dccc3d1e2379af30dfb286658bb45a69735bb020
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->name_of_this () == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->name (), host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->name_of_this (),
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->name_of_this ());
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR best_cust_range = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2918 const struct block *global_block
2919 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2920 CORE_ADDR start = BLOCK_START (global_block);
2921 CORE_ADDR end = BLOCK_END (global_block);
2922 bool in_range_p = start <= pc && pc < end;
2923 if (!in_range_p)
2924 continue;
2925
2926 if (BLOCKVECTOR_MAP (bv))
2927 {
2928 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2929 continue;
2930
2931 return cust;
2932 }
2933
2934 CORE_ADDR range = end - start;
2935 if (best_cust != nullptr
2936 && range >= best_cust_range)
2937 /* Cust doesn't have a smaller range than best_cust, skip it. */
2938 continue;
2939
2940 /* For an objfile that has its functions reordered,
2941 find_pc_psymtab will find the proper partial symbol table
2942 and we simply return its corresponding symtab. */
2943 /* In order to better support objfiles that contain both
2944 stabs and coff debugging info, we continue on if a psymtab
2945 can't be found. */
2946 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2947 {
2948 struct compunit_symtab *result;
2949
2950 result
2951 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2952 msymbol,
2953 pc,
2954 section,
2955 0);
2956 if (result != NULL)
2957 return result;
2958 }
2959
2960 if (section != 0)
2961 {
2962 struct symbol *sym = NULL;
2963 struct block_iterator iter;
2964
2965 for (int b_index = GLOBAL_BLOCK;
2966 b_index <= STATIC_BLOCK && sym == NULL;
2967 ++b_index)
2968 {
2969 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2970 ALL_BLOCK_SYMBOLS (b, iter, sym)
2971 {
2972 fixup_symbol_section (sym, obj_file);
2973 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2974 sym),
2975 section))
2976 break;
2977 }
2978 }
2979 if (sym == NULL)
2980 continue; /* No symbol in this symtab matches
2981 section. */
2982 }
2983
2984 /* Cust is best found sofar, save it. */
2985 best_cust = cust;
2986 best_cust_range = range;
2987 }
2988 }
2989
2990 if (best_cust != NULL)
2991 return best_cust;
2992
2993 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2994
2995 for (objfile *objf : current_program_space->objfiles ())
2996 {
2997 struct compunit_symtab *result;
2998
2999 if (!objf->sf)
3000 continue;
3001 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3002 msymbol,
3003 pc, section,
3004 1);
3005 if (result != NULL)
3006 return result;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* Find the compunit symtab associated with PC.
3013 This will read in debug info as necessary.
3014 Backward compatibility, no section. */
3015
3016 struct compunit_symtab *
3017 find_pc_compunit_symtab (CORE_ADDR pc)
3018 {
3019 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3020 }
3021
3022 /* See symtab.h. */
3023
3024 struct symbol *
3025 find_symbol_at_address (CORE_ADDR address)
3026 {
3027 /* A helper function to search a given symtab for a symbol matching
3028 ADDR. */
3029 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3030 {
3031 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3032
3033 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3034 {
3035 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3036 struct block_iterator iter;
3037 struct symbol *sym;
3038
3039 ALL_BLOCK_SYMBOLS (b, iter, sym)
3040 {
3041 if (SYMBOL_CLASS (sym) == LOC_STATIC
3042 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3043 return sym;
3044 }
3045 }
3046 return nullptr;
3047 };
3048
3049 for (objfile *objfile : current_program_space->objfiles ())
3050 {
3051 /* If this objfile doesn't have "quick" functions, then it may
3052 have been read with -readnow, in which case we need to search
3053 the symtabs directly. */
3054 if (objfile->sf == NULL
3055 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3056 {
3057 for (compunit_symtab *symtab : objfile->compunits ())
3058 {
3059 struct symbol *sym = search_symtab (symtab, address);
3060 if (sym != nullptr)
3061 return sym;
3062 }
3063 }
3064 else
3065 {
3066 struct compunit_symtab *symtab
3067 = objfile->sf->qf->find_compunit_symtab_by_address (objfile,
3068 address);
3069 if (symtab != NULL)
3070 {
3071 struct symbol *sym = search_symtab (symtab, address);
3072 if (sym != nullptr)
3073 return sym;
3074 }
3075 }
3076 }
3077
3078 return NULL;
3079 }
3080
3081 \f
3082
3083 /* Find the source file and line number for a given PC value and SECTION.
3084 Return a structure containing a symtab pointer, a line number,
3085 and a pc range for the entire source line.
3086 The value's .pc field is NOT the specified pc.
3087 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3088 use the line that ends there. Otherwise, in that case, the line
3089 that begins there is used. */
3090
3091 /* The big complication here is that a line may start in one file, and end just
3092 before the start of another file. This usually occurs when you #include
3093 code in the middle of a subroutine. To properly find the end of a line's PC
3094 range, we must search all symtabs associated with this compilation unit, and
3095 find the one whose first PC is closer than that of the next line in this
3096 symtab. */
3097
3098 struct symtab_and_line
3099 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3100 {
3101 struct compunit_symtab *cust;
3102 struct linetable *l;
3103 int len;
3104 struct linetable_entry *item;
3105 const struct blockvector *bv;
3106 struct bound_minimal_symbol msymbol;
3107
3108 /* Info on best line seen so far, and where it starts, and its file. */
3109
3110 struct linetable_entry *best = NULL;
3111 CORE_ADDR best_end = 0;
3112 struct symtab *best_symtab = 0;
3113
3114 /* Store here the first line number
3115 of a file which contains the line at the smallest pc after PC.
3116 If we don't find a line whose range contains PC,
3117 we will use a line one less than this,
3118 with a range from the start of that file to the first line's pc. */
3119 struct linetable_entry *alt = NULL;
3120
3121 /* Info on best line seen in this file. */
3122
3123 struct linetable_entry *prev;
3124
3125 /* If this pc is not from the current frame,
3126 it is the address of the end of a call instruction.
3127 Quite likely that is the start of the following statement.
3128 But what we want is the statement containing the instruction.
3129 Fudge the pc to make sure we get that. */
3130
3131 /* It's tempting to assume that, if we can't find debugging info for
3132 any function enclosing PC, that we shouldn't search for line
3133 number info, either. However, GAS can emit line number info for
3134 assembly files --- very helpful when debugging hand-written
3135 assembly code. In such a case, we'd have no debug info for the
3136 function, but we would have line info. */
3137
3138 if (notcurrent)
3139 pc -= 1;
3140
3141 /* elz: added this because this function returned the wrong
3142 information if the pc belongs to a stub (import/export)
3143 to call a shlib function. This stub would be anywhere between
3144 two functions in the target, and the line info was erroneously
3145 taken to be the one of the line before the pc. */
3146
3147 /* RT: Further explanation:
3148
3149 * We have stubs (trampolines) inserted between procedures.
3150 *
3151 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3152 * exists in the main image.
3153 *
3154 * In the minimal symbol table, we have a bunch of symbols
3155 * sorted by start address. The stubs are marked as "trampoline",
3156 * the others appear as text. E.g.:
3157 *
3158 * Minimal symbol table for main image
3159 * main: code for main (text symbol)
3160 * shr1: stub (trampoline symbol)
3161 * foo: code for foo (text symbol)
3162 * ...
3163 * Minimal symbol table for "shr1" image:
3164 * ...
3165 * shr1: code for shr1 (text symbol)
3166 * ...
3167 *
3168 * So the code below is trying to detect if we are in the stub
3169 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3170 * and if found, do the symbolization from the real-code address
3171 * rather than the stub address.
3172 *
3173 * Assumptions being made about the minimal symbol table:
3174 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3175 * if we're really in the trampoline.s If we're beyond it (say
3176 * we're in "foo" in the above example), it'll have a closer
3177 * symbol (the "foo" text symbol for example) and will not
3178 * return the trampoline.
3179 * 2. lookup_minimal_symbol_text() will find a real text symbol
3180 * corresponding to the trampoline, and whose address will
3181 * be different than the trampoline address. I put in a sanity
3182 * check for the address being the same, to avoid an
3183 * infinite recursion.
3184 */
3185 msymbol = lookup_minimal_symbol_by_pc (pc);
3186 if (msymbol.minsym != NULL)
3187 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3188 {
3189 struct bound_minimal_symbol mfunsym
3190 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3191 NULL);
3192
3193 if (mfunsym.minsym == NULL)
3194 /* I eliminated this warning since it is coming out
3195 * in the following situation:
3196 * gdb shmain // test program with shared libraries
3197 * (gdb) break shr1 // function in shared lib
3198 * Warning: In stub for ...
3199 * In the above situation, the shared lib is not loaded yet,
3200 * so of course we can't find the real func/line info,
3201 * but the "break" still works, and the warning is annoying.
3202 * So I commented out the warning. RT */
3203 /* warning ("In stub for %s; unable to find real function/line info",
3204 msymbol->linkage_name ()); */
3205 ;
3206 /* fall through */
3207 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3208 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3209 /* Avoid infinite recursion */
3210 /* See above comment about why warning is commented out. */
3211 /* warning ("In stub for %s; unable to find real function/line info",
3212 msymbol->linkage_name ()); */
3213 ;
3214 /* fall through */
3215 else
3216 {
3217 /* Detect an obvious case of infinite recursion. If this
3218 should occur, we'd like to know about it, so error out,
3219 fatally. */
3220 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3221 internal_error (__FILE__, __LINE__,
3222 _("Infinite recursion detected in find_pc_sect_line;"
3223 "please file a bug report"));
3224
3225 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3226 }
3227 }
3228
3229 symtab_and_line val;
3230 val.pspace = current_program_space;
3231
3232 cust = find_pc_sect_compunit_symtab (pc, section);
3233 if (cust == NULL)
3234 {
3235 /* If no symbol information, return previous pc. */
3236 if (notcurrent)
3237 pc++;
3238 val.pc = pc;
3239 return val;
3240 }
3241
3242 bv = COMPUNIT_BLOCKVECTOR (cust);
3243
3244 /* Look at all the symtabs that share this blockvector.
3245 They all have the same apriori range, that we found was right;
3246 but they have different line tables. */
3247
3248 for (symtab *iter_s : compunit_filetabs (cust))
3249 {
3250 /* Find the best line in this symtab. */
3251 l = SYMTAB_LINETABLE (iter_s);
3252 if (!l)
3253 continue;
3254 len = l->nitems;
3255 if (len <= 0)
3256 {
3257 /* I think len can be zero if the symtab lacks line numbers
3258 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3259 I'm not sure which, and maybe it depends on the symbol
3260 reader). */
3261 continue;
3262 }
3263
3264 prev = NULL;
3265 item = l->item; /* Get first line info. */
3266
3267 /* Is this file's first line closer than the first lines of other files?
3268 If so, record this file, and its first line, as best alternate. */
3269 if (item->pc > pc && (!alt || item->pc < alt->pc))
3270 alt = item;
3271
3272 auto pc_compare = [](const CORE_ADDR & comp_pc,
3273 const struct linetable_entry & lhs)->bool
3274 {
3275 return comp_pc < lhs.pc;
3276 };
3277
3278 struct linetable_entry *first = item;
3279 struct linetable_entry *last = item + len;
3280 item = std::upper_bound (first, last, pc, pc_compare);
3281 if (item != first)
3282 prev = item - 1; /* Found a matching item. */
3283
3284 /* At this point, prev points at the line whose start addr is <= pc, and
3285 item points at the next line. If we ran off the end of the linetable
3286 (pc >= start of the last line), then prev == item. If pc < start of
3287 the first line, prev will not be set. */
3288
3289 /* Is this file's best line closer than the best in the other files?
3290 If so, record this file, and its best line, as best so far. Don't
3291 save prev if it represents the end of a function (i.e. line number
3292 0) instead of a real line. */
3293
3294 if (prev && prev->line && (!best || prev->pc > best->pc))
3295 {
3296 best = prev;
3297 best_symtab = iter_s;
3298
3299 /* If during the binary search we land on a non-statement entry,
3300 scan backward through entries at the same address to see if
3301 there is an entry marked as is-statement. In theory this
3302 duplication should have been removed from the line table
3303 during construction, this is just a double check. If the line
3304 table has had the duplication removed then this should be
3305 pretty cheap. */
3306 if (!best->is_stmt)
3307 {
3308 struct linetable_entry *tmp = best;
3309 while (tmp > first && (tmp - 1)->pc == tmp->pc
3310 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3311 --tmp;
3312 if (tmp->is_stmt)
3313 best = tmp;
3314 }
3315
3316 /* Discard BEST_END if it's before the PC of the current BEST. */
3317 if (best_end <= best->pc)
3318 best_end = 0;
3319 }
3320
3321 /* If another line (denoted by ITEM) is in the linetable and its
3322 PC is after BEST's PC, but before the current BEST_END, then
3323 use ITEM's PC as the new best_end. */
3324 if (best && item < last && item->pc > best->pc
3325 && (best_end == 0 || best_end > item->pc))
3326 best_end = item->pc;
3327 }
3328
3329 if (!best_symtab)
3330 {
3331 /* If we didn't find any line number info, just return zeros.
3332 We used to return alt->line - 1 here, but that could be
3333 anywhere; if we don't have line number info for this PC,
3334 don't make some up. */
3335 val.pc = pc;
3336 }
3337 else if (best->line == 0)
3338 {
3339 /* If our best fit is in a range of PC's for which no line
3340 number info is available (line number is zero) then we didn't
3341 find any valid line information. */
3342 val.pc = pc;
3343 }
3344 else
3345 {
3346 val.is_stmt = best->is_stmt;
3347 val.symtab = best_symtab;
3348 val.line = best->line;
3349 val.pc = best->pc;
3350 if (best_end && (!alt || best_end < alt->pc))
3351 val.end = best_end;
3352 else if (alt)
3353 val.end = alt->pc;
3354 else
3355 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3356 }
3357 val.section = section;
3358 return val;
3359 }
3360
3361 /* Backward compatibility (no section). */
3362
3363 struct symtab_and_line
3364 find_pc_line (CORE_ADDR pc, int notcurrent)
3365 {
3366 struct obj_section *section;
3367
3368 section = find_pc_overlay (pc);
3369 if (!pc_in_unmapped_range (pc, section))
3370 return find_pc_sect_line (pc, section, notcurrent);
3371
3372 /* If the original PC was an unmapped address then we translate this to a
3373 mapped address in order to lookup the sal. However, as the user
3374 passed us an unmapped address it makes more sense to return a result
3375 that has the pc and end fields translated to unmapped addresses. */
3376 pc = overlay_mapped_address (pc, section);
3377 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3378 sal.pc = overlay_unmapped_address (sal.pc, section);
3379 sal.end = overlay_unmapped_address (sal.end, section);
3380 return sal;
3381 }
3382
3383 /* See symtab.h. */
3384
3385 struct symtab *
3386 find_pc_line_symtab (CORE_ADDR pc)
3387 {
3388 struct symtab_and_line sal;
3389
3390 /* This always passes zero for NOTCURRENT to find_pc_line.
