find any valid line information. */
3344 val.pc = pc;
3345 }
3346 else
3347 {
3348 val.is_stmt = best->is_stmt;
3349 val.symtab = best_symtab;
3350 val.line = best->line;
3351 val.pc = best->pc;
3352 if (best_end && (!alt || best_end < alt->pc))
3353 val.end = best_end;
3354 else if (alt)
3355 val.end = alt->pc;
3356 else
3357 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3358 }
3359 val.section = section;
3360 return val;
3361 }
3362
3363 /* Backward compatibility (no section). */
3364
3365 struct symtab_and_line
3366 find_pc_line (CORE_ADDR pc, int notcurrent)
3367 {
3368 struct obj_section *section;
3369
3370 section = find_pc_overlay (pc);
3371 if (!pc_in_unmapped_range (pc, section))
3372 return find_pc_sect_line (pc, section, notcurrent);
3373
3374 /* If the original PC was an unmapped address then we translate this to a
3375 mapped address in order to lookup the sal. However, as the user
3376 passed us an unmapped address it makes more sense to return a result
3377 that has the pc and end fields translated to unmapped addresses. */
3378 pc = overlay_mapped_address (pc, section);
3379 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3380 sal.pc = overlay_unmapped_address (sal.pc, section);
3381 sal.end = overlay_unmapped_address (sal.end, section);
3382 return sal;
3383 }
3384
3385 /* See symtab.h. */
3386
3387 struct symtab *
3388 find_pc_line_symtab (CORE_ADDR pc)
3389 {
3390 struct symtab_and_line sal;
3391
3392 /* This always passes zero for NOTCURRENT to find_pc_line.
3393 There are currently no callers that ever pass non-zero. */
3394 sal = find_pc_line (pc, 0);
3395 return sal.symtab;
3396 }
3397 \f
3398 /* Find line number LINE in any symtab whose name is the same as
3399 SYMTAB.
3400
3401 If found, return the symtab that contains the linetable in which it was
3402 found, set *INDEX to the index in the linetable of the best entry
3403 found, and set *EXACT_MATCH to true if the value returned is an
3404 exact match.
3405
3406 If not found, return NULL. */
3407
3408 struct symtab *
3409 find_line_symtab (struct symtab *sym_tab, int line,
3410 int *index, bool *exact_match)
3411 {
3412 int exact = 0; /* Initialized here to avoid a compiler warning. */
3413
3414 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3415 so far seen. */
3416
3417 int best_index;
3418 struct linetable *best_linetable;
3419 struct symtab *best_symtab;
3420
3421 /* First try looking it up in the given symtab. */
3422 best_linetable = SYMTAB_LINETABLE (sym_tab);
3423 best_symtab = sym_tab;
3424 best_index = find_line_common (best_linetable, line, &exact, 0);
3425 if (best_index < 0 || !exact)
3426 {
3427 /* Didn't find an exact match. So we better keep looking for
3428 another symtab with the same name. In the case of xcoff,
3429 multiple csects for one source file (produced by IBM's FORTRAN
3430 compiler) produce multiple symtabs (this is unavoidable
3431 assuming csects can be at arbitrary places in memory and that
3432 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3433
3434 /* BEST is the smallest linenumber > LINE so far seen,
3435 or 0 if none has been seen so far.
3436 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3437 int best;
3438
3439 if (best_index >= 0)
3440 best = best_linetable->item[best_index].line;
3441 else
3442 best = 0;
3443
3444 for (objfile *objfile : current_program_space->objfiles ())
3445 {
3446 if (objfile->sf)
3447 objfile->sf->qf->expand_symtabs_with_fullname
3448 (objfile, symtab_to_fullname (sym_tab));
3449 }
3450
3451 for (objfile *objfile : current_program_space->objfiles ())
3452 {
3453 for (compunit_symtab *cu : objfile->compunits ())
3454 {
3455 for (symtab *s : compunit_filetabs (cu))
3456 {
3457 struct linetable *l;
3458 int ind;
3459
3460 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3461 continue;
3462 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3463 symtab_to_fullname (s)) != 0)
3464 continue;
3465 l = SYMTAB_LINETABLE (s);
3466 ind = find_line_common (l, line, &exact, 0);
3467 if (ind >= 0)
3468 {
3469 if (exact)
3470 {
3471 best_index = ind;
3472 best_linetable = l;
3473 best_symtab = s;
3474 goto done;
3475 }
3476 if (best == 0 || l->item[ind].line < best)
3477 {
3478 best = l->item[ind].line;
3479 best_index = ind;
3480 best_linetable = l;
3481 best_symtab = s;
3482 }
3483 }
3484 }
3485 }
3486 }
3487 }
3488 done:
3489 if (best_index < 0)
3490 return NULL;
3491
3492 if (index)
3493 *index = best_index;
3494 if (exact_match)
3495 *exact_match = (exact != 0);
3496
3497 return best_symtab;
3498 }
3499
3500 /* Given SYMTAB, returns all the PCs function in the symtab that
3501 exactly match LINE. Returns an empty vector if there are no exact
3502 matches, but updates BEST_ITEM in this case. */
3503
3504 std::vector<CORE_ADDR>
3505 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3506 struct linetable_entry **best_item)
3507 {
3508 int start = 0;
3509 std::vector<CORE_ADDR> result;
3510
3511 /* First, collect all the PCs that are at this line. */
3512 while (1)
3513 {
3514 int was_exact;
3515 int idx;
3516
3517 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3518 start);
3519 if (idx < 0)
3520 break;
3521
3522 if (!was_exact)
3523 {
3524 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3525
3526 if (*best_item == NULL
3527 || (item->line < (*best_item)->line && item->is_stmt))
3528 *best_item = item;
3529
3530 break;
3531 }
3532
3533 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3534 start = idx + 1;
3535 }
3536
3537 return result;
3538 }
3539
3540 \f
3541 /* Set the PC value for a given source file and line number and return true.
3542 Returns false for invalid line number (and sets the PC to 0).
3543 The source file is specified with a struct symtab. */
3544
3545 bool
3546 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3547 {
3548 struct linetable *l;
3549 int ind;
3550
3551 *pc = 0;
3552 if (symtab == 0)
3553 return false;
3554
3555 symtab = find_line_symtab (symtab, line, &ind, NULL);
3556 if (symtab != NULL)
3557 {
3558 l = SYMTAB_LINETABLE (symtab);
3559 *pc = l->item[ind].pc;
3560 return true;
3561 }
3562 else
3563 return false;
3564 }
3565
3566 /* Find the range of pc values in a line.
3567 Store the starting pc of the line into *STARTPTR
3568 and the ending pc (start of next line) into *ENDPTR.
3569 Returns true to indicate success.
3570 Returns false if could not find the specified line. */
3571
3572 bool
3573 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3574 CORE_ADDR *endptr)
3575 {
3576 CORE_ADDR startaddr;
3577 struct symtab_and_line found_sal;
3578
3579 startaddr = sal.pc;
3580 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3581 return false;
3582
3583 /* This whole function is based on address. For example, if line 10 has
3584 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3585 "info line *0x123" should say the line goes from 0x100 to 0x200
3586 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3587 This also insures that we never give a range like "starts at 0x134
3588 and ends at 0x12c". */
3589
3590 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3591 if (found_sal.line != sal.line)
3592 {
3593 /* The specified line (sal) has zero bytes. */
3594 *startptr = found_sal.pc;
3595 *endptr = found_sal.pc;
3596 }
3597 else
3598 {
3599 *startptr = found_sal.pc;
3600 *endptr = found_sal.end;
3601 }
3602 return true;
3603 }
3604
3605 /* Given a line table and a line number, return the index into the line
3606 table for the pc of the nearest line whose number is >= the specified one.
3607 Return -1 if none is found. The value is >= 0 if it is an index.
3608 START is the index at which to start searching the line table.
3609
3610 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3611
3612 static int
3613 find_line_common (struct linetable *l, int lineno,
3614 int *exact_match, int start)
3615 {
3616 int i;
3617 int len;
3618
3619 /* BEST is the smallest linenumber > LINENO so far seen,
3620 or 0 if none has been seen so far.
3621 BEST_INDEX identifies the item for it. */
3622
3623 int best_index = -1;
3624 int best = 0;
3625
3626 *exact_match = 0;
3627
3628 if (lineno <= 0)
3629 return -1;
3630 if (l == 0)
3631 return -1;
3632
3633 len = l->nitems;
3634 for (i = start; i < len; i++)
3635 {
3636 struct linetable_entry *item = &(l->item[i]);
3637
3638 /* Ignore non-statements. */
3639 if (!item->is_stmt)
3640 continue;
3641
3642 if (item->line == lineno)
3643 {
3644 /* Return the first (lowest address) entry which matches. */
3645 *exact_match = 1;
3646 return i;
3647 }
3648
3649 if (item->line > lineno && (best == 0 || item->line < best))
3650 {
3651 best = item->line;
3652 best_index = i;
3653 }
3654 }
3655
3656 /* If we got here, we didn't get an exact match. */
3657 return best_index;
3658 }
3659
3660 bool
3661 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3662 {
3663 struct symtab_and_line sal;
3664
3665 sal = find_pc_line (pc, 0);
3666 *startptr = sal.pc;
3667 *endptr = sal.end;
3668 return sal.symtab != 0;
3669 }
3670
3671 /* Helper for find_function_start_sal. Does most of the work, except
3672 setting the sal's symbol. */
3673
3674 static symtab_and_line
3675 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3676 bool funfirstline)
3677 {
3678 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3679
3680 if (funfirstline && sal.symtab != NULL
3681 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3682 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3683 {
3684 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3685
3686 sal.pc = func_addr;
3687 if (gdbarch_skip_entrypoint_p (gdbarch))
3688 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3689 return sal;
3690 }
3691
3692 /* We always should have a line for the function start address.
3693 If we don't, something is odd. Create a plain SAL referring
3694 just the PC and hope that skip_prologue_sal (if requested)
3695 can find a line number for after the prologue. */
3696 if (sal.pc < func_addr)
3697 {
3698 sal = {};
3699 sal.pspace = current_program_space;
3700 sal.pc = func_addr;
3701 sal.section = section;
3702 }
3703
3704 if (funfirstline)
3705 skip_prologue_sal (&sal);
3706
3707 return sal;
3708 }
3709
3710 /* See symtab.h. */
3711
3712 symtab_and_line
3713 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3714 bool funfirstline)
3715 {
3716 symtab_and_line sal
3717 = find_function_start_sal_1 (func_addr, section, funfirstline);
3718
3719 /* find_function_start_sal_1 does a linetable search, so it finds
3720 the symtab and linenumber, but not a symbol. Fill in the
3721 function symbol too. */
3722 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3723
3724 return sal;
3725 }
3726
3727 /* See symtab.h. */
3728
3729 symtab_and_line
3730 find_function_start_sal (symbol *sym, bool funfirstline)
3731 {
3732 fixup_symbol_section (sym, NULL);
3733 symtab_and_line sal
3734 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3735 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3736 funfirstline);
3737 sal.symbol = sym;
3738 return sal;
3739 }
3740
3741
3742 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3743 address for that function that has an entry in SYMTAB's line info
3744 table. If such an entry cannot be found, return FUNC_ADDR
3745 unaltered. */
3746
3747 static CORE_ADDR
3748 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3749 {
3750 CORE_ADDR func_start, func_end;
3751 struct linetable *l;
3752 int i;
3753
3754 /* Give up if this symbol has no lineinfo table. */
3755 l = SYMTAB_LINETABLE (symtab);
3756 if (l == NULL)
3757 return func_addr;
3758
3759 /* Get the range for the function's PC values, or give up if we
3760 cannot, for some reason. */
3761 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3762 return func_addr;
3763
3764 /* Linetable entries are ordered by PC values, see the commentary in
3765 symtab.h where `struct linetable' is defined. Thus, the first
3766 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3767 address we are looking for. */
3768 for (i = 0; i < l->nitems; i++)
3769 {
3770 struct linetable_entry *item = &(l->item[i]);
3771
3772 /* Don't use line numbers of zero, they mark special entries in
3773 the table. See the commentary on symtab.h before the
3774 definition of struct linetable. */
3775 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3776 return item->pc;
3777 }
3778
3779 return func_addr;
3780 }
3781
3782 /* Adjust SAL to the first instruction past the function prologue.
3783 If the PC was explicitly specified, the SAL is not changed.
3784 If the line number was explicitly specified then the SAL can still be
3785 updated, unless the language for SAL is assembler, in which case the SAL
3786 will be left unchanged.
