f677ed0aeb5a0c4a96aac71043283688f973ac91
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "gdbtypes.h"
25 #include "gdbcore.h"
26 #include "frame.h"
27 #include "target.h"
28 #include "value.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbcmd.h"
32 #include "call-cmds.h"
33 #include "gdb_regex.h"
34 #include "expression.h"
35 #include "language.h"
36 #include "demangle.h"
37 #include "inferior.h"
38 #include "linespec.h"
39 #include "source.h"
40 #include "filenames.h" /* for FILENAME_CMP */
41 #include "objc-lang.h"
42 #include "ada-lang.h"
43 #include "p-lang.h"
44 #include "addrmap.h"
45
46 #include "hashtab.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include "gdb_string.h"
55 #include "gdb_stat.h"
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observer.h"
60 #include "gdb_assert.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 /* Prototypes for local functions */
66
67 static void completion_list_add_name (char *, char *, int, char *, char *);
68
69 static void rbreak_command (char *, int);
70
71 static void types_info (char *, int);
72
73 static void functions_info (char *, int);
74
75 static void variables_info (char *, int);
76
77 static void sources_info (char *, int);
78
79 static void output_source_filename (const char *, int *);
80
81 static int find_line_common (struct linetable *, int, int *);
82
83 /* This one is used by linespec.c */
84
85 char *operator_chars (char *p, char **end);
86
87 static struct symbol *lookup_symbol_aux (const char *name,
88 const char *linkage_name,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language,
92 int *is_a_field_of_this);
93
94 static
95 struct symbol *lookup_symbol_aux_local (const char *name,
96 const char *linkage_name,
97 const struct block *block,
98 const domain_enum domain);
99
100 static
101 struct symbol *lookup_symbol_aux_symtabs (int block_index,
102 const char *name,
103 const char *linkage_name,
104 const domain_enum domain);
105
106 static
107 struct symbol *lookup_symbol_aux_psymtabs (int block_index,
108 const char *name,
109 const char *linkage_name,
110 const domain_enum domain);
111
112 static int file_matches (char *, char **, int);
113
114 static void print_symbol_info (domain_enum,
115 struct symtab *, struct symbol *, int, char *);
116
117 static void print_msymbol_info (struct minimal_symbol *);
118
119 static void symtab_symbol_info (char *, domain_enum, int);
120
121 void _initialize_symtab (void);
122
123 /* */
124
125 /* Allow the user to configure the debugger behavior with respect
126 to multiple-choice menus when more than one symbol matches during
127 a symbol lookup. */
128
129 const char multiple_symbols_ask[] = "ask";
130 const char multiple_symbols_all[] = "all";
131 const char multiple_symbols_cancel[] = "cancel";
132 static const char *multiple_symbols_modes[] =
133 {
134 multiple_symbols_ask,
135 multiple_symbols_all,
136 multiple_symbols_cancel,
137 NULL
138 };
139 static const char *multiple_symbols_mode = multiple_symbols_all;
140
141 /* Read-only accessor to AUTO_SELECT_MODE. */
142
143 const char *
144 multiple_symbols_select_mode (void)
145 {
146 return multiple_symbols_mode;
147 }
148
149 /* The single non-language-specific builtin type */
150 struct type *builtin_type_error;
151
152 /* Block in which the most recently searched-for symbol was found.
153 Might be better to make this a parameter to lookup_symbol and
154 value_of_this. */
155
156 const struct block *block_found;
157
158 /* Check for a symtab of a specific name; first in symtabs, then in
159 psymtabs. *If* there is no '/' in the name, a match after a '/'
160 in the symtab filename will also work. */
161
162 struct symtab *
163 lookup_symtab (const char *name)
164 {
165 struct symtab *s;
166 struct partial_symtab *ps;
167 struct objfile *objfile;
168 char *real_path = NULL;
169 char *full_path = NULL;
170
171 /* Here we are interested in canonicalizing an absolute path, not
172 absolutizing a relative path. */
173 if (IS_ABSOLUTE_PATH (name))
174 {
175 full_path = xfullpath (name);
176 make_cleanup (xfree, full_path);
177 real_path = gdb_realpath (name);
178 make_cleanup (xfree, real_path);
179 }
180
181 got_symtab:
182
183 /* First, search for an exact match */
184
185 ALL_SYMTABS (objfile, s)
186 {
187 if (FILENAME_CMP (name, s->filename) == 0)
188 {
189 return s;
190 }
191
192 /* If the user gave us an absolute path, try to find the file in
193 this symtab and use its absolute path. */
194
195 if (full_path != NULL)
196 {
197 const char *fp = symtab_to_fullname (s);
198 if (fp != NULL && FILENAME_CMP (full_path, fp) == 0)
199 {
200 return s;
201 }
202 }
203
204 if (real_path != NULL)
205 {
206 char *fullname = symtab_to_fullname (s);
207 if (fullname != NULL)
208 {
209 char *rp = gdb_realpath (fullname);
210 make_cleanup (xfree, rp);
211 if (FILENAME_CMP (real_path, rp) == 0)
212 {
213 return s;
214 }
215 }
216 }
217 }
218
219 /* Now, search for a matching tail (only if name doesn't have any dirs) */
220
221 if (lbasename (name) == name)
222 ALL_SYMTABS (objfile, s)
223 {
224 if (FILENAME_CMP (lbasename (s->filename), name) == 0)
225 return s;
226 }
227
228 /* Same search rules as above apply here, but now we look thru the
229 psymtabs. */
230
231 ps = lookup_partial_symtab (name);
232 if (!ps)
233 return (NULL);
234
235 if (ps->readin)
236 error (_("Internal: readin %s pst for `%s' found when no symtab found."),
237 ps->filename, name);
238
239 s = PSYMTAB_TO_SYMTAB (ps);
240
241 if (s)
242 return s;
243
244 /* At this point, we have located the psymtab for this file, but
245 the conversion to a symtab has failed. This usually happens
246 when we are looking up an include file. In this case,
247 PSYMTAB_TO_SYMTAB doesn't return a symtab, even though one has
248 been created. So, we need to run through the symtabs again in
249 order to find the file.
250 XXX - This is a crock, and should be fixed inside of the the
251 symbol parsing routines. */
252 goto got_symtab;
253 }
254
255 /* Lookup the partial symbol table of a source file named NAME.
256 *If* there is no '/' in the name, a match after a '/'
257 in the psymtab filename will also work. */
258
259 struct partial_symtab *
260 lookup_partial_symtab (const char *name)
261 {
262 struct partial_symtab *pst;
263 struct objfile *objfile;
264 char *full_path = NULL;
265 char *real_path = NULL;
266
267 /* Here we are interested in canonicalizing an absolute path, not
268 absolutizing a relative path. */
269 if (IS_ABSOLUTE_PATH (name))
270 {
271 full_path = xfullpath (name);
272 make_cleanup (xfree, full_path);
273 real_path = gdb_realpath (name);
274 make_cleanup (xfree, real_path);
275 }
276
277 ALL_PSYMTABS (objfile, pst)
278 {
279 if (FILENAME_CMP (name, pst->filename) == 0)
280 {
281 return (pst);
282 }
283
284 /* If the user gave us an absolute path, try to find the file in
285 this symtab and use its absolute path. */
286 if (full_path != NULL)
287 {
288 psymtab_to_fullname (pst);
289 if (pst->fullname != NULL
290 && FILENAME_CMP (full_path, pst->fullname) == 0)
291 {
292 return pst;
293 }
294 }
295
296 if (real_path != NULL)
297 {
298 char *rp = NULL;
299 psymtab_to_fullname (pst);
300 if (pst->fullname != NULL)
301 {
302 rp = gdb_realpath (pst->fullname);
303 make_cleanup (xfree, rp);
304 }
305 if (rp != NULL && FILENAME_CMP (real_path, rp) == 0)
306 {
307 return pst;
308 }
309 }
310 }
311
312 /* Now, search for a matching tail (only if name doesn't have any dirs) */
313
314 if (lbasename (name) == name)
315 ALL_PSYMTABS (objfile, pst)
316 {
317 if (FILENAME_CMP (lbasename (pst->filename), name) == 0)
318 return (pst);
319 }
320
321 return (NULL);
322 }
323 \f
324 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
325 full method name, which consist of the class name (from T), the unadorned
326 method name from METHOD_ID, and the signature for the specific overload,
327 specified by SIGNATURE_ID. Note that this function is g++ specific. */
328
329 char *
330 gdb_mangle_name (struct type *type, int method_id, int signature_id)
331 {
332 int mangled_name_len;
333 char *mangled_name;
334 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
335 struct fn_field *method = &f[signature_id];
336 char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
337 char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
338 char *newname = type_name_no_tag (type);
339
340 /* Does the form of physname indicate that it is the full mangled name
341 of a constructor (not just the args)? */
342 int is_full_physname_constructor;
343
344 int is_constructor;
345 int is_destructor = is_destructor_name (physname);
346 /* Need a new type prefix. */
347 char *const_prefix = method->is_const ? "C" : "";
348 char *volatile_prefix = method->is_volatile ? "V" : "";
349 char buf[20];
350 int len = (newname == NULL ? 0 : strlen (newname));
351
352 /* Nothing to do if physname already contains a fully mangled v3 abi name
353 or an operator name. */
354 if ((physname[0] == '_' && physname[1] == 'Z')
355 || is_operator_name (field_name))
356 return xstrdup (physname);
357
358 is_full_physname_constructor = is_constructor_name (physname);
359
360 is_constructor =
361 is_full_physname_constructor || (newname && strcmp (field_name, newname) == 0);
362
363 if (!is_destructor)
364 is_destructor = (strncmp (physname, "__dt", 4) == 0);
365
366 if (is_destructor || is_full_physname_constructor)
367 {
368 mangled_name = (char *) xmalloc (strlen (physname) + 1);
369 strcpy (mangled_name, physname);
370 return mangled_name;
371 }
372
373 if (len == 0)
374 {
375 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
376 }
377 else if (physname[0] == 't' || physname[0] == 'Q')
378 {
379 /* The physname for template and qualified methods already includes
380 the class name. */
381 sprintf (buf, "__%s%s", const_prefix, volatile_prefix);
382 newname = NULL;
383 len = 0;
384 }
385 else
386 {
387 sprintf (buf, "__%s%s%d", const_prefix, volatile_prefix, len);
388 }
389 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
390 + strlen (buf) + len + strlen (physname) + 1);
391
392 {
393 mangled_name = (char *) xmalloc (mangled_name_len);
394 if (is_constructor)
395 mangled_name[0] = '\0';
396 else
397 strcpy (mangled_name, field_name);
398 }
399 strcat (mangled_name, buf);
400 /* If the class doesn't have a name, i.e. newname NULL, then we just
401 mangle it using 0 for the length of the class. Thus it gets mangled
402 as something starting with `::' rather than `classname::'. */
403 if (newname != NULL)
404 strcat (mangled_name, newname);
405
406 strcat (mangled_name, physname);
407 return (mangled_name);
408 }
409
410 \f
411 /* Initialize the language dependent portion of a symbol
412 depending upon the language for the symbol. */
413 void
414 symbol_init_language_specific (struct general_symbol_info *gsymbol,
415 enum language language)
416 {
417 gsymbol->language = language;
418 if (gsymbol->language == language_cplus
419 || gsymbol->language == language_java
420 || gsymbol->language == language_objc)
421 {
422 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
423 }
424 else
425 {
426 memset (&gsymbol->language_specific, 0,
427 sizeof (gsymbol->language_specific));
428 }
429 }
430
431 /* Functions to initialize a symbol's mangled name. */
432
433 /* Create the hash table used for demangled names. Each hash entry is
434 a pair of strings; one for the mangled name and one for the demangled
435 name. The entry is hashed via just the mangled name. */
436
437 static void
438 create_demangled_names_hash (struct objfile *objfile)
