[gdb/testsuite, 1/2] Fix gdb.linespec/explicit.exp with check-read1
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* Non-zero if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 int basenames_may_differ = 0;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, int copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_get_section_vma (first->owner, first)
1041 - bfd_get_start_address (first->owner)
1042 != bfd_get_section_vma (second->owner, second)
1043 - bfd_get_start_address (second->owner))
1044 return 0;
1045
1046 if (bfd_get_section_name (first->owner, first) == NULL
1047 || bfd_get_section_name (second->owner, second) == NULL
1048 || strcmp (bfd_get_section_name (first->owner, first),
1049 bfd_get_section_name (second->owner, second)) != 0)
1050 return 0;
1051
1052 /* Otherwise check that they are in corresponding objfiles. */
1053
1054 struct objfile *obj = NULL;
1055 for (objfile *objfile : current_program_space->objfiles ())
1056 if (objfile->obfd == first->owner)
1057 {
1058 obj = objfile;
1059 break;
1060 }
1061 gdb_assert (obj != NULL);
1062
1063 if (obj->separate_debug_objfile != NULL
1064 && obj->separate_debug_objfile->obfd == second->owner)
1065 return 1;
1066 if (obj->separate_debug_objfile_backlink != NULL
1067 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1068 return 1;
1069
1070 return 0;
1071 }
1072
1073 /* See symtab.h. */
1074
1075 void
1076 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1077 {
1078 struct bound_minimal_symbol msymbol;
1079
1080 /* If we know that this is not a text address, return failure. This is
1081 necessary because we loop based on texthigh and textlow, which do
1082 not include the data ranges. */
1083 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1084 if (msymbol.minsym && msymbol.minsym->data_p ())
1085 return;
1086
1087 for (objfile *objfile : current_program_space->objfiles ())
1088 {
1089 struct compunit_symtab *cust = NULL;
1090
1091 if (objfile->sf)
1092 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1093 pc, section, 0);
1094 if (cust)
1095 return;
1096 }
1097 }
1098 \f
1099 /* Hash function for the symbol cache. */
1100
1101 static unsigned int
1102 hash_symbol_entry (const struct objfile *objfile_context,
1103 const char *name, domain_enum domain)
1104 {
1105 unsigned int hash = (uintptr_t) objfile_context;
1106
1107 if (name != NULL)
1108 hash += htab_hash_string (name);
1109
1110 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1111 to map to the same slot. */
1112 if (domain == STRUCT_DOMAIN)
1113 hash += VAR_DOMAIN * 7;
1114 else
1115 hash += domain * 7;
1116
1117 return hash;
1118 }
1119
1120 /* Equality function for the symbol cache. */
1121
1122 static int
1123 eq_symbol_entry (const struct symbol_cache_slot *slot,
1124 const struct objfile *objfile_context,
1125 const char *name, domain_enum domain)
1126 {
1127 const char *slot_name;
1128 domain_enum slot_domain;
1129
1130 if (slot->state == SYMBOL_SLOT_UNUSED)
1131 return 0;
1132
1133 if (slot->objfile_context != objfile_context)
1134 return 0;
1135
1136 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1137 {
1138 slot_name = slot->value.not_found.name;
1139 slot_domain = slot->value.not_found.domain;
1140 }
1141 else
1142 {
1143 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1144 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1145 }
1146
1147 /* NULL names match. */
1148 if (slot_name == NULL && name == NULL)
1149 {
1150 /* But there's no point in calling symbol_matches_domain in the
1151 SYMBOL_SLOT_FOUND case. */
1152 if (slot_domain != domain)
1153 return 0;
1154 }
1155 else if (slot_name != NULL && name != NULL)
1156 {
1157 /* It's important that we use the same comparison that was done
1158 the first time through. If the slot records a found symbol,
1159 then this means using the symbol name comparison function of
1160 the symbol's language with SYMBOL_SEARCH_NAME. See
1161 dictionary.c. It also means using symbol_matches_domain for
1162 found symbols. See block.c.
1163
1164 If the slot records a not-found symbol, then require a precise match.
1165 We could still be lax with whitespace like strcmp_iw though. */
1166
1167 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1168 {
1169 if (strcmp (slot_name, name) != 0)
1170 return 0;
1171 if (slot_domain != domain)
1172 return 0;
1173 }
1174 else
1175 {
1176 struct symbol *sym = slot->value.found.symbol;
1177 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1178
1179 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1180 return 0;
1181
1182 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1183 slot_domain, domain))
1184 return 0;
1185 }
1186 }
1187 else
1188 {
1189 /* Only one name is NULL. */
1190 return 0;
1191 }
1192
1193 return 1;
1194 }
1195
1196 /* Given a cache of size SIZE, return the size of the struct (with variable
1197 length array) in bytes. */
1198
1199 static size_t
1200 symbol_cache_byte_size (unsigned int size)
1201 {
1202 return (sizeof (struct block_symbol_cache)
1203 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1204 }
1205
1206 /* Resize CACHE. */
1207
1208 static void
1209 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1210 {
1211 /* If there's no change in size, don't do anything.
1212 All caches have the same size, so we can just compare with the size
1213 of the global symbols cache. */
1214 if ((cache->global_symbols != NULL
1215 && cache->global_symbols->size == new_size)
1216 || (cache->global_symbols == NULL
1217 && new_size == 0))
1218 return;
1219
1220 xfree (cache->global_symbols);
1221 xfree (cache->static_symbols);
1222
1223 if (new_size == 0)
1224 {
1225 cache->global_symbols = NULL;
1226 cache->static_symbols = NULL;
1227 }
1228 else
1229 {
1230 size_t total_size = symbol_cache_byte_size (new_size);
1231
1232 cache->global_symbols
1233 = (struct block_symbol_cache *) xcalloc (1, total_size);
1234 cache->static_symbols
1235 = (struct block_symbol_cache *) xcalloc (1, total_size);
1236 cache->global_symbols->size = new_size;
1237 cache->static_symbols->size = new_size;
1238 }
1239 }
1240
1241 /* Return the symbol cache of PSPACE.
1242 Create one if it doesn't exist yet. */
1243
1244 static struct symbol_cache *
1245 get_symbol_cache (struct program_space *pspace)
1246 {
1247 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1248
1249 if (cache == NULL)
1250 {
1251 cache = symbol_cache_key.emplace (pspace);
1252 resize_symbol_cache (cache, symbol_cache_size);
1253 }
1254
1255 return cache;
1256 }
1257
1258 /* Set the size of the symbol cache in all program spaces. */
1259
1260 static void
1261 set_symbol_cache_size (unsigned int new_size)
1262 {
1263 struct program_space *pspace;
1264
1265 ALL_PSPACES (pspace)
1266 {
1267 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304 static struct block_symbol
1305 symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, int block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310 {
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return {};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return {};
1358 }
1359
1360 /* Clear out SLOT. */
1361
1362 static void
1363 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 {
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368 }
1369
1370 /* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375 static void
1376 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381 {
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393 }
1394
1395 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399 static void
1400 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404 {
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416 }
1417
1418 /* Flush the symbol cache of PSPACE. */
1419
1420 static void
1421 symbol_cache_flush (struct program_space *pspace)
1422 {
1423 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1424 int pass;
1425
1426 if (cache == NULL)
1427 return;
1428 if (cache->global_symbols == NULL)
1429 {
1430 gdb_assert (symbol_cache_size == 0);
1431 gdb_assert (cache->static_symbols == NULL);
1432 return;
1433 }
1434
1435 /* If the cache is untouched since the last flush, early exit.
1436 This is important for performance during the startup of a program linked
1437 with 100s (or 1000s) of shared libraries. */
1438 if (cache->global_symbols->misses == 0
1439 && cache->static_symbols->misses == 0)
1440 return;
1441
1442 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1443 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1444
1445 for (pass = 0; pass < 2; ++pass)
1446 {
1447 struct block_symbol_cache *bsc
1448 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1449 unsigned int i;
1450
1451 for (i = 0; i < bsc->size; ++i)
1452 symbol_cache_clear_slot (&bsc->symbols[i]);
1453 }
1454
1455 cache->global_symbols->hits = 0;
1456 cache->global_symbols->misses = 0;
1457 cache->global_symbols->collisions = 0;
1458 cache->static_symbols->hits = 0;
1459 cache->static_symbols->misses = 0;
1460 cache->static_symbols->collisions = 0;
1461 }
1462
1463 /* Dump CACHE. */
1464
1465 static void
1466 symbol_cache_dump (const struct symbol_cache *cache)
1467 {
1468 int pass;
1469
1470 if (cache->global_symbols == NULL)
1471 {
1472 printf_filtered (" <disabled>\n");
1473 return;
1474 }
1475
1476 for (pass = 0; pass < 2; ++pass)
1477 {
1478 const struct block_symbol_cache *bsc
1479 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1480 unsigned int i;
1481
1482 if (pass == 0)
1483 printf_filtered ("Global symbols:\n");
1484 else
1485 printf_filtered ("Static symbols:\n");
1486
1487 for (i = 0; i < bsc->size; ++i)
1488 {
1489 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1490
1491 QUIT;
1492
1493 switch (slot->state)
1494 {
1495 case SYMBOL_SLOT_UNUSED:
1496 break;
1497 case SYMBOL_SLOT_NOT_FOUND:
1498 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1499 host_address_to_string (slot->objfile_context),
1500 slot->value.not_found.name,
1501 domain_name (slot->value.not_found.domain));
1502 break;
1503 case SYMBOL_SLOT_FOUND:
1504 {
1505 struct symbol *found = slot->value.found.symbol;
1506 const struct objfile *context = slot->objfile_context;
1507
1508 printf_filtered (" [%4u] = %s, %s %s\n", i,
1509 host_address_to_string (context),
1510 SYMBOL_PRINT_NAME (found),
1511 domain_name (SYMBOL_DOMAIN (found)));
1512 break;
1513 }
1514 }
1515 }
1516 }
1517 }
1518
1519 /* The "mt print symbol-cache" command. */
1520
1521 static void
1522 maintenance_print_symbol_cache (const char *args, int from_tty)
1523 {
1524 struct program_space *pspace;
1525
1526 ALL_PSPACES (pspace)
1527 {
1528 struct symbol_cache *cache;
1529
1530 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1531 pspace->num,
1532 pspace->symfile_object_file != NULL
1533 ? objfile_name (pspace->symfile_object_file)
1534 : "(no object file)");
1535
1536 /* If the cache hasn't been created yet, avoid creating one. */
1537 cache = symbol_cache_key.get (pspace);
1538 if (cache == NULL)
1539 printf_filtered (" <empty>\n");
1540 else
1541 symbol_cache_dump (cache);
1542 }
1543 }
1544
1545 /* The "mt flush-symbol-cache" command. */
1546
1547 static void
1548 maintenance_flush_symbol_cache (const char *args, int from_tty)
1549 {
1550 struct program_space *pspace;
1551
1552 ALL_PSPACES (pspace)
1553 {
1554 symbol_cache_flush (pspace);
1555 }
1556 }
1557
1558 /* Print usage statistics of CACHE. */
1559
1560 static void
1561 symbol_cache_stats (struct symbol_cache *cache)
1562 {
1563 int pass;
1564
1565 if (cache->global_symbols == NULL)
1566 {
1567 printf_filtered (" <disabled>\n");
1568 return;
1569 }
1570
1571 for (pass = 0; pass < 2; ++pass)
1572 {
1573 const struct block_symbol_cache *bsc
1574 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1575
1576 QUIT;
1577
1578 if (pass == 0)
1579 printf_filtered ("Global block cache stats:\n");
1580 else
1581 printf_filtered ("Static block cache stats:\n");
1582
1583 printf_filtered (" size: %u\n", bsc->size);
1584 printf_filtered (" hits: %u\n", bsc->hits);
1585 printf_filtered (" misses: %u\n", bsc->misses);
1586 printf_filtered (" collisions: %u\n", bsc->collisions);
1587 }
1588 }
1589
1590 /* The "mt print symbol-cache-statistics" command. */
1591
1592 static void
1593 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1594 {
1595 struct program_space *pspace;
1596
1597 ALL_PSPACES (pspace)
1598 {
1599 struct symbol_cache *cache;
1600
1601 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1602 pspace->num,
1603 pspace->symfile_object_file != NULL
1604 ? objfile_name (pspace->symfile_object_file)
1605 : "(no object file)");
1606
1607 /* If the cache hasn't been created yet, avoid creating one. */
1608 cache = symbol_cache_key.get (pspace);
1609 if (cache == NULL)
1610 printf_filtered (" empty, no stats available\n");
1611 else
1612 symbol_cache_stats (cache);
1613 }
1614 }
1615
1616 /* This module's 'new_objfile' observer. */
1617
1618 static void
1619 symtab_new_objfile_observer (struct objfile *objfile)
1620 {
1621 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1622 symbol_cache_flush (current_program_space);
1623 }
1624
1625 /* This module's 'free_objfile' observer. */
1626
1627 static void
1628 symtab_free_objfile_observer (struct objfile *objfile)
1629 {
1630 symbol_cache_flush (objfile->pspace);
1631 }
1632 \f
1633 /* Debug symbols usually don't have section information. We need to dig that
1634 out of the minimal symbols and stash that in the debug symbol. */
1635
1636 void
1637 fixup_section (struct general_symbol_info *ginfo,
1638 CORE_ADDR addr, struct objfile *objfile)
1639 {
1640 struct minimal_symbol *msym;
1641
1642 /* First, check whether a minimal symbol with the same name exists
1643 and points to the same address. The address check is required
1644 e.g. on PowerPC64, where the minimal symbol for a function will
1645 point to the function descriptor, while the debug symbol will
1646 point to the actual function code. */
1647 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1648 if (msym)
1649 ginfo->section = MSYMBOL_SECTION (msym);
1650 else
1651 {
1652 /* Static, function-local variables do appear in the linker
1653 (minimal) symbols, but are frequently given names that won't
1654 be found via lookup_minimal_symbol(). E.g., it has been
1655 observed in frv-uclinux (ELF) executables that a static,
1656 function-local variable named "foo" might appear in the
1657 linker symbols as "foo.6" or "foo.3". Thus, there is no
1658 point in attempting to extend the lookup-by-name mechanism to
1659 handle this case due to the fact that there can be multiple
1660 names.
1661
1662 So, instead, search the section table when lookup by name has
1663 failed. The ``addr'' and ``endaddr'' fields may have already
1664 been relocated. If so, the relocation offset (i.e. the
1665 ANOFFSET value) needs to be subtracted from these values when
1666 performing the comparison. We unconditionally subtract it,
1667 because, when no relocation has been performed, the ANOFFSET
1668 value will simply be zero.
1669
1670 The address of the symbol whose section we're fixing up HAS
1671 NOT BEEN adjusted (relocated) yet. It can't have been since
1672 the section isn't yet known and knowing the section is
1673 necessary in order to add the correct relocation value. In
1674 other words, we wouldn't even be in this function (attempting
1675 to compute the section) if it were already known.
1676
1677 Note that it is possible to search the minimal symbols
1678 (subtracting the relocation value if necessary) to find the
1679 matching minimal symbol, but this is overkill and much less
1680 efficient. It is not necessary to find the matching minimal
1681 symbol, only its section.
1682
1683 Note that this technique (of doing a section table search)
1684 can fail when unrelocated section addresses overlap. For
1685 this reason, we still attempt a lookup by name prior to doing
1686 a search of the section table. */
1687
1688 struct obj_section *s;
1689 int fallback = -1;
1690
1691 ALL_OBJFILE_OSECTIONS (objfile, s)
1692 {
1693 int idx = s - objfile->sections;
1694 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1695
1696 if (fallback == -1)
1697 fallback = idx;
1698
1699 if (obj_section_addr (s) - offset <= addr
1700 && addr < obj_section_endaddr (s) - offset)
1701 {
1702 ginfo->section = idx;
1703 return;
1704 }
1705 }
1706
1707 /* If we didn't find the section, assume it is in the first
1708 section. If there is no allocated section, then it hardly
1709 matters what we pick, so just pick zero. */
1710 if (fallback == -1)
1711 ginfo->section = 0;
1712 else
1713 ginfo->section = fallback;
1714 }
1715 }
1716
1717 struct symbol *
1718 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1719 {
1720 CORE_ADDR addr;
1721
1722 if (!sym)
1723 return NULL;
1724
1725 if (!SYMBOL_OBJFILE_OWNED (sym))
1726 return sym;
1727
1728 /* We either have an OBJFILE, or we can get at it from the sym's
1729 symtab. Anything else is a bug. */
1730 gdb_assert (objfile || symbol_symtab (sym));
1731
1732 if (objfile == NULL)
1733 objfile = symbol_objfile (sym);
1734
1735 if (SYMBOL_OBJ_SECTION (objfile, sym))
1736 return sym;
1737
1738 /* We should have an objfile by now. */
1739 gdb_assert (objfile);
1740
1741 switch (SYMBOL_CLASS (sym))
1742 {
1743 case LOC_STATIC:
1744 case LOC_LABEL:
1745 addr = SYMBOL_VALUE_ADDRESS (sym);
1746 break;
1747 case LOC_BLOCK:
1748 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1749 break;
1750
1751 default:
1752 /* Nothing else will be listed in the minsyms -- no use looking
1753 it up. */
1754 return sym;
1755 }
1756
1757 fixup_section (&sym->ginfo, addr, objfile);
1758
1759 return sym;
1760 }
1761
1762 /* See symtab.h. */
1763
1764 demangle_for_lookup_info::demangle_for_lookup_info
1765 (const lookup_name_info &lookup_name, language lang)
1766 {
1767 demangle_result_storage storage;
1768
1769 if (lookup_name.ignore_parameters () && lang == language_cplus)
1770 {
1771 gdb::unique_xmalloc_ptr<char> without_params
1772 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1773 lookup_name.completion_mode ());
1774
1775 if (without_params != NULL)
1776 {
1777 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1778 m_demangled_name = demangle_for_lookup (without_params.get (),
1779 lang, storage);
1780 return;
1781 }
1782 }
1783
1784 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1785 m_demangled_name = lookup_name.name ();
1786 else
1787 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1788 lang, storage);
1789 }
1790
1791 /* See symtab.h. */
1792
1793 const lookup_name_info &
1794 lookup_name_info::match_any ()
1795 {
1796 /* Lookup any symbol that "" would complete. I.e., this matches all
1797 symbol names. */
1798 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1799 true);
1800
1801 return lookup_name;
1802 }
1803
1804 /* Compute the demangled form of NAME as used by the various symbol
1805 lookup functions. The result can either be the input NAME
1806 directly, or a pointer to a buffer owned by the STORAGE object.