3787 If SAL is already past the prologue, then do nothing. */
3788
3789 void
3790 skip_prologue_sal (struct symtab_and_line *sal)
3791 {
3792 struct symbol *sym;
3793 struct symtab_and_line start_sal;
3794 CORE_ADDR pc, saved_pc;
3795 struct obj_section *section;
3796 const char *name;
3797 struct objfile *objfile;
3798 struct gdbarch *gdbarch;
3799 const struct block *b, *function_block;
3800 int force_skip, skip;
3801
3802 /* Do not change the SAL if PC was specified explicitly. */
3803 if (sal->explicit_pc)
3804 return;
3805
3806 /* In assembly code, if the user asks for a specific line then we should
3807 not adjust the SAL. The user already has instruction level
3808 visibility in this case, so selecting a line other than one requested
3809 is likely to be the wrong choice. */
3810 if (sal->symtab != nullptr
3811 && sal->explicit_line
3812 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3813 return;
3814
3815 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3816
3817 switch_to_program_space_and_thread (sal->pspace);
3818
3819 sym = find_pc_sect_function (sal->pc, sal->section);
3820 if (sym != NULL)
3821 {
3822 fixup_symbol_section (sym, NULL);
3823
3824 objfile = symbol_objfile (sym);
3825 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3826 section = SYMBOL_OBJ_SECTION (objfile, sym);
3827 name = sym->linkage_name ();
3828 }
3829 else
3830 {
3831 struct bound_minimal_symbol msymbol
3832 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3833
3834 if (msymbol.minsym == NULL)
3835 return;
3836
3837 objfile = msymbol.objfile;
3838 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3839 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3840 name = msymbol.minsym->linkage_name ();
3841 }
3842
3843 gdbarch = objfile->arch ();
3844
3845 /* Process the prologue in two passes. In the first pass try to skip the
3846 prologue (SKIP is true) and verify there is a real need for it (indicated
3847 by FORCE_SKIP). If no such reason was found run a second pass where the
3848 prologue is not skipped (SKIP is false). */
3849
3850 skip = 1;
3851 force_skip = 1;
3852
3853 /* Be conservative - allow direct PC (without skipping prologue) only if we
3854 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3855 have to be set by the caller so we use SYM instead. */
3856 if (sym != NULL
3857 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3858 force_skip = 0;
3859
3860 saved_pc = pc;
3861 do
3862 {
3863 pc = saved_pc;
3864
3865 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3866 so that gdbarch_skip_prologue has something unique to work on. */
3867 if (section_is_overlay (section) && !section_is_mapped (section))
3868 pc = overlay_unmapped_address (pc, section);
3869
3870 /* Skip "first line" of function (which is actually its prologue). */
3871 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3872 if (gdbarch_skip_entrypoint_p (gdbarch))
3873 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3874 if (skip)
3875 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3876
3877 /* For overlays, map pc back into its mapped VMA range. */
3878 pc = overlay_mapped_address (pc, section);
3879
3880 /* Calculate line number. */
3881 start_sal = find_pc_sect_line (pc, section, 0);
3882
3883 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3884 line is still part of the same function. */
3885 if (skip && start_sal.pc != pc
3886 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3887 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3888 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3889 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3890 {
3891 /* First pc of next line */
3892 pc = start_sal.end;
3893 /* Recalculate the line number (might not be N+1). */
3894 start_sal = find_pc_sect_line (pc, section, 0);
3895 }
3896
3897 /* On targets with executable formats that don't have a concept of
3898 constructors (ELF with .init has, PE doesn't), gcc emits a call
3899 to `__main' in `main' between the prologue and before user
3900 code. */
3901 if (gdbarch_skip_main_prologue_p (gdbarch)
3902 && name && strcmp_iw (name, "main") == 0)
3903 {
3904 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3905 /* Recalculate the line number (might not be N+1). */
3906 start_sal = find_pc_sect_line (pc, section, 0);
3907 force_skip = 1;
3908 }
3909 }
3910 while (!force_skip && skip--);
3911
3912 /* If we still don't have a valid source line, try to find the first
3913 PC in the lineinfo table that belongs to the same function. This
3914 happens with COFF debug info, which does not seem to have an
3915 entry in lineinfo table for the code after the prologue which has
3916 no direct relation to source. For example, this was found to be
3917 the case with the DJGPP target using "gcc -gcoff" when the
3918 compiler inserted code after the prologue to make sure the stack
3919 is aligned. */
3920 if (!force_skip && sym && start_sal.symtab == NULL)
3921 {
3922 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3923 /* Recalculate the line number. */
3924 start_sal = find_pc_sect_line (pc, section, 0);
3925 }
3926
3927 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3928 forward SAL to the end of the prologue. */
3929 if (sal->pc >= pc)
3930 return;
3931
3932 sal->pc = pc;
3933 sal->section = section;
3934 sal->symtab = start_sal.symtab;
3935 sal->line = start_sal.line;
3936 sal->end = start_sal.end;
3937
3938 /* Check if we are now inside an inlined function. If we can,
3939 use the call site of the function instead. */
3940 b = block_for_pc_sect (sal->pc, sal->section);
3941 function_block = NULL;
3942 while (b != NULL)
3943 {
3944 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3945 function_block = b;
3946 else if (BLOCK_FUNCTION (b) != NULL)
3947 break;
3948 b = BLOCK_SUPERBLOCK (b);
3949 }
3950 if (function_block != NULL
3951 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3952 {
3953 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3954 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3955 }
3956 }
3957
3958 /* Given PC at the function's start address, attempt to find the
3959 prologue end using SAL information. Return zero if the skip fails.
3960
3961 A non-optimized prologue traditionally has one SAL for the function
3962 and a second for the function body. A single line function has
3963 them both pointing at the same line.
3964
3965 An optimized prologue is similar but the prologue may contain
3966 instructions (SALs) from the instruction body. Need to skip those
3967 while not getting into the function body.
3968
3969 The functions end point and an increasing SAL line are used as
3970 indicators of the prologue's endpoint.
3971
3972 This code is based on the function refine_prologue_limit
3973 (found in ia64). */
3974
3975 CORE_ADDR
3976 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3977 {
3978 struct symtab_and_line prologue_sal;
3979 CORE_ADDR start_pc;
3980 CORE_ADDR end_pc;
3981 const struct block *bl;
3982
3983 /* Get an initial range for the function. */
3984 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3985 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3986
3987 prologue_sal = find_pc_line (start_pc, 0);
3988 if (prologue_sal.line != 0)
3989 {
3990 /* For languages other than assembly, treat two consecutive line
3991 entries at the same address as a zero-instruction prologue.
3992 The GNU assembler emits separate line notes for each instruction
3993 in a multi-instruction macro, but compilers generally will not
3994 do this. */
3995 if (prologue_sal.symtab->language != language_asm)
3996 {
3997 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3998 int idx = 0;
3999
4000 /* Skip any earlier lines, and any end-of-sequence marker
4001 from a previous function. */
4002 while (linetable->item[idx].pc != prologue_sal.pc
4003 || linetable->item[idx].line == 0)
4004 idx++;
4005
4006 if (idx+1 < linetable->nitems
4007 && linetable->item[idx+1].line != 0
4008 && linetable->item[idx+1].pc == start_pc)
4009 return start_pc;
4010 }
4011
4012 /* If there is only one sal that covers the entire function,
4013 then it is probably a single line function, like
4014 "foo(){}". */
4015 if (prologue_sal.end >= end_pc)
4016 return 0;
4017
4018 while (prologue_sal.end < end_pc)
4019 {
4020 struct symtab_and_line sal;
4021
4022 sal = find_pc_line (prologue_sal.end, 0);
4023 if (sal.line == 0)
4024 break;
4025 /* Assume that a consecutive SAL for the same (or larger)
4026 line mark the prologue -> body transition. */
4027 if (sal.line >= prologue_sal.line)
4028 break;
4029 /* Likewise if we are in a different symtab altogether
4030 (e.g. within a file included via #include).  */
4031 if (sal.symtab != prologue_sal.symtab)
4032 break;
4033
4034 /* The line number is smaller. Check that it's from the
4035 same function, not something inlined. If it's inlined,
4036 then there is no point comparing the line numbers. */
4037 bl = block_for_pc (prologue_sal.end);
4038 while (bl)
4039 {
4040 if (block_inlined_p (bl))
4041 break;
4042 if (BLOCK_FUNCTION (bl))
4043 {
4044 bl = NULL;
4045 break;
4046 }
4047 bl = BLOCK_SUPERBLOCK (bl);
4048 }
4049 if (bl != NULL)
4050 break;
4051
4052 /* The case in which compiler's optimizer/scheduler has
4053 moved instructions into the prologue. We look ahead in
4054 the function looking for address ranges whose
4055 corresponding line number is less the first one that we
4056 found for the function. This is more conservative then
4057 refine_prologue_limit which scans a large number of SALs
4058 looking for any in the prologue. */
4059 prologue_sal = sal;
4060 }
4061 }
4062
4063 if (prologue_sal.end < end_pc)
4064 /* Return the end of this line, or zero if we could not find a
4065 line. */
4066 return prologue_sal.end;
4067 else
4068 /* Don't return END_PC, which is past the end of the function. */
4069 return prologue_sal.pc;
4070 }
4071
4072 /* See symtab.h. */
4073
4074 symbol *
4075 find_function_alias_target (bound_minimal_symbol msymbol)
4076 {
4077 CORE_ADDR func_addr;
4078 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4079 return NULL;
4080
4081 symbol *sym = find_pc_function (func_addr);
4082 if (sym != NULL
4083 && SYMBOL_CLASS (sym) == LOC_BLOCK
4084 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4085 return sym;
4086
4087 return NULL;
4088 }
4089
4090 \f
4091 /* If P is of the form "operator[ \t]+..." where `...' is
4092 some legitimate operator text, return a pointer to the
4093 beginning of the substring of the operator text.
4094 Otherwise, return "". */
4095
4096 static const char *
4097 operator_chars (const char *p, const char **end)
4098 {
4099 *end = "";
4100 if (!startswith (p, CP_OPERATOR_STR))
4101 return *end;
4102 p += CP_OPERATOR_LEN;
4103
4104 /* Don't get faked out by `operator' being part of a longer
4105 identifier. */
4106 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4107 return *end;
4108
4109 /* Allow some whitespace between `operator' and the operator symbol. */
4110 while (*p == ' ' || *p == '\t')
4111 p++;
4112
4113 /* Recognize 'operator TYPENAME'. */
4114
4115 if (isalpha (*p) || *p == '_' || *p == '$')
4116 {
4117 const char *q = p + 1;
4118
4119 while (isalnum (*q) || *q == '_' || *q == '$')
4120 q++;
4121 *end = q;
4122 return p;
4123 }
4124
4125 while (*p)
4126 switch (*p)
4127 {
4128 case '\\': /* regexp quoting */
4129 if (p[1] == '*')
4130 {
4131 if (p[2] == '=') /* 'operator\*=' */
4132 *end = p + 3;
4133 else /* 'operator\*' */
4134 *end = p + 2;
4135 return p;
4136 }
4137 else if (p[1] == '[')
4138 {
4139 if (p[2] == ']')
4140 error (_("mismatched quoting on brackets, "
4141 "try 'operator\\[\\]'"));
4142 else if (p[2] == '\\' && p[3] == ']')
4143 {
4144 *end = p + 4; /* 'operator\[\]' */
4145 return p;
4146 }
4147 else
4148 error (_("nothing is allowed between '[' and ']'"));
4149 }
4150 else
4151 {
4152 /* Gratuitous quote: skip it and move on. */
4153 p++;
4154 continue;
4155 }
4156 break;
4157 case '!':
4158 case '=':
4159 case '*':
4160 case '/':
4161 case '%':
4162 case '^':
4163 if (p[1] == '=')
4164 *end = p + 2;
4165 else
4166 *end = p + 1;
4167 return p;
4168 case '<':
4169 case '>':
4170 case '+':
4171 case '-':
4172 case '&':
4173 case '|':
4174 if (p[0] == '-' && p[1] == '>')
4175 {
4176 /* Struct pointer member operator 'operator->'. */
4177 if (p[2] == '*')
4178 {
4179 *end = p + 3; /* 'operator->*' */
4180 return p;
4181 }
4182 else if (p[2] == '\\')
4183 {
4184 *end = p + 4; /* Hopefully 'operator->\*' */
4185 return p;
4186 }
4187 else
4188 {
4189 *end = p + 2; /* 'operator->' */
4190 return p;
4191 }
4192 }
4193 if (p[1] == '=' || p[1] == p[0])
4194 *end = p + 2;
4195 else
4196 *end = p + 1;
4197 return p;
4198 case '~':
4199 case ',':
4200 *end = p + 1;
4201 return p;
4202 case '(':
4203 if (p[1] != ')')
4204 error (_("`operator ()' must be specified "
4205 "without whitespace in `()'"));
4206 *end = p + 2;
4207 return p;
4208 case '?':
4209 if (p[1] != ':')
4210 error (_("`operator ?:' must be specified "
4211 "without whitespace in `?:'"));
4212 *end = p + 2;
4213 return p;
4214 case '[':
4215 if (p[1] != ']')
4216 error (_("`operator []' must be specified "
4217 "without whitespace in `[]'"));
4218 *end = p + 2;
4219 return p;
4220 default:
4221 error (_("`operator %s' not supported"), p);
4222 break;
4223 }
4224
4225 *end = "";
4226 return *end;
4227 }
4228 \f
4229
4230 /* What part to match in a file name. */
4231
4232 struct filename_partial_match_opts
4233 {
4234 /* Only match the directory name part. */
4235 bool dirname = false;
4236
4237 /* Only match the basename part. */
4238 bool basename = false;
4239 };
4240
4241 /* Data structure to maintain printing state for output_source_filename. */
4242
4243 struct output_source_filename_data
4244 {
4245 /* Output only filenames matching REGEXP. */
4246 std::string regexp;
4247 gdb::optional<compiled_regex> c_regexp;
4248 /* Possibly only match a part of the filename. */
4249 filename_partial_match_opts partial_match;
4250
4251
4252 /* Cache of what we've seen so far. */
4253 struct filename_seen_cache *filename_seen_cache;
4254
4255 /* Flag of whether we're printing the first one. */
4256 int first;
4257 };
4258
4259 /* Slave routine for sources_info. Force line breaks at ,'s.
