PR python/20190 - compute TLS symbol without a frame
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_java
672 || gsymbol->language == language_objc
673 || gsymbol->language == language_fortran)
674 {
675 symbol_set_demangled_name (gsymbol, NULL, obstack);
676 }
677 else if (gsymbol->language == language_ada)
678 {
679 gdb_assert (gsymbol->ada_mangled == 0);
680 gsymbol->language_specific.obstack = obstack;
681 }
682 else
683 {
684 memset (&gsymbol->language_specific, 0,
685 sizeof (gsymbol->language_specific));
686 }
687 }
688
689 /* Functions to initialize a symbol's mangled name. */
690
691 /* Objects of this type are stored in the demangled name hash table. */
692 struct demangled_name_entry
693 {
694 const char *mangled;
695 char demangled[1];
696 };
697
698 /* Hash function for the demangled name hash. */
699
700 static hashval_t
701 hash_demangled_name_entry (const void *data)
702 {
703 const struct demangled_name_entry *e
704 = (const struct demangled_name_entry *) data;
705
706 return htab_hash_string (e->mangled);
707 }
708
709 /* Equality function for the demangled name hash. */
710
711 static int
712 eq_demangled_name_entry (const void *a, const void *b)
713 {
714 const struct demangled_name_entry *da
715 = (const struct demangled_name_entry *) a;
716 const struct demangled_name_entry *db
717 = (const struct demangled_name_entry *) b;
718
719 return strcmp (da->mangled, db->mangled) == 0;
720 }
721
722 /* Create the hash table used for demangled names. Each hash entry is
723 a pair of strings; one for the mangled name and one for the demangled
724 name. The entry is hashed via just the mangled name. */
725
726 static void
727 create_demangled_names_hash (struct objfile *objfile)
728 {
729 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
730 The hash table code will round this up to the next prime number.
731 Choosing a much larger table size wastes memory, and saves only about
732 1% in symbol reading. */
733
734 objfile->per_bfd->demangled_names_hash = htab_create_alloc
735 (256, hash_demangled_name_entry, eq_demangled_name_entry,
736 NULL, xcalloc, xfree);
737 }
738
739 /* Try to determine the demangled name for a symbol, based on the
740 language of that symbol. If the language is set to language_auto,
741 it will attempt to find any demangling algorithm that works and
742 then set the language appropriately. The returned name is allocated
743 by the demangler and should be xfree'd. */
744
745 static char *
746 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
747 const char *mangled)
748 {
749 char *demangled = NULL;
750 int i;
751 int recognized;
752
753 if (gsymbol->language == language_unknown)
754 gsymbol->language = language_auto;
755
756 if (gsymbol->language != language_auto)
757 {
758 const struct language_defn *lang = language_def (gsymbol->language);
759
760 language_sniff_from_mangled_name (lang, mangled, &demangled);
761 return demangled;
762 }
763
764 for (i = language_unknown; i < nr_languages; ++i)
765 {
766 enum language l = (enum language) i;
767 const struct language_defn *lang = language_def (l);
768
769 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
770 {
771 gsymbol->language = l;
772 return demangled;
773 }
774 }
775
776 return NULL;
777 }
778
779 /* Set both the mangled and demangled (if any) names for GSYMBOL based
780 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
781 objfile's obstack; but if COPY_NAME is 0 and if NAME is
782 NUL-terminated, then this function assumes that NAME is already
783 correctly saved (either permanently or with a lifetime tied to the
784 objfile), and it will not be copied.
785
786 The hash table corresponding to OBJFILE is used, and the memory
787 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
788 so the pointer can be discarded after calling this function. */
789
790 /* We have to be careful when dealing with Java names: when we run
791 into a Java minimal symbol, we don't know it's a Java symbol, so it
792 gets demangled as a C++ name. This is unfortunate, but there's not
793 much we can do about it: but when demangling partial symbols and
794 regular symbols, we'd better not reuse the wrong demangled name.
795 (See PR gdb/1039.) We solve this by putting a distinctive prefix
796 on Java names when storing them in the hash table. */
797
798 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
799 don't mind the Java prefix so much: different languages have
800 different demangling requirements, so it's only natural that we
801 need to keep language data around in our demangling cache. But
802 it's not good that the minimal symbol has the wrong demangled name.
803 Unfortunately, I can't think of any easy solution to that
804 problem. */
805
806 #define JAVA_PREFIX "##JAVA$$"
807 #define JAVA_PREFIX_LEN 8
808
809 void
810 symbol_set_names (struct general_symbol_info *gsymbol,
811 const char *linkage_name, int len, int copy_name,
812 struct objfile *objfile)
813 {
814 struct demangled_name_entry **slot;
815 /* A 0-terminated copy of the linkage name. */
816 const char *linkage_name_copy;
817 /* A copy of the linkage name that might have a special Java prefix
818 added to it, for use when looking names up in the hash table. */
819 const char *lookup_name;
820 /* The length of lookup_name. */
821 int lookup_len;
822 struct demangled_name_entry entry;
823 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
824
825 if (gsymbol->language == language_ada)
826 {
827 /* In Ada, we do the symbol lookups using the mangled name, so
828 we can save some space by not storing the demangled name.
829
830 As a side note, we have also observed some overlap between
831 the C++ mangling and Ada mangling, similarly to what has
832 been observed with Java. Because we don't store the demangled
833 name with the symbol, we don't need to use the same trick
834 as Java. */
835 if (!copy_name)
836 gsymbol->name = linkage_name;
837 else
838 {
839 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
840 len + 1);
841
842 memcpy (name, linkage_name, len);
843 name[len] = '\0';
844 gsymbol->name = name;
845 }
846 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
847
848 return;
849 }
850
851 if (per_bfd->demangled_names_hash == NULL)
852 create_demangled_names_hash (objfile);
853
854 /* The stabs reader generally provides names that are not
855 NUL-terminated; most of the other readers don't do this, so we
856 can just use the given copy, unless we're in the Java case. */
857 if (gsymbol->language == language_java)
858 {
859 char *alloc_name;
860
861 lookup_len = len + JAVA_PREFIX_LEN;
862 alloc_name = (char *) alloca (lookup_len + 1);
863 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
864 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
865 alloc_name[lookup_len] = '\0';
866
867 lookup_name = alloc_name;
868 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
869 }
870 else if (linkage_name[len] != '\0')
871 {
872 char *alloc_name;
873
874 lookup_len = len;
875 alloc_name = (char *) alloca (lookup_len + 1);
876 memcpy (alloc_name, linkage_name, len);
877 alloc_name[lookup_len] = '\0';
878
879 lookup_name = alloc_name;
880 linkage_name_copy = alloc_name;
881 }
882 else
883 {
884 lookup_len = len;
885 lookup_name = linkage_name;
886 linkage_name_copy = linkage_name;
887 }
888
889 entry.mangled = lookup_name;
890 slot = ((struct demangled_name_entry **)
891 htab_find_slot (per_bfd->demangled_names_hash,
892 &entry, INSERT));
893
894 /* If this name is not in the hash table, add it. */
895 if (*slot == NULL
896 /* A C version of the symbol may have already snuck into the table.
897 This happens to, e.g., main.init (__go_init_main). Cope. */
898 || (gsymbol->language == language_go
899 && (*slot)->demangled[0] == '\0'))
900 {
901 char *demangled_name = symbol_find_demangled_name (gsymbol,
902 linkage_name_copy);
903 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
904
905 /* Suppose we have demangled_name==NULL, copy_name==0, and
906 lookup_name==linkage_name. In this case, we already have the
907 mangled name saved, and we don't have a demangled name. So,
908 you might think we could save a little space by not recording
909 this in the hash table at all.
910
911 It turns out that it is actually important to still save such
912 an entry in the hash table, because storing this name gives
913 us better bcache hit rates for partial symbols. */
914 if (!copy_name && lookup_name == linkage_name)
915 {
916 *slot
917 = ((struct demangled_name_entry *)
918 obstack_alloc (&per_bfd->storage_obstack,
919 offsetof (struct demangled_name_entry, demangled)
920 + demangled_len + 1));
921 (*slot)->mangled = lookup_name;
922 }
923 else
924 {
925 char *mangled_ptr;
926
927 /* If we must copy the mangled name, put it directly after
928 the demangled name so we can have a single
929 allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 offsetof (struct demangled_name_entry, demangled)
934 + lookup_len + demangled_len + 2));
935 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
936 strcpy (mangled_ptr, lookup_name);
937 (*slot)->mangled = mangled_ptr;
938 }
939
940 if (demangled_name != NULL)
941 {
942 strcpy ((*slot)->demangled, demangled_name);
943 xfree (demangled_name);
944 }
945 else
946 (*slot)->demangled[0] = '\0';
947 }
948
949 gsymbol->name = (*slot)->mangled + lookup_len - len;
950 if ((*slot)->demangled[0] != '\0')
951 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
952 &per_bfd->storage_obstack);
953 else
954 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
955 }
956
957 /* Return the source code name of a symbol. In languages where
958 demangling is necessary, this is the demangled name. */
959
960 const char *
961 symbol_natural_name (const struct general_symbol_info *gsymbol)
962 {
963 switch (gsymbol->language)
964 {
965 case language_cplus:
966 case language_d:
967 case language_go:
968 case language_java:
969 case language_objc:
970 case language_fortran:
971 if (symbol_get_demangled_name (gsymbol) != NULL)
972 return symbol_get_demangled_name (gsymbol);
973 break;
974 case language_ada:
975 return ada_decode_symbol (gsymbol);
976 default:
977 break;
978 }
979 return gsymbol->name;
980 }
981
982 /* Return the demangled name for a symbol based on the language for
983 that symbol. If no demangled name exists, return NULL. */
984
985 const char *
986 symbol_demangled_name (const struct general_symbol_info *gsymbol)
987 {
988 const char *dem_name = NULL;
989
990 switch (gsymbol->language)
991 {
992 case language_cplus:
993 case language_d:
994 case language_go:
995 case language_java:
996 case language_objc:
997 case language_fortran:
998 dem_name = symbol_get_demangled_name (gsymbol);
999 break;
1000 case language_ada:
1001 dem_name = ada_decode_symbol (gsymbol);
1002 break;
1003 default:
1004 break;
1005 }
1006 return dem_name;
1007 }
1008
1009 /* Return the search name of a symbol---generally the demangled or
1010 linkage name of the symbol, depending on how it will be searched for.
1011 If there is no distinct demangled name, then returns the same value
1012 (same pointer) as SYMBOL_LINKAGE_NAME. */
1013
1014 const char *
1015 symbol_search_name (const struct general_symbol_info *gsymbol)
1016 {
1017 if (gsymbol->language == language_ada)
1018 return gsymbol->name;
1019 else
1020 return symbol_natural_name (gsymbol);
1021 }
1022
1023 /* Initialize the structure fields to zero values. */
1024
1025 void
1026 init_sal (struct symtab_and_line *sal)
1027 {
1028 memset (sal, 0, sizeof (*sal));
1029 }
1030 \f
1031
1032 /* Return 1 if the two sections are the same, or if they could
1033 plausibly be copies of each other, one in an original object
1034 file and another in a separated debug file. */
1035
1036 int
1037 matching_obj_sections (struct obj_section *obj_first,
1038 struct obj_section *obj_second)
1039 {
1040 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1041 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1042 struct objfile *obj;
1043
1044 /* If they're the same section, then they match. */
1045 if (first == second)
1046 return 1;
1047
1048 /* If either is NULL, give up. */
1049 if (first == NULL || second == NULL)
1050 return 0;
1051
1052 /* This doesn't apply to absolute symbols. */
1053 if (first->owner == NULL || second->owner == NULL)
1054 return 0;
1055
1056 /* If they're in the same object file, they must be different sections. */
1057 if (first->owner == second->owner)
1058 return 0;
1059
1060 /* Check whether the two sections are potentially corresponding. They must
1061 have the same size, address, and name. We can't compare section indexes,
1062 which would be more reliable, because some sections may have been
1063 stripped. */
1064 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1065 return 0;
1066
1067 /* In-memory addresses may start at a different offset, relativize them. */
1068 if (bfd_get_section_vma (first->owner, first)
1069 - bfd_get_start_address (first->owner)
1070 != bfd_get_section_vma (second->owner, second)
1071 - bfd_get_start_address (second->owner))
1072 return 0;
1073
1074 if (bfd_get_section_name (first->owner, first) == NULL
1075 || bfd_get_section_name (second->owner, second) == NULL
1076 || strcmp (bfd_get_section_name (first->owner, first),
1077 bfd_get_section_name (second->owner, second)) != 0)
1078 return 0;
1079
1080 /* Otherwise check that they are in corresponding objfiles. */
1081
1082 ALL_OBJFILES (obj)
1083 if (obj->obfd == first->owner)
1084 break;
1085 gdb_assert (obj != NULL);
1086
1087 if (obj->separate_debug_objfile != NULL
1088 && obj->separate_debug_objfile->obfd == second->owner)
1089 return 1;
1090 if (obj->separate_debug_objfile_backlink != NULL
1091 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1092 return 1;
1093
1094 return 0;
1095 }
1096
1097 /* See symtab.h. */
1098
1099 void
1100 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1101 {
1102 struct objfile *objfile;
1103 struct bound_minimal_symbol msymbol;
1104
1105 /* If we know that this is not a text address, return failure. This is
1106 necessary because we loop based on texthigh and textlow, which do
1107 not include the data ranges. */
1108 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1109 if (msymbol.minsym
1110 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1111 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1112 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1113 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1114 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1115 return;
1116
1117 ALL_OBJFILES (objfile)
1118 {
1119 struct compunit_symtab *cust = NULL;
1120
1121 if (objfile->sf)
1122 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1123 pc, section, 0);
1124 if (cust)
1125 return;
1126 }
1127 }
1128 \f
1129 /* Hash function for the symbol cache. */
1130
1131 static unsigned int
1132 hash_symbol_entry (const struct objfile *objfile_context,
1133 const char *name, domain_enum domain)
1134 {
1135 unsigned int hash = (uintptr_t) objfile_context;
1136
1137 if (name != NULL)
1138 hash += htab_hash_string (name);
1139
1140 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1141 to map to the same slot. */
1142 if (domain == STRUCT_DOMAIN)
1143 hash += VAR_DOMAIN * 7;
1144 else
1145 hash += domain * 7;
1146
1147 return hash;
1148 }
1149
1150 /* Equality function for the symbol cache. */
1151
1152 static int
1153 eq_symbol_entry (const struct symbol_cache_slot *slot,
1154 const struct objfile *objfile_context,
1155 const char *name, domain_enum domain)
1156 {
1157 const char *slot_name;
1158 domain_enum slot_domain;
1159
1160 if (slot->state == SYMBOL_SLOT_UNUSED)
1161 return 0;
1162
1163 if (slot->objfile_context != objfile_context)
1164 return 0;
1165
1166 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1167 {
1168 slot_name = slot->value.not_found.name;
1169 slot_domain = slot->value.not_found.domain;
1170 }
1171 else
1172 {
1173 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1174 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1175 }
1176
1177 /* NULL names match. */
1178 if (slot_name == NULL && name == NULL)
1179 {
1180 /* But there's no point in calling symbol_matches_domain in the
1181 SYMBOL_SLOT_FOUND case. */
1182 if (slot_domain != domain)
1183 return 0;
1184 }
1185 else if (slot_name != NULL && name != NULL)
1186 {
1187 /* It's important that we use the same comparison that was done the
1188 first time through. If the slot records a found symbol, then this
1189 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1190 It also means using symbol_matches_domain for found symbols.
1191 See block.c.
1192
1193 If the slot records a not-found symbol, then require a precise match.
1194 We could still be lax with whitespace like strcmp_iw though. */
1195
1196 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1197 {
1198 if (strcmp (slot_name, name) != 0)
1199 return 0;
1200 if (slot_domain != domain)
1201 return 0;
1202 }
1203 else
1204 {
1205 struct symbol *sym = slot->value.found.symbol;
1206
1207 if (strcmp_iw (slot_name, name) != 0)
1208 return 0;
1209 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1210 slot_domain, domain))
1211 return 0;
1212 }
1213 }
1214 else
1215 {
1216 /* Only one name is NULL. */
1217 return 0;
1218 }
1219
1220 return 1;
1221 }
1222
1223 /* Given a cache of size SIZE, return the size of the struct (with variable
1224 length array) in bytes. */
1225
1226 static size_t
1227 symbol_cache_byte_size (unsigned int size)
1228 {
1229 return (sizeof (struct block_symbol_cache)
1230 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1231 }
1232
1233 /* Resize CACHE. */
1234
1235 static void
1236 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1237 {
1238 /* If there's no change in size, don't do anything.
1239 All caches have the same size, so we can just compare with the size
1240 of the global symbols cache. */
1241 if ((cache->global_symbols != NULL
1242 && cache->global_symbols->size == new_size)
1243 || (cache->global_symbols == NULL
1244 && new_size == 0))
1245 return;
1246
1247 xfree (cache->global_symbols);
1248 xfree (cache->static_symbols);
1249
1250 if (new_size == 0)
1251 {
1252 cache->global_symbols = NULL;
1253 cache->static_symbols = NULL;
1254 }
1255 else
1256 {
1257 size_t total_size = symbol_cache_byte_size (new_size);
1258
1259 cache->global_symbols
1260 = (struct block_symbol_cache *) xcalloc (1, total_size);
1261 cache->static_symbols
1262 = (struct block_symbol_cache *) xcalloc (1, total_size);
1263 cache->global_symbols->size = new_size;
1264 cache->static_symbols->size = new_size;
1265 }
1266 }
1267
1268 /* Make a symbol cache of size SIZE. */
1269
1270 static struct symbol_cache *
1271 make_symbol_cache (unsigned int size)
1272 {
1273 struct symbol_cache *cache;
1274
1275 cache = XCNEW (struct symbol_cache);
1276 resize_symbol_cache (cache, symbol_cache_size);
1277 return cache;
1278 }
1279
1280 /* Free the space used by CACHE. */
1281
1282 static void
1283 free_symbol_cache (struct symbol_cache *cache)
1284 {
1285 xfree (cache->global_symbols);
1286 xfree (cache->static_symbols);
1287 xfree (cache);
1288 }
1289
1290 /* Return the symbol cache of PSPACE.
1291 Create one if it doesn't exist yet. */
1292
1293 static struct symbol_cache *
1294 get_symbol_cache (struct program_space *pspace)
1295 {
1296 struct symbol_cache *cache
1297 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1298
1299 if (cache == NULL)
1300 {
1301 cache = make_symbol_cache (symbol_cache_size);
1302 set_program_space_data (pspace, symbol_cache_key, cache);
1303 }
1304
1305 return cache;
1306 }
1307
1308 /* Delete the symbol cache of PSPACE.
1309 Called when PSPACE is destroyed. */
1310
1311 static void
1312 symbol_cache_cleanup (struct program_space *pspace, void *data)
1313 {
1314 struct symbol_cache *cache = (struct symbol_cache *) data;
1315
1316 free_symbol_cache (cache);
1317 }
1318
1319 /* Set the size of the symbol cache in all program spaces. */
1320
1321 static void
1322 set_symbol_cache_size (unsigned int new_size)
1323 {
1324 struct program_space *pspace;
1325
1326 ALL_PSPACES (pspace)
1327 {
1328 struct symbol_cache *cache
1329 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1330
1331 /* The pspace could have been created but not have a cache yet. */
1332 if (cache != NULL)
1333 resize_symbol_cache (cache, new_size);
1334 }
1335 }
1336
1337 /* Called when symbol-cache-size is set. */
1338
1339 static void
1340 set_symbol_cache_size_handler (char *args, int from_tty,
1341 struct cmd_list_element *c)
1342 {
1343 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1344 {
1345 /* Restore the previous value.
1346 This is the value the "show" command prints. */
1347 new_symbol_cache_size = symbol_cache_size;
1348
1349 error (_("Symbol cache size is too large, max is %u."),
1350 MAX_SYMBOL_CACHE_SIZE);
1351 }
1352 symbol_cache_size = new_symbol_cache_size;
1353
1354 set_symbol_cache_size (symbol_cache_size);
1355 }
1356
1357 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1358 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1359 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1360 failed (and thus this one will too), or NULL if the symbol is not present
1361 in the cache.