1807
1808 For Ada, this function just returns NAME, unmodified.
1809 Normally, Ada symbol lookups are performed using the encoded name
1810 rather than the demangled name, and so it might seem to make sense
1811 for this function to return an encoded version of NAME.
1812 Unfortunately, we cannot do this, because this function is used in
1813 circumstances where it is not appropriate to try to encode NAME.
1814 For instance, when displaying the frame info, we demangle the name
1815 of each parameter, and then perform a symbol lookup inside our
1816 function using that demangled name. In Ada, certain functions
1817 have internally-generated parameters whose name contain uppercase
1818 characters. Encoding those name would result in those uppercase
1819 characters to become lowercase, and thus cause the symbol lookup
1820 to fail. */
1821
1822 const char *
1823 demangle_for_lookup (const char *name, enum language lang,
1824 demangle_result_storage &storage)
1825 {
1826 /* If we are using C++, D, or Go, demangle the name before doing a
1827 lookup, so we can always binary search. */
1828 if (lang == language_cplus)
1829 {
1830 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1831 if (demangled_name != NULL)
1832 return storage.set_malloc_ptr (demangled_name);
1833
1834 /* If we were given a non-mangled name, canonicalize it
1835 according to the language (so far only for C++). */
1836 std::string canon = cp_canonicalize_string (name);
1837 if (!canon.empty ())
1838 return storage.swap_string (canon);
1839 }
1840 else if (lang == language_d)
1841 {
1842 char *demangled_name = d_demangle (name, 0);
1843 if (demangled_name != NULL)
1844 return storage.set_malloc_ptr (demangled_name);
1845 }
1846 else if (lang == language_go)
1847 {
1848 char *demangled_name = go_demangle (name, 0);
1849 if (demangled_name != NULL)
1850 return storage.set_malloc_ptr (demangled_name);
1851 }
1852
1853 return name;
1854 }
1855
1856 /* See symtab.h. */
1857
1858 unsigned int
1859 search_name_hash (enum language language, const char *search_name)
1860 {
1861 return language_def (language)->la_search_name_hash (search_name);
1862 }
1863
1864 /* See symtab.h.
1865
1866 This function (or rather its subordinates) have a bunch of loops and
1867 it would seem to be attractive to put in some QUIT's (though I'm not really
1868 sure whether it can run long enough to be really important). But there
1869 are a few calls for which it would appear to be bad news to quit
1870 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1871 that there is C++ code below which can error(), but that probably
1872 doesn't affect these calls since they are looking for a known
1873 variable and thus can probably assume it will never hit the C++
1874 code). */
1875
1876 struct block_symbol
1877 lookup_symbol_in_language (const char *name, const struct block *block,
1878 const domain_enum domain, enum language lang,
1879 struct field_of_this_result *is_a_field_of_this)
1880 {
1881 demangle_result_storage storage;
1882 const char *modified_name = demangle_for_lookup (name, lang, storage);
1883
1884 return lookup_symbol_aux (modified_name,
1885 symbol_name_match_type::FULL,
1886 block, domain, lang,
1887 is_a_field_of_this);
1888 }
1889
1890 /* See symtab.h. */
1891
1892 struct block_symbol
1893 lookup_symbol (const char *name, const struct block *block,
1894 domain_enum domain,
1895 struct field_of_this_result *is_a_field_of_this)
1896 {
1897 return lookup_symbol_in_language (name, block, domain,
1898 current_language->la_language,
1899 is_a_field_of_this);
1900 }
1901
1902 /* See symtab.h. */
1903
1904 struct block_symbol
1905 lookup_symbol_search_name (const char *search_name, const struct block *block,
1906 domain_enum domain)
1907 {
1908 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1909 block, domain, language_asm, NULL);
1910 }
1911
1912 /* See symtab.h. */
1913
1914 struct block_symbol
1915 lookup_language_this (const struct language_defn *lang,
1916 const struct block *block)
1917 {
1918 if (lang->la_name_of_this == NULL || block == NULL)
1919 return {};
1920
1921 if (symbol_lookup_debug > 1)
1922 {
1923 struct objfile *objfile = lookup_objfile_from_block (block);
1924
1925 fprintf_unfiltered (gdb_stdlog,
1926 "lookup_language_this (%s, %s (objfile %s))",
1927 lang->la_name, host_address_to_string (block),
1928 objfile_debug_name (objfile));
1929 }
1930
1931 while (block)
1932 {
1933 struct symbol *sym;
1934
1935 sym = block_lookup_symbol (block, lang->la_name_of_this,
1936 symbol_name_match_type::SEARCH_NAME,
1937 VAR_DOMAIN);
1938 if (sym != NULL)
1939 {
1940 if (symbol_lookup_debug > 1)
1941 {
1942 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1943 SYMBOL_PRINT_NAME (sym),
1944 host_address_to_string (sym),
1945 host_address_to_string (block));
1946 }
1947 return (struct block_symbol) {sym, block};
1948 }
1949 if (BLOCK_FUNCTION (block))
1950 break;
1951 block = BLOCK_SUPERBLOCK (block);
1952 }
1953
1954 if (symbol_lookup_debug > 1)
1955 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1956 return {};
1957 }
1958
1959 /* Given TYPE, a structure/union,
1960 return 1 if the component named NAME from the ultimate target
1961 structure/union is defined, otherwise, return 0. */
1962
1963 static int
1964 check_field (struct type *type, const char *name,
1965 struct field_of_this_result *is_a_field_of_this)
1966 {
1967 int i;
1968
1969 /* The type may be a stub. */
1970 type = check_typedef (type);
1971
1972 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1973 {
1974 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1975
1976 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1977 {
1978 is_a_field_of_this->type = type;
1979 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1980 return 1;
1981 }
1982 }
1983
1984 /* C++: If it was not found as a data field, then try to return it
1985 as a pointer to a method. */
1986
1987 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1988 {
1989 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1990 {
1991 is_a_field_of_this->type = type;
1992 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1993 return 1;
1994 }
1995 }
1996
1997 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1998 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1999 return 1;
2000
2001 return 0;
2002 }
2003
2004 /* Behave like lookup_symbol except that NAME is the natural name
2005 (e.g., demangled name) of the symbol that we're looking for. */
2006
2007 static struct block_symbol
2008 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2009 const struct block *block,
2010 const domain_enum domain, enum language language,
2011 struct field_of_this_result *is_a_field_of_this)
2012 {
2013 struct block_symbol result;
2014 const struct language_defn *langdef;
2015
2016 if (symbol_lookup_debug)
2017 {
2018 struct objfile *objfile = lookup_objfile_from_block (block);
2019
2020 fprintf_unfiltered (gdb_stdlog,
2021 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2022 name, host_address_to_string (block),
2023 objfile != NULL
2024 ? objfile_debug_name (objfile) : "NULL",
2025 domain_name (domain), language_str (language));
2026 }
2027
2028 /* Make sure we do something sensible with is_a_field_of_this, since
2029 the callers that set this parameter to some non-null value will
2030 certainly use it later. If we don't set it, the contents of
2031 is_a_field_of_this are undefined. */
2032 if (is_a_field_of_this != NULL)
2033 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2034
2035 /* Search specified block and its superiors. Don't search
2036 STATIC_BLOCK or GLOBAL_BLOCK. */
2037
2038 result = lookup_local_symbol (name, match_type, block, domain, language);
2039 if (result.symbol != NULL)
2040 {
2041 if (symbol_lookup_debug)
2042 {
2043 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2044 host_address_to_string (result.symbol));
2045 }
2046 return result;
2047 }
2048
2049 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2050 check to see if NAME is a field of `this'. */
2051
2052 langdef = language_def (language);
2053
2054 /* Don't do this check if we are searching for a struct. It will
2055 not be found by check_field, but will be found by other
2056 means. */
2057 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2058 {
2059 result = lookup_language_this (langdef, block);
2060
2061 if (result.symbol)
2062 {
2063 struct type *t = result.symbol->type;
2064
2065 /* I'm not really sure that type of this can ever
2066 be typedefed; just be safe. */
2067 t = check_typedef (t);
2068 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2069 t = TYPE_TARGET_TYPE (t);
2070
2071 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2072 && TYPE_CODE (t) != TYPE_CODE_UNION)
2073 error (_("Internal error: `%s' is not an aggregate"),
2074 langdef->la_name_of_this);
2075
2076 if (check_field (t, name, is_a_field_of_this))
2077 {
2078 if (symbol_lookup_debug)
2079 {
2080 fprintf_unfiltered (gdb_stdlog,
2081 "lookup_symbol_aux (...) = NULL\n");
2082 }
2083 return {};
2084 }
2085 }
2086 }
2087
2088 /* Now do whatever is appropriate for LANGUAGE to look
2089 up static and global variables. */
2090
2091 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2092 if (result.symbol != NULL)
2093 {
2094 if (symbol_lookup_debug)
2095 {
2096 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2097 host_address_to_string (result.symbol));
2098 }
2099 return result;
2100 }
2101
2102 /* Now search all static file-level symbols. Not strictly correct,
2103 but more useful than an error. */
2104
2105 result = lookup_static_symbol (name, domain);
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2109 result.symbol != NULL
2110 ? host_address_to_string (result.symbol)
2111 : "NULL");
2112 }
2113 return result;
2114 }
2115
2116 /* Check to see if the symbol is defined in BLOCK or its superiors.
2117 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2118
2119 static struct block_symbol
2120 lookup_local_symbol (const char *name,
2121 symbol_name_match_type match_type,
2122 const struct block *block,
2123 const domain_enum domain,
2124 enum language language)
2125 {
2126 struct symbol *sym;
2127 const struct block *static_block = block_static_block (block);
2128 const char *scope = block_scope (block);
2129
2130 /* Check if either no block is specified or it's a global block. */
2131
2132 if (static_block == NULL)
2133 return {};
2134
2135 while (block != static_block)
2136 {
2137 sym = lookup_symbol_in_block (name, match_type, block, domain);
2138 if (sym != NULL)
2139 return (struct block_symbol) {sym, block};
2140
2141 if (language == language_cplus || language == language_fortran)
2142 {
2143 struct block_symbol blocksym
2144 = cp_lookup_symbol_imports_or_template (scope, name, block,
2145 domain);
2146
2147 if (blocksym.symbol != NULL)
2148 return blocksym;
2149 }
2150
2151 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2152 break;
2153 block = BLOCK_SUPERBLOCK (block);
2154 }
2155
2156 /* We've reached the end of the function without finding a result. */
2157
2158 return {};
2159 }
2160
2161 /* See symtab.h. */
2162
2163 struct objfile *
2164 lookup_objfile_from_block (const struct block *block)
2165 {
2166 if (block == NULL)
2167 return NULL;
2168
2169 block = block_global_block (block);
2170 /* Look through all blockvectors. */
2171 for (objfile *obj : current_program_space->objfiles ())
2172 {
2173 for (compunit_symtab *cust : obj->compunits ())
2174 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2175 GLOBAL_BLOCK))
2176 {
2177 if (obj->separate_debug_objfile_backlink)
2178 obj = obj->separate_debug_objfile_backlink;
2179
2180 return obj;
2181 }
2182 }
2183
2184 return NULL;
2185 }
2186
2187 /* See symtab.h. */
2188
2189 struct symbol *
2190 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2191 const struct block *block,
2192 const domain_enum domain)
2193 {
2194 struct symbol *sym;
2195
2196 if (symbol_lookup_debug > 1)
2197 {
2198 struct objfile *objfile = lookup_objfile_from_block (block);
2199
2200 fprintf_unfiltered (gdb_stdlog,
2201 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2202 name, host_address_to_string (block),
2203 objfile_debug_name (objfile),
2204 domain_name (domain));
2205 }
2206
2207 sym = block_lookup_symbol (block, name, match_type, domain);
2208 if (sym)
2209 {
2210 if (symbol_lookup_debug > 1)
2211 {
2212 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2213 host_address_to_string (sym));
2214 }
2215 return fixup_symbol_section (sym, NULL);
2216 }
2217
2218 if (symbol_lookup_debug > 1)
2219 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2220 return NULL;
2221 }
2222
2223 /* See symtab.h. */
2224
2225 struct block_symbol
2226 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2227 enum block_enum block_index,
2228 const char *name,
2229 const domain_enum domain)
2230 {
2231 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2232
2233 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2234 {
2235 struct block_symbol result
2236 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2237
2238 if (result.symbol != nullptr)
2239 return result;
2240 }
2241
2242 return {};
2243 }
2244
2245 /* Check to see if the symbol is defined in one of the OBJFILE's
2246 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2247 depending on whether or not we want to search global symbols or
2248 static symbols. */
2249
2250 static struct block_symbol
2251 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2252 enum block_enum block_index, const char *name,
2253 const domain_enum domain)
2254 {
2255 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2256
2257 if (symbol_lookup_debug > 1)
2258 {
2259 fprintf_unfiltered (gdb_stdlog,
2260 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2261 objfile_debug_name (objfile),
2262 block_index == GLOBAL_BLOCK
2263 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2264 name, domain_name (domain));
2265 }
2266
2267 for (compunit_symtab *cust : objfile->compunits ())
2268 {
2269 const struct blockvector *bv;
2270 const struct block *block;
2271 struct block_symbol result;
2272
2273 bv = COMPUNIT_BLOCKVECTOR (cust);
2274 block = BLOCKVECTOR_BLOCK (bv, block_index);
2275 result.symbol = block_lookup_symbol_primary (block, name, domain);
2276 result.block = block;
2277 if (result.symbol != NULL)
2278 {
2279 if (symbol_lookup_debug > 1)
2280 {
2281 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2282 host_address_to_string (result.symbol),
2283 host_address_to_string (block));
2284 }
2285 result.symbol = fixup_symbol_section (result.symbol, objfile);
2286 return result;
2287
2288 }
2289 }
2290
2291 if (symbol_lookup_debug > 1)
2292 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2293 return {};
2294 }
2295
2296 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2297 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2298 and all associated separate debug objfiles.
2299
2300 Normally we only look in OBJFILE, and not any separate debug objfiles
2301 because the outer loop will cause them to be searched too. This case is
2302 different. Here we're called from search_symbols where it will only
2303 call us for the objfile that contains a matching minsym. */
2304
2305 static struct block_symbol
2306 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2307 const char *linkage_name,
2308 domain_enum domain)
2309 {
2310 enum language lang = current_language->la_language;
2311 struct objfile *main_objfile;
2312
2313 demangle_result_storage storage;
2314 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2315
2316 if (objfile->separate_debug_objfile_backlink)
2317 main_objfile = objfile->separate_debug_objfile_backlink;
2318 else
2319 main_objfile = objfile;
2320
2321 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2322 {
2323 struct block_symbol result;
2324
2325 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2326 modified_name, domain);
2327 if (result.symbol == NULL)
2328 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2329 modified_name, domain);
2330 if (result.symbol != NULL)
2331 return result;
2332 }
2333
2334 return {};
2335 }
2336
2337 /* A helper function that throws an exception when a symbol was found
2338 in a psymtab but not in a symtab. */
2339
2340 static void ATTRIBUTE_NORETURN
2341 error_in_psymtab_expansion (int block_index, const char *name,
2342 struct compunit_symtab *cust)
2343 {
2344 error (_("\
2345 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2346 %s may be an inlined function, or may be a template function\n \
2347 (if a template, try specifying an instantiation: %s<type>)."),
2348 block_index == GLOBAL_BLOCK ? "global" : "static",
2349 name,
2350 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2351 name, name);
2352 }
2353
2354 /* A helper function for various lookup routines that interfaces with
2355 the "quick" symbol table functions. */
2356
2357 static struct block_symbol
2358 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2359 const char *name, const domain_enum domain)
2360 {
2361 struct compunit_symtab *cust;
2362 const struct blockvector *bv;
2363 const struct block *block;
2364 struct block_symbol result;
2365
2366 if (!objfile->sf)
2367 return {};
2368
2369 if (symbol_lookup_debug > 1)
2370 {
2371 fprintf_unfiltered (gdb_stdlog,
2372 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2373 objfile_debug_name (objfile),
2374 block_index == GLOBAL_BLOCK
2375 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2376 name, domain_name (domain));
2377 }
2378
2379 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2380 if (cust == NULL)
2381 {
2382 if (symbol_lookup_debug > 1)
2383 {
2384 fprintf_unfiltered (gdb_stdlog,
2385 "lookup_symbol_via_quick_fns (...) = NULL\n");
2386 }
2387 return {};
2388 }
2389
2390 bv = COMPUNIT_BLOCKVECTOR (cust);
2391 block = BLOCKVECTOR_BLOCK (bv, block_index);
2392 result.symbol = block_lookup_symbol (block, name,
2393 symbol_name_match_type::FULL, domain);
2394 if (result.symbol == NULL)
2395 error_in_psymtab_expansion (block_index, name, cust);
2396
2397 if (symbol_lookup_debug > 1)
2398 {
2399 fprintf_unfiltered (gdb_stdlog,
2400 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2401 host_address_to_string (result.symbol),
2402 host_address_to_string (block));
2403 }
2404
2405 result.symbol = fixup_symbol_section (result.symbol, objfile);
2406 result.block = block;
2407 return result;
2408 }
2409
2410 /* See symtab.h. */
2411
2412 struct block_symbol
2413 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2414 const char *name,
2415 const struct block *block,
2416 const domain_enum domain)
2417 {
2418 struct block_symbol result;
2419
2420 /* NOTE: carlton/2003-05-19: The comments below were written when
2421 this (or what turned into this) was part of lookup_symbol_aux;
2422 I'm much less worried about these questions now, since these
2423 decisions have turned out well, but I leave these comments here
2424 for posterity. */
2425
2426 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2427 not it would be appropriate to search the current global block
2428 here as well. (That's what this code used to do before the
2429 is_a_field_of_this check was moved up.) On the one hand, it's
2430 redundant with the lookup in all objfiles search that happens
2431 next. On the other hand, if decode_line_1 is passed an argument
2432 like filename:var, then the user presumably wants 'var' to be
2433 searched for in filename. On the third hand, there shouldn't be
2434 multiple global variables all of which are named 'var', and it's
2435 not like decode_line_1 has ever restricted its search to only
2436 global variables in a single filename. All in all, only
2437 searching the static block here seems best: it's correct and it's
2438 cleanest. */
2439
2440 /* NOTE: carlton/2002-12-05: There's also a possible performance
2441 issue here: if you usually search for global symbols in the
2442 current file, then it would be slightly better to search the
2443 current global block before searching all the symtabs. But there
2444 are other factors that have a much greater effect on performance
2445 than that one, so I don't think we should worry about that for
2446 now. */
2447
2448 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2449 the current objfile. Searching the current objfile first is useful
2450 for both matching user expectations as well as performance. */
2451
2452 result = lookup_symbol_in_static_block (name, block, domain);
2453 if (result.symbol != NULL)
2454 return result;
2455
2456 /* If we didn't find a definition for a builtin type in the static block,
2457 search for it now. This is actually the right thing to do and can be
2458 a massive performance win. E.g., when debugging a program with lots of
2459 shared libraries we could search all of them only to find out the
2460 builtin type isn't defined in any of them. This is common for types
2461 like "void". */
2462 if (domain == VAR_DOMAIN)
2463 {
2464 struct gdbarch *gdbarch;
2465
2466 if (block == NULL)
2467 gdbarch = target_gdbarch ();
2468 else
2469 gdbarch = block_gdbarch (block);
2470 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2471 gdbarch, name);
2472 result.block = NULL;
2473 if (result.symbol != NULL)
2474 return result;
2475 }
2476
2477 return lookup_global_symbol (name, block, domain);
2478 }
2479
2480 /* See symtab.h. */
2481
2482 struct block_symbol
2483 lookup_symbol_in_static_block (const char *name,
2484 const struct block *block,
2485 const domain_enum domain)
2486 {
2487 const struct block *static_block = block_static_block (block);
2488 struct symbol *sym;
2489
2490 if (static_block == NULL)
2491 return {};
2492
2493 if (symbol_lookup_debug)
2494 {
2495 struct objfile *objfile = lookup_objfile_from_block (static_block);
2496
2497 fprintf_unfiltered (gdb_stdlog,
2498 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2499 " %s)\n",
2500 name,
2501 host_address_to_string (block),
2502 objfile_debug_name (objfile),
2503 domain_name (domain));
2504 }
2505
2506 sym = lookup_symbol_in_block (name,
2507 symbol_name_match_type::FULL,
2508 static_block, domain);
2509 if (symbol_lookup_debug)
2510 {
2511 fprintf_unfiltered (gdb_stdlog,
2512 "lookup_symbol_in_static_block (...) = %s\n",
2513 sym != NULL ? host_address_to_string (sym) : "NULL");
2514 }
2515 return (struct block_symbol) {sym, static_block};
2516 }
2517
2518 /* Perform the standard symbol lookup of NAME in OBJFILE:
2519 1) First search expanded symtabs, and if not found
2520 2) Search the "quick" symtabs (partial or .gdb_index).