3391 There are currently no callers that ever pass non-zero. */
3392 sal = find_pc_line (pc, 0);
3393 return sal.symtab;
3394 }
3395 \f
3396 /* Find line number LINE in any symtab whose name is the same as
3397 SYMTAB.
3398
3399 If found, return the symtab that contains the linetable in which it was
3400 found, set *INDEX to the index in the linetable of the best entry
3401 found, and set *EXACT_MATCH to true if the value returned is an
3402 exact match.
3403
3404 If not found, return NULL. */
3405
3406 struct symtab *
3407 find_line_symtab (struct symtab *sym_tab, int line,
3408 int *index, bool *exact_match)
3409 {
3410 int exact = 0; /* Initialized here to avoid a compiler warning. */
3411
3412 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3413 so far seen. */
3414
3415 int best_index;
3416 struct linetable *best_linetable;
3417 struct symtab *best_symtab;
3418
3419 /* First try looking it up in the given symtab. */
3420 best_linetable = SYMTAB_LINETABLE (sym_tab);
3421 best_symtab = sym_tab;
3422 best_index = find_line_common (best_linetable, line, &exact, 0);
3423 if (best_index < 0 || !exact)
3424 {
3425 /* Didn't find an exact match. So we better keep looking for
3426 another symtab with the same name. In the case of xcoff,
3427 multiple csects for one source file (produced by IBM's FORTRAN
3428 compiler) produce multiple symtabs (this is unavoidable
3429 assuming csects can be at arbitrary places in memory and that
3430 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3431
3432 /* BEST is the smallest linenumber > LINE so far seen,
3433 or 0 if none has been seen so far.
3434 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3435 int best;
3436
3437 if (best_index >= 0)
3438 best = best_linetable->item[best_index].line;
3439 else
3440 best = 0;
3441
3442 for (objfile *objfile : current_program_space->objfiles ())
3443 {
3444 if (objfile->sf)
3445 objfile->sf->qf->expand_symtabs_with_fullname
3446 (objfile, symtab_to_fullname (sym_tab));
3447 }
3448
3449 for (objfile *objfile : current_program_space->objfiles ())
3450 {
3451 for (compunit_symtab *cu : objfile->compunits ())
3452 {
3453 for (symtab *s : compunit_filetabs (cu))
3454 {
3455 struct linetable *l;
3456 int ind;
3457
3458 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3459 continue;
3460 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3461 symtab_to_fullname (s)) != 0)
3462 continue;
3463 l = SYMTAB_LINETABLE (s);
3464 ind = find_line_common (l, line, &exact, 0);
3465 if (ind >= 0)
3466 {
3467 if (exact)
3468 {
3469 best_index = ind;
3470 best_linetable = l;
3471 best_symtab = s;
3472 goto done;
3473 }
3474 if (best == 0 || l->item[ind].line < best)
3475 {
3476 best = l->item[ind].line;
3477 best_index = ind;
3478 best_linetable = l;
3479 best_symtab = s;
3480 }
3481 }
3482 }
3483 }
3484 }
3485 }
3486 done:
3487 if (best_index < 0)
3488 return NULL;
3489
3490 if (index)
3491 *index = best_index;
3492 if (exact_match)
3493 *exact_match = (exact != 0);
3494
3495 return best_symtab;
3496 }
3497
3498 /* Given SYMTAB, returns all the PCs function in the symtab that
3499 exactly match LINE. Returns an empty vector if there are no exact
3500 matches, but updates BEST_ITEM in this case. */
3501
3502 std::vector<CORE_ADDR>
3503 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3504 struct linetable_entry **best_item)
3505 {
3506 int start = 0;
3507 std::vector<CORE_ADDR> result;
3508
3509 /* First, collect all the PCs that are at this line. */
3510 while (1)
3511 {
3512 int was_exact;
3513 int idx;
3514
3515 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3516 start);
3517 if (idx < 0)
3518 break;
3519
3520 if (!was_exact)
3521 {
3522 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3523
3524 if (*best_item == NULL
3525 || (item->line < (*best_item)->line && item->is_stmt))
3526 *best_item = item;
3527
3528 break;
3529 }
3530
3531 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3532 start = idx + 1;
3533 }
3534
3535 return result;
3536 }
3537
3538 \f
3539 /* Set the PC value for a given source file and line number and return true.
3540 Returns false for invalid line number (and sets the PC to 0).
3541 The source file is specified with a struct symtab. */
3542
3543 bool
3544 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3545 {
3546 struct linetable *l;
3547 int ind;
3548
3549 *pc = 0;
3550 if (symtab == 0)
3551 return false;
3552
3553 symtab = find_line_symtab (symtab, line, &ind, NULL);
3554 if (symtab != NULL)
3555 {
3556 l = SYMTAB_LINETABLE (symtab);
3557 *pc = l->item[ind].pc;
3558 return true;
3559 }
3560 else
3561 return false;
3562 }
3563
3564 /* Find the range of pc values in a line.
3565 Store the starting pc of the line into *STARTPTR
3566 and the ending pc (start of next line) into *ENDPTR.
3567 Returns true to indicate success.
3568 Returns false if could not find the specified line. */
3569
3570 bool
3571 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3572 CORE_ADDR *endptr)
3573 {
3574 CORE_ADDR startaddr;
3575 struct symtab_and_line found_sal;
3576
3577 startaddr = sal.pc;
3578 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3579 return false;
3580
3581 /* This whole function is based on address. For example, if line 10 has
3582 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3583 "info line *0x123" should say the line goes from 0x100 to 0x200
3584 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3585 This also insures that we never give a range like "starts at 0x134
3586 and ends at 0x12c". */
3587
3588 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3589 if (found_sal.line != sal.line)
3590 {
3591 /* The specified line (sal) has zero bytes. */
3592 *startptr = found_sal.pc;
3593 *endptr = found_sal.pc;
3594 }
3595 else
3596 {
3597 *startptr = found_sal.pc;
3598 *endptr = found_sal.end;
3599 }
3600 return true;
3601 }
3602
3603 /* Given a line table and a line number, return the index into the line
3604 table for the pc of the nearest line whose number is >= the specified one.
3605 Return -1 if none is found. The value is >= 0 if it is an index.
3606 START is the index at which to start searching the line table.
3607
3608 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3609
3610 static int
3611 find_line_common (struct linetable *l, int lineno,
3612 int *exact_match, int start)
3613 {
3614 int i;
3615 int len;
3616
3617 /* BEST is the smallest linenumber > LINENO so far seen,
3618 or 0 if none has been seen so far.
3619 BEST_INDEX identifies the item for it. */
3620
3621 int best_index = -1;
3622 int best = 0;
3623
3624 *exact_match = 0;
3625
3626 if (lineno <= 0)
3627 return -1;
3628 if (l == 0)
3629 return -1;
3630
3631 len = l->nitems;
3632 for (i = start; i < len; i++)
3633 {
3634 struct linetable_entry *item = &(l->item[i]);
3635
3636 /* Ignore non-statements. */
3637 if (!item->is_stmt)
3638 continue;
3639
3640 if (item->line == lineno)
3641 {
3642 /* Return the first (lowest address) entry which matches. */
3643 *exact_match = 1;
3644 return i;
3645 }
3646
3647 if (item->line > lineno && (best == 0 || item->line < best))
3648 {
3649 best = item->line;
3650 best_index = i;
3651 }
3652 }
3653
3654 /* If we got here, we didn't get an exact match. */
3655 return best_index;
3656 }
3657
3658 bool
3659 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3660 {
3661 struct symtab_and_line sal;
3662
3663 sal = find_pc_line (pc, 0);
3664 *startptr = sal.pc;
3665 *endptr = sal.end;
3666 return sal.symtab != 0;
3667 }
3668
3669 /* Helper for find_function_start_sal. Does most of the work, except
3670 setting the sal's symbol. */
3671
3672 static symtab_and_line
3673 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3674 bool funfirstline)
3675 {
3676 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3677
3678 if (funfirstline && sal.symtab != NULL
3679 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3680 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3681 {
3682 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3683
3684 sal.pc = func_addr;
3685 if (gdbarch_skip_entrypoint_p (gdbarch))
3686 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3687 return sal;
3688 }
3689
3690 /* We always should have a line for the function start address.
3691 If we don't, something is odd. Create a plain SAL referring
3692 just the PC and hope that skip_prologue_sal (if requested)
3693 can find a line number for after the prologue. */
3694 if (sal.pc < func_addr)
3695 {
3696 sal = {};
3697 sal.pspace = current_program_space;
3698 sal.pc = func_addr;
3699 sal.section = section;
3700 }
3701
3702 if (funfirstline)
3703 skip_prologue_sal (&sal);
3704
3705 return sal;
3706 }
3707
3708 /* See symtab.h. */
3709
3710 symtab_and_line
3711 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3712 bool funfirstline)
3713 {
3714 symtab_and_line sal
3715 = find_function_start_sal_1 (func_addr, section, funfirstline);
3716
3717 /* find_function_start_sal_1 does a linetable search, so it finds
3718 the symtab and linenumber, but not a symbol. Fill in the
3719 function symbol too. */
3720 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3721
3722 return sal;
3723 }
3724
3725 /* See symtab.h. */
3726
3727 symtab_and_line
3728 find_function_start_sal (symbol *sym, bool funfirstline)
3729 {
3730 fixup_symbol_section (sym, NULL);
3731 symtab_and_line sal
3732 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3733 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3734 funfirstline);
3735 sal.symbol = sym;
3736 return sal;
3737 }
3738
3739
3740 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3741 address for that function that has an entry in SYMTAB's line info
3742 table. If such an entry cannot be found, return FUNC_ADDR
3743 unaltered. */
3744
3745 static CORE_ADDR
3746 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3747 {
3748 CORE_ADDR func_start, func_end;
3749 struct linetable *l;
3750 int i;
3751
3752 /* Give up if this symbol has no lineinfo table. */
3753 l = SYMTAB_LINETABLE (symtab);
3754 if (l == NULL)
3755 return func_addr;
3756
3757 /* Get the range for the function's PC values, or give up if we
3758 cannot, for some reason. */
3759 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3760 return func_addr;
3761
3762 /* Linetable entries are ordered by PC values, see the commentary in
3763 symtab.h where `struct linetable' is defined. Thus, the first
3764 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3765 address we are looking for. */
3766 for (i = 0; i < l->nitems; i++)
3767 {
3768 struct linetable_entry *item = &(l->item[i]);
3769
3770 /* Don't use line numbers of zero, they mark special entries in
3771 the table. See the commentary on symtab.h before the
3772 definition of struct linetable. */
3773 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3774 return item->pc;
3775 }
3776
3777 return func_addr;
3778 }
3779
3780 /* Adjust SAL to the first instruction past the function prologue.
3781 If the PC was explicitly specified, the SAL is not changed.
3782 If the line number was explicitly specified then the SAL can still be
3783 updated, unless the language for SAL is assembler, in which case the SAL
3784 will be left unchanged.
3785 If SAL is already past the prologue, then do nothing. */
3786
3787 void
3788 skip_prologue_sal (struct symtab_and_line *sal)
3789 {
3790 struct symbol *sym;
3791 struct symtab_and_line start_sal;
3792 CORE_ADDR pc, saved_pc;
3793 struct obj_section *section;
3794 const char *name;
3795 struct objfile *objfile;
3796 struct gdbarch *gdbarch;
3797 const struct block *b, *function_block;
3798 int force_skip, skip;
3799
3800 /* Do not change the SAL if PC was specified explicitly. */
3801 if (sal->explicit_pc)
3802 return;
3803
3804 /* In assembly code, if the user asks for a specific line then we should
3805 not adjust the SAL. The user already has instruction level
3806 visibility in this case, so selecting a line other than one requested
3807 is likely to be the wrong choice. */
3808 if (sal->symtab != nullptr
3809 && sal->explicit_line
3810 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3811 return;
3812
3813 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3814
3815 switch_to_program_space_and_thread (sal->pspace);
3816
3817 sym = find_pc_sect_function (sal->pc, sal->section);
3818 if (sym != NULL)
3819 {
3820 fixup_symbol_section (sym, NULL);
3821
3822 objfile = symbol_objfile (sym);
3823 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3824 section = SYMBOL_OBJ_SECTION (objfile, sym);
3825 name = sym->linkage_name ();
3826 }
3827 else
3828 {
3829 struct bound_minimal_symbol msymbol
3830 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3831
3832 if (msymbol.minsym == NULL)
3833 return;
3834
3835 objfile = msymbol.objfile;
3836 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3837 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3838 name = msymbol.minsym->linkage_name ();
3839 }
3840
3841 gdbarch = objfile->arch ();
3842
3843 /* Process the prologue in two passes. In the first pass try to skip the
3844 prologue (SKIP is true) and verify there is a real need for it (indicated
3845 by FORCE_SKIP). If no such reason was found run a second pass where the
3846 prologue is not skipped (SKIP is false). */
3847
3848 skip = 1;
3849 force_skip = 1;
3850
3851 /* Be conservative - allow direct PC (without skipping prologue) only if we
3852 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3853 have to be set by the caller so we use SYM instead. */
3854 if (sym != NULL
3855 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3856 force_skip = 0;
3857
3858 saved_pc = pc;
3859 do
3860 {
3861 pc = saved_pc;
3862
3863 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3864 so that gdbarch_skip_prologue has something unique to work on. */
3865 if (section_is_overlay (section) && !section_is_mapped (section))
3866 pc = overlay_unmapped_address (pc, section);
3867
3868 /* Skip "first line" of function (which is actually its prologue). */
3869 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3870 if (gdbarch_skip_entrypoint_p (gdbarch))
3871 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3872 if (skip)
3873 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3874
3875 /* For overlays, map pc back into its mapped VMA range. */
3876 pc = overlay_mapped_address (pc, section);
3877
3878 /* Calculate line number. */
3879 start_sal = find_pc_sect_line (pc, section, 0);
3880
3881 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3882 line is still part of the same function. */
3883 if (skip && start_sal.pc != pc
3884 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3885 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3886 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3887 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3888 {
3889 /* First pc of next line */
3890 pc = start_sal.end;
3891 /* Recalculate the line number (might not be N+1). */
3892 start_sal = find_pc_sect_line (pc, section, 0);
3893 }
3894
3895 /* On targets with executable formats that don't have a concept of
3896 constructors (ELF with .init has, PE doesn't), gcc emits a call
3897 to `__main' in `main' between the prologue and before user
3898 code. */
3899 if (gdbarch_skip_main_prologue_p (gdbarch)
3900 && name && strcmp_iw (name, "main") == 0)
3901 {
3902 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3903 /* Recalculate the line number (might not be N+1). */
3904 start_sal = find_pc_sect_line (pc, section, 0);
3905 force_skip = 1;
3906 }
3907 }
3908 while (!force_skip && skip--);
3909
3910 /* If we still don't have a valid source line, try to find the first
3911 PC in the lineinfo table that belongs to the same function. This
3912 happens with COFF debug info, which does not seem to have an
3913 entry in lineinfo table for the code after the prologue which has
3914 no direct relation to source. For example, this was found to be
3915 the case with the DJGPP target using "gcc -gcoff" when the
3916 compiler inserted code after the prologue to make sure the stack
3917 is aligned. */
3918 if (!force_skip && sym && start_sal.symtab == NULL)
3919 {
3920 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3921 /* Recalculate the line number. */
3922 start_sal = find_pc_sect_line (pc, section, 0);
3923 }
3924
3925 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3926 forward SAL to the end of the prologue. */
3927 if (sal->pc >= pc)
3928 return;
3929
3930 sal->pc = pc;
3931 sal->section = section;
3932 sal->symtab = start_sal.symtab;
3933 sal->line = start_sal.line;
3934 sal->end = start_sal.end;
3935
3936 /* Check if we are now inside an inlined function. If we can,
3937 use the call site of the function instead. */
3938 b = block_for_pc_sect (sal->pc, sal->section);
3939 function_block = NULL;
3940 while (b != NULL)
3941 {
3942 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3943 function_block = b;
3944 else if (BLOCK_FUNCTION (b) != NULL)
3945 break;
3946 b = BLOCK_SUPERBLOCK (b);
3947 }
3948 if (function_block != NULL
3949 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3950 {
3951 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3952 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3953 }
3954 }
3955
3956 /* Given PC at the function's start address, attempt to find the
3957 prologue end using SAL information. Return zero if the skip fails.