1362 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1363 set to the cache and slot of the symbol to save the result of a full lookup
1364 attempt. */
1365
1366 static struct block_symbol
1367 symbol_cache_lookup (struct symbol_cache *cache,
1368 struct objfile *objfile_context, int block,
1369 const char *name, domain_enum domain,
1370 struct block_symbol_cache **bsc_ptr,
1371 struct symbol_cache_slot **slot_ptr)
1372 {
1373 struct block_symbol_cache *bsc;
1374 unsigned int hash;
1375 struct symbol_cache_slot *slot;
1376
1377 if (block == GLOBAL_BLOCK)
1378 bsc = cache->global_symbols;
1379 else
1380 bsc = cache->static_symbols;
1381 if (bsc == NULL)
1382 {
1383 *bsc_ptr = NULL;
1384 *slot_ptr = NULL;
1385 return (struct block_symbol) {NULL, NULL};
1386 }
1387
1388 hash = hash_symbol_entry (objfile_context, name, domain);
1389 slot = bsc->symbols + hash % bsc->size;
1390
1391 if (eq_symbol_entry (slot, objfile_context, name, domain))
1392 {
1393 if (symbol_lookup_debug)
1394 fprintf_unfiltered (gdb_stdlog,
1395 "%s block symbol cache hit%s for %s, %s\n",
1396 block == GLOBAL_BLOCK ? "Global" : "Static",
1397 slot->state == SYMBOL_SLOT_NOT_FOUND
1398 ? " (not found)" : "",
1399 name, domain_name (domain));
1400 ++bsc->hits;
1401 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1402 return SYMBOL_LOOKUP_FAILED;
1403 return slot->value.found;
1404 }
1405
1406 /* Symbol is not present in the cache. */
1407
1408 *bsc_ptr = bsc;
1409 *slot_ptr = slot;
1410
1411 if (symbol_lookup_debug)
1412 {
1413 fprintf_unfiltered (gdb_stdlog,
1414 "%s block symbol cache miss for %s, %s\n",
1415 block == GLOBAL_BLOCK ? "Global" : "Static",
1416 name, domain_name (domain));
1417 }
1418 ++bsc->misses;
1419 return (struct block_symbol) {NULL, NULL};
1420 }
1421
1422 /* Clear out SLOT. */
1423
1424 static void
1425 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1426 {
1427 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1428 xfree (slot->value.not_found.name);
1429 slot->state = SYMBOL_SLOT_UNUSED;
1430 }
1431
1432 /* Mark SYMBOL as found in SLOT.
1433 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1434 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1435 necessarily the objfile the symbol was found in. */
1436
1437 static void
1438 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1439 struct symbol_cache_slot *slot,
1440 struct objfile *objfile_context,
1441 struct symbol *symbol,
1442 const struct block *block)
1443 {
1444 if (bsc == NULL)
1445 return;
1446 if (slot->state != SYMBOL_SLOT_UNUSED)
1447 {
1448 ++bsc->collisions;
1449 symbol_cache_clear_slot (slot);
1450 }
1451 slot->state = SYMBOL_SLOT_FOUND;
1452 slot->objfile_context = objfile_context;
1453 slot->value.found.symbol = symbol;
1454 slot->value.found.block = block;
1455 }
1456
1457 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1458 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1459 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1460
1461 static void
1462 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1463 struct symbol_cache_slot *slot,
1464 struct objfile *objfile_context,
1465 const char *name, domain_enum domain)
1466 {
1467 if (bsc == NULL)
1468 return;
1469 if (slot->state != SYMBOL_SLOT_UNUSED)
1470 {
1471 ++bsc->collisions;
1472 symbol_cache_clear_slot (slot);
1473 }
1474 slot->state = SYMBOL_SLOT_NOT_FOUND;
1475 slot->objfile_context = objfile_context;
1476 slot->value.not_found.name = xstrdup (name);
1477 slot->value.not_found.domain = domain;
1478 }
1479
1480 /* Flush the symbol cache of PSPACE. */
1481
1482 static void
1483 symbol_cache_flush (struct program_space *pspace)
1484 {
1485 struct symbol_cache *cache
1486 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1487 int pass;
1488
1489 if (cache == NULL)
1490 return;
1491 if (cache->global_symbols == NULL)
1492 {
1493 gdb_assert (symbol_cache_size == 0);
1494 gdb_assert (cache->static_symbols == NULL);
1495 return;
1496 }
1497
1498 /* If the cache is untouched since the last flush, early exit.
1499 This is important for performance during the startup of a program linked
1500 with 100s (or 1000s) of shared libraries. */
1501 if (cache->global_symbols->misses == 0
1502 && cache->static_symbols->misses == 0)
1503 return;
1504
1505 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1506 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1507
1508 for (pass = 0; pass < 2; ++pass)
1509 {
1510 struct block_symbol_cache *bsc
1511 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1512 unsigned int i;
1513
1514 for (i = 0; i < bsc->size; ++i)
1515 symbol_cache_clear_slot (&bsc->symbols[i]);
1516 }
1517
1518 cache->global_symbols->hits = 0;
1519 cache->global_symbols->misses = 0;
1520 cache->global_symbols->collisions = 0;
1521 cache->static_symbols->hits = 0;
1522 cache->static_symbols->misses = 0;
1523 cache->static_symbols->collisions = 0;
1524 }
1525
1526 /* Dump CACHE. */
1527
1528 static void
1529 symbol_cache_dump (const struct symbol_cache *cache)
1530 {
1531 int pass;
1532
1533 if (cache->global_symbols == NULL)
1534 {
1535 printf_filtered (" <disabled>\n");
1536 return;
1537 }
1538
1539 for (pass = 0; pass < 2; ++pass)
1540 {
1541 const struct block_symbol_cache *bsc
1542 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1543 unsigned int i;
1544
1545 if (pass == 0)
1546 printf_filtered ("Global symbols:\n");
1547 else
1548 printf_filtered ("Static symbols:\n");
1549
1550 for (i = 0; i < bsc->size; ++i)
1551 {
1552 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1553
1554 QUIT;
1555
1556 switch (slot->state)
1557 {
1558 case SYMBOL_SLOT_UNUSED:
1559 break;
1560 case SYMBOL_SLOT_NOT_FOUND:
1561 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1562 host_address_to_string (slot->objfile_context),
1563 slot->value.not_found.name,
1564 domain_name (slot->value.not_found.domain));
1565 break;
1566 case SYMBOL_SLOT_FOUND:
1567 {
1568 struct symbol *found = slot->value.found.symbol;
1569 const struct objfile *context = slot->objfile_context;
1570
1571 printf_filtered (" [%4u] = %s, %s %s\n", i,
1572 host_address_to_string (context),
1573 SYMBOL_PRINT_NAME (found),
1574 domain_name (SYMBOL_DOMAIN (found)));
1575 break;
1576 }
1577 }
1578 }
1579 }
1580 }
1581
1582 /* The "mt print symbol-cache" command. */
1583
1584 static void
1585 maintenance_print_symbol_cache (char *args, int from_tty)
1586 {
1587 struct program_space *pspace;
1588
1589 ALL_PSPACES (pspace)
1590 {
1591 struct symbol_cache *cache;
1592
1593 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1594 pspace->num,
1595 pspace->symfile_object_file != NULL
1596 ? objfile_name (pspace->symfile_object_file)
1597 : "(no object file)");
1598
1599 /* If the cache hasn't been created yet, avoid creating one. */
1600 cache
1601 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1602 if (cache == NULL)
1603 printf_filtered (" <empty>\n");
1604 else
1605 symbol_cache_dump (cache);
1606 }
1607 }
1608
1609 /* The "mt flush-symbol-cache" command. */
1610
1611 static void
1612 maintenance_flush_symbol_cache (char *args, int from_tty)
1613 {
1614 struct program_space *pspace;
1615
1616 ALL_PSPACES (pspace)
1617 {
1618 symbol_cache_flush (pspace);
1619 }
1620 }
1621
1622 /* Print usage statistics of CACHE. */
1623
1624 static void
1625 symbol_cache_stats (struct symbol_cache *cache)
1626 {
1627 int pass;
1628
1629 if (cache->global_symbols == NULL)
1630 {
1631 printf_filtered (" <disabled>\n");
1632 return;
1633 }
1634
1635 for (pass = 0; pass < 2; ++pass)
1636 {
1637 const struct block_symbol_cache *bsc
1638 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1639
1640 QUIT;
1641
1642 if (pass == 0)
1643 printf_filtered ("Global block cache stats:\n");
1644 else
1645 printf_filtered ("Static block cache stats:\n");
1646
1647 printf_filtered (" size: %u\n", bsc->size);
1648 printf_filtered (" hits: %u\n", bsc->hits);
1649 printf_filtered (" misses: %u\n", bsc->misses);
1650 printf_filtered (" collisions: %u\n", bsc->collisions);
1651 }
1652 }
1653
1654 /* The "mt print symbol-cache-statistics" command. */
1655
1656 static void
1657 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1658 {
1659 struct program_space *pspace;
1660
1661 ALL_PSPACES (pspace)
1662 {
1663 struct symbol_cache *cache;
1664
1665 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1666 pspace->num,
1667 pspace->symfile_object_file != NULL
1668 ? objfile_name (pspace->symfile_object_file)
1669 : "(no object file)");
1670
1671 /* If the cache hasn't been created yet, avoid creating one. */
1672 cache
1673 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1674 if (cache == NULL)
1675 printf_filtered (" empty, no stats available\n");
1676 else
1677 symbol_cache_stats (cache);
1678 }
1679 }
1680
1681 /* This module's 'new_objfile' observer. */
1682
1683 static void
1684 symtab_new_objfile_observer (struct objfile *objfile)
1685 {
1686 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1687 symbol_cache_flush (current_program_space);
1688 }
1689
1690 /* This module's 'free_objfile' observer. */
1691
1692 static void
1693 symtab_free_objfile_observer (struct objfile *objfile)
1694 {
1695 symbol_cache_flush (objfile->pspace);
1696 }
1697 \f
1698 /* Debug symbols usually don't have section information. We need to dig that
1699 out of the minimal symbols and stash that in the debug symbol. */
1700
1701 void
1702 fixup_section (struct general_symbol_info *ginfo,
1703 CORE_ADDR addr, struct objfile *objfile)
1704 {
1705 struct minimal_symbol *msym;
1706
1707 /* First, check whether a minimal symbol with the same name exists
1708 and points to the same address. The address check is required
1709 e.g. on PowerPC64, where the minimal symbol for a function will
1710 point to the function descriptor, while the debug symbol will
1711 point to the actual function code. */
1712 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1713 if (msym)
1714 ginfo->section = MSYMBOL_SECTION (msym);
1715 else
1716 {
1717 /* Static, function-local variables do appear in the linker
1718 (minimal) symbols, but are frequently given names that won't
1719 be found via lookup_minimal_symbol(). E.g., it has been
1720 observed in frv-uclinux (ELF) executables that a static,
1721 function-local variable named "foo" might appear in the
1722 linker symbols as "foo.6" or "foo.3". Thus, there is no
1723 point in attempting to extend the lookup-by-name mechanism to
1724 handle this case due to the fact that there can be multiple
1725 names.
1726
1727 So, instead, search the section table when lookup by name has
1728 failed. The ``addr'' and ``endaddr'' fields may have already
1729 been relocated. If so, the relocation offset (i.e. the
1730 ANOFFSET value) needs to be subtracted from these values when
1731 performing the comparison. We unconditionally subtract it,
1732 because, when no relocation has been performed, the ANOFFSET
1733 value will simply be zero.
1734
1735 The address of the symbol whose section we're fixing up HAS
1736 NOT BEEN adjusted (relocated) yet. It can't have been since
1737 the section isn't yet known and knowing the section is
1738 necessary in order to add the correct relocation value. In
1739 other words, we wouldn't even be in this function (attempting
1740 to compute the section) if it were already known.
1741
1742 Note that it is possible to search the minimal symbols
1743 (subtracting the relocation value if necessary) to find the
1744 matching minimal symbol, but this is overkill and much less
1745 efficient. It is not necessary to find the matching minimal
1746 symbol, only its section.
1747
1748 Note that this technique (of doing a section table search)
1749 can fail when unrelocated section addresses overlap. For
1750 this reason, we still attempt a lookup by name prior to doing
1751 a search of the section table. */
1752
1753 struct obj_section *s;
1754 int fallback = -1;
1755
1756 ALL_OBJFILE_OSECTIONS (objfile, s)
1757 {
1758 int idx = s - objfile->sections;
1759 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1760
1761 if (fallback == -1)
1762 fallback = idx;
1763
1764 if (obj_section_addr (s) - offset <= addr
1765 && addr < obj_section_endaddr (s) - offset)
1766 {
1767 ginfo->section = idx;
1768 return;
1769 }
1770 }
1771
1772 /* If we didn't find the section, assume it is in the first
1773 section. If there is no allocated section, then it hardly
1774 matters what we pick, so just pick zero. */
1775 if (fallback == -1)
1776 ginfo->section = 0;
1777 else
1778 ginfo->section = fallback;
1779 }
1780 }
1781
1782 struct symbol *
1783 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1784 {
1785 CORE_ADDR addr;
1786
1787 if (!sym)
1788 return NULL;
1789
1790 if (!SYMBOL_OBJFILE_OWNED (sym))
1791 return sym;
1792
1793 /* We either have an OBJFILE, or we can get at it from the sym's
1794 symtab. Anything else is a bug. */
1795 gdb_assert (objfile || symbol_symtab (sym));
1796
1797 if (objfile == NULL)
1798 objfile = symbol_objfile (sym);
1799
1800 if (SYMBOL_OBJ_SECTION (objfile, sym))
1801 return sym;
1802
1803 /* We should have an objfile by now. */
1804 gdb_assert (objfile);
1805
1806 switch (SYMBOL_CLASS (sym))
1807 {
1808 case LOC_STATIC:
1809 case LOC_LABEL:
1810 addr = SYMBOL_VALUE_ADDRESS (sym);
1811 break;
1812 case LOC_BLOCK:
1813 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1814 break;
1815
1816 default:
1817 /* Nothing else will be listed in the minsyms -- no use looking
1818 it up. */
1819 return sym;
1820 }
1821
1822 fixup_section (&sym->ginfo, addr, objfile);
1823
1824 return sym;
1825 }
1826
1827 /* Compute the demangled form of NAME as used by the various symbol
1828 lookup functions. The result is stored in *RESULT_NAME. Returns a
1829 cleanup which can be used to clean up the result.
1830
1831 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1832 Normally, Ada symbol lookups are performed using the encoded name
1833 rather than the demangled name, and so it might seem to make sense
1834 for this function to return an encoded version of NAME.
1835 Unfortunately, we cannot do this, because this function is used in
1836 circumstances where it is not appropriate to try to encode NAME.
1837 For instance, when displaying the frame info, we demangle the name
1838 of each parameter, and then perform a symbol lookup inside our
1839 function using that demangled name. In Ada, certain functions
1840 have internally-generated parameters whose name contain uppercase
1841 characters. Encoding those name would result in those uppercase
1842 characters to become lowercase, and thus cause the symbol lookup
1843 to fail. */
1844
1845 struct cleanup *
1846 demangle_for_lookup (const char *name, enum language lang,
1847 const char **result_name)
1848 {
1849 char *demangled_name = NULL;
1850 const char *modified_name = NULL;
1851 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1852
1853 modified_name = name;
1854
1855 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1856 lookup, so we can always binary search. */
1857 if (lang == language_cplus)
1858 {
1859 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1860 if (demangled_name)
1861 {
1862 modified_name = demangled_name;
1863 make_cleanup (xfree, demangled_name);
1864 }
1865 else
1866 {
1867 /* If we were given a non-mangled name, canonicalize it
1868 according to the language (so far only for C++). */
1869 demangled_name = cp_canonicalize_string (name);
1870 if (demangled_name)
1871 {
1872 modified_name = demangled_name;
1873 make_cleanup (xfree, demangled_name);
1874 }
1875 }
1876 }
1877 else if (lang == language_java)
1878 {
1879 demangled_name = gdb_demangle (name,
1880 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1881 if (demangled_name)
1882 {
1883 modified_name = demangled_name;
1884 make_cleanup (xfree, demangled_name);
1885 }
1886 }
1887 else if (lang == language_d)
1888 {
1889 demangled_name = d_demangle (name, 0);
1890 if (demangled_name)
1891 {
1892 modified_name = demangled_name;
1893 make_cleanup (xfree, demangled_name);
1894 }
1895 }
1896 else if (lang == language_go)
1897 {
1898 demangled_name = go_demangle (name, 0);
1899 if (demangled_name)
1900 {
1901 modified_name = demangled_name;
1902 make_cleanup (xfree, demangled_name);
1903 }
1904 }
1905
1906 *result_name = modified_name;
1907 return cleanup;
1908 }
1909
1910 /* See symtab.h.
1911
1912 This function (or rather its subordinates) have a bunch of loops and
1913 it would seem to be attractive to put in some QUIT's (though I'm not really
1914 sure whether it can run long enough to be really important). But there
1915 are a few calls for which it would appear to be bad news to quit
1916 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1917 that there is C++ code below which can error(), but that probably
1918 doesn't affect these calls since they are looking for a known
1919 variable and thus can probably assume it will never hit the C++
1920 code). */
1921
1922 struct block_symbol
1923 lookup_symbol_in_language (const char *name, const struct block *block,
1924 const domain_enum domain, enum language lang,
1925 struct field_of_this_result *is_a_field_of_this)
1926 {
1927 const char *modified_name;
1928 struct block_symbol returnval;
1929 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1930
1931 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1932 is_a_field_of_this);
1933 do_cleanups (cleanup);
1934
1935 return returnval;
1936 }
1937
1938 /* See symtab.h. */
1939
1940 struct block_symbol
1941 lookup_symbol (const char *name, const struct block *block,
1942 domain_enum domain,
1943 struct field_of_this_result *is_a_field_of_this)
1944 {
1945 return lookup_symbol_in_language (name, block, domain,
1946 current_language->la_language,
1947 is_a_field_of_this);
1948 }
1949
1950 /* See symtab.h. */
1951
1952 struct block_symbol
1953 lookup_language_this (const struct language_defn *lang,
1954 const struct block *block)
1955 {
1956 if (lang->la_name_of_this == NULL || block == NULL)
1957 return (struct block_symbol) {NULL, NULL};
1958
1959 if (symbol_lookup_debug > 1)
1960 {
1961 struct objfile *objfile = lookup_objfile_from_block (block);
1962
1963 fprintf_unfiltered (gdb_stdlog,
1964 "lookup_language_this (%s, %s (objfile %s))",
1965 lang->la_name, host_address_to_string (block),
1966 objfile_debug_name (objfile));
1967 }
1968
1969 while (block)
1970 {
1971 struct symbol *sym;
1972
1973 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1974 if (sym != NULL)
1975 {
1976 if (symbol_lookup_debug > 1)
1977 {
1978 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1979 SYMBOL_PRINT_NAME (sym),
1980 host_address_to_string (sym),
1981 host_address_to_string (block));
1982 }
1983 return (struct block_symbol) {sym, block};
1984 }
1985 if (BLOCK_FUNCTION (block))
1986 break;
1987 block = BLOCK_SUPERBLOCK (block);
1988 }
1989
1990 if (symbol_lookup_debug > 1)
1991 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1992 return (struct block_symbol) {NULL, NULL};
1993 }
1994
1995 /* Given TYPE, a structure/union,
1996 return 1 if the component named NAME from the ultimate target
1997 structure/union is defined, otherwise, return 0. */
1998
1999 static int
2000 check_field (struct type *type, const char *name,
2001 struct field_of_this_result *is_a_field_of_this)
2002 {
2003 int i;
2004
2005 /* The type may be a stub. */
2006 type = check_typedef (type);
2007
2008 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2009 {
2010 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2011
2012 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2013 {
2014 is_a_field_of_this->type = type;
2015 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2016 return 1;
2017 }
2018 }
2019
2020 /* C++: If it was not found as a data field, then try to return it
2021 as a pointer to a method. */
2022
2023 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2024 {
2025 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2026 {
2027 is_a_field_of_this->type = type;
2028 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2029 return 1;
2030 }
2031 }
2032
2033 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2034 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2035 return 1;
2036
2037 return 0;
2038 }
2039
2040 /* Behave like lookup_symbol except that NAME is the natural name
2041 (e.g., demangled name) of the symbol that we're looking for. */
2042
2043 static struct block_symbol
2044 lookup_symbol_aux (const char *name, const struct block *block,
2045 const domain_enum domain, enum language language,
2046 struct field_of_this_result *is_a_field_of_this)
2047 {
2048 struct block_symbol result;
2049 const struct language_defn *langdef;
2050
2051 if (symbol_lookup_debug)
2052 {
2053 struct objfile *objfile = lookup_objfile_from_block (block);
2054
2055 fprintf_unfiltered (gdb_stdlog,
2056 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2057 name, host_address_to_string (block),
2058 objfile != NULL
2059 ? objfile_debug_name (objfile) : "NULL",
2060 domain_name (domain), language_str (language));
2061 }
2062
2063 /* Make sure we do something sensible with is_a_field_of_this, since
2064 the callers that set this parameter to some non-null value will
2065 certainly use it later. If we don't set it, the contents of
2066 is_a_field_of_this are undefined. */
2067 if (is_a_field_of_this != NULL)
2068 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2069
2070 /* Search specified block and its superiors. Don't search
2071 STATIC_BLOCK or GLOBAL_BLOCK. */
2072
2073 result = lookup_local_symbol (name, block, domain, language);
2074 if (result.symbol != NULL)
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2079 host_address_to_string (result.symbol));
2080 }
2081 return result;
2082 }
2083
2084 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2085 check to see if NAME is a field of `this'. */
2086
2087 langdef = language_def (language);
2088
2089 /* Don't do this check if we are searching for a struct. It will
2090 not be found by check_field, but will be found by other
2091 means. */
2092 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2093 {
2094 result = lookup_language_this (langdef, block);
2095
2096 if (result.symbol)
2097 {
2098 struct type *t = result.symbol->type;
2099
2100 /* I'm not really sure that type of this can ever
2101 be typedefed; just be safe. */
2102 t = check_typedef (t);
2103 if (TYPE_CODE (t) == TYPE_CODE_PTR
2104 || TYPE_CODE (t) == TYPE_CODE_REF)
2105 t = TYPE_TARGET_TYPE (t);
2106
2107 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2108 && TYPE_CODE (t) != TYPE_CODE_UNION)
2109 error (_("Internal error: `%s' is not an aggregate"),
2110 langdef->la_name_of_this);
2111
2112 if (check_field (t, name, is_a_field_of_this))
2113 {
2114 if (symbol_lookup_debug)
2115 {
2116 fprintf_unfiltered (gdb_stdlog,
2117 "lookup_symbol_aux (...) = NULL\n");
2118 }
2119 return (struct block_symbol) {NULL, NULL};
2120 }
2121 }
2122 }
2123
2124 /* Now do whatever is appropriate for LANGUAGE to look
2125 up static and global variables. */
2126
2127 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2128 if (result.symbol != NULL)
2129 {
2130 if (symbol_lookup_debug)
2131 {
2132 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2133 host_address_to_string (result.symbol));
2134 }
2135 return result;
2136 }
2137
2138 /* Now search all static file-level symbols. Not strictly correct,
2139 but more useful than an error. */
2140
2141 result = lookup_static_symbol (name, domain);
2142 if (symbol_lookup_debug)
2143 {
2144 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2145 result.symbol != NULL
2146 ? host_address_to_string (result.symbol)
2147 : "NULL");
2148 }
2149 return result;
2150 }
2151
2152 /* Check to see if the symbol is defined in BLOCK or its superiors.