4260 NAME is the name to print.
4261 DATA contains the state for printing and watching for duplicates. */
4262
4263 static void
4264 output_source_filename (const char *name,
4265 struct output_source_filename_data *data)
4266 {
4267 /* Since a single source file can result in several partial symbol
4268 tables, we need to avoid printing it more than once. Note: if
4269 some of the psymtabs are read in and some are not, it gets
4270 printed both under "Source files for which symbols have been
4271 read" and "Source files for which symbols will be read in on
4272 demand". I consider this a reasonable way to deal with the
4273 situation. I'm not sure whether this can also happen for
4274 symtabs; it doesn't hurt to check. */
4275
4276 /* Was NAME already seen? */
4277 if (data->filename_seen_cache->seen (name))
4278 {
4279 /* Yes; don't print it again. */
4280 return;
4281 }
4282
4283 /* Does it match data->regexp? */
4284 if (data->c_regexp.has_value ())
4285 {
4286 const char *to_match;
4287 std::string dirname;
4288
4289 if (data->partial_match.dirname)
4290 {
4291 dirname = ldirname (name);
4292 to_match = dirname.c_str ();
4293 }
4294 else if (data->partial_match.basename)
4295 to_match = lbasename (name);
4296 else
4297 to_match = name;
4298
4299 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4300 return;
4301 }
4302
4303 /* Print it and reset *FIRST. */
4304 if (! data->first)
4305 printf_filtered (", ");
4306 data->first = 0;
4307
4308 wrap_here ("");
4309 fputs_styled (name, file_name_style.style (), gdb_stdout);
4310 }
4311
4312 /* A callback for map_partial_symbol_filenames. */
4313
4314 static void
4315 output_partial_symbol_filename (const char *filename, const char *fullname,
4316 void *data)
4317 {
4318 output_source_filename (fullname ? fullname : filename,
4319 (struct output_source_filename_data *) data);
4320 }
4321
4322 using isrc_flag_option_def
4323 = gdb::option::flag_option_def<filename_partial_match_opts>;
4324
4325 static const gdb::option::option_def info_sources_option_defs[] = {
4326
4327 isrc_flag_option_def {
4328 "dirname",
4329 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4330 N_("Show only the files having a dirname matching REGEXP."),
4331 },
4332
4333 isrc_flag_option_def {
4334 "basename",
4335 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4336 N_("Show only the files having a basename matching REGEXP."),
4337 },
4338
4339 };
4340
4341 /* Create an option_def_group for the "info sources" options, with
4342 ISRC_OPTS as context. */
4343
4344 static inline gdb::option::option_def_group
4345 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4346 {
4347 return {{info_sources_option_defs}, isrc_opts};
4348 }
4349
4350 /* Prints the header message for the source files that will be printed
4351 with the matching info present in DATA. SYMBOL_MSG is a message
4352 that tells what will or has been done with the symbols of the
4353 matching source files. */
4354
4355 static void
4356 print_info_sources_header (const char *symbol_msg,
4357 const struct output_source_filename_data *data)
4358 {
4359 puts_filtered (symbol_msg);
4360 if (!data->regexp.empty ())
4361 {
4362 if (data->partial_match.dirname)
4363 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4364 data->regexp.c_str ());
4365 else if (data->partial_match.basename)
4366 printf_filtered (_("(basename matching regular expression \"%s\")"),
4367 data->regexp.c_str ());
4368 else
4369 printf_filtered (_("(filename matching regular expression \"%s\")"),
4370 data->regexp.c_str ());
4371 }
4372 puts_filtered ("\n");
4373 }
4374
4375 /* Completer for "info sources". */
4376
4377 static void
4378 info_sources_command_completer (cmd_list_element *ignore,
4379 completion_tracker &tracker,
4380 const char *text, const char *word)
4381 {
4382 const auto group = make_info_sources_options_def_group (nullptr);
4383 if (gdb::option::complete_options
4384 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4385 return;
4386 }
4387
4388 static void
4389 info_sources_command (const char *args, int from_tty)
4390 {
4391 struct output_source_filename_data data;
4392
4393 if (!have_full_symbols () && !have_partial_symbols ())
4394 {
4395 error (_("No symbol table is loaded. Use the \"file\" command."));
4396 }
4397
4398 filename_seen_cache filenames_seen;
4399
4400 auto group = make_info_sources_options_def_group (&data.partial_match);
4401
4402 gdb::option::process_options
4403 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4404
4405 if (args != NULL && *args != '\000')
4406 data.regexp = args;
4407
4408 data.filename_seen_cache = &filenames_seen;
4409 data.first = 1;
4410
4411 if (data.partial_match.dirname && data.partial_match.basename)
4412 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4413 if ((data.partial_match.dirname || data.partial_match.basename)
4414 && data.regexp.empty ())
4415 error (_("Missing REGEXP for 'info sources'."));
4416
4417 if (data.regexp.empty ())
4418 data.c_regexp.reset ();
4419 else
4420 {
4421 int cflags = REG_NOSUB;
4422 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4423 cflags |= REG_ICASE;
4424 #endif
4425 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4426 _("Invalid regexp"));
4427 }
4428
4429 print_info_sources_header
4430 (_("Source files for which symbols have been read in:\n"), &data);
4431
4432 for (objfile *objfile : current_program_space->objfiles ())
4433 {
4434 for (compunit_symtab *cu : objfile->compunits ())
4435 {
4436 for (symtab *s : compunit_filetabs (cu))
4437 {
4438 const char *fullname = symtab_to_fullname (s);
4439
4440 output_source_filename (fullname, &data);
4441 }
4442 }
4443 }
4444 printf_filtered ("\n\n");
4445
4446 print_info_sources_header
4447 (_("Source files for which symbols will be read in on demand:\n"), &data);
4448
4449 filenames_seen.clear ();
4450 data.first = 1;
4451 map_symbol_filenames (output_partial_symbol_filename, &data,
4452 1 /*need_fullname*/);
4453 printf_filtered ("\n");
4454 }
4455
4456 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4457 true compare only lbasename of FILENAMES. */
4458
4459 static bool
4460 file_matches (const char *file, const std::vector<const char *> &filenames,
4461 bool basenames)
4462 {
4463 if (filenames.empty ())
4464 return true;
4465
4466 for (const char *name : filenames)
4467 {
4468 name = (basenames ? lbasename (name) : name);
4469 if (compare_filenames_for_search (file, name))
4470 return true;
4471 }
4472
4473 return false;
4474 }
4475
4476 /* Helper function for std::sort on symbol_search objects. Can only sort
4477 symbols, not minimal symbols. */
4478
4479 int
4480 symbol_search::compare_search_syms (const symbol_search &sym_a,
4481 const symbol_search &sym_b)
4482 {
4483 int c;
4484
4485 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4486 symbol_symtab (sym_b.symbol)->filename);
4487 if (c != 0)
4488 return c;
4489
4490 if (sym_a.block != sym_b.block)
4491 return sym_a.block - sym_b.block;
4492
4493 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4494 }
4495
4496 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4497 If SYM has no symbol_type or symbol_name, returns false. */
4498
4499 bool
4500 treg_matches_sym_type_name (const compiled_regex &treg,
4501 const struct symbol *sym)
4502 {
4503 struct type *sym_type;
4504 std::string printed_sym_type_name;
4505
4506 if (symbol_lookup_debug > 1)
4507 {
4508 fprintf_unfiltered (gdb_stdlog,
4509 "treg_matches_sym_type_name\n sym %s\n",
4510 sym->natural_name ());
4511 }
4512
4513 sym_type = SYMBOL_TYPE (sym);
4514 if (sym_type == NULL)
4515 return false;
4516
4517 {
4518 scoped_switch_to_sym_language_if_auto l (sym);
4519
4520 printed_sym_type_name = type_to_string (sym_type);
4521 }
4522
4523
4524 if (symbol_lookup_debug > 1)
4525 {
4526 fprintf_unfiltered (gdb_stdlog,
4527 " sym_type_name %s\n",
4528 printed_sym_type_name.c_str ());
4529 }
4530
4531
4532 if (printed_sym_type_name.empty ())
4533 return false;
4534
4535 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4536 }
4537
4538 /* See symtab.h. */
4539
4540 bool
4541 global_symbol_searcher::is_suitable_msymbol
4542 (const enum search_domain kind, const minimal_symbol *msymbol)
4543 {
4544 switch (MSYMBOL_TYPE (msymbol))
4545 {
4546 case mst_data:
4547 case mst_bss:
4548 case mst_file_data:
4549 case mst_file_bss:
4550 return kind == VARIABLES_DOMAIN;
4551 case mst_text:
4552 case mst_file_text:
4553 case mst_solib_trampoline:
4554 case mst_text_gnu_ifunc:
4555 return kind == FUNCTIONS_DOMAIN;
4556 default:
4557 return false;
4558 }
4559 }
4560
4561 /* See symtab.h. */
4562
4563 bool
4564 global_symbol_searcher::expand_symtabs
4565 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4566 {
4567 enum search_domain kind = m_kind;
4568 bool found_msymbol = false;
4569
4570 if (objfile->sf)
4571 objfile->sf->qf->expand_symtabs_matching
4572 (objfile,
4573 [&] (const char *filename, bool basenames)
4574 {
4575 return file_matches (filename, filenames, basenames);
4576 },
4577 &lookup_name_info::match_any (),
4578 [&] (const char *symname)
4579 {
4580 return (!preg.has_value ()
4581 || preg->exec (symname, 0, NULL, 0) == 0);
4582 },
4583 NULL,
4584 kind);
4585
4586 /* Here, we search through the minimal symbol tables for functions and
4587 variables that match, and force their symbols to be read. This is in
4588 particular necessary for demangled variable names, which are no longer
4589 put into the partial symbol tables. The symbol will then be found
4590 during the scan of symtabs later.
4591
4592 For functions, find_pc_symtab should succeed if we have debug info for
4593 the function, for variables we have to call
4594 lookup_symbol_in_objfile_from_linkage_name to determine if the
4595 variable has debug info. If the lookup fails, set found_msymbol so
4596 that we will rescan to print any matching symbols without debug info.
4597 We only search the objfile the msymbol came from, we no longer search
4598 all objfiles. In large programs (1000s of shared libs) searching all
4599 objfiles is not worth the pain. */
4600 if (filenames.empty ()
4601 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4602 {
4603 for (minimal_symbol *msymbol : objfile->msymbols ())
4604 {
4605 QUIT;
4606
4607 if (msymbol->created_by_gdb)
4608 continue;
4609
4610 if (is_suitable_msymbol (kind, msymbol))
4611 {
4612 if (!preg.has_value ()
4613 || preg->exec (msymbol->natural_name (), 0,
4614 NULL, 0) == 0)
4615 {
4616 /* An important side-effect of these lookup functions is
4617 to expand the symbol table if msymbol is found, later
4618 in the process we will add matching symbols or
4619 msymbols to the results list, and that requires that
4620 the symbols tables are expanded. */
4621 if (kind == FUNCTIONS_DOMAIN
4622 ? (find_pc_compunit_symtab
4623 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4624 == NULL)
4625 : (lookup_symbol_in_objfile_from_linkage_name
4626 (objfile, msymbol->linkage_name (),
4627 VAR_DOMAIN)
4628 .symbol == NULL))
4629 found_msymbol = true;
4630 }
4631 }
4632 }
4633 }
4634
4635 return found_msymbol;
4636 }
4637
4638 /* See symtab.h. */
4639
4640 bool
4641 global_symbol_searcher::add_matching_symbols
4642 (objfile *objfile,
4643 const gdb::optional<compiled_regex> &preg,
4644 const gdb::optional<compiled_regex> &treg,
4645 std::set<symbol_search> *result_set) const
4646 {
4647 enum search_domain kind = m_kind;
4648
4649 /* Add matching symbols (if not already present). */
4650 for (compunit_symtab *cust : objfile->compunits ())
4651 {
4652 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4653
4654 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4655 {
4656 struct block_iterator iter;
4657 struct symbol *sym;
4658 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4659
4660 ALL_BLOCK_SYMBOLS (b, iter, sym)
4661 {
4662 struct symtab *real_symtab = symbol_symtab (sym);
4663
4664 QUIT;
4665
4666 /* Check first sole REAL_SYMTAB->FILENAME. It does
4667 not need to be a substring of symtab_to_fullname as
4668 it may contain "./" etc. */
4669 if ((file_matches (real_symtab->filename, filenames, false)
4670 || ((basenames_may_differ
4671 || file_matches (lbasename (real_symtab->filename),
4672 filenames, true))
4673 && file_matches (symtab_to_fullname (real_symtab),
4674 filenames, false)))
4675 && ((!preg.has_value ()
4676 || preg->exec (sym->natural_name (), 0,
4677 NULL, 0) == 0)
4678 && ((kind == VARIABLES_DOMAIN
4679 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4680 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4681 && SYMBOL_CLASS (sym) != LOC_BLOCK
4682 /* LOC_CONST can be used for more than
4683 just enums, e.g., c++ static const
4684 members. We only want to skip enums
4685 here. */
4686 && !(SYMBOL_CLASS (sym) == LOC_CONST
4687 && (SYMBOL_TYPE (sym)->code ()
4688 == TYPE_CODE_ENUM))
4689 && (!treg.has_value ()
4690 || treg_matches_sym_type_name (*treg, sym)))
4691 || (kind == FUNCTIONS_DOMAIN
4692 && SYMBOL_CLASS (sym) == LOC_BLOCK
4693 && (!treg.has_value ()
4694 || treg_matches_sym_type_name (*treg,
4695 sym)))
4696 || (kind == TYPES_DOMAIN
4697 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4698 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4699 || (kind == MODULES_DOMAIN
4700 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4701 && SYMBOL_LINE (sym) != 0))))
4702 {
4703 if (result_set->size () < m_max_search_results)
4704 {
4705 /* Match, insert if not already in the results. */
4706 symbol_search ss (block, sym);
4707 if (result_set->find (ss) == result_set->end ())
4708 result_set->insert (ss);
4709 }
4710 else
4711 return false;
4712 }
4713 }
4714 }
4715 }
4716
4717 return true;
4718 }
4719
4720 /* See symtab.h. */
4721
4722 bool
4723 global_symbol_searcher::add_matching_msymbols
4724 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4725 std::vector<symbol_search> *results) const
4726 {
4727 enum search_domain kind = m_kind;
4728
4729 for (minimal_symbol *msymbol : objfile->msymbols ())
4730 {
4731 QUIT;
4732
4733 if (msymbol->created_by_gdb)
4734 continue;
4735
4736 if (is_suitable_msymbol (kind, msymbol))
4737 {
4738 if (!preg.has_value ()
4739 || preg->exec (msymbol->natural_name (), 0,
4740 NULL, 0) == 0)
4741 {
4742 /* For functions we can do a quick check of whether the
4743 symbol might be found via find_pc_symtab. */
4744 if (kind != FUNCTIONS_DOMAIN
4745 || (find_pc_compunit_symtab
4746 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4747 == NULL))
4748 {
4749 if (lookup_symbol_in_objfile_from_linkage_name
4750 (objfile, msymbol->linkage_name (),
4751 VAR_DOMAIN).symbol == NULL)
4752 {
4753 /* Matching msymbol, add it to the results list. */
4754 if (results->size () < m_max_search_results)
4755 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4756 else
4757 return false;
4758 }
4759 }
4760 }
4761 }
4762 }
4763
4764 return true;
4765 }
4766
4767 /* See symtab.h. */
4768
4769 std::vector<symbol_search>
4770 global_symbol_searcher::search () const
4771 {
4772 gdb::optional<compiled_regex> preg;
4773 gdb::optional<compiled_regex> treg;
4774
4775 gdb_assert (m_kind != ALL_DOMAIN);
4776
4777 if (m_symbol_name_regexp != NULL)
4778 {
4779 const char *symbol_name_regexp = m_symbol_name_regexp;
4780
4781 /* Make sure spacing is right for C++ operators.