2521 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2522
2523 static struct block_symbol
2524 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2525 const char *name, const domain_enum domain)
2526 {
2527 struct block_symbol result;
2528
2529 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2530
2531 if (symbol_lookup_debug)
2532 {
2533 fprintf_unfiltered (gdb_stdlog,
2534 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2535 objfile_debug_name (objfile),
2536 block_index == GLOBAL_BLOCK
2537 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2538 name, domain_name (domain));
2539 }
2540
2541 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2542 name, domain);
2543 if (result.symbol != NULL)
2544 {
2545 if (symbol_lookup_debug)
2546 {
2547 fprintf_unfiltered (gdb_stdlog,
2548 "lookup_symbol_in_objfile (...) = %s"
2549 " (in symtabs)\n",
2550 host_address_to_string (result.symbol));
2551 }
2552 return result;
2553 }
2554
2555 result = lookup_symbol_via_quick_fns (objfile, block_index,
2556 name, domain);
2557 if (symbol_lookup_debug)
2558 {
2559 fprintf_unfiltered (gdb_stdlog,
2560 "lookup_symbol_in_objfile (...) = %s%s\n",
2561 result.symbol != NULL
2562 ? host_address_to_string (result.symbol)
2563 : "NULL",
2564 result.symbol != NULL ? " (via quick fns)" : "");
2565 }
2566 return result;
2567 }
2568
2569 /* See symtab.h. */
2570
2571 struct block_symbol
2572 lookup_static_symbol (const char *name, const domain_enum domain)
2573 {
2574 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2575 struct block_symbol result;
2576 struct block_symbol_cache *bsc;
2577 struct symbol_cache_slot *slot;
2578
2579 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2580 NULL for OBJFILE_CONTEXT. */
2581 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2582 &bsc, &slot);
2583 if (result.symbol != NULL)
2584 {
2585 if (SYMBOL_LOOKUP_FAILED_P (result))
2586 return {};
2587 return result;
2588 }
2589
2590 for (objfile *objfile : current_program_space->objfiles ())
2591 {
2592 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2593 if (result.symbol != NULL)
2594 {
2595 /* Still pass NULL for OBJFILE_CONTEXT here. */
2596 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2597 result.block);
2598 return result;
2599 }
2600 }
2601
2602 /* Still pass NULL for OBJFILE_CONTEXT here. */
2603 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2604 return {};
2605 }
2606
2607 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2608
2609 struct global_sym_lookup_data
2610 {
2611 /* The name of the symbol we are searching for. */
2612 const char *name;
2613
2614 /* The domain to use for our search. */
2615 domain_enum domain;
2616
2617 /* The field where the callback should store the symbol if found.
2618 It should be initialized to {NULL, NULL} before the search is started. */
2619 struct block_symbol result;
2620 };
2621
2622 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2623 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2624 OBJFILE. The arguments for the search are passed via CB_DATA,
2625 which in reality is a pointer to struct global_sym_lookup_data. */
2626
2627 static int
2628 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2629 void *cb_data)
2630 {
2631 struct global_sym_lookup_data *data =
2632 (struct global_sym_lookup_data *) cb_data;
2633
2634 gdb_assert (data->result.symbol == NULL
2635 && data->result.block == NULL);
2636
2637 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2638 data->name, data->domain);
2639
2640 /* If we found a match, tell the iterator to stop. Otherwise,
2641 keep going. */
2642 return (data->result.symbol != NULL);
2643 }
2644
2645 /* See symtab.h. */
2646
2647 struct block_symbol
2648 lookup_global_symbol (const char *name,
2649 const struct block *block,
2650 const domain_enum domain)
2651 {
2652 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2653 struct block_symbol result;
2654 struct objfile *objfile;
2655 struct global_sym_lookup_data lookup_data;
2656 struct block_symbol_cache *bsc;
2657 struct symbol_cache_slot *slot;
2658
2659 objfile = lookup_objfile_from_block (block);
2660
2661 /* First see if we can find the symbol in the cache.
2662 This works because we use the current objfile to qualify the lookup. */
2663 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2664 &bsc, &slot);
2665 if (result.symbol != NULL)
2666 {
2667 if (SYMBOL_LOOKUP_FAILED_P (result))
2668 return {};
2669 return result;
2670 }
2671
2672 /* Call library-specific lookup procedure. */
2673 if (objfile != NULL)
2674 result = solib_global_lookup (objfile, name, domain);
2675
2676 /* If that didn't work go a global search (of global blocks, heh). */
2677 if (result.symbol == NULL)
2678 {
2679 memset (&lookup_data, 0, sizeof (lookup_data));
2680 lookup_data.name = name;
2681 lookup_data.domain = domain;
2682 gdbarch_iterate_over_objfiles_in_search_order
2683 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2684 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2685 result = lookup_data.result;
2686 }
2687
2688 if (result.symbol != NULL)
2689 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2690 else
2691 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2692
2693 return result;
2694 }
2695
2696 int
2697 symbol_matches_domain (enum language symbol_language,
2698 domain_enum symbol_domain,
2699 domain_enum domain)
2700 {
2701 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2702 Similarly, any Ada type declaration implicitly defines a typedef. */
2703 if (symbol_language == language_cplus
2704 || symbol_language == language_d
2705 || symbol_language == language_ada
2706 || symbol_language == language_rust)
2707 {
2708 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2709 && symbol_domain == STRUCT_DOMAIN)
2710 return 1;
2711 }
2712 /* For all other languages, strict match is required. */
2713 return (symbol_domain == domain);
2714 }
2715
2716 /* See symtab.h. */
2717
2718 struct type *
2719 lookup_transparent_type (const char *name)
2720 {
2721 return current_language->la_lookup_transparent_type (name);
2722 }
2723
2724 /* A helper for basic_lookup_transparent_type that interfaces with the
2725 "quick" symbol table functions. */
2726
2727 static struct type *
2728 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2729 const char *name)
2730 {
2731 struct compunit_symtab *cust;
2732 const struct blockvector *bv;
2733 const struct block *block;
2734 struct symbol *sym;
2735
2736 if (!objfile->sf)
2737 return NULL;
2738 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2739 STRUCT_DOMAIN);
2740 if (cust == NULL)
2741 return NULL;
2742
2743 bv = COMPUNIT_BLOCKVECTOR (cust);
2744 block = BLOCKVECTOR_BLOCK (bv, block_index);
2745 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2746 block_find_non_opaque_type, NULL);
2747 if (sym == NULL)
2748 error_in_psymtab_expansion (block_index, name, cust);
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2750 return SYMBOL_TYPE (sym);
2751 }
2752
2753 /* Subroutine of basic_lookup_transparent_type to simplify it.
2754 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2755 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2756
2757 static struct type *
2758 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2759 const char *name)
2760 {
2761 const struct blockvector *bv;
2762 const struct block *block;
2763 const struct symbol *sym;
2764
2765 for (compunit_symtab *cust : objfile->compunits ())
2766 {
2767 bv = COMPUNIT_BLOCKVECTOR (cust);
2768 block = BLOCKVECTOR_BLOCK (bv, block_index);
2769 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2770 block_find_non_opaque_type, NULL);
2771 if (sym != NULL)
2772 {
2773 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2774 return SYMBOL_TYPE (sym);
2775 }
2776 }
2777
2778 return NULL;
2779 }
2780
2781 /* The standard implementation of lookup_transparent_type. This code
2782 was modeled on lookup_symbol -- the parts not relevant to looking
2783 up types were just left out. In particular it's assumed here that
2784 types are available in STRUCT_DOMAIN and only in file-static or
2785 global blocks. */
2786
2787 struct type *
2788 basic_lookup_transparent_type (const char *name)
2789 {
2790 struct type *t;
2791
2792 /* Now search all the global symbols. Do the symtab's first, then
2793 check the psymtab's. If a psymtab indicates the existence
2794 of the desired name as a global, then do psymtab-to-symtab
2795 conversion on the fly and return the found symbol. */
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 for (objfile *objfile : current_program_space->objfiles ())
2805 {
2806 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 /* Now search the static file-level symbols.
2812 Not strictly correct, but more useful than an error.
2813 Do the symtab's first, then
2814 check the psymtab's. If a psymtab indicates the existence
2815 of the desired name as a file-level static, then do psymtab-to-symtab
2816 conversion on the fly and return the found symbol. */
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 for (objfile *objfile : current_program_space->objfiles ())
2826 {
2827 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2828 if (t)
2829 return t;
2830 }
2831
2832 return (struct type *) 0;
2833 }
2834
2835 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2836
2837 For each symbol that matches, CALLBACK is called. The symbol is
2838 passed to the callback.
2839
2840 If CALLBACK returns false, the iteration ends. Otherwise, the
2841 search continues. */
2842
2843 void
2844 iterate_over_symbols (const struct block *block,
2845 const lookup_name_info &name,
2846 const domain_enum domain,
2847 gdb::function_view<symbol_found_callback_ftype> callback)
2848 {
2849 struct block_iterator iter;
2850 struct symbol *sym;
2851
2852 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2853 {
2854 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2855 SYMBOL_DOMAIN (sym), domain))
2856 {
2857 struct block_symbol block_sym = {sym, block};
2858
2859 if (!callback (&block_sym))
2860 return;
2861 }
2862 }
2863 }
2864
2865 /* Find the compunit symtab associated with PC and SECTION.
2866 This will read in debug info as necessary. */
2867
2868 struct compunit_symtab *
2869 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2870 {
2871 struct compunit_symtab *best_cust = NULL;
2872 CORE_ADDR distance = 0;
2873 struct bound_minimal_symbol msymbol;
2874
2875 /* If we know that this is not a text address, return failure. This is
2876 necessary because we loop based on the block's high and low code
2877 addresses, which do not include the data ranges, and because
2878 we call find_pc_sect_psymtab which has a similar restriction based
2879 on the partial_symtab's texthigh and textlow. */
2880 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2881 if (msymbol.minsym && msymbol.minsym->data_p ())
2882 return NULL;
2883
2884 /* Search all symtabs for the one whose file contains our address, and which
2885 is the smallest of all the ones containing the address. This is designed
2886 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2887 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2888 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2889
2890 This happens for native ecoff format, where code from included files
2891 gets its own symtab. The symtab for the included file should have
2892 been read in already via the dependency mechanism.
2893 It might be swifter to create several symtabs with the same name
2894 like xcoff does (I'm not sure).
2895
2896 It also happens for objfiles that have their functions reordered.
2897 For these, the symtab we are looking for is not necessarily read in. */
2898
2899 for (objfile *obj_file : current_program_space->objfiles ())
2900 {
2901 for (compunit_symtab *cust : obj_file->compunits ())
2902 {
2903 const struct block *b;
2904 const struct blockvector *bv;
2905
2906 bv = COMPUNIT_BLOCKVECTOR (cust);
2907 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2908
2909 if (BLOCK_START (b) <= pc
2910 && BLOCK_END (b) > pc
2911 && (distance == 0
2912 || BLOCK_END (b) - BLOCK_START (b) < distance))
2913 {
2914 /* For an objfile that has its functions reordered,
2915 find_pc_psymtab will find the proper partial symbol table
2916 and we simply return its corresponding symtab. */
2917 /* In order to better support objfiles that contain both
2918 stabs and coff debugging info, we continue on if a psymtab
2919 can't be found. */
2920 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2921 {
2922 struct compunit_symtab *result;
2923
2924 result
2925 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2926 msymbol,
2927 pc,
2928 section,
2929 0);
2930 if (result != NULL)
2931 return result;
2932 }
2933 if (section != 0)
2934 {
2935 struct block_iterator iter;
2936 struct symbol *sym = NULL;
2937
2938 ALL_BLOCK_SYMBOLS (b, iter, sym)
2939 {
2940 fixup_symbol_section (sym, obj_file);
2941 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2942 sym),
2943 section))
2944 break;
2945 }
2946 if (sym == NULL)
2947 continue; /* No symbol in this symtab matches
2948 section. */
2949 }
2950 distance = BLOCK_END (b) - BLOCK_START (b);
2951 best_cust = cust;
2952 }
2953 }
2954 }
2955
2956 if (best_cust != NULL)
2957 return best_cust;
2958
2959 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2960
2961 for (objfile *objf : current_program_space->objfiles ())
2962 {
2963 struct compunit_symtab *result;
2964
2965 if (!objf->sf)
2966 continue;
2967 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2968 msymbol,
2969 pc, section,
2970 1);
2971 if (result != NULL)
2972 return result;
2973 }
2974
2975 return NULL;
2976 }
2977
2978 /* Find the compunit symtab associated with PC.
2979 This will read in debug info as necessary.
2980 Backward compatibility, no section. */
2981
2982 struct compunit_symtab *
2983 find_pc_compunit_symtab (CORE_ADDR pc)
2984 {
2985 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2986 }
2987
2988 /* See symtab.h. */
2989
2990 struct symbol *
2991 find_symbol_at_address (CORE_ADDR address)
2992 {
2993 for (objfile *objfile : current_program_space->objfiles ())
2994 {
2995 if (objfile->sf == NULL
2996 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2997 continue;
2998
2999 struct compunit_symtab *symtab
3000 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3001 if (symtab != NULL)
3002 {
3003 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3004
3005 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3006 {
3007 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3008 struct block_iterator iter;
3009 struct symbol *sym;
3010
3011 ALL_BLOCK_SYMBOLS (b, iter, sym)
3012 {
3013 if (SYMBOL_CLASS (sym) == LOC_STATIC
3014 && SYMBOL_VALUE_ADDRESS (sym) == address)
3015 return sym;
3016 }
3017 }
3018 }
3019 }
3020
3021 return NULL;
3022 }
3023
3024 \f
3025
3026 /* Find the source file and line number for a given PC value and SECTION.
3027 Return a structure containing a symtab pointer, a line number,
3028 and a pc range for the entire source line.
3029 The value's .pc field is NOT the specified pc.
3030 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3031 use the line that ends there. Otherwise, in that case, the line
3032 that begins there is used. */
3033
3034 /* The big complication here is that a line may start in one file, and end just
3035 before the start of another file. This usually occurs when you #include
3036 code in the middle of a subroutine. To properly find the end of a line's PC
3037 range, we must search all symtabs associated with this compilation unit, and
3038 find the one whose first PC is closer than that of the next line in this
3039 symtab. */
3040
3041 struct symtab_and_line
3042 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3043 {
3044 struct compunit_symtab *cust;
3045 struct linetable *l;
3046 int len;
3047 struct linetable_entry *item;
3048 const struct blockvector *bv;
3049 struct bound_minimal_symbol msymbol;
3050
3051 /* Info on best line seen so far, and where it starts, and its file. */
3052
3053 struct linetable_entry *best = NULL;
3054 CORE_ADDR best_end = 0;
3055 struct symtab *best_symtab = 0;
3056
3057 /* Store here the first line number
3058 of a file which contains the line at the smallest pc after PC.
3059 If we don't find a line whose range contains PC,
3060 we will use a line one less than this,
3061 with a range from the start of that file to the first line's pc. */
3062 struct linetable_entry *alt = NULL;
3063
3064 /* Info on best line seen in this file. */
3065
3066 struct linetable_entry *prev;
3067
3068 /* If this pc is not from the current frame,
3069 it is the address of the end of a call instruction.
3070 Quite likely that is the start of the following statement.
3071 But what we want is the statement containing the instruction.
3072 Fudge the pc to make sure we get that. */
3073
3074 /* It's tempting to assume that, if we can't find debugging info for
3075 any function enclosing PC, that we shouldn't search for line
3076 number info, either. However, GAS can emit line number info for
3077 assembly files --- very helpful when debugging hand-written
3078 assembly code. In such a case, we'd have no debug info for the
3079 function, but we would have line info. */
3080
3081 if (notcurrent)
3082 pc -= 1;
3083
3084 /* elz: added this because this function returned the wrong
3085 information if the pc belongs to a stub (import/export)
3086 to call a shlib function. This stub would be anywhere between
3087 two functions in the target, and the line info was erroneously
3088 taken to be the one of the line before the pc. */
3089
3090 /* RT: Further explanation:
3091
3092 * We have stubs (trampolines) inserted between procedures.
3093 *
3094 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3095 * exists in the main image.
3096 *
3097 * In the minimal symbol table, we have a bunch of symbols
3098 * sorted by start address. The stubs are marked as "trampoline",
3099 * the others appear as text. E.g.:
3100 *
3101 * Minimal symbol table for main image
3102 * main: code for main (text symbol)
3103 * shr1: stub (trampoline symbol)
3104 * foo: code for foo (text symbol)
3105 * ...