2153 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2154
2155 static struct block_symbol
2156 lookup_local_symbol (const char *name, const struct block *block,
2157 const domain_enum domain,
2158 enum language language)
2159 {
2160 struct symbol *sym;
2161 const struct block *static_block = block_static_block (block);
2162 const char *scope = block_scope (block);
2163
2164 /* Check if either no block is specified or it's a global block. */
2165
2166 if (static_block == NULL)
2167 return (struct block_symbol) {NULL, NULL};
2168
2169 while (block != static_block)
2170 {
2171 sym = lookup_symbol_in_block (name, block, domain);
2172 if (sym != NULL)
2173 return (struct block_symbol) {sym, block};
2174
2175 if (language == language_cplus || language == language_fortran)
2176 {
2177 struct block_symbol sym
2178 = cp_lookup_symbol_imports_or_template (scope, name, block,
2179 domain);
2180
2181 if (sym.symbol != NULL)
2182 return sym;
2183 }
2184
2185 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2186 break;
2187 block = BLOCK_SUPERBLOCK (block);
2188 }
2189
2190 /* We've reached the end of the function without finding a result. */
2191
2192 return (struct block_symbol) {NULL, NULL};
2193 }
2194
2195 /* See symtab.h. */
2196
2197 struct objfile *
2198 lookup_objfile_from_block (const struct block *block)
2199 {
2200 struct objfile *obj;
2201 struct compunit_symtab *cust;
2202
2203 if (block == NULL)
2204 return NULL;
2205
2206 block = block_global_block (block);
2207 /* Look through all blockvectors. */
2208 ALL_COMPUNITS (obj, cust)
2209 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2210 GLOBAL_BLOCK))
2211 {
2212 if (obj->separate_debug_objfile_backlink)
2213 obj = obj->separate_debug_objfile_backlink;
2214
2215 return obj;
2216 }
2217
2218 return NULL;
2219 }
2220
2221 /* See symtab.h. */
2222
2223 struct symbol *
2224 lookup_symbol_in_block (const char *name, const struct block *block,
2225 const domain_enum domain)
2226 {
2227 struct symbol *sym;
2228
2229 if (symbol_lookup_debug > 1)
2230 {
2231 struct objfile *objfile = lookup_objfile_from_block (block);
2232
2233 fprintf_unfiltered (gdb_stdlog,
2234 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2235 name, host_address_to_string (block),
2236 objfile_debug_name (objfile),
2237 domain_name (domain));
2238 }
2239
2240 sym = block_lookup_symbol (block, name, domain);
2241 if (sym)
2242 {
2243 if (symbol_lookup_debug > 1)
2244 {
2245 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2246 host_address_to_string (sym));
2247 }
2248 return fixup_symbol_section (sym, NULL);
2249 }
2250
2251 if (symbol_lookup_debug > 1)
2252 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2253 return NULL;
2254 }
2255
2256 /* See symtab.h. */
2257
2258 struct block_symbol
2259 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2260 const char *name,
2261 const domain_enum domain)
2262 {
2263 struct objfile *objfile;
2264
2265 for (objfile = main_objfile;
2266 objfile;
2267 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2268 {
2269 struct block_symbol result
2270 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2271
2272 if (result.symbol != NULL)
2273 return result;
2274 }
2275
2276 return (struct block_symbol) {NULL, NULL};
2277 }
2278
2279 /* Check to see if the symbol is defined in one of the OBJFILE's
2280 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2281 depending on whether or not we want to search global symbols or
2282 static symbols. */
2283
2284 static struct block_symbol
2285 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2286 const char *name, const domain_enum domain)
2287 {
2288 struct compunit_symtab *cust;
2289
2290 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2291
2292 if (symbol_lookup_debug > 1)
2293 {
2294 fprintf_unfiltered (gdb_stdlog,
2295 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2296 objfile_debug_name (objfile),
2297 block_index == GLOBAL_BLOCK
2298 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2299 name, domain_name (domain));
2300 }
2301
2302 ALL_OBJFILE_COMPUNITS (objfile, cust)
2303 {
2304 const struct blockvector *bv;
2305 const struct block *block;
2306 struct block_symbol result;
2307
2308 bv = COMPUNIT_BLOCKVECTOR (cust);
2309 block = BLOCKVECTOR_BLOCK (bv, block_index);
2310 result.symbol = block_lookup_symbol_primary (block, name, domain);
2311 result.block = block;
2312 if (result.symbol != NULL)
2313 {
2314 if (symbol_lookup_debug > 1)
2315 {
2316 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2317 host_address_to_string (result.symbol),
2318 host_address_to_string (block));
2319 }
2320 result.symbol = fixup_symbol_section (result.symbol, objfile);
2321 return result;
2322
2323 }
2324 }
2325
2326 if (symbol_lookup_debug > 1)
2327 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2328 return (struct block_symbol) {NULL, NULL};
2329 }
2330
2331 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2332 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2333 and all associated separate debug objfiles.
2334
2335 Normally we only look in OBJFILE, and not any separate debug objfiles
2336 because the outer loop will cause them to be searched too. This case is
2337 different. Here we're called from search_symbols where it will only
2338 call us for the the objfile that contains a matching minsym. */
2339
2340 static struct block_symbol
2341 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2342 const char *linkage_name,
2343 domain_enum domain)
2344 {
2345 enum language lang = current_language->la_language;
2346 const char *modified_name;
2347 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2348 &modified_name);
2349 struct objfile *main_objfile, *cur_objfile;
2350
2351 if (objfile->separate_debug_objfile_backlink)
2352 main_objfile = objfile->separate_debug_objfile_backlink;
2353 else
2354 main_objfile = objfile;
2355
2356 for (cur_objfile = main_objfile;
2357 cur_objfile;
2358 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2359 {
2360 struct block_symbol result;
2361
2362 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2363 modified_name, domain);
2364 if (result.symbol == NULL)
2365 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2366 modified_name, domain);
2367 if (result.symbol != NULL)
2368 {
2369 do_cleanups (cleanup);
2370 return result;
2371 }
2372 }
2373
2374 do_cleanups (cleanup);
2375 return (struct block_symbol) {NULL, NULL};
2376 }
2377
2378 /* A helper function that throws an exception when a symbol was found
2379 in a psymtab but not in a symtab. */
2380
2381 static void ATTRIBUTE_NORETURN
2382 error_in_psymtab_expansion (int block_index, const char *name,
2383 struct compunit_symtab *cust)
2384 {
2385 error (_("\
2386 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2387 %s may be an inlined function, or may be a template function\n \
2388 (if a template, try specifying an instantiation: %s<type>)."),
2389 block_index == GLOBAL_BLOCK ? "global" : "static",
2390 name,
2391 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2392 name, name);
2393 }
2394
2395 /* A helper function for various lookup routines that interfaces with
2396 the "quick" symbol table functions. */
2397
2398 static struct block_symbol
2399 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2400 const char *name, const domain_enum domain)
2401 {
2402 struct compunit_symtab *cust;
2403 const struct blockvector *bv;
2404 const struct block *block;
2405 struct block_symbol result;
2406
2407 if (!objfile->sf)
2408 return (struct block_symbol) {NULL, NULL};
2409
2410 if (symbol_lookup_debug > 1)
2411 {
2412 fprintf_unfiltered (gdb_stdlog,
2413 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2414 objfile_debug_name (objfile),
2415 block_index == GLOBAL_BLOCK
2416 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2417 name, domain_name (domain));
2418 }
2419
2420 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2421 if (cust == NULL)
2422 {
2423 if (symbol_lookup_debug > 1)
2424 {
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_via_quick_fns (...) = NULL\n");
2427 }
2428 return (struct block_symbol) {NULL, NULL};
2429 }
2430
2431 bv = COMPUNIT_BLOCKVECTOR (cust);
2432 block = BLOCKVECTOR_BLOCK (bv, block_index);
2433 result.symbol = block_lookup_symbol (block, name, domain);
2434 if (result.symbol == NULL)
2435 error_in_psymtab_expansion (block_index, name, cust);
2436
2437 if (symbol_lookup_debug > 1)
2438 {
2439 fprintf_unfiltered (gdb_stdlog,
2440 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2441 host_address_to_string (result.symbol),
2442 host_address_to_string (block));
2443 }
2444
2445 result.symbol = fixup_symbol_section (result.symbol, objfile);
2446 result.block = block;
2447 return result;
2448 }
2449
2450 /* See symtab.h. */
2451
2452 struct block_symbol
2453 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2454 const char *name,
2455 const struct block *block,
2456 const domain_enum domain)
2457 {
2458 struct block_symbol result;
2459
2460 /* NOTE: carlton/2003-05-19: The comments below were written when
2461 this (or what turned into this) was part of lookup_symbol_aux;
2462 I'm much less worried about these questions now, since these
2463 decisions have turned out well, but I leave these comments here
2464 for posterity. */
2465
2466 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2467 not it would be appropriate to search the current global block
2468 here as well. (That's what this code used to do before the
2469 is_a_field_of_this check was moved up.) On the one hand, it's
2470 redundant with the lookup in all objfiles search that happens
2471 next. On the other hand, if decode_line_1 is passed an argument
2472 like filename:var, then the user presumably wants 'var' to be
2473 searched for in filename. On the third hand, there shouldn't be
2474 multiple global variables all of which are named 'var', and it's
2475 not like decode_line_1 has ever restricted its search to only
2476 global variables in a single filename. All in all, only
2477 searching the static block here seems best: it's correct and it's
2478 cleanest. */
2479
2480 /* NOTE: carlton/2002-12-05: There's also a possible performance
2481 issue here: if you usually search for global symbols in the
2482 current file, then it would be slightly better to search the
2483 current global block before searching all the symtabs. But there
2484 are other factors that have a much greater effect on performance
2485 than that one, so I don't think we should worry about that for
2486 now. */
2487
2488 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2489 the current objfile. Searching the current objfile first is useful
2490 for both matching user expectations as well as performance. */
2491
2492 result = lookup_symbol_in_static_block (name, block, domain);
2493 if (result.symbol != NULL)
2494 return result;
2495
2496 /* If we didn't find a definition for a builtin type in the static block,
2497 search for it now. This is actually the right thing to do and can be
2498 a massive performance win. E.g., when debugging a program with lots of
2499 shared libraries we could search all of them only to find out the
2500 builtin type isn't defined in any of them. This is common for types
2501 like "void". */
2502 if (domain == VAR_DOMAIN)
2503 {
2504 struct gdbarch *gdbarch;
2505
2506 if (block == NULL)
2507 gdbarch = target_gdbarch ();
2508 else
2509 gdbarch = block_gdbarch (block);
2510 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2511 gdbarch, name);
2512 result.block = NULL;
2513 if (result.symbol != NULL)
2514 return result;
2515 }
2516
2517 return lookup_global_symbol (name, block, domain);
2518 }
2519
2520 /* See symtab.h. */
2521
2522 struct block_symbol
2523 lookup_symbol_in_static_block (const char *name,
2524 const struct block *block,
2525 const domain_enum domain)
2526 {
2527 const struct block *static_block = block_static_block (block);
2528 struct symbol *sym;
2529
2530 if (static_block == NULL)
2531 return (struct block_symbol) {NULL, NULL};
2532
2533 if (symbol_lookup_debug)
2534 {
2535 struct objfile *objfile = lookup_objfile_from_block (static_block);
2536
2537 fprintf_unfiltered (gdb_stdlog,
2538 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2539 " %s)\n",
2540 name,
2541 host_address_to_string (block),
2542 objfile_debug_name (objfile),
2543 domain_name (domain));
2544 }
2545
2546 sym = lookup_symbol_in_block (name, static_block, domain);
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_static_block (...) = %s\n",
2551 sym != NULL ? host_address_to_string (sym) : "NULL");
2552 }
2553 return (struct block_symbol) {sym, static_block};
2554 }
2555
2556 /* Perform the standard symbol lookup of NAME in OBJFILE:
2557 1) First search expanded symtabs, and if not found
2558 2) Search the "quick" symtabs (partial or .gdb_index).
2559 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2560
2561 static struct block_symbol
2562 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2563 const char *name, const domain_enum domain)
2564 {
2565 struct block_symbol result;
2566
2567 if (symbol_lookup_debug)
2568 {
2569 fprintf_unfiltered (gdb_stdlog,
2570 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2571 objfile_debug_name (objfile),
2572 block_index == GLOBAL_BLOCK
2573 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2574 name, domain_name (domain));
2575 }
2576
2577 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2578 name, domain);
2579 if (result.symbol != NULL)
2580 {
2581 if (symbol_lookup_debug)
2582 {
2583 fprintf_unfiltered (gdb_stdlog,
2584 "lookup_symbol_in_objfile (...) = %s"
2585 " (in symtabs)\n",
2586 host_address_to_string (result.symbol));
2587 }
2588 return result;
2589 }
2590
2591 result = lookup_symbol_via_quick_fns (objfile, block_index,
2592 name, domain);
2593 if (symbol_lookup_debug)
2594 {
2595 fprintf_unfiltered (gdb_stdlog,
2596 "lookup_symbol_in_objfile (...) = %s%s\n",
2597 result.symbol != NULL
2598 ? host_address_to_string (result.symbol)
2599 : "NULL",
2600 result.symbol != NULL ? " (via quick fns)" : "");
2601 }
2602 return result;
2603 }
2604
2605 /* See symtab.h. */
2606
2607 struct block_symbol
2608 lookup_static_symbol (const char *name, const domain_enum domain)
2609 {
2610 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2611 struct objfile *objfile;
2612 struct block_symbol result;
2613 struct block_symbol_cache *bsc;
2614 struct symbol_cache_slot *slot;
2615
2616 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2617 NULL for OBJFILE_CONTEXT. */
2618 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2619 &bsc, &slot);
2620 if (result.symbol != NULL)
2621 {
2622 if (SYMBOL_LOOKUP_FAILED_P (result))
2623 return (struct block_symbol) {NULL, NULL};
2624 return result;
2625 }
2626
2627 ALL_OBJFILES (objfile)
2628 {
2629 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2630 if (result.symbol != NULL)
2631 {
2632 /* Still pass NULL for OBJFILE_CONTEXT here. */
2633 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2634 result.block);
2635 return result;
2636 }
2637 }
2638
2639 /* Still pass NULL for OBJFILE_CONTEXT here. */
2640 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2641 return (struct block_symbol) {NULL, NULL};
2642 }
2643
2644 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2645
2646 struct global_sym_lookup_data
2647 {
2648 /* The name of the symbol we are searching for. */
2649 const char *name;
2650
2651 /* The domain to use for our search. */
2652 domain_enum domain;
2653
2654 /* The field where the callback should store the symbol if found.
2655 It should be initialized to {NULL, NULL} before the search is started. */
2656 struct block_symbol result;
2657 };
2658
2659 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2660 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2661 OBJFILE. The arguments for the search are passed via CB_DATA,
2662 which in reality is a pointer to struct global_sym_lookup_data. */
2663
2664 static int
2665 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2666 void *cb_data)
2667 {
2668 struct global_sym_lookup_data *data =
2669 (struct global_sym_lookup_data *) cb_data;
2670
2671 gdb_assert (data->result.symbol == NULL
2672 && data->result.block == NULL);
2673
2674 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2675 data->name, data->domain);
2676
2677 /* If we found a match, tell the iterator to stop. Otherwise,
2678 keep going. */
2679 return (data->result.symbol != NULL);
2680 }
2681
2682 /* See symtab.h. */
2683
2684 struct block_symbol
2685 lookup_global_symbol (const char *name,
2686 const struct block *block,
2687 const domain_enum domain)
2688 {
2689 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2690 struct block_symbol result;
2691 struct objfile *objfile;
2692 struct global_sym_lookup_data lookup_data;
2693 struct block_symbol_cache *bsc;
2694 struct symbol_cache_slot *slot;
2695
2696 objfile = lookup_objfile_from_block (block);
2697
2698 /* First see if we can find the symbol in the cache.
2699 This works because we use the current objfile to qualify the lookup. */
2700 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2701 &bsc, &slot);
2702 if (result.symbol != NULL)
2703 {
2704 if (SYMBOL_LOOKUP_FAILED_P (result))
2705 return (struct block_symbol) {NULL, NULL};
2706 return result;
2707 }
2708
2709 /* Call library-specific lookup procedure. */
2710 if (objfile != NULL)
2711 result = solib_global_lookup (objfile, name, domain);
2712
2713 /* If that didn't work go a global search (of global blocks, heh). */
2714 if (result.symbol == NULL)
2715 {
2716 memset (&lookup_data, 0, sizeof (lookup_data));
2717 lookup_data.name = name;
2718 lookup_data.domain = domain;
2719 gdbarch_iterate_over_objfiles_in_search_order
2720 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2721 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2722 result = lookup_data.result;
2723 }
2724
2725 if (result.symbol != NULL)
2726 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2727 else
2728 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2729
2730 return result;
2731 }
2732
2733 int
2734 symbol_matches_domain (enum language symbol_language,
2735 domain_enum symbol_domain,
2736 domain_enum domain)
2737 {
2738 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2739 A Java class declaration also defines a typedef for the class.
2740 Similarly, any Ada type declaration implicitly defines a typedef. */
2741 if (symbol_language == language_cplus
2742 || symbol_language == language_d
2743 || symbol_language == language_java
2744 || symbol_language == language_ada)
2745 {
2746 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2747 && symbol_domain == STRUCT_DOMAIN)
2748 return 1;
2749 }
2750 /* For all other languages, strict match is required. */
2751 return (symbol_domain == domain);
2752 }
2753
2754 /* See symtab.h. */
2755
2756 struct type *
2757 lookup_transparent_type (const char *name)
2758 {
2759 return current_language->la_lookup_transparent_type (name);
2760 }
2761
2762 /* A helper for basic_lookup_transparent_type that interfaces with the
2763 "quick" symbol table functions. */
2764
2765 static struct type *
2766 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2767 const char *name)
2768 {
2769 struct compunit_symtab *cust;
2770 const struct blockvector *bv;
2771 struct block *block;
2772 struct symbol *sym;
2773
2774 if (!objfile->sf)
2775 return NULL;
2776 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2777 STRUCT_DOMAIN);
2778 if (cust == NULL)
2779 return NULL;
2780
2781 bv = COMPUNIT_BLOCKVECTOR (cust);
2782 block = BLOCKVECTOR_BLOCK (bv, block_index);
2783 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2784 block_find_non_opaque_type, NULL);
2785 if (sym == NULL)
2786 error_in_psymtab_expansion (block_index, name, cust);
2787 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2788 return SYMBOL_TYPE (sym);
2789 }
2790
2791 /* Subroutine of basic_lookup_transparent_type to simplify it.