4782 This is just a courtesy to make the matching less sensitive
4783 to how many spaces the user leaves between 'operator'
4784 and <TYPENAME> or <OPERATOR>. */
4785 const char *opend;
4786 const char *opname = operator_chars (symbol_name_regexp, &opend);
4787
4788 if (*opname)
4789 {
4790 int fix = -1; /* -1 means ok; otherwise number of
4791 spaces needed. */
4792
4793 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4794 {
4795 /* There should 1 space between 'operator' and 'TYPENAME'. */
4796 if (opname[-1] != ' ' || opname[-2] == ' ')
4797 fix = 1;
4798 }
4799 else
4800 {
4801 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4802 if (opname[-1] == ' ')
4803 fix = 0;
4804 }
4805 /* If wrong number of spaces, fix it. */
4806 if (fix >= 0)
4807 {
4808 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4809
4810 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4811 symbol_name_regexp = tmp;
4812 }
4813 }
4814
4815 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4816 ? REG_ICASE : 0);
4817 preg.emplace (symbol_name_regexp, cflags,
4818 _("Invalid regexp"));
4819 }
4820
4821 if (m_symbol_type_regexp != NULL)
4822 {
4823 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4824 ? REG_ICASE : 0);
4825 treg.emplace (m_symbol_type_regexp, cflags,
4826 _("Invalid regexp"));
4827 }
4828
4829 bool found_msymbol = false;
4830 std::set<symbol_search> result_set;
4831 for (objfile *objfile : current_program_space->objfiles ())
4832 {
4833 /* Expand symtabs within objfile that possibly contain matching
4834 symbols. */
4835 found_msymbol |= expand_symtabs (objfile, preg);
4836
4837 /* Find matching symbols within OBJFILE and add them in to the
4838 RESULT_SET set. Use a set here so that we can easily detect
4839 duplicates as we go, and can therefore track how many unique
4840 matches we have found so far. */
4841 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4842 break;
4843 }
4844
4845 /* Convert the result set into a sorted result list, as std::set is
4846 defined to be sorted then no explicit call to std::sort is needed. */
4847 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4848
4849 /* If there are no debug symbols, then add matching minsyms. But if the
4850 user wants to see symbols matching a type regexp, then never give a
4851 minimal symbol, as we assume that a minimal symbol does not have a
4852 type. */
4853 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4854 && !m_exclude_minsyms
4855 && !treg.has_value ())
4856 {
4857 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4858 for (objfile *objfile : current_program_space->objfiles ())
4859 if (!add_matching_msymbols (objfile, preg, &result))
4860 break;
4861 }
4862
4863 return result;
4864 }
4865
4866 /* See symtab.h. */
4867
4868 std::string
4869 symbol_to_info_string (struct symbol *sym, int block,
4870 enum search_domain kind)
4871 {
4872 std::string str;
4873
4874 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4875
4876 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4877 str += "static ";
4878
4879 /* Typedef that is not a C++ class. */
4880 if (kind == TYPES_DOMAIN
4881 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4882 {
4883 string_file tmp_stream;
4884
4885 /* FIXME: For C (and C++) we end up with a difference in output here
4886 between how a typedef is printed, and non-typedefs are printed.
4887 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4888 appear C-like, while TYPE_PRINT doesn't.
4889
4890 For the struct printing case below, things are worse, we force
4891 printing of the ";" in this function, which is going to be wrong
4892 for languages that don't require a ";" between statements. */
4893 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4894 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4895 else
4896 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4897 str += tmp_stream.string ();
4898 }
4899 /* variable, func, or typedef-that-is-c++-class. */
4900 else if (kind < TYPES_DOMAIN
4901 || (kind == TYPES_DOMAIN
4902 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4903 {
4904 string_file tmp_stream;
4905
4906 type_print (SYMBOL_TYPE (sym),
4907 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4908 ? "" : sym->print_name ()),
4909 &tmp_stream, 0);
4910
4911 str += tmp_stream.string ();
4912 str += ";";
4913 }
4914 /* Printing of modules is currently done here, maybe at some future
4915 point we might want a language specific method to print the module
4916 symbol so that we can customise the output more. */
4917 else if (kind == MODULES_DOMAIN)
4918 str += sym->print_name ();
4919
4920 return str;
4921 }
4922
4923 /* Helper function for symbol info commands, for example 'info functions',
4924 'info variables', etc. KIND is the kind of symbol we searched for, and
4925 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4926 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4927 print file and line number information for the symbol as well. Skip
4928 printing the filename if it matches LAST. */
4929
4930 static void
4931 print_symbol_info (enum search_domain kind,
4932 struct symbol *sym,
4933 int block, const char *last)
4934 {
4935 scoped_switch_to_sym_language_if_auto l (sym);
4936 struct symtab *s = symbol_symtab (sym);
4937
4938 if (last != NULL)
4939 {
4940 const char *s_filename = symtab_to_filename_for_display (s);
4941
4942 if (filename_cmp (last, s_filename) != 0)
4943 {
4944 printf_filtered (_("\nFile %ps:\n"),
4945 styled_string (file_name_style.style (),
4946 s_filename));
4947 }
4948
4949 if (SYMBOL_LINE (sym) != 0)
4950 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4951 else
4952 puts_filtered ("\t");
4953 }
4954
4955 std::string str = symbol_to_info_string (sym, block, kind);
4956 printf_filtered ("%s\n", str.c_str ());
4957 }
4958
4959 /* This help function for symtab_symbol_info() prints information
4960 for non-debugging symbols to gdb_stdout. */
4961
4962 static void
4963 print_msymbol_info (struct bound_minimal_symbol msymbol)
4964 {
4965 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4966 char *tmp;
4967
4968 if (gdbarch_addr_bit (gdbarch) <= 32)
4969 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4970 & (CORE_ADDR) 0xffffffff,
4971 8);
4972 else
4973 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4974 16);
4975
4976 ui_file_style sym_style = (msymbol.minsym->text_p ()
4977 ? function_name_style.style ()
4978 : ui_file_style ());
4979
4980 printf_filtered (_("%ps %ps\n"),
4981 styled_string (address_style.style (), tmp),
4982 styled_string (sym_style, msymbol.minsym->print_name ()));
4983 }
4984
4985 /* This is the guts of the commands "info functions", "info types", and
4986 "info variables". It calls search_symbols to find all matches and then
4987 print_[m]symbol_info to print out some useful information about the
4988 matches. */
4989
4990 static void
4991 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4992 const char *regexp, enum search_domain kind,
4993 const char *t_regexp, int from_tty)
4994 {
4995 static const char * const classnames[] =
4996 {"variable", "function", "type", "module"};
4997 const char *last_filename = "";
4998 int first = 1;
4999
5000 gdb_assert (kind != ALL_DOMAIN);
5001
5002 if (regexp != nullptr && *regexp == '\0')
5003 regexp = nullptr;
5004
5005 global_symbol_searcher spec (kind, regexp);
5006 spec.set_symbol_type_regexp (t_regexp);
5007 spec.set_exclude_minsyms (exclude_minsyms);
5008 std::vector<symbol_search> symbols = spec.search ();
5009
5010 if (!quiet)
5011 {
5012 if (regexp != NULL)
5013 {
5014 if (t_regexp != NULL)
5015 printf_filtered
5016 (_("All %ss matching regular expression \"%s\""
5017 " with type matching regular expression \"%s\":\n"),
5018 classnames[kind], regexp, t_regexp);
5019 else
5020 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5021 classnames[kind], regexp);
5022 }
5023 else
5024 {
5025 if (t_regexp != NULL)
5026 printf_filtered
5027 (_("All defined %ss"
5028 " with type matching regular expression \"%s\" :\n"),
5029 classnames[kind], t_regexp);
5030 else
5031 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5032 }
5033 }
5034
5035 for (const symbol_search &p : symbols)
5036 {
5037 QUIT;
5038
5039 if (p.msymbol.minsym != NULL)
5040 {
5041 if (first)
5042 {
5043 if (!quiet)
5044 printf_filtered (_("\nNon-debugging symbols:\n"));
5045 first = 0;
5046 }
5047 print_msymbol_info (p.msymbol);
5048 }
5049 else
5050 {
5051 print_symbol_info (kind,
5052 p.symbol,
5053 p.block,
5054 last_filename);
5055 last_filename
5056 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5057 }
5058 }
5059 }
5060
5061 /* Structure to hold the values of the options used by the 'info variables'
5062 and 'info functions' commands. These correspond to the -q, -t, and -n
5063 options. */
5064
5065 struct info_vars_funcs_options
5066 {
5067 bool quiet = false;
5068 bool exclude_minsyms = false;
5069 char *type_regexp = nullptr;
5070
5071 ~info_vars_funcs_options ()
5072 {
5073 xfree (type_regexp);
5074 }
5075 };
5076
5077 /* The options used by the 'info variables' and 'info functions'
5078 commands. */
5079
5080 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5081 gdb::option::boolean_option_def<info_vars_funcs_options> {
5082 "q",
5083 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5084 nullptr, /* show_cmd_cb */
5085 nullptr /* set_doc */
5086 },
5087
5088 gdb::option::boolean_option_def<info_vars_funcs_options> {
5089 "n",
5090 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5091 nullptr, /* show_cmd_cb */
5092 nullptr /* set_doc */
5093 },
5094
5095 gdb::option::string_option_def<info_vars_funcs_options> {
5096 "t",
5097 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5098 },
5099 nullptr, /* show_cmd_cb */
5100 nullptr /* set_doc */
5101 }
5102 };
5103
5104 /* Returns the option group used by 'info variables' and 'info
5105 functions'. */
5106
5107 static gdb::option::option_def_group
5108 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5109 {
5110 return {{info_vars_funcs_options_defs}, opts};
5111 }
5112
5113 /* Command completer for 'info variables' and 'info functions'. */
5114
5115 static void
5116 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5117 completion_tracker &tracker,
5118 const char *text, const char * /* word */)
5119 {
5120 const auto group
5121 = make_info_vars_funcs_options_def_group (nullptr);
5122 if (gdb::option::complete_options
5123 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5124 return;
5125
5126 const char *word = advance_to_expression_complete_word_point (tracker, text);
5127 symbol_completer (ignore, tracker, text, word);
5128 }
5129
5130 /* Implement the 'info variables' command. */
5131
5132 static void
5133 info_variables_command (const char *args, int from_tty)
5134 {
5135 info_vars_funcs_options opts;
5136 auto grp = make_info_vars_funcs_options_def_group (&opts);
5137 gdb::option::process_options
5138 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5139 if (args != nullptr && *args == '\0')
5140 args = nullptr;
5141
5142 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5143 opts.type_regexp, from_tty);
5144 }
5145