439 {
440 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
441 The hash table code will round this up to the next prime number.
442 Choosing a much larger table size wastes memory, and saves only about
443 1% in symbol reading. */
444
445 objfile->demangled_names_hash = htab_create_alloc
446 (256, htab_hash_string, (int (*) (const void *, const void *)) streq,
447 NULL, xcalloc, xfree);
448 }
449
450 /* Try to determine the demangled name for a symbol, based on the
451 language of that symbol. If the language is set to language_auto,
452 it will attempt to find any demangling algorithm that works and
453 then set the language appropriately. The returned name is allocated
454 by the demangler and should be xfree'd. */
455
456 static char *
457 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
458 const char *mangled)
459 {
460 char *demangled = NULL;
461
462 if (gsymbol->language == language_unknown)
463 gsymbol->language = language_auto;
464
465 if (gsymbol->language == language_objc
466 || gsymbol->language == language_auto)
467 {
468 demangled =
469 objc_demangle (mangled, 0);
470 if (demangled != NULL)
471 {
472 gsymbol->language = language_objc;
473 return demangled;
474 }
475 }
476 if (gsymbol->language == language_cplus
477 || gsymbol->language == language_auto)
478 {
479 demangled =
480 cplus_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
481 if (demangled != NULL)
482 {
483 gsymbol->language = language_cplus;
484 return demangled;
485 }
486 }
487 if (gsymbol->language == language_java)
488 {
489 demangled =
490 cplus_demangle (mangled,
491 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
492 if (demangled != NULL)
493 {
494 gsymbol->language = language_java;
495 return demangled;
496 }
497 }
498 return NULL;
499 }
500
501 /* Set both the mangled and demangled (if any) names for GSYMBOL based
502 on LINKAGE_NAME and LEN. The hash table corresponding to OBJFILE
503 is used, and the memory comes from that objfile's objfile_obstack.
504 LINKAGE_NAME is copied, so the pointer can be discarded after
505 calling this function. */
506
507 /* We have to be careful when dealing with Java names: when we run
508 into a Java minimal symbol, we don't know it's a Java symbol, so it
509 gets demangled as a C++ name. This is unfortunate, but there's not
510 much we can do about it: but when demangling partial symbols and
511 regular symbols, we'd better not reuse the wrong demangled name.
512 (See PR gdb/1039.) We solve this by putting a distinctive prefix
513 on Java names when storing them in the hash table. */
514
515 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
516 don't mind the Java prefix so much: different languages have
517 different demangling requirements, so it's only natural that we
518 need to keep language data around in our demangling cache. But
519 it's not good that the minimal symbol has the wrong demangled name.
520 Unfortunately, I can't think of any easy solution to that
521 problem. */
522
523 #define JAVA_PREFIX "##JAVA$$"
524 #define JAVA_PREFIX_LEN 8
525
526 void
527 symbol_set_names (struct general_symbol_info *gsymbol,
528 const char *linkage_name, int len, struct objfile *objfile)
529 {
530 char **slot;
531 /* A 0-terminated copy of the linkage name. */
532 const char *linkage_name_copy;
533 /* A copy of the linkage name that might have a special Java prefix
534 added to it, for use when looking names up in the hash table. */
535 const char *lookup_name;
536 /* The length of lookup_name. */
537 int lookup_len;
538
539 if (objfile->demangled_names_hash == NULL)
540 create_demangled_names_hash (objfile);
541
542 if (gsymbol->language == language_ada)
543 {
544 /* In Ada, we do the symbol lookups using the mangled name, so
545 we can save some space by not storing the demangled name.
546
547 As a side note, we have also observed some overlap between
548 the C++ mangling and Ada mangling, similarly to what has
549 been observed with Java. Because we don't store the demangled
550 name with the symbol, we don't need to use the same trick
551 as Java. */
552 gsymbol->name = obstack_alloc (&objfile->objfile_obstack, len + 1);
553 memcpy (gsymbol->name, linkage_name, len);
554 gsymbol->name[len] = '\0';
555 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
556
557 return;
558 }
559
560 /* The stabs reader generally provides names that are not
561 NUL-terminated; most of the other readers don't do this, so we
562 can just use the given copy, unless we're in the Java case. */
563 if (gsymbol->language == language_java)
564 {
565 char *alloc_name;
566 lookup_len = len + JAVA_PREFIX_LEN;
567
568 alloc_name = alloca (lookup_len + 1);
569 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
570 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
571 alloc_name[lookup_len] = '\0';
572
573 lookup_name = alloc_name;
574 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
575 }
576 else if (linkage_name[len] != '\0')
577 {
578 char *alloc_name;
579 lookup_len = len;
580
581 alloc_name = alloca (lookup_len + 1);
582 memcpy (alloc_name, linkage_name, len);
583 alloc_name[lookup_len] = '\0';
584
585 lookup_name = alloc_name;
586 linkage_name_copy = alloc_name;
587 }
588 else
589 {
590 lookup_len = len;
591 lookup_name = linkage_name;
592 linkage_name_copy = linkage_name;
593 }
594
595 slot = (char **) htab_find_slot (objfile->demangled_names_hash,
596 lookup_name, INSERT);
597
598 /* If this name is not in the hash table, add it. */
599 if (*slot == NULL)
600 {
601 char *demangled_name = symbol_find_demangled_name (gsymbol,
602 linkage_name_copy);
603 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
604
605 /* If there is a demangled name, place it right after the mangled name.
606 Otherwise, just place a second zero byte after the end of the mangled
607 name. */
608 *slot = obstack_alloc (&objfile->objfile_obstack,
609 lookup_len + demangled_len + 2);
610 memcpy (*slot, lookup_name, lookup_len + 1);
611 if (demangled_name != NULL)
612 {
613 memcpy (*slot + lookup_len + 1, demangled_name, demangled_len + 1);
614 xfree (demangled_name);
615 }
616 else
617 (*slot)[lookup_len + 1] = '\0';
618 }
619
620 gsymbol->name = *slot + lookup_len - len;
621 if ((*slot)[lookup_len + 1] != '\0')
622 gsymbol->language_specific.cplus_specific.demangled_name
623 = &(*slot)[lookup_len + 1];
624 else
625 gsymbol->language_specific.cplus_specific.demangled_name = NULL;
626 }
627
628 /* Return the source code name of a symbol. In languages where
629 demangling is necessary, this is the demangled name. */
630
631 char *
632 symbol_natural_name (const struct general_symbol_info *gsymbol)
633 {
634 switch (gsymbol->language)
635 {
636 case language_cplus:
637 case language_java:
638 case language_objc:
639 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
640 return gsymbol->language_specific.cplus_specific.demangled_name;
641 break;
642 case language_ada:
643 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
644 return gsymbol->language_specific.cplus_specific.demangled_name;
645 else
646 return ada_decode_symbol (gsymbol);
647 break;
648 default:
649 break;
650 }
651 return gsymbol->name;
652 }
653
654 /* Return the demangled name for a symbol based on the language for
655 that symbol. If no demangled name exists, return NULL. */
656 char *
657 symbol_demangled_name (const struct general_symbol_info *gsymbol)
658 {
659 switch (gsymbol->language)
660 {
661 case language_cplus:
662 case language_java:
663 case language_objc:
664 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
665 return gsymbol->language_specific.cplus_specific.demangled_name;
666 break;
667 case language_ada:
668 if (gsymbol->language_specific.cplus_specific.demangled_name != NULL)
669 return gsymbol->language_specific.cplus_specific.demangled_name;
670 else
671 return ada_decode_symbol (gsymbol);
672 break;
673 default:
674 break;
675 }
676 return NULL;
677 }
678
679 /* Return the search name of a symbol---generally the demangled or
680 linkage name of the symbol, depending on how it will be searched for.
681 If there is no distinct demangled name, then returns the same value
682 (same pointer) as SYMBOL_LINKAGE_NAME. */
683 char *
684 symbol_search_name (const struct general_symbol_info *gsymbol)
685 {
686 if (gsymbol->language == language_ada)
687 return gsymbol->name;
688 else
689 return symbol_natural_name (gsymbol);
690 }
691
692 /* Initialize the structure fields to zero values. */
693 void
694 init_sal (struct symtab_and_line *sal)
695 {
696 sal->symtab = 0;
697 sal->section = 0;
698 sal->line = 0;
699 sal->pc = 0;
700 sal->end = 0;
701 sal->explicit_pc = 0;
702 sal->explicit_line = 0;
703 }
704 \f
705
706 /* Return 1 if the two sections are the same, or if they could
707 plausibly be copies of each other, one in an original object
708 file and another in a separated debug file. */
709
710 int
711 matching_obj_sections (struct obj_section *obj_first,
712 struct obj_section *obj_second)
713 {
714 asection *first = obj_first? obj_first->the_bfd_section : NULL;
715 asection *second = obj_second? obj_second->the_bfd_section : NULL;
716 struct objfile *obj;
717
718 /* If they're the same section, then they match. */
719 if (first == second)
720 return 1;
721
722 /* If either is NULL, give up. */
723 if (first == NULL || second == NULL)
724 return 0;
725
726 /* This doesn't apply to absolute symbols. */
727 if (first->owner == NULL || second->owner == NULL)
728 return 0;
729
730 /* If they're in the same object file, they must be different sections. */
731 if (first->owner == second->owner)
732 return 0;
733
734 /* Check whether the two sections are potentially corresponding. They must
735 have the same size, address, and name. We can't compare section indexes,
736 which would be more reliable, because some sections may have been
737 stripped. */
738 if (bfd_get_section_size (first) != bfd_get_section_size (second))
739 return 0;
740
741 /* In-memory addresses may start at a different offset, relativize them. */
742 if (bfd_get_section_vma (first->owner, first)
743 - bfd_get_start_address (first->owner)
744 != bfd_get_section_vma (second->owner, second)
745 - bfd_get_start_address (second->owner))
746 return 0;
747
748 if (bfd_get_section_name (first->owner, first) == NULL
749 || bfd_get_section_name (second->owner, second) == NULL
750 || strcmp (bfd_get_section_name (first->owner, first),
751 bfd_get_section_name (second->owner, second)) != 0)
752 return 0;
753
754 /* Otherwise check that they are in corresponding objfiles. */
755
756 ALL_OBJFILES (obj)
757 if (obj->obfd == first->owner)
758 break;
759 gdb_assert (obj != NULL);
760
761 if (obj->separate_debug_objfile != NULL
762 && obj->separate_debug_objfile->obfd == second->owner)
763 return 1;
764 if (obj->separate_debug_objfile_backlink != NULL
765 && obj->separate_debug_objfile_backlink->obfd == second->owner)
766 return 1;
767
768 return 0;
769 }
770
771 /* Find which partial symtab contains PC and SECTION starting at psymtab PST.