2792 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2793 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2794
2795 static struct type *
2796 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2797 const char *name)
2798 {
2799 const struct compunit_symtab *cust;
2800 const struct blockvector *bv;
2801 const struct block *block;
2802 const struct symbol *sym;
2803
2804 ALL_OBJFILE_COMPUNITS (objfile, cust)
2805 {
2806 bv = COMPUNIT_BLOCKVECTOR (cust);
2807 block = BLOCKVECTOR_BLOCK (bv, block_index);
2808 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2809 block_find_non_opaque_type, NULL);
2810 if (sym != NULL)
2811 {
2812 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2813 return SYMBOL_TYPE (sym);
2814 }
2815 }
2816
2817 return NULL;
2818 }
2819
2820 /* The standard implementation of lookup_transparent_type. This code
2821 was modeled on lookup_symbol -- the parts not relevant to looking
2822 up types were just left out. In particular it's assumed here that
2823 types are available in STRUCT_DOMAIN and only in file-static or
2824 global blocks. */
2825
2826 struct type *
2827 basic_lookup_transparent_type (const char *name)
2828 {
2829 struct objfile *objfile;
2830 struct type *t;
2831
2832 /* Now search all the global symbols. Do the symtab's first, then
2833 check the psymtab's. If a psymtab indicates the existence
2834 of the desired name as a global, then do psymtab-to-symtab
2835 conversion on the fly and return the found symbol. */
2836
2837 ALL_OBJFILES (objfile)
2838 {
2839 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2840 if (t)
2841 return t;
2842 }
2843
2844 ALL_OBJFILES (objfile)
2845 {
2846 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2847 if (t)
2848 return t;
2849 }
2850
2851 /* Now search the static file-level symbols.
2852 Not strictly correct, but more useful than an error.
2853 Do the symtab's first, then
2854 check the psymtab's. If a psymtab indicates the existence
2855 of the desired name as a file-level static, then do psymtab-to-symtab
2856 conversion on the fly and return the found symbol. */
2857
2858 ALL_OBJFILES (objfile)
2859 {
2860 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2861 if (t)
2862 return t;
2863 }
2864
2865 ALL_OBJFILES (objfile)
2866 {
2867 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2868 if (t)
2869 return t;
2870 }
2871
2872 return (struct type *) 0;
2873 }
2874
2875 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2876
2877 For each symbol that matches, CALLBACK is called. The symbol and
2878 DATA are passed to the callback.
2879
2880 If CALLBACK returns zero, the iteration ends. Otherwise, the
2881 search continues. */
2882
2883 void
2884 iterate_over_symbols (const struct block *block, const char *name,
2885 const domain_enum domain,
2886 symbol_found_callback_ftype *callback,
2887 void *data)
2888 {
2889 struct block_iterator iter;
2890 struct symbol *sym;
2891
2892 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2893 {
2894 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2895 SYMBOL_DOMAIN (sym), domain))
2896 {
2897 if (!callback (sym, data))
2898 return;
2899 }
2900 }
2901 }
2902
2903 /* Find the compunit symtab associated with PC and SECTION.
2904 This will read in debug info as necessary. */
2905
2906 struct compunit_symtab *
2907 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2908 {
2909 struct compunit_symtab *cust;
2910 struct compunit_symtab *best_cust = NULL;
2911 struct objfile *objfile;
2912 CORE_ADDR distance = 0;
2913 struct bound_minimal_symbol msymbol;
2914
2915 /* If we know that this is not a text address, return failure. This is
2916 necessary because we loop based on the block's high and low code
2917 addresses, which do not include the data ranges, and because
2918 we call find_pc_sect_psymtab which has a similar restriction based
2919 on the partial_symtab's texthigh and textlow. */
2920 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2921 if (msymbol.minsym
2922 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2923 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2924 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2925 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2926 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2927 return NULL;
2928
2929 /* Search all symtabs for the one whose file contains our address, and which
2930 is the smallest of all the ones containing the address. This is designed
2931 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2932 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2933 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2934
2935 This happens for native ecoff format, where code from included files
2936 gets its own symtab. The symtab for the included file should have
2937 been read in already via the dependency mechanism.
2938 It might be swifter to create several symtabs with the same name
2939 like xcoff does (I'm not sure).
2940
2941 It also happens for objfiles that have their functions reordered.
2942 For these, the symtab we are looking for is not necessarily read in. */
2943
2944 ALL_COMPUNITS (objfile, cust)
2945 {
2946 struct block *b;
2947 const struct blockvector *bv;
2948
2949 bv = COMPUNIT_BLOCKVECTOR (cust);
2950 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2951
2952 if (BLOCK_START (b) <= pc
2953 && BLOCK_END (b) > pc
2954 && (distance == 0
2955 || BLOCK_END (b) - BLOCK_START (b) < distance))
2956 {
2957 /* For an objfile that has its functions reordered,
2958 find_pc_psymtab will find the proper partial symbol table
2959 and we simply return its corresponding symtab. */
2960 /* In order to better support objfiles that contain both
2961 stabs and coff debugging info, we continue on if a psymtab
2962 can't be found. */
2963 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2964 {
2965 struct compunit_symtab *result;
2966
2967 result
2968 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2969 msymbol,
2970 pc, section,
2971 0);
2972 if (result != NULL)
2973 return result;
2974 }
2975 if (section != 0)
2976 {
2977 struct block_iterator iter;
2978 struct symbol *sym = NULL;
2979
2980 ALL_BLOCK_SYMBOLS (b, iter, sym)
2981 {
2982 fixup_symbol_section (sym, objfile);
2983 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2984 section))
2985 break;
2986 }
2987 if (sym == NULL)
2988 continue; /* No symbol in this symtab matches
2989 section. */
2990 }
2991 distance = BLOCK_END (b) - BLOCK_START (b);
2992 best_cust = cust;
2993 }
2994 }
2995
2996 if (best_cust != NULL)
2997 return best_cust;
2998
2999 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3000
3001 ALL_OBJFILES (objfile)
3002 {
3003 struct compunit_symtab *result;
3004
3005 if (!objfile->sf)
3006 continue;
3007 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3008 msymbol,
3009 pc, section,
3010 1);
3011 if (result != NULL)
3012 return result;
3013 }
3014
3015 return NULL;
3016 }
3017
3018 /* Find the compunit symtab associated with PC.
3019 This will read in debug info as necessary.
3020 Backward compatibility, no section. */
3021
3022 struct compunit_symtab *
3023 find_pc_compunit_symtab (CORE_ADDR pc)
3024 {
3025 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3026 }
3027 \f
3028
3029 /* Find the source file and line number for a given PC value and SECTION.
3030 Return a structure containing a symtab pointer, a line number,
3031 and a pc range for the entire source line.
3032 The value's .pc field is NOT the specified pc.
3033 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3034 use the line that ends there. Otherwise, in that case, the line
3035 that begins there is used. */
3036
3037 /* The big complication here is that a line may start in one file, and end just
3038 before the start of another file. This usually occurs when you #include
3039 code in the middle of a subroutine. To properly find the end of a line's PC
3040 range, we must search all symtabs associated with this compilation unit, and
3041 find the one whose first PC is closer than that of the next line in this
3042 symtab. */
3043
3044 /* If it's worth the effort, we could be using a binary search. */
3045
3046 struct symtab_and_line
3047 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3048 {
3049 struct compunit_symtab *cust;
3050 struct symtab *iter_s;
3051 struct linetable *l;
3052 int len;
3053 int i;
3054 struct linetable_entry *item;
3055 struct symtab_and_line val;
3056 const struct blockvector *bv;
3057 struct bound_minimal_symbol msymbol;
3058
3059 /* Info on best line seen so far, and where it starts, and its file. */
3060
3061 struct linetable_entry *best = NULL;
3062 CORE_ADDR best_end = 0;
3063 struct symtab *best_symtab = 0;
3064
3065 /* Store here the first line number
3066 of a file which contains the line at the smallest pc after PC.
3067 If we don't find a line whose range contains PC,
3068 we will use a line one less than this,
3069 with a range from the start of that file to the first line's pc. */
3070 struct linetable_entry *alt = NULL;
3071
3072 /* Info on best line seen in this file. */
3073
3074 struct linetable_entry *prev;
3075
3076 /* If this pc is not from the current frame,
3077 it is the address of the end of a call instruction.
3078 Quite likely that is the start of the following statement.
3079 But what we want is the statement containing the instruction.
3080 Fudge the pc to make sure we get that. */
3081
3082 init_sal (&val); /* initialize to zeroes */
3083
3084 val.pspace = current_program_space;
3085
3086 /* It's tempting to assume that, if we can't find debugging info for
3087 any function enclosing PC, that we shouldn't search for line
3088 number info, either. However, GAS can emit line number info for
3089 assembly files --- very helpful when debugging hand-written
3090 assembly code. In such a case, we'd have no debug info for the
3091 function, but we would have line info. */
3092
3093 if (notcurrent)
3094 pc -= 1;
3095
3096 /* elz: added this because this function returned the wrong
3097 information if the pc belongs to a stub (import/export)
3098 to call a shlib function. This stub would be anywhere between
3099 two functions in the target, and the line info was erroneously
3100 taken to be the one of the line before the pc. */
3101
3102 /* RT: Further explanation:
3103
3104 * We have stubs (trampolines) inserted between procedures.
3105 *
3106 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3107 * exists in the main image.
3108 *
3109 * In the minimal symbol table, we have a bunch of symbols
3110 * sorted by start address. The stubs are marked as "trampoline",
3111 * the others appear as text. E.g.:
3112 *
3113 * Minimal symbol table for main image
3114 * main: code for main (text symbol)
3115 * shr1: stub (trampoline symbol)
3116 * foo: code for foo (text symbol)
3117 * ...
3118 * Minimal symbol table for "shr1" image:
3119 * ...
3120 * shr1: code for shr1 (text symbol)
3121 * ...
3122 *
3123 * So the code below is trying to detect if we are in the stub
3124 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3125 * and if found, do the symbolization from the real-code address
3126 * rather than the stub address.
3127 *
3128 * Assumptions being made about the minimal symbol table:
3129 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3130 * if we're really in the trampoline.s If we're beyond it (say
3131 * we're in "foo" in the above example), it'll have a closer
3132 * symbol (the "foo" text symbol for example) and will not
3133 * return the trampoline.
3134 * 2. lookup_minimal_symbol_text() will find a real text symbol
3135 * corresponding to the trampoline, and whose address will
3136 * be different than the trampoline address. I put in a sanity
3137 * check for the address being the same, to avoid an
3138 * infinite recursion.
3139 */
3140 msymbol = lookup_minimal_symbol_by_pc (pc);
3141 if (msymbol.minsym != NULL)
3142 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3143 {
3144 struct bound_minimal_symbol mfunsym
3145 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3146 NULL);
3147
3148 if (mfunsym.minsym == NULL)
3149 /* I eliminated this warning since it is coming out
3150 * in the following situation:
3151 * gdb shmain // test program with shared libraries
3152 * (gdb) break shr1 // function in shared lib
3153 * Warning: In stub for ...
3154 * In the above situation, the shared lib is not loaded yet,
3155 * so of course we can't find the real func/line info,
3156 * but the "break" still works, and the warning is annoying.
3157 * So I commented out the warning. RT */
3158 /* warning ("In stub for %s; unable to find real function/line info",
3159 SYMBOL_LINKAGE_NAME (msymbol)); */
3160 ;
3161 /* fall through */
3162 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3163 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3164 /* Avoid infinite recursion */
3165 /* See above comment about why warning is commented out. */
3166 /* warning ("In stub for %s; unable to find real function/line info",
3167 SYMBOL_LINKAGE_NAME (msymbol)); */
3168 ;
3169 /* fall through */
3170 else
3171 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3172 }
3173
3174
3175 cust = find_pc_sect_compunit_symtab (pc, section);
3176 if (cust == NULL)
3177 {
3178 /* If no symbol information, return previous pc. */
3179 if (notcurrent)
3180 pc++;
3181 val.pc = pc;
3182 return val;
3183 }
3184
3185 bv = COMPUNIT_BLOCKVECTOR (cust);
3186
3187 /* Look at all the symtabs that share this blockvector.
3188 They all have the same apriori range, that we found was right;
3189 but they have different line tables. */
3190
3191 ALL_COMPUNIT_FILETABS (cust, iter_s)
3192 {
3193 /* Find the best line in this symtab. */
3194 l = SYMTAB_LINETABLE (iter_s);
3195 if (!l)
3196 continue;
3197 len = l->nitems;
3198 if (len <= 0)
3199 {
3200 /* I think len can be zero if the symtab lacks line numbers
3201 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3202 I'm not sure which, and maybe it depends on the symbol
3203 reader). */
3204 continue;
3205 }
3206
3207 prev = NULL;
3208 item = l->item; /* Get first line info. */
3209
3210 /* Is this file's first line closer than the first lines of other files?
3211 If so, record this file, and its first line, as best alternate. */
3212 if (item->pc > pc && (!alt || item->pc < alt->pc))
3213 alt = item;
3214
3215 for (i = 0; i < len; i++, item++)
3216 {
3217 /* Leave prev pointing to the linetable entry for the last line
3218 that started at or before PC. */
3219 if (item->pc > pc)
3220 break;
3221
3222 prev = item;
3223 }
3224
3225 /* At this point, prev points at the line whose start addr is <= pc, and
3226 item points at the next line. If we ran off the end of the linetable
3227 (pc >= start of the last line), then prev == item. If pc < start of
3228 the first line, prev will not be set. */
3229
3230 /* Is this file's best line closer than the best in the other files?
3231 If so, record this file, and its best line, as best so far. Don't
3232 save prev if it represents the end of a function (i.e. line number
3233 0) instead of a real line. */
3234
3235 if (prev && prev->line && (!best || prev->pc > best->pc))
3236 {
3237 best = prev;
3238 best_symtab = iter_s;
3239
3240 /* Discard BEST_END if it's before the PC of the current BEST. */
3241 if (best_end <= best->pc)
3242 best_end = 0;
3243 }
3244
3245 /* If another line (denoted by ITEM) is in the linetable and its
3246 PC is after BEST's PC, but before the current BEST_END, then
3247 use ITEM's PC as the new best_end. */
3248 if (best && i < len && item->pc > best->pc
3249 && (best_end == 0 || best_end > item->pc))
3250 best_end = item->pc;
3251 }
3252
3253 if (!best_symtab)
3254 {
3255 /* If we didn't find any line number info, just return zeros.
3256 We used to return alt->line - 1 here, but that could be
3257 anywhere; if we don't have line number info for this PC,
3258 don't make some up. */
3259 val.pc = pc;
3260 }
3261 else if (best->line == 0)
3262 {
3263 /* If our best fit is in a range of PC's for which no line
3264 number info is available (line number is zero) then we didn't
3265 find any valid line information. */
3266 val.pc = pc;
3267 }
3268 else
3269 {
3270 val.symtab = best_symtab;
3271 val.line = best->line;
3272 val.pc = best->pc;
3273 if (best_end && (!alt || best_end < alt->pc))
3274 val.end = best_end;
3275 else if (alt)
3276 val.end = alt->pc;
3277 else
3278 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3279 }
3280 val.section = section;
3281 return val;
3282 }
3283
3284 /* Backward compatibility (no section). */
3285
3286 struct symtab_and_line
3287 find_pc_line (CORE_ADDR pc, int notcurrent)
3288 {
3289 struct obj_section *section;
3290
3291 section = find_pc_overlay (pc);
3292 if (pc_in_unmapped_range (pc, section))
3293 pc = overlay_mapped_address (pc, section);
3294 return find_pc_sect_line (pc, section, notcurrent);
3295 }
3296
3297 /* See symtab.h. */
3298
3299 struct symtab *
3300 find_pc_line_symtab (CORE_ADDR pc)
3301 {
3302 struct symtab_and_line sal;
3303
3304 /* This always passes zero for NOTCURRENT to find_pc_line.
3305 There are currently no callers that ever pass non-zero. */
3306 sal = find_pc_line (pc, 0);
3307 return sal.symtab;
3308 }
3309 \f
3310 /* Find line number LINE in any symtab whose name is the same as
3311 SYMTAB.
3312
3313 If found, return the symtab that contains the linetable in which it was
3314 found, set *INDEX to the index in the linetable of the best entry
3315 found, and set *EXACT_MATCH nonzero if the value returned is an
3316 exact match.
3317
3318 If not found, return NULL. */
3319
3320 struct symtab *
3321 find_line_symtab (struct symtab *symtab, int line,
3322 int *index, int *exact_match)
3323 {
3324 int exact = 0; /* Initialized here to avoid a compiler warning. */
3325
3326 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3327 so far seen. */
3328
3329 int best_index;
3330 struct linetable *best_linetable;
3331 struct symtab *best_symtab;
3332
3333 /* First try looking it up in the given symtab. */
3334 best_linetable = SYMTAB_LINETABLE (symtab);
3335 best_symtab = symtab;
3336 best_index = find_line_common (best_linetable, line, &exact, 0);
3337 if (best_index < 0 || !exact)
3338 {
3339 /* Didn't find an exact match. So we better keep looking for
3340 another symtab with the same name. In the case of xcoff,
3341 multiple csects for one source file (produced by IBM's FORTRAN
3342 compiler) produce multiple symtabs (this is unavoidable
3343 assuming csects can be at arbitrary places in memory and that
3344 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3345
3346 /* BEST is the smallest linenumber > LINE so far seen,
3347 or 0 if none has been seen so far.
3348 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3349 int best;
3350
3351 struct objfile *objfile;
3352 struct compunit_symtab *cu;
3353 struct symtab *s;
3354
3355 if (best_index >= 0)
3356 best = best_linetable->item[best_index].line;
3357 else
3358 best = 0;
3359
3360 ALL_OBJFILES (objfile)
3361 {
3362 if (objfile->sf)
3363 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3364 symtab_to_fullname (symtab));
3365 }
3366
3367 ALL_FILETABS (objfile, cu, s)
3368 {
3369 struct linetable *l;
3370 int ind;
3371
3372 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3373 continue;
3374 if (FILENAME_CMP (symtab_to_fullname (symtab),
3375 symtab_to_fullname (s)) != 0)
3376 continue;
3377 l = SYMTAB_LINETABLE (s);
3378 ind = find_line_common (l, line, &exact, 0);
3379 if (ind >= 0)
3380 {
3381 if (exact)
3382 {
3383 best_index = ind;
3384 best_linetable = l;
3385 best_symtab = s;
3386 goto done;
3387 }
3388 if (best == 0 || l->item[ind].line < best)
3389 {
3390 best = l->item[ind].line;
3391 best_index = ind;
3392 best_linetable = l;
3393 best_symtab = s;
3394 }
3395 }
3396 }
3397 }
3398 done:
3399 if (best_index < 0)
3400 return NULL;
3401
3402 if (index)
3403 *index = best_index;
3404 if (exact_match)
3405 *exact_match = exact;
3406
3407 return best_symtab;
3408 }
3409
3410 /* Given SYMTAB, returns all the PCs function in the symtab that
3411 exactly match LINE. Returns NULL if there are no exact matches,
3412 but updates BEST_ITEM in this case. */
3413
3414 VEC (CORE_ADDR) *
3415 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3416 struct linetable_entry **best_item)
3417 {
3418 int start = 0;
3419 VEC (CORE_ADDR) *result = NULL;
3420
3421 /* First, collect all the PCs that are at this line. */
3422 while (1)
3423 {
3424 int was_exact;
3425 int idx;
3426
3427 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3428 start);
3429 if (idx < 0)
3430 break;
3431
3432 if (!was_exact)
3433 {
3434 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3435
3436 if (*best_item == NULL || item->line < (*best_item)->line)
3437 *best_item = item;
3438
3439 break;
3440 }
3441
3442 VEC_safe_push (CORE_ADDR, result,
3443 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3444 start = idx + 1;
3445 }
3446
3447 return result;
3448 }
3449
3450 \f
3451 /* Set the PC value for a given source file and line number and return true.
3452 Returns zero for invalid line number (and sets the PC to 0).
3453 The source file is specified with a struct symtab. */
3454
3455 int
3456 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3457 {
3458 struct linetable *l;
3459 int ind;
3460
3461 *pc = 0;
3462 if (symtab == 0)
3463 return 0;
3464
3465 symtab = find_line_symtab (symtab, line, &ind, NULL);
3466 if (symtab != NULL)
3467 {
3468 l = SYMTAB_LINETABLE (symtab);
3469 *pc = l->item[ind].pc;
3470 return 1;
3471 }
3472 else
3473 return 0;
3474 }
3475
3476 /* Find the range of pc values in a line.
3477 Store the starting pc of the line into *STARTPTR
3478 and the ending pc (start of next line) into *ENDPTR.
3479 Returns 1 to indicate success.
3480 Returns 0 if could not find the specified line. */
3481
3482 int
3483 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3484 CORE_ADDR *endptr)
3485 {
3486 CORE_ADDR startaddr;
3487 struct symtab_and_line found_sal;
3488
3489 startaddr = sal.pc;
3490 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3491 return 0;
3492
3493 /* This whole function is based on address. For example, if line 10 has
3494 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3495 "info line *0x123" should say the line goes from 0x100 to 0x200
3496 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3497 This also insures that we never give a range like "starts at 0x134
3498 and ends at 0x12c". */
3499
3500 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3501 if (found_sal.line != sal.line)
3502 {
3503 /* The specified line (sal) has zero bytes. */
3504 *startptr = found_sal.pc;
3505 *endptr = found_sal.pc;
3506 }
3507 else
3508 {
3509 *startptr = found_sal.pc;
3510 *endptr = found_sal.end;
3511 }
3512 return 1;
3513 }
3514
3515 /* Given a line table and a line number, return the index into the line
3516 table for the pc of the nearest line whose number is >= the specified one.