3958
3959 A non-optimized prologue traditionally has one SAL for the function
3960 and a second for the function body. A single line function has
3961 them both pointing at the same line.
3962
3963 An optimized prologue is similar but the prologue may contain
3964 instructions (SALs) from the instruction body. Need to skip those
3965 while not getting into the function body.
3966
3967 The functions end point and an increasing SAL line are used as
3968 indicators of the prologue's endpoint.
3969
3970 This code is based on the function refine_prologue_limit
3971 (found in ia64). */
3972
3973 CORE_ADDR
3974 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3975 {
3976 struct symtab_and_line prologue_sal;
3977 CORE_ADDR start_pc;
3978 CORE_ADDR end_pc;
3979 const struct block *bl;
3980
3981 /* Get an initial range for the function. */
3982 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3983 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3984
3985 prologue_sal = find_pc_line (start_pc, 0);
3986 if (prologue_sal.line != 0)
3987 {
3988 /* For languages other than assembly, treat two consecutive line
3989 entries at the same address as a zero-instruction prologue.
3990 The GNU assembler emits separate line notes for each instruction
3991 in a multi-instruction macro, but compilers generally will not
3992 do this. */
3993 if (prologue_sal.symtab->language != language_asm)
3994 {
3995 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3996 int idx = 0;
3997
3998 /* Skip any earlier lines, and any end-of-sequence marker
3999 from a previous function. */
4000 while (linetable->item[idx].pc != prologue_sal.pc
4001 || linetable->item[idx].line == 0)
4002 idx++;
4003
4004 if (idx+1 < linetable->nitems
4005 && linetable->item[idx+1].line != 0
4006 && linetable->item[idx+1].pc == start_pc)
4007 return start_pc;
4008 }
4009
4010 /* If there is only one sal that covers the entire function,
4011 then it is probably a single line function, like
4012 "foo(){}". */
4013 if (prologue_sal.end >= end_pc)
4014 return 0;
4015
4016 while (prologue_sal.end < end_pc)
4017 {
4018 struct symtab_and_line sal;
4019
4020 sal = find_pc_line (prologue_sal.end, 0);
4021 if (sal.line == 0)
4022 break;
4023 /* Assume that a consecutive SAL for the same (or larger)
4024 line mark the prologue -> body transition. */
4025 if (sal.line >= prologue_sal.line)
4026 break;
4027 /* Likewise if we are in a different symtab altogether
4028 (e.g. within a file included via #include).  */
4029 if (sal.symtab != prologue_sal.symtab)
4030 break;
4031
4032 /* The line number is smaller. Check that it's from the
4033 same function, not something inlined. If it's inlined,
4034 then there is no point comparing the line numbers. */
4035 bl = block_for_pc (prologue_sal.end);
4036 while (bl)
4037 {
4038 if (block_inlined_p (bl))
4039 break;
4040 if (BLOCK_FUNCTION (bl))
4041 {
4042 bl = NULL;
4043 break;
4044 }
4045 bl = BLOCK_SUPERBLOCK (bl);
4046 }
4047 if (bl != NULL)
4048 break;
4049
4050 /* The case in which compiler's optimizer/scheduler has
4051 moved instructions into the prologue. We look ahead in
4052 the function looking for address ranges whose
4053 corresponding line number is less the first one that we
4054 found for the function. This is more conservative then
4055 refine_prologue_limit which scans a large number of SALs
4056 looking for any in the prologue. */
4057 prologue_sal = sal;
4058 }
4059 }
4060
4061 if (prologue_sal.end < end_pc)
4062 /* Return the end of this line, or zero if we could not find a
4063 line. */
4064 return prologue_sal.end;
4065 else
4066 /* Don't return END_PC, which is past the end of the function. */
4067 return prologue_sal.pc;
4068 }
4069
4070 /* See symtab.h. */
4071
4072 symbol *
4073 find_function_alias_target (bound_minimal_symbol msymbol)
4074 {
4075 CORE_ADDR func_addr;
4076 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4077 return NULL;
4078
4079 symbol *sym = find_pc_function (func_addr);
4080 if (sym != NULL
4081 && SYMBOL_CLASS (sym) == LOC_BLOCK
4082 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4083 return sym;
4084
4085 return NULL;
4086 }
4087
4088 \f
4089 /* If P is of the form "operator[ \t]+..." where `...' is
4090 some legitimate operator text, return a pointer to the
4091 beginning of the substring of the operator text.
4092 Otherwise, return "". */
4093
4094 static const char *
4095 operator_chars (const char *p, const char **end)
4096 {
4097 *end = "";
4098 if (!startswith (p, CP_OPERATOR_STR))
4099 return *end;
4100 p += CP_OPERATOR_LEN;
4101
4102 /* Don't get faked out by `operator' being part of a longer
4103 identifier. */
4104 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4105 return *end;
4106
4107 /* Allow some whitespace between `operator' and the operator symbol. */
4108 while (*p == ' ' || *p == '\t')
4109 p++;
4110
4111 /* Recognize 'operator TYPENAME'. */
4112
4113 if (isalpha (*p) || *p == '_' || *p == '$')
4114 {
4115 const char *q = p + 1;
4116
4117 while (isalnum (*q) || *q == '_' || *q == '$')
4118 q++;
4119 *end = q;
4120 return p;
4121 }
4122
4123 while (*p)
4124 switch (*p)
4125 {
4126 case '\\': /* regexp quoting */
4127 if (p[1] == '*')
4128 {
4129 if (p[2] == '=') /* 'operator\*=' */
4130 *end = p + 3;
4131 else /* 'operator\*' */
4132 *end = p + 2;
4133 return p;
4134 }
4135 else if (p[1] == '[')
4136 {
4137 if (p[2] == ']')
4138 error (_("mismatched quoting on brackets, "
4139 "try 'operator\\[\\]'"));
4140 else if (p[2] == '\\' && p[3] == ']')
4141 {
4142 *end = p + 4; /* 'operator\[\]' */
4143 return p;
4144 }
4145 else
4146 error (_("nothing is allowed between '[' and ']'"));
4147 }
4148 else
4149 {
4150 /* Gratuitous quote: skip it and move on. */
4151 p++;
4152 continue;
4153 }
4154 break;
4155 case '!':
4156 case '=':
4157 case '*':
4158 case '/':
4159 case '%':
4160 case '^':
4161 if (p[1] == '=')
4162 *end = p + 2;
4163 else
4164 *end = p + 1;
4165 return p;
4166 case '<':
4167 case '>':
4168 case '+':
4169 case '-':
4170 case '&':
4171 case '|':
4172 if (p[0] == '-' && p[1] == '>')
4173 {
4174 /* Struct pointer member operator 'operator->'. */
4175 if (p[2] == '*')
4176 {
4177 *end = p + 3; /* 'operator->*' */
4178 return p;
4179 }
4180 else if (p[2] == '\\')
4181 {
4182 *end = p + 4; /* Hopefully 'operator->\*' */
4183 return p;
4184 }
4185 else
4186 {
4187 *end = p + 2; /* 'operator->' */
4188 return p;
4189 }
4190 }
4191 if (p[1] == '=' || p[1] == p[0])
4192 *end = p + 2;
4193 else
4194 *end = p + 1;
4195 return p;
4196 case '~':
4197 case ',':
4198 *end = p + 1;
4199 return p;
4200 case '(':
4201 if (p[1] != ')')
4202 error (_("`operator ()' must be specified "
4203 "without whitespace in `()'"));
4204 *end = p + 2;
4205 return p;
4206 case '?':
4207 if (p[1] != ':')
4208 error (_("`operator ?:' must be specified "
4209 "without whitespace in `?:'"));
4210 *end = p + 2;
4211 return p;
4212 case '[':
4213 if (p[1] != ']')
4214 error (_("`operator []' must be specified "
4215 "without whitespace in `[]'"));
4216 *end = p + 2;
4217 return p;
4218 default:
4219 error (_("`operator %s' not supported"), p);
4220 break;
4221 }
4222
4223 *end = "";
4224 return *end;
4225 }
4226 \f
4227
4228 /* What part to match in a file name. */
4229
4230 struct filename_partial_match_opts
4231 {
4232 /* Only match the directory name part. */
4233 bool dirname = false;
4234
4235 /* Only match the basename part. */
4236 bool basename = false;
4237 };
4238
4239 /* Data structure to maintain printing state for output_source_filename. */
4240
4241 struct output_source_filename_data
4242 {
4243 /* Output only filenames matching REGEXP. */
4244 std::string regexp;
4245 gdb::optional<compiled_regex> c_regexp;
4246 /* Possibly only match a part of the filename. */
4247 filename_partial_match_opts partial_match;
4248
4249
4250 /* Cache of what we've seen so far. */
4251 struct filename_seen_cache *filename_seen_cache;
4252
4253 /* Flag of whether we're printing the first one. */
4254 int first;
4255 };
4256
4257 /* Slave routine for sources_info. Force line breaks at ,'s.
4258 NAME is the name to print.
4259 DATA contains the state for printing and watching for duplicates. */
4260
4261 static void
4262 output_source_filename (const char *name,
4263 struct output_source_filename_data *data)
4264 {
4265 /* Since a single source file can result in several partial symbol
4266 tables, we need to avoid printing it more than once. Note: if
4267 some of the psymtabs are read in and some are not, it gets
4268 printed both under "Source files for which symbols have been
4269 read" and "Source files for which symbols will be read in on
4270 demand". I consider this a reasonable way to deal with the
4271 situation. I'm not sure whether this can also happen for
4272 symtabs; it doesn't hurt to check. */
4273
4274 /* Was NAME already seen? */
4275 if (data->filename_seen_cache->seen (name))
4276 {
4277 /* Yes; don't print it again. */
4278 return;
4279 }
4280
4281 /* Does it match data->regexp? */
4282 if (data->c_regexp.has_value ())
4283 {
4284 const char *to_match;
4285 std::string dirname;
4286
4287 if (data->partial_match.dirname)
4288 {
4289 dirname = ldirname (name);
4290 to_match = dirname.c_str ();
4291 }
4292 else if (data->partial_match.basename)
4293 to_match = lbasename (name);
4294 else
4295 to_match = name;
4296
4297 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4298 return;
4299 }
4300
4301 /* Print it and reset *FIRST. */
4302 if (! data->first)
4303 printf_filtered (", ");
4304 data->first = 0;
4305
4306 wrap_here ("");
4307 fputs_styled (name, file_name_style.style (), gdb_stdout);
4308 }
4309
4310 /* A callback for map_partial_symbol_filenames. */
4311
4312 static void
4313 output_partial_symbol_filename (const char *filename, const char *fullname,
4314 void *data)
4315 {
4316 output_source_filename (fullname ? fullname : filename,
4317 (struct output_source_filename_data *) data);
4318 }
4319
4320 using isrc_flag_option_def
4321 = gdb::option::flag_option_def<filename_partial_match_opts>;
4322
4323 static const gdb::option::option_def info_sources_option_defs[] = {
4324
4325 isrc_flag_option_def {
4326 "dirname",
4327 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4328 N_("Show only the files having a dirname matching REGEXP."),
4329 },
4330
4331 isrc_flag_option_def {
4332 "basename",
4333 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4334 N_("Show only the files having a basename matching REGEXP."),
4335 },
4336
4337 };
4338
4339 /* Create an option_def_group for the "info sources" options, with
4340 ISRC_OPTS as context. */
4341
4342 static inline gdb::option::option_def_group
4343 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4344 {
4345 return {{info_sources_option_defs}, isrc_opts};
4346 }
4347
4348 /* Prints the header message for the source files that will be printed
4349 with the matching info present in DATA. SYMBOL_MSG is a message
4350 that tells what will or has been done with the symbols of the
4351 matching source files. */
4352
4353 static void
4354 print_info_sources_header (const char *symbol_msg,
4355 const struct output_source_filename_data *data)
4356 {
4357 puts_filtered (symbol_msg);
4358 if (!data->regexp.empty ())
4359 {
4360 if (data->partial_match.dirname)
4361 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4362 data->regexp.c_str ());
4363 else if (data->partial_match.basename)
4364 printf_filtered (_("(basename matching regular expression \"%s\")"),
4365 data->regexp.c_str ());
4366 else
4367 printf_filtered (_("(filename matching regular expression \"%s\")"),
4368 data->regexp.c_str ());
4369 }
4370 puts_filtered ("\n");
4371 }
4372
4373 /* Completer for "info sources". */
4374
4375 static void
4376 info_sources_command_completer (cmd_list_element *ignore,
4377 completion_tracker &tracker,
4378 const char *text, const char *word)
4379 {
4380 const auto group = make_info_sources_options_def_group (nullptr);
4381 if (gdb::option::complete_options
4382 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4383 return;
4384 }
4385
4386 static void
4387 info_sources_command (const char *args, int from_tty)
4388 {
4389 struct output_source_filename_data data;
4390
4391 if (!have_full_symbols () && !have_partial_symbols ())
4392 {
4393 error (_("No symbol table is loaded. Use the \"file\" command."));
4394 }
4395
4396 filename_seen_cache filenames_seen;
4397
4398 auto group = make_info_sources_options_def_group (&data.partial_match);
4399
4400 gdb::option::process_options
4401 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4402
4403 if (args != NULL && *args != '\000')
4404 data.regexp = args;
4405
4406 data.filename_seen_cache = &filenames_seen;
4407 data.first = 1;
4408
4409 if (data.partial_match.dirname && data.partial_match.basename)
4410 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4411 if ((data.partial_match.dirname || data.partial_match.basename)
4412 && data.regexp.empty ())
4413 error (_("Missing REGEXP for 'info sources'."));
4414
4415 if (data.regexp.empty ())
4416 data.c_regexp.reset ();
4417 else
4418 {
4419 int cflags = REG_NOSUB;
4420 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4421 cflags |= REG_ICASE;
4422 #endif
4423 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4424 _("Invalid regexp"));
4425 }
4426
4427 print_info_sources_header
4428 (_("Source files for which symbols have been read in:\n"), &data);
4429
4430 for (objfile *objfile : current_program_space->objfiles ())
4431 {
4432 for (compunit_symtab *cu : objfile->compunits ())
4433 {
4434 for (symtab *s : compunit_filetabs (cu))
4435 {
4436 const char *fullname = symtab_to_fullname (s);
4437
4438 output_source_filename (fullname, &data);
4439 }
4440 }
4441 }
4442 printf_filtered ("\n\n");
4443
4444 print_info_sources_header
4445 (_("Source files for which symbols will be read in on demand:\n"), &data);
4446
4447 filenames_seen.clear ();
4448 data.first = 1;
4449 map_symbol_filenames (output_partial_symbol_filename, &data,
4450 1 /*need_fullname*/);
4451 printf_filtered ("\n");
4452 }
4453
4454 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4455 true compare only lbasename of FILENAMES. */
4456
4457 static bool
4458 file_matches (const char *file, const std::vector<const char *> &filenames,
4459 bool basenames)
4460 {
4461 if (filenames.empty ())
4462 return true;
4463
4464 for (const char *name : filenames)
4465 {
4466 name = (basenames ? lbasename (name) : name);
4467 if (compare_filenames_for_search (file, name))
4468 return true;
4469 }
4470
4471 return false;
4472 }
4473
4474 /* Helper function for std::sort on symbol_search objects. Can only sort
4475 symbols, not minimal symbols. */
4476
4477 int
4478 symbol_search::compare_search_syms (const symbol_search &sym_a,
4479 const symbol_search &sym_b)
4480 {
4481 int c;
4482
4483 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4484 symbol_symtab (sym_b.symbol)->filename);
4485 if (c != 0)
4486 return c;
4487
4488 if (sym_a.block != sym_b.block)
4489 return sym_a.block - sym_b.block;
4490
4491 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4492 }
4493
4494 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4495 If SYM has no symbol_type or symbol_name, returns false. */
4496
4497 bool
4498 treg_matches_sym_type_name (const compiled_regex &treg,
4499 const struct symbol *sym)
4500 {
4501 struct type *sym_type;
4502 std::string printed_sym_type_name;
4503
4504 if (symbol_lookup_debug > 1)
4505 {
4506 fprintf_unfiltered (gdb_stdlog,
4507 "treg_matches_sym_type_name\n sym %s\n",
4508 sym->natural_name ());
4509 }
4510
4511 sym_type = SYMBOL_TYPE (sym);
4512 if (sym_type == NULL)
4513 return false;
4514
4515 {
4516 scoped_switch_to_sym_language_if_auto l (sym);
4517
4518 printed_sym_type_name = type_to_string (sym_type);
4519 }
4520
4521
4522 if (symbol_lookup_debug > 1)
4523 {
4524 fprintf_unfiltered (gdb_stdlog,
4525 " sym_type_name %s\n",
4526 printed_sym_type_name.c_str ());
4527 }
4528
4529
4530 if (printed_sym_type_name.empty ())
4531 return false;
4532
4533 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4534 }
4535
4536 /* See symtab.h. */
4537
4538 bool
4539 global_symbol_searcher::is_suitable_msymbol
4540 (const enum search_domain kind, const minimal_symbol *msymbol)
4541 {
4542 switch (MSYMBOL_TYPE (msymbol))
4543 {
4544 case mst_data:
4545 case mst_bss:
4546 case mst_file_data:
4547 case mst_file_bss:
4548 return kind == VARIABLES_DOMAIN;
4549 case mst_text:
4550 case mst_file_text:
4551 case mst_solib_trampoline:
4552 case mst_text_gnu_ifunc:
4553 return kind == FUNCTIONS_DOMAIN;
4554 default:
4555 return false;
4556 }
4557 }
4558
4559 /* See symtab.h. */
4560
4561 bool
4562 global_symbol_searcher::expand_symtabs
4563 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4564 {
4565 enum search_domain kind = m_kind;
4566 bool found_msymbol = false;
4567
4568 if (objfile->sf)
4569 objfile->sf->qf->expand_symtabs_matching
4570 (objfile,
4571 [&] (const char *filename, bool basenames)
4572 {
4573 return file_matches (filename, filenames, basenames);
4574 },
4575 &lookup_name_info::match_any (),
4576 [&] (const char *symname)
4577 {
4578 return (!preg.has_value ()
4579 || preg->exec (symname, 0, NULL, 0) == 0);
4580 },
4581 NULL,
4582 kind);
4583
4584 /* Here, we search through the minimal symbol tables for functions and
4585 variables that match, and force their symbols to be read. This is in
4586 particular necessary for demangled variable names, which are no longer
4587 put into the partial symbol tables. The symbol will then be found
4588 during the scan of symtabs later.