5146 /* Implement the 'info functions' command. */
5147
5148 static void
5149 info_functions_command (const char *args, int from_tty)
5150 {
5151 info_vars_funcs_options opts;
5152
5153 auto grp = make_info_vars_funcs_options_def_group (&opts);
5154 gdb::option::process_options
5155 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5156 if (args != nullptr && *args == '\0')
5157 args = nullptr;
5158
5159 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5160 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5161 }
5162
5163 /* Holds the -q option for the 'info types' command. */
5164
5165 struct info_types_options
5166 {
5167 bool quiet = false;
5168 };
5169
5170 /* The options used by the 'info types' command. */
5171
5172 static const gdb::option::option_def info_types_options_defs[] = {
5173 gdb::option::boolean_option_def<info_types_options> {
5174 "q",
5175 [] (info_types_options *opt) { return &opt->quiet; },
5176 nullptr, /* show_cmd_cb */
5177 nullptr /* set_doc */
5178 }
5179 };
5180
5181 /* Returns the option group used by 'info types'. */
5182
5183 static gdb::option::option_def_group
5184 make_info_types_options_def_group (info_types_options *opts)
5185 {
5186 return {{info_types_options_defs}, opts};
5187 }
5188
5189 /* Implement the 'info types' command. */
5190
5191 static void
5192 info_types_command (const char *args, int from_tty)
5193 {
5194 info_types_options opts;
5195
5196 auto grp = make_info_types_options_def_group (&opts);
5197 gdb::option::process_options
5198 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5199 if (args != nullptr && *args == '\0')
5200 args = nullptr;
5201 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5202 }
5203
5204 /* Command completer for 'info types' command. */
5205
5206 static void
5207 info_types_command_completer (struct cmd_list_element *ignore,
5208 completion_tracker &tracker,
5209 const char *text, const char * /* word */)
5210 {
5211 const auto group
5212 = make_info_types_options_def_group (nullptr);
5213 if (gdb::option::complete_options
5214 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5215 return;
5216
5217 const char *word = advance_to_expression_complete_word_point (tracker, text);
5218 symbol_completer (ignore, tracker, text, word);
5219 }
5220
5221 /* Implement the 'info modules' command. */
5222
5223 static void
5224 info_modules_command (const char *args, int from_tty)
5225 {
5226 info_types_options opts;
5227
5228 auto grp = make_info_types_options_def_group (&opts);
5229 gdb::option::process_options
5230 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5231 if (args != nullptr && *args == '\0')
5232 args = nullptr;
5233 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5234 from_tty);
5235 }
5236
5237 static void
5238 rbreak_command (const char *regexp, int from_tty)
5239 {
5240 std::string string;
5241 const char *file_name = nullptr;
5242
5243 if (regexp != nullptr)
5244 {
5245 const char *colon = strchr (regexp, ':');
5246
5247 /* Ignore the colon if it is part of a Windows drive. */
5248 if (HAS_DRIVE_SPEC (regexp)
5249 && (regexp[2] == '/' || regexp[2] == '\\'))
5250 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5251
5252 if (colon && *(colon + 1) != ':')
5253 {
5254 int colon_index;
5255 char *local_name;
5256
5257 colon_index = colon - regexp;
5258 local_name = (char *) alloca (colon_index + 1);
5259 memcpy (local_name, regexp, colon_index);
5260 local_name[colon_index--] = 0;
5261 while (isspace (local_name[colon_index]))
5262 local_name[colon_index--] = 0;
5263 file_name = local_name;
5264 regexp = skip_spaces (colon + 1);
5265 }
5266 }
5267
5268 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5269 if (file_name != nullptr)
5270 spec.filenames.push_back (file_name);
5271 std::vector<symbol_search> symbols = spec.search ();
5272
5273 scoped_rbreak_breakpoints finalize;
5274 for (const symbol_search &p : symbols)
5275 {
5276 if (p.msymbol.minsym == NULL)
5277 {
5278 struct symtab *symtab = symbol_symtab (p.symbol);
5279 const char *fullname = symtab_to_fullname (symtab);
5280
5281 string = string_printf ("%s:'%s'", fullname,
5282 p.symbol->linkage_name ());
5283 break_command (&string[0], from_tty);
5284 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5285 }
5286 else
5287 {
5288 string = string_printf ("'%s'",
5289 p.msymbol.minsym->linkage_name ());
5290
5291 break_command (&string[0], from_tty);
5292 printf_filtered ("<function, no debug info> %s;\n",
5293 p.msymbol.minsym->print_name ());
5294 }
5295 }
5296 }
5297 \f
5298
5299 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5300
5301 static int
5302 compare_symbol_name (const char *symbol_name, language symbol_language,
5303 const lookup_name_info &lookup_name,
5304 completion_match_result &match_res)
5305 {
5306 const language_defn *lang = language_def (symbol_language);
5307
5308 symbol_name_matcher_ftype *name_match
5309 = lang->get_symbol_name_matcher (lookup_name);
5310
5311 return name_match (symbol_name, lookup_name, &match_res);
5312 }
5313
5314 /* See symtab.h. */
5315
5316 bool
5317 completion_list_add_name (completion_tracker &tracker,
5318 language symbol_language,
5319 const char *symname,
5320 const lookup_name_info &lookup_name,
5321 const char *text, const char *word)
5322 {
5323 completion_match_result &match_res
5324 = tracker.reset_completion_match_result ();
5325
5326 /* Clip symbols that cannot match. */
5327 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5328 return false;
5329
5330 /* Refresh SYMNAME from the match string. It's potentially
5331 different depending on language. (E.g., on Ada, the match may be
5332 the encoded symbol name wrapped in "<>"). */
5333 symname = match_res.match.match ();
5334 gdb_assert (symname != NULL);
5335
5336 /* We have a match for a completion, so add SYMNAME to the current list
5337 of matches. Note that the name is moved to freshly malloc'd space. */
5338
5339 {
5340 gdb::unique_xmalloc_ptr<char> completion
5341 = make_completion_match_str (symname, text, word);
5342
5343 /* Here we pass the match-for-lcd object to add_completion. Some
5344 languages match the user text against substrings of symbol
5345 names in some cases. E.g., in C++, "b push_ba" completes to
5346 "std::vector::push_back", "std::string::push_back", etc., and
5347 in this case we want the completion lowest common denominator
5348 to be "push_back" instead of "std::". */
5349 tracker.add_completion (std::move (completion),
5350 &match_res.match_for_lcd, text, word);
5351 }
5352
5353 return true;
5354 }
5355
5356 /* completion_list_add_name wrapper for struct symbol. */
5357
5358 static void
5359 completion_list_add_symbol (completion_tracker &tracker,
5360 symbol *sym,
5361 const lookup_name_info &lookup_name,
5362 const char *text, const char *word)
5363 {
5364 if (!completion_list_add_name (tracker, sym->language (),
5365 sym->natural_name (),
5366 lookup_name, text, word))
5367 return;
5368
5369 /* C++ function symbols include the parameters within both the msymbol
5370 name and the symbol name. The problem is that the msymbol name will
5371 describe the parameters in the most basic way, with typedefs stripped
5372 out, while the symbol name will represent the types as they appear in
5373 the program. This means we will see duplicate entries in the
5374 completion tracker. The following converts the symbol name back to
5375 the msymbol name and removes the msymbol name from the completion
5376 tracker. */
5377 if (sym->language () == language_cplus
5378 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5379 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5380 {
5381 /* The call to canonicalize returns the empty string if the input
5382 string is already in canonical form, thanks to this we don't
5383 remove the symbol we just added above. */
5384 gdb::unique_xmalloc_ptr<char> str
5385 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5386 if (str != nullptr)
5387 tracker.remove_completion (str.get ());
5388 }
5389 }
5390
5391 /* completion_list_add_name wrapper for struct minimal_symbol. */
5392
5393 static void
5394 completion_list_add_msymbol (completion_tracker &tracker,
5395 minimal_symbol *sym,
5396 const lookup_name_info &lookup_name,
5397 const char *text, const char *word)
5398 {
5399 completion_list_add_name (tracker, sym->language (),
5400 sym->natural_name (),
5401 lookup_name, text, word);
5402 }
5403
5404
5405 /* ObjC: In case we are completing on a selector, look as the msymbol
5406 again and feed all the selectors into the mill. */
5407
5408 static void
5409 completion_list_objc_symbol (completion_tracker &tracker,
5410 struct minimal_symbol *msymbol,
5411 const lookup_name_info &lookup_name,
5412 const char *text, const char *word)
5413 {
5414 static char *tmp = NULL;
5415 static unsigned int tmplen = 0;
5416
5417 const char *method, *category, *selector;
5418 char *tmp2 = NULL;
5419
5420 method = msymbol->natural_name ();
5421
5422 /* Is it a method? */
5423 if ((method[0] != '-') && (method[0] != '+'))
5424 return;
5425
5426 if (text[0] == '[')
5427 /* Complete on shortened method method. */
5428 completion_list_add_name (tracker, language_objc,
5429 method + 1,
5430 lookup_name,
5431 text, word);
5432
5433 while ((strlen (method) + 1) >= tmplen)
5434 {
5435 if (tmplen == 0)
5436 tmplen = 1024;
5437 else
5438 tmplen *= 2;
5439 tmp = (char *) xrealloc (tmp, tmplen);
5440 }
5441 selector = strchr (method, ' ');
5442 if (selector != NULL)
5443 selector++;
5444
5445 category = strchr (method, '(');
5446
5447 if ((category != NULL) && (selector != NULL))
5448 {
5449 memcpy (tmp, method, (category - method));
5450 tmp[category - method] = ' ';
5451 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5452 completion_list_add_name (tracker, language_objc, tmp,
5453 lookup_name, text, word);
5454 if (text[0] == '[')
5455 completion_list_add_name (tracker, language_objc, tmp + 1,
5456 lookup_name, text, word);
5457 }
5458
5459 if (selector != NULL)
5460 {
5461 /* Complete on selector only. */
5462 strcpy (tmp, selector);
5463 tmp2 = strchr (tmp, ']');
5464 if (tmp2 != NULL)
5465 *tmp2 = '\0';
5466
5467 completion_list_add_name (tracker, language_objc, tmp,
5468 lookup_name, text, word);
5469 }
5470 }
5471
5472 /* Break the non-quoted text based on the characters which are in
5473 symbols. FIXME: This should probably be language-specific. */
5474
5475 static const char *
5476 language_search_unquoted_string (const char *text, const char *p)
5477 {
5478 for (; p > text; --p)
5479 {
5480 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5481 continue;
5482 else
5483 {
5484 if ((current_language->la_language == language_objc))
5485 {
5486 if (p[-1] == ':') /* Might be part of a method name. */
5487 continue;
5488 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5489 p -= 2; /* Beginning of a method name. */
5490 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5491 { /* Might be part of a method name. */
5492 const char *t = p;
5493
5494 /* Seeing a ' ' or a '(' is not conclusive evidence
5495 that we are in the middle of a method name. However,
5496 finding "-[" or "+[" should be pretty un-ambiguous.