3517 Return -1 if none is found. The value is >= 0 if it is an index.
3518 START is the index at which to start searching the line table.
3519
3520 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3521
3522 static int
3523 find_line_common (struct linetable *l, int lineno,
3524 int *exact_match, int start)
3525 {
3526 int i;
3527 int len;
3528
3529 /* BEST is the smallest linenumber > LINENO so far seen,
3530 or 0 if none has been seen so far.
3531 BEST_INDEX identifies the item for it. */
3532
3533 int best_index = -1;
3534 int best = 0;
3535
3536 *exact_match = 0;
3537
3538 if (lineno <= 0)
3539 return -1;
3540 if (l == 0)
3541 return -1;
3542
3543 len = l->nitems;
3544 for (i = start; i < len; i++)
3545 {
3546 struct linetable_entry *item = &(l->item[i]);
3547
3548 if (item->line == lineno)
3549 {
3550 /* Return the first (lowest address) entry which matches. */
3551 *exact_match = 1;
3552 return i;
3553 }
3554
3555 if (item->line > lineno && (best == 0 || item->line < best))
3556 {
3557 best = item->line;
3558 best_index = i;
3559 }
3560 }
3561
3562 /* If we got here, we didn't get an exact match. */
3563 return best_index;
3564 }
3565
3566 int
3567 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3568 {
3569 struct symtab_and_line sal;
3570
3571 sal = find_pc_line (pc, 0);
3572 *startptr = sal.pc;
3573 *endptr = sal.end;
3574 return sal.symtab != 0;
3575 }
3576
3577 /* Given a function symbol SYM, find the symtab and line for the start
3578 of the function.
3579 If the argument FUNFIRSTLINE is nonzero, we want the first line
3580 of real code inside the function.
3581 This function should return SALs matching those from minsym_found,
3582 otherwise false multiple-locations breakpoints could be placed. */
3583
3584 struct symtab_and_line
3585 find_function_start_sal (struct symbol *sym, int funfirstline)
3586 {
3587 struct symtab_and_line sal;
3588 struct obj_section *section;
3589
3590 fixup_symbol_section (sym, NULL);
3591 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3592 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3593
3594 if (funfirstline && sal.symtab != NULL
3595 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3596 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3597 {
3598 struct gdbarch *gdbarch = symbol_arch (sym);
3599
3600 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3601 if (gdbarch_skip_entrypoint_p (gdbarch))
3602 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3603 return sal;
3604 }
3605
3606 /* We always should have a line for the function start address.
3607 If we don't, something is odd. Create a plain SAL refering
3608 just the PC and hope that skip_prologue_sal (if requested)
3609 can find a line number for after the prologue. */
3610 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3611 {
3612 init_sal (&sal);
3613 sal.pspace = current_program_space;
3614 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3615 sal.section = section;
3616 }
3617
3618 if (funfirstline)
3619 skip_prologue_sal (&sal);
3620
3621 return sal;
3622 }
3623
3624 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3625 address for that function that has an entry in SYMTAB's line info
3626 table. If such an entry cannot be found, return FUNC_ADDR
3627 unaltered. */
3628
3629 static CORE_ADDR
3630 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3631 {
3632 CORE_ADDR func_start, func_end;
3633 struct linetable *l;
3634 int i;
3635
3636 /* Give up if this symbol has no lineinfo table. */
3637 l = SYMTAB_LINETABLE (symtab);
3638 if (l == NULL)
3639 return func_addr;
3640
3641 /* Get the range for the function's PC values, or give up if we
3642 cannot, for some reason. */
3643 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3644 return func_addr;
3645
3646 /* Linetable entries are ordered by PC values, see the commentary in
3647 symtab.h where `struct linetable' is defined. Thus, the first
3648 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3649 address we are looking for. */
3650 for (i = 0; i < l->nitems; i++)
3651 {
3652 struct linetable_entry *item = &(l->item[i]);
3653
3654 /* Don't use line numbers of zero, they mark special entries in
3655 the table. See the commentary on symtab.h before the
3656 definition of struct linetable. */
3657 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3658 return item->pc;
3659 }
3660
3661 return func_addr;
3662 }
3663
3664 /* Adjust SAL to the first instruction past the function prologue.
3665 If the PC was explicitly specified, the SAL is not changed.
3666 If the line number was explicitly specified, at most the SAL's PC
3667 is updated. If SAL is already past the prologue, then do nothing. */
3668
3669 void
3670 skip_prologue_sal (struct symtab_and_line *sal)
3671 {
3672 struct symbol *sym;
3673 struct symtab_and_line start_sal;
3674 struct cleanup *old_chain;
3675 CORE_ADDR pc, saved_pc;
3676 struct obj_section *section;
3677 const char *name;
3678 struct objfile *objfile;
3679 struct gdbarch *gdbarch;
3680 const struct block *b, *function_block;
3681 int force_skip, skip;
3682
3683 /* Do not change the SAL if PC was specified explicitly. */
3684 if (sal->explicit_pc)
3685 return;
3686
3687 old_chain = save_current_space_and_thread ();
3688 switch_to_program_space_and_thread (sal->pspace);
3689
3690 sym = find_pc_sect_function (sal->pc, sal->section);
3691 if (sym != NULL)
3692 {
3693 fixup_symbol_section (sym, NULL);
3694
3695 objfile = symbol_objfile (sym);
3696 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3697 section = SYMBOL_OBJ_SECTION (objfile, sym);
3698 name = SYMBOL_LINKAGE_NAME (sym);
3699 }
3700 else
3701 {
3702 struct bound_minimal_symbol msymbol
3703 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3704
3705 if (msymbol.minsym == NULL)
3706 {
3707 do_cleanups (old_chain);
3708 return;
3709 }
3710
3711 objfile = msymbol.objfile;
3712 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3713 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3714 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3715 }
3716
3717 gdbarch = get_objfile_arch (objfile);
3718
3719 /* Process the prologue in two passes. In the first pass try to skip the
3720 prologue (SKIP is true) and verify there is a real need for it (indicated
3721 by FORCE_SKIP). If no such reason was found run a second pass where the
3722 prologue is not skipped (SKIP is false). */
3723
3724 skip = 1;
3725 force_skip = 1;
3726
3727 /* Be conservative - allow direct PC (without skipping prologue) only if we
3728 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3729 have to be set by the caller so we use SYM instead. */
3730 if (sym != NULL
3731 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3732 force_skip = 0;
3733
3734 saved_pc = pc;
3735 do
3736 {
3737 pc = saved_pc;
3738
3739 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3740 so that gdbarch_skip_prologue has something unique to work on. */
3741 if (section_is_overlay (section) && !section_is_mapped (section))
3742 pc = overlay_unmapped_address (pc, section);
3743
3744 /* Skip "first line" of function (which is actually its prologue). */
3745 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3746 if (gdbarch_skip_entrypoint_p (gdbarch))
3747 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3748 if (skip)
3749 pc = gdbarch_skip_prologue (gdbarch, pc);
3750
3751 /* For overlays, map pc back into its mapped VMA range. */
3752 pc = overlay_mapped_address (pc, section);
3753
3754 /* Calculate line number. */
3755 start_sal = find_pc_sect_line (pc, section, 0);
3756
3757 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3758 line is still part of the same function. */
3759 if (skip && start_sal.pc != pc
3760 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3761 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3762 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3763 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3764 {
3765 /* First pc of next line */
3766 pc = start_sal.end;
3767 /* Recalculate the line number (might not be N+1). */
3768 start_sal = find_pc_sect_line (pc, section, 0);
3769 }
3770
3771 /* On targets with executable formats that don't have a concept of
3772 constructors (ELF with .init has, PE doesn't), gcc emits a call
3773 to `__main' in `main' between the prologue and before user
3774 code. */
3775 if (gdbarch_skip_main_prologue_p (gdbarch)
3776 && name && strcmp_iw (name, "main") == 0)
3777 {
3778 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3779 /* Recalculate the line number (might not be N+1). */
3780 start_sal = find_pc_sect_line (pc, section, 0);
3781 force_skip = 1;
3782 }
3783 }
3784 while (!force_skip && skip--);
3785
3786 /* If we still don't have a valid source line, try to find the first
3787 PC in the lineinfo table that belongs to the same function. This
3788 happens with COFF debug info, which does not seem to have an
3789 entry in lineinfo table for the code after the prologue which has
3790 no direct relation to source. For example, this was found to be
3791 the case with the DJGPP target using "gcc -gcoff" when the
3792 compiler inserted code after the prologue to make sure the stack
3793 is aligned. */
3794 if (!force_skip && sym && start_sal.symtab == NULL)
3795 {
3796 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3797 /* Recalculate the line number. */
3798 start_sal = find_pc_sect_line (pc, section, 0);
3799 }
3800
3801 do_cleanups (old_chain);
3802
3803 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3804 forward SAL to the end of the prologue. */
3805 if (sal->pc >= pc)
3806 return;
3807
3808 sal->pc = pc;
3809 sal->section = section;
3810
3811 /* Unless the explicit_line flag was set, update the SAL line
3812 and symtab to correspond to the modified PC location. */
3813 if (sal->explicit_line)
3814 return;
3815
3816 sal->symtab = start_sal.symtab;
3817 sal->line = start_sal.line;
3818 sal->end = start_sal.end;
3819
3820 /* Check if we are now inside an inlined function. If we can,
3821 use the call site of the function instead. */
3822 b = block_for_pc_sect (sal->pc, sal->section);
3823 function_block = NULL;
3824 while (b != NULL)
3825 {
3826 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3827 function_block = b;
3828 else if (BLOCK_FUNCTION (b) != NULL)
3829 break;
3830 b = BLOCK_SUPERBLOCK (b);
3831 }
3832 if (function_block != NULL
3833 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3834 {
3835 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3836 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3837 }
3838 }
3839
3840 /* Given PC at the function's start address, attempt to find the
3841 prologue end using SAL information. Return zero if the skip fails.
3842
3843 A non-optimized prologue traditionally has one SAL for the function
3844 and a second for the function body. A single line function has
3845 them both pointing at the same line.
3846
3847 An optimized prologue is similar but the prologue may contain
3848 instructions (SALs) from the instruction body. Need to skip those
3849 while not getting into the function body.
3850
3851 The functions end point and an increasing SAL line are used as
3852 indicators of the prologue's endpoint.
3853
3854 This code is based on the function refine_prologue_limit
3855 (found in ia64). */
3856
3857 CORE_ADDR
3858 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3859 {
3860 struct symtab_and_line prologue_sal;
3861 CORE_ADDR start_pc;
3862 CORE_ADDR end_pc;
3863 const struct block *bl;
3864
3865 /* Get an initial range for the function. */
3866 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3867 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3868
3869 prologue_sal = find_pc_line (start_pc, 0);
3870 if (prologue_sal.line != 0)
3871 {
3872 /* For languages other than assembly, treat two consecutive line
3873 entries at the same address as a zero-instruction prologue.
3874 The GNU assembler emits separate line notes for each instruction
3875 in a multi-instruction macro, but compilers generally will not
3876 do this. */
3877 if (prologue_sal.symtab->language != language_asm)
3878 {
3879 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3880 int idx = 0;
3881
3882 /* Skip any earlier lines, and any end-of-sequence marker
3883 from a previous function. */
3884 while (linetable->item[idx].pc != prologue_sal.pc
3885 || linetable->item[idx].line == 0)
3886 idx++;
3887
3888 if (idx+1 < linetable->nitems
3889 && linetable->item[idx+1].line != 0
3890 && linetable->item[idx+1].pc == start_pc)
3891 return start_pc;
3892 }
3893
3894 /* If there is only one sal that covers the entire function,
3895 then it is probably a single line function, like
3896 "foo(){}". */
3897 if (prologue_sal.end >= end_pc)
3898 return 0;
3899
3900 while (prologue_sal.end < end_pc)
3901 {
3902 struct symtab_and_line sal;
3903
3904 sal = find_pc_line (prologue_sal.end, 0);
3905 if (sal.line == 0)
3906 break;
3907 /* Assume that a consecutive SAL for the same (or larger)
3908 line mark the prologue -> body transition. */
3909 if (sal.line >= prologue_sal.line)
3910 break;
3911 /* Likewise if we are in a different symtab altogether
3912 (e.g. within a file included via #include).  */
3913 if (sal.symtab != prologue_sal.symtab)
3914 break;
3915
3916 /* The line number is smaller. Check that it's from the
3917 same function, not something inlined. If it's inlined,
3918 then there is no point comparing the line numbers. */
3919 bl = block_for_pc (prologue_sal.end);
3920 while (bl)
3921 {
3922 if (block_inlined_p (bl))
3923 break;
3924 if (BLOCK_FUNCTION (bl))
3925 {
3926 bl = NULL;
3927 break;
3928 }
3929 bl = BLOCK_SUPERBLOCK (bl);
3930 }
3931 if (bl != NULL)
3932 break;
3933
3934 /* The case in which compiler's optimizer/scheduler has
3935 moved instructions into the prologue. We look ahead in
3936 the function looking for address ranges whose
3937 corresponding line number is less the first one that we
3938 found for the function. This is more conservative then
3939 refine_prologue_limit which scans a large number of SALs
3940 looking for any in the prologue. */
3941 prologue_sal = sal;
3942 }
3943 }
3944
3945 if (prologue_sal.end < end_pc)
3946 /* Return the end of this line, or zero if we could not find a
3947 line. */
3948 return prologue_sal.end;
3949 else
3950 /* Don't return END_PC, which is past the end of the function. */
3951 return prologue_sal.pc;
3952 }
3953 \f
3954 /* If P is of the form "operator[ \t]+..." where `...' is
3955 some legitimate operator text, return a pointer to the
3956 beginning of the substring of the operator text.
3957 Otherwise, return "". */
3958
3959 static const char *
3960 operator_chars (const char *p, const char **end)
3961 {
3962 *end = "";
3963 if (!startswith (p, "operator"))
3964 return *end;
3965 p += 8;
3966
3967 /* Don't get faked out by `operator' being part of a longer
3968 identifier. */
3969 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3970 return *end;
3971
3972 /* Allow some whitespace between `operator' and the operator symbol. */
3973 while (*p == ' ' || *p == '\t')
3974 p++;
3975
3976 /* Recognize 'operator TYPENAME'. */
3977
3978 if (isalpha (*p) || *p == '_' || *p == '$')
3979 {
3980 const char *q = p + 1;
3981
3982 while (isalnum (*q) || *q == '_' || *q == '$')
3983 q++;
3984 *end = q;
3985 return p;
3986 }
3987
3988 while (*p)
3989 switch (*p)
3990 {
3991 case '\\': /* regexp quoting */
3992 if (p[1] == '*')
3993 {
3994 if (p[2] == '=') /* 'operator\*=' */
3995 *end = p + 3;
3996 else /* 'operator\*' */
3997 *end = p + 2;
3998 return p;
3999 }
4000 else if (p[1] == '[')
4001 {
4002 if (p[2] == ']')
4003 error (_("mismatched quoting on brackets, "
4004 "try 'operator\\[\\]'"));
4005 else if (p[2] == '\\' && p[3] == ']')
4006 {
4007 *end = p + 4; /* 'operator\[\]' */
4008 return p;
4009 }
4010 else
4011 error (_("nothing is allowed between '[' and ']'"));
4012 }
4013 else
4014 {
4015 /* Gratuitous qoute: skip it and move on. */
4016 p++;
4017 continue;
4018 }
4019 break;
4020 case '!':
4021 case '=':
4022 case '*':
4023 case '/':
4024 case '%':
4025 case '^':
4026 if (p[1] == '=')
4027 *end = p + 2;
4028 else
4029 *end = p + 1;
4030 return p;
4031 case '<':
4032 case '>':
4033 case '+':
4034 case '-':
4035 case '&':
4036 case '|':
4037 if (p[0] == '-' && p[1] == '>')
4038 {
4039 /* Struct pointer member operator 'operator->'. */
4040 if (p[2] == '*')
4041 {
4042 *end = p + 3; /* 'operator->*' */
4043 return p;
4044 }
4045 else if (p[2] == '\\')
4046 {
4047 *end = p + 4; /* Hopefully 'operator->\*' */
4048 return p;
4049 }
4050 else
4051 {
4052 *end = p + 2; /* 'operator->' */
4053 return p;
4054 }
4055 }
4056 if (p[1] == '=' || p[1] == p[0])
4057 *end = p + 2;
4058 else
4059 *end = p + 1;
4060 return p;
4061 case '~':
4062 case ',':
4063 *end = p + 1;
4064 return p;
4065 case '(':
4066 if (p[1] != ')')
4067 error (_("`operator ()' must be specified "
4068 "without whitespace in `()'"));
4069 *end = p + 2;
4070 return p;
4071 case '?':
4072 if (p[1] != ':')
4073 error (_("`operator ?:' must be specified "
4074 "without whitespace in `?:'"));
4075 *end = p + 2;
4076 return p;
4077 case '[':
4078 if (p[1] != ']')
4079 error (_("`operator []' must be specified "
4080 "without whitespace in `[]'"));
4081 *end = p + 2;
4082 return p;
4083 default:
4084 error (_("`operator %s' not supported"), p);
4085 break;
4086 }
4087
4088 *end = "";
4089 return *end;
4090 }
4091 \f
4092
4093 /* Cache to watch for file names already seen by filename_seen. */
4094
4095 struct filename_seen_cache
4096 {
4097 /* Table of files seen so far. */
4098 htab_t tab;
4099 /* Initial size of the table. It automagically grows from here. */
4100 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4101 };
4102
4103 /* filename_seen_cache constructor. */
4104
4105 static struct filename_seen_cache *
4106 create_filename_seen_cache (void)
4107 {
4108 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4109
4110 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4111 filename_hash, filename_eq,
4112 NULL, xcalloc, xfree);
4113
4114 return cache;
4115 }
4116
4117 /* Empty the cache, but do not delete it. */
4118
4119 static void
4120 clear_filename_seen_cache (struct filename_seen_cache *cache)
4121 {
4122 htab_empty (cache->tab);
4123 }
4124
4125 /* filename_seen_cache destructor.
4126 This takes a void * argument as it is generally used as a cleanup. */
4127
4128 static void
4129 delete_filename_seen_cache (void *ptr)
4130 {
4131 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4132
4133 htab_delete (cache->tab);
4134 xfree (cache);
4135 }
4136
4137 /* If FILE is not already in the table of files in CACHE, return zero;
4138 otherwise return non-zero. Optionally add FILE to the table if ADD
4139 is non-zero.
4140
4141 NOTE: We don't manage space for FILE, we assume FILE lives as long
4142 as the caller needs. */
4143
4144 static int
4145 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4146 {
4147 void **slot;
4148
4149 /* Is FILE in tab? */
4150 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4151 if (*slot != NULL)
4152 return 1;
4153
4154 /* No; maybe add it to tab. */
4155 if (add)
4156 *slot = (char *) file;
4157
4158 return 0;
4159 }
4160
4161 /* Data structure to maintain printing state for output_source_filename. */
4162
4163 struct output_source_filename_data
4164 {
4165 /* Cache of what we've seen so far. */
4166 struct filename_seen_cache *filename_seen_cache;
4167
4168 /* Flag of whether we're printing the first one. */
4169 int first;
4170 };
4171
4172 /* Slave routine for sources_info. Force line breaks at ,'s.