3106 * Minimal symbol table for "shr1" image:
3107 * ...
3108 * shr1: code for shr1 (text symbol)
3109 * ...
3110 *
3111 * So the code below is trying to detect if we are in the stub
3112 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3113 * and if found, do the symbolization from the real-code address
3114 * rather than the stub address.
3115 *
3116 * Assumptions being made about the minimal symbol table:
3117 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3118 * if we're really in the trampoline.s If we're beyond it (say
3119 * we're in "foo" in the above example), it'll have a closer
3120 * symbol (the "foo" text symbol for example) and will not
3121 * return the trampoline.
3122 * 2. lookup_minimal_symbol_text() will find a real text symbol
3123 * corresponding to the trampoline, and whose address will
3124 * be different than the trampoline address. I put in a sanity
3125 * check for the address being the same, to avoid an
3126 * infinite recursion.
3127 */
3128 msymbol = lookup_minimal_symbol_by_pc (pc);
3129 if (msymbol.minsym != NULL)
3130 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3131 {
3132 struct bound_minimal_symbol mfunsym
3133 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3134 NULL);
3135
3136 if (mfunsym.minsym == NULL)
3137 /* I eliminated this warning since it is coming out
3138 * in the following situation:
3139 * gdb shmain // test program with shared libraries
3140 * (gdb) break shr1 // function in shared lib
3141 * Warning: In stub for ...
3142 * In the above situation, the shared lib is not loaded yet,
3143 * so of course we can't find the real func/line info,
3144 * but the "break" still works, and the warning is annoying.
3145 * So I commented out the warning. RT */
3146 /* warning ("In stub for %s; unable to find real function/line info",
3147 SYMBOL_LINKAGE_NAME (msymbol)); */
3148 ;
3149 /* fall through */
3150 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3151 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3152 /* Avoid infinite recursion */
3153 /* See above comment about why warning is commented out. */
3154 /* warning ("In stub for %s; unable to find real function/line info",
3155 SYMBOL_LINKAGE_NAME (msymbol)); */
3156 ;
3157 /* fall through */
3158 else
3159 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3160 }
3161
3162 symtab_and_line val;
3163 val.pspace = current_program_space;
3164
3165 cust = find_pc_sect_compunit_symtab (pc, section);
3166 if (cust == NULL)
3167 {
3168 /* If no symbol information, return previous pc. */
3169 if (notcurrent)
3170 pc++;
3171 val.pc = pc;
3172 return val;
3173 }
3174
3175 bv = COMPUNIT_BLOCKVECTOR (cust);
3176
3177 /* Look at all the symtabs that share this blockvector.
3178 They all have the same apriori range, that we found was right;
3179 but they have different line tables. */
3180
3181 for (symtab *iter_s : compunit_filetabs (cust))
3182 {
3183 /* Find the best line in this symtab. */
3184 l = SYMTAB_LINETABLE (iter_s);
3185 if (!l)
3186 continue;
3187 len = l->nitems;
3188 if (len <= 0)
3189 {
3190 /* I think len can be zero if the symtab lacks line numbers
3191 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3192 I'm not sure which, and maybe it depends on the symbol
3193 reader). */
3194 continue;
3195 }
3196
3197 prev = NULL;
3198 item = l->item; /* Get first line info. */
3199
3200 /* Is this file's first line closer than the first lines of other files?
3201 If so, record this file, and its first line, as best alternate. */
3202 if (item->pc > pc && (!alt || item->pc < alt->pc))
3203 alt = item;
3204
3205 auto pc_compare = [](const CORE_ADDR & comp_pc,
3206 const struct linetable_entry & lhs)->bool
3207 {
3208 return comp_pc < lhs.pc;
3209 };
3210
3211 struct linetable_entry *first = item;
3212 struct linetable_entry *last = item + len;
3213 item = std::upper_bound (first, last, pc, pc_compare);
3214 if (item != first)
3215 prev = item - 1; /* Found a matching item. */
3216
3217 /* At this point, prev points at the line whose start addr is <= pc, and
3218 item points at the next line. If we ran off the end of the linetable
3219 (pc >= start of the last line), then prev == item. If pc < start of
3220 the first line, prev will not be set. */
3221
3222 /* Is this file's best line closer than the best in the other files?
3223 If so, record this file, and its best line, as best so far. Don't
3224 save prev if it represents the end of a function (i.e. line number
3225 0) instead of a real line. */
3226
3227 if (prev && prev->line && (!best || prev->pc > best->pc))
3228 {
3229 best = prev;
3230 best_symtab = iter_s;
3231
3232 /* Discard BEST_END if it's before the PC of the current BEST. */
3233 if (best_end <= best->pc)
3234 best_end = 0;
3235 }
3236
3237 /* If another line (denoted by ITEM) is in the linetable and its
3238 PC is after BEST's PC, but before the current BEST_END, then
3239 use ITEM's PC as the new best_end. */
3240 if (best && item < last && item->pc > best->pc
3241 && (best_end == 0 || best_end > item->pc))
3242 best_end = item->pc;
3243 }
3244
3245 if (!best_symtab)
3246 {
3247 /* If we didn't find any line number info, just return zeros.
3248 We used to return alt->line - 1 here, but that could be
3249 anywhere; if we don't have line number info for this PC,
3250 don't make some up. */
3251 val.pc = pc;
3252 }
3253 else if (best->line == 0)
3254 {
3255 /* If our best fit is in a range of PC's for which no line
3256 number info is available (line number is zero) then we didn't
3257 find any valid line information. */
3258 val.pc = pc;
3259 }
3260 else
3261 {
3262 val.symtab = best_symtab;
3263 val.line = best->line;
3264 val.pc = best->pc;
3265 if (best_end && (!alt || best_end < alt->pc))
3266 val.end = best_end;
3267 else if (alt)
3268 val.end = alt->pc;
3269 else
3270 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3271 }
3272 val.section = section;
3273 return val;
3274 }
3275
3276 /* Backward compatibility (no section). */
3277
3278 struct symtab_and_line
3279 find_pc_line (CORE_ADDR pc, int notcurrent)
3280 {
3281 struct obj_section *section;
3282
3283 section = find_pc_overlay (pc);
3284 if (pc_in_unmapped_range (pc, section))
3285 pc = overlay_mapped_address (pc, section);
3286 return find_pc_sect_line (pc, section, notcurrent);
3287 }
3288
3289 /* See symtab.h. */
3290
3291 struct symtab *
3292 find_pc_line_symtab (CORE_ADDR pc)
3293 {
3294 struct symtab_and_line sal;
3295
3296 /* This always passes zero for NOTCURRENT to find_pc_line.
3297 There are currently no callers that ever pass non-zero. */
3298 sal = find_pc_line (pc, 0);
3299 return sal.symtab;
3300 }
3301 \f
3302 /* Find line number LINE in any symtab whose name is the same as
3303 SYMTAB.
3304
3305 If found, return the symtab that contains the linetable in which it was
3306 found, set *INDEX to the index in the linetable of the best entry
3307 found, and set *EXACT_MATCH nonzero if the value returned is an
3308 exact match.
3309
3310 If not found, return NULL. */
3311
3312 struct symtab *
3313 find_line_symtab (struct symtab *sym_tab, int line,
3314 int *index, int *exact_match)
3315 {
3316 int exact = 0; /* Initialized here to avoid a compiler warning. */
3317
3318 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3319 so far seen. */
3320
3321 int best_index;
3322 struct linetable *best_linetable;
3323 struct symtab *best_symtab;
3324
3325 /* First try looking it up in the given symtab. */
3326 best_linetable = SYMTAB_LINETABLE (sym_tab);
3327 best_symtab = sym_tab;
3328 best_index = find_line_common (best_linetable, line, &exact, 0);
3329 if (best_index < 0 || !exact)
3330 {
3331 /* Didn't find an exact match. So we better keep looking for
3332 another symtab with the same name. In the case of xcoff,
3333 multiple csects for one source file (produced by IBM's FORTRAN
3334 compiler) produce multiple symtabs (this is unavoidable
3335 assuming csects can be at arbitrary places in memory and that
3336 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3337
3338 /* BEST is the smallest linenumber > LINE so far seen,
3339 or 0 if none has been seen so far.
3340 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3341 int best;
3342
3343 if (best_index >= 0)
3344 best = best_linetable->item[best_index].line;
3345 else
3346 best = 0;
3347
3348 for (objfile *objfile : current_program_space->objfiles ())
3349 {
3350 if (objfile->sf)
3351 objfile->sf->qf->expand_symtabs_with_fullname
3352 (objfile, symtab_to_fullname (sym_tab));
3353 }
3354
3355 for (objfile *objfile : current_program_space->objfiles ())
3356 {
3357 for (compunit_symtab *cu : objfile->compunits ())
3358 {
3359 for (symtab *s : compunit_filetabs (cu))
3360 {
3361 struct linetable *l;
3362 int ind;
3363
3364 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3365 continue;
3366 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3367 symtab_to_fullname (s)) != 0)
3368 continue;
3369 l = SYMTAB_LINETABLE (s);
3370 ind = find_line_common (l, line, &exact, 0);
3371 if (ind >= 0)
3372 {
3373 if (exact)
3374 {
3375 best_index = ind;
3376 best_linetable = l;
3377 best_symtab = s;
3378 goto done;
3379 }
3380 if (best == 0 || l->item[ind].line < best)
3381 {
3382 best = l->item[ind].line;
3383 best_index = ind;
3384 best_linetable = l;
3385 best_symtab = s;
3386 }
3387 }
3388 }
3389 }
3390 }
3391 }
3392 done:
3393 if (best_index < 0)
3394 return NULL;
3395
3396 if (index)
3397 *index = best_index;
3398 if (exact_match)
3399 *exact_match = exact;
3400
3401 return best_symtab;
3402 }
3403
3404 /* Given SYMTAB, returns all the PCs function in the symtab that
3405 exactly match LINE. Returns an empty vector if there are no exact
3406 matches, but updates BEST_ITEM in this case. */
3407
3408 std::vector<CORE_ADDR>
3409 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3410 struct linetable_entry **best_item)
3411 {
3412 int start = 0;
3413 std::vector<CORE_ADDR> result;
3414
3415 /* First, collect all the PCs that are at this line. */
3416 while (1)
3417 {
3418 int was_exact;
3419 int idx;
3420
3421 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3422 start);
3423 if (idx < 0)
3424 break;
3425
3426 if (!was_exact)
3427 {
3428 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3429
3430 if (*best_item == NULL || item->line < (*best_item)->line)
3431 *best_item = item;
3432
3433 break;
3434 }
3435
3436 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3437 start = idx + 1;
3438 }
3439
3440 return result;
3441 }
3442
3443 \f
3444 /* Set the PC value for a given source file and line number and return true.
3445 Returns zero for invalid line number (and sets the PC to 0).
3446 The source file is specified with a struct symtab. */
3447
3448 int
3449 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3450 {
3451 struct linetable *l;
3452 int ind;
3453
3454 *pc = 0;
3455 if (symtab == 0)
3456 return 0;
3457
3458 symtab = find_line_symtab (symtab, line, &ind, NULL);
3459 if (symtab != NULL)
3460 {
3461 l = SYMTAB_LINETABLE (symtab);
3462 *pc = l->item[ind].pc;
3463 return 1;
3464 }
3465 else
3466 return 0;
3467 }
3468
3469 /* Find the range of pc values in a line.
3470 Store the starting pc of the line into *STARTPTR
3471 and the ending pc (start of next line) into *ENDPTR.
3472 Returns 1 to indicate success.
3473 Returns 0 if could not find the specified line. */
3474
3475 int
3476 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3477 CORE_ADDR *endptr)
3478 {
3479 CORE_ADDR startaddr;
3480 struct symtab_and_line found_sal;
3481
3482 startaddr = sal.pc;
3483 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3484 return 0;
3485
3486 /* This whole function is based on address. For example, if line 10 has
3487 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3488 "info line *0x123" should say the line goes from 0x100 to 0x200
3489 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3490 This also insures that we never give a range like "starts at 0x134
3491 and ends at 0x12c". */
3492
3493 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3494 if (found_sal.line != sal.line)
3495 {
3496 /* The specified line (sal) has zero bytes. */
3497 *startptr = found_sal.pc;
3498 *endptr = found_sal.pc;
3499 }
3500 else
3501 {
3502 *startptr = found_sal.pc;
3503 *endptr = found_sal.end;
3504 }
3505 return 1;
3506 }
3507
3508 /* Given a line table and a line number, return the index into the line
3509 table for the pc of the nearest line whose number is >= the specified one.
3510 Return -1 if none is found. The value is >= 0 if it is an index.
3511 START is the index at which to start searching the line table.
3512
3513 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3514
3515 static int
3516 find_line_common (struct linetable *l, int lineno,
3517 int *exact_match, int start)
3518 {
3519 int i;
3520 int len;
3521
3522 /* BEST is the smallest linenumber > LINENO so far seen,
3523 or 0 if none has been seen so far.
3524 BEST_INDEX identifies the item for it. */
3525
3526 int best_index = -1;
3527 int best = 0;
3528
3529 *exact_match = 0;
3530
3531 if (lineno <= 0)
3532 return -1;
3533 if (l == 0)
3534 return -1;
3535
3536 len = l->nitems;
3537 for (i = start; i < len; i++)
3538 {
3539 struct linetable_entry *item = &(l->item[i]);
3540
3541 if (item->line == lineno)
3542 {
3543 /* Return the first (lowest address) entry which matches. */
3544 *exact_match = 1;
3545 return i;
3546 }
3547
3548 if (item->line > lineno && (best == 0 || item->line < best))
3549 {
3550 best = item->line;
3551 best_index = i;
3552 }
3553 }
3554
3555 /* If we got here, we didn't get an exact match. */
3556 return best_index;
3557 }
3558
3559 int
3560 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3561 {
3562 struct symtab_and_line sal;
3563
3564 sal = find_pc_line (pc, 0);
3565 *startptr = sal.pc;
3566 *endptr = sal.end;
3567 return sal.symtab != 0;
3568 }
3569
3570 /* Helper for find_function_start_sal. Does most of the work, except
3571 setting the sal's symbol. */
3572
3573 static symtab_and_line
3574 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3575 bool funfirstline)
3576 {
3577 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3578
3579 if (funfirstline && sal.symtab != NULL
3580 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3581 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3582 {
3583 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3584
3585 sal.pc = func_addr;
3586 if (gdbarch_skip_entrypoint_p (gdbarch))
3587 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3588 return sal;
3589 }
3590
3591 /* We always should have a line for the function start address.
3592 If we don't, something is odd. Create a plain SAL referring
3593 just the PC and hope that skip_prologue_sal (if requested)
3594 can find a line number for after the prologue. */
3595 if (sal.pc < func_addr)
3596 {
3597 sal = {};
3598 sal.pspace = current_program_space;
3599 sal.pc = func_addr;
3600 sal.section = section;
3601 }
3602
3603 if (funfirstline)
3604 skip_prologue_sal (&sal);
3605
3606 return sal;
3607 }
3608
3609 /* See symtab.h. */
3610
3611 symtab_and_line
3612 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3613 bool funfirstline)
3614 {
3615 symtab_and_line sal
3616 = find_function_start_sal_1 (func_addr, section, funfirstline);
3617
3618 /* find_function_start_sal_1 does a linetable search, so it finds
3619 the symtab and linenumber, but not a symbol. Fill in the
3620 function symbol too. */
3621 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3622
3623 return sal;
3624 }
3625
3626 /* See symtab.h. */
3627
3628 symtab_and_line
3629 find_function_start_sal (symbol *sym, bool funfirstline)
3630 {
3631 fixup_symbol_section (sym, NULL);
3632 symtab_and_line sal
3633 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3634 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3635 funfirstline);
3636 sal.symbol = sym;
3637 return sal;
3638 }
3639
3640
3641 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3642 address for that function that has an entry in SYMTAB's line info
3643 table. If such an entry cannot be found, return FUNC_ADDR
3644 unaltered. */
3645
3646 static CORE_ADDR
3647 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3648 {
3649 CORE_ADDR func_start, func_end;
3650 struct linetable *l;
3651 int i;
3652
3653 /* Give up if this symbol has no lineinfo table. */
3654 l = SYMTAB_LINETABLE (symtab);
3655 if (l == NULL)
3656 return func_addr;
3657
3658 /* Get the range for the function's PC values, or give up if we
3659 cannot, for some reason. */
3660 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3661 return func_addr;
3662
3663 /* Linetable entries are ordered by PC values, see the commentary in
3664 symtab.h where `struct linetable' is defined. Thus, the first
3665 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3666 address we are looking for. */
3667 for (i = 0; i < l->nitems; i++)
3668 {
3669 struct linetable_entry *item = &(l->item[i]);
3670
3671 /* Don't use line numbers of zero, they mark special entries in
3672 the table. See the commentary on symtab.h before the
3673 definition of struct linetable. */
3674 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3675 return item->pc;
3676 }
3677
3678 return func_addr;
3679 }
3680
3681 /* Adjust SAL to the first instruction past the function prologue.
3682 If the PC was explicitly specified, the SAL is not changed.
3683 If the line number was explicitly specified then the SAL can still be
3684 updated, unless the language for SAL is assembler, in which case the SAL
3685 will be left unchanged.