5497 Unfortunately we have to find it now to decide. */
5498
5499 while (t > text)
5500 if (isalnum (t[-1]) || t[-1] == '_' ||
5501 t[-1] == ' ' || t[-1] == ':' ||
5502 t[-1] == '(' || t[-1] == ')')
5503 --t;
5504 else
5505 break;
5506
5507 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5508 p = t - 2; /* Method name detected. */
5509 /* Else we leave with p unchanged. */
5510 }
5511 }
5512 break;
5513 }
5514 }
5515 return p;
5516 }
5517
5518 static void
5519 completion_list_add_fields (completion_tracker &tracker,
5520 struct symbol *sym,
5521 const lookup_name_info &lookup_name,
5522 const char *text, const char *word)
5523 {
5524 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5525 {
5526 struct type *t = SYMBOL_TYPE (sym);
5527 enum type_code c = t->code ();
5528 int j;
5529
5530 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5531 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5532 if (TYPE_FIELD_NAME (t, j))
5533 completion_list_add_name (tracker, sym->language (),
5534 TYPE_FIELD_NAME (t, j),
5535 lookup_name, text, word);
5536 }
5537 }
5538
5539 /* See symtab.h. */
5540
5541 bool
5542 symbol_is_function_or_method (symbol *sym)
5543 {
5544 switch (SYMBOL_TYPE (sym)->code ())
5545 {
5546 case TYPE_CODE_FUNC:
5547 case TYPE_CODE_METHOD:
5548 return true;
5549 default:
5550 return false;
5551 }
5552 }
5553
5554 /* See symtab.h. */
5555
5556 bool
5557 symbol_is_function_or_method (minimal_symbol *msymbol)
5558 {
5559 switch (MSYMBOL_TYPE (msymbol))
5560 {
5561 case mst_text:
5562 case mst_text_gnu_ifunc:
5563 case mst_solib_trampoline:
5564 case mst_file_text:
5565 return true;
5566 default:
5567 return false;
5568 }
5569 }
5570
5571 /* See symtab.h. */
5572
5573 bound_minimal_symbol
5574 find_gnu_ifunc (const symbol *sym)
5575 {
5576 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5577 return {};
5578
5579 lookup_name_info lookup_name (sym->search_name (),
5580 symbol_name_match_type::SEARCH_NAME);
5581 struct objfile *objfile = symbol_objfile (sym);
5582
5583 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5584 minimal_symbol *ifunc = NULL;
5585
5586 iterate_over_minimal_symbols (objfile, lookup_name,
5587 [&] (minimal_symbol *minsym)
5588 {
5589 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5590 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5591 {
5592 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5593 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5594 {
5595 struct gdbarch *gdbarch = objfile->arch ();
5596 msym_addr
5597 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5598 msym_addr,
5599 current_top_target ());
5600 }
5601 if (msym_addr == address)
5602 {
5603 ifunc = minsym;
5604 return true;
5605 }
5606 }
5607 return false;
5608 });
5609
5610 if (ifunc != NULL)
5611 return {ifunc, objfile};
5612 return {};
5613 }
5614
5615 /* Add matching symbols from SYMTAB to the current completion list. */
5616
5617 static void
5618 add_symtab_completions (struct compunit_symtab *cust,
5619 completion_tracker &tracker,
5620 complete_symbol_mode mode,
5621 const lookup_name_info &lookup_name,
5622 const char *text, const char *word,
5623 enum type_code code)
5624 {
5625 struct symbol *sym;
5626 const struct block *b;
5627 struct block_iterator iter;
5628 int i;
5629
5630 if (cust == NULL)
5631 return;
5632
5633 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5634 {
5635 QUIT;
5636 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5637 ALL_BLOCK_SYMBOLS (b, iter, sym)
5638 {
5639 if (completion_skip_symbol (mode, sym))
5640 continue;
5641
5642 if (code == TYPE_CODE_UNDEF
5643 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5644 && SYMBOL_TYPE (sym)->code () == code))
5645 completion_list_add_symbol (tracker, sym,
5646 lookup_name,
5647 text, word);
5648 }
5649 }
5650 }
5651
5652 void
5653 default_collect_symbol_completion_matches_break_on
5654 (completion_tracker &tracker, complete_symbol_mode mode,
5655 symbol_name_match_type name_match_type,
5656 const char *text, const char *word,
5657 const char *break_on, enum type_code code)
5658 {
5659 /* Problem: All of the symbols have to be copied because readline
5660 frees them. I'm not going to worry about this; hopefully there
5661 won't be that many. */
5662
5663 struct symbol *sym;
5664 const struct block *b;
5665 const struct block *surrounding_static_block, *surrounding_global_block;
5666 struct block_iterator iter;
5667 /* The symbol we are completing on. Points in same buffer as text. */
5668 const char *sym_text;
5669
5670 /* Now look for the symbol we are supposed to complete on. */
5671 if (mode == complete_symbol_mode::LINESPEC)
5672 sym_text = text;
5673 else
5674 {
5675 const char *p;
5676 char quote_found;
5677 const char *quote_pos = NULL;
5678
5679 /* First see if this is a quoted string. */
5680 quote_found = '\0';
5681 for (p = text; *p != '\0'; ++p)
5682 {
5683 if (quote_found != '\0')
5684 {
5685 if (*p == quote_found)
5686 /* Found close quote. */
5687 quote_found = '\0';
5688 else if (*p == '\\' && p[1] == quote_found)
5689 /* A backslash followed by the quote character
5690 doesn't end the string. */
5691 ++p;
5692 }
5693 else if (*p == '\'' || *p == '"')
5694 {
5695 quote_found = *p;
5696 quote_pos = p;
5697 }
5698 }
5699 if (quote_found == '\'')
5700 /* A string within single quotes can be a symbol, so complete on it. */
5701 sym_text = quote_pos + 1;
5702 else if (quote_found == '"')
5703 /* A double-quoted string is never a symbol, nor does it make sense
5704 to complete it any other way. */
5705 {
5706 return;
5707 }
5708 else
5709 {
5710 /* It is not a quoted string. Break it based on the characters
5711 which are in symbols. */
5712 while (p > text)
5713 {
5714 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5715 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5716 --p;
5717 else
5718 break;
5719 }
5720 sym_text = p;
5721 }
5722 }
5723
5724 lookup_name_info lookup_name (sym_text, name_match_type, true);
5725
5726 /* At this point scan through the misc symbol vectors and add each
5727 symbol you find to the list. Eventually we want to ignore
5728 anything that isn't a text symbol (everything else will be
5729 handled by the psymtab code below). */
5730
5731 if (code == TYPE_CODE_UNDEF)
5732 {
5733 for (objfile *objfile : current_program_space->objfiles ())
5734 {
5735 for (minimal_symbol *msymbol : objfile->msymbols ())
5736 {
5737 QUIT;
5738
5739 if (completion_skip_symbol (mode, msymbol))
5740 continue;
5741
5742 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5743 sym_text, word);
5744
5745 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5746 sym_text, word);
5747 }
5748 }
5749 }
5750
5751 /* Add completions for all currently loaded symbol tables. */
5752 for (objfile *objfile : current_program_space->objfiles ())
5753 {
5754 for (compunit_symtab *cust : objfile->compunits ())
5755 add_symtab_completions (cust, tracker, mode, lookup_name,
5756 sym_text, word, code);
5757 }
5758
5759 /* Look through the partial symtabs for all symbols which begin by
5760 matching SYM_TEXT. Expand all CUs that you find to the list. */
5761 expand_symtabs_matching (NULL,
5762 lookup_name,
5763 NULL,
5764 [&] (compunit_symtab *symtab) /* expansion notify */
5765 {
5766 add_symtab_completions (symtab,
5767 tracker, mode, lookup_name,
5768 sym_text, word, code);
5769 },
5770 ALL_DOMAIN);
5771
5772 /* Search upwards from currently selected frame (so that we can
5773 complete on local vars). Also catch fields of types defined in
5774 this places which match our text string. Only complete on types
5775 visible from current context. */
5776
5777 b = get_selected_block (0);
5778 surrounding_static_block = block_static_block (b);
5779 surrounding_global_block = block_global_block (b);
5780 if (surrounding_static_block != NULL)
5781 while (b != surrounding_static_block)
5782 {
5783 QUIT;
5784
5785 ALL_BLOCK_SYMBOLS (b, iter, sym)
5786 {
5787 if (code == TYPE_CODE_UNDEF)
5788 {
5789 completion_list_add_symbol (tracker, sym, lookup_name,
5790 sym_text, word);
5791 completion_list_add_fields (tracker, sym, lookup_name,
5792 sym_text, word);
5793 }
5794 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5795 && SYMBOL_TYPE (sym)->code () == code)
5796 completion_list_add_symbol (tracker, sym, lookup_name,
5797 sym_text, word);
5798 }
5799
5800 /* Stop when we encounter an enclosing function. Do not stop for
5801 non-inlined functions - the locals of the enclosing function
5802 are in scope for a nested function. */
5803 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5804 break;
5805 b = BLOCK_SUPERBLOCK (b);
5806 }
5807
5808 /* Add fields from the file's types; symbols will be added below. */
5809
5810 if (code == TYPE_CODE_UNDEF)
5811 {
5812 if (surrounding_static_block != NULL)
5813 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5814 completion_list_add_fields (tracker, sym, lookup_name,
5815 sym_text, word);
5816
5817 if (surrounding_global_block != NULL)
5818 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5819 completion_list_add_fields (tracker, sym, lookup_name,
5820 sym_text, word);
5821 }
5822
5823 /* Skip macros if we are completing a struct tag -- arguable but
5824 usually what is expected. */
5825 if (current_language->macro_expansion () == macro_expansion_c
5826 && code == TYPE_CODE_UNDEF)
5827 {
5828 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5829
5830 /* This adds a macro's name to the current completion list. */
5831 auto add_macro_name = [&] (const char *macro_name,
5832 const macro_definition *,
5833 macro_source_file *,
5834 int)
5835 {
5836 completion_list_add_name (tracker, language_c, macro_name,
5837 lookup_name, sym_text, word);
5838 };
5839
5840 /* Add any macros visible in the default scope. Note that this
5841 may yield the occasional wrong result, because an expression
5842 might be evaluated in a scope other than the default. For
5843 example, if the user types "break file:line if <TAB>", the
5844 resulting expression will be evaluated at "file:line" -- but
5845 at there does not seem to be a way to detect this at
5846 completion time. */
5847 scope = default_macro_scope ();
5848 if (scope)
5849 macro_for_each_in_scope (scope->file, scope->line,
5850 add_macro_name);
5851
5852 /* User-defined macros are always visible. */
5853 macro_for_each (macro_user_macros, add_macro_name);
5854 }
5855 }
5856
5857 /* Collect all symbols (regardless of class) which begin by matching
5858 TEXT. */
5859
5860 void
5861 collect_symbol_completion_matches (completion_tracker &tracker,
5862 complete_symbol_mode mode,
5863 symbol_name_match_type name_match_type,
5864 const char *text, const char *word)
5865 {
5866 current_language->collect_symbol_completion_matches (tracker, mode,
5867 name_match_type,
5868 text, word,
5869 TYPE_CODE_UNDEF);
5870 }
5871
5872 /* Like collect_symbol_completion_matches, but only collect
5873 STRUCT_DOMAIN symbols whose type code is CODE. */
5874
5875 void
5876 collect_symbol_completion_matches_type (completion_tracker &tracker,
5877 const char *text, const char *word,
5878 enum type_code code)
5879 {
5880 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5881 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5882
5883 gdb_assert (code == TYPE_CODE_UNION
5884 || code == TYPE_CODE_STRUCT
5885 || code == TYPE_CODE_ENUM);
5886 current_language->collect_symbol_completion_matches (tracker, mode,
5887 name_match_type,
5888 text, word, code);
5889 }
5890
5891 /* Like collect_symbol_completion_matches, but collects a list of
5892 symbols defined in all source files named SRCFILE. */
5893
5894 void
5895 collect_file_symbol_completion_matches (completion_tracker &tracker,
5896 complete_symbol_mode mode,
5897 symbol_name_match_type name_match_type,
5898 const char *text, const char *word,
5899 const char *srcfile)
5900 {
5901 /* The symbol we are completing on. Points in same buffer as text. */
5902 const char *sym_text;
5903
5904 /* Now look for the symbol we are supposed to complete on.
5905 FIXME: This should be language-specific. */
5906 if (mode == complete_symbol_mode::LINESPEC)
5907 sym_text = text;
5908 else
5909 {
5910 const char *p;
5911 char quote_found;
5912 const char *quote_pos = NULL;
5913
5914 /* First see if this is a quoted string. */
5915 quote_found = '\0';
5916 for (p = text; *p != '\0'; ++p)
5917 {
5918 if (quote_found != '\0')
5919 {
5920 if (*p == quote_found)
5921 /* Found close quote. */
5922 quote_found = '\0';
5923 else if (*p == '\\' && p[1] == quote_found)
5924 /* A backslash followed by the quote character
5925 doesn't end the string. */
5926 ++p;
5927 }
5928 else if (*p == '\'' || *p == '"')
5929 {
5930 quote_found = *p;
5931 quote_pos = p;
5932 }
5933 }
5934 if (quote_found == '\'')
5935 /* A string within single quotes can be a symbol, so complete on it. */
5936 sym_text = quote_pos + 1;
5937 else if (quote_found == '"')
5938 /* A double-quoted string is never a symbol, nor does it make sense
5939 to complete it any other way. */
5940 {
5941 return;
5942 }
5943 else
5944 {
5945 /* Not a quoted string. */
5946 sym_text = language_search_unquoted_string (text, p);
5947 }
5948 }
5949
5950 lookup_name_info lookup_name (sym_text, name_match_type, true);
5951
5952 /* Go through symtabs for SRCFILE and check the externs and statics
5953 for symbols which match. */
5954 iterate_over_symtabs (srcfile, [&] (symtab *s)
5955 {
5956 add_symtab_completions (SYMTAB_COMPUNIT (s),
5957 tracker, mode, lookup_name,
5958 sym_text, word, TYPE_CODE_UNDEF);
5959 return false;
5960 });
5961 }
5962
5963 /* A helper function for make_source_files_completion_list. It adds
5964 another file name to a list of possible completions, growing the
5965 list as necessary. */
5966
5967 static void
5968 add_filename_to_list (const char *fname, const char *text, const char *word,
5969 completion_list *list)
5970 {
5971 list->emplace_back (make_completion_match_str (fname, text, word));
5972 }
5973
5974 static int
5975 not_interesting_fname (const char *fname)
5976 {
5977 static const char *illegal_aliens[] = {
5978 "_globals_", /* inserted by coff_symtab_read */
5979 NULL
5980 };
5981 int i;
5982
5983 for (i = 0; illegal_aliens[i]; i++)
5984 {
5985 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5986 return 1;
5987 }
5988 return 0;
5989 }
5990
5991 /* An object of this type is passed as the user_data argument to
5992 map_partial_symbol_filenames. */
5993 struct add_partial_filename_data
5994 {
5995 struct filename_seen_cache *filename_seen_cache;
5996 const char *text;
5997 const char *word;
5998 int text_len;
5999 completion_list *list;
6000 };
6001
6002 /* A callback for map_partial_symbol_filenames. */
6003
6004 static void
6005 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6006 void *user_data)
6007 {
6008 struct add_partial_filename_data *data
6009 = (struct add_partial_filename_data *) user_data;
6010
6011 if (not_interesting_fname (filename))
6012 return;
6013 if (!data->filename_seen_cache->seen (filename)
6014 && filename_ncmp (filename, data->text, data->text_len) == 0)
6015 {
6016 /* This file matches for a completion; add it to the