4589
4590 For functions, find_pc_symtab should succeed if we have debug info for
4591 the function, for variables we have to call
4592 lookup_symbol_in_objfile_from_linkage_name to determine if the
4593 variable has debug info. If the lookup fails, set found_msymbol so
4594 that we will rescan to print any matching symbols without debug info.
4595 We only search the objfile the msymbol came from, we no longer search
4596 all objfiles. In large programs (1000s of shared libs) searching all
4597 objfiles is not worth the pain. */
4598 if (filenames.empty ()
4599 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4600 {
4601 for (minimal_symbol *msymbol : objfile->msymbols ())
4602 {
4603 QUIT;
4604
4605 if (msymbol->created_by_gdb)
4606 continue;
4607
4608 if (is_suitable_msymbol (kind, msymbol))
4609 {
4610 if (!preg.has_value ()
4611 || preg->exec (msymbol->natural_name (), 0,
4612 NULL, 0) == 0)
4613 {
4614 /* An important side-effect of these lookup functions is
4615 to expand the symbol table if msymbol is found, later
4616 in the process we will add matching symbols or
4617 msymbols to the results list, and that requires that
4618 the symbols tables are expanded. */
4619 if (kind == FUNCTIONS_DOMAIN
4620 ? (find_pc_compunit_symtab
4621 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4622 == NULL)
4623 : (lookup_symbol_in_objfile_from_linkage_name
4624 (objfile, msymbol->linkage_name (),
4625 VAR_DOMAIN)
4626 .symbol == NULL))
4627 found_msymbol = true;
4628 }
4629 }
4630 }
4631 }
4632
4633 return found_msymbol;
4634 }
4635
4636 /* See symtab.h. */
4637
4638 bool
4639 global_symbol_searcher::add_matching_symbols
4640 (objfile *objfile,
4641 const gdb::optional<compiled_regex> &preg,
4642 const gdb::optional<compiled_regex> &treg,
4643 std::set<symbol_search> *result_set) const
4644 {
4645 enum search_domain kind = m_kind;
4646
4647 /* Add matching symbols (if not already present). */
4648 for (compunit_symtab *cust : objfile->compunits ())
4649 {
4650 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4651
4652 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4653 {
4654 struct block_iterator iter;
4655 struct symbol *sym;
4656 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4657
4658 ALL_BLOCK_SYMBOLS (b, iter, sym)
4659 {
4660 struct symtab *real_symtab = symbol_symtab (sym);
4661
4662 QUIT;
4663
4664 /* Check first sole REAL_SYMTAB->FILENAME. It does
4665 not need to be a substring of symtab_to_fullname as
4666 it may contain "./" etc. */
4667 if ((file_matches (real_symtab->filename, filenames, false)
4668 || ((basenames_may_differ
4669 || file_matches (lbasename (real_symtab->filename),
4670 filenames, true))
4671 && file_matches (symtab_to_fullname (real_symtab),
4672 filenames, false)))
4673 && ((!preg.has_value ()
4674 || preg->exec (sym->natural_name (), 0,
4675 NULL, 0) == 0)
4676 && ((kind == VARIABLES_DOMAIN
4677 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4678 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4679 && SYMBOL_CLASS (sym) != LOC_BLOCK
4680 /* LOC_CONST can be used for more than
4681 just enums, e.g., c++ static const
4682 members. We only want to skip enums
4683 here. */
4684 && !(SYMBOL_CLASS (sym) == LOC_CONST
4685 && (SYMBOL_TYPE (sym)->code ()
4686 == TYPE_CODE_ENUM))
4687 && (!treg.has_value ()
4688 || treg_matches_sym_type_name (*treg, sym)))
4689 || (kind == FUNCTIONS_DOMAIN
4690 && SYMBOL_CLASS (sym) == LOC_BLOCK
4691 && (!treg.has_value ()
4692 || treg_matches_sym_type_name (*treg,
4693 sym)))
4694 || (kind == TYPES_DOMAIN
4695 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4696 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4697 || (kind == MODULES_DOMAIN
4698 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4699 && SYMBOL_LINE (sym) != 0))))
4700 {
4701 if (result_set->size () < m_max_search_results)
4702 {
4703 /* Match, insert if not already in the results. */
4704 symbol_search ss (block, sym);
4705 if (result_set->find (ss) == result_set->end ())
4706 result_set->insert (ss);
4707 }
4708 else
4709 return false;
4710 }
4711 }
4712 }
4713 }
4714
4715 return true;
4716 }
4717
4718 /* See symtab.h. */
4719
4720 bool
4721 global_symbol_searcher::add_matching_msymbols
4722 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4723 std::vector<symbol_search> *results) const
4724 {
4725 enum search_domain kind = m_kind;
4726
4727 for (minimal_symbol *msymbol : objfile->msymbols ())
4728 {
4729 QUIT;
4730
4731 if (msymbol->created_by_gdb)
4732 continue;
4733
4734 if (is_suitable_msymbol (kind, msymbol))
4735 {
4736 if (!preg.has_value ()
4737 || preg->exec (msymbol->natural_name (), 0,
4738 NULL, 0) == 0)
4739 {
4740 /* For functions we can do a quick check of whether the
4741 symbol might be found via find_pc_symtab. */
4742 if (kind != FUNCTIONS_DOMAIN
4743 || (find_pc_compunit_symtab
4744 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4745 == NULL))
4746 {
4747 if (lookup_symbol_in_objfile_from_linkage_name
4748 (objfile, msymbol->linkage_name (),
4749 VAR_DOMAIN).symbol == NULL)
4750 {
4751 /* Matching msymbol, add it to the results list. */
4752 if (results->size () < m_max_search_results)
4753 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4754 else
4755 return false;
4756 }
4757 }
4758 }
4759 }
4760 }
4761
4762 return true;
4763 }
4764
4765 /* See symtab.h. */
4766
4767 std::vector<symbol_search>
4768 global_symbol_searcher::search () const
4769 {
4770 gdb::optional<compiled_regex> preg;
4771 gdb::optional<compiled_regex> treg;
4772
4773 gdb_assert (m_kind != ALL_DOMAIN);
4774
4775 if (m_symbol_name_regexp != NULL)
4776 {
4777 const char *symbol_name_regexp = m_symbol_name_regexp;
4778
4779 /* Make sure spacing is right for C++ operators.
4780 This is just a courtesy to make the matching less sensitive
4781 to how many spaces the user leaves between 'operator'
4782 and <TYPENAME> or <OPERATOR>. */
4783 const char *opend;
4784 const char *opname = operator_chars (symbol_name_regexp, &opend);
4785
4786 if (*opname)
4787 {
4788 int fix = -1; /* -1 means ok; otherwise number of
4789 spaces needed. */
4790
4791 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4792 {
4793 /* There should 1 space between 'operator' and 'TYPENAME'. */
4794 if (opname[-1] != ' ' || opname[-2] == ' ')
4795 fix = 1;
4796 }
4797 else
4798 {
4799 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4800 if (opname[-1] == ' ')
4801 fix = 0;
4802 }
4803 /* If wrong number of spaces, fix it. */
4804 if (fix >= 0)
4805 {
4806 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4807
4808 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4809 symbol_name_regexp = tmp;
4810 }
4811 }
4812
4813 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4814 ? REG_ICASE : 0);
4815 preg.emplace (symbol_name_regexp, cflags,
4816 _("Invalid regexp"));
4817 }
4818
4819 if (m_symbol_type_regexp != NULL)
4820 {
4821 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4822 ? REG_ICASE : 0);
4823 treg.emplace (m_symbol_type_regexp, cflags,
4824 _("Invalid regexp"));
4825 }
4826
4827 bool found_msymbol = false;
4828 std::set<symbol_search> result_set;
4829 for (objfile *objfile : current_program_space->objfiles ())
4830 {
4831 /* Expand symtabs within objfile that possibly contain matching
4832 symbols. */
4833 found_msymbol |= expand_symtabs (objfile, preg);
4834
4835 /* Find matching symbols within OBJFILE and add them in to the
4836 RESULT_SET set. Use a set here so that we can easily detect
4837 duplicates as we go, and can therefore track how many unique
4838 matches we have found so far. */
4839 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4840 break;
4841 }
4842
4843 /* Convert the result set into a sorted result list, as std::set is
4844 defined to be sorted then no explicit call to std::sort is needed. */
4845 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4846
4847 /* If there are no debug symbols, then add matching minsyms. But if the
4848 user wants to see symbols matching a type regexp, then never give a
4849 minimal symbol, as we assume that a minimal symbol does not have a
4850 type. */
4851 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4852 && !m_exclude_minsyms
4853 && !treg.has_value ())
4854 {
4855 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4856 for (objfile *objfile : current_program_space->objfiles ())
4857 if (!add_matching_msymbols (objfile, preg, &result))
4858 break;
4859 }
4860
4861 return result;
4862 }
4863
4864 /* See symtab.h. */
4865
4866 std::string
4867 symbol_to_info_string (struct symbol *sym, int block,
4868 enum search_domain kind)
4869 {
4870 std::string str;
4871
4872 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4873
4874 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4875 str += "static ";
4876
4877 /* Typedef that is not a C++ class. */
4878 if (kind == TYPES_DOMAIN
4879 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4880 {
4881 string_file tmp_stream;
4882
4883 /* FIXME: For C (and C++) we end up with a difference in output here
4884 between how a typedef is printed, and non-typedefs are printed.
4885 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4886 appear C-like, while TYPE_PRINT doesn't.