772 We may find a different psymtab than PST. See FIND_PC_SECT_PSYMTAB. */
773
774 static struct partial_symtab *
775 find_pc_sect_psymtab_closer (CORE_ADDR pc, struct obj_section *section,
776 struct partial_symtab *pst,
777 struct minimal_symbol *msymbol)
778 {
779 struct objfile *objfile = pst->objfile;
780 struct partial_symtab *tpst;
781 struct partial_symtab *best_pst = pst;
782 CORE_ADDR best_addr = pst->textlow;
783
784 /* An objfile that has its functions reordered might have
785 many partial symbol tables containing the PC, but
786 we want the partial symbol table that contains the
787 function containing the PC. */
788 if (!(objfile->flags & OBJF_REORDERED) &&
789 section == 0) /* can't validate section this way */
790 return pst;
791
792 if (msymbol == NULL)
793 return (pst);
794
795 /* The code range of partial symtabs sometimes overlap, so, in
796 the loop below, we need to check all partial symtabs and
797 find the one that fits better for the given PC address. We
798 select the partial symtab that contains a symbol whose
799 address is closest to the PC address. By closest we mean
800 that find_pc_sect_symbol returns the symbol with address
801 that is closest and still less than the given PC. */
802 for (tpst = pst; tpst != NULL; tpst = tpst->next)
803 {
804 if (pc >= tpst->textlow && pc < tpst->texthigh)
805 {
806 struct partial_symbol *p;
807 CORE_ADDR this_addr;
808
809 /* NOTE: This assumes that every psymbol has a
810 corresponding msymbol, which is not necessarily
811 true; the debug info might be much richer than the
812 object's symbol table. */
813 p = find_pc_sect_psymbol (tpst, pc, section);
814 if (p != NULL
815 && SYMBOL_VALUE_ADDRESS (p)
816 == SYMBOL_VALUE_ADDRESS (msymbol))
817 return tpst;
818
819 /* Also accept the textlow value of a psymtab as a
820 "symbol", to provide some support for partial
821 symbol tables with line information but no debug
822 symbols (e.g. those produced by an assembler). */
823 if (p != NULL)
824 this_addr = SYMBOL_VALUE_ADDRESS (p);
825 else
826 this_addr = tpst->textlow;
827
828 /* Check whether it is closer than our current
829 BEST_ADDR. Since this symbol address is
830 necessarily lower or equal to PC, the symbol closer
831 to PC is the symbol which address is the highest.
832 This way we return the psymtab which contains such
833 best match symbol. This can help in cases where the
834 symbol information/debuginfo is not complete, like
835 for instance on IRIX6 with gcc, where no debug info
836 is emitted for statics. (See also the nodebug.exp
837 testcase.) */
838 if (this_addr > best_addr)
839 {
840 best_addr = this_addr;
841 best_pst = tpst;
842 }
843 }
844 }
845 return best_pst;
846 }
847
848 /* Find which partial symtab contains PC and SECTION. Return 0 if
849 none. We return the psymtab that contains a symbol whose address
850 exactly matches PC, or, if we cannot find an exact match, the
851 psymtab that contains a symbol whose address is closest to PC. */
852 struct partial_symtab *
853 find_pc_sect_psymtab (CORE_ADDR pc, struct obj_section *section)
854 {
855 struct objfile *objfile;
856 struct minimal_symbol *msymbol;
857
858 /* If we know that this is not a text address, return failure. This is
859 necessary because we loop based on texthigh and textlow, which do
860 not include the data ranges. */
861 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
862 if (msymbol
863 && (MSYMBOL_TYPE (msymbol) == mst_data
864 || MSYMBOL_TYPE (msymbol) == mst_bss
865 || MSYMBOL_TYPE (msymbol) == mst_abs
866 || MSYMBOL_TYPE (msymbol) == mst_file_data
867 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
868 return NULL;
869
870 /* Try just the PSYMTABS_ADDRMAP mapping first as it has better granularity
871 than the later used TEXTLOW/TEXTHIGH one. */
872
873 ALL_OBJFILES (objfile)
874 if (objfile->psymtabs_addrmap != NULL)
875 {
876 struct partial_symtab *pst;
877
878 pst = addrmap_find (objfile->psymtabs_addrmap, pc);
879 if (pst != NULL)
880 {
881 /* FIXME: addrmaps currently do not handle overlayed sections,
882 so fall back to the non-addrmap case if we're debugging
883 overlays and the addrmap returned the wrong section. */
884 if (overlay_debugging && msymbol && section)
885 {
886 struct partial_symbol *p;
887 /* NOTE: This assumes that every psymbol has a
888 corresponding msymbol, which is not necessarily
889 true; the debug info might be much richer than the
890 object's symbol table. */
891 p = find_pc_sect_psymbol (pst, pc, section);
892 if (!p
893 || SYMBOL_VALUE_ADDRESS (p)
894 != SYMBOL_VALUE_ADDRESS (msymbol))
895 continue;
896 }
897
898 /* We do not try to call FIND_PC_SECT_PSYMTAB_CLOSER as
899 PSYMTABS_ADDRMAP we used has already the best 1-byte
900 granularity and FIND_PC_SECT_PSYMTAB_CLOSER may mislead us into
901 a worse chosen section due to the TEXTLOW/TEXTHIGH ranges
902 overlap. */
903
904 return pst;
905 }
906 }
907
908 /* Existing PSYMTABS_ADDRMAP mapping is present even for PARTIAL_SYMTABs
909 which still have no corresponding full SYMTABs read. But it is not
910 present for non-DWARF2 debug infos not supporting PSYMTABS_ADDRMAP in GDB
911 so far. */
912
913 ALL_OBJFILES (objfile)
914 {
915 struct partial_symtab *pst;
916
917 /* Check even OBJFILE with non-zero PSYMTABS_ADDRMAP as only several of
918 its CUs may be missing in PSYMTABS_ADDRMAP as they may be varying
919 debug info type in single OBJFILE. */
920
921 ALL_OBJFILE_PSYMTABS (objfile, pst)
922 if (pc >= pst->textlow && pc < pst->texthigh)
923 {
924 struct partial_symtab *best_pst;
925
926 best_pst = find_pc_sect_psymtab_closer (pc, section, pst,
927 msymbol);
928 if (best_pst != NULL)
929 return best_pst;
930 }
931 }
932
933 return NULL;
934 }
935
936 /* Find which partial symtab contains PC. Return 0 if none.
937 Backward compatibility, no section */
938
939 struct partial_symtab *
940 find_pc_psymtab (CORE_ADDR pc)
941 {
942 return find_pc_sect_psymtab (pc, find_pc_mapped_section (pc));
943 }
944
945 /* Find which partial symbol within a psymtab matches PC and SECTION.
946 Return 0 if none. Check all psymtabs if PSYMTAB is 0. */
947
948 struct partial_symbol *
949 find_pc_sect_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc,
950 struct obj_section *section)
951 {
952 struct partial_symbol *best = NULL, *p, **pp;
953 CORE_ADDR best_pc;
954
955 if (!psymtab)
956 psymtab = find_pc_sect_psymtab (pc, section);
957 if (!psymtab)
958 return 0;
959
960 /* Cope with programs that start at address 0 */
961 best_pc = (psymtab->textlow != 0) ? psymtab->textlow - 1 : 0;
962
963 /* Search the global symbols as well as the static symbols, so that
964 find_pc_partial_function doesn't use a minimal symbol and thus
965 cache a bad endaddr. */
966 for (pp = psymtab->objfile->global_psymbols.list + psymtab->globals_offset;
967 (pp - (psymtab->objfile->global_psymbols.list + psymtab->globals_offset)
968 < psymtab->n_global_syms);
969 pp++)
970 {
971 p = *pp;
972 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
973 && SYMBOL_CLASS (p) == LOC_BLOCK
974 && pc >= SYMBOL_VALUE_ADDRESS (p)
975 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
976 || (psymtab->textlow == 0
977 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
978 {
979 if (section) /* match on a specific section */
980 {
981 fixup_psymbol_section (p, psymtab->objfile);
982 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
983 continue;
984 }
985 best_pc = SYMBOL_VALUE_ADDRESS (p);
986 best = p;
987 }
988 }
989
990 for (pp = psymtab->objfile->static_psymbols.list + psymtab->statics_offset;
991 (pp - (psymtab->objfile->static_psymbols.list + psymtab->statics_offset)
992 < psymtab->n_static_syms);
993 pp++)
994 {
995 p = *pp;
996 if (SYMBOL_DOMAIN (p) == VAR_DOMAIN
997 && SYMBOL_CLASS (p) == LOC_BLOCK
998 && pc >= SYMBOL_VALUE_ADDRESS (p)
999 && (SYMBOL_VALUE_ADDRESS (p) > best_pc
1000 || (psymtab->textlow == 0
1001 && best_pc == 0 && SYMBOL_VALUE_ADDRESS (p) == 0)))
1002 {
1003 if (section) /* match on a specific section */
1004 {
1005 fixup_psymbol_section (p, psymtab->objfile);
1006 if (!matching_obj_sections (SYMBOL_OBJ_SECTION (p), section))
1007 continue;
1008 }
1009 best_pc = SYMBOL_VALUE_ADDRESS (p);
1010 best = p;
1011 }
1012 }
1013
1014 return best;
1015 }
1016
1017 /* Find which partial symbol within a psymtab matches PC. Return 0 if none.
1018 Check all psymtabs if PSYMTAB is 0. Backwards compatibility, no section. */
1019
1020 struct partial_symbol *
1021 find_pc_psymbol (struct partial_symtab *psymtab, CORE_ADDR pc)
1022 {
1023 return find_pc_sect_psymbol (psymtab, pc, find_pc_mapped_section (pc));
1024 }
1025 \f
1026 /* Debug symbols usually don't have section information. We need to dig that
1027 out of the minimal symbols and stash that in the debug symbol. */
1028
1029 static void
1030 fixup_section (struct general_symbol_info *ginfo,
1031 CORE_ADDR addr, struct objfile *objfile)
1032 {
1033 struct minimal_symbol *msym;
1034
1035 /* First, check whether a minimal symbol with the same name exists
1036 and points to the same address. The address check is required
1037 e.g. on PowerPC64, where the minimal symbol for a function will
1038 point to the function descriptor, while the debug symbol will
1039 point to the actual function code. */
1040 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1041 if (msym)
1042 {
1043 ginfo->obj_section = SYMBOL_OBJ_SECTION (msym);
1044 ginfo->section = SYMBOL_SECTION (msym);
1045 }
1046 else
1047 {
1048 /* Static, function-local variables do appear in the linker
1049 (minimal) symbols, but are frequently given names that won't
1050 be found via lookup_minimal_symbol(). E.g., it has been
1051 observed in frv-uclinux (ELF) executables that a static,
1052 function-local variable named "foo" might appear in the
1053 linker symbols as "foo.6" or "foo.3". Thus, there is no
1054 point in attempting to extend the lookup-by-name mechanism to
1055 handle this case due to the fact that there can be multiple
1056 names.
1057
1058 So, instead, search the section table when lookup by name has
1059 failed. The ``addr'' and ``endaddr'' fields may have already
1060 been relocated. If so, the relocation offset (i.e. the
1061 ANOFFSET value) needs to be subtracted from these values when
1062 performing the comparison. We unconditionally subtract it,
1063 because, when no relocation has been performed, the ANOFFSET
1064 value will simply be zero.
1065
1066 The address of the symbol whose section we're fixing up HAS
1067 NOT BEEN adjusted (relocated) yet. It can't have been since
1068 the section isn't yet known and knowing the section is
1069 necessary in order to add the correct relocation value. In
1070 other words, we wouldn't even be in this function (attempting
1071 to compute the section) if it were already known.
1072
1073 Note that it is possible to search the minimal symbols
1074 (subtracting the relocation value if necessary) to find the
1075 matching minimal symbol, but this is overkill and much less
1076 efficient. It is not necessary to find the matching minimal
1077 symbol, only its section.