6017 current list of matches. */
6018 add_filename_to_list (filename, data->text, data->word, data->list);
6019 }
6020 else
6021 {
6022 const char *base_name = lbasename (filename);
6023
6024 if (base_name != filename
6025 && !data->filename_seen_cache->seen (base_name)
6026 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6027 add_filename_to_list (base_name, data->text, data->word, data->list);
6028 }
6029 }
6030
6031 /* Return a list of all source files whose names begin with matching
6032 TEXT. The file names are looked up in the symbol tables of this
6033 program. */
6034
6035 completion_list
6036 make_source_files_completion_list (const char *text, const char *word)
6037 {
6038 size_t text_len = strlen (text);
6039 completion_list list;
6040 const char *base_name;
6041 struct add_partial_filename_data datum;
6042
6043 if (!have_full_symbols () && !have_partial_symbols ())
6044 return list;
6045
6046 filename_seen_cache filenames_seen;
6047
6048 for (objfile *objfile : current_program_space->objfiles ())
6049 {
6050 for (compunit_symtab *cu : objfile->compunits ())
6051 {
6052 for (symtab *s : compunit_filetabs (cu))
6053 {
6054 if (not_interesting_fname (s->filename))
6055 continue;
6056 if (!filenames_seen.seen (s->filename)
6057 && filename_ncmp (s->filename, text, text_len) == 0)
6058 {
6059 /* This file matches for a completion; add it to the current
6060 list of matches. */
6061 add_filename_to_list (s->filename, text, word, &list);
6062 }
6063 else
6064 {
6065 /* NOTE: We allow the user to type a base name when the
6066 debug info records leading directories, but not the other
6067 way around. This is what subroutines of breakpoint
6068 command do when they parse file names. */
6069 base_name = lbasename (s->filename);
6070 if (base_name != s->filename
6071 && !filenames_seen.seen (base_name)
6072 && filename_ncmp (base_name, text, text_len) == 0)
6073 add_filename_to_list (base_name, text, word, &list);
6074 }
6075 }
6076 }
6077 }
6078
6079 datum.filename_seen_cache = &filenames_seen;
6080 datum.text = text;
6081 datum.word = word;
6082 datum.text_len = text_len;
6083 datum.list = &list;
6084 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6085 0 /*need_fullname*/);
6086
6087 return list;
6088 }
6089 \f
6090 /* Track MAIN */
6091
6092 /* Return the "main_info" object for the current program space. If
6093 the object has not yet been created, create it and fill in some
6094 default values. */
6095
6096 static struct main_info *
6097 get_main_info (void)
6098 {
6099 struct main_info *info = main_progspace_key.get (current_program_space);
6100
6101 if (info == NULL)
6102 {
6103 /* It may seem strange to store the main name in the progspace
6104 and also in whatever objfile happens to see a main name in
6105 its debug info. The reason for this is mainly historical:
6106 gdb returned "main" as the name even if no function named
6107 "main" was defined the program; and this approach lets us
6108 keep compatibility. */
6109 info = main_progspace_key.emplace (current_program_space);
6110 }
6111
6112 return info;
6113 }
6114
6115 static void
6116 set_main_name (const char *name, enum language lang)
6117 {
6118 struct main_info *info = get_main_info ();
6119
6120 if (info->name_of_main != NULL)
6121 {
6122 xfree (info->name_of_main);
6123 info->name_of_main = NULL;
6124 info->language_of_main = language_unknown;
6125 }
6126 if (name != NULL)
6127 {
6128 info->name_of_main = xstrdup (name);
6129 info->language_of_main = lang;
6130 }
6131 }
6132
6133 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6134 accordingly. */
6135
6136 static void
6137 find_main_name (void)
6138 {
6139 const char *new_main_name;
6140
6141 /* First check the objfiles to see whether a debuginfo reader has
6142 picked up the appropriate main name. Historically the main name
6143 was found in a more or less random way; this approach instead
6144 relies on the order of objfile creation -- which still isn't
6145 guaranteed to get the correct answer, but is just probably more
6146 accurate. */
6147 for (objfile *objfile : current_program_space->objfiles ())
6148 {
6149 if (objfile->per_bfd->name_of_main != NULL)
6150 {
6151 set_main_name (objfile->per_bfd->name_of_main,
6152 objfile->per_bfd->language_of_main);
6153 return;
6154 }
6155 }
6156
6157 /* Try to see if the main procedure is in Ada. */
6158 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6159 be to add a new method in the language vector, and call this
6160 method for each language until one of them returns a non-empty
6161 name. This would allow us to remove this hard-coded call to
6162 an Ada function. It is not clear that this is a better approach
6163 at this point, because all methods need to be written in a way
6164 such that false positives never be returned. For instance, it is
6165 important that a method does not return a wrong name for the main
6166 procedure if the main procedure is actually written in a different
6167 language. It is easy to guaranty this with Ada, since we use a
6168 special symbol generated only when the main in Ada to find the name
6169 of the main procedure. It is difficult however to see how this can
6170 be guarantied for languages such as C, for instance. This suggests
6171 that order of call for these methods becomes important, which means
6172 a more complicated approach. */
6173 new_main_name = ada_main_name ();
6174 if (new_main_name != NULL)
6175 {
6176 set_main_name (new_main_name, language_ada);
6177 return;
6178 }
6179
6180 new_main_name = d_main_name ();
6181 if (new_main_name != NULL)
6182 {
6183 set_main_name (new_main_name, language_d);
6184 return;
6185 }
6186
6187 new_main_name = go_main_name ();
6188 if (new_main_name != NULL)
6189 {
6190 set_main_name (new_main_name, language_go);
6191 return;
6192 }
6193
6194 new_main_name = pascal_main_name ();
6195 if (new_main_name != NULL)
6196 {
6197 set_main_name (new_main_name, language_pascal);
6198 return;
6199 }
6200
6201 /* The languages above didn't identify the name of the main procedure.
6202 Fallback to "main". */
6203
6204 /* Try to find language for main in psymtabs. */
6205 enum language lang
6206 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6207 if (lang != language_unknown)
6208 {
6209 set_main_name ("main", lang);
6210 return;
6211 }
6212
6213 set_main_name ("main", language_unknown);
6214 }
6215
6216 /* See symtab.h. */
6217
6218 const char *
6219 main_name ()
6220 {
6221 struct main_info *info = get_main_info ();
6222
6223 if (info->name_of_main == NULL)
6224 find_main_name ();
6225
6226 return info->name_of_main;
6227 }
6228
6229 /* Return the language of the main function. If it is not known,
6230 return language_unknown. */
6231
6232 enum language
6233 main_language (void)
6234 {
6235 struct main_info *info = get_main_info ();
6236
6237 if (info->name_of_main == NULL)
6238 find_main_name ();
6239
6240 return info->language_of_main;
6241 }
6242
6243 /* Handle ``executable_changed'' events for the symtab module. */
6244
6245 static void
6246 symtab_observer_executable_changed (void)
6247 {
6248 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6249 set_main_name (NULL, language_unknown);
6250 }
6251
6252 /* Return 1 if the supplied producer string matches the ARM RealView
6253 compiler (armcc). */
6254
6255 bool
6256 producer_is_realview (const char *producer)
6257 {
6258 static const char *const arm_idents[] = {
6259 "ARM C Compiler, ADS",
6260 "Thumb C Compiler, ADS",
6261 "ARM C++ Compiler, ADS",
6262 "Thumb C++ Compiler, ADS",
6263 "ARM/Thumb C/C++ Compiler, RVCT",
6264 "ARM C/C++ Compiler, RVCT"
6265 };
6266 int i;
6267
6268 if (producer == NULL)
6269 return false;
6270
6271 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6272 if (startswith (producer, arm_idents[i]))
6273 return true;
6274
6275 return false;
6276 }
6277
6278 \f
6279
6280 /* The next index to hand out in response to a registration request. */
6281
6282 static int next_aclass_value = LOC_FINAL_VALUE;
6283
6284 /* The maximum number of "aclass" registrations we support. This is
6285 constant for convenience. */
6286 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6287
6288 /* The objects representing the various "aclass" values. The elements
6289 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6290 elements are those registered at gdb initialization time. */
6291
6292 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6293
6294 /* The globally visible pointer. This is separate from 'symbol_impl'
6295 so that it can be const. */
6296
6297 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6298
6299 /* Make sure we saved enough room in struct symbol. */
6300
6301 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6302
6303 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6304 is the ops vector associated with this index. This returns the new
6305 index, which should be used as the aclass_index field for symbols
6306 of this type. */
6307
6308 int
6309 register_symbol_computed_impl (enum address_class aclass,
6310 const struct symbol_computed_ops *ops)
6311 {
6312 int result = next_aclass_value++;
6313
6314 gdb_assert (aclass == LOC_COMPUTED);
6315 gdb_assert (result < MAX_SYMBOL_IMPLS);
6316 symbol_impl[result].aclass = aclass;
6317 symbol_impl[result].ops_computed = ops;
6318
6319 /* Sanity check OPS. */
6320 gdb_assert (ops != NULL);
6321 gdb_assert (ops->tracepoint_var_ref != NULL);
6322 gdb_assert (ops->describe_location != NULL);
6323 gdb_assert (ops->get_symbol_read_needs != NULL);
6324 gdb_assert (ops->read_variable != NULL);
6325
6326 return result;
6327 }
6328
6329 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6330 OPS is the ops vector associated with this index. This returns the
6331 new index, which should be used as the aclass_index field for symbols
6332 of this type. */
6333
6334 int
6335 register_symbol_block_impl (enum address_class aclass,
6336 const struct symbol_block_ops *ops)
6337 {
6338 int result = next_aclass_value++;
6339
6340 gdb_assert (aclass == LOC_BLOCK);
6341 gdb_assert (result < MAX_SYMBOL_IMPLS);
6342 symbol_impl[result].aclass = aclass;
6343 symbol_impl[result].ops_block = ops;
6344
6345 /* Sanity check OPS. */
6346 gdb_assert (ops != NULL);
6347 gdb_assert (ops->find_frame_base_location != NULL);
6348
6349 return result;
6350 }
6351
6352 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6353 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6354 this index. This returns the new index, which should be used as
6355 the aclass_index field for symbols of this type. */
6356
6357 int
6358 register_symbol_register_impl (enum address_class aclass,
6359 const struct symbol_register_ops *ops)
6360 {
6361 int result = next_aclass_value++;
6362
6363 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6364 gdb_assert (result < MAX_SYMBOL_IMPLS);
6365 symbol_impl[result].aclass = aclass;
6366 symbol_impl[result].ops_register = ops;
6367
6368 return result;
6369 }
6370
6371 /* Initialize elements of 'symbol_impl' for the constants in enum
6372 address_class. */
6373
6374 static void
6375 initialize_ordinary_address_classes (void)
6376 {
6377 int i;
6378
6379 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6380 symbol_impl[i].aclass = (enum address_class) i;
6381 }
6382
6383 \f
6384
6385 /* See symtab.h. */
6386
6387 struct objfile *
6388 symbol_objfile (const struct symbol *symbol)
6389 {
6390 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6391 return SYMTAB_OBJFILE (symbol->owner.symtab);
6392 }
6393
6394 /* See symtab.h. */
6395
6396 struct gdbarch *
6397 symbol_arch (const struct symbol *symbol)
6398 {
6399 if (!SYMBOL_OBJFILE_OWNED (symbol))
6400 return symbol->owner.arch;
6401 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6402 }
6403
6404 /* See symtab.h. */
6405
6406 struct symtab *
6407 symbol_symtab (const struct symbol *symbol)
6408 {
6409 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6410 return symbol->owner.symtab;
6411 }
6412
6413 /* See symtab.h. */
6414
6415 void
6416 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6417 {
6418 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6419 symbol->owner.symtab = symtab;
6420 }
6421
6422 /* See symtab.h. */
6423
6424 CORE_ADDR
6425 get_symbol_address (const struct symbol *sym)
6426 {
6427 gdb_assert (sym->maybe_copied);
6428 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6429
6430 const char *linkage_name = sym->linkage_name ();
6431
6432 for (objfile *objfile : current_program_space->objfiles ())
6433 {
6434 if (objfile->separate_debug_objfile_backlink != nullptr)
6435 continue;
6436
6437 bound_minimal_symbol minsym
6438 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6439 if (minsym.minsym != nullptr)
6440 return BMSYMBOL_VALUE_ADDRESS (minsym);
6441 }
6442 return sym->value.address;
6443 }
6444
6445 /* See symtab.h. */
6446
6447 CORE_ADDR
6448 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6449 {
6450 gdb_assert (minsym->maybe_copied);
6451 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6452
6453 const char *linkage_name = minsym->linkage_name ();
6454
6455 for (objfile *objfile : current_program_space->objfiles ())
6456 {
6457 if (objfile->separate_debug_objfile_backlink == nullptr
6458 && (objfile->flags & OBJF_MAINLINE) != 0)
6459 {
6460 bound_minimal_symbol found
6461 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6462 if (found.minsym != nullptr)
6463 return BMSYMBOL_VALUE_ADDRESS (found);
6464 }
6465 }
6466 return minsym->value.address + objf->section_offsets[minsym->section];
6467 }
6468
6469 \f
6470
6471 /* Hold the sub-commands of 'info module'. */
6472
6473 static struct cmd_list_element *info_module_cmdlist = NULL;
6474
6475 /* See symtab.h. */
6476
6477 std::vector<module_symbol_search>
6478 search_module_symbols (const char *module_regexp, const char *regexp,
6479 const char *type_regexp, search_domain kind)
6480 {
6481 std::vector<module_symbol_search> results;
6482
6483 /* Search for all modules matching MODULE_REGEXP. */
6484 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6485 spec1.set_exclude_minsyms (true);
6486 std::vector<symbol_search> modules = spec1.search ();
6487
6488 /* Now search for all symbols of the required KIND matching the required
6489 regular expressions. We figure out which ones are in which modules
6490 below. */
6491 global_symbol_searcher spec2 (kind, regexp);
6492 spec2.set_symbol_type_regexp (type_regexp);
6493 spec2.set_exclude_minsyms (true);
6494 std::vector<symbol_search> symbols = spec2.search ();
6495
6496 /* Now iterate over all MODULES, checking to see which items from
6497 SYMBOLS are in each module. */
6498 for (const symbol_search &p : modules)
6499 {
6500 QUIT;
6501
6502 /* This is a module. */
6503 gdb_assert (p.symbol != nullptr);
6504
6505 std::string prefix = p.symbol->print_name ();
6506 prefix += "::";
6507
6508 for (const symbol_search &q : symbols)
6509 {
6510 if (q.symbol == nullptr)
6511 continue;
6512
6513 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6514 prefix.size ()) != 0)
6515 continue;
6516
6517 results.push_back ({p, q});
6518 }