3686 If SAL is already past the prologue, then do nothing. */
3687
3688 void
3689 skip_prologue_sal (struct symtab_and_line *sal)
3690 {
3691 struct symbol *sym;
3692 struct symtab_and_line start_sal;
3693 CORE_ADDR pc, saved_pc;
3694 struct obj_section *section;
3695 const char *name;
3696 struct objfile *objfile;
3697 struct gdbarch *gdbarch;
3698 const struct block *b, *function_block;
3699 int force_skip, skip;
3700
3701 /* Do not change the SAL if PC was specified explicitly. */
3702 if (sal->explicit_pc)
3703 return;
3704
3705 /* In assembly code, if the user asks for a specific line then we should
3706 not adjust the SAL. The user already has instruction level
3707 visibility in this case, so selecting a line other than one requested
3708 is likely to be the wrong choice. */
3709 if (sal->symtab != nullptr
3710 && sal->explicit_line
3711 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3712 return;
3713
3714 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3715
3716 switch_to_program_space_and_thread (sal->pspace);
3717
3718 sym = find_pc_sect_function (sal->pc, sal->section);
3719 if (sym != NULL)
3720 {
3721 fixup_symbol_section (sym, NULL);
3722
3723 objfile = symbol_objfile (sym);
3724 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3725 section = SYMBOL_OBJ_SECTION (objfile, sym);
3726 name = SYMBOL_LINKAGE_NAME (sym);
3727 }
3728 else
3729 {
3730 struct bound_minimal_symbol msymbol
3731 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3732
3733 if (msymbol.minsym == NULL)
3734 return;
3735
3736 objfile = msymbol.objfile;
3737 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3738 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3739 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3740 }
3741
3742 gdbarch = get_objfile_arch (objfile);
3743
3744 /* Process the prologue in two passes. In the first pass try to skip the
3745 prologue (SKIP is true) and verify there is a real need for it (indicated
3746 by FORCE_SKIP). If no such reason was found run a second pass where the
3747 prologue is not skipped (SKIP is false). */
3748
3749 skip = 1;
3750 force_skip = 1;
3751
3752 /* Be conservative - allow direct PC (without skipping prologue) only if we
3753 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3754 have to be set by the caller so we use SYM instead. */
3755 if (sym != NULL
3756 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3757 force_skip = 0;
3758
3759 saved_pc = pc;
3760 do
3761 {
3762 pc = saved_pc;
3763
3764 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3765 so that gdbarch_skip_prologue has something unique to work on. */
3766 if (section_is_overlay (section) && !section_is_mapped (section))
3767 pc = overlay_unmapped_address (pc, section);
3768
3769 /* Skip "first line" of function (which is actually its prologue). */
3770 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3771 if (gdbarch_skip_entrypoint_p (gdbarch))
3772 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3773 if (skip)
3774 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3775
3776 /* For overlays, map pc back into its mapped VMA range. */
3777 pc = overlay_mapped_address (pc, section);
3778
3779 /* Calculate line number. */
3780 start_sal = find_pc_sect_line (pc, section, 0);
3781
3782 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3783 line is still part of the same function. */
3784 if (skip && start_sal.pc != pc
3785 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3786 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3787 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3788 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3789 {
3790 /* First pc of next line */
3791 pc = start_sal.end;
3792 /* Recalculate the line number (might not be N+1). */
3793 start_sal = find_pc_sect_line (pc, section, 0);
3794 }
3795
3796 /* On targets with executable formats that don't have a concept of
3797 constructors (ELF with .init has, PE doesn't), gcc emits a call
3798 to `__main' in `main' between the prologue and before user
3799 code. */
3800 if (gdbarch_skip_main_prologue_p (gdbarch)
3801 && name && strcmp_iw (name, "main") == 0)
3802 {
3803 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3804 /* Recalculate the line number (might not be N+1). */
3805 start_sal = find_pc_sect_line (pc, section, 0);
3806 force_skip = 1;
3807 }
3808 }
3809 while (!force_skip && skip--);
3810
3811 /* If we still don't have a valid source line, try to find the first
3812 PC in the lineinfo table that belongs to the same function. This
3813 happens with COFF debug info, which does not seem to have an
3814 entry in lineinfo table for the code after the prologue which has
3815 no direct relation to source. For example, this was found to be
3816 the case with the DJGPP target using "gcc -gcoff" when the
3817 compiler inserted code after the prologue to make sure the stack
3818 is aligned. */
3819 if (!force_skip && sym && start_sal.symtab == NULL)
3820 {
3821 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3822 /* Recalculate the line number. */
3823 start_sal = find_pc_sect_line (pc, section, 0);
3824 }
3825
3826 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3827 forward SAL to the end of the prologue. */
3828 if (sal->pc >= pc)
3829 return;
3830
3831 sal->pc = pc;
3832 sal->section = section;
3833 sal->symtab = start_sal.symtab;
3834 sal->line = start_sal.line;
3835 sal->end = start_sal.end;
3836
3837 /* Check if we are now inside an inlined function. If we can,
3838 use the call site of the function instead. */
3839 b = block_for_pc_sect (sal->pc, sal->section);
3840 function_block = NULL;
3841 while (b != NULL)
3842 {
3843 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3844 function_block = b;
3845 else if (BLOCK_FUNCTION (b) != NULL)
3846 break;
3847 b = BLOCK_SUPERBLOCK (b);
3848 }
3849 if (function_block != NULL
3850 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3851 {
3852 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3853 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3854 }
3855 }
3856
3857 /* Given PC at the function's start address, attempt to find the
3858 prologue end using SAL information. Return zero if the skip fails.
3859
3860 A non-optimized prologue traditionally has one SAL for the function
3861 and a second for the function body. A single line function has
3862 them both pointing at the same line.
3863
3864 An optimized prologue is similar but the prologue may contain
3865 instructions (SALs) from the instruction body. Need to skip those
3866 while not getting into the function body.
3867
3868 The functions end point and an increasing SAL line are used as
3869 indicators of the prologue's endpoint.
3870
3871 This code is based on the function refine_prologue_limit
3872 (found in ia64). */
3873
3874 CORE_ADDR
3875 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3876 {
3877 struct symtab_and_line prologue_sal;
3878 CORE_ADDR start_pc;
3879 CORE_ADDR end_pc;
3880 const struct block *bl;
3881
3882 /* Get an initial range for the function. */
3883 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3884 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3885
3886 prologue_sal = find_pc_line (start_pc, 0);
3887 if (prologue_sal.line != 0)
3888 {
3889 /* For languages other than assembly, treat two consecutive line
3890 entries at the same address as a zero-instruction prologue.
3891 The GNU assembler emits separate line notes for each instruction
3892 in a multi-instruction macro, but compilers generally will not
3893 do this. */
3894 if (prologue_sal.symtab->language != language_asm)
3895 {
3896 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3897 int idx = 0;
3898
3899 /* Skip any earlier lines, and any end-of-sequence marker
3900 from a previous function. */
3901 while (linetable->item[idx].pc != prologue_sal.pc
3902 || linetable->item[idx].line == 0)
3903 idx++;
3904
3905 if (idx+1 < linetable->nitems
3906 && linetable->item[idx+1].line != 0
3907 && linetable->item[idx+1].pc == start_pc)
3908 return start_pc;
3909 }
3910
3911 /* If there is only one sal that covers the entire function,
3912 then it is probably a single line function, like
3913 "foo(){}". */
3914 if (prologue_sal.end >= end_pc)
3915 return 0;
3916
3917 while (prologue_sal.end < end_pc)
3918 {
3919 struct symtab_and_line sal;
3920
3921 sal = find_pc_line (prologue_sal.end, 0);
3922 if (sal.line == 0)
3923 break;
3924 /* Assume that a consecutive SAL for the same (or larger)
3925 line mark the prologue -> body transition. */
3926 if (sal.line >= prologue_sal.line)
3927 break;
3928 /* Likewise if we are in a different symtab altogether
3929 (e.g. within a file included via #include).  */
3930 if (sal.symtab != prologue_sal.symtab)
3931 break;
3932
3933 /* The line number is smaller. Check that it's from the
3934 same function, not something inlined. If it's inlined,
3935 then there is no point comparing the line numbers. */
3936 bl = block_for_pc (prologue_sal.end);
3937 while (bl)
3938 {
3939 if (block_inlined_p (bl))
3940 break;
3941 if (BLOCK_FUNCTION (bl))
3942 {
3943 bl = NULL;
3944 break;
3945 }
3946 bl = BLOCK_SUPERBLOCK (bl);
3947 }
3948 if (bl != NULL)
3949 break;
3950
3951 /* The case in which compiler's optimizer/scheduler has
3952 moved instructions into the prologue. We look ahead in
3953 the function looking for address ranges whose
3954 corresponding line number is less the first one that we
3955 found for the function. This is more conservative then
3956 refine_prologue_limit which scans a large number of SALs
3957 looking for any in the prologue. */
3958 prologue_sal = sal;
3959 }
3960 }
3961
3962 if (prologue_sal.end < end_pc)
3963 /* Return the end of this line, or zero if we could not find a
3964 line. */
3965 return prologue_sal.end;
3966 else
3967 /* Don't return END_PC, which is past the end of the function. */
3968 return prologue_sal.pc;
3969 }
3970
3971 /* See symtab.h. */
3972
3973 symbol *
3974 find_function_alias_target (bound_minimal_symbol msymbol)
3975 {
3976 CORE_ADDR func_addr;
3977 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3978 return NULL;
3979
3980 symbol *sym = find_pc_function (func_addr);
3981 if (sym != NULL
3982 && SYMBOL_CLASS (sym) == LOC_BLOCK
3983 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3984 return sym;
3985
3986 return NULL;
3987 }
3988
3989 \f
3990 /* If P is of the form "operator[ \t]+..." where `...' is
3991 some legitimate operator text, return a pointer to the
3992 beginning of the substring of the operator text.
3993 Otherwise, return "". */
3994
3995 static const char *
3996 operator_chars (const char *p, const char **end)
3997 {
3998 *end = "";
3999 if (!startswith (p, CP_OPERATOR_STR))
4000 return *end;
4001 p += CP_OPERATOR_LEN;
4002
4003 /* Don't get faked out by `operator' being part of a longer
4004 identifier. */
4005 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4006 return *end;
4007
4008 /* Allow some whitespace between `operator' and the operator symbol. */
4009 while (*p == ' ' || *p == '\t')
4010 p++;
4011
4012 /* Recognize 'operator TYPENAME'. */
4013
4014 if (isalpha (*p) || *p == '_' || *p == '$')
4015 {
4016 const char *q = p + 1;
4017
4018 while (isalnum (*q) || *q == '_' || *q == '$')
4019 q++;
4020 *end = q;
4021 return p;
4022 }
4023
4024 while (*p)
4025 switch (*p)
4026 {
4027 case '\\': /* regexp quoting */
4028 if (p[1] == '*')
4029 {
4030 if (p[2] == '=') /* 'operator\*=' */
4031 *end = p + 3;
4032 else /* 'operator\*' */
4033 *end = p + 2;
4034 return p;
4035 }
4036 else if (p[1] == '[')
4037 {
4038 if (p[2] == ']')
4039 error (_("mismatched quoting on brackets, "
4040 "try 'operator\\[\\]'"));
4041 else if (p[2] == '\\' && p[3] == ']')
4042 {
4043 *end = p + 4; /* 'operator\[\]' */
4044 return p;
4045 }
4046 else
4047 error (_("nothing is allowed between '[' and ']'"));
4048 }
4049 else
4050 {
4051 /* Gratuitous qoute: skip it and move on. */
4052 p++;
4053 continue;
4054 }
4055 break;
4056 case '!':
4057 case '=':
4058 case '*':
4059 case '/':
4060 case '%':
4061 case '^':
4062 if (p[1] == '=')
4063 *end = p + 2;
4064 else
4065 *end = p + 1;
4066 return p;
4067 case '<':
4068 case '>':
4069 case '+':
4070 case '-':
4071 case '&':
4072 case '|':
4073 if (p[0] == '-' && p[1] == '>')
4074 {
4075 /* Struct pointer member operator 'operator->'. */
4076 if (p[2] == '*')
4077 {
4078 *end = p + 3; /* 'operator->*' */
4079 return p;
4080 }
4081 else if (p[2] == '\\')
4082 {
4083 *end = p + 4; /* Hopefully 'operator->\*' */
4084 return p;
4085 }
4086 else
4087 {
4088 *end = p + 2; /* 'operator->' */
4089 return p;
4090 }
4091 }
4092 if (p[1] == '=' || p[1] == p[0])
4093 *end = p + 2;
4094 else
4095 *end = p + 1;
4096 return p;
4097 case '~':
4098 case ',':
4099 *end = p + 1;
4100 return p;
4101 case '(':
4102 if (p[1] != ')')
4103 error (_("`operator ()' must be specified "
4104 "without whitespace in `()'"));
4105 *end = p + 2;
4106 return p;
4107 case '?':
4108 if (p[1] != ':')
4109 error (_("`operator ?:' must be specified "
4110 "without whitespace in `?:'"));
4111 *end = p + 2;
4112 return p;
4113 case '[':
4114 if (p[1] != ']')
4115 error (_("`operator []' must be specified "
4116 "without whitespace in `[]'"));
4117 *end = p + 2;
4118 return p;
4119 default:
4120 error (_("`operator %s' not supported"), p);
4121 break;
4122 }
4123
4124 *end = "";
4125 return *end;
4126 }
4127 \f
4128
4129 /* Data structure to maintain printing state for output_source_filename. */
4130
4131 struct output_source_filename_data
4132 {
4133 /* Cache of what we've seen so far. */
4134 struct filename_seen_cache *filename_seen_cache;
4135
4136 /* Flag of whether we're printing the first one. */
4137 int first;
4138 };
4139
4140 /* Slave routine for sources_info. Force line breaks at ,'s.
4141 NAME is the name to print.
4142 DATA contains the state for printing and watching for duplicates. */
4143
4144 static void
4145 output_source_filename (const char *name,
4146 struct output_source_filename_data *data)
4147 {
4148 /* Since a single source file can result in several partial symbol
4149 tables, we need to avoid printing it more than once. Note: if
4150 some of the psymtabs are read in and some are not, it gets
4151 printed both under "Source files for which symbols have been
4152 read" and "Source files for which symbols will be read in on
4153 demand". I consider this a reasonable way to deal with the
4154 situation. I'm not sure whether this can also happen for
4155 symtabs; it doesn't hurt to check. */
4156
4157 /* Was NAME already seen? */
4158 if (data->filename_seen_cache->seen (name))
4159 {
4160 /* Yes; don't print it again. */
4161 return;
4162 }
4163
4164 /* No; print it and reset *FIRST. */
4165 if (! data->first)
4166 printf_filtered (", ");
4167 data->first = 0;
4168
4169 wrap_here ("");
4170 fputs_styled (name, file_name_style.style (), gdb_stdout);
4171 }
4172
4173 /* A callback for map_partial_symbol_filenames. */
4174
4175 static void
4176 output_partial_symbol_filename (const char *filename, const char *fullname,
4177 void *data)
4178 {
4179 output_source_filename (fullname ? fullname : filename,
4180 (struct output_source_filename_data *) data);
4181 }
4182
4183 static void
4184 info_sources_command (const char *ignore, int from_tty)
4185 {
4186 struct output_source_filename_data data;
4187
4188 if (!have_full_symbols () && !have_partial_symbols ())
4189 {
4190 error (_("No symbol table is loaded. Use the \"file\" command."));
4191 }
4192
4193 filename_seen_cache filenames_seen;
4194
4195 data.filename_seen_cache = &filenames_seen;
4196
4197 printf_filtered ("Source files for which symbols have been read in:\n\n");
4198
4199 data.first = 1;
4200 for (objfile *objfile : current_program_space->objfiles ())
4201 {
4202 for (compunit_symtab *cu : objfile->compunits ())
4203 {
4204 for (symtab *s : compunit_filetabs (cu))
4205 {
4206 const char *fullname = symtab_to_fullname (s);
4207
4208 output_source_filename (fullname, &data);
4209 }
4210 }
4211 }
4212 printf_filtered ("\n\n");
4213
4214 printf_filtered ("Source files for which symbols "
4215 "will be read in on demand:\n\n");
4216
4217 filenames_seen.clear ();
4218 data.first = 1;
4219 map_symbol_filenames (output_partial_symbol_filename, &data,
4220 1 /*need_fullname*/);
4221 printf_filtered ("\n");
4222 }
4223
4224 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4225 non-zero compare only lbasename of FILES. */
4226
4227 static int
4228 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4229 {
4230 int i;
4231
4232 if (file != NULL && nfiles != 0)
4233 {
4234 for (i = 0; i < nfiles; i++)
4235 {
4236 if (compare_filenames_for_search (file, (basenames
4237 ? lbasename (files[i])
4238 : files[i])))
4239 return 1;
4240 }
4241 }
4242 else if (nfiles == 0)
4243 return 1;
4244 return 0;
4245 }
4246
4247 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4248 sort symbols, not minimal symbols. */
4249
4250 int
4251 symbol_search::compare_search_syms (const symbol_search &sym_a,
4252 const symbol_search &sym_b)
4253 {
4254 int c;
4255
4256 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4257 symbol_symtab (sym_b.symbol)->filename);
4258 if (c != 0)
4259 return c;
4260
4261 if (sym_a.block != sym_b.block)
4262 return sym_a.block - sym_b.block;
4263
4264 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4265 SYMBOL_PRINT_NAME (sym_b.symbol));
4266 }
4267
4268 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4269 If SYM has no symbol_type or symbol_name, returns false. */
4270
4271 bool
4272 treg_matches_sym_type_name (const compiled_regex &treg,
4273 const struct symbol *sym)
4274 {
4275 struct type *sym_type;
4276 std::string printed_sym_type_name;
4277
4278 if (symbol_lookup_debug > 1)
4279 {
4280 fprintf_unfiltered (gdb_stdlog,
4281 "treg_matches_sym_type_name\n sym %s\n",
4282 SYMBOL_NATURAL_NAME (sym));
4283 }
4284
4285 sym_type = SYMBOL_TYPE (sym);
4286 if (sym_type == NULL)
4287 return false;
4288
4289 {
4290 scoped_switch_to_sym_language_if_auto l (sym);
4291
4292 printed_sym_type_name = type_to_string (sym_type);
4293 }
4294
4295
4296 if (symbol_lookup_debug > 1)
4297 {
4298 fprintf_unfiltered (gdb_stdlog,
4299 " sym_type_name %s\n",
4300 printed_sym_type_name.c_str ());
4301 }
4302
4303
4304 if (printed_sym_type_name.empty ())
4305 return false;
4306
4307 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4308 }
4309
4310
4311 /* Sort the symbols in RESULT and remove duplicates. */
4312
4313 static void
4314 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4315 {
4316 std::sort (result->begin (), result->end ());
4317 result->erase (std::unique (result->begin (), result->end ()),
4318 result->end ());
4319 }
4320
4321 /* Search the symbol table for matches to the regular expression REGEXP,
4322 returning the results.
4323
4324 Only symbols of KIND are searched:
4325 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4326 and constants (enums).
4327 if T_REGEXP is not NULL, only returns var that have
4328 a type matching regular expression T_REGEXP.
4329 FUNCTIONS_DOMAIN - search all functions
4330 TYPES_DOMAIN - search all type names
4331 ALL_DOMAIN - an internal error for this function
4332
4333 Within each file the results are sorted locally; each symtab's global and
4334 static blocks are separately alphabetized.