4887
4888 For the struct printing case below, things are worse, we force
4889 printing of the ";" in this function, which is going to be wrong
4890 for languages that don't require a ";" between statements. */
4891 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4892 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4893 else
4894 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4895 str += tmp_stream.string ();
4896 }
4897 /* variable, func, or typedef-that-is-c++-class. */
4898 else if (kind < TYPES_DOMAIN
4899 || (kind == TYPES_DOMAIN
4900 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4901 {
4902 string_file tmp_stream;
4903
4904 type_print (SYMBOL_TYPE (sym),
4905 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4906 ? "" : sym->print_name ()),
4907 &tmp_stream, 0);
4908
4909 str += tmp_stream.string ();
4910 str += ";";
4911 }
4912 /* Printing of modules is currently done here, maybe at some future
4913 point we might want a language specific method to print the module
4914 symbol so that we can customise the output more. */
4915 else if (kind == MODULES_DOMAIN)
4916 str += sym->print_name ();
4917
4918 return str;
4919 }
4920
4921 /* Helper function for symbol info commands, for example 'info functions',
4922 'info variables', etc. KIND is the kind of symbol we searched for, and
4923 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4924 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4925 print file and line number information for the symbol as well. Skip
4926 printing the filename if it matches LAST. */
4927
4928 static void
4929 print_symbol_info (enum search_domain kind,
4930 struct symbol *sym,
4931 int block, const char *last)
4932 {
4933 scoped_switch_to_sym_language_if_auto l (sym);
4934 struct symtab *s = symbol_symtab (sym);
4935
4936 if (last != NULL)
4937 {
4938 const char *s_filename = symtab_to_filename_for_display (s);
4939
4940 if (filename_cmp (last, s_filename) != 0)
4941 {
4942 printf_filtered (_("\nFile %ps:\n"),
4943 styled_string (file_name_style.style (),
4944 s_filename));
4945 }
4946
4947 if (SYMBOL_LINE (sym) != 0)
4948 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4949 else
4950 puts_filtered ("\t");
4951 }
4952
4953 std::string str = symbol_to_info_string (sym, block, kind);
4954 printf_filtered ("%s\n", str.c_str ());
4955 }
4956
4957 /* This help function for symtab_symbol_info() prints information
4958 for non-debugging symbols to gdb_stdout. */
4959
4960 static void
4961 print_msymbol_info (struct bound_minimal_symbol msymbol)
4962 {
4963 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4964 char *tmp;
4965
4966 if (gdbarch_addr_bit (gdbarch) <= 32)
4967 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4968 & (CORE_ADDR) 0xffffffff,
4969 8);
4970 else
4971 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4972 16);
4973
4974 ui_file_style sym_style = (msymbol.minsym->text_p ()
4975 ? function_name_style.style ()
4976 : ui_file_style ());
4977
4978 printf_filtered (_("%ps %ps\n"),
4979 styled_string (address_style.style (), tmp),
4980 styled_string (sym_style, msymbol.minsym->print_name ()));
4981 }
4982
4983 /* This is the guts of the commands "info functions", "info types", and
4984 "info variables". It calls search_symbols to find all matches and then
4985 print_[m]symbol_info to print out some useful information about the
4986 matches. */
4987
4988 static void
4989 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4990 const char *regexp, enum search_domain kind,
4991 const char *t_regexp, int from_tty)
4992 {
4993 static const char * const classnames[] =
4994 {"variable", "function", "type", "module"};
4995 const char *last_filename = "";
4996 int first = 1;
4997
4998 gdb_assert (kind != ALL_DOMAIN);
4999
5000 if (regexp != nullptr && *regexp == '\0')
5001 regexp = nullptr;
5002
5003 global_symbol_searcher spec (kind, regexp);
5004 spec.set_symbol_type_regexp (t_regexp);
5005 spec.set_exclude_minsyms (exclude_minsyms);
5006 std::vector<symbol_search> symbols = spec.search ();
5007
5008 if (!quiet)
5009 {
5010 if (regexp != NULL)
5011 {
5012 if (t_regexp != NULL)
5013 printf_filtered
5014 (_("All %ss matching regular expression \"%s\""
5015 " with type matching regular expression \"%s\":\n"),
5016 classnames[kind], regexp, t_regexp);
5017 else
5018 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5019 classnames[kind], regexp);
5020 }
5021 else
5022 {
5023 if (t_regexp != NULL)
5024 printf_filtered
5025 (_("All defined %ss"
5026 " with type matching regular expression \"%s\" :\n"),
5027 classnames[kind], t_regexp);
5028 else
5029 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5030 }
5031 }
5032
5033 for (const symbol_search &p : symbols)
5034 {
5035 QUIT;
5036
5037 if (p.msymbol.minsym != NULL)
5038 {
5039 if (first)
5040 {
5041 if (!quiet)
5042 printf_filtered (_("\nNon-debugging symbols:\n"));
5043 first = 0;
5044 }
5045 print_msymbol_info (p.msymbol);
5046 }
5047 else
5048 {
5049 print_symbol_info (kind,
5050 p.symbol,
5051 p.block,
5052 last_filename);
5053 last_filename
5054 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5055 }
5056 }
5057 }
5058
5059 /* Structure to hold the values of the options used by the 'info variables'
5060 and 'info functions' commands. These correspond to the -q, -t, and -n
5061 options. */
5062
5063 struct info_vars_funcs_options
5064 {
5065 bool quiet = false;
5066 bool exclude_minsyms = false;
5067 char *type_regexp = nullptr;
5068
5069 ~info_vars_funcs_options ()
5070 {
5071 xfree (type_regexp);
5072 }
5073 };
5074
5075 /* The options used by the 'info variables' and 'info functions'
5076 commands. */
5077
5078 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5079 gdb::option::boolean_option_def<info_vars_funcs_options> {
5080 "q",
5081 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5082 nullptr, /* show_cmd_cb */
5083 nullptr /* set_doc */
5084 },
5085
5086 gdb::option::boolean_option_def<info_vars_funcs_options> {
5087 "n",
5088 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5089 nullptr, /* show_cmd_cb */
5090 nullptr /* set_doc */
5091 },
5092
5093 gdb::option::string_option_def<info_vars_funcs_options> {
5094 "t",
5095 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5096 },
5097 nullptr, /* show_cmd_cb */
5098 nullptr /* set_doc */
5099 }
5100 };
5101
5102 /* Returns the option group used by 'info variables' and 'info
5103 functions'. */
5104
5105 static gdb::option::option_def_group
5106 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5107 {
5108 return {{info_vars_funcs_options_defs}, opts};
5109 }
5110
5111 /* Command completer for 'info variables' and 'info functions'. */
5112
5113 static void
5114 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5115 completion_tracker &tracker,
5116 const char *text, const char * /* word */)
5117 {
5118 const auto group
5119 = make_info_vars_funcs_options_def_group (nullptr);
5120 if (gdb::option::complete_options
5121 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5122 return;
5123
5124 const char *word = advance_to_expression_complete_word_point (tracker, text);
5125 symbol_completer (ignore, tracker, text, word);
5126 }
5127
5128 /* Implement the 'info variables' command. */
5129
5130 static void
5131 info_variables_command (const char *args, int from_tty)
5132 {
5133 info_vars_funcs_options opts;
5134 auto grp = make_info_vars_funcs_options_def_group (&opts);
5135 gdb::option::process_options
5136 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5137 if (args != nullptr && *args == '\0')
5138 args = nullptr;
5139
5140 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5141 opts.type_regexp, from_tty);
5142 }
5143
5144 /* Implement the 'info functions' command. */
5145
5146 static void
5147 info_functions_command (const char *args, int from_tty)
5148 {
5149 info_vars_funcs_options opts;
5150
5151 auto grp = make_info_vars_funcs_options_def_group (&opts);
5152 gdb::option::process_options
5153 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5154 if (args != nullptr && *args == '\0')
5155 args = nullptr;
5156
5157 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5158 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5159 }
5160
5161 /* Holds the -q option for the 'info types' command. */
5162
5163 struct info_types_options
5164 {
5165 bool quiet = false;
5166 };
5167
5168 /* The options used by the 'info types' command. */
5169
5170 static const gdb::option::option_def info_types_options_defs[] = {
5171 gdb::option::boolean_option_def<info_types_options> {
5172 "q",
5173 [] (info_types_options *opt) { return &opt->quiet; },
5174 nullptr, /* show_cmd_cb */
5175 nullptr /* set_doc */
5176 }
5177 };
5178
5179 /* Returns the option group used by 'info types'. */
5180
5181 static gdb::option::option_def_group
5182 make_info_types_options_def_group (info_types_options *opts)
5183 {
5184 return {{info_types_options_defs}, opts};
5185 }
5186
5187 /* Implement the 'info types' command. */
5188
5189 static void
5190 info_types_command (const char *args, int from_tty)
5191 {
5192 info_types_options opts;
5193
5194 auto grp = make_info_types_options_def_group (&opts);
5195 gdb::option::process_options
5196 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5197 if (args != nullptr && *args == '\0')
5198 args = nullptr;
5199 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5200 }
5201
5202 /* Command completer for 'info types' command. */
5203
5204 static void
5205 info_types_command_completer (struct cmd_list_element *ignore,
5206 completion_tracker &tracker,
5207 const char *text, const char * /* word */)
5208 {
5209 const auto group
5210 = make_info_types_options_def_group (nullptr);
5211 if (gdb::option::complete_options
5212 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5213 return;
5214
5215 const char *word = advance_to_expression_complete_word_point (tracker, text);
5216 symbol_completer (ignore, tracker, text, word);
5217 }
5218
5219 /* Implement the 'info modules' command. */
5220
5221 static void
5222 info_modules_command (const char *args, int from_tty)
5223 {
5224 info_types_options opts;
5225
5226 auto grp = make_info_types_options_def_group (&opts);
5227 gdb::option::process_options
5228 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5229 if (args != nullptr && *args == '\0')
5230 args = nullptr;
5231 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5232 from_tty);
5233 }
5234
5235 static void
5236 rbreak_command (const char *regexp, int from_tty)
5237 {
5238 std::string string;
5239 const char *file_name = nullptr;
5240
5241 if (regexp != nullptr)
5242 {
5243 const char *colon = strchr (regexp, ':');
5244
5245 /* Ignore the colon if it is part of a Windows drive. */
5246 if (HAS_DRIVE_SPEC (regexp)
5247 && (regexp[2] == '/' || regexp[2] == '\\'))
5248 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5249
5250 if (colon && *(colon + 1) != ':')
5251 {
5252 int colon_index;
5253 char *local_name;
5254
5255 colon_index = colon - regexp;
5256 local_name = (char *) alloca (colon_index + 1);
5257 memcpy (local_name, regexp, colon_index);
5258 local_name[colon_index--] = 0;
5259 while (isspace (local_name[colon_index]))
5260 local_name[colon_index--] = 0;
5261 file_name = local_name;
5262 regexp = skip_spaces (colon + 1);
5263 }
5264 }
5265
5266 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5267 if (file_name != nullptr)
5268 spec.filenames.push_back (file_name);
5269 std::vector<symbol_search> symbols = spec.search ();
5270
5271 scoped_rbreak_breakpoints finalize;
5272 for (const symbol_search &p : symbols)
5273 {
5274 if (p.msymbol.minsym == NULL)
5275 {
5276 struct symtab *symtab = symbol_symtab (p.symbol);
5277 const char *fullname = symtab_to_fullname (symtab);
5278
5279 string = string_printf ("%s:'%s'", fullname,
5280 p.symbol->linkage_name ());
5281 break_command (&string[0], from_tty);
5282 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5283 }
5284 else
5285 {
5286 string = string_printf ("'%s'",
5287 p.msymbol.minsym->linkage_name ());
5288
5289 break_command (&string[0], from_tty);
5290 printf_filtered ("<function, no debug info> %s;\n",
5291 p.msymbol.minsym->print_name ());
5292 }
5293 }
5294 }
5295 \f
5296
5297 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5298
5299 static int
5300 compare_symbol_name (const char *symbol_name, language symbol_language,
5301 const lookup_name_info &lookup_name,
5302 completion_match_result &match_res)
5303 {
5304 const language_defn *lang = language_def (symbol_language);
5305
5306 symbol_name_matcher_ftype *name_match
5307 = lang->get_symbol_name_matcher (lookup_name);
5308
5309 return name_match (symbol_name, lookup_name, &match_res);
5310 }
5311
5312 /* See symtab.h. */
5313
5314 bool
5315 completion_list_add_name (completion_tracker &tracker,
5316 language symbol_language,
5317 const char *symname,
5318 const lookup_name_info &lookup_name,
5319 const char *text, const char *word)
5320 {
5321 completion_match_result &match_res
5322 = tracker.reset_completion_match_result ();
5323
5324 /* Clip symbols that cannot match. */
5325 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5326 return false;
5327
5328 /* Refresh SYMNAME from the match string. It's potentially
5329 different depending on language. (E.g., on Ada, the match may be
5330 the encoded symbol name wrapped in "<>"). */
5331 symname = match_res.match.match ();
5332 gdb_assert (symname != NULL);
5333
5334 /* We have a match for a completion, so add SYMNAME to the current list
5335 of matches. Note that the name is moved to freshly malloc'd space. */
5336
5337 {
5338 gdb::unique_xmalloc_ptr<char> completion
5339 = make_completion_match_str (symname, text, word);
5340
5341 /* Here we pass the match-for-lcd object to add_completion. Some
5342 languages match the user text against substrings of symbol
5343 names in some cases. E.g., in C++, "b push_ba" completes to
5344 "std::vector::push_back", "std::string::push_back", etc., and
5345 in this case we want the completion lowest common denominator
5346 to be "push_back" instead of "std::". */
5347 tracker.add_completion (std::move (completion),
5348 &match_res.match_for_lcd, text, word);
5349 }
5350
5351 return true;
5352 }
5353
5354 /* completion_list_add_name wrapper for struct symbol. */
5355
5356 static void
5357 completion_list_add_symbol (completion_tracker &tracker,
5358 symbol *sym,
5359 const lookup_name_info &lookup_name,
5360 const char *text, const char *word)
5361 {
5362 if (!completion_list_add_name (tracker, sym->language (),
5363 sym->natural_name (),
5364 lookup_name, text, word))
5365 return;
5366
5367 /* C++ function symbols include the parameters within both the msymbol
5368 name and the symbol name. The problem is that the msymbol name will
5369 describe the parameters in the most basic way, with typedefs stripped
5370 out, while the symbol name will represent the types as they appear in
5371 the program. This means we will see duplicate entries in the
5372 completion tracker. The following converts the symbol name back to
5373 the msymbol name and removes the msymbol name from the completion
5374 tracker. */
5375 if (sym->language () == language_cplus
5376 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5377 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5378 {
5379 /* The call to canonicalize returns the empty string if the input
5380 string is already in canonical form, thanks to this we don't
5381 remove the symbol we just added above. */
5382 gdb::unique_xmalloc_ptr<char> str
5383 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5384 if (str != nullptr)
5385 tracker.remove_completion (str.get ());
5386 }
5387 }
5388
5389 /* completion_list_add_name wrapper for struct minimal_symbol. */
5390
5391 static void
5392 completion_list_add_msymbol (completion_tracker &tracker,
5393 minimal_symbol *sym,
5394 const lookup_name_info &lookup_name,
5395 const char *text, const char *word)
5396 {
5397 completion_list_add_name (tracker, sym->language (),
5398 sym->natural_name (),
5399 lookup_name, text, word);
5400 }
5401
5402
5403 /* ObjC: In case we are completing on a selector, look as the msymbol
5404 again and feed all the selectors into the mill. */
5405
5406 static void
5407 completion_list_objc_symbol (completion_tracker &tracker,
5408 struct minimal_symbol *msymbol,
5409 const lookup_name_info &lookup_name,
5410 const char *text, const char *word)
5411 {
5412 static char *tmp = NULL;
5413 static unsigned int tmplen = 0;
5414
5415 const char *method, *category, *selector;
5416 char *tmp2 = NULL;
5417
5418 method = msymbol->natural_name ();
5419
5420 /* Is it a method? */
5421 if ((method[0] != '-') && (method[0] != '+'))
5422 return;
5423
5424 if (text[0] == '[')
5425 /* Complete on shortened method method. */
5426 completion_list_add_name (tracker, language_objc,
5427 method + 1,
5428 lookup_name,
5429 text, word);
5430
5431 while ((strlen (method) + 1) >= tmplen)
5432 {
5433 if (tmplen == 0)
5434 tmplen = 1024;
5435 else
5436 tmplen *= 2;
5437 tmp = (char *) xrealloc (tmp, tmplen);
5438 }
5439 selector = strchr (method, ' ');
5440 if (selector != NULL)
5441 selector++;
5442
5443 category = strchr (method, '(');
5444
5445 if ((category != NULL) && (selector != NULL))
5446 {
5447 memcpy (tmp, method, (category - method));
5448 tmp[category - method] = ' ';
5449 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5450 completion_list_add_name (tracker, language_objc, tmp,
5451 lookup_name, text, word);
5452 if (text[0] == '[')
5453 completion_list_add_name (tracker, language_objc, tmp + 1,
5454 lookup_name, text, word);
5455 }
5456
5457 if (selector != NULL)
5458 {
5459 /* Complete on selector only. */
5460 strcpy (tmp, selector);
5461 tmp2 = strchr (tmp, ']');
5462 if (tmp2 != NULL)
5463 *tmp2 = '\0';
5464
5465 completion_list_add_name (tracker, language_objc, tmp,
5466 lookup_name, text, word);
5467 }
5468 }
5469
5470 /* Break the non-quoted text based on the characters which are in
5471 symbols. FIXME: This should probably be language-specific. */
5472
5473 static const char *
5474 language_search_unquoted_string (const char *text, const char *p)
5475 {
5476 for (; p > text; --p)
5477 {
5478 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5479 continue;
5480 else
5481 {
5482 if ((current_language->la_language == language_objc))
5483 {
5484 if (p[-1] == ':') /* Might be part of a method name. */
5485 continue;
5486 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5487 p -= 2; /* Beginning of a method name. */
5488 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5489 { /* Might be part of a method name. */
5490 const char *t = p;
5491
5492 /* Seeing a ' ' or a '(' is not conclusive evidence
5493 that we are in the middle of a method name. However,
5494 finding "-[" or "+[" should be pretty un-ambiguous.