4173 NAME is the name to print.
4174 DATA contains the state for printing and watching for duplicates. */
4175
4176 static void
4177 output_source_filename (const char *name,
4178 struct output_source_filename_data *data)
4179 {
4180 /* Since a single source file can result in several partial symbol
4181 tables, we need to avoid printing it more than once. Note: if
4182 some of the psymtabs are read in and some are not, it gets
4183 printed both under "Source files for which symbols have been
4184 read" and "Source files for which symbols will be read in on
4185 demand". I consider this a reasonable way to deal with the
4186 situation. I'm not sure whether this can also happen for
4187 symtabs; it doesn't hurt to check. */
4188
4189 /* Was NAME already seen? */
4190 if (filename_seen (data->filename_seen_cache, name, 1))
4191 {
4192 /* Yes; don't print it again. */
4193 return;
4194 }
4195
4196 /* No; print it and reset *FIRST. */
4197 if (! data->first)
4198 printf_filtered (", ");
4199 data->first = 0;
4200
4201 wrap_here ("");
4202 fputs_filtered (name, gdb_stdout);
4203 }
4204
4205 /* A callback for map_partial_symbol_filenames. */
4206
4207 static void
4208 output_partial_symbol_filename (const char *filename, const char *fullname,
4209 void *data)
4210 {
4211 output_source_filename (fullname ? fullname : filename,
4212 (struct output_source_filename_data *) data);
4213 }
4214
4215 static void
4216 sources_info (char *ignore, int from_tty)
4217 {
4218 struct compunit_symtab *cu;
4219 struct symtab *s;
4220 struct objfile *objfile;
4221 struct output_source_filename_data data;
4222 struct cleanup *cleanups;
4223
4224 if (!have_full_symbols () && !have_partial_symbols ())
4225 {
4226 error (_("No symbol table is loaded. Use the \"file\" command."));
4227 }
4228
4229 data.filename_seen_cache = create_filename_seen_cache ();
4230 cleanups = make_cleanup (delete_filename_seen_cache,
4231 data.filename_seen_cache);
4232
4233 printf_filtered ("Source files for which symbols have been read in:\n\n");
4234
4235 data.first = 1;
4236 ALL_FILETABS (objfile, cu, s)
4237 {
4238 const char *fullname = symtab_to_fullname (s);
4239
4240 output_source_filename (fullname, &data);
4241 }
4242 printf_filtered ("\n\n");
4243
4244 printf_filtered ("Source files for which symbols "
4245 "will be read in on demand:\n\n");
4246
4247 clear_filename_seen_cache (data.filename_seen_cache);
4248 data.first = 1;
4249 map_symbol_filenames (output_partial_symbol_filename, &data,
4250 1 /*need_fullname*/);
4251 printf_filtered ("\n");
4252
4253 do_cleanups (cleanups);
4254 }
4255
4256 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4257 non-zero compare only lbasename of FILES. */
4258
4259 static int
4260 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4261 {
4262 int i;
4263
4264 if (file != NULL && nfiles != 0)
4265 {
4266 for (i = 0; i < nfiles; i++)
4267 {
4268 if (compare_filenames_for_search (file, (basenames
4269 ? lbasename (files[i])
4270 : files[i])))
4271 return 1;
4272 }
4273 }
4274 else if (nfiles == 0)
4275 return 1;
4276 return 0;
4277 }
4278
4279 /* Free any memory associated with a search. */
4280
4281 void
4282 free_search_symbols (struct symbol_search *symbols)
4283 {
4284 struct symbol_search *p;
4285 struct symbol_search *next;
4286
4287 for (p = symbols; p != NULL; p = next)
4288 {
4289 next = p->next;
4290 xfree (p);
4291 }
4292 }
4293
4294 static void
4295 do_free_search_symbols_cleanup (void *symbolsp)
4296 {
4297 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4298
4299 free_search_symbols (symbols);
4300 }
4301
4302 struct cleanup *
4303 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4304 {
4305 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4306 }
4307
4308 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4309 sort symbols, not minimal symbols. */
4310
4311 static int
4312 compare_search_syms (const void *sa, const void *sb)
4313 {
4314 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4315 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4316 int c;
4317
4318 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4319 symbol_symtab (sym_b->symbol)->filename);
4320 if (c != 0)
4321 return c;
4322
4323 if (sym_a->block != sym_b->block)
4324 return sym_a->block - sym_b->block;
4325
4326 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4327 SYMBOL_PRINT_NAME (sym_b->symbol));
4328 }
4329
4330 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4331 The duplicates are freed, and the new list is returned in
4332 *NEW_HEAD, *NEW_TAIL. */
4333
4334 static void
4335 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4336 struct symbol_search **new_head,
4337 struct symbol_search **new_tail)
4338 {
4339 struct symbol_search **symbols, *symp;
4340 int i, j, nunique;
4341
4342 gdb_assert (found != NULL && nfound > 0);
4343
4344 /* Build an array out of the list so we can easily sort them. */
4345 symbols = XNEWVEC (struct symbol_search *, nfound);
4346
4347 symp = found;
4348 for (i = 0; i < nfound; i++)
4349 {
4350 gdb_assert (symp != NULL);
4351 gdb_assert (symp->block >= 0 && symp->block <= 1);
4352 symbols[i] = symp;
4353 symp = symp->next;
4354 }
4355 gdb_assert (symp == NULL);
4356
4357 qsort (symbols, nfound, sizeof (struct symbol_search *),
4358 compare_search_syms);
4359
4360 /* Collapse out the dups. */
4361 for (i = 1, j = 1; i < nfound; ++i)
4362 {
4363 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4364 symbols[j++] = symbols[i];
4365 else
4366 xfree (symbols[i]);
4367 }
4368 nunique = j;
4369 symbols[j - 1]->next = NULL;
4370
4371 /* Rebuild the linked list. */
4372 for (i = 0; i < nunique - 1; i++)
4373 symbols[i]->next = symbols[i + 1];
4374 symbols[nunique - 1]->next = NULL;
4375
4376 *new_head = symbols[0];
4377 *new_tail = symbols[nunique - 1];
4378 xfree (symbols);
4379 }
4380
4381 /* An object of this type is passed as the user_data to the
4382 expand_symtabs_matching method. */
4383 struct search_symbols_data
4384 {
4385 int nfiles;
4386 const char **files;
4387
4388 /* It is true if PREG contains valid data, false otherwise. */
4389 unsigned preg_p : 1;
4390 regex_t preg;
4391 };
4392
4393 /* A callback for expand_symtabs_matching. */
4394
4395 static int
4396 search_symbols_file_matches (const char *filename, void *user_data,
4397 int basenames)
4398 {
4399 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4400
4401 return file_matches (filename, data->files, data->nfiles, basenames);
4402 }
4403
4404 /* A callback for expand_symtabs_matching. */
4405
4406 static int
4407 search_symbols_name_matches (const char *symname, void *user_data)
4408 {
4409 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4410
4411 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4412 }
4413
4414 /* Search the symbol table for matches to the regular expression REGEXP,
4415 returning the results in *MATCHES.
4416
4417 Only symbols of KIND are searched:
4418 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4419 and constants (enums)
4420 FUNCTIONS_DOMAIN - search all functions
4421 TYPES_DOMAIN - search all type names
4422 ALL_DOMAIN - an internal error for this function
4423
4424 free_search_symbols should be called when *MATCHES is no longer needed.
4425
4426 Within each file the results are sorted locally; each symtab's global and
4427 static blocks are separately alphabetized.
4428 Duplicate entries are removed. */
4429
4430 void
4431 search_symbols (const char *regexp, enum search_domain kind,
4432 int nfiles, const char *files[],
4433 struct symbol_search **matches)
4434 {
4435 struct compunit_symtab *cust;
4436 const struct blockvector *bv;
4437 struct block *b;
4438 int i = 0;
4439 struct block_iterator iter;
4440 struct symbol *sym;
4441 struct objfile *objfile;
4442 struct minimal_symbol *msymbol;
4443 int found_misc = 0;
4444 static const enum minimal_symbol_type types[]
4445 = {mst_data, mst_text, mst_abs};
4446 static const enum minimal_symbol_type types2[]
4447 = {mst_bss, mst_file_text, mst_abs};
4448 static const enum minimal_symbol_type types3[]
4449 = {mst_file_data, mst_solib_trampoline, mst_abs};
4450 static const enum minimal_symbol_type types4[]
4451 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4452 enum minimal_symbol_type ourtype;
4453 enum minimal_symbol_type ourtype2;
4454 enum minimal_symbol_type ourtype3;
4455 enum minimal_symbol_type ourtype4;
4456 struct symbol_search *found;
4457 struct symbol_search *tail;
4458 struct search_symbols_data datum;
4459 int nfound;
4460
4461 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4462 CLEANUP_CHAIN is freed only in the case of an error. */
4463 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4464 struct cleanup *retval_chain;
4465
4466 gdb_assert (kind <= TYPES_DOMAIN);
4467
4468 ourtype = types[kind];
4469 ourtype2 = types2[kind];
4470 ourtype3 = types3[kind];
4471 ourtype4 = types4[kind];
4472
4473 *matches = NULL;
4474 datum.preg_p = 0;
4475
4476 if (regexp != NULL)
4477 {
4478 /* Make sure spacing is right for C++ operators.
4479 This is just a courtesy to make the matching less sensitive
4480 to how many spaces the user leaves between 'operator'
4481 and <TYPENAME> or <OPERATOR>. */
4482 const char *opend;
4483 const char *opname = operator_chars (regexp, &opend);
4484 int errcode;
4485
4486 if (*opname)
4487 {
4488 int fix = -1; /* -1 means ok; otherwise number of
4489 spaces needed. */
4490
4491 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4492 {
4493 /* There should 1 space between 'operator' and 'TYPENAME'. */
4494 if (opname[-1] != ' ' || opname[-2] == ' ')
4495 fix = 1;
4496 }
4497 else
4498 {
4499 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4500 if (opname[-1] == ' ')
4501 fix = 0;
4502 }
4503 /* If wrong number of spaces, fix it. */
4504 if (fix >= 0)
4505 {
4506 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4507
4508 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4509 regexp = tmp;
4510 }
4511 }
4512
4513 errcode = regcomp (&datum.preg, regexp,
4514 REG_NOSUB | (case_sensitivity == case_sensitive_off
4515 ? REG_ICASE : 0));
4516 if (errcode != 0)
4517 {
4518 char *err = get_regcomp_error (errcode, &datum.preg);
4519
4520 make_cleanup (xfree, err);
4521 error (_("Invalid regexp (%s): %s"), err, regexp);
4522 }
4523 datum.preg_p = 1;
4524 make_regfree_cleanup (&datum.preg);
4525 }
4526
4527 /* Search through the partial symtabs *first* for all symbols
4528 matching the regexp. That way we don't have to reproduce all of
4529 the machinery below. */
4530
4531 datum.nfiles = nfiles;
4532 datum.files = files;
4533 expand_symtabs_matching ((nfiles == 0
4534 ? NULL
4535 : search_symbols_file_matches),
4536 search_symbols_name_matches,
4537 NULL, kind, &datum);
4538
4539 /* Here, we search through the minimal symbol tables for functions
4540 and variables that match, and force their symbols to be read.
4541 This is in particular necessary for demangled variable names,
4542 which are no longer put into the partial symbol tables.
4543 The symbol will then be found during the scan of symtabs below.
4544
4545 For functions, find_pc_symtab should succeed if we have debug info
4546 for the function, for variables we have to call
4547 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4548 has debug info.
4549 If the lookup fails, set found_misc so that we will rescan to print
4550 any matching symbols without debug info.
4551 We only search the objfile the msymbol came from, we no longer search
4552 all objfiles. In large programs (1000s of shared libs) searching all
4553 objfiles is not worth the pain. */
4554
4555 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4556 {
4557 ALL_MSYMBOLS (objfile, msymbol)
4558 {
4559 QUIT;
4560
4561 if (msymbol->created_by_gdb)
4562 continue;
4563
4564 if (MSYMBOL_TYPE (msymbol) == ourtype
4565 || MSYMBOL_TYPE (msymbol) == ourtype2
4566 || MSYMBOL_TYPE (msymbol) == ourtype3
4567 || MSYMBOL_TYPE (msymbol) == ourtype4)
4568 {
4569 if (!datum.preg_p
4570 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4571 NULL, 0) == 0)
4572 {
4573 /* Note: An important side-effect of these lookup functions
4574 is to expand the symbol table if msymbol is found, for the
4575 benefit of the next loop on ALL_COMPUNITS. */
4576 if (kind == FUNCTIONS_DOMAIN
4577 ? (find_pc_compunit_symtab
4578 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4579 : (lookup_symbol_in_objfile_from_linkage_name
4580 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4581 .symbol == NULL))
4582 found_misc = 1;
4583 }
4584 }
4585 }
4586 }
4587
4588 found = NULL;
4589 tail = NULL;
4590 nfound = 0;
4591 retval_chain = make_cleanup_free_search_symbols (&found);
4592
4593 ALL_COMPUNITS (objfile, cust)
4594 {
4595 bv = COMPUNIT_BLOCKVECTOR (cust);
4596 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4597 {
4598 b = BLOCKVECTOR_BLOCK (bv, i);
4599 ALL_BLOCK_SYMBOLS (b, iter, sym)
4600 {
4601 struct symtab *real_symtab = symbol_symtab (sym);
4602
4603 QUIT;
4604
4605 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4606 a substring of symtab_to_fullname as it may contain "./" etc. */
4607 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4608 || ((basenames_may_differ
4609 || file_matches (lbasename (real_symtab->filename),
4610 files, nfiles, 1))
4611 && file_matches (symtab_to_fullname (real_symtab),
4612 files, nfiles, 0)))
4613 && ((!datum.preg_p
4614 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4615 NULL, 0) == 0)
4616 && ((kind == VARIABLES_DOMAIN
4617 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4618 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4619 && SYMBOL_CLASS (sym) != LOC_BLOCK
4620 /* LOC_CONST can be used for more than just enums,
4621 e.g., c++ static const members.
4622 We only want to skip enums here. */
4623 && !(SYMBOL_CLASS (sym) == LOC_CONST
4624 && (TYPE_CODE (SYMBOL_TYPE (sym))
4625 == TYPE_CODE_ENUM)))
4626 || (kind == FUNCTIONS_DOMAIN
4627 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4628 || (kind == TYPES_DOMAIN
4629 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4630 {
4631 /* match */
4632 struct symbol_search *psr = XCNEW (struct symbol_search);
4633
4634 psr->block = i;
4635 psr->symbol = sym;
4636 psr->next = NULL;
4637 if (tail == NULL)
4638 found = psr;
4639 else
4640 tail->next = psr;
4641 tail = psr;
4642 nfound ++;
4643 }
4644 }
4645 }
4646 }
4647
4648 if (found != NULL)
4649 {
4650 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4651 /* Note: nfound is no longer useful beyond this point. */
4652 }
4653
4654 /* If there are no eyes, avoid all contact. I mean, if there are
4655 no debug symbols, then add matching minsyms. */
4656
4657 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4658 {
4659 ALL_MSYMBOLS (objfile, msymbol)
4660 {
4661 QUIT;
4662
4663 if (msymbol->created_by_gdb)
4664 continue;
4665
4666 if (MSYMBOL_TYPE (msymbol) == ourtype
4667 || MSYMBOL_TYPE (msymbol) == ourtype2
4668 || MSYMBOL_TYPE (msymbol) == ourtype3
4669 || MSYMBOL_TYPE (msymbol) == ourtype4)
4670 {
4671 if (!datum.preg_p
4672 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4673 NULL, 0) == 0)
4674 {
4675 /* For functions we can do a quick check of whether the
4676 symbol might be found via find_pc_symtab. */
4677 if (kind != FUNCTIONS_DOMAIN
4678 || (find_pc_compunit_symtab
4679 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4680 {
4681 if (lookup_symbol_in_objfile_from_linkage_name
4682 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4683 .symbol == NULL)
4684 {
4685 /* match */
4686 struct symbol_search *psr = XNEW (struct symbol_search);
4687 psr->block = i;
4688 psr->msymbol.minsym = msymbol;
4689 psr->msymbol.objfile = objfile;
4690 psr->symbol = NULL;
4691 psr->next = NULL;
4692 if (tail == NULL)
4693 found = psr;
4694 else
4695 tail->next = psr;
4696 tail = psr;
4697 }
4698 }
4699 }
4700 }
4701 }
4702 }
4703
4704 discard_cleanups (retval_chain);
4705 do_cleanups (old_chain);
4706 *matches = found;
4707 }
4708
4709 /* Helper function for symtab_symbol_info, this function uses
4710 the data returned from search_symbols() to print information
4711 regarding the match to gdb_stdout. */
4712
4713 static void
4714 print_symbol_info (enum search_domain kind,
4715 struct symbol *sym,
4716 int block, const char *last)
4717 {
4718 struct symtab *s = symbol_symtab (sym);
4719 const char *s_filename = symtab_to_filename_for_display (s);
4720
4721 if (last == NULL || filename_cmp (last, s_filename) != 0)
4722 {
4723 fputs_filtered ("\nFile ", gdb_stdout);
4724 fputs_filtered (s_filename, gdb_stdout);
4725 fputs_filtered (":\n", gdb_stdout);
4726 }
4727
4728 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4729 printf_filtered ("static ");
4730
4731 /* Typedef that is not a C++ class. */
4732 if (kind == TYPES_DOMAIN
4733 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4734 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4735 /* variable, func, or typedef-that-is-c++-class. */
4736 else if (kind < TYPES_DOMAIN
4737 || (kind == TYPES_DOMAIN
4738 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4739 {
4740 type_print (SYMBOL_TYPE (sym),
4741 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4742 ? "" : SYMBOL_PRINT_NAME (sym)),
4743 gdb_stdout, 0);
4744
4745 printf_filtered (";\n");
4746 }
4747 }
4748
4749 /* This help function for symtab_symbol_info() prints information
4750 for non-debugging symbols to gdb_stdout. */
4751
4752 static void
4753 print_msymbol_info (struct bound_minimal_symbol msymbol)
4754 {
4755 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4756 char *tmp;
4757
4758 if (gdbarch_addr_bit (gdbarch) <= 32)
4759 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4760 & (CORE_ADDR) 0xffffffff,
4761 8);
4762 else
4763 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4764 16);
4765 printf_filtered ("%s %s\n",
4766 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4767 }
4768
4769 /* This is the guts of the commands "info functions", "info types", and
4770 "info variables". It calls search_symbols to find all matches and then
4771 print_[m]symbol_info to print out some useful information about the
4772 matches. */
4773
4774 static void
4775 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4776 {
4777 static const char * const classnames[] =
4778 {"variable", "function", "type"};
4779 struct symbol_search *symbols;
4780 struct symbol_search *p;
4781 struct cleanup *old_chain;
4782 const char *last_filename = NULL;
4783 int first = 1;
4784
4785 gdb_assert (kind <= TYPES_DOMAIN);
4786
4787 /* Must make sure that if we're interrupted, symbols gets freed. */
4788 search_symbols (regexp, kind, 0, NULL, &symbols);
4789 old_chain = make_cleanup_free_search_symbols (&symbols);
4790
4791 if (regexp != NULL)
4792 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4793 classnames[kind], regexp);
4794 else
4795 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4796
4797 for (p = symbols; p != NULL; p = p->next)
4798 {
4799 QUIT;
4800
4801 if (p->msymbol.minsym != NULL)
4802 {
4803 if (first)
4804 {
4805 printf_filtered (_("\nNon-debugging symbols:\n"));
4806 first = 0;
4807 }
4808 print_msymbol_info (p->msymbol);
4809 }
4810 else
4811 {
4812 print_symbol_info (kind,
4813 p->symbol,
4814 p->block,
4815 last_filename);
4816 last_filename
4817 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4818 }
4819 }
4820
4821 do_cleanups (old_chain);
4822 }
4823
4824 static void
4825 variables_info (char *regexp, int from_tty)
4826 {
4827 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4828 }
4829
4830 static void
4831 functions_info (char *regexp, int from_tty)
4832 {
4833 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4834 }
4835
4836
4837 static void
4838 types_info (char *regexp, int from_tty)
4839 {
4840 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4841 }
4842
4843 /* Breakpoint all functions matching regular expression. */
4844
4845 void
4846 rbreak_command_wrapper (char *regexp, int from_tty)
4847 {
4848 rbreak_command (regexp, from_tty);
4849 }
4850
4851 /* A cleanup function that calls end_rbreak_breakpoints. */
4852
4853 static void
4854 do_end_rbreak_breakpoints (void *ignore)
4855 {
4856 end_rbreak_breakpoints ();
4857 }
4858
4859 static void
4860 rbreak_command (char *regexp, int from_tty)
4861 {
4862 struct symbol_search *ss;
4863 struct symbol_search *p;
4864 struct cleanup *old_chain;
4865 char *string = NULL;
4866 int len = 0;
4867 const char **files = NULL;
4868 const char *file_name;
4869 int nfiles = 0;
4870
4871 if (regexp)
4872 {
4873 char *colon = strchr (regexp, ':');
4874
4875 if (colon && *(colon + 1) != ':')
4876 {
4877 int colon_index;
4878 char *local_name;
4879
4880 colon_index = colon - regexp;
4881 local_name = (char *) alloca (colon_index + 1);
4882 memcpy (local_name, regexp, colon_index);
4883 local_name[colon_index--] = 0;
4884 while (isspace (local_name[colon_index]))
4885 local_name[colon_index--] = 0;
4886 file_name = local_name;
4887 files = &file_name;
4888 nfiles = 1;
4889 regexp = skip_spaces (colon + 1);
4890 }
4891 }
4892
4893 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4894 old_chain = make_cleanup_free_search_symbols (&ss);
4895 make_cleanup (free_current_contents, &string);
4896
4897 start_rbreak_breakpoints ();
4898 make_cleanup (do_end_rbreak_breakpoints, NULL);
4899 for (p = ss; p != NULL; p = p->next)
4900 {
4901 if (p->msymbol.minsym == NULL)
4902 {
4903 struct symtab *symtab = symbol_symtab (p->symbol);
4904 const char *fullname = symtab_to_fullname (symtab);
4905
4906 int newlen = (strlen (fullname)
4907 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4908 + 4);
4909
4910 if (newlen > len)
4911 {
4912 string = (char *) xrealloc (string, newlen);
4913 len = newlen;
4914 }
4915 strcpy (string, fullname);
4916 strcat (string, ":'");
4917 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4918 strcat (string, "'");
4919 break_command (string, from_tty);
4920 print_symbol_info (FUNCTIONS_DOMAIN,
4921 p->symbol,
4922 p->block,
4923 symtab_to_filename_for_display (symtab));
4924 }
4925 else
4926 {
4927 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4928
4929 if (newlen > len)
4930 {
4931 string = (char *) xrealloc (string, newlen);
4932 len = newlen;
4933 }
4934 strcpy (string, "'");
4935 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4936 strcat (string, "'");
4937
4938 break_command (string, from_tty);
4939 printf_filtered ("<function, no debug info> %s;\n",
4940 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4941 }
4942 }
4943
4944 do_cleanups (old_chain);
4945 }
4946 \f
4947
4948 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4949
4950 Either sym_text[sym_text_len] != '(' and then we search for any
4951 symbol starting with SYM_TEXT text.