4335 Duplicate entries are removed. */
4336
4337 std::vector<symbol_search>
4338 search_symbols (const char *regexp, enum search_domain kind,
4339 const char *t_regexp,
4340 int nfiles, const char *files[])
4341 {
4342 const struct blockvector *bv;
4343 const struct block *b;
4344 int i = 0;
4345 struct block_iterator iter;
4346 struct symbol *sym;
4347 int found_misc = 0;
4348 static const enum minimal_symbol_type types[]
4349 = {mst_data, mst_text, mst_unknown};
4350 static const enum minimal_symbol_type types2[]
4351 = {mst_bss, mst_file_text, mst_unknown};
4352 static const enum minimal_symbol_type types3[]
4353 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4354 static const enum minimal_symbol_type types4[]
4355 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4356 enum minimal_symbol_type ourtype;
4357 enum minimal_symbol_type ourtype2;
4358 enum minimal_symbol_type ourtype3;
4359 enum minimal_symbol_type ourtype4;
4360 std::vector<symbol_search> result;
4361 gdb::optional<compiled_regex> preg;
4362 gdb::optional<compiled_regex> treg;
4363
4364 gdb_assert (kind <= TYPES_DOMAIN);
4365
4366 ourtype = types[kind];
4367 ourtype2 = types2[kind];
4368 ourtype3 = types3[kind];
4369 ourtype4 = types4[kind];
4370
4371 if (regexp != NULL)
4372 {
4373 /* Make sure spacing is right for C++ operators.
4374 This is just a courtesy to make the matching less sensitive
4375 to how many spaces the user leaves between 'operator'
4376 and <TYPENAME> or <OPERATOR>. */
4377 const char *opend;
4378 const char *opname = operator_chars (regexp, &opend);
4379
4380 if (*opname)
4381 {
4382 int fix = -1; /* -1 means ok; otherwise number of
4383 spaces needed. */
4384
4385 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4386 {
4387 /* There should 1 space between 'operator' and 'TYPENAME'. */
4388 if (opname[-1] != ' ' || opname[-2] == ' ')
4389 fix = 1;
4390 }
4391 else
4392 {
4393 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4394 if (opname[-1] == ' ')
4395 fix = 0;
4396 }
4397 /* If wrong number of spaces, fix it. */
4398 if (fix >= 0)
4399 {
4400 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4401
4402 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4403 regexp = tmp;
4404 }
4405 }
4406
4407 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4408 ? REG_ICASE : 0);
4409 preg.emplace (regexp, cflags, _("Invalid regexp"));
4410 }
4411
4412 if (t_regexp != NULL)
4413 {
4414 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4415 ? REG_ICASE : 0);
4416 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4417 }
4418
4419 /* Search through the partial symtabs *first* for all symbols
4420 matching the regexp. That way we don't have to reproduce all of
4421 the machinery below. */
4422 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4423 {
4424 return file_matches (filename, files, nfiles,
4425 basenames);
4426 },
4427 lookup_name_info::match_any (),
4428 [&] (const char *symname)
4429 {
4430 return (!preg.has_value ()
4431 || preg->exec (symname,
4432 0, NULL, 0) == 0);
4433 },
4434 NULL,
4435 kind);
4436
4437 /* Here, we search through the minimal symbol tables for functions
4438 and variables that match, and force their symbols to be read.
4439 This is in particular necessary for demangled variable names,
4440 which are no longer put into the partial symbol tables.
4441 The symbol will then be found during the scan of symtabs below.
4442
4443 For functions, find_pc_symtab should succeed if we have debug info
4444 for the function, for variables we have to call
4445 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4446 has debug info.
4447 If the lookup fails, set found_misc so that we will rescan to print
4448 any matching symbols without debug info.
4449 We only search the objfile the msymbol came from, we no longer search
4450 all objfiles. In large programs (1000s of shared libs) searching all
4451 objfiles is not worth the pain. */
4452
4453 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4454 {
4455 for (objfile *objfile : current_program_space->objfiles ())
4456 {
4457 for (minimal_symbol *msymbol : objfile->msymbols ())
4458 {
4459 QUIT;
4460
4461 if (msymbol->created_by_gdb)
4462 continue;
4463
4464 if (MSYMBOL_TYPE (msymbol) == ourtype
4465 || MSYMBOL_TYPE (msymbol) == ourtype2
4466 || MSYMBOL_TYPE (msymbol) == ourtype3
4467 || MSYMBOL_TYPE (msymbol) == ourtype4)
4468 {
4469 if (!preg.has_value ()
4470 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4471 NULL, 0) == 0)
4472 {
4473 /* Note: An important side-effect of these
4474 lookup functions is to expand the symbol
4475 table if msymbol is found, for the benefit of
4476 the next loop on compunits. */
4477 if (kind == FUNCTIONS_DOMAIN
4478 ? (find_pc_compunit_symtab
4479 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4480 == NULL)
4481 : (lookup_symbol_in_objfile_from_linkage_name
4482 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4483 VAR_DOMAIN)
4484 .symbol == NULL))
4485 found_misc = 1;
4486 }
4487 }
4488 }
4489 }
4490 }
4491
4492 for (objfile *objfile : current_program_space->objfiles ())
4493 {
4494 for (compunit_symtab *cust : objfile->compunits ())
4495 {
4496 bv = COMPUNIT_BLOCKVECTOR (cust);
4497 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4498 {
4499 b = BLOCKVECTOR_BLOCK (bv, i);
4500 ALL_BLOCK_SYMBOLS (b, iter, sym)
4501 {
4502 struct symtab *real_symtab = symbol_symtab (sym);
4503
4504 QUIT;
4505
4506 /* Check first sole REAL_SYMTAB->FILENAME. It does
4507 not need to be a substring of symtab_to_fullname as
4508 it may contain "./" etc. */
4509 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4510 || ((basenames_may_differ
4511 || file_matches (lbasename (real_symtab->filename),
4512 files, nfiles, 1))
4513 && file_matches (symtab_to_fullname (real_symtab),
4514 files, nfiles, 0)))
4515 && ((!preg.has_value ()
4516 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4517 NULL, 0) == 0)
4518 && ((kind == VARIABLES_DOMAIN
4519 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4520 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4521 && SYMBOL_CLASS (sym) != LOC_BLOCK
4522 /* LOC_CONST can be used for more than
4523 just enums, e.g., c++ static const
4524 members. We only want to skip enums
4525 here. */
4526 && !(SYMBOL_CLASS (sym) == LOC_CONST
4527 && (TYPE_CODE (SYMBOL_TYPE (sym))
4528 == TYPE_CODE_ENUM))
4529 && (!treg.has_value ()
4530 || treg_matches_sym_type_name (*treg, sym)))
4531 || (kind == FUNCTIONS_DOMAIN
4532 && SYMBOL_CLASS (sym) == LOC_BLOCK
4533 && (!treg.has_value ()
4534 || treg_matches_sym_type_name (*treg,
4535 sym)))
4536 || (kind == TYPES_DOMAIN
4537 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4538 {
4539 /* match */
4540 result.emplace_back (i, sym);
4541 }
4542 }
4543 }
4544 }
4545 }
4546
4547 if (!result.empty ())
4548 sort_search_symbols_remove_dups (&result);
4549
4550 /* If there are no eyes, avoid all contact. I mean, if there are
4551 no debug symbols, then add matching minsyms. But if the user wants
4552 to see symbols matching a type regexp, then never give a minimal symbol,
4553 as we assume that a minimal symbol does not have a type. */
4554
4555 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4556 && !treg.has_value ())
4557 {
4558 for (objfile *objfile : current_program_space->objfiles ())
4559 {
4560 for (minimal_symbol *msymbol : objfile->msymbols ())
4561 {
4562 QUIT;
4563
4564 if (msymbol->created_by_gdb)
4565 continue;
4566
4567 if (MSYMBOL_TYPE (msymbol) == ourtype
4568 || MSYMBOL_TYPE (msymbol) == ourtype2
4569 || MSYMBOL_TYPE (msymbol) == ourtype3
4570 || MSYMBOL_TYPE (msymbol) == ourtype4)
4571 {
4572 if (!preg.has_value ()
4573 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4574 NULL, 0) == 0)
4575 {
4576 /* For functions we can do a quick check of whether the
4577 symbol might be found via find_pc_symtab. */
4578 if (kind != FUNCTIONS_DOMAIN
4579 || (find_pc_compunit_symtab
4580 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4581 == NULL))
4582 {
4583 if (lookup_symbol_in_objfile_from_linkage_name
4584 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4585 VAR_DOMAIN)
4586 .symbol == NULL)
4587 {
4588 /* match */
4589 result.emplace_back (i, msymbol, objfile);
4590 }
4591 }
4592 }
4593 }
4594 }
4595 }
4596 }
4597
4598 return result;
4599 }
4600
4601 /* Helper function for symtab_symbol_info, this function uses
4602 the data returned from search_symbols() to print information
4603 regarding the match to gdb_stdout. If LAST is not NULL,
4604 print file and line number information for the symbol as
4605 well. Skip printing the filename if it matches LAST. */
4606
4607 static void
4608 print_symbol_info (enum search_domain kind,
4609 struct symbol *sym,
4610 int block, const char *last)
4611 {
4612 scoped_switch_to_sym_language_if_auto l (sym);
4613 struct symtab *s = symbol_symtab (sym);
4614
4615 if (last != NULL)
4616 {
4617 const char *s_filename = symtab_to_filename_for_display (s);
4618
4619 if (filename_cmp (last, s_filename) != 0)
4620 {
4621 fputs_filtered ("\nFile ", gdb_stdout);
4622 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4623 fputs_filtered (":\n", gdb_stdout);
4624 }
4625
4626 if (SYMBOL_LINE (sym) != 0)
4627 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4628 else
4629 puts_filtered ("\t");
4630 }
4631
4632 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4633 printf_filtered ("static ");
4634
4635 /* Typedef that is not a C++ class. */
4636 if (kind == TYPES_DOMAIN
4637 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4638 {
4639 /* FIXME: For C (and C++) we end up with a difference in output here
4640 between how a typedef is printed, and non-typedefs are printed.
4641 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4642 appear C-like, while TYPE_PRINT doesn't.
4643
4644 For the struct printing case below, things are worse, we force
4645 printing of the ";" in this function, which is going to be wrong
4646 for languages that don't require a ";" between statements. */
4647 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4648 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4649 else
4650 {
4651 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4652 printf_filtered ("\n");
4653 }
4654 }
4655 /* variable, func, or typedef-that-is-c++-class. */
4656 else if (kind < TYPES_DOMAIN
4657 || (kind == TYPES_DOMAIN
4658 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4659 {
4660 type_print (SYMBOL_TYPE (sym),
4661 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4662 ? "" : SYMBOL_PRINT_NAME (sym)),
4663 gdb_stdout, 0);
4664
4665 printf_filtered (";\n");
4666 }
4667 }
4668
4669 /* This help function for symtab_symbol_info() prints information
4670 for non-debugging symbols to gdb_stdout. */
4671
4672 static void
4673 print_msymbol_info (struct bound_minimal_symbol msymbol)
4674 {
4675 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4676 char *tmp;
4677
4678 if (gdbarch_addr_bit (gdbarch) <= 32)
4679 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4680 & (CORE_ADDR) 0xffffffff,
4681 8);
4682 else
4683 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4684 16);
4685 fputs_styled (tmp, address_style.style (), gdb_stdout);
4686 fputs_filtered (" ", gdb_stdout);
4687 if (msymbol.minsym->text_p ())
4688 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4689 function_name_style.style (),
4690 gdb_stdout);
4691 else
4692 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4693 fputs_filtered ("\n", gdb_stdout);
4694 }
4695
4696 /* This is the guts of the commands "info functions", "info types", and
4697 "info variables". It calls search_symbols to find all matches and then
4698 print_[m]symbol_info to print out some useful information about the
4699 matches. */
4700
4701 static void
4702 symtab_symbol_info (bool quiet,
4703 const char *regexp, enum search_domain kind,
4704 const char *t_regexp, int from_tty)
4705 {
4706 static const char * const classnames[] =
4707 {"variable", "function", "type"};
4708 const char *last_filename = "";
4709 int first = 1;
4710
4711 gdb_assert (kind <= TYPES_DOMAIN);
4712
4713 if (regexp != nullptr && *regexp == '\0')
4714 regexp = nullptr;
4715
4716 /* Must make sure that if we're interrupted, symbols gets freed. */
4717 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4718 t_regexp, 0, NULL);
4719
4720 if (!quiet)
4721 {
4722 if (regexp != NULL)
4723 {
4724 if (t_regexp != NULL)
4725 printf_filtered
4726 (_("All %ss matching regular expression \"%s\""
4727 " with type matching regular expression \"%s\":\n"),
4728 classnames[kind], regexp, t_regexp);
4729 else
4730 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4731 classnames[kind], regexp);
4732 }
4733 else
4734 {
4735 if (t_regexp != NULL)
4736 printf_filtered
4737 (_("All defined %ss"
4738 " with type matching regular expression \"%s\" :\n"),
4739 classnames[kind], t_regexp);
4740 else
4741 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4742 }
4743 }
4744
4745 for (const symbol_search &p : symbols)
4746 {
4747 QUIT;
4748
4749 if (p.msymbol.minsym != NULL)
4750 {
4751 if (first)
4752 {
4753 if (!quiet)
4754 printf_filtered (_("\nNon-debugging symbols:\n"));
4755 first = 0;
4756 }
4757 print_msymbol_info (p.msymbol);
4758 }
4759 else
4760 {
4761 print_symbol_info (kind,
4762 p.symbol,
4763 p.block,
4764 last_filename);
4765 last_filename
4766 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4767 }
4768 }
4769 }
4770
4771 /* Implement the 'info variables' command. */
4772
4773 static void
4774 info_variables_command (const char *args, int from_tty)
4775 {
4776 info_print_options opts;
4777 extract_info_print_options (&opts, &args);
4778
4779 symtab_symbol_info (opts.quiet, args, VARIABLES_DOMAIN,
4780 opts.type_regexp, from_tty);
4781 }
4782
4783 /* Implement the 'info functions' command. */
4784
4785 static void
4786 info_functions_command (const char *args, int from_tty)
4787 {
4788 info_print_options opts;
4789 extract_info_print_options (&opts, &args);
4790
4791 symtab_symbol_info (opts.quiet, args, FUNCTIONS_DOMAIN,
4792 opts.type_regexp, from_tty);
4793 }
4794
4795 /* Holds the -q option for the 'info types' command. */
4796
4797 struct info_types_options
4798 {
4799 int quiet = false;
4800 };
4801
4802 /* The options used by the 'info types' command. */
4803
4804 static const gdb::option::option_def info_types_options_defs[] = {
4805 gdb::option::boolean_option_def<info_types_options> {
4806 "q",
4807 [] (info_types_options *opt) { return &opt->quiet; },
4808 nullptr, /* show_cmd_cb */
4809 nullptr /* set_doc */
4810 }
4811 };
4812
4813 /* Returns the option group used by 'info types'. */
4814
4815 static gdb::option::option_def_group
4816 make_info_types_options_def_group (info_types_options *opts)
4817 {
4818 return {{info_types_options_defs}, opts};
4819 }
4820
4821 /* Implement the 'info types' command. */
4822
4823 static void
4824 info_types_command (const char *args, int from_tty)
4825 {
4826 info_types_options opts;
4827
4828 auto grp = make_info_types_options_def_group (&opts);
4829 gdb::option::process_options
4830 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4831 if (args != nullptr && *args == '\0')
4832 args = nullptr;
4833 symtab_symbol_info (opts.quiet, args, TYPES_DOMAIN, NULL, from_tty);
4834 }
4835
4836 /* Command completer for 'info types' command. */
4837
4838 static void
4839 info_types_command_completer (struct cmd_list_element *ignore,
4840 completion_tracker &tracker,
4841 const char *text, const char * /* word */)
4842 {
4843 const auto group
4844 = make_info_types_options_def_group (nullptr);
4845 if (gdb::option::complete_options
4846 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4847 return;
4848
4849 const char *word = advance_to_expression_complete_word_point (tracker, text);
4850 symbol_completer (ignore, tracker, text, word);
4851 }
4852
4853 /* Breakpoint all functions matching regular expression. */
4854
4855 void
4856 rbreak_command_wrapper (char *regexp, int from_tty)
4857 {
4858 rbreak_command (regexp, from_tty);
4859 }
4860
4861 static void
4862 rbreak_command (const char *regexp, int from_tty)
4863 {
4864 std::string string;
4865 const char **files = NULL;
4866 const char *file_name;
4867 int nfiles = 0;
4868
4869 if (regexp)
4870 {
4871 const char *colon = strchr (regexp, ':');
4872
4873 if (colon && *(colon + 1) != ':')
4874 {
4875 int colon_index;
4876 char *local_name;
4877
4878 colon_index = colon - regexp;
4879 local_name = (char *) alloca (colon_index + 1);
4880 memcpy (local_name, regexp, colon_index);
4881 local_name[colon_index--] = 0;
4882 while (isspace (local_name[colon_index]))
4883 local_name[colon_index--] = 0;
4884 file_name = local_name;
4885 files = &file_name;
4886 nfiles = 1;
4887 regexp = skip_spaces (colon + 1);
4888 }
4889 }
4890
4891 std::vector<symbol_search> symbols = search_symbols (regexp,
4892 FUNCTIONS_DOMAIN,
4893 NULL,
4894 nfiles, files);
4895
4896 scoped_rbreak_breakpoints finalize;
4897 for (const symbol_search &p : symbols)
4898 {
4899 if (p.msymbol.minsym == NULL)
4900 {
4901 struct symtab *symtab = symbol_symtab (p.symbol);
4902 const char *fullname = symtab_to_fullname (symtab);
4903
4904 string = string_printf ("%s:'%s'", fullname,
4905 SYMBOL_LINKAGE_NAME (p.symbol));
4906 break_command (&string[0], from_tty);
4907 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4908 }
4909 else
4910 {
4911 string = string_printf ("'%s'",
4912 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4913
4914 break_command (&string[0], from_tty);
4915 printf_filtered ("<function, no debug info> %s;\n",
4916 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4917 }
4918 }
4919 }
4920 \f
4921
4922 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4923
4924 static int
4925 compare_symbol_name (const char *symbol_name, language symbol_language,
4926 const lookup_name_info &lookup_name,
4927 completion_match_result &match_res)
4928 {
4929 const language_defn *lang = language_def (symbol_language);
4930
4931 symbol_name_matcher_ftype *name_match
4932 = get_symbol_name_matcher (lang, lookup_name);
4933
4934 return name_match (symbol_name, lookup_name, &match_res);
4935 }
4936
4937 /* See symtab.h. */
4938
4939 void
4940 completion_list_add_name (completion_tracker &tracker,
4941 language symbol_language,
4942 const char *symname,
4943 const lookup_name_info &lookup_name,
4944 const char *text, const char *word)
4945 {
4946 completion_match_result &match_res
4947 = tracker.reset_completion_match_result ();
4948
4949 /* Clip symbols that cannot match. */
4950 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4951 return;
4952
4953 /* Refresh SYMNAME from the match string. It's potentially
4954 different depending on language. (E.g., on Ada, the match may be
4955 the encoded symbol name wrapped in "<>"). */
4956 symname = match_res.match.match ();
4957 gdb_assert (symname != NULL);
4958
4959 /* We have a match for a completion, so add SYMNAME to the current list
4960 of matches. Note that the name is moved to freshly malloc'd space. */
4961
4962 {
4963 gdb::unique_xmalloc_ptr<char> completion
4964 = make_completion_match_str (symname, text, word);
4965
4966 /* Here we pass the match-for-lcd object to add_completion. Some
4967 languages match the user text against substrings of symbol
4968 names in some cases. E.g., in C++, "b push_ba" completes to
4969 "std::vector::push_back", "std::string::push_back", etc., and
4970 in this case we want the completion lowest common denominator
4971 to be "push_back" instead of "std::". */
4972 tracker.add_completion (std::move (completion),
4973 &match_res.match_for_lcd, text, word);
4974 }
4975 }
4976
4977 /* completion_list_add_name wrapper for struct symbol. */
4978
4979 static void
4980 completion_list_add_symbol (completion_tracker &tracker,
4981 symbol *sym,
4982 const lookup_name_info &lookup_name,
4983 const char *text, const char *word)
4984 {
4985 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4986 SYMBOL_NATURAL_NAME (sym),
4987 lookup_name, text, word);
4988 }
4989
4990 /* completion_list_add_name wrapper for struct minimal_symbol. */
4991
4992 static void
4993 completion_list_add_msymbol (completion_tracker &tracker,
4994 minimal_symbol *sym,
4995 const lookup_name_info &lookup_name,
4996 const char *text, const char *word)
4997 {
4998 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4999 MSYMBOL_NATURAL_NAME (sym),
5000 lookup_name, text, word);
5001 }
5002
5003
5004 /* ObjC: In case we are completing on a selector, look as the msymbol
5005 again and feed all the selectors into the mill. */
5006
5007 static void
5008 completion_list_objc_symbol (completion_tracker &tracker,
5009 struct minimal_symbol *msymbol,
5010 const lookup_name_info &lookup_name,
5011 const char *text, const char *word)
5012 {
5013 static char *tmp = NULL;
5014 static unsigned int tmplen = 0;
5015
5016 const char *method, *category, *selector;
5017 char *tmp2 = NULL;
5018
5019 method = MSYMBOL_NATURAL_NAME (msymbol);
5020
5021 /* Is it a method? */
5022 if ((method[0] != '-') && (method[0] != '+'))
5023 return;
5024
5025 if (text[0] == '[')
5026 /* Complete on shortened method method. */
5027 completion_list_add_name (tracker, language_objc,
5028 method + 1,
5029 lookup_name,
5030 text, word);
5031
5032 while ((strlen (method) + 1) >= tmplen)
5033 {
5034 if (tmplen == 0)
5035 tmplen = 1024;
5036 else
5037 tmplen *= 2;
5038 tmp = (char *) xrealloc (tmp, tmplen);
5039 }
5040 selector = strchr (method, ' ');
5041 if (selector != NULL)
5042 selector++;
5043
5044 category = strchr (method, '(');
5045
5046 if ((category != NULL) && (selector != NULL))
5047 {
5048 memcpy (tmp, method, (category - method));
5049 tmp[category - method] = ' ';
5050 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5051 completion_list_add_name (tracker, language_objc, tmp,
5052 lookup_name, text, word);
5053 if (text[0] == '[')
5054 completion_list_add_name (tracker, language_objc, tmp + 1,
5055 lookup_name, text, word);
5056 }
5057
5058 if (selector != NULL)
5059 {
5060 /* Complete on selector only. */
5061 strcpy (tmp, selector);
5062 tmp2 = strchr (tmp, ']');
5063 if (tmp2 != NULL)
5064 *tmp2 = '\0';
5065
5066 completion_list_add_name (tracker, language_objc, tmp,
5067 lookup_name, text, word);
5068 }
5069 }
5070
5071 /* Break the non-quoted text based on the characters which are in
5072 symbols. FIXME: This should probably be language-specific. */
5073
5074 static const char *
5075 language_search_unquoted_string (const char *text, const char *p)
5076 {
5077 for (; p > text; --p)
5078 {
5079 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5080 continue;
5081 else
5082 {
5083 if ((current_language->la_language == language_objc))
5084 {
5085 if (p[-1] == ':') /* Might be part of a method name. */
5086 continue;
5087 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5088 p -= 2; /* Beginning of a method name. */
5089 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5090 { /* Might be part of a method name. */
5091 const char *t = p;
5092
5093 /* Seeing a ' ' or a '(' is not conclusive evidence
5094 that we are in the middle of a method name. However,
5095 finding "-[" or "+[" should be pretty un-ambiguous.