5495 Unfortunately we have to find it now to decide. */
5496
5497 while (t > text)
5498 if (isalnum (t[-1]) || t[-1] == '_' ||
5499 t[-1] == ' ' || t[-1] == ':' ||
5500 t[-1] == '(' || t[-1] == ')')
5501 --t;
5502 else
5503 break;
5504
5505 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5506 p = t - 2; /* Method name detected. */
5507 /* Else we leave with p unchanged. */
5508 }
5509 }
5510 break;
5511 }
5512 }
5513 return p;
5514 }
5515
5516 static void
5517 completion_list_add_fields (completion_tracker &tracker,
5518 struct symbol *sym,
5519 const lookup_name_info &lookup_name,
5520 const char *text, const char *word)
5521 {
5522 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5523 {
5524 struct type *t = SYMBOL_TYPE (sym);
5525 enum type_code c = t->code ();
5526 int j;
5527
5528 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5529 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5530 if (TYPE_FIELD_NAME (t, j))
5531 completion_list_add_name (tracker, sym->language (),
5532 TYPE_FIELD_NAME (t, j),
5533 lookup_name, text, word);
5534 }
5535 }
5536
5537 /* See symtab.h. */
5538
5539 bool
5540 symbol_is_function_or_method (symbol *sym)
5541 {
5542 switch (SYMBOL_TYPE (sym)->code ())
5543 {
5544 case TYPE_CODE_FUNC:
5545 case TYPE_CODE_METHOD:
5546 return true;
5547 default:
5548 return false;
5549 }
5550 }
5551
5552 /* See symtab.h. */
5553
5554 bool
5555 symbol_is_function_or_method (minimal_symbol *msymbol)
5556 {
5557 switch (MSYMBOL_TYPE (msymbol))
5558 {
5559 case mst_text:
5560 case mst_text_gnu_ifunc:
5561 case mst_solib_trampoline:
5562 case mst_file_text:
5563 return true;
5564 default:
5565 return false;
5566 }
5567 }
5568
5569 /* See symtab.h. */
5570
5571 bound_minimal_symbol
5572 find_gnu_ifunc (const symbol *sym)
5573 {
5574 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5575 return {};
5576
5577 lookup_name_info lookup_name (sym->search_name (),
5578 symbol_name_match_type::SEARCH_NAME);
5579 struct objfile *objfile = symbol_objfile (sym);
5580
5581 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5582 minimal_symbol *ifunc = NULL;
5583
5584 iterate_over_minimal_symbols (objfile, lookup_name,
5585 [&] (minimal_symbol *minsym)
5586 {
5587 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5588 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5589 {
5590 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5591 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5592 {
5593 struct gdbarch *gdbarch = objfile->arch ();
5594 msym_addr
5595 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5596 msym_addr,
5597 current_top_target ());
5598 }
5599 if (msym_addr == address)
5600 {
5601 ifunc = minsym;
5602 return true;
5603 }
5604 }
5605 return false;
5606 });
5607
5608 if (ifunc != NULL)
5609 return {ifunc, objfile};
5610 return {};
5611 }
5612
5613 /* Add matching symbols from SYMTAB to the current completion list. */
5614
5615 static void
5616 add_symtab_completions (struct compunit_symtab *cust,
5617 completion_tracker &tracker,
5618 complete_symbol_mode mode,
5619 const lookup_name_info &lookup_name,
5620 const char *text, const char *word,
5621 enum type_code code)
5622 {
5623 struct symbol *sym;
5624 const struct block *b;
5625 struct block_iterator iter;
5626 int i;
5627
5628 if (cust == NULL)
5629 return;
5630
5631 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5632 {
5633 QUIT;
5634 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5635 ALL_BLOCK_SYMBOLS (b, iter, sym)
5636 {
5637 if (completion_skip_symbol (mode, sym))
5638 continue;
5639
5640 if (code == TYPE_CODE_UNDEF
5641 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5642 && SYMBOL_TYPE (sym)->code () == code))
5643 completion_list_add_symbol (tracker, sym,
5644 lookup_name,
5645 text, word);
5646 }
5647 }
5648 }
5649
5650 void
5651 default_collect_symbol_completion_matches_break_on
5652 (completion_tracker &tracker, complete_symbol_mode mode,
5653 symbol_name_match_type name_match_type,
5654 const char *text, const char *word,
5655 const char *break_on, enum type_code code)
5656 {
5657 /* Problem: All of the symbols have to be copied because readline
5658 frees them. I'm not going to worry about this; hopefully there
5659 won't be that many. */
5660
5661 struct symbol *sym;
5662 const struct block *b;
5663 const struct block *surrounding_static_block, *surrounding_global_block;
5664 struct block_iterator iter;
5665 /* The symbol we are completing on. Points in same buffer as text. */
5666 const char *sym_text;
5667
5668 /* Now look for the symbol we are supposed to complete on. */
5669 if (mode == complete_symbol_mode::LINESPEC)
5670 sym_text = text;
5671 else
5672 {
5673 const char *p;
5674 char quote_found;
5675 const char *quote_pos = NULL;
5676
5677 /* First see if this is a quoted string. */
5678 quote_found = '\0';
5679 for (p = text; *p != '\0'; ++p)
5680 {
5681 if (quote_found != '\0')
5682 {
5683 if (*p == quote_found)
5684 /* Found close quote. */
5685 quote_found = '\0';
5686 else if (*p == '\\' && p[1] == quote_found)
5687 /* A backslash followed by the quote character
5688 doesn't end the string. */
5689 ++p;
5690 }
5691 else if (*p == '\'' || *p == '"')
5692 {
5693 quote_found = *p;
5694 quote_pos = p;
5695 }
5696 }
5697 if (quote_found == '\'')
5698 /* A string within single quotes can be a symbol, so complete on it. */
5699 sym_text = quote_pos + 1;
5700 else if (quote_found == '"')
5701 /* A double-quoted string is never a symbol, nor does it make sense
5702 to complete it any other way. */
5703 {
5704 return;
5705 }
5706 else
5707 {
5708 /* It is not a quoted string. Break it based on the characters
5709 which are in symbols. */
5710 while (p > text)
5711 {
5712 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5713 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5714 --p;
5715 else
5716 break;
5717 }
5718 sym_text = p;
5719 }
5720 }
5721
5722 lookup_name_info lookup_name (sym_text, name_match_type, true);
5723
5724 /* At this point scan through the misc symbol vectors and add each
5725 symbol you find to the list. Eventually we want to ignore
5726 anything that isn't a text symbol (everything else will be
5727 handled by the psymtab code below). */
5728
5729 if (code == TYPE_CODE_UNDEF)
5730 {
5731 for (objfile *objfile : current_program_space->objfiles ())
5732 {
5733 for (minimal_symbol *msymbol : objfile->msymbols ())
5734 {
5735 QUIT;
5736
5737 if (completion_skip_symbol (mode, msymbol))
5738 continue;
5739
5740 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5741 sym_text, word);
5742
5743 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5744 sym_text, word);
5745 }
5746 }
5747 }
5748
5749 /* Add completions for all currently loaded symbol tables. */
5750 for (objfile *objfile : current_program_space->objfiles ())
5751 {
5752 for (compunit_symtab *cust : objfile->compunits ())
5753 add_symtab_completions (cust, tracker, mode, lookup_name,
5754 sym_text, word, code);
5755 }
5756
5757 /* Look through the partial symtabs for all symbols which begin by
5758 matching SYM_TEXT. Expand all CUs that you find to the list. */
5759 expand_symtabs_matching (NULL,
5760 lookup_name,
5761 NULL,
5762 [&] (compunit_symtab *symtab) /* expansion notify */
5763 {
5764 add_symtab_completions (symtab,
5765 tracker, mode, lookup_name,
5766 sym_text, word, code);
5767 },
5768 ALL_DOMAIN);
5769
5770 /* Search upwards from currently selected frame (so that we can
5771 complete on local vars). Also catch fields of types defined in
5772 this places which match our text string. Only complete on types
5773 visible from current context. */
5774
5775 b = get_selected_block (0);
5776 surrounding_static_block = block_static_block (b);
5777 surrounding_global_block = block_global_block (b);
5778 if (surrounding_static_block != NULL)
5779 while (b != surrounding_static_block)
5780 {
5781 QUIT;
5782
5783 ALL_BLOCK_SYMBOLS (b, iter, sym)
5784 {
5785 if (code == TYPE_CODE_UNDEF)
5786 {
5787 completion_list_add_symbol (tracker, sym, lookup_name,
5788 sym_text, word);
5789 completion_list_add_fields (tracker, sym, lookup_name,
5790 sym_text, word);
5791 }
5792 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5793 && SYMBOL_TYPE (sym)->code () == code)
5794 completion_list_add_symbol (tracker, sym, lookup_name,
5795 sym_text, word);
5796 }
5797
5798 /* Stop when we encounter an enclosing function. Do not stop for
5799 non-inlined functions - the locals of the enclosing function
5800 are in scope for a nested function. */
5801 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5802 break;
5803 b = BLOCK_SUPERBLOCK (b);
5804 }
5805
5806 /* Add fields from the file's types; symbols will be added below. */
5807
5808 if (code == TYPE_CODE_UNDEF)
5809 {
5810 if (surrounding_static_block != NULL)
5811 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5812 completion_list_add_fields (tracker, sym, lookup_name,
5813 sym_text, word);
5814
5815 if (surrounding_global_block != NULL)
5816 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5817 completion_list_add_fields (tracker, sym, lookup_name,
5818 sym_text, word);
5819 }
5820
5821 /* Skip macros if we are completing a struct tag -- arguable but
5822 usually what is expected. */
5823 if (current_language->macro_expansion () == macro_expansion_c
5824 && code == TYPE_CODE_UNDEF)
5825 {
5826 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5827
5828 /* This adds a macro's name to the current completion list. */
5829 auto add_macro_name = [&] (const char *macro_name,
5830 const macro_definition *,
5831 macro_source_file *,
5832 int)
5833 {
5834 completion_list_add_name (tracker, language_c, macro_name,
5835 lookup_name, sym_text, word);
5836 };
5837
5838 /* Add any macros visible in the default scope. Note that this
5839 may yield the occasional wrong result, because an expression
5840 might be evaluated in a scope other than the default. For
5841 example, if the user types "break file:line if <TAB>", the
5842 resulting expression will be evaluated at "file:line" -- but
5843 at there does not seem to be a way to detect this at
5844 completion time. */
5845 scope = default_macro_scope ();
5846 if (scope)
5847 macro_for_each_in_scope (scope->file, scope->line,
5848 add_macro_name);
5849
5850 /* User-defined macros are always visible. */
5851 macro_for_each (macro_user_macros, add_macro_name);
5852 }
5853 }
5854
5855 /* Collect all symbols (regardless of class) which begin by matching
5856 TEXT. */
5857
5858 void
5859 collect_symbol_completion_matches (completion_tracker &tracker,
5860 complete_symbol_mode mode,
5861 symbol_name_match_type name_match_type,
5862 const char *text, const char *word)
5863 {
5864 current_language->collect_symbol_completion_matches (tracker, mode,
5865 name_match_type,
5866 text, word,
5867 TYPE_CODE_UNDEF);
5868 }
5869
5870 /* Like collect_symbol_completion_matches, but only collect
5871 STRUCT_DOMAIN symbols whose type code is CODE. */
5872
5873 void
5874 collect_symbol_completion_matches_type (completion_tracker &tracker,
5875 const char *text, const char *word,
5876 enum type_code code)
5877 {
5878 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5879 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5880
5881 gdb_assert (code == TYPE_CODE_UNION
5882 || code == TYPE_CODE_STRUCT
5883 || code == TYPE_CODE_ENUM);
5884 current_language->collect_symbol_completion_matches (tracker, mode,
5885 name_match_type,
5886 text, word, code);
5887 }
5888
5889 /* Like collect_symbol_completion_matches, but collects a list of
5890 symbols defined in all source files named SRCFILE. */
5891
5892 void
5893 collect_file_symbol_completion_matches (completion_tracker &tracker,
5894 complete_symbol_mode mode,
5895 symbol_name_match_type name_match_type,
5896 const char *text, const char *word,
5897 const char *srcfile)
5898 {
5899 /* The symbol we are completing on. Points in same buffer as text. */
5900 const char *sym_text;
5901
5902 /* Now look for the symbol we are supposed to complete on.