4952
4953 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4954 be terminated at that point. Partial symbol tables do not have parameters
4955 information. */
4956
4957 static int
4958 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4959 {
4960 int (*ncmp) (const char *, const char *, size_t);
4961
4962 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4963
4964 if (ncmp (name, sym_text, sym_text_len) != 0)
4965 return 0;
4966
4967 if (sym_text[sym_text_len] == '(')
4968 {
4969 /* User searches for `name(someth...'. Require NAME to be terminated.
4970 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4971 present but accept even parameters presence. In this case this
4972 function is in fact strcmp_iw but whitespace skipping is not supported
4973 for tab completion. */
4974
4975 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4976 return 0;
4977 }
4978
4979 return 1;
4980 }
4981
4982 /* Free any memory associated with a completion list. */
4983
4984 static void
4985 free_completion_list (VEC (char_ptr) **list_ptr)
4986 {
4987 int i;
4988 char *p;
4989
4990 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4991 xfree (p);
4992 VEC_free (char_ptr, *list_ptr);
4993 }
4994
4995 /* Callback for make_cleanup. */
4996
4997 static void
4998 do_free_completion_list (void *list)
4999 {
5000 free_completion_list ((VEC (char_ptr) **) list);
5001 }
5002
5003 /* Helper routine for make_symbol_completion_list. */
5004
5005 static VEC (char_ptr) *return_val;
5006
5007 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5008 completion_list_add_name \
5009 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5010
5011 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5012 completion_list_add_name \
5013 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5014
5015 /* Tracker for how many unique completions have been generated. Used
5016 to terminate completion list generation early if the list has grown
5017 to a size so large as to be useless. This helps avoid GDB seeming
5018 to lock up in the event the user requests to complete on something
5019 vague that necessitates the time consuming expansion of many symbol
5020 tables. */
5021
5022 static completion_tracker_t completion_tracker;
5023
5024 /* Test to see if the symbol specified by SYMNAME (which is already
5025 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5026 characters. If so, add it to the current completion list. */
5027
5028 static void
5029 completion_list_add_name (const char *symname,
5030 const char *sym_text, int sym_text_len,
5031 const char *text, const char *word)
5032 {
5033 /* Clip symbols that cannot match. */
5034 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5035 return;
5036
5037 /* We have a match for a completion, so add SYMNAME to the current list
5038 of matches. Note that the name is moved to freshly malloc'd space. */
5039
5040 {
5041 char *newobj;
5042 enum maybe_add_completion_enum add_status;
5043
5044 if (word == sym_text)
5045 {
5046 newobj = (char *) xmalloc (strlen (symname) + 5);
5047 strcpy (newobj, symname);
5048 }
5049 else if (word > sym_text)
5050 {
5051 /* Return some portion of symname. */
5052 newobj = (char *) xmalloc (strlen (symname) + 5);
5053 strcpy (newobj, symname + (word - sym_text));
5054 }
5055 else
5056 {
5057 /* Return some of SYM_TEXT plus symname. */
5058 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5059 strncpy (newobj, word, sym_text - word);
5060 newobj[sym_text - word] = '\0';
5061 strcat (newobj, symname);
5062 }
5063
5064 add_status = maybe_add_completion (completion_tracker, newobj);
5065
5066 switch (add_status)
5067 {
5068 case MAYBE_ADD_COMPLETION_OK:
5069 VEC_safe_push (char_ptr, return_val, newobj);
5070 break;
5071 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5072 VEC_safe_push (char_ptr, return_val, newobj);
5073 throw_max_completions_reached_error ();
5074 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5075 xfree (newobj);
5076 throw_max_completions_reached_error ();
5077 case MAYBE_ADD_COMPLETION_DUPLICATE:
5078 xfree (newobj);
5079 break;
5080 }
5081 }
5082 }
5083
5084 /* ObjC: In case we are completing on a selector, look as the msymbol
5085 again and feed all the selectors into the mill. */
5086
5087 static void
5088 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5089 const char *sym_text, int sym_text_len,
5090 const char *text, const char *word)
5091 {
5092 static char *tmp = NULL;
5093 static unsigned int tmplen = 0;
5094
5095 const char *method, *category, *selector;
5096 char *tmp2 = NULL;
5097
5098 method = MSYMBOL_NATURAL_NAME (msymbol);
5099
5100 /* Is it a method? */
5101 if ((method[0] != '-') && (method[0] != '+'))
5102 return;
5103
5104 if (sym_text[0] == '[')
5105 /* Complete on shortened method method. */
5106 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5107
5108 while ((strlen (method) + 1) >= tmplen)
5109 {
5110 if (tmplen == 0)
5111 tmplen = 1024;
5112 else
5113 tmplen *= 2;
5114 tmp = (char *) xrealloc (tmp, tmplen);
5115 }
5116 selector = strchr (method, ' ');
5117 if (selector != NULL)
5118 selector++;
5119
5120 category = strchr (method, '(');
5121
5122 if ((category != NULL) && (selector != NULL))
5123 {
5124 memcpy (tmp, method, (category - method));
5125 tmp[category - method] = ' ';
5126 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5127 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5128 if (sym_text[0] == '[')
5129 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5130 }
5131
5132 if (selector != NULL)
5133 {
5134 /* Complete on selector only. */
5135 strcpy (tmp, selector);
5136 tmp2 = strchr (tmp, ']');
5137 if (tmp2 != NULL)
5138 *tmp2 = '\0';
5139
5140 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5141 }
5142 }
5143
5144 /* Break the non-quoted text based on the characters which are in
5145 symbols. FIXME: This should probably be language-specific. */
5146
5147 static const char *
5148 language_search_unquoted_string (const char *text, const char *p)
5149 {
5150 for (; p > text; --p)
5151 {
5152 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5153 continue;
5154 else
5155 {
5156 if ((current_language->la_language == language_objc))
5157 {
5158 if (p[-1] == ':') /* Might be part of a method name. */
5159 continue;
5160 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5161 p -= 2; /* Beginning of a method name. */
5162 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5163 { /* Might be part of a method name. */
5164 const char *t = p;
5165
5166 /* Seeing a ' ' or a '(' is not conclusive evidence
5167 that we are in the middle of a method name. However,
5168 finding "-[" or "+[" should be pretty un-ambiguous.
5169 Unfortunately we have to find it now to decide. */
5170
5171 while (t > text)
5172 if (isalnum (t[-1]) || t[-1] == '_' ||
5173 t[-1] == ' ' || t[-1] == ':' ||
5174 t[-1] == '(' || t[-1] == ')')
5175 --t;
5176 else
5177 break;
5178
5179 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5180 p = t - 2; /* Method name detected. */
5181 /* Else we leave with p unchanged. */
5182 }
5183 }
5184 break;
5185 }
5186 }
5187 return p;
5188 }
5189
5190 static void
5191 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5192 int sym_text_len, const char *text,
5193 const char *word)
5194 {
5195 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5196 {
5197 struct type *t = SYMBOL_TYPE (sym);
5198 enum type_code c = TYPE_CODE (t);
5199 int j;
5200
5201 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5202 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5203 if (TYPE_FIELD_NAME (t, j))
5204 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5205 sym_text, sym_text_len, text, word);
5206 }
5207 }
5208
5209 /* Type of the user_data argument passed to add_macro_name,
5210 symbol_completion_matcher and symtab_expansion_callback. */
5211
5212 struct add_name_data
5213 {
5214 /* Arguments required by completion_list_add_name. */
5215 const char *sym_text;
5216 int sym_text_len;
5217 const char *text;
5218 const char *word;
5219
5220 /* Extra argument required for add_symtab_completions. */
5221 enum type_code code;
5222 };
5223
5224 /* A callback used with macro_for_each and macro_for_each_in_scope.
5225 This adds a macro's name to the current completion list. */
5226
5227 static void
5228 add_macro_name (const char *name, const struct macro_definition *ignore,
5229 struct macro_source_file *ignore2, int ignore3,
5230 void *user_data)
5231 {
5232 struct add_name_data *datum = (struct add_name_data *) user_data;
5233
5234 completion_list_add_name (name,
5235 datum->sym_text, datum->sym_text_len,
5236 datum->text, datum->word);
5237 }
5238
5239 /* A callback for expand_symtabs_matching. */
5240
5241 static int
5242 symbol_completion_matcher (const char *name, void *user_data)
5243 {
5244 struct add_name_data *datum = (struct add_name_data *) user_data;
5245
5246 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5247 }
5248
5249 /* Add matching symbols from SYMTAB to the current completion list. */
5250
5251 static void
5252 add_symtab_completions (struct compunit_symtab *cust,
5253 const char *sym_text, int sym_text_len,
5254 const char *text, const char *word,
5255 enum type_code code)
5256 {
5257 struct symbol *sym;
5258 const struct block *b;
5259 struct block_iterator iter;
5260 int i;
5261
5262 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5263 {
5264 QUIT;
5265 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5266 ALL_BLOCK_SYMBOLS (b, iter, sym)
5267 {
5268 if (code == TYPE_CODE_UNDEF
5269 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5270 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5271 COMPLETION_LIST_ADD_SYMBOL (sym,
5272 sym_text, sym_text_len,
5273 text, word);
5274 }
5275 }
5276 }
5277
5278 /* Callback to add completions to the current list when symbol tables
5279 are expanded during completion list generation. */
5280
5281 static void
5282 symtab_expansion_callback (struct compunit_symtab *symtab,
5283 void *user_data)
5284 {
5285 struct add_name_data *datum = (struct add_name_data *) user_data;
5286
5287 add_symtab_completions (symtab,
5288 datum->sym_text, datum->sym_text_len,
5289 datum->text, datum->word,
5290 datum->code);
5291 }
5292
5293 static void
5294 default_make_symbol_completion_list_break_on_1 (const char *text,
5295 const char *word,
5296 const char *break_on,
5297 enum type_code code)
5298 {
5299 /* Problem: All of the symbols have to be copied because readline
5300 frees them. I'm not going to worry about this; hopefully there
5301 won't be that many. */
5302
5303 struct symbol *sym;
5304 struct compunit_symtab *cust;
5305 struct minimal_symbol *msymbol;
5306 struct objfile *objfile;
5307 const struct block *b;
5308 const struct block *surrounding_static_block, *surrounding_global_block;
5309 struct block_iterator iter;
5310 /* The symbol we are completing on. Points in same buffer as text. */
5311 const char *sym_text;
5312 /* Length of sym_text. */
5313 int sym_text_len;
5314 struct add_name_data datum;
5315 struct cleanup *cleanups;
5316
5317 /* Now look for the symbol we are supposed to complete on. */
5318 {
5319 const char *p;
5320 char quote_found;
5321 const char *quote_pos = NULL;
5322
5323 /* First see if this is a quoted string. */
5324 quote_found = '\0';
5325 for (p = text; *p != '\0'; ++p)
5326 {
5327 if (quote_found != '\0')
5328 {
5329 if (*p == quote_found)
5330 /* Found close quote. */
5331 quote_found = '\0';
5332 else if (*p == '\\' && p[1] == quote_found)
5333 /* A backslash followed by the quote character
5334 doesn't end the string. */
5335 ++p;
5336 }
5337 else if (*p == '\'' || *p == '"')
5338 {
5339 quote_found = *p;
5340 quote_pos = p;
5341 }
5342 }
5343 if (quote_found == '\'')
5344 /* A string within single quotes can be a symbol, so complete on it. */
5345 sym_text = quote_pos + 1;
5346 else if (quote_found == '"')
5347 /* A double-quoted string is never a symbol, nor does it make sense
5348 to complete it any other way. */
5349 {
5350 return;
5351 }
5352 else
5353 {
5354 /* It is not a quoted string. Break it based on the characters
5355 which are in symbols. */
5356 while (p > text)
5357 {
5358 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5359 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5360 --p;
5361 else
5362 break;
5363 }
5364 sym_text = p;
5365 }
5366 }
5367
5368 sym_text_len = strlen (sym_text);
5369
5370 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5371
5372 if (current_language->la_language == language_cplus
5373 || current_language->la_language == language_java
5374 || current_language->la_language == language_fortran)
5375 {
5376 /* These languages may have parameters entered by user but they are never
5377 present in the partial symbol tables. */
5378
5379 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5380
5381 if (cs)
5382 sym_text_len = cs - sym_text;
5383 }
5384 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5385
5386 completion_tracker = new_completion_tracker ();
5387 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5388
5389 datum.sym_text = sym_text;
5390 datum.sym_text_len = sym_text_len;
5391 datum.text = text;
5392 datum.word = word;
5393 datum.code = code;
5394
5395 /* At this point scan through the misc symbol vectors and add each
5396 symbol you find to the list. Eventually we want to ignore
5397 anything that isn't a text symbol (everything else will be
5398 handled by the psymtab code below). */
5399
5400 if (code == TYPE_CODE_UNDEF)
5401 {
5402 ALL_MSYMBOLS (objfile, msymbol)
5403 {
5404 QUIT;
5405 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5406 word);
5407
5408 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5409 word);
5410 }
5411 }
5412
5413 /* Add completions for all currently loaded symbol tables. */
5414 ALL_COMPUNITS (objfile, cust)
5415 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5416 code);
5417
5418 /* Look through the partial symtabs for all symbols which begin
5419 by matching SYM_TEXT. Expand all CUs that you find to the list.
5420 symtab_expansion_callback is called for each expanded symtab,
5421 causing those symtab's completions to be added to the list too. */
5422 expand_symtabs_matching (NULL, symbol_completion_matcher,
5423 symtab_expansion_callback, ALL_DOMAIN,
5424 &datum);
5425
5426 /* Search upwards from currently selected frame (so that we can
5427 complete on local vars). Also catch fields of types defined in
5428 this places which match our text string. Only complete on types
5429 visible from current context. */
5430
5431 b = get_selected_block (0);
5432 surrounding_static_block = block_static_block (b);
5433 surrounding_global_block = block_global_block (b);
5434 if (surrounding_static_block != NULL)
5435 while (b != surrounding_static_block)
5436 {
5437 QUIT;
5438
5439 ALL_BLOCK_SYMBOLS (b, iter, sym)
5440 {
5441 if (code == TYPE_CODE_UNDEF)
5442 {
5443 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5444 word);
5445 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5446 word);
5447 }
5448 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5449 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5450 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5451 word);
5452 }
5453
5454 /* Stop when we encounter an enclosing function. Do not stop for
5455 non-inlined functions - the locals of the enclosing function
5456 are in scope for a nested function. */
5457 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5458 break;
5459 b = BLOCK_SUPERBLOCK (b);
5460 }
5461
5462 /* Add fields from the file's types; symbols will be added below. */
5463
5464 if (code == TYPE_CODE_UNDEF)
5465 {
5466 if (surrounding_static_block != NULL)
5467 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5468 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5469
5470 if (surrounding_global_block != NULL)
5471 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5472 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5473 }
5474
5475 /* Skip macros if we are completing a struct tag -- arguable but
5476 usually what is expected. */
5477 if (current_language->la_macro_expansion == macro_expansion_c
5478 && code == TYPE_CODE_UNDEF)
5479 {
5480 struct macro_scope *scope;
5481
5482 /* Add any macros visible in the default scope. Note that this
5483 may yield the occasional wrong result, because an expression
5484 might be evaluated in a scope other than the default. For
5485 example, if the user types "break file:line if <TAB>", the
5486 resulting expression will be evaluated at "file:line" -- but
5487 at there does not seem to be a way to detect this at
5488 completion time. */
5489 scope = default_macro_scope ();
5490 if (scope)
5491 {
5492 macro_for_each_in_scope (scope->file, scope->line,
5493 add_macro_name, &datum);
5494 xfree (scope);
5495 }
5496
5497 /* User-defined macros are always visible. */
5498 macro_for_each (macro_user_macros, add_macro_name, &datum);
5499 }
5500
5501 do_cleanups (cleanups);
5502 }
5503
5504 VEC (char_ptr) *
5505 default_make_symbol_completion_list_break_on (const char *text,
5506 const char *word,
5507 const char *break_on,
5508 enum type_code code)
5509 {
5510 struct cleanup *back_to;
5511
5512 return_val = NULL;
5513 back_to = make_cleanup (do_free_completion_list, &return_val);
5514
5515 TRY
5516 {
5517 default_make_symbol_completion_list_break_on_1 (text, word,
5518 break_on, code);
5519 }
5520 CATCH (except, RETURN_MASK_ERROR)
5521 {
5522 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5523 throw_exception (except);
5524 }
5525 END_CATCH
5526
5527 discard_cleanups (back_to);
5528 return return_val;
5529 }
5530
5531 VEC (char_ptr) *
5532 default_make_symbol_completion_list (const char *text, const char *word,
5533 enum type_code code)
5534 {
5535 return default_make_symbol_completion_list_break_on (text, word, "", code);
5536 }
5537
5538 /* Return a vector of all symbols (regardless of class) which begin by
5539 matching TEXT. If the answer is no symbols, then the return value
5540 is NULL. */
5541
5542 VEC (char_ptr) *
5543 make_symbol_completion_list (const char *text, const char *word)
5544 {
5545 return current_language->la_make_symbol_completion_list (text, word,
5546 TYPE_CODE_UNDEF);
5547 }
5548
5549 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5550 symbols whose type code is CODE. */
5551
5552 VEC (char_ptr) *
5553 make_symbol_completion_type (const char *text, const char *word,
5554 enum type_code code)
5555 {
5556 gdb_assert (code == TYPE_CODE_UNION
5557 || code == TYPE_CODE_STRUCT
5558 || code == TYPE_CODE_ENUM);
5559 return current_language->la_make_symbol_completion_list (text, word, code);
5560 }
5561
5562 /* Like make_symbol_completion_list, but suitable for use as a
5563 completion function. */
5564
5565 VEC (char_ptr) *
5566 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5567 const char *text, const char *word)
5568 {
5569 return make_symbol_completion_list (text, word);
5570 }
5571
5572 /* Like make_symbol_completion_list, but returns a list of symbols
5573 defined in a source file FILE. */
5574
5575 static VEC (char_ptr) *
5576 make_file_symbol_completion_list_1 (const char *text, const char *word,
5577 const char *srcfile)
5578 {
5579 struct symbol *sym;
5580 struct symtab *s;
5581 struct block *b;
5582 struct block_iterator iter;
5583 /* The symbol we are completing on. Points in same buffer as text. */
5584 const char *sym_text;
5585 /* Length of sym_text. */
5586 int sym_text_len;
5587
5588 /* Now look for the symbol we are supposed to complete on.