1078
1079 Note that this technique (of doing a section table search)
1080 can fail when unrelocated section addresses overlap. For
1081 this reason, we still attempt a lookup by name prior to doing
1082 a search of the section table. */
1083
1084 struct obj_section *s;
1085 ALL_OBJFILE_OSECTIONS (objfile, s)
1086 {
1087 int idx = s->the_bfd_section->index;
1088 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1089
1090 if (obj_section_addr (s) - offset <= addr
1091 && addr < obj_section_endaddr (s) - offset)
1092 {
1093 ginfo->obj_section = s;
1094 ginfo->section = idx;
1095 return;
1096 }
1097 }
1098 }
1099 }
1100
1101 struct symbol *
1102 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1103 {
1104 CORE_ADDR addr;
1105
1106 if (!sym)
1107 return NULL;
1108
1109 if (SYMBOL_OBJ_SECTION (sym))
1110 return sym;
1111
1112 /* We either have an OBJFILE, or we can get at it from the sym's
1113 symtab. Anything else is a bug. */
1114 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1115
1116 if (objfile == NULL)
1117 objfile = SYMBOL_SYMTAB (sym)->objfile;
1118
1119 /* We should have an objfile by now. */
1120 gdb_assert (objfile);
1121
1122 switch (SYMBOL_CLASS (sym))
1123 {
1124 case LOC_STATIC:
1125 case LOC_LABEL:
1126 addr = SYMBOL_VALUE_ADDRESS (sym);
1127 break;
1128 case LOC_BLOCK:
1129 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1130 break;
1131
1132 default:
1133 /* Nothing else will be listed in the minsyms -- no use looking
1134 it up. */
1135 return sym;
1136 }
1137
1138 fixup_section (&sym->ginfo, addr, objfile);
1139
1140 return sym;
1141 }
1142
1143 struct partial_symbol *
1144 fixup_psymbol_section (struct partial_symbol *psym, struct objfile *objfile)
1145 {
1146 CORE_ADDR addr;
1147
1148 if (!psym)
1149 return NULL;
1150
1151 if (SYMBOL_OBJ_SECTION (psym))
1152 return psym;
1153
1154 gdb_assert (objfile);
1155
1156 switch (SYMBOL_CLASS (psym))
1157 {
1158 case LOC_STATIC:
1159 case LOC_LABEL:
1160 case LOC_BLOCK:
1161 addr = SYMBOL_VALUE_ADDRESS (psym);
1162 break;
1163 default:
1164 /* Nothing else will be listed in the minsyms -- no use looking
1165 it up. */
1166 return psym;
1167 }
1168
1169 fixup_section (&psym->ginfo, addr, objfile);
1170
1171 return psym;
1172 }
1173
1174 /* Find the definition for a specified symbol name NAME
1175 in domain DOMAIN, visible from lexical block BLOCK.
1176 Returns the struct symbol pointer, or zero if no symbol is found.
1177 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1178 NAME is a field of the current implied argument `this'. If so set
1179 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1180 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1181 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1182
1183 /* This function has a bunch of loops in it and it would seem to be
1184 attractive to put in some QUIT's (though I'm not really sure
1185 whether it can run long enough to be really important). But there
1186 are a few calls for which it would appear to be bad news to quit
1187 out of here: find_proc_desc in alpha-tdep.c and mips-tdep.c. (Note
1188 that there is C++ code below which can error(), but that probably
1189 doesn't affect these calls since they are looking for a known
1190 variable and thus can probably assume it will never hit the C++
1191 code). */
1192
1193 struct symbol *
1194 lookup_symbol_in_language (const char *name, const struct block *block,
1195 const domain_enum domain, enum language lang,
1196 int *is_a_field_of_this)
1197 {
1198 char *demangled_name = NULL;
1199 const char *modified_name = NULL;
1200 const char *mangled_name = NULL;
1201 struct symbol *returnval;
1202 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1203
1204 modified_name = name;
1205
1206 /* If we are using C++ or Java, demangle the name before doing a lookup, so
1207 we can always binary search. */
1208 if (lang == language_cplus)
1209 {
1210 demangled_name = cplus_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1211 if (demangled_name)
1212 {
1213 mangled_name = name;
1214 modified_name = demangled_name;
1215 make_cleanup (xfree, demangled_name);
1216 }
1217 else
1218 {
1219 /* If we were given a non-mangled name, canonicalize it
1220 according to the language (so far only for C++). */
1221 demangled_name = cp_canonicalize_string (name);
1222 if (demangled_name)
1223 {
1224 modified_name = demangled_name;
1225 make_cleanup (xfree, demangled_name);
1226 }
1227 }
1228 }
1229 else if (lang == language_java)
1230 {
1231 demangled_name = cplus_demangle (name,
1232 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1233 if (demangled_name)
1234 {
1235 mangled_name = name;
1236 modified_name = demangled_name;
1237 make_cleanup (xfree, demangled_name);
1238 }
1239 }
1240
1241 if (case_sensitivity == case_sensitive_off)
1242 {
1243 char *copy;
1244 int len, i;
1245
1246 len = strlen (name);
1247 copy = (char *) alloca (len + 1);
1248 for (i= 0; i < len; i++)
1249 copy[i] = tolower (name[i]);
1250 copy[len] = 0;
1251 modified_name = copy;
1252 }
1253
1254 returnval = lookup_symbol_aux (modified_name, mangled_name, block,
1255 domain, lang, is_a_field_of_this);
1256 do_cleanups (cleanup);
1257
1258 return returnval;
1259 }
1260
1261 /* Behave like lookup_symbol_in_language, but performed with the
1262 current language. */
1263
1264 struct symbol *
1265 lookup_symbol (const char *name, const struct block *block,
1266 domain_enum domain, int *is_a_field_of_this)
1267 {
1268 return lookup_symbol_in_language (name, block, domain,
1269 current_language->la_language,
1270 is_a_field_of_this);
1271 }
1272
1273 /* Behave like lookup_symbol except that NAME is the natural name
1274 of the symbol that we're looking for and, if LINKAGE_NAME is
1275 non-NULL, ensure that the symbol's linkage name matches as
1276 well. */
1277
1278 static struct symbol *
1279 lookup_symbol_aux (const char *name, const char *linkage_name,
1280 const struct block *block, const domain_enum domain,
1281 enum language language, int *is_a_field_of_this)
1282 {
1283 struct symbol *sym;
1284 const struct language_defn *langdef;
1285
1286 /* Make sure we do something sensible with is_a_field_of_this, since
1287 the callers that set this parameter to some non-null value will
1288 certainly use it later and expect it to be either 0 or 1.
1289 If we don't set it, the contents of is_a_field_of_this are
1290 undefined. */
1291 if (is_a_field_of_this != NULL)
1292 *is_a_field_of_this = 0;
1293
1294 /* Search specified block and its superiors. Don't search
1295 STATIC_BLOCK or GLOBAL_BLOCK. */
1296
1297 sym = lookup_symbol_aux_local (name, linkage_name, block, domain);
1298 if (sym != NULL)
1299 return sym;
1300
1301 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1302 check to see if NAME is a field of `this'. */
1303
1304 langdef = language_def (language);
1305
1306 if (langdef->la_name_of_this != NULL && is_a_field_of_this != NULL
1307 && block != NULL)
1308 {
1309 struct symbol *sym = NULL;
1310 /* 'this' is only defined in the function's block, so find the
1311 enclosing function block. */
1312 for (; block && !BLOCK_FUNCTION (block);
1313 block = BLOCK_SUPERBLOCK (block));
1314
1315 if (block && !dict_empty (BLOCK_DICT (block)))
1316 sym = lookup_block_symbol (block, langdef->la_name_of_this,
1317 NULL, VAR_DOMAIN);
1318 if (sym)
1319 {
1320 struct type *t = sym->type;
1321
1322 /* I'm not really sure that type of this can ever
1323 be typedefed; just be safe. */
1324 CHECK_TYPEDEF (t);
1325 if (TYPE_CODE (t) == TYPE_CODE_PTR
1326 || TYPE_CODE (t) == TYPE_CODE_REF)
1327 t = TYPE_TARGET_TYPE (t);
1328
1329 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1330 && TYPE_CODE (t) != TYPE_CODE_UNION)
1331 error (_("Internal error: `%s' is not an aggregate"),
1332 langdef->la_name_of_this);
1333
1334 if (check_field (t, name))
1335 {
1336 *is_a_field_of_this = 1;
1337 return NULL;
1338 }
1339 }
1340 }
1341
1342 /* Now do whatever is appropriate for LANGUAGE to look
1343 up static and global variables. */
1344
1345 sym = langdef->la_lookup_symbol_nonlocal (name, linkage_name, block, domain);
1346 if (sym != NULL)
1347 return sym;
1348
1349 /* Now search all static file-level symbols. Not strictly correct,
1350 but more useful than an error. Do the symtabs first, then check
1351 the psymtabs. If a psymtab indicates the existence of the
1352 desired name as a file-level static, then do psymtab-to-symtab
1353 conversion on the fly and return the found symbol. */
1354
1355 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, linkage_name, domain);
1356 if (sym != NULL)
1357 return sym;
1358
1359 sym = lookup_symbol_aux_psymtabs (STATIC_BLOCK, name, linkage_name, domain);
1360 if (sym != NULL)
1361 return sym;
1362
1363 return NULL;
1364 }
1365
1366 /* Check to see if the symbol is defined in BLOCK or its superiors.
1367 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1368
1369 static struct symbol *
1370 lookup_symbol_aux_local (const char *name, const char *linkage_name,
1371 const struct block *block,
1372 const domain_enum domain)
1373 {
1374 struct symbol *sym;
1375 const struct block *static_block = block_static_block (block);
1376
1377 /* Check if either no block is specified or it's a global block. */
1378
1379 if (static_block == NULL)
1380 return NULL;
1381
1382 while (block != static_block)
1383 {
1384 sym = lookup_symbol_aux_block (name, linkage_name, block, domain);
1385 if (sym != NULL)
1386 return sym;
1387
1388 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1389 break;
1390 block = BLOCK_SUPERBLOCK (block);
1391 }
1392
1393 /* We've reached the edge of the function without finding a result. */
1394
1395 return NULL;
1396 }
1397
1398 /* Look up OBJFILE to BLOCK. */
1399
1400 static struct objfile *
1401 lookup_objfile_from_block (const struct block *block)
1402 {
1403 struct objfile *obj;
1404 struct symtab *s;
1405
1406 if (block == NULL)
1407 return NULL;
1408
1409 block = block_global_block (block);
1410 /* Go through SYMTABS. */
1411 ALL_SYMTABS (obj, s)
1412 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1413 return obj;
1414
1415 return NULL;
1416 }
1417
1418 /* Look up a symbol in a block; if found, fixup the symbol, and set
1419 block_found appropriately. */
1420
1421 struct symbol *
1422 lookup_symbol_aux_block (const char *name, const char *linkage_name,
1423 const struct block *block,
1424 const domain_enum domain)
1425 {
1426 struct symbol *sym;
1427
1428 sym = lookup_block_symbol (block, name, linkage_name, domain);
1429 if (sym)
1430 {
1431 block_found = block;
1432 return fixup_symbol_section (sym, NULL);
1433 }
1434
1435 return NULL;
1436 }
1437
1438 /* Check all global symbols in OBJFILE in symtabs and
1439 psymtabs. */
1440
1441 struct symbol *
1442 lookup_global_symbol_from_objfile (const struct objfile *objfile,
1443 const char *name,
1444 const char *linkage_name,
1445 const domain_enum domain)
1446 {
1447 struct symbol *sym;
1448 struct blockvector *bv;
1449 const struct block *block;
1450 struct symtab *s;
1451 struct partial_symtab *ps;
1452
1453 /* Go through symtabs. */
1454 ALL_OBJFILE_SYMTABS (objfile, s)
1455 {
1456 bv = BLOCKVECTOR (s);
1457 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1458 sym = lookup_block_symbol (block, name, linkage_name, domain);
1459 if (sym)
1460 {
1461 block_found = block;
1462 return fixup_symbol_section (sym, (struct objfile *)objfile);
1463 }
1464 }
1465
1466 /* Now go through psymtabs. */
1467 ALL_OBJFILE_PSYMTABS (objfile, ps)
1468 {
1469 if (!ps->readin
1470 && lookup_partial_symbol (ps, name, linkage_name,
1471 1, domain))
1472 {
1473 s = PSYMTAB_TO_SYMTAB (ps);
1474 bv = BLOCKVECTOR (s);
1475 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1476 sym = lookup_block_symbol (block, name, linkage_name, domain);
1477 return fixup_symbol_section (sym, (struct objfile *)objfile);
1478 }
1479 }
1480
1481 if (objfile->separate_debug_objfile)
1482 return lookup_global_symbol_from_objfile (objfile->separate_debug_objfile,
1483 name, linkage_name, domain);
1484
1485 return NULL;
1486 }
1487
1488 /* Check to see if the symbol is defined in one of the symtabs.