6519 }
6520
6521 return results;
6522 }
6523
6524 /* Implement the core of both 'info module functions' and 'info module
6525 variables'. */
6526
6527 static void
6528 info_module_subcommand (bool quiet, const char *module_regexp,
6529 const char *regexp, const char *type_regexp,
6530 search_domain kind)
6531 {
6532 /* Print a header line. Don't build the header line bit by bit as this
6533 prevents internationalisation. */
6534 if (!quiet)
6535 {
6536 if (module_regexp == nullptr)
6537 {
6538 if (type_regexp == nullptr)
6539 {
6540 if (regexp == nullptr)
6541 printf_filtered ((kind == VARIABLES_DOMAIN
6542 ? _("All variables in all modules:")
6543 : _("All functions in all modules:")));
6544 else
6545 printf_filtered
6546 ((kind == VARIABLES_DOMAIN
6547 ? _("All variables matching regular expression"
6548 " \"%s\" in all modules:")
6549 : _("All functions matching regular expression"
6550 " \"%s\" in all modules:")),
6551 regexp);
6552 }
6553 else
6554 {
6555 if (regexp == nullptr)
6556 printf_filtered
6557 ((kind == VARIABLES_DOMAIN
6558 ? _("All variables with type matching regular "
6559 "expression \"%s\" in all modules:")
6560 : _("All functions with type matching regular "
6561 "expression \"%s\" in all modules:")),
6562 type_regexp);
6563 else
6564 printf_filtered
6565 ((kind == VARIABLES_DOMAIN
6566 ? _("All variables matching regular expression "
6567 "\"%s\",\n\twith type matching regular "
6568 "expression \"%s\" in all modules:")
6569 : _("All functions matching regular expression "
6570 "\"%s\",\n\twith type matching regular "
6571 "expression \"%s\" in all modules:")),
6572 regexp, type_regexp);
6573 }
6574 }
6575 else
6576 {
6577 if (type_regexp == nullptr)
6578 {
6579 if (regexp == nullptr)
6580 printf_filtered
6581 ((kind == VARIABLES_DOMAIN
6582 ? _("All variables in all modules matching regular "
6583 "expression \"%s\":")
6584 : _("All functions in all modules matching regular "
6585 "expression \"%s\":")),
6586 module_regexp);
6587 else
6588 printf_filtered
6589 ((kind == VARIABLES_DOMAIN
6590 ? _("All variables matching regular expression "
6591 "\"%s\",\n\tin all modules matching regular "
6592 "expression \"%s\":")
6593 : _("All functions matching regular expression "
6594 "\"%s\",\n\tin all modules matching regular "
6595 "expression \"%s\":")),
6596 regexp, module_regexp);
6597 }
6598 else
6599 {
6600 if (regexp == nullptr)
6601 printf_filtered
6602 ((kind == VARIABLES_DOMAIN
6603 ? _("All variables with type matching regular "
6604 "expression \"%s\"\n\tin all modules matching "
6605 "regular expression \"%s\":")
6606 : _("All functions with type matching regular "
6607 "expression \"%s\"\n\tin all modules matching "
6608 "regular expression \"%s\":")),
6609 type_regexp, module_regexp);
6610 else
6611 printf_filtered
6612 ((kind == VARIABLES_DOMAIN
6613 ? _("All variables matching regular expression "
6614 "\"%s\",\n\twith type matching regular expression "
6615 "\"%s\",\n\tin all modules matching regular "
6616 "expression \"%s\":")
6617 : _("All functions matching regular expression "
6618 "\"%s\",\n\twith type matching regular expression "
6619 "\"%s\",\n\tin all modules matching regular "
6620 "expression \"%s\":")),
6621 regexp, type_regexp, module_regexp);
6622 }
6623 }
6624 printf_filtered ("\n");
6625 }
6626
6627 /* Find all symbols of type KIND matching the given regular expressions
6628 along with the symbols for the modules in which those symbols
6629 reside. */
6630 std::vector<module_symbol_search> module_symbols
6631 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6632
6633 std::sort (module_symbols.begin (), module_symbols.end (),
6634 [] (const module_symbol_search &a, const module_symbol_search &b)
6635 {
6636 if (a.first < b.first)
6637 return true;
6638 else if (a.first == b.first)
6639 return a.second < b.second;
6640 else
6641 return false;
6642 });
6643
6644 const char *last_filename = "";
6645 const symbol *last_module_symbol = nullptr;
6646 for (const module_symbol_search &ms : module_symbols)
6647 {
6648 const symbol_search &p = ms.first;
6649 const symbol_search &q = ms.second;
6650
6651 gdb_assert (q.symbol != nullptr);
6652
6653 if (last_module_symbol != p.symbol)
6654 {
6655 printf_filtered ("\n");
6656 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6657 last_module_symbol = p.symbol;
6658 last_filename = "";
6659 }
6660
6661 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6662 last_filename);
6663 last_filename
6664 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6665 }
6666 }
6667
6668 /* Hold the option values for the 'info module .....' sub-commands. */
6669
6670 struct info_modules_var_func_options
6671 {
6672 bool quiet = false;
6673 char *type_regexp = nullptr;
6674 char *module_regexp = nullptr;
6675
6676 ~info_modules_var_func_options ()
6677 {
6678 xfree (type_regexp);
6679 xfree (module_regexp);
6680 }
6681 };
6682
6683 /* The options used by 'info module variables' and 'info module functions'
6684 commands. */
6685
6686 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6687 gdb::option::boolean_option_def<info_modules_var_func_options> {
6688 "q",
6689 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6690 nullptr, /* show_cmd_cb */
6691 nullptr /* set_doc */
6692 },
6693
6694 gdb::option::string_option_def<info_modules_var_func_options> {
6695 "t",
6696 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6697 nullptr, /* show_cmd_cb */
6698 nullptr /* set_doc */
6699 },
6700
6701 gdb::option::string_option_def<info_modules_var_func_options> {
6702 "m",
6703 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6704 nullptr, /* show_cmd_cb */
6705 nullptr /* set_doc */
6706 }
6707 };
6708
6709 /* Return the option group used by the 'info module ...' sub-commands. */
6710
6711 static inline gdb::option::option_def_group
6712 make_info_modules_var_func_options_def_group
6713 (info_modules_var_func_options *opts)
6714 {
6715 return {{info_modules_var_func_options_defs}, opts};
6716 }
6717
6718 /* Implements the 'info module functions' command. */
6719
6720 static void
6721 info_module_functions_command (const char *args, int from_tty)
6722 {
6723 info_modules_var_func_options opts;
6724 auto grp = make_info_modules_var_func_options_def_group (&opts);
6725 gdb::option::process_options
6726 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6727 if (args != nullptr && *args == '\0')
6728 args = nullptr;
6729
6730 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6731 opts.type_regexp, FUNCTIONS_DOMAIN);
6732 }
6733
6734 /* Implements the 'info module variables' command. */
6735
6736 static void
6737 info_module_variables_command (const char *args, int from_tty)
6738 {
6739 info_modules_var_func_options opts;
6740 auto grp = make_info_modules_var_func_options_def_group (&opts);
6741 gdb::option::process_options
6742 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6743 if (args != nullptr && *args == '\0')
6744 args = nullptr;
6745
6746 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6747 opts.type_regexp, VARIABLES_DOMAIN);
6748 }
6749
6750 /* Command completer for 'info module ...' sub-commands. */
6751
6752 static void
6753 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6754 completion_tracker &tracker,
6755 const char *text,
6756 const char * /* word */)
6757 {
6758
6759 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6760 if (gdb::option::complete_options
6761 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6762 return;
6763
6764 const char *word = advance_to_expression_complete_word_point (tracker, text);
6765 symbol_completer (ignore, tracker, text, word);
6766 }
6767
6768 \f
6769
6770 void _initialize_symtab ();
6771 void
6772 _initialize_symtab ()
6773 {
6774 cmd_list_element *c;
6775
6776 initialize_ordinary_address_classes ();
6777
6778 c = add_info ("variables", info_variables_command,
6779 info_print_args_help (_("\
6780 All global and static variable names or those matching REGEXPs.\n\
6781 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6782 Prints the global and static variables.\n"),
6783 _("global and static variables"),
6784 true));
6785 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6786 if (dbx_commands)
6787 {
6788 c = add_com ("whereis", class_info, info_variables_command,
6789 info_print_args_help (_("\
6790 All global and static variable names, or those matching REGEXPs.\n\
6791 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6792 Prints the global and static variables.\n"),
6793 _("global and static variables"),
6794 true));
6795 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6796 }
6797
6798 c = add_info ("functions", info_functions_command,
6799 info_print_args_help (_("\
6800 All function names or those matching REGEXPs.\n\
6801 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6802 Prints the functions.\n"),
6803 _("functions"),
6804 true));
6805 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6806
6807 c = add_info ("types", info_types_command, _("\
6808 All type names, or those matching REGEXP.\n\
6809 Usage: info types [-q] [REGEXP]\n\
6810 Print information about all types matching REGEXP, or all types if no\n\
6811 REGEXP is given. The optional flag -q disables printing of headers."));
6812 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6813
6814 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6815
6816 static std::string info_sources_help
6817 = gdb::option::build_help (_("\
6818 All source files in the program or those matching REGEXP.\n\
6819 Usage: info sources [OPTION]... [REGEXP]\n\
6820 By default, REGEXP is used to match anywhere in the filename.\n\
6821 \n\
6822 Options:\n\
6823 %OPTIONS%"),
6824 info_sources_opts);
6825
6826 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6827 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6828
6829 c = add_info ("modules", info_modules_command,
6830 _("All module names, or those matching REGEXP."));
6831 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6832
6833 add_basic_prefix_cmd ("module", class_info, _("\
6834 Print information about modules."),
6835 &info_module_cmdlist, "info module ",
6836 0, &infolist);
6837
6838 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6839 Display functions arranged by modules.\n\
6840 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6841 Print a summary of all functions within each Fortran module, grouped by\n\
6842 module and file. For each function the line on which the function is\n\
6843 defined is given along with the type signature and name of the function.\n\
6844 \n\
6845 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6846 listed. If MODREGEXP is provided then only functions in modules matching\n\
6847 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6848 type signature matches TYPEREGEXP are listed.\n\
6849 \n\
6850 The -q flag suppresses printing some header information."),
6851 &info_module_cmdlist);
6852 set_cmd_completer_handle_brkchars
6853 (c, info_module_var_func_command_completer);
6854
6855 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6856 Display variables arranged by modules.\n\
6857 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6858 Print a summary of all variables within each Fortran module, grouped by\n\
6859 module and file. For each variable the line on which the variable is\n\
6860 defined is given along with the type and name of the variable.\n\
6861 \n\
6862 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6863 listed. If MODREGEXP is provided then only variables in modules matching\n\
6864 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6865 type matches TYPEREGEXP are listed.\n\
6866 \n\
6867 The -q flag suppresses printing some header information."),
6868 &info_module_cmdlist);
6869 set_cmd_completer_handle_brkchars
6870 (c, info_module_var_func_command_completer);
6871
6872 add_com ("rbreak", class_breakpoint, rbreak_command,
6873 _("Set a breakpoint for all functions matching REGEXP."));
6874
6875 add_setshow_enum_cmd ("multiple-symbols", no_class,
6876 multiple_symbols_modes, &multiple_symbols_mode,
6877 _("\
6878 Set how the debugger handles ambiguities in expressions."), _("\
6879 Show how the debugger handles ambiguities in expressions."), _("\
6880 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6881 NULL, NULL, &setlist, &showlist);
6882
6883 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6884 &basenames_may_differ, _("\
6885 Set whether a source file may have multiple base names."), _("\
6886 Show whether a source file may have multiple base names."), _("\
6887 (A \"base name\" is the name of a file with the directory part removed.\n\
6888 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6889 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6890 before comparing them. Canonicalization is an expensive operation,\n\
6891 but it allows the same file be known by more than one base name.\n\
6892 If not set (the default), all source files are assumed to have just\n\
6893 one base name, and gdb will do file name comparisons more efficiently."),
6894 NULL, NULL,
6895 &setlist, &showlist);
6896
6897 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6898 _("Set debugging of symbol table creation."),
6899 _("Show debugging of symbol table creation."), _("\
6900 When enabled (non-zero), debugging messages are printed when building\n\
6901 symbol tables. A value of 1 (one) normally provides enough information.\n\
6902 A value greater than 1 provides more verbose information."),
6903 NULL,
6904 NULL,
6905 &setdebuglist, &showdebuglist);
6906
6907 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6908 _("\
6909 Set debugging of symbol lookup."), _("\
6910 Show debugging of symbol lookup."), _("\
6911 When enabled (non-zero), symbol lookups are logged."),
6912 NULL, NULL,
6913 &setdebuglist, &showdebuglist);
6914
6915 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6916 &new_symbol_cache_size,
6917 _("Set the size of the symbol cache."),
6918 _("Show the size of the symbol cache."), _("\
6919 The size of the symbol cache.\n\
6920 If zero then the symbol cache is disabled."),
6921 set_symbol_cache_size_handler, NULL,
6922 &maintenance_set_cmdlist,
6923 &maintenance_show_cmdlist);
6924
6925 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6926 _("Dump the symbol cache for each program space."),
6927 &maintenanceprintlist);
6928
6929 add_cmd ("symbol-cache-statistics", class_maintenance,
6930 maintenance_print_symbol_cache_statistics,
6931 _("Print symbol cache statistics for each program space."),
6932 &maintenanceprintlist);
6933
6934 add_cmd ("symbol-cache", class_maintenance,
6935 maintenance_flush_symbol_cache,
6936 _("Flush the symbol cache for each program space."),
6937 &maintenanceflushlist);
6938 c = add_alias_cmd ("flush-symbol-cache", "flush symbol-cache",
6939 class_maintenance, 0, &maintenancelist);
6940 deprecate_cmd (c, "maintenancelist flush symbol-cache");
6941
6942 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6943 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6944 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6945 }