5589 FIXME: This should be language-specific. */
5590 {
5591 const char *p;
5592 char quote_found;
5593 const char *quote_pos = NULL;
5594
5595 /* First see if this is a quoted string. */
5596 quote_found = '\0';
5597 for (p = text; *p != '\0'; ++p)
5598 {
5599 if (quote_found != '\0')
5600 {
5601 if (*p == quote_found)
5602 /* Found close quote. */
5603 quote_found = '\0';
5604 else if (*p == '\\' && p[1] == quote_found)
5605 /* A backslash followed by the quote character
5606 doesn't end the string. */
5607 ++p;
5608 }
5609 else if (*p == '\'' || *p == '"')
5610 {
5611 quote_found = *p;
5612 quote_pos = p;
5613 }
5614 }
5615 if (quote_found == '\'')
5616 /* A string within single quotes can be a symbol, so complete on it. */
5617 sym_text = quote_pos + 1;
5618 else if (quote_found == '"')
5619 /* A double-quoted string is never a symbol, nor does it make sense
5620 to complete it any other way. */
5621 {
5622 return NULL;
5623 }
5624 else
5625 {
5626 /* Not a quoted string. */
5627 sym_text = language_search_unquoted_string (text, p);
5628 }
5629 }
5630
5631 sym_text_len = strlen (sym_text);
5632
5633 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5634 in). */
5635 s = lookup_symtab (srcfile);
5636 if (s == NULL)
5637 {
5638 /* Maybe they typed the file with leading directories, while the
5639 symbol tables record only its basename. */
5640 const char *tail = lbasename (srcfile);
5641
5642 if (tail > srcfile)
5643 s = lookup_symtab (tail);
5644 }
5645
5646 /* If we have no symtab for that file, return an empty list. */
5647 if (s == NULL)
5648 return (return_val);
5649
5650 /* Go through this symtab and check the externs and statics for
5651 symbols which match. */
5652
5653 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5654 ALL_BLOCK_SYMBOLS (b, iter, sym)
5655 {
5656 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5657 }
5658
5659 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5660 ALL_BLOCK_SYMBOLS (b, iter, sym)
5661 {
5662 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5663 }
5664
5665 return (return_val);
5666 }
5667
5668 /* Wrapper around make_file_symbol_completion_list_1
5669 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5670
5671 VEC (char_ptr) *
5672 make_file_symbol_completion_list (const char *text, const char *word,
5673 const char *srcfile)
5674 {
5675 struct cleanup *back_to, *cleanups;
5676
5677 completion_tracker = new_completion_tracker ();
5678 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5679 return_val = NULL;
5680 back_to = make_cleanup (do_free_completion_list, &return_val);
5681
5682 TRY
5683 {
5684 make_file_symbol_completion_list_1 (text, word, srcfile);
5685 }
5686 CATCH (except, RETURN_MASK_ERROR)
5687 {
5688 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5689 throw_exception (except);
5690 }
5691 END_CATCH
5692
5693 discard_cleanups (back_to);
5694 do_cleanups (cleanups);
5695 return return_val;
5696 }
5697
5698 /* A helper function for make_source_files_completion_list. It adds
5699 another file name to a list of possible completions, growing the
5700 list as necessary. */
5701
5702 static void
5703 add_filename_to_list (const char *fname, const char *text, const char *word,
5704 VEC (char_ptr) **list)
5705 {
5706 char *newobj;
5707 size_t fnlen = strlen (fname);
5708
5709 if (word == text)
5710 {
5711 /* Return exactly fname. */
5712 newobj = (char *) xmalloc (fnlen + 5);
5713 strcpy (newobj, fname);
5714 }
5715 else if (word > text)
5716 {
5717 /* Return some portion of fname. */
5718 newobj = (char *) xmalloc (fnlen + 5);
5719 strcpy (newobj, fname + (word - text));
5720 }
5721 else
5722 {
5723 /* Return some of TEXT plus fname. */
5724 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5725 strncpy (newobj, word, text - word);
5726 newobj[text - word] = '\0';
5727 strcat (newobj, fname);
5728 }
5729 VEC_safe_push (char_ptr, *list, newobj);
5730 }
5731
5732 static int
5733 not_interesting_fname (const char *fname)
5734 {
5735 static const char *illegal_aliens[] = {
5736 "_globals_", /* inserted by coff_symtab_read */
5737 NULL
5738 };
5739 int i;
5740
5741 for (i = 0; illegal_aliens[i]; i++)
5742 {
5743 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5744 return 1;
5745 }
5746 return 0;
5747 }
5748
5749 /* An object of this type is passed as the user_data argument to
5750 map_partial_symbol_filenames. */
5751 struct add_partial_filename_data
5752 {
5753 struct filename_seen_cache *filename_seen_cache;
5754 const char *text;
5755 const char *word;
5756 int text_len;
5757 VEC (char_ptr) **list;
5758 };
5759
5760 /* A callback for map_partial_symbol_filenames. */
5761
5762 static void
5763 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5764 void *user_data)
5765 {
5766 struct add_partial_filename_data *data
5767 = (struct add_partial_filename_data *) user_data;
5768
5769 if (not_interesting_fname (filename))
5770 return;
5771 if (!filename_seen (data->filename_seen_cache, filename, 1)
5772 && filename_ncmp (filename, data->text, data->text_len) == 0)
5773 {
5774 /* This file matches for a completion; add it to the
5775 current list of matches. */
5776 add_filename_to_list (filename, data->text, data->word, data->list);
5777 }
5778 else
5779 {
5780 const char *base_name = lbasename (filename);
5781
5782 if (base_name != filename
5783 && !filename_seen (data->filename_seen_cache, base_name, 1)
5784 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5785 add_filename_to_list (base_name, data->text, data->word, data->list);
5786 }
5787 }
5788
5789 /* Return a vector of all source files whose names begin with matching
5790 TEXT. The file names are looked up in the symbol tables of this
5791 program. If the answer is no matchess, then the return value is
5792 NULL. */
5793
5794 VEC (char_ptr) *
5795 make_source_files_completion_list (const char *text, const char *word)
5796 {
5797 struct compunit_symtab *cu;
5798 struct symtab *s;
5799 struct objfile *objfile;
5800 size_t text_len = strlen (text);
5801 VEC (char_ptr) *list = NULL;
5802 const char *base_name;
5803 struct add_partial_filename_data datum;
5804 struct filename_seen_cache *filename_seen_cache;
5805 struct cleanup *back_to, *cache_cleanup;
5806
5807 if (!have_full_symbols () && !have_partial_symbols ())
5808 return list;
5809
5810 back_to = make_cleanup (do_free_completion_list, &list);
5811
5812 filename_seen_cache = create_filename_seen_cache ();
5813 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5814 filename_seen_cache);
5815
5816 ALL_FILETABS (objfile, cu, s)
5817 {
5818 if (not_interesting_fname (s->filename))
5819 continue;
5820 if (!filename_seen (filename_seen_cache, s->filename, 1)
5821 && filename_ncmp (s->filename, text, text_len) == 0)
5822 {
5823 /* This file matches for a completion; add it to the current
5824 list of matches. */
5825 add_filename_to_list (s->filename, text, word, &list);
5826 }
5827 else
5828 {
5829 /* NOTE: We allow the user to type a base name when the
5830 debug info records leading directories, but not the other
5831 way around. This is what subroutines of breakpoint
5832 command do when they parse file names. */
5833 base_name = lbasename (s->filename);
5834 if (base_name != s->filename
5835 && !filename_seen (filename_seen_cache, base_name, 1)
5836 && filename_ncmp (base_name, text, text_len) == 0)
5837 add_filename_to_list (base_name, text, word, &list);
5838 }
5839 }
5840
5841 datum.filename_seen_cache = filename_seen_cache;
5842 datum.text = text;
5843 datum.word = word;
5844 datum.text_len = text_len;
5845 datum.list = &list;
5846 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5847 0 /*need_fullname*/);
5848
5849 do_cleanups (cache_cleanup);
5850 discard_cleanups (back_to);
5851
5852 return list;
5853 }
5854 \f
5855 /* Track MAIN */
5856
5857 /* Return the "main_info" object for the current program space. If
5858 the object has not yet been created, create it and fill in some
5859 default values. */
5860
5861 static struct main_info *
5862 get_main_info (void)
5863 {
5864 struct main_info *info
5865 = (struct main_info *) program_space_data (current_program_space,
5866 main_progspace_key);
5867
5868 if (info == NULL)
5869 {
5870 /* It may seem strange to store the main name in the progspace
5871 and also in whatever objfile happens to see a main name in
5872 its debug info. The reason for this is mainly historical:
5873 gdb returned "main" as the name even if no function named
5874 "main" was defined the program; and this approach lets us
5875 keep compatibility. */
5876 info = XCNEW (struct main_info);
5877 info->language_of_main = language_unknown;
5878 set_program_space_data (current_program_space, main_progspace_key,
5879 info);
5880 }
5881
5882 return info;
5883 }
5884
5885 /* A cleanup to destroy a struct main_info when a progspace is
5886 destroyed. */
5887
5888 static void
5889 main_info_cleanup (struct program_space *pspace, void *data)
5890 {
5891 struct main_info *info = (struct main_info *) data;
5892
5893 if (info != NULL)
5894 xfree (info->name_of_main);
5895 xfree (info);
5896 }
5897
5898 static void
5899 set_main_name (const char *name, enum language lang)
5900 {
5901 struct main_info *info = get_main_info ();
5902
5903 if (info->name_of_main != NULL)
5904 {
5905 xfree (info->name_of_main);
5906 info->name_of_main = NULL;
5907 info->language_of_main = language_unknown;
5908 }
5909 if (name != NULL)
5910 {
5911 info->name_of_main = xstrdup (name);
5912 info->language_of_main = lang;
5913 }
5914 }
5915
5916 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5917 accordingly. */
5918
5919 static void
5920 find_main_name (void)
5921 {
5922 const char *new_main_name;
5923 struct objfile *objfile;
5924
5925 /* First check the objfiles to see whether a debuginfo reader has
5926 picked up the appropriate main name. Historically the main name
5927 was found in a more or less random way; this approach instead
5928 relies on the order of objfile creation -- which still isn't
5929 guaranteed to get the correct answer, but is just probably more
5930 accurate. */
5931 ALL_OBJFILES (objfile)
5932 {
5933 if (objfile->per_bfd->name_of_main != NULL)
5934 {
5935 set_main_name (objfile->per_bfd->name_of_main,
5936 objfile->per_bfd->language_of_main);
5937 return;
5938 }
5939 }
5940
5941 /* Try to see if the main procedure is in Ada. */
5942 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5943 be to add a new method in the language vector, and call this
5944 method for each language until one of them returns a non-empty
5945 name. This would allow us to remove this hard-coded call to
5946 an Ada function. It is not clear that this is a better approach
5947 at this point, because all methods need to be written in a way
5948 such that false positives never be returned. For instance, it is
5949 important that a method does not return a wrong name for the main
5950 procedure if the main procedure is actually written in a different
5951 language. It is easy to guaranty this with Ada, since we use a
5952 special symbol generated only when the main in Ada to find the name
5953 of the main procedure. It is difficult however to see how this can
5954 be guarantied for languages such as C, for instance. This suggests
5955 that order of call for these methods becomes important, which means
5956 a more complicated approach. */
5957 new_main_name = ada_main_name ();
5958 if (new_main_name != NULL)
5959 {
5960 set_main_name (new_main_name, language_ada);
5961 return;
5962 }
5963
5964 new_main_name = d_main_name ();
5965 if (new_main_name != NULL)
5966 {
5967 set_main_name (new_main_name, language_d);
5968 return;
5969 }
5970
5971 new_main_name = go_main_name ();
5972 if (new_main_name != NULL)
5973 {
5974 set_main_name (new_main_name, language_go);
5975 return;
5976 }
5977
5978 new_main_name = pascal_main_name ();
5979 if (new_main_name != NULL)
5980 {
5981 set_main_name (new_main_name, language_pascal);
5982 return;
5983 }
5984
5985 /* The languages above didn't identify the name of the main procedure.
5986 Fallback to "main". */
5987 set_main_name ("main", language_unknown);
5988 }
5989
5990 char *
5991 main_name (void)
5992 {
5993 struct main_info *info = get_main_info ();
5994
5995 if (info->name_of_main == NULL)
5996 find_main_name ();
5997
5998 return info->name_of_main;
5999 }
6000
6001 /* Return the language of the main function. If it is not known,
6002 return language_unknown. */
6003
6004 enum language
6005 main_language (void)
6006 {
6007 struct main_info *info = get_main_info ();
6008
6009 if (info->name_of_main == NULL)
6010 find_main_name ();
6011
6012 return info->language_of_main;
6013 }
6014
6015 /* Handle ``executable_changed'' events for the symtab module. */
6016
6017 static void
6018 symtab_observer_executable_changed (void)
6019 {
6020 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6021 set_main_name (NULL, language_unknown);
6022 }
6023
6024 /* Return 1 if the supplied producer string matches the ARM RealView
6025 compiler (armcc). */
6026
6027 int
6028 producer_is_realview (const char *producer)
6029 {
6030 static const char *const arm_idents[] = {
6031 "ARM C Compiler, ADS",
6032 "Thumb C Compiler, ADS",
6033 "ARM C++ Compiler, ADS",
6034 "Thumb C++ Compiler, ADS",
6035 "ARM/Thumb C/C++ Compiler, RVCT",
6036 "ARM C/C++ Compiler, RVCT"
6037 };
6038 int i;
6039
6040 if (producer == NULL)
6041 return 0;
6042
6043 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6044 if (startswith (producer, arm_idents[i]))
6045 return 1;
6046
6047 return 0;
6048 }
6049
6050 \f
6051
6052 /* The next index to hand out in response to a registration request. */
6053
6054 static int next_aclass_value = LOC_FINAL_VALUE;
6055
6056 /* The maximum number of "aclass" registrations we support. This is
6057 constant for convenience. */
6058 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6059
6060 /* The objects representing the various "aclass" values. The elements
6061 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6062 elements are those registered at gdb initialization time. */
6063
6064 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6065
6066 /* The globally visible pointer. This is separate from 'symbol_impl'
6067 so that it can be const. */
6068
6069 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6070
6071 /* Make sure we saved enough room in struct symbol. */
6072
6073 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6074
6075 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6076 is the ops vector associated with this index. This returns the new
6077 index, which should be used as the aclass_index field for symbols
6078 of this type. */
6079
6080 int
6081 register_symbol_computed_impl (enum address_class aclass,
6082 const struct symbol_computed_ops *ops)
6083 {
6084 int result = next_aclass_value++;
6085
6086 gdb_assert (aclass == LOC_COMPUTED);
6087 gdb_assert (result < MAX_SYMBOL_IMPLS);
6088 symbol_impl[result].aclass = aclass;
6089 symbol_impl[result].ops_computed = ops;
6090
6091 /* Sanity check OPS. */
6092 gdb_assert (ops != NULL);
6093 gdb_assert (ops->tracepoint_var_ref != NULL);
6094 gdb_assert (ops->describe_location != NULL);
6095 gdb_assert (ops->get_symbol_read_needs != NULL);
6096 gdb_assert (ops->read_variable != NULL);
6097
6098 return result;
6099 }
6100
6101 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6102 OPS is the ops vector associated with this index. This returns the
6103 new index, which should be used as the aclass_index field for symbols
6104 of this type. */
6105
6106 int
6107 register_symbol_block_impl (enum address_class aclass,
6108 const struct symbol_block_ops *ops)
6109 {
6110 int result = next_aclass_value++;
6111
6112 gdb_assert (aclass == LOC_BLOCK);
6113 gdb_assert (result < MAX_SYMBOL_IMPLS);
6114 symbol_impl[result].aclass = aclass;
6115 symbol_impl[result].ops_block = ops;
6116
6117 /* Sanity check OPS. */
6118 gdb_assert (ops != NULL);
6119 gdb_assert (ops->find_frame_base_location != NULL);
6120
6121 return result;
6122 }
6123
6124 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6125 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6126 this index. This returns the new index, which should be used as
6127 the aclass_index field for symbols of this type. */
6128
6129 int
6130 register_symbol_register_impl (enum address_class aclass,
6131 const struct symbol_register_ops *ops)
6132 {
6133 int result = next_aclass_value++;
6134
6135 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6136 gdb_assert (result < MAX_SYMBOL_IMPLS);
6137 symbol_impl[result].aclass = aclass;
6138 symbol_impl[result].ops_register = ops;
6139
6140 return result;
6141 }
6142
6143 /* Initialize elements of 'symbol_impl' for the constants in enum
6144 address_class. */
6145
6146 static void
6147 initialize_ordinary_address_classes (void)
6148 {
6149 int i;
6150
6151 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6152 symbol_impl[i].aclass = (enum address_class) i;
6153 }
6154
6155 \f
6156
6157 /* Helper function to initialize the fields of an objfile-owned symbol.
6158 It assumed that *SYM is already all zeroes. */
6159
6160 static void
6161 initialize_objfile_symbol_1 (struct symbol *sym)
6162 {
6163 SYMBOL_OBJFILE_OWNED (sym) = 1;
6164 SYMBOL_SECTION (sym) = -1;
6165 }
6166
6167 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6168
6169 void
6170 initialize_objfile_symbol (struct symbol *sym)
6171 {
6172 memset (sym, 0, sizeof (*sym));
6173 initialize_objfile_symbol_1 (sym);
6174 }
6175
6176 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6177 obstack. */
6178
6179 struct symbol *
6180 allocate_symbol (struct objfile *objfile)
6181 {
6182 struct symbol *result;
6183
6184 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6185 initialize_objfile_symbol_1 (result);
6186
6187 return result;
6188 }
6189
6190 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6191 obstack. */
6192
6193 struct template_symbol *
6194 allocate_template_symbol (struct objfile *objfile)
6195 {
6196 struct template_symbol *result;
6197
6198 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6199 initialize_objfile_symbol_1 (&result->base);
6200
6201 return result;
6202 }
6203
6204 /* See symtab.h. */
6205
6206 struct objfile *
6207 symbol_objfile (const struct symbol *symbol)
6208 {
6209 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6210 return SYMTAB_OBJFILE (symbol->owner.symtab);
6211 }
6212
6213 /* See symtab.h. */
6214
6215 struct gdbarch *
6216 symbol_arch (const struct symbol *symbol)
6217 {
6218 if (!SYMBOL_OBJFILE_OWNED (symbol))
6219 return symbol->owner.arch;
6220 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6221 }
6222
6223 /* See symtab.h. */
6224
6225 struct symtab *
6226 symbol_symtab (const struct symbol *symbol)
6227 {
6228 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6229 return symbol->owner.symtab;
6230 }
6231
6232 /* See symtab.h. */
6233
6234 void
6235 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6236 {
6237 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6238 symbol->owner.symtab = symtab;
6239 }
6240
6241 \f
6242
6243 void
6244 _initialize_symtab (void)
6245 {
6246 initialize_ordinary_address_classes ();
6247
6248 main_progspace_key
6249 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6250
6251 symbol_cache_key
6252 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6253
6254 add_info ("variables", variables_info, _("\
6255 All global and static variable names, or those matching REGEXP."));
6256 if (dbx_commands)
6257 add_com ("whereis", class_info, variables_info, _("\
6258 All global and static variable names, or those matching REGEXP."));
6259
6260 add_info ("functions", functions_info,
6261 _("All function names, or those matching REGEXP."));
6262
6263 /* FIXME: This command has at least the following problems:
6264 1. It prints builtin types (in a very strange and confusing fashion).
6265 2. It doesn't print right, e.g. with
6266 typedef struct foo *FOO
6267 type_print prints "FOO" when we want to make it (in this situation)
6268 print "struct foo *".
6269 I also think "ptype" or "whatis" is more likely to be useful (but if
6270 there is much disagreement "info types" can be fixed). */
6271 add_info ("types", types_info,
6272 _("All type names, or those matching REGEXP."));
6273
6274 add_info ("sources", sources_info,
6275 _("Source files in the program."));
6276
6277 add_com ("rbreak", class_breakpoint, rbreak_command,
6278 _("Set a breakpoint for all functions matching REGEXP."));
6279
6280 add_setshow_enum_cmd ("multiple-symbols", no_class,
6281 multiple_symbols_modes, &multiple_symbols_mode,
6282 _("\
6283 Set the debugger behavior when more than one symbol are possible matches\n\
6284 in an expression."), _("\
6285 Show how the debugger handles ambiguities in expressions."), _("\
6286 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6287 NULL, NULL, &setlist, &showlist);
6288
6289 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6290 &basenames_may_differ, _("\
6291 Set whether a source file may have multiple base names."), _("\
6292 Show whether a source file may have multiple base names."), _("\
6293 (A \"base name\" is the name of a file with the directory part removed.\n\
6294 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6295 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6296 before comparing them. Canonicalization is an expensive operation,\n\
6297 but it allows the same file be known by more than one base name.\n\
6298 If not set (the default), all source files are assumed to have just\n\
6299 one base name, and gdb will do file name comparisons more efficiently."),
6300 NULL, NULL,
6301 &setlist, &showlist);
6302
6303 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6304 _("Set debugging of symbol table creation."),
6305 _("Show debugging of symbol table creation."), _("\
6306 When enabled (non-zero), debugging messages are printed when building\n\
6307 symbol tables. A value of 1 (one) normally provides enough information.\n\
6308 A value greater than 1 provides more verbose information."),
6309 NULL,
6310 NULL,
6311 &setdebuglist, &showdebuglist);
6312
6313 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6314 _("\
6315 Set debugging of symbol lookup."), _("\
6316 Show debugging of symbol lookup."), _("\
6317 When enabled (non-zero), symbol lookups are logged."),
6318 NULL, NULL,
6319 &setdebuglist, &showdebuglist);
6320
6321 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6322 &new_symbol_cache_size,
6323 _("Set the size of the symbol cache."),
6324 _("Show the size of the symbol cache."), _("\
6325 The size of the symbol cache.\n\
6326 If zero then the symbol cache is disabled."),
6327 set_symbol_cache_size_handler, NULL,
6328 &maintenance_set_cmdlist,
6329 &maintenance_show_cmdlist);
6330
6331 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6332 _("Dump the symbol cache for each program space."),
6333 &maintenanceprintlist);
6334
6335 add_cmd ("symbol-cache-statistics", class_maintenance,
6336 maintenance_print_symbol_cache_statistics,
6337 _("Print symbol cache statistics for each program space."),
6338 &maintenanceprintlist);
6339
6340 add_cmd ("flush-symbol-cache", class_maintenance,
6341 maintenance_flush_symbol_cache,
6342 _("Flush the symbol cache for each program space."),
6343 &maintenancelist);
6344
6345 observer_attach_executable_changed (symtab_observer_executable_changed);
6346 observer_attach_new_objfile (symtab_new_objfile_observer);
6347 observer_attach_free_objfile (symtab_free_objfile_observer);
6348 }