1489 BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1490 depending on whether or not we want to search global symbols or
1491 static symbols. */
1492
1493 static struct symbol *
1494 lookup_symbol_aux_symtabs (int block_index,
1495 const char *name, const char *linkage_name,
1496 const domain_enum domain)
1497 {
1498 struct symbol *sym;
1499 struct objfile *objfile;
1500 struct blockvector *bv;
1501 const struct block *block;
1502 struct symtab *s;
1503
1504 ALL_PRIMARY_SYMTABS (objfile, s)
1505 {
1506 bv = BLOCKVECTOR (s);
1507 block = BLOCKVECTOR_BLOCK (bv, block_index);
1508 sym = lookup_block_symbol (block, name, linkage_name, domain);
1509 if (sym)
1510 {
1511 block_found = block;
1512 return fixup_symbol_section (sym, objfile);
1513 }
1514 }
1515
1516 return NULL;
1517 }
1518
1519 /* Check to see if the symbol is defined in one of the partial
1520 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or
1521 STATIC_BLOCK, depending on whether or not we want to search global
1522 symbols or static symbols. */
1523
1524 static struct symbol *
1525 lookup_symbol_aux_psymtabs (int block_index, const char *name,
1526 const char *linkage_name,
1527 const domain_enum domain)
1528 {
1529 struct symbol *sym;
1530 struct objfile *objfile;
1531 struct blockvector *bv;
1532 const struct block *block;
1533 struct partial_symtab *ps;
1534 struct symtab *s;
1535 const int psymtab_index = (block_index == GLOBAL_BLOCK ? 1 : 0);
1536
1537 ALL_PSYMTABS (objfile, ps)
1538 {
1539 if (!ps->readin
1540 && lookup_partial_symbol (ps, name, linkage_name,
1541 psymtab_index, domain))
1542 {
1543 s = PSYMTAB_TO_SYMTAB (ps);
1544 bv = BLOCKVECTOR (s);
1545 block = BLOCKVECTOR_BLOCK (bv, block_index);
1546 sym = lookup_block_symbol (block, name, linkage_name, domain);
1547 if (!sym)
1548 {
1549 /* This shouldn't be necessary, but as a last resort try
1550 looking in the statics even though the psymtab claimed
1551 the symbol was global, or vice-versa. It's possible
1552 that the psymtab gets it wrong in some cases. */
1553
1554 /* FIXME: carlton/2002-09-30: Should we really do that?
1555 If that happens, isn't it likely to be a GDB error, in
1556 which case we should fix the GDB error rather than
1557 silently dealing with it here? So I'd vote for
1558 removing the check for the symbol in the other
1559 block. */
1560 block = BLOCKVECTOR_BLOCK (bv,
1561 block_index == GLOBAL_BLOCK ?
1562 STATIC_BLOCK : GLOBAL_BLOCK);
1563 sym = lookup_block_symbol (block, name, linkage_name, domain);
1564 if (!sym)
1565 error (_("Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n%s may be an inlined function, or may be a template function\n(if a template, try specifying an instantiation: %s<type>)."),
1566 block_index == GLOBAL_BLOCK ? "global" : "static",
1567 name, ps->filename, name, name);
1568 }
1569 return fixup_symbol_section (sym, objfile);
1570 }
1571 }
1572
1573 return NULL;
1574 }
1575
1576 /* A default version of lookup_symbol_nonlocal for use by languages
1577 that can't think of anything better to do. This implements the C
1578 lookup rules. */
1579
1580 struct symbol *
1581 basic_lookup_symbol_nonlocal (const char *name,
1582 const char *linkage_name,
1583 const struct block *block,
1584 const domain_enum domain)
1585 {
1586 struct symbol *sym;
1587
1588 /* NOTE: carlton/2003-05-19: The comments below were written when
1589 this (or what turned into this) was part of lookup_symbol_aux;
1590 I'm much less worried about these questions now, since these
1591 decisions have turned out well, but I leave these comments here
1592 for posterity. */
1593
1594 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1595 not it would be appropriate to search the current global block
1596 here as well. (That's what this code used to do before the
1597 is_a_field_of_this check was moved up.) On the one hand, it's
1598 redundant with the lookup_symbol_aux_symtabs search that happens
1599 next. On the other hand, if decode_line_1 is passed an argument
1600 like filename:var, then the user presumably wants 'var' to be
1601 searched for in filename. On the third hand, there shouldn't be
1602 multiple global variables all of which are named 'var', and it's
1603 not like decode_line_1 has ever restricted its search to only
1604 global variables in a single filename. All in all, only
1605 searching the static block here seems best: it's correct and it's
1606 cleanest. */
1607
1608 /* NOTE: carlton/2002-12-05: There's also a possible performance
1609 issue here: if you usually search for global symbols in the
1610 current file, then it would be slightly better to search the
1611 current global block before searching all the symtabs. But there
1612 are other factors that have a much greater effect on performance
1613 than that one, so I don't think we should worry about that for
1614 now. */
1615
1616 sym = lookup_symbol_static (name, linkage_name, block, domain);
1617 if (sym != NULL)
1618 return sym;
1619
1620 return lookup_symbol_global (name, linkage_name, block, domain);
1621 }
1622
1623 /* Lookup a symbol in the static block associated to BLOCK, if there
1624 is one; do nothing if BLOCK is NULL or a global block. */
1625
1626 struct symbol *
1627 lookup_symbol_static (const char *name,
1628 const char *linkage_name,
1629 const struct block *block,
1630 const domain_enum domain)
1631 {
1632 const struct block *static_block = block_static_block (block);
1633
1634 if (static_block != NULL)
1635 return lookup_symbol_aux_block (name, linkage_name, static_block, domain);
1636 else
1637 return NULL;
1638 }
1639
1640 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1641 necessary). */
1642
1643 struct symbol *
1644 lookup_symbol_global (const char *name,
1645 const char *linkage_name,
1646 const struct block *block,
1647 const domain_enum domain)
1648 {
1649 struct symbol *sym = NULL;
1650 struct objfile *objfile = NULL;
1651
1652 /* Call library-specific lookup procedure. */
1653 objfile = lookup_objfile_from_block (block);
1654 if (objfile != NULL)
1655 sym = solib_global_lookup (objfile, name, linkage_name, domain);
1656 if (sym != NULL)
1657 return sym;
1658
1659 sym = lookup_symbol_aux_symtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1660 if (sym != NULL)
1661 return sym;
1662
1663 return lookup_symbol_aux_psymtabs (GLOBAL_BLOCK, name, linkage_name, domain);
1664 }
1665
1666 int
1667 symbol_matches_domain (enum language symbol_language,
1668 domain_enum symbol_domain,
1669 domain_enum domain)
1670 {
1671 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1672 A Java class declaration also defines a typedef for the class.
1673 Similarly, any Ada type declaration implicitly defines a typedef. */
1674 if (symbol_language == language_cplus
1675 || symbol_language == language_java
1676 || symbol_language == language_ada)
1677 {
1678 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1679 && symbol_domain == STRUCT_DOMAIN)
1680 return 1;
1681 }
1682 /* For all other languages, strict match is required. */
1683 return (symbol_domain == domain);
1684 }
1685
1686 /* Look, in partial_symtab PST, for symbol whose natural name is NAME.
1687 If LINKAGE_NAME is non-NULL, check in addition that the symbol's
1688 linkage name matches it. Check the global symbols if GLOBAL, the
1689 static symbols if not */
1690
1691 struct partial_symbol *
1692 lookup_partial_symbol (struct partial_symtab *pst, const char *name,
1693 const char *linkage_name, int global,
1694 domain_enum domain)
1695 {
1696 struct partial_symbol *temp;
1697 struct partial_symbol **start, **psym;
1698 struct partial_symbol **top, **real_top, **bottom, **center;
1699 int length = (global ? pst->n_global_syms : pst->n_static_syms);
1700 int do_linear_search = 1;
1701
1702 if (length == 0)
1703 {
1704 return (NULL);
1705 }
1706 start = (global ?
1707 pst->objfile->global_psymbols.list + pst->globals_offset :
1708 pst->objfile->static_psymbols.list + pst->statics_offset);
1709
1710 if (global) /* This means we can use a binary search. */
1711 {
1712 do_linear_search = 0;
1713
1714 /* Binary search. This search is guaranteed to end with center
1715 pointing at the earliest partial symbol whose name might be
1716 correct. At that point *all* partial symbols with an
1717 appropriate name will be checked against the correct
1718 domain. */
1719
1720 bottom = start;
1721 top = start + length - 1;
1722 real_top = top;
1723 while (top > bottom)
1724 {
1725 center = bottom + (top - bottom) / 2;
1726 if (!(center < top))
1727 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1728 if (!do_linear_search
1729 && (SYMBOL_LANGUAGE (*center) == language_java))
1730 {
1731 do_linear_search = 1;
1732 }
1733 if (strcmp_iw_ordered (SYMBOL_SEARCH_NAME (*center), name) >= 0)
1734 {
1735 top = center;
1736 }
1737 else
1738 {
1739 bottom = center + 1;
1740 }
1741 }
1742 if (!(top == bottom))
1743 internal_error (__FILE__, __LINE__, _("failed internal consistency check"));
1744
1745 while (top <= real_top
1746 && (linkage_name != NULL
1747 ? strcmp (SYMBOL_LINKAGE_NAME (*top), linkage_name) == 0
1748 : SYMBOL_MATCHES_SEARCH_NAME (*top,name)))
1749 {
1750 if (symbol_matches_domain (SYMBOL_LANGUAGE (*top),
1751 SYMBOL_DOMAIN (*top), domain))
1752 return (*top);
1753 top++;
1754 }
1755 }
1756
1757 /* Can't use a binary search or else we found during the binary search that
1758 we should also do a linear search. */
1759
1760 if (do_linear_search)
1761 {
1762 for (psym = start; psym < start + length; psym++)
1763 {
1764 if (symbol_matches_domain (SYMBOL_LANGUAGE (*psym),
1765 SYMBOL_DOMAIN (*psym), domain))
1766 {
1767 if (linkage_name != NULL
1768 ? strcmp (SYMBOL_LINKAGE_NAME (*psym), linkage_name) == 0
1769 : SYMBOL_MATCHES_SEARCH_NAME (*psym, name))
1770 {
1771 return (*psym);
1772 }
1773 }
1774 }
1775 }
1776
1777 return (NULL);
1778 }
1779
1780 /* Look up a type named NAME in the struct_domain. The type returned
1781 must not be opaque -- i.e., must have at least one field
1782 defined. */
1783
1784 struct type *
1785 lookup_transparent_type (const char *name)
1786 {
1787 return current_language->la_lookup_transparent_type (name);
1788 }
1789
1790 /* The standard implementation of lookup_transparent_type. This code
1791 was modeled on lookup_symbol -- the parts not relevant to looking
1792 up types were just left out. In particular it's assumed here that
1793 types are available in struct_domain and only at file-static or
1794 global blocks. */
1795
1796 struct type *
1797 basic_lookup_transparent_type (const char *name)
1798 {
1799 struct symbol *sym;
1800 struct symtab *s = NULL;
1801 struct partial_symtab *ps;
1802 struct blockvector *bv;
1803 struct objfile *objfile;
1804 struct block *block;
1805
1806 /* Now search all the global symbols. Do the symtab's first, then
1807 check the psymtab's. If a psymtab indicates the existence
1808 of the desired name as a global, then do psymtab-to-symtab
1809 conversion on the fly and return the found symbol. */
1810
1811 ALL_PRIMARY_SYMTABS (objfile, s)
1812 {
1813 bv = BLOCKVECTOR (s);
1814 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1815 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1816 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1817 {
1818 return SYMBOL_TYPE (sym);
1819 }
1820 }
1821
1822 ALL_PSYMTABS (objfile, ps)
1823 {
1824 if (!ps->readin && lookup_partial_symbol (ps, name, NULL,
1825 1, STRUCT_DOMAIN))
1826 {
1827 s = PSYMTAB_TO_SYMTAB (ps);
1828 bv = BLOCKVECTOR (s);
1829 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1830 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1831 if (!sym)
1832 {
1833 /* This shouldn't be necessary, but as a last resort
1834 * try looking in the statics even though the psymtab
1835 * claimed the symbol was global. It's possible that
1836 * the psymtab gets it wrong in some cases.