5096 Unfortunately we have to find it now to decide. */
5097
5098 while (t > text)
5099 if (isalnum (t[-1]) || t[-1] == '_' ||
5100 t[-1] == ' ' || t[-1] == ':' ||
5101 t[-1] == '(' || t[-1] == ')')
5102 --t;
5103 else
5104 break;
5105
5106 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5107 p = t - 2; /* Method name detected. */
5108 /* Else we leave with p unchanged. */
5109 }
5110 }
5111 break;
5112 }
5113 }
5114 return p;
5115 }
5116
5117 static void
5118 completion_list_add_fields (completion_tracker &tracker,
5119 struct symbol *sym,
5120 const lookup_name_info &lookup_name,
5121 const char *text, const char *word)
5122 {
5123 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5124 {
5125 struct type *t = SYMBOL_TYPE (sym);
5126 enum type_code c = TYPE_CODE (t);
5127 int j;
5128
5129 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5130 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5131 if (TYPE_FIELD_NAME (t, j))
5132 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5133 TYPE_FIELD_NAME (t, j),
5134 lookup_name, text, word);
5135 }
5136 }
5137
5138 /* See symtab.h. */
5139
5140 bool
5141 symbol_is_function_or_method (symbol *sym)
5142 {
5143 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5144 {
5145 case TYPE_CODE_FUNC:
5146 case TYPE_CODE_METHOD:
5147 return true;
5148 default:
5149 return false;
5150 }
5151 }
5152
5153 /* See symtab.h. */
5154
5155 bool
5156 symbol_is_function_or_method (minimal_symbol *msymbol)
5157 {
5158 switch (MSYMBOL_TYPE (msymbol))
5159 {
5160 case mst_text:
5161 case mst_text_gnu_ifunc:
5162 case mst_solib_trampoline:
5163 case mst_file_text:
5164 return true;
5165 default:
5166 return false;
5167 }
5168 }
5169
5170 /* See symtab.h. */
5171
5172 bound_minimal_symbol
5173 find_gnu_ifunc (const symbol *sym)
5174 {
5175 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5176 return {};
5177
5178 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5179 symbol_name_match_type::SEARCH_NAME);
5180 struct objfile *objfile = symbol_objfile (sym);
5181
5182 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5183 minimal_symbol *ifunc = NULL;
5184
5185 iterate_over_minimal_symbols (objfile, lookup_name,
5186 [&] (minimal_symbol *minsym)
5187 {
5188 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5189 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5190 {
5191 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5192 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5193 {
5194 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5195 msym_addr
5196 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5197 msym_addr,
5198 current_top_target ());
5199 }
5200 if (msym_addr == address)
5201 {
5202 ifunc = minsym;
5203 return true;
5204 }
5205 }
5206 return false;
5207 });
5208
5209 if (ifunc != NULL)
5210 return {ifunc, objfile};
5211 return {};
5212 }
5213
5214 /* Add matching symbols from SYMTAB to the current completion list. */
5215
5216 static void
5217 add_symtab_completions (struct compunit_symtab *cust,
5218 completion_tracker &tracker,
5219 complete_symbol_mode mode,
5220 const lookup_name_info &lookup_name,
5221 const char *text, const char *word,
5222 enum type_code code)
5223 {
5224 struct symbol *sym;
5225 const struct block *b;
5226 struct block_iterator iter;
5227 int i;
5228
5229 if (cust == NULL)
5230 return;
5231
5232 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5233 {
5234 QUIT;
5235 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5236 ALL_BLOCK_SYMBOLS (b, iter, sym)
5237 {
5238 if (completion_skip_symbol (mode, sym))
5239 continue;
5240
5241 if (code == TYPE_CODE_UNDEF
5242 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5243 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5244 completion_list_add_symbol (tracker, sym,
5245 lookup_name,
5246 text, word);
5247 }
5248 }
5249 }
5250
5251 void
5252 default_collect_symbol_completion_matches_break_on
5253 (completion_tracker &tracker, complete_symbol_mode mode,
5254 symbol_name_match_type name_match_type,
5255 const char *text, const char *word,
5256 const char *break_on, enum type_code code)
5257 {
5258 /* Problem: All of the symbols have to be copied because readline
5259 frees them. I'm not going to worry about this; hopefully there
5260 won't be that many. */
5261
5262 struct symbol *sym;
5263 const struct block *b;
5264 const struct block *surrounding_static_block, *surrounding_global_block;
5265 struct block_iterator iter;
5266 /* The symbol we are completing on. Points in same buffer as text. */
5267 const char *sym_text;
5268
5269 /* Now look for the symbol we are supposed to complete on. */
5270 if (mode == complete_symbol_mode::LINESPEC)
5271 sym_text = text;
5272 else
5273 {
5274 const char *p;
5275 char quote_found;
5276 const char *quote_pos = NULL;
5277
5278 /* First see if this is a quoted string. */
5279 quote_found = '\0';
5280 for (p = text; *p != '\0'; ++p)
5281 {
5282 if (quote_found != '\0')
5283 {
5284 if (*p == quote_found)
5285 /* Found close quote. */
5286 quote_found = '\0';
5287 else if (*p == '\\' && p[1] == quote_found)
5288 /* A backslash followed by the quote character
5289 doesn't end the string. */
5290 ++p;
5291 }
5292 else if (*p == '\'' || *p == '"')
5293 {
5294 quote_found = *p;
5295 quote_pos = p;
5296 }
5297 }
5298 if (quote_found == '\'')
5299 /* A string within single quotes can be a symbol, so complete on it. */
5300 sym_text = quote_pos + 1;
5301 else if (quote_found == '"')
5302 /* A double-quoted string is never a symbol, nor does it make sense
5303 to complete it any other way. */
5304 {
5305 return;
5306 }
5307 else
5308 {
5309 /* It is not a quoted string. Break it based on the characters
5310 which are in symbols. */
5311 while (p > text)
5312 {
5313 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5314 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5315 --p;
5316 else
5317 break;
5318 }
5319 sym_text = p;
5320 }
5321 }
5322
5323 lookup_name_info lookup_name (sym_text, name_match_type, true);
5324
5325 /* At this point scan through the misc symbol vectors and add each
5326 symbol you find to the list. Eventually we want to ignore
5327 anything that isn't a text symbol (everything else will be
5328 handled by the psymtab code below). */
5329
5330 if (code == TYPE_CODE_UNDEF)
5331 {
5332 for (objfile *objfile : current_program_space->objfiles ())
5333 {
5334 for (minimal_symbol *msymbol : objfile->msymbols ())
5335 {
5336 QUIT;
5337
5338 if (completion_skip_symbol (mode, msymbol))
5339 continue;
5340
5341 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5342 sym_text, word);
5343
5344 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5345 sym_text, word);
5346 }
5347 }
5348 }
5349
5350 /* Add completions for all currently loaded symbol tables. */
5351 for (objfile *objfile : current_program_space->objfiles ())
5352 {
5353 for (compunit_symtab *cust : objfile->compunits ())
5354 add_symtab_completions (cust, tracker, mode, lookup_name,
5355 sym_text, word, code);
5356 }
5357
5358 /* Look through the partial symtabs for all symbols which begin by
5359 matching SYM_TEXT. Expand all CUs that you find to the list. */
5360 expand_symtabs_matching (NULL,
5361 lookup_name,
5362 NULL,
5363 [&] (compunit_symtab *symtab) /* expansion notify */
5364 {
5365 add_symtab_completions (symtab,
5366 tracker, mode, lookup_name,
5367 sym_text, word, code);
5368 },
5369 ALL_DOMAIN);
5370
5371 /* Search upwards from currently selected frame (so that we can
5372 complete on local vars). Also catch fields of types defined in
5373 this places which match our text string. Only complete on types
5374 visible from current context. */
5375
5376 b = get_selected_block (0);
5377 surrounding_static_block = block_static_block (b);
5378 surrounding_global_block = block_global_block (b);
5379 if (surrounding_static_block != NULL)
5380 while (b != surrounding_static_block)
5381 {
5382 QUIT;
5383
5384 ALL_BLOCK_SYMBOLS (b, iter, sym)
5385 {
5386 if (code == TYPE_CODE_UNDEF)
5387 {
5388 completion_list_add_symbol (tracker, sym, lookup_name,
5389 sym_text, word);
5390 completion_list_add_fields (tracker, sym, lookup_name,
5391 sym_text, word);
5392 }
5393 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5394 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5395 completion_list_add_symbol (tracker, sym, lookup_name,
5396 sym_text, word);
5397 }
5398
5399 /* Stop when we encounter an enclosing function. Do not stop for
5400 non-inlined functions - the locals of the enclosing function
5401 are in scope for a nested function. */
5402 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5403 break;
5404 b = BLOCK_SUPERBLOCK (b);
5405 }
5406
5407 /* Add fields from the file's types; symbols will be added below. */
5408
5409 if (code == TYPE_CODE_UNDEF)
5410 {
5411 if (surrounding_static_block != NULL)
5412 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5413 completion_list_add_fields (tracker, sym, lookup_name,
5414 sym_text, word);
5415
5416 if (surrounding_global_block != NULL)
5417 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5418 completion_list_add_fields (tracker, sym, lookup_name,
5419 sym_text, word);
5420 }
5421
5422 /* Skip macros if we are completing a struct tag -- arguable but
5423 usually what is expected. */
5424 if (current_language->la_macro_expansion == macro_expansion_c
5425 && code == TYPE_CODE_UNDEF)
5426 {
5427 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5428
5429 /* This adds a macro's name to the current completion list. */
5430 auto add_macro_name = [&] (const char *macro_name,
5431 const macro_definition *,
5432 macro_source_file *,
5433 int)
5434 {
5435 completion_list_add_name (tracker, language_c, macro_name,
5436 lookup_name, sym_text, word);
5437 };
5438
5439 /* Add any macros visible in the default scope. Note that this
5440 may yield the occasional wrong result, because an expression
5441 might be evaluated in a scope other than the default. For
5442 example, if the user types "break file:line if <TAB>", the
5443 resulting expression will be evaluated at "file:line" -- but
5444 at there does not seem to be a way to detect this at
5445 completion time. */
5446 scope = default_macro_scope ();
5447 if (scope)
5448 macro_for_each_in_scope (scope->file, scope->line,
5449 add_macro_name);
5450
5451 /* User-defined macros are always visible. */
5452 macro_for_each (macro_user_macros, add_macro_name);
5453 }
5454 }
5455
5456 void
5457 default_collect_symbol_completion_matches (completion_tracker &tracker,
5458 complete_symbol_mode mode,
5459 symbol_name_match_type name_match_type,
5460 const char *text, const char *word,
5461 enum type_code code)
5462 {
5463 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5464 name_match_type,
5465 text, word, "",
5466 code);
5467 }
5468
5469 /* Collect all symbols (regardless of class) which begin by matching
5470 TEXT. */
5471
5472 void
5473 collect_symbol_completion_matches (completion_tracker &tracker,
5474 complete_symbol_mode mode,
5475 symbol_name_match_type name_match_type,
5476 const char *text, const char *word)
5477 {
5478 current_language->la_collect_symbol_completion_matches (tracker, mode,
5479 name_match_type,
5480 text, word,
5481 TYPE_CODE_UNDEF);
5482 }
5483
5484 /* Like collect_symbol_completion_matches, but only collect
5485 STRUCT_DOMAIN symbols whose type code is CODE. */
5486
5487 void
5488 collect_symbol_completion_matches_type (completion_tracker &tracker,
5489 const char *text, const char *word,
5490 enum type_code code)
5491 {
5492 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5493 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5494
5495 gdb_assert (code == TYPE_CODE_UNION
5496 || code == TYPE_CODE_STRUCT
5497 || code == TYPE_CODE_ENUM);
5498 current_language->la_collect_symbol_completion_matches (tracker, mode,
5499 name_match_type,
5500 text, word, code);
5501 }
5502
5503 /* Like collect_symbol_completion_matches, but collects a list of
5504 symbols defined in all source files named SRCFILE. */
5505
5506 void
5507 collect_file_symbol_completion_matches (completion_tracker &tracker,
5508 complete_symbol_mode mode,
5509 symbol_name_match_type name_match_type,
5510 const char *text, const char *word,
5511 const char *srcfile)
5512 {
5513 /* The symbol we are completing on. Points in same buffer as text. */
5514 const char *sym_text;
5515
5516 /* Now look for the symbol we are supposed to complete on.