5903 FIXME: This should be language-specific. */
5904 if (mode == complete_symbol_mode::LINESPEC)
5905 sym_text = text;
5906 else
5907 {
5908 const char *p;
5909 char quote_found;
5910 const char *quote_pos = NULL;
5911
5912 /* First see if this is a quoted string. */
5913 quote_found = '\0';
5914 for (p = text; *p != '\0'; ++p)
5915 {
5916 if (quote_found != '\0')
5917 {
5918 if (*p == quote_found)
5919 /* Found close quote. */
5920 quote_found = '\0';
5921 else if (*p == '\\' && p[1] == quote_found)
5922 /* A backslash followed by the quote character
5923 doesn't end the string. */
5924 ++p;
5925 }
5926 else if (*p == '\'' || *p == '"')
5927 {
5928 quote_found = *p;
5929 quote_pos = p;
5930 }
5931 }
5932 if (quote_found == '\'')
5933 /* A string within single quotes can be a symbol, so complete on it. */
5934 sym_text = quote_pos + 1;
5935 else if (quote_found == '"')
5936 /* A double-quoted string is never a symbol, nor does it make sense
5937 to complete it any other way. */
5938 {
5939 return;
5940 }
5941 else
5942 {
5943 /* Not a quoted string. */
5944 sym_text = language_search_unquoted_string (text, p);
5945 }
5946 }
5947
5948 lookup_name_info lookup_name (sym_text, name_match_type, true);
5949
5950 /* Go through symtabs for SRCFILE and check the externs and statics
5951 for symbols which match. */
5952 iterate_over_symtabs (srcfile, [&] (symtab *s)
5953 {
5954 add_symtab_completions (SYMTAB_COMPUNIT (s),
5955 tracker, mode, lookup_name,
5956 sym_text, word, TYPE_CODE_UNDEF);
5957 return false;
5958 });
5959 }
5960
5961 /* A helper function for make_source_files_completion_list. It adds
5962 another file name to a list of possible completions, growing the
5963 list as necessary. */
5964
5965 static void
5966 add_filename_to_list (const char *fname, const char *text, const char *word,
5967 completion_list *list)
5968 {
5969 list->emplace_back (make_completion_match_str (fname, text, word));
5970 }
5971
5972 static int
5973 not_interesting_fname (const char *fname)
5974 {
5975 static const char *illegal_aliens[] = {
5976 "_globals_", /* inserted by coff_symtab_read */
5977 NULL
5978 };
5979 int i;
5980
5981 for (i = 0; illegal_aliens[i]; i++)
5982 {
5983 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5984 return 1;
5985 }
5986 return 0;
5987 }
5988
5989 /* An object of this type is passed as the user_data argument to
5990 map_partial_symbol_filenames. */
5991 struct add_partial_filename_data
5992 {
5993 struct filename_seen_cache *filename_seen_cache;
5994 const char *text;
5995 const char *word;
5996 int text_len;
5997 completion_list *list;
5998 };
5999
6000 /* A callback for map_partial_symbol_filenames. */
6001
6002 static void
6003 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
6004 void *user_data)
6005 {
6006 struct add_partial_filename_data *data
6007 = (struct add_partial_filename_data *) user_data;
6008
6009 if (not_interesting_fname (filename))
6010 return;
6011 if (!data->filename_seen_cache->seen (filename)
6012 && filename_ncmp (filename, data->text, data->text_len) == 0)
6013 {
6014 /* This file matches for a completion; add it to the
6015 current list of matches. */
6016 add_filename_to_list (filename, data->text, data->word, data->list);
6017 }
6018 else
6019 {
6020 const char *base_name = lbasename (filename);
6021
6022 if (base_name != filename
6023 && !data->filename_seen_cache->seen (base_name)
6024 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6025 add_filename_to_list (base_name, data->text, data->word, data->list);
6026 }
6027 }
6028
6029 /* Return a list of all source files whose names begin with matching
6030 TEXT. The file names are looked up in the symbol tables of this
6031 program. */
6032
6033 completion_list
6034 make_source_files_completion_list (const char *text, const char *word)
6035 {
6036 size_t text_len = strlen (text);
6037 completion_list list;
6038 const char *base_name;
6039 struct add_partial_filename_data datum;
6040
6041 if (!have_full_symbols () && !have_partial_symbols ())
6042 return list;
6043
6044 filename_seen_cache filenames_seen;
6045
6046 for (objfile *objfile : current_program_space->objfiles ())
6047 {
6048 for (compunit_symtab *cu : objfile->compunits ())
6049 {
6050 for (symtab *s : compunit_filetabs (cu))
6051 {
6052 if (not_interesting_fname (s->filename))
6053 continue;
6054 if (!filenames_seen.seen (s->filename)
6055 && filename_ncmp (s->filename, text, text_len) == 0)
6056 {
6057 /* This file matches for a completion; add it to the current
6058 list of matches. */
6059 add_filename_to_list (s->filename, text, word, &list);
6060 }
6061 else
6062 {
6063 /* NOTE: We allow the user to type a base name when the
6064 debug info records leading directories, but not the other
6065 way around. This is what subroutines of breakpoint
6066 command do when they parse file names. */
6067 base_name = lbasename (s->filename);
6068 if (base_name != s->filename
6069 && !filenames_seen.seen (base_name)
6070 && filename_ncmp (base_name, text, text_len) == 0)
6071 add_filename_to_list (base_name, text, word, &list);
6072 }
6073 }
6074 }
6075 }
6076
6077 datum.filename_seen_cache = &filenames_seen;
6078 datum.text = text;
6079 datum.word = word;
6080 datum.text_len = text_len;
6081 datum.list = &list;
6082 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6083 0 /*need_fullname*/);
6084
6085 return list;
6086 }
6087 \f
6088 /* Track MAIN */
6089
6090 /* Return the "main_info" object for the current program space. If
6091 the object has not yet been created, create it and fill in some
6092 default values. */
6093
6094 static struct main_info *
6095 get_main_info (void)
6096 {
6097 struct main_info *info = main_progspace_key.get (current_program_space);
6098
6099 if (info == NULL)
6100 {
6101 /* It may seem strange to store the main name in the progspace
6102 and also in whatever objfile happens to see a main name in
6103 its debug info. The reason for this is mainly historical:
6104 gdb returned "main" as the name even if no function named
6105 "main" was defined the program; and this approach lets us
6106 keep compatibility. */
6107 info = main_progspace_key.emplace (current_program_space);
6108 }
6109
6110 return info;
6111 }
6112
6113 static void
6114 set_main_name (const char *name, enum language lang)
6115 {
6116 struct main_info *info = get_main_info ();
6117
6118 if (info->name_of_main != NULL)
6119 {
6120 xfree (info->name_of_main);
6121 info->name_of_main = NULL;
6122 info->language_of_main = language_unknown;
6123 }
6124 if (name != NULL)
6125 {
6126 info->name_of_main = xstrdup (name);
6127 info->language_of_main = lang;
6128 }
6129 }
6130
6131 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6132 accordingly. */
6133
6134 static void
6135 find_main_name (void)
6136 {
6137 const char *new_main_name;
6138
6139 /* First check the objfiles to see whether a debuginfo reader has
6140 picked up the appropriate main name. Historically the main name
6141 was found in a more or less random way; this approach instead
6142 relies on the order of objfile creation -- which still isn't
6143 guaranteed to get the correct answer, but is just probably more
6144 accurate. */
6145 for (objfile *objfile : current_program_space->objfiles ())
6146 {
6147 if (objfile->per_bfd->name_of_main != NULL)
6148 {
6149 set_main_name (objfile->per_bfd->name_of_main,
6150 objfile->per_bfd->language_of_main);
6151 return;
6152 }
6153 }
6154
6155 /* Try to see if the main procedure is in Ada. */
6156 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6157 be to add a new method in the language vector, and call this
6158 method for each language until one of them returns a non-empty
6159 name. This would allow us to remove this hard-coded call to
6160 an Ada function. It is not clear that this is a better approach
6161 at this point, because all methods need to be written in a way
6162 such that false positives never be returned. For instance, it is
6163 important that a method does not return a wrong name for the main
6164 procedure if the main procedure is actually written in a different
6165 language. It is easy to guaranty this with Ada, since we use a
6166 special symbol generated only when the main in Ada to find the name
6167 of the main procedure. It is difficult however to see how this can
6168 be guarantied for languages such as C, for instance. This suggests
6169 that order of call for these methods becomes important, which means
6170 a more complicated approach. */
6171 new_main_name = ada_main_name ();
6172 if (new_main_name != NULL)
6173 {
6174 set_main_name (new_main_name, language_ada);
6175 return;
6176 }
6177
6178 new_main_name = d_main_name ();
6179 if (new_main_name != NULL)
6180 {
6181 set_main_name (new_main_name, language_d);
6182 return;
6183 }
6184
6185 new_main_name = go_main_name ();
6186 if (new_main_name != NULL)
6187 {
6188 set_main_name (new_main_name, language_go);
6189 return;
6190 }
6191
6192 new_main_name = pascal_main_name ();
6193 if (new_main_name != NULL)
6194 {
6195 set_main_name (new_main_name, language_pascal);
6196 return;
6197 }
6198
6199 /* The languages above didn't identify the name of the main procedure.
6200 Fallback to "main". */
6201
6202 /* Try to find language for main in psymtabs. */
6203 enum language lang
6204 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6205 if (lang != language_unknown)
6206 {
6207 set_main_name ("main", lang);
6208 return;
6209 }
6210
6211 set_main_name ("main", language_unknown);
6212 }
6213
6214 /* See symtab.h. */
6215
6216 const char *
6217 main_name ()
6218 {
6219 struct main_info *info = get_main_info ();
6220
6221 if (info->name_of_main == NULL)
6222 find_main_name ();
6223
6224 return info->name_of_main;
6225 }
6226
6227 /* Return the language of the main function. If it is not known,
6228 return language_unknown. */
6229
6230 enum language
6231 main_language (void)
6232 {
6233 struct main_info *info = get_main_info ();
6234
6235 if (info->name_of_main == NULL)
6236 find_main_name ();
6237
6238 return info->language_of_main;
6239 }
6240
6241 /* Handle ``executable_changed'' events for the symtab module. */
6242
6243 static void
6244 symtab_observer_executable_changed (void)
6245 {
6246 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6247 set_main_name (NULL, language_unknown);
6248 }
6249
6250 /* Return 1 if the supplied producer string matches the ARM RealView
6251 compiler (armcc). */
6252
6253 bool
6254 producer_is_realview (const char *producer)
6255 {
6256 static const char *const arm_idents[] = {
6257 "ARM C Compiler, ADS",
6258 "Thumb C Compiler, ADS",
6259 "ARM C++ Compiler, ADS",
6260 "Thumb C++ Compiler, ADS",
6261 "ARM/Thumb C/C++ Compiler, RVCT",
6262 "ARM C/C++ Compiler, RVCT"
6263 };
6264 int i;
6265
6266 if (producer == NULL)
6267 return false;
6268
6269 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6270 if (startswith (producer, arm_idents[i]))
6271 return true;
6272
6273 return false;
6274 }
6275
6276 \f
6277
6278 /* The next index to hand out in response to a registration request. */
6279
6280 static int next_aclass_value = LOC_FINAL_VALUE;
6281
6282 /* The maximum number of "aclass" registrations we support. This is
6283 constant for convenience. */
6284 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6285
6286 /* The objects representing the various "aclass" values. The elements
6287 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6288 elements are those registered at gdb initialization time. */
6289
6290 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6291
6292 /* The globally visible pointer. This is separate from 'symbol_impl'
6293 so that it can be const. */
6294
6295 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6296
6297 /* Make sure we saved enough room in struct symbol. */
6298
6299 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6300
6301 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6302 is the ops vector associated with this index. This returns the new
6303 index, which should be used as the aclass_index field for symbols
6304 of this type. */
6305
6306 int
6307 register_symbol_computed_impl (enum address_class aclass,
6308 const struct symbol_computed_ops *ops)
6309 {
6310 int result = next_aclass_value++;
6311
6312 gdb_assert (aclass == LOC_COMPUTED);
6313 gdb_assert (result < MAX_SYMBOL_IMPLS);
6314 symbol_impl[result].aclass = aclass;
6315 symbol_impl[result].ops_computed = ops;
6316
6317 /* Sanity check OPS. */
6318 gdb_assert (ops != NULL);
6319 gdb_assert (ops->tracepoint_var_ref != NULL);
6320 gdb_assert (ops->describe_location != NULL);
6321 gdb_assert (ops->get_symbol_read_needs != NULL);
6322 gdb_assert (ops->read_variable != NULL);
6323
6324 return result;
6325 }
6326
6327 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6328 OPS is the ops vector associated with this index. This returns the
6329 new index, which should be used as the aclass_index field for symbols
6330 of this type. */
6331
6332 int
6333 register_symbol_block_impl (enum address_class aclass,
6334 const struct symbol_block_ops *ops)
6335 {
6336 int result = next_aclass_value++;
6337
6338 gdb_assert (aclass == LOC_BLOCK);
6339 gdb_assert (result < MAX_SYMBOL_IMPLS);
6340 symbol_impl[result].aclass = aclass;
6341 symbol_impl[result].ops_block = ops;
6342
6343 /* Sanity check OPS. */
6344 gdb_assert (ops != NULL);
6345 gdb_assert (ops->find_frame_base_location != NULL);
6346
6347 return result;
6348 }
6349
6350 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6351 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6352 this index. This returns the new index, which should be used as
6353 the aclass_index field for symbols of this type. */
6354
6355 int
6356 register_symbol_register_impl (enum address_class aclass,
6357 const struct symbol_register_ops *ops)
6358 {
6359 int result = next_aclass_value++;
6360
6361 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6362 gdb_assert (result < MAX_SYMBOL_IMPLS);
6363 symbol_impl[result].aclass = aclass;
6364 symbol_impl[result].ops_register = ops;
6365
6366 return result;
6367 }
6368
6369 /* Initialize elements of 'symbol_impl' for the constants in enum
6370 address_class. */
6371
6372 static void
6373 initialize_ordinary_address_classes (void)
6374 {
6375 int i;
6376
6377 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6378 symbol_impl[i].aclass = (enum address_class) i;
6379 }
6380
6381 \f
6382
6383 /* See symtab.h. */
6384
6385 struct objfile *
6386 symbol_objfile (const struct symbol *symbol)
6387 {
6388 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6389 return SYMTAB_OBJFILE (symbol->owner.symtab);
6390 }
6391
6392 /* See symtab.h. */
6393
6394 struct gdbarch *
6395 symbol_arch (const struct symbol *symbol)
6396 {
6397 if (!SYMBOL_OBJFILE_OWNED (symbol))
6398 return symbol->owner.arch;
6399 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6400 }
6401
6402 /* See symtab.h. */
6403
6404 struct symtab *
6405 symbol_symtab (const struct symbol *symbol)
6406 {
6407 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6408 return symbol->owner.symtab;
6409 }
6410
6411 /* See symtab.h. */
6412
6413 void
6414 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6415 {
6416 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6417 symbol->owner.symtab = symtab;
6418 }
6419
6420 /* See symtab.h. */
6421
6422 CORE_ADDR
6423 get_symbol_address (const struct symbol *sym)
6424 {
6425 gdb_assert (sym->maybe_copied);
6426 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6427
6428 const char *linkage_name = sym->linkage_name ();
6429
6430 for (objfile *objfile : current_program_space->objfiles ())
6431 {
6432 if (objfile->separate_debug_objfile_backlink != nullptr)
6433 continue;
6434
6435 bound_minimal_symbol minsym
6436 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6437 if (minsym.minsym != nullptr)
6438 return BMSYMBOL_VALUE_ADDRESS (minsym);
6439 }
6440 return sym->value.address;
6441 }
6442
6443 /* See symtab.h. */
6444
6445 CORE_ADDR
6446 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6447 {
6448 gdb_assert (minsym->maybe_copied);
6449 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6450
6451 const char *linkage_name = minsym->linkage_name ();
6452
6453 for (objfile *objfile : current_program_space->objfiles ())
6454 {
6455 if (objfile->separate_debug_objfile_backlink == nullptr
6456 && (objfile->flags & OBJF_MAINLINE) != 0)
6457 {
6458 bound_minimal_symbol found
6459 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6460 if (found.minsym != nullptr)
6461 return BMSYMBOL_VALUE_ADDRESS (found);
6462 }