1837 */
1838 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1839 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1840 if (!sym)
1841 error (_("Internal: global symbol `%s' found in %s psymtab but not in symtab.\n\
1842 %s may be an inlined function, or may be a template function\n\
1843 (if a template, try specifying an instantiation: %s<type>)."),
1844 name, ps->filename, name, name);
1845 }
1846 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1847 return SYMBOL_TYPE (sym);
1848 }
1849 }
1850
1851 /* Now search the static file-level symbols.
1852 Not strictly correct, but more useful than an error.
1853 Do the symtab's first, then
1854 check the psymtab's. If a psymtab indicates the existence
1855 of the desired name as a file-level static, then do psymtab-to-symtab
1856 conversion on the fly and return the found symbol.
1857 */
1858
1859 ALL_PRIMARY_SYMTABS (objfile, s)
1860 {
1861 bv = BLOCKVECTOR (s);
1862 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1863 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1864 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1865 {
1866 return SYMBOL_TYPE (sym);
1867 }
1868 }
1869
1870 ALL_PSYMTABS (objfile, ps)
1871 {
1872 if (!ps->readin && lookup_partial_symbol (ps, name, NULL, 0, STRUCT_DOMAIN))
1873 {
1874 s = PSYMTAB_TO_SYMTAB (ps);
1875 bv = BLOCKVECTOR (s);
1876 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1877 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1878 if (!sym)
1879 {
1880 /* This shouldn't be necessary, but as a last resort
1881 * try looking in the globals even though the psymtab
1882 * claimed the symbol was static. It's possible that
1883 * the psymtab gets it wrong in some cases.
1884 */
1885 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1886 sym = lookup_block_symbol (block, name, NULL, STRUCT_DOMAIN);
1887 if (!sym)
1888 error (_("Internal: static symbol `%s' found in %s psymtab but not in symtab.\n\
1889 %s may be an inlined function, or may be a template function\n\
1890 (if a template, try specifying an instantiation: %s<type>)."),
1891 name, ps->filename, name, name);
1892 }
1893 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1894 return SYMBOL_TYPE (sym);
1895 }
1896 }
1897 return (struct type *) 0;
1898 }
1899
1900
1901 /* Find the psymtab containing main(). */
1902 /* FIXME: What about languages without main() or specially linked
1903 executables that have no main() ? */
1904
1905 struct partial_symtab *
1906 find_main_psymtab (void)
1907 {
1908 struct partial_symtab *pst;
1909 struct objfile *objfile;
1910
1911 ALL_PSYMTABS (objfile, pst)
1912 {
1913 if (lookup_partial_symbol (pst, main_name (), NULL, 1, VAR_DOMAIN))
1914 {
1915 return (pst);
1916 }
1917 }
1918 return (NULL);
1919 }
1920
1921 /* Search BLOCK for symbol NAME in DOMAIN.
1922
1923 Note that if NAME is the demangled form of a C++ symbol, we will fail
1924 to find a match during the binary search of the non-encoded names, but
1925 for now we don't worry about the slight inefficiency of looking for
1926 a match we'll never find, since it will go pretty quick. Once the
1927 binary search terminates, we drop through and do a straight linear
1928 search on the symbols. Each symbol which is marked as being a ObjC/C++
1929 symbol (language_cplus or language_objc set) has both the encoded and
1930 non-encoded names tested for a match.
1931
1932 If LINKAGE_NAME is non-NULL, verify that any symbol we find has this
1933 particular mangled name.
1934 */
1935
1936 struct symbol *
1937 lookup_block_symbol (const struct block *block, const char *name,
1938 const char *linkage_name,
1939 const domain_enum domain)
1940 {
1941 struct dict_iterator iter;
1942 struct symbol *sym;
1943
1944 if (!BLOCK_FUNCTION (block))
1945 {
1946 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1947 sym != NULL;
1948 sym = dict_iter_name_next (name, &iter))
1949 {
1950 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1951 SYMBOL_DOMAIN (sym), domain)
1952 && (linkage_name != NULL
1953 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1954 return sym;
1955 }
1956 return NULL;
1957 }
1958 else
1959 {
1960 /* Note that parameter symbols do not always show up last in the
1961 list; this loop makes sure to take anything else other than
1962 parameter symbols first; it only uses parameter symbols as a
1963 last resort. Note that this only takes up extra computation
1964 time on a match. */
1965
1966 struct symbol *sym_found = NULL;
1967
1968 for (sym = dict_iter_name_first (BLOCK_DICT (block), name, &iter);
1969 sym != NULL;
1970 sym = dict_iter_name_next (name, &iter))
1971 {
1972 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1973 SYMBOL_DOMAIN (sym), domain)
1974 && (linkage_name != NULL
1975 ? strcmp (SYMBOL_LINKAGE_NAME (sym), linkage_name) == 0 : 1))
1976 {
1977 sym_found = sym;
1978 if (!SYMBOL_IS_ARGUMENT (sym))
1979 {
1980 break;
1981 }
1982 }
1983 }
1984 return (sym_found); /* Will be NULL if not found. */
1985 }
1986 }
1987
1988 /* Find the symtab associated with PC and SECTION. Look through the
1989 psymtabs and read in another symtab if necessary. */
1990
1991 struct symtab *
1992 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
1993 {
1994 struct block *b;
1995 struct blockvector *bv;
1996 struct symtab *s = NULL;
1997 struct symtab *best_s = NULL;
1998 struct partial_symtab *ps;
1999 struct objfile *objfile;
2000 CORE_ADDR distance = 0;
2001 struct minimal_symbol *msymbol;
2002
2003 /* If we know that this is not a text address, return failure. This is
2004 necessary because we loop based on the block's high and low code
2005 addresses, which do not include the data ranges, and because
2006 we call find_pc_sect_psymtab which has a similar restriction based
2007 on the partial_symtab's texthigh and textlow. */
2008 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2009 if (msymbol
2010 && (MSYMBOL_TYPE (msymbol) == mst_data
2011 || MSYMBOL_TYPE (msymbol) == mst_bss
2012 || MSYMBOL_TYPE (msymbol) == mst_abs
2013 || MSYMBOL_TYPE (msymbol) == mst_file_data
2014 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2015 return NULL;
2016
2017 /* Search all symtabs for the one whose file contains our address, and which
2018 is the smallest of all the ones containing the address. This is designed
2019 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2020 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2021 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2022
2023 This happens for native ecoff format, where code from included files
2024 gets its own symtab. The symtab for the included file should have
2025 been read in already via the dependency mechanism.
2026 It might be swifter to create several symtabs with the same name
2027 like xcoff does (I'm not sure).
2028
2029 It also happens for objfiles that have their functions reordered.
2030 For these, the symtab we are looking for is not necessarily read in. */
2031
2032 ALL_PRIMARY_SYMTABS (objfile, s)
2033 {
2034 bv = BLOCKVECTOR (s);
2035 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2036
2037 if (BLOCK_START (b) <= pc
2038 && BLOCK_END (b) > pc
2039 && (distance == 0
2040 || BLOCK_END (b) - BLOCK_START (b) < distance))
2041 {
2042 /* For an objfile that has its functions reordered,
2043 find_pc_psymtab will find the proper partial symbol table
2044 and we simply return its corresponding symtab. */
2045 /* In order to better support objfiles that contain both
2046 stabs and coff debugging info, we continue on if a psymtab
2047 can't be found. */
2048 if ((objfile->flags & OBJF_REORDERED) && objfile->psymtabs)
2049 {
2050 ps = find_pc_sect_psymtab (pc, section);
2051 if (ps)
2052 return PSYMTAB_TO_SYMTAB (ps);
2053 }
2054 if (section != 0)
2055 {
2056 struct dict_iterator iter;
2057 struct symbol *sym = NULL;
2058
2059 ALL_BLOCK_SYMBOLS (b, iter, sym)
2060 {
2061 fixup_symbol_section (sym, objfile);
2062 if (matching_obj_sections (SYMBOL_OBJ_SECTION (sym), section))
2063 break;
2064 }
2065 if (sym == NULL)
2066 continue; /* no symbol in this symtab matches section */
2067 }
2068 distance = BLOCK_END (b) - BLOCK_START (b);
2069 best_s = s;
2070 }
2071 }
2072
2073 if (best_s != NULL)
2074 return (best_s);
2075
2076 s = NULL;
2077 ps = find_pc_sect_psymtab (pc, section);
2078 if (ps)
2079 {
2080 if (ps->readin)
2081 /* Might want to error() here (in case symtab is corrupt and
2082 will cause a core dump), but maybe we can successfully
2083 continue, so let's not. */
2084 warning (_("\
2085 (Internal error: pc 0x%s in read in psymtab, but not in symtab.)\n"),
2086 paddr_nz (pc));
2087 s = PSYMTAB_TO_SYMTAB (ps);
2088 }
2089 return (s);
2090 }
2091
2092 /* Find the symtab associated with PC. Look through the psymtabs and
2093 read in another symtab if necessary. Backward compatibility, no section */
2094
2095 struct symtab *
2096 find_pc_symtab (CORE_ADDR pc)
2097 {
2098 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2099 }
2100 \f
2101
2102 /* Find the source file and line number for a given PC value and SECTION.
2103 Return a structure containing a symtab pointer, a line number,
2104 and a pc range for the entire source line.
2105 The value's .pc field is NOT the specified pc.
2106 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2107 use the line that ends there. Otherwise, in that case, the line
2108 that begins there is used. */
2109
2110 /* The big complication here is that a line may start in one file, and end just
2111 before the start of another file. This usually occurs when you #include
2112 code in the middle of a subroutine. To properly find the end of a line's PC
2113 range, we must search all symtabs associated with this compilation unit, and
2114 find the one whose first PC is closer than that of the next line in this
2115 symtab. */
2116
2117 /* If it's worth the effort, we could be using a binary search. */
2118
2119 struct symtab_and_line
2120 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2121 {
2122 struct symtab *s;
2123 struct linetable *l;
2124 int len;
2125 int i;
2126 struct linetable_entry *item;
2127 struct symtab_and_line val;
2128 struct blockvector *bv;
2129 struct minimal_symbol *msymbol;
2130 struct minimal_symbol *mfunsym;
2131
2132 /* Info on best line seen so far, and where it starts, and its file. */
2133
2134 struct linetable_entry *best = NULL;
2135 CORE_ADDR best_end = 0;
2136 struct symtab *best_symtab = 0;
2137
2138 /* Store here the first line number
2139 of a file which contains the line at the smallest pc after PC.