5517 FIXME: This should be language-specific. */
5518 if (mode == complete_symbol_mode::LINESPEC)
5519 sym_text = text;
5520 else
5521 {
5522 const char *p;
5523 char quote_found;
5524 const char *quote_pos = NULL;
5525
5526 /* First see if this is a quoted string. */
5527 quote_found = '\0';
5528 for (p = text; *p != '\0'; ++p)
5529 {
5530 if (quote_found != '\0')
5531 {
5532 if (*p == quote_found)
5533 /* Found close quote. */
5534 quote_found = '\0';
5535 else if (*p == '\\' && p[1] == quote_found)
5536 /* A backslash followed by the quote character
5537 doesn't end the string. */
5538 ++p;
5539 }
5540 else if (*p == '\'' || *p == '"')
5541 {
5542 quote_found = *p;
5543 quote_pos = p;
5544 }
5545 }
5546 if (quote_found == '\'')
5547 /* A string within single quotes can be a symbol, so complete on it. */
5548 sym_text = quote_pos + 1;
5549 else if (quote_found == '"')
5550 /* A double-quoted string is never a symbol, nor does it make sense
5551 to complete it any other way. */
5552 {
5553 return;
5554 }
5555 else
5556 {
5557 /* Not a quoted string. */
5558 sym_text = language_search_unquoted_string (text, p);
5559 }
5560 }
5561
5562 lookup_name_info lookup_name (sym_text, name_match_type, true);
5563
5564 /* Go through symtabs for SRCFILE and check the externs and statics
5565 for symbols which match. */
5566 iterate_over_symtabs (srcfile, [&] (symtab *s)
5567 {
5568 add_symtab_completions (SYMTAB_COMPUNIT (s),
5569 tracker, mode, lookup_name,
5570 sym_text, word, TYPE_CODE_UNDEF);
5571 return false;
5572 });
5573 }
5574
5575 /* A helper function for make_source_files_completion_list. It adds
5576 another file name to a list of possible completions, growing the
5577 list as necessary. */
5578
5579 static void
5580 add_filename_to_list (const char *fname, const char *text, const char *word,
5581 completion_list *list)
5582 {
5583 list->emplace_back (make_completion_match_str (fname, text, word));
5584 }
5585
5586 static int
5587 not_interesting_fname (const char *fname)
5588 {
5589 static const char *illegal_aliens[] = {
5590 "_globals_", /* inserted by coff_symtab_read */
5591 NULL
5592 };
5593 int i;
5594
5595 for (i = 0; illegal_aliens[i]; i++)
5596 {
5597 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5598 return 1;
5599 }
5600 return 0;
5601 }
5602
5603 /* An object of this type is passed as the user_data argument to
5604 map_partial_symbol_filenames. */
5605 struct add_partial_filename_data
5606 {
5607 struct filename_seen_cache *filename_seen_cache;
5608 const char *text;
5609 const char *word;
5610 int text_len;
5611 completion_list *list;
5612 };
5613
5614 /* A callback for map_partial_symbol_filenames. */
5615
5616 static void
5617 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5618 void *user_data)
5619 {
5620 struct add_partial_filename_data *data
5621 = (struct add_partial_filename_data *) user_data;
5622
5623 if (not_interesting_fname (filename))
5624 return;
5625 if (!data->filename_seen_cache->seen (filename)
5626 && filename_ncmp (filename, data->text, data->text_len) == 0)
5627 {
5628 /* This file matches for a completion; add it to the
5629 current list of matches. */
5630 add_filename_to_list (filename, data->text, data->word, data->list);
5631 }
5632 else
5633 {
5634 const char *base_name = lbasename (filename);
5635
5636 if (base_name != filename
5637 && !data->filename_seen_cache->seen (base_name)
5638 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5639 add_filename_to_list (base_name, data->text, data->word, data->list);
5640 }
5641 }
5642
5643 /* Return a list of all source files whose names begin with matching
5644 TEXT. The file names are looked up in the symbol tables of this
5645 program. */
5646
5647 completion_list
5648 make_source_files_completion_list (const char *text, const char *word)
5649 {
5650 size_t text_len = strlen (text);
5651 completion_list list;
5652 const char *base_name;
5653 struct add_partial_filename_data datum;
5654
5655 if (!have_full_symbols () && !have_partial_symbols ())
5656 return list;
5657
5658 filename_seen_cache filenames_seen;
5659
5660 for (objfile *objfile : current_program_space->objfiles ())
5661 {
5662 for (compunit_symtab *cu : objfile->compunits ())
5663 {
5664 for (symtab *s : compunit_filetabs (cu))
5665 {
5666 if (not_interesting_fname (s->filename))
5667 continue;
5668 if (!filenames_seen.seen (s->filename)
5669 && filename_ncmp (s->filename, text, text_len) == 0)
5670 {
5671 /* This file matches for a completion; add it to the current
5672 list of matches. */
5673 add_filename_to_list (s->filename, text, word, &list);
5674 }
5675 else
5676 {
5677 /* NOTE: We allow the user to type a base name when the
5678 debug info records leading directories, but not the other
5679 way around. This is what subroutines of breakpoint
5680 command do when they parse file names. */
5681 base_name = lbasename (s->filename);
5682 if (base_name != s->filename
5683 && !filenames_seen.seen (base_name)
5684 && filename_ncmp (base_name, text, text_len) == 0)
5685 add_filename_to_list (base_name, text, word, &list);
5686 }
5687 }
5688 }
5689 }
5690
5691 datum.filename_seen_cache = &filenames_seen;
5692 datum.text = text;
5693 datum.word = word;
5694 datum.text_len = text_len;
5695 datum.list = &list;
5696 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5697 0 /*need_fullname*/);
5698
5699 return list;
5700 }
5701 \f
5702 /* Track MAIN */
5703
5704 /* Return the "main_info" object for the current program space. If
5705 the object has not yet been created, create it and fill in some
5706 default values. */
5707
5708 static struct main_info *
5709 get_main_info (void)
5710 {
5711 struct main_info *info = main_progspace_key.get (current_program_space);
5712
5713 if (info == NULL)
5714 {
5715 /* It may seem strange to store the main name in the progspace
5716 and also in whatever objfile happens to see a main name in
5717 its debug info. The reason for this is mainly historical:
5718 gdb returned "main" as the name even if no function named
5719 "main" was defined the program; and this approach lets us
5720 keep compatibility. */
5721 info = main_progspace_key.emplace (current_program_space);
5722 }
5723
5724 return info;
5725 }
5726
5727 static void
5728 set_main_name (const char *name, enum language lang)
5729 {
5730 struct main_info *info = get_main_info ();
5731
5732 if (info->name_of_main != NULL)
5733 {
5734 xfree (info->name_of_main);
5735 info->name_of_main = NULL;
5736 info->language_of_main = language_unknown;
5737 }
5738 if (name != NULL)
5739 {
5740 info->name_of_main = xstrdup (name);
5741 info->language_of_main = lang;
5742 }
5743 }
5744
5745 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5746 accordingly. */
5747
5748 static void
5749 find_main_name (void)
5750 {
5751 const char *new_main_name;
5752
5753 /* First check the objfiles to see whether a debuginfo reader has
5754 picked up the appropriate main name. Historically the main name
5755 was found in a more or less random way; this approach instead
5756 relies on the order of objfile creation -- which still isn't
5757 guaranteed to get the correct answer, but is just probably more
5758 accurate. */
5759 for (objfile *objfile : current_program_space->objfiles ())
5760 {
5761 if (objfile->per_bfd->name_of_main != NULL)
5762 {
5763 set_main_name (objfile->per_bfd->name_of_main,
5764 objfile->per_bfd->language_of_main);
5765 return;
5766 }
5767 }
5768
5769 /* Try to see if the main procedure is in Ada. */
5770 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5771 be to add a new method in the language vector, and call this
5772 method for each language until one of them returns a non-empty
5773 name. This would allow us to remove this hard-coded call to
5774 an Ada function. It is not clear that this is a better approach
5775 at this point, because all methods need to be written in a way
5776 such that false positives never be returned. For instance, it is
5777 important that a method does not return a wrong name for the main
5778 procedure if the main procedure is actually written in a different
5779 language. It is easy to guaranty this with Ada, since we use a
5780 special symbol generated only when the main in Ada to find the name
5781 of the main procedure. It is difficult however to see how this can
5782 be guarantied for languages such as C, for instance. This suggests
5783 that order of call for these methods becomes important, which means
5784 a more complicated approach. */
5785 new_main_name = ada_main_name ();
5786 if (new_main_name != NULL)
5787 {
5788 set_main_name (new_main_name, language_ada);
5789 return;
5790 }
5791
5792 new_main_name = d_main_name ();
5793 if (new_main_name != NULL)
5794 {
5795 set_main_name (new_main_name, language_d);
5796 return;
5797 }
5798
5799 new_main_name = go_main_name ();
5800 if (new_main_name != NULL)
5801 {
5802 set_main_name (new_main_name, language_go);
5803 return;
5804 }
5805
5806 new_main_name = pascal_main_name ();
5807 if (new_main_name != NULL)
5808 {
5809 set_main_name (new_main_name, language_pascal);
5810 return;
5811 }
5812
5813 /* The languages above didn't identify the name of the main procedure.
5814 Fallback to "main". */
5815 set_main_name ("main", language_unknown);
5816 }
5817
5818 /* See symtab.h. */
5819
5820 const char *
5821 main_name ()
5822 {
5823 struct main_info *info = get_main_info ();
5824
5825 if (info->name_of_main == NULL)
5826 find_main_name ();
5827
5828 return info->name_of_main;
5829 }
5830
5831 /* Return the language of the main function. If it is not known,
5832 return language_unknown. */
5833
5834 enum language
5835 main_language (void)
5836 {
5837 struct main_info *info = get_main_info ();
5838
5839 if (info->name_of_main == NULL)
5840 find_main_name ();
5841
5842 return info->language_of_main;
5843 }
5844
5845 /* Handle ``executable_changed'' events for the symtab module. */
5846
5847 static void
5848 symtab_observer_executable_changed (void)
5849 {
5850 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5851 set_main_name (NULL, language_unknown);
5852 }
5853
5854 /* Return 1 if the supplied producer string matches the ARM RealView
5855 compiler (armcc). */
5856
5857 int
5858 producer_is_realview (const char *producer)
5859 {
5860 static const char *const arm_idents[] = {
5861 "ARM C Compiler, ADS",
5862 "Thumb C Compiler, ADS",
5863 "ARM C++ Compiler, ADS",
5864 "Thumb C++ Compiler, ADS",
5865 "ARM/Thumb C/C++ Compiler, RVCT",
5866 "ARM C/C++ Compiler, RVCT"
5867 };
5868 int i;
5869
5870 if (producer == NULL)
5871 return 0;
5872
5873 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5874 if (startswith (producer, arm_idents[i]))
5875 return 1;
5876
5877 return 0;
5878 }
5879
5880 \f
5881
5882 /* The next index to hand out in response to a registration request. */
5883
5884 static int next_aclass_value = LOC_FINAL_VALUE;
5885
5886 /* The maximum number of "aclass" registrations we support. This is
5887 constant for convenience. */
5888 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5889
5890 /* The objects representing the various "aclass" values. The elements
5891 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5892 elements are those registered at gdb initialization time. */
5893
5894 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5895
5896 /* The globally visible pointer. This is separate from 'symbol_impl'
5897 so that it can be const. */
5898
5899 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5900
5901 /* Make sure we saved enough room in struct symbol. */
5902
5903 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5904
5905 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5906 is the ops vector associated with this index. This returns the new
5907 index, which should be used as the aclass_index field for symbols
5908 of this type. */
5909
5910 int
5911 register_symbol_computed_impl (enum address_class aclass,
5912 const struct symbol_computed_ops *ops)
5913 {
5914 int result = next_aclass_value++;
5915
5916 gdb_assert (aclass == LOC_COMPUTED);
5917 gdb_assert (result < MAX_SYMBOL_IMPLS);
5918 symbol_impl[result].aclass = aclass;
5919 symbol_impl[result].ops_computed = ops;
5920
5921 /* Sanity check OPS. */
5922 gdb_assert (ops != NULL);
5923 gdb_assert (ops->tracepoint_var_ref != NULL);
5924 gdb_assert (ops->describe_location != NULL);
5925 gdb_assert (ops->get_symbol_read_needs != NULL);
5926 gdb_assert (ops->read_variable != NULL);
5927
5928 return result;
5929 }
5930
5931 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5932 OPS is the ops vector associated with this index. This returns the
5933 new index, which should be used as the aclass_index field for symbols
5934 of this type. */
5935
5936 int
5937 register_symbol_block_impl (enum address_class aclass,
5938 const struct symbol_block_ops *ops)
5939 {
5940 int result = next_aclass_value++;
5941
5942 gdb_assert (aclass == LOC_BLOCK);
5943 gdb_assert (result < MAX_SYMBOL_IMPLS);
5944 symbol_impl[result].aclass = aclass;
5945 symbol_impl[result].ops_block = ops;
5946
5947 /* Sanity check OPS. */
5948 gdb_assert (ops != NULL);
5949 gdb_assert (ops->find_frame_base_location != NULL);
5950
5951 return result;
5952 }
5953
5954 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5955 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5956 this index. This returns the new index, which should be used as
5957 the aclass_index field for symbols of this type. */
5958
5959 int
5960 register_symbol_register_impl (enum address_class aclass,
5961 const struct symbol_register_ops *ops)
5962 {
5963 int result = next_aclass_value++;
5964
5965 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5966 gdb_assert (result < MAX_SYMBOL_IMPLS);
5967 symbol_impl[result].aclass = aclass;
5968 symbol_impl[result].ops_register = ops;
5969
5970 return result;
5971 }
5972
5973 /* Initialize elements of 'symbol_impl' for the constants in enum
5974 address_class. */
5975
5976 static void
5977 initialize_ordinary_address_classes (void)
5978 {
5979 int i;
5980
5981 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5982 symbol_impl[i].aclass = (enum address_class) i;
5983 }
5984
5985 \f
5986
5987 /* Helper function to initialize the fields of an objfile-owned symbol.
5988 It assumed that *SYM is already all zeroes. */
5989
5990 static void
5991 initialize_objfile_symbol_1 (struct symbol *sym)
5992 {
5993 SYMBOL_OBJFILE_OWNED (sym) = 1;
5994 SYMBOL_SECTION (sym) = -1;
5995 }
5996
5997 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5998
5999 void
6000 initialize_objfile_symbol (struct symbol *sym)
6001 {
6002 memset (sym, 0, sizeof (*sym));
6003 initialize_objfile_symbol_1 (sym);
6004 }
6005
6006 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6007 obstack. */
6008
6009 struct symbol *
6010 allocate_symbol (struct objfile *objfile)
6011 {
6012 struct symbol *result;
6013
6014 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6015 initialize_objfile_symbol_1 (result);
6016
6017 return result;
6018 }
6019
6020 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6021 obstack. */
6022
6023 struct template_symbol *
6024 allocate_template_symbol (struct objfile *objfile)
6025 {
6026 struct template_symbol *result;
6027
6028 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6029 initialize_objfile_symbol_1 (result);
6030
6031 return result;
6032 }
6033
6034 /* See symtab.h. */
6035
6036 struct objfile *
6037 symbol_objfile (const struct symbol *symbol)
6038 {
6039 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6040 return SYMTAB_OBJFILE (symbol->owner.symtab);
6041 }
6042
6043 /* See symtab.h. */
6044
6045 struct gdbarch *
6046 symbol_arch (const struct symbol *symbol)
6047 {
6048 if (!SYMBOL_OBJFILE_OWNED (symbol))
6049 return symbol->owner.arch;
6050 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6051 }
6052
6053 /* See symtab.h. */
6054
6055 struct symtab *
6056 symbol_symtab (const struct symbol *symbol)
6057 {
6058 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6059 return symbol->owner.symtab;
6060 }
6061
6062 /* See symtab.h. */
6063
6064 void
6065 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6066 {
6067 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6068 symbol->owner.symtab = symtab;
6069 }
6070
6071 \f
6072
6073 void
6074 _initialize_symtab (void)
6075 {
6076 cmd_list_element *c;
6077
6078 initialize_ordinary_address_classes ();
6079
6080 c = add_info ("variables", info_variables_command,
6081 info_print_args_help (_("\
6082 All global and static variable names or those matching REGEXPs.\n\
6083 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6084 Prints the global and static variables.\n"),
6085 _("global and static variables")));
6086 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6087 if (dbx_commands)
6088 {
6089 c = add_com ("whereis", class_info, info_variables_command,
6090 info_print_args_help (_("\
6091 All global and static variable names, or those matching REGEXPs.\n\
6092 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6093 Prints the global and static variables.\n"),
6094 _("global and static variables")));
6095 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6096 }
6097
6098 c = add_info ("functions", info_functions_command,
6099 info_print_args_help (_("\
6100 All function names or those matching REGEXPs.\n\
6101 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6102 Prints the functions.\n"),
6103 _("functions")));
6104 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6105
6106 c = add_info ("types", info_types_command, _("\
6107 All type names, or those matching REGEXP.\n\
6108 Usage: info types [-q] [REGEXP]\n\
6109 Print information about all types matching REGEXP, or all types if no\n\
6110 REGEXP is given. The optional flag -q disables printing of headers."));
6111 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6112
6113 add_info ("sources", info_sources_command,
6114 _("Source files in the program."));
6115
6116 add_com ("rbreak", class_breakpoint, rbreak_command,
6117 _("Set a breakpoint for all functions matching REGEXP."));
6118
6119 add_setshow_enum_cmd ("multiple-symbols", no_class,
6120 multiple_symbols_modes, &multiple_symbols_mode,
6121 _("\
6122 Set the debugger behavior when more than one symbol are possible matches\n\
6123 in an expression."), _("\
6124 Show how the debugger handles ambiguities in expressions."), _("\
6125 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6126 NULL, NULL, &setlist, &showlist);
6127
6128 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6129 &basenames_may_differ, _("\
6130 Set whether a source file may have multiple base names."), _("\
6131 Show whether a source file may have multiple base names."), _("\
6132 (A \"base name\" is the name of a file with the directory part removed.\n\
6133 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6134 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6135 before comparing them. Canonicalization is an expensive operation,\n\
6136 but it allows the same file be known by more than one base name.\n\
6137 If not set (the default), all source files are assumed to have just\n\
6138 one base name, and gdb will do file name comparisons more efficiently."),
6139 NULL, NULL,
6140 &setlist, &showlist);
6141
6142 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6143 _("Set debugging of symbol table creation."),
6144 _("Show debugging of symbol table creation."), _("\
6145 When enabled (non-zero), debugging messages are printed when building\n\
6146 symbol tables. A value of 1 (one) normally provides enough information.\n\
6147 A value greater than 1 provides more verbose information."),
6148 NULL,
6149 NULL,
6150 &setdebuglist, &showdebuglist);
6151
6152 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6153 _("\
6154 Set debugging of symbol lookup."), _("\
6155 Show debugging of symbol lookup."), _("\
6156 When enabled (non-zero), symbol lookups are logged."),
6157 NULL, NULL,
6158 &setdebuglist, &showdebuglist);
6159
6160 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6161 &new_symbol_cache_size,
6162 _("Set the size of the symbol cache."),
6163 _("Show the size of the symbol cache."), _("\
6164 The size of the symbol cache.\n\
6165 If zero then the symbol cache is disabled."),
6166 set_symbol_cache_size_handler, NULL,
6167 &maintenance_set_cmdlist,
6168 &maintenance_show_cmdlist);
6169
6170 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6171 _("Dump the symbol cache for each program space."),
6172 &maintenanceprintlist);
6173
6174 add_cmd ("symbol-cache-statistics", class_maintenance,
6175 maintenance_print_symbol_cache_statistics,
6176 _("Print symbol cache statistics for each program space."),
6177 &maintenanceprintlist);
6178
6179 add_cmd ("flush-symbol-cache", class_maintenance,
6180 maintenance_flush_symbol_cache,
6181 _("Flush the symbol cache for each program space."),
6182 &maintenancelist);
6183
6184 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6185 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6186 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6187 }