6463 }
6464 return minsym->value.address + objf->section_offsets[minsym->section];
6465 }
6466
6467 \f
6468
6469 /* Hold the sub-commands of 'info module'. */
6470
6471 static struct cmd_list_element *info_module_cmdlist = NULL;
6472
6473 /* See symtab.h. */
6474
6475 std::vector<module_symbol_search>
6476 search_module_symbols (const char *module_regexp, const char *regexp,
6477 const char *type_regexp, search_domain kind)
6478 {
6479 std::vector<module_symbol_search> results;
6480
6481 /* Search for all modules matching MODULE_REGEXP. */
6482 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6483 spec1.set_exclude_minsyms (true);
6484 std::vector<symbol_search> modules = spec1.search ();
6485
6486 /* Now search for all symbols of the required KIND matching the required
6487 regular expressions. We figure out which ones are in which modules
6488 below. */
6489 global_symbol_searcher spec2 (kind, regexp);
6490 spec2.set_symbol_type_regexp (type_regexp);
6491 spec2.set_exclude_minsyms (true);
6492 std::vector<symbol_search> symbols = spec2.search ();
6493
6494 /* Now iterate over all MODULES, checking to see which items from
6495 SYMBOLS are in each module. */
6496 for (const symbol_search &p : modules)
6497 {
6498 QUIT;
6499
6500 /* This is a module. */
6501 gdb_assert (p.symbol != nullptr);
6502
6503 std::string prefix = p.symbol->print_name ();
6504 prefix += "::";
6505
6506 for (const symbol_search &q : symbols)
6507 {
6508 if (q.symbol == nullptr)
6509 continue;
6510
6511 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6512 prefix.size ()) != 0)
6513 continue;
6514
6515 results.push_back ({p, q});
6516 }
6517 }
6518
6519 return results;
6520 }
6521
6522 /* Implement the core of both 'info module functions' and 'info module
6523 variables'. */
6524
6525 static void
6526 info_module_subcommand (bool quiet, const char *module_regexp,
6527 const char *regexp, const char *type_regexp,
6528 search_domain kind)
6529 {
6530 /* Print a header line. Don't build the header line bit by bit as this
6531 prevents internationalisation. */
6532 if (!quiet)
6533 {
6534 if (module_regexp == nullptr)
6535 {
6536 if (type_regexp == nullptr)
6537 {
6538 if (regexp == nullptr)
6539 printf_filtered ((kind == VARIABLES_DOMAIN
6540 ? _("All variables in all modules:")
6541 : _("All functions in all modules:")));
6542 else
6543 printf_filtered
6544 ((kind == VARIABLES_DOMAIN
6545 ? _("All variables matching regular expression"
6546 " \"%s\" in all modules:")
6547 : _("All functions matching regular expression"
6548 " \"%s\" in all modules:")),
6549 regexp);
6550 }
6551 else
6552 {
6553 if (regexp == nullptr)
6554 printf_filtered
6555 ((kind == VARIABLES_DOMAIN
6556 ? _("All variables with type matching regular "
6557 "expression \"%s\" in all modules:")
6558 : _("All functions with type matching regular "
6559 "expression \"%s\" in all modules:")),
6560 type_regexp);
6561 else
6562 printf_filtered
6563 ((kind == VARIABLES_DOMAIN
6564 ? _("All variables matching regular expression "
6565 "\"%s\",\n\twith type matching regular "
6566 "expression \"%s\" in all modules:")
6567 : _("All functions matching regular expression "
6568 "\"%s\",\n\twith type matching regular "
6569 "expression \"%s\" in all modules:")),
6570 regexp, type_regexp);
6571 }
6572 }
6573 else
6574 {
6575 if (type_regexp == nullptr)
6576 {
6577 if (regexp == nullptr)
6578 printf_filtered
6579 ((kind == VARIABLES_DOMAIN
6580 ? _("All variables in all modules matching regular "
6581 "expression \"%s\":")
6582 : _("All functions in all modules matching regular "
6583 "expression \"%s\":")),
6584 module_regexp);
6585 else
6586 printf_filtered
6587 ((kind == VARIABLES_DOMAIN
6588 ? _("All variables matching regular expression "
6589 "\"%s\",\n\tin all modules matching regular "
6590 "expression \"%s\":")
6591 : _("All functions matching regular expression "
6592 "\"%s\",\n\tin all modules matching regular "
6593 "expression \"%s\":")),
6594 regexp, module_regexp);
6595 }
6596 else
6597 {
6598 if (regexp == nullptr)
6599 printf_filtered
6600 ((kind == VARIABLES_DOMAIN
6601 ? _("All variables with type matching regular "
6602 "expression \"%s\"\n\tin all modules matching "
6603 "regular expression \"%s\":")
6604 : _("All functions with type matching regular "
6605 "expression \"%s\"\n\tin all modules matching "
6606 "regular expression \"%s\":")),
6607 type_regexp, module_regexp);
6608 else
6609 printf_filtered
6610 ((kind == VARIABLES_DOMAIN
6611 ? _("All variables matching regular expression "
6612 "\"%s\",\n\twith type matching regular expression "
6613 "\"%s\",\n\tin all modules matching regular "
6614 "expression \"%s\":")
6615 : _("All functions matching regular expression "
6616 "\"%s\",\n\twith type matching regular expression "
6617 "\"%s\",\n\tin all modules matching regular "
6618 "expression \"%s\":")),
6619 regexp, type_regexp, module_regexp);
6620 }
6621 }
6622 printf_filtered ("\n");
6623 }
6624
6625 /* Find all symbols of type KIND matching the given regular expressions
6626 along with the symbols for the modules in which those symbols
6627 reside. */
6628 std::vector<module_symbol_search> module_symbols
6629 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6630
6631 std::sort (module_symbols.begin (), module_symbols.end (),
6632 [] (const module_symbol_search &a, const module_symbol_search &b)
6633 {
6634 if (a.first < b.first)
6635 return true;
6636 else if (a.first == b.first)
6637 return a.second < b.second;
6638 else
6639 return false;
6640 });
6641
6642 const char *last_filename = "";
6643 const symbol *last_module_symbol = nullptr;
6644 for (const module_symbol_search &ms : module_symbols)
6645 {
6646 const symbol_search &p = ms.first;
6647 const symbol_search &q = ms.second;
6648
6649 gdb_assert (q.symbol != nullptr);
6650
6651 if (last_module_symbol != p.symbol)
6652 {
6653 printf_filtered ("\n");
6654 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6655 last_module_symbol = p.symbol;
6656 last_filename = "";
6657 }
6658
6659 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6660 last_filename);
6661 last_filename
6662 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6663 }
6664 }
6665
6666 /* Hold the option values for the 'info module .....' sub-commands. */
6667
6668 struct info_modules_var_func_options
6669 {
6670 bool quiet = false;
6671 char *type_regexp = nullptr;
6672 char *module_regexp = nullptr;
6673
6674 ~info_modules_var_func_options ()
6675 {
6676 xfree (type_regexp);
6677 xfree (module_regexp);
6678 }
6679 };
6680
6681 /* The options used by 'info module variables' and 'info module functions'
6682 commands. */
6683
6684 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6685 gdb::option::boolean_option_def<info_modules_var_func_options> {
6686 "q",
6687 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6688 nullptr, /* show_cmd_cb */
6689 nullptr /* set_doc */
6690 },
6691
6692 gdb::option::string_option_def<info_modules_var_func_options> {
6693 "t",
6694 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6695 nullptr, /* show_cmd_cb */
6696 nullptr /* set_doc */
6697 },
6698
6699 gdb::option::string_option_def<info_modules_var_func_options> {
6700 "m",
6701 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6702 nullptr, /* show_cmd_cb */
6703 nullptr /* set_doc */
6704 }
6705 };
6706
6707 /* Return the option group used by the 'info module ...' sub-commands. */
6708
6709 static inline gdb::option::option_def_group
6710 make_info_modules_var_func_options_def_group
6711 (info_modules_var_func_options *opts)
6712 {
6713 return {{info_modules_var_func_options_defs}, opts};
6714 }
6715
6716 /* Implements the 'info module functions' command. */
6717
6718 static void
6719 info_module_functions_command (const char *args, int from_tty)
6720 {
6721 info_modules_var_func_options opts;
6722 auto grp = make_info_modules_var_func_options_def_group (&opts);
6723 gdb::option::process_options
6724 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6725 if (args != nullptr && *args == '\0')
6726 args = nullptr;
6727
6728 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6729 opts.type_regexp, FUNCTIONS_DOMAIN);
6730 }
6731
6732 /* Implements the 'info module variables' command. */
6733
6734 static void
6735 info_module_variables_command (const char *args, int from_tty)
6736 {
6737 info_modules_var_func_options opts;
6738 auto grp = make_info_modules_var_func_options_def_group (&opts);
6739 gdb::option::process_options
6740 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6741 if (args != nullptr && *args == '\0')
6742 args = nullptr;
6743
6744 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6745 opts.type_regexp, VARIABLES_DOMAIN);
6746 }
6747
6748 /* Command completer for 'info module ...' sub-commands. */
6749
6750 static void
6751 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6752 completion_tracker &tracker,
6753 const char *text,
6754 const char * /* word */)
6755 {
6756
6757 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6758 if (gdb::option::complete_options
6759 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6760 return;
6761
6762 const char *word = advance_to_expression_complete_word_point (tracker, text);
6763 symbol_completer (ignore, tracker, text, word);
6764 }
6765
6766 \f
6767
6768 void _initialize_symtab ();
6769 void
6770 _initialize_symtab ()
6771 {
6772 cmd_list_element *c;
6773
6774 initialize_ordinary_address_classes ();
6775
6776 c = add_info ("variables", info_variables_command,
6777 info_print_args_help (_("\
6778 All global and static variable names or those matching REGEXPs.\n\
6779 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6780 Prints the global and static variables.\n"),
6781 _("global and static variables"),
6782 true));
6783 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6784 if (dbx_commands)
6785 {
6786 c = add_com ("whereis", class_info, info_variables_command,
6787 info_print_args_help (_("\
6788 All global and static variable names, or those matching REGEXPs.\n\
6789 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6790 Prints the global and static variables.\n"),
6791 _("global and static variables"),
6792 true));
6793 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6794 }
6795
6796 c = add_info ("functions", info_functions_command,
6797 info_print_args_help (_("\
6798 All function names or those matching REGEXPs.\n\
6799 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6800 Prints the functions.\n"),
6801 _("functions"),
6802 true));
6803 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6804
6805 c = add_info ("types", info_types_command, _("\
6806 All type names, or those matching REGEXP.\n\
6807 Usage: info types [-q] [REGEXP]\n\
6808 Print information about all types matching REGEXP, or all types if no\n\
6809 REGEXP is given. The optional flag -q disables printing of headers."));
6810 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6811
6812 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6813
6814 static std::string info_sources_help
6815 = gdb::option::build_help (_("\
6816 All source files in the program or those matching REGEXP.\n\
6817 Usage: info sources [OPTION]... [REGEXP]\n\
6818 By default, REGEXP is used to match anywhere in the filename.\n\
6819 \n\
6820 Options:\n\
6821 %OPTIONS%"),
6822 info_sources_opts);
6823
6824 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6825 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6826
6827 c = add_info ("modules", info_modules_command,
6828 _("All module names, or those matching REGEXP."));
6829 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6830
6831 add_basic_prefix_cmd ("module", class_info, _("\
6832 Print information about modules."),
6833 &info_module_cmdlist, "info module ",
6834 0, &infolist);
6835
6836 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6837 Display functions arranged by modules.\n\
6838 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6839 Print a summary of all functions within each Fortran module, grouped by\n\
6840 module and file. For each function the line on which the function is\n\
6841 defined is given along with the type signature and name of the function.\n\
6842 \n\
6843 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6844 listed. If MODREGEXP is provided then only functions in modules matching\n\
6845 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6846 type signature matches TYPEREGEXP are listed.\n\
6847 \n\
6848 The -q flag suppresses printing some header information."),
6849 &info_module_cmdlist);
6850 set_cmd_completer_handle_brkchars
6851 (c, info_module_var_func_command_completer);
6852
6853 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6854 Display variables arranged by modules.\n\
6855 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6856 Print a summary of all variables within each Fortran module, grouped by\n\
6857 module and file. For each variable the line on which the variable is\n\
6858 defined is given along with the type and name of the variable.\n\
6859 \n\
6860 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6861 listed. If MODREGEXP is provided then only variables in modules matching\n\
6862 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6863 type matches TYPEREGEXP are listed.\n\
6864 \n\
6865 The -q flag suppresses printing some header information."),
6866 &info_module_cmdlist);
6867 set_cmd_completer_handle_brkchars
6868 (c, info_module_var_func_command_completer);
6869
6870 add_com ("rbreak", class_breakpoint, rbreak_command,
6871 _("Set a breakpoint for all functions matching REGEXP."));
6872
6873 add_setshow_enum_cmd ("multiple-symbols", no_class,
6874 multiple_symbols_modes, &multiple_symbols_mode,
6875 _("\
6876 Set how the debugger handles ambiguities in expressions."), _("\
6877 Show how the debugger handles ambiguities in expressions."), _("\
6878 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6879 NULL, NULL, &setlist, &showlist);
6880
6881 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6882 &basenames_may_differ, _("\
6883 Set whether a source file may have multiple base names."), _("\
6884 Show whether a source file may have multiple base names."), _("\
6885 (A \"base name\" is the name of a file with the directory part removed.\n\
6886 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6887 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6888 before comparing them. Canonicalization is an expensive operation,\n\
6889 but it allows the same file be known by more than one base name.\n\
6890 If not set (the default), all source files are assumed to have just\n\
6891 one base name, and gdb will do file name comparisons more efficiently."),
6892 NULL, NULL,
6893 &setlist, &showlist);
6894
6895 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6896 _("Set debugging of symbol table creation."),
6897 _("Show debugging of symbol table creation."), _("\
6898 When enabled (non-zero), debugging messages are printed when building\n\
6899 symbol tables. A value of 1 (one) normally provides enough information.\n\
6900 A value greater than 1 provides more verbose information."),
6901 NULL,
6902 NULL,
6903 &setdebuglist, &showdebuglist);
6904
6905 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6906 _("\
6907 Set debugging of symbol lookup."), _("\
6908 Show debugging of symbol lookup."), _("\
6909 When enabled (non-zero), symbol lookups are logged."),
6910 NULL, NULL,
6911 &setdebuglist, &showdebuglist);
6912
6913 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6914 &new_symbol_cache_size,
6915 _("Set the size of the symbol cache."),
6916 _("Show the size of the symbol cache."), _("\
6917 The size of the symbol cache.\n\
6918 If zero then the symbol cache is disabled."),
6919 set_symbol_cache_size_handler, NULL,
6920 &maintenance_set_cmdlist,
6921 &maintenance_show_cmdlist);
6922
6923 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6924 _("Dump the symbol cache for each program space."),
6925 &maintenanceprintlist);
6926
6927 add_cmd ("symbol-cache-statistics", class_maintenance,
6928 maintenance_print_symbol_cache_statistics,
6929 _("Print symbol cache statistics for each program space."),
6930 &maintenanceprintlist);
6931
6932 add_cmd ("flush-symbol-cache", class_maintenance,
6933 maintenance_flush_symbol_cache,
6934 _("Flush the symbol cache for each program space."),
6935 &maintenancelist);
6936
6937 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6938 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6939 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6940 }