2140 If we don't find a line whose range contains PC,
2141 we will use a line one less than this,
2142 with a range from the start of that file to the first line's pc. */
2143 struct linetable_entry *alt = NULL;
2144 struct symtab *alt_symtab = 0;
2145
2146 /* Info on best line seen in this file. */
2147
2148 struct linetable_entry *prev;
2149
2150 /* If this pc is not from the current frame,
2151 it is the address of the end of a call instruction.
2152 Quite likely that is the start of the following statement.
2153 But what we want is the statement containing the instruction.
2154 Fudge the pc to make sure we get that. */
2155
2156 init_sal (&val); /* initialize to zeroes */
2157
2158 /* It's tempting to assume that, if we can't find debugging info for
2159 any function enclosing PC, that we shouldn't search for line
2160 number info, either. However, GAS can emit line number info for
2161 assembly files --- very helpful when debugging hand-written
2162 assembly code. In such a case, we'd have no debug info for the
2163 function, but we would have line info. */
2164
2165 if (notcurrent)
2166 pc -= 1;
2167
2168 /* elz: added this because this function returned the wrong
2169 information if the pc belongs to a stub (import/export)
2170 to call a shlib function. This stub would be anywhere between
2171 two functions in the target, and the line info was erroneously
2172 taken to be the one of the line before the pc.
2173 */
2174 /* RT: Further explanation:
2175
2176 * We have stubs (trampolines) inserted between procedures.
2177 *
2178 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2179 * exists in the main image.
2180 *
2181 * In the minimal symbol table, we have a bunch of symbols
2182 * sorted by start address. The stubs are marked as "trampoline",
2183 * the others appear as text. E.g.:
2184 *
2185 * Minimal symbol table for main image
2186 * main: code for main (text symbol)
2187 * shr1: stub (trampoline symbol)
2188 * foo: code for foo (text symbol)
2189 * ...
2190 * Minimal symbol table for "shr1" image:
2191 * ...
2192 * shr1: code for shr1 (text symbol)
2193 * ...
2194 *
2195 * So the code below is trying to detect if we are in the stub
2196 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2197 * and if found, do the symbolization from the real-code address
2198 * rather than the stub address.
2199 *
2200 * Assumptions being made about the minimal symbol table:
2201 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2202 * if we're really in the trampoline. If we're beyond it (say
2203 * we're in "foo" in the above example), it'll have a closer
2204 * symbol (the "foo" text symbol for example) and will not
2205 * return the trampoline.
2206 * 2. lookup_minimal_symbol_text() will find a real text symbol
2207 * corresponding to the trampoline, and whose address will
2208 * be different than the trampoline address. I put in a sanity
2209 * check for the address being the same, to avoid an
2210 * infinite recursion.
2211 */
2212 msymbol = lookup_minimal_symbol_by_pc (pc);
2213 if (msymbol != NULL)
2214 if (MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
2215 {
2216 mfunsym = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol),
2217 NULL);
2218 if (mfunsym == NULL)
2219 /* I eliminated this warning since it is coming out
2220 * in the following situation:
2221 * gdb shmain // test program with shared libraries
2222 * (gdb) break shr1 // function in shared lib
2223 * Warning: In stub for ...
2224 * In the above situation, the shared lib is not loaded yet,
2225 * so of course we can't find the real func/line info,
2226 * but the "break" still works, and the warning is annoying.
2227 * So I commented out the warning. RT */
2228 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2229 /* fall through */
2230 else if (SYMBOL_VALUE_ADDRESS (mfunsym) == SYMBOL_VALUE_ADDRESS (msymbol))
2231 /* Avoid infinite recursion */
2232 /* See above comment about why warning is commented out */
2233 /* warning ("In stub for %s; unable to find real function/line info", SYMBOL_LINKAGE_NAME (msymbol)) */ ;
2234 /* fall through */
2235 else
2236 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2237 }
2238
2239
2240 s = find_pc_sect_symtab (pc, section);
2241 if (!s)
2242 {
2243 /* if no symbol information, return previous pc */
2244 if (notcurrent)
2245 pc++;
2246 val.pc = pc;
2247 return val;
2248 }
2249
2250 bv = BLOCKVECTOR (s);
2251
2252 /* Look at all the symtabs that share this blockvector.
2253 They all have the same apriori range, that we found was right;
2254 but they have different line tables. */
2255
2256 for (; s && BLOCKVECTOR (s) == bv; s = s->next)
2257 {
2258 /* Find the best line in this symtab. */
2259 l = LINETABLE (s);
2260 if (!l)
2261 continue;
2262 len = l->nitems;
2263 if (len <= 0)
2264 {
2265 /* I think len can be zero if the symtab lacks line numbers
2266 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2267 I'm not sure which, and maybe it depends on the symbol
2268 reader). */
2269 continue;
2270 }
2271
2272 prev = NULL;
2273 item = l->item; /* Get first line info */
2274
2275 /* Is this file's first line closer than the first lines of other files?
2276 If so, record this file, and its first line, as best alternate. */
2277 if (item->pc > pc && (!alt || item->pc < alt->pc))
2278 {
2279 alt = item;
2280 alt_symtab = s;
2281 }
2282
2283 for (i = 0; i < len; i++, item++)
2284 {
2285 /* Leave prev pointing to the linetable entry for the last line
2286 that started at or before PC. */
2287 if (item->pc > pc)
2288 break;
2289
2290 prev = item;
2291 }
2292
2293 /* At this point, prev points at the line whose start addr is <= pc, and
2294 item points at the next line. If we ran off the end of the linetable
2295 (pc >= start of the last line), then prev == item. If pc < start of
2296 the first line, prev will not be set. */
2297
2298 /* Is this file's best line closer than the best in the other files?
2299 If so, record this file, and its best line, as best so far. Don't
2300 save prev if it represents the end of a function (i.e. line number
2301 0) instead of a real line. */
2302
2303 if (prev && prev->line && (!best || prev->pc > best->pc))
2304 {
2305 best = prev;
2306 best_symtab = s;
2307
2308 /* Discard BEST_END if it's before the PC of the current BEST. */
2309 if (best_end <= best->pc)
2310 best_end = 0;
2311 }
2312
2313 /* If another line (denoted by ITEM) is in the linetable and its
2314 PC is after BEST's PC, but before the current BEST_END, then
2315 use ITEM's PC as the new best_end. */
2316 if (best && i < len && item->pc > best->pc
2317 && (best_end == 0 || best_end > item->pc))
2318 best_end = item->pc;
2319 }
2320
2321 if (!best_symtab)
2322 {
2323 /* If we didn't find any line number info, just return zeros.
2324 We used to return alt->line - 1 here, but that could be
2325 anywhere; if we don't have line number info for this PC,
2326 don't make some up. */
2327 val.pc = pc;
2328 }
2329 else if (best->line == 0)
2330 {
2331 /* If our best fit is in a range of PC's for which no line
2332 number info is available (line number is zero) then we didn't
2333 find any valid line information. */
2334 val.pc = pc;
2335 }
2336 else
2337 {
2338 val.symtab = best_symtab;
2339 val.line = best->line;
2340 val.pc = best->pc;
2341 if (best_end && (!alt || best_end < alt->pc))
2342 val.end = best_end;
2343 else if (alt)
2344 val.end = alt->pc;
2345 else
2346 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2347 }
2348 val.section = section;
2349 return val;
2350 }
2351
2352 /* Backward compatibility (no section) */
2353
2354 struct symtab_and_line
2355 find_pc_line (CORE_ADDR pc, int notcurrent)
2356 {
2357 struct obj_section *section;
2358
2359 section = find_pc_overlay (pc);
2360 if (pc_in_unmapped_range (pc, section))
2361 pc = overlay_mapped_address (pc, section);
2362 return find_pc_sect_line (pc, section, notcurrent);
2363 }
2364 \f
2365 /* Find line number LINE in any symtab whose name is the same as
2366 SYMTAB.
2367
2368 If found, return the symtab that contains the linetable in which it was
2369 found, set *INDEX to the index in the linetable of the best entry
2370 found, and set *EXACT_MATCH nonzero if the value returned is an
2371 exact match.
2372
2373 If not found, return NULL. */
2374
2375 struct symtab *
2376 find_line_symtab (struct symtab *symtab, int line, int *index, int *exact_match)
2377 {
2378 int exact = 0; /* Initialized here to avoid a compiler warning. */
2379
2380 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2381 so far seen. */
2382
2383 int best_index;
2384 struct linetable *best_linetable;
2385 struct symtab *best_symtab;
2386
2387 /* First try looking it up in the given symtab. */
2388 best_linetable = LINETABLE (symtab);
2389 best_symtab = symtab;
2390 best_index = find_line_common (best_linetable, line, &exact);
2391 if (best_index < 0 || !exact)
2392 {
2393 /* Didn't find an exact match. So we better keep looking for
2394 another symtab with the same name. In the case of xcoff,
2395 multiple csects for one source file (produced by IBM's FORTRAN
2396 compiler) produce multiple symtabs (this is unavoidable
2397 assuming csects can be at arbitrary places in memory and that
2398 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2399
2400 /* BEST is the smallest linenumber > LINE so far seen,
2401 or 0 if none has been seen so far.
2402 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2403 int best;
2404
2405 struct objfile *objfile;
2406 struct symtab *s;
2407 struct partial_symtab *p;
2408
2409 if (best_index >= 0)
2410 best = best_linetable->item[best_index].line;
2411 else
2412 best = 0;
2413
2414 ALL_PSYMTABS (objfile, p)
2415 {
2416 if (strcmp (symtab->filename, p->filename) != 0)
2417 continue;
2418 PSYMTAB_TO_SYMTAB (p);
2419 }
2420
2421 ALL_SYMTABS (objfile, s)
2422 {
2423 struct linetable *l;
2424 int ind;
2425
2426 if (strcmp (symtab->filename, s->filename) != 0)
2427 continue;
2428 l = LINETABLE (s);
2429 ind = find_line_common (l, line, &exact);
2430 if (ind >= 0)
2431 {
2432 if (exact)
2433 {
2434 best_index = ind;
2435 best_linetable = l;
2436 best_symtab = s;
2437 goto done;
2438 }
2439 if (best == 0 || l->item[ind].line < best)
2440 {
2441 best = l->item[ind].line;
2442 best_index = ind;
2443 best_linetable = l;
2444 best_symtab = s;
2445 }
2446 }
2447 }
2448 }
2449 done:
2450 if (best_index < 0)
2451 return NULL;
2452
2453 if (index)
2454 *index = best_index;
2455 if (exact_match)
2456 *exact_match = exact;
2457
2458 return best_symtab;
2459 }
2460 \f
2461 /* Set the PC value for a given source file and line number and return true.
2462 Returns zero for invalid line number (and sets the PC to 0).
2463 The source file is specified with a struct symtab. */
2464
2465 int
2466 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2467 {
2468 struct linetable *l;
2469 int ind;
2470
2471 *pc = 0;
2472 if (symtab == 0)
2473 return 0;
2474
2475 symtab = find_line_symtab (symtab, line, &ind, NULL);
2476 if (symtab != NULL)
2477 {
2478 l = LINETABLE (symtab);
2479 *pc = l->item[ind].pc;
2480 return 1;
2481 }
2482 else
2483 return 0;
2484 }
2485
2486 /* Find the range of pc values in a line.
2487 Store the starting pc of the line into *STARTPTR
2488 and the ending pc (start of next line) into *ENDPTR.
2489 Returns 1 to indicate success.
2490 Returns 0 if could not find the specified line. */
2491
2492 int
2493 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2494 CORE_ADDR *endptr)
2495 {
2496 CORE_ADDR startaddr;
2497 struct symtab_and_line found_sal;
2498
2499 startaddr = sal.pc;
2500 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2501 return 0;
2502
2503 /* This whole function is based on address. For example, if line 10 has
2504 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2505 "info line *0x123" should say the line goes from 0x100 to 0x200
2506 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2507 This also insures that we never give a range like "starts at 0x134
2508 and ends at 0x12c". */
2509
2510 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2511 if (found_sal.line != sal.line)
2512 {
2513 /* The specified line (sal) has zero bytes. */
2514 *startptr = found_sal.pc;
2515 *endptr = found_sal.pc;
2516 }
2517 else
2518 {
2519 *startptr = found_sal.pc;
2520 *endptr = found_sal.end;
2521 }
2522 return 1;
2523 }
2524
2525 /* Given a line table and a line number, return the index into the line
2526 table for the pc of the nearest line whose number is >= the specified one.
2527 Return -1 if none is found. The value is >= 0 if it is an index.
2528
2529 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2530
2531 static int
2532 find_line_common (struct linetable *l, int lineno,
2533 int *exact_match)
2534 {
2535 int i;
2536 int len;
2537
2538 /* BEST is the smallest linenumber > LINENO so far seen,
2539 or 0 if none has been seen so far.
2540 BEST_INDEX identifies the item for it. */
2541
2542 int best_index = -1;
2543 int best = 0;
2544
2545 *exact_match = 0;
2546
2547 if (lineno <= 0)
2548 return -1;
2549 if (l == 0)
2550 return -1;
2551
2552 len = l->nitems;
2553 for (i = 0; i < len; i++)
2554 {
2555 struct linetable_entry *item = &(l->item[i]);
2556
2557 if (item->line == lineno)
2558 {
2559 /* Return the first (lowest address) entry which matches. */
2560 *exact_match = 1;
2561 return i;
2562 }
2563
2564 if (item->line > lineno && (best == 0 || item->line < best))
2565 {
2566 best = item->line;
2567 best_index = i;
2568 }
2569 }
2570
2571 /* If we got here, we didn't get an exact match. */
2572 return best_index;
2573 }
2574
2575 int
2576 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2577 {
2578 struct symtab_and_line sal;
2579 sal = find_pc_line (pc, 0);
2580 *startptr = sal.pc;
2581 *endptr = sal.end;
2582 return sal.symtab != 0;
2583 }
2584
2585 /* Given a function start address PC and SECTION, find the first
2586 address after the function prologue. */
2587 CORE_ADDR
2588 find_function_start_pc (struct gdbarch *gdbarch,
2589 CORE_ADDR pc, struct obj_section *section)
2590 {
2591 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2592 so that gdbarch_skip_prologue has something unique to work on. */
2593 if (section_is_overlay (section) && !section_is_mapped (section))
2594 pc = overlay_unmapped_address (pc, section);
2595
2596 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2597 pc = gdbarch_skip_prologue (gdbarch, pc);
2598
2599 /* For overlays, map pc back into its mapped VMA range. */
2600 pc = overlay_mapped_address (pc, section);
2601
2602 return pc;
2603 }
2604
2605 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2606 address for that function that has an entry in SYMTAB's line info
2607 table. If such an entry cannot be found, return FUNC_ADDR
2608 unaltered. */
2609 CORE_ADDR
2610 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2611 {
2612 CORE_ADDR func_start, func_end;
2613 struct linetable *l;
2614 int ind, i, len;
2615 int best_lineno = 0;
2616 CORE_ADDR best_pc = func_addr;
2617
2618 /* Give up if this symbol has no lineinfo table. */
2619 l = LINETABLE (symtab);
2620 if (l == NULL)
2621 return func_addr;
2622
2623 /* Get the range for the function's PC values, or give up if we
2624 cannot, for some reason. */
2625 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2626 return func_addr;
2627
2628 /* Linetable entries are ordered by PC values, see the commentary in
2629 symtab.h where `struct linetable' is defined. Thus, the first
2630 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2631 address we are looking for. */
2632 for (i = 0; i < l->nitems; i++)
2633 {
2634 struct linetable_entry *item = &(l->item[i]);
2635
2636 /* Don't use line numbers of zero, they mark special entries in
2637 the table. See the commentary on symtab.h before the
2638 definition of struct linetable. */
2639 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2640 return item->pc;
2641 }
2642
2643 return func_addr;
2644 }
2645
2646 /* Given a function symbol SYM, find the symtab and line for the start
2647 of the function.
2648 If the argument FUNFIRSTLINE is nonzero, we want the first line
2649 of real code inside the function. */
2650
2651 struct symtab_and_line
2652 find_function_start_sal (struct symbol *sym, int funfirstline)
2653 {
2654 struct block *block = SYMBOL_BLOCK_VALUE (sym);
2655 struct objfile *objfile = lookup_objfile_from_block (block);
2656 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2657
2658 CORE_ADDR pc;
2659 struct symtab_and_line sal;
2660 struct block *b, *function_block;
2661
2662 pc = BLOCK_START (block);
2663 fixup_symbol_section (sym, objfile);
2664 if (funfirstline)
2665 {
2666 /* Skip "first line" of function (which is actually its prologue). */
2667 pc = find_function_start_pc (gdbarch, pc, SYMBOL_OBJ_SECTION (sym));
2668 }
2669 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2670
2671 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2672 line is still part of the same function. */
2673 if (sal.pc != pc
2674 && BLOCK_START (block) <= sal.end
2675 && sal.end < BLOCK_END (block))
2676 {
2677 /* First pc of next line */
2678 pc = sal.end;
2679 /* Recalculate the line number (might not be N+1). */
2680 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2681 }
2682
2683 /* On targets with executable formats that don't have a concept of
2684 constructors (ELF with .init has, PE doesn't), gcc emits a call
2685 to `__main' in `main' between the prologue and before user
2686 code. */
2687 if (funfirstline
2688 && gdbarch_skip_main_prologue_p (gdbarch)
2689 && SYMBOL_LINKAGE_NAME (sym)
2690 && strcmp (SYMBOL_LINKAGE_NAME (sym), "main") == 0)
2691 {
2692 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2693 /* Recalculate the line number (might not be N+1). */
2694 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2695 }
2696
2697 /* If we still don't have a valid source line, try to find the first
2698 PC in the lineinfo table that belongs to the same function. This
2699 happens with COFF debug info, which does not seem to have an
2700 entry in lineinfo table for the code after the prologue which has
2701 no direct relation to source. For example, this was found to be
2702 the case with the DJGPP target using "gcc -gcoff" when the
2703 compiler inserted code after the prologue to make sure the stack
2704 is aligned. */
2705 if (funfirstline && sal.symtab == NULL)
2706 {
2707 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2708 /* Recalculate the line number. */
2709 sal = find_pc_sect_line (pc, SYMBOL_OBJ_SECTION (sym), 0);
2710 }
2711
2712 sal.pc = pc;
2713
2714 /* Check if we are now inside an inlined function. If we can,
2715 use the call site of the function instead. */
2716 b = block_for_pc_sect (sal.pc, SYMBOL_OBJ_SECTION (sym));
2717 function_block = NULL;
2718 while (b != NULL)
2719 {
2720 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2721 function_block = b;
2722 else if (BLOCK_FUNCTION (b) != NULL)
2723 break;
2724 b = BLOCK_SUPERBLOCK (b);
2725 }
2726 if (function_block != NULL
2727 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2728 {
2729 sal.line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2730 sal.symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2731 }
2732
2733 return sal;
2734 }
2735
2736 /* If P is of the form "operator[ \t]+..." where `...' is
2737 some legitimate operator text, return a pointer to the
2738 beginning of the substring of the operator text.
2739 Otherwise, return "". */
2740 char *
2741 operator_chars (char *p, char **end)
2742 {
2743 *end = "";
2744 if (strncmp (p, "operator", 8))
2745 return *end;
2746 p += 8;
2747
2748 /* Don't get faked out by `operator' being part of a longer
2749 identifier. */
2750 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
2751 return *end;
2752
2753 /* Allow some whitespace between `operator' and the operator symbol. */
2754 while (*p == ' ' || *p == '\t')
2755 p++;
2756
2757 /* Recognize 'operator TYPENAME'. */
2758
2759 if (isalpha (*p) || *p == '_' || *p == '$')
2760 {
2761 char *q = p + 1;
2762 while (isalnum (*q) || *q == '_' || *q == '$')
2763 q++;
2764 *end = q;
2765 return p;
2766 }
2767
2768 while (*p)
2769 switch (*p)
2770 {
2771 case '\\': /* regexp quoting */
2772 if (p[1] == '*')
2773 {
2774 if (p[2] == '=') /* 'operator\*=' */
2775 *end = p + 3;
2776 else /* 'operator\*' */
2777 *end = p + 2;
2778 return p;
2779 }
2780 else if (p[1] == '[')
2781 {
2782 if (p[2] == ']')
2783 error (_("mismatched quoting on brackets, try 'operator\\[\\]'"));
2784 else if (p[2] == '\\' && p[3] == ']')
2785 {
2786 *end = p + 4; /* 'operator\[\]' */
2787 return p;
2788 }
2789 else
2790 error (_("nothing is allowed between '[' and ']'"));
2791 }
2792 else
2793 {
2794 /* Gratuitous qoute: skip it and move on. */
2795 p++;
2796 continue;
2797 }
2798 break;
2799 case '!':
2800 case '=':
2801 case '*':
2802 case '/':
2803 case '%':
2804 case '^':
2805 if (p[1] == '=')
2806 *end = p + 2;
2807 else
2808 *end = p + 1;
2809 return p;
2810 case '<':
2811 case '>':
2812 case '+':
2813 case '-':
2814 case '&':
2815 case '|':
2816 if (p[0] == '-' && p[1] == '>')
2817 {
2818 /* Struct pointer member operator 'operator->'. */
2819 if (p[2] == '*')
2820 {
2821 *end = p + 3; /* 'operator->*' */
2822 return p;
2823 }
2824 else if (p[2] == '\\')
2825 {
2826 *end = p + 4; /* Hopefully 'operator->\*' */
2827 return p;
2828 }
2829 else
2830 {
2831 *end = p + 2; /* 'operator->' */
2832 return p;
2833 }
2834 }
2835 if (p[1] == '=' || p[1] == p[0])
2836 *end = p + 2;
2837 else
2838 *end = p + 1;
2839 return p;
2840 case '~':
2841 case ',':
2842 *end = p + 1;
2843 return p;
2844 case '(':
2845 if (p[1] != ')')
2846 error (_("`operator ()' must be specified without whitespace in `()'"));
2847 *end = p + 2;
2848 return p;
2849 case '?':
2850 if (p[1] != ':')
2851 error (_("`operator ?:' must be specified without whitespace in `?:'"));
2852 *end = p + 2;
2853 return p;
2854 case '[':
2855 if (p[1] != ']')
2856 error (_("`operator []' must be specified without whitespace in `[]'"));
2857 *end = p + 2;
2858 return p;
2859 default:
2860 error (_("`operator %s' not supported"), p);
2861 break;
2862 }
2863
2864 *end = "";
2865 return *end;
2866 }
2867 \f
2868
2869 /* If FILE is not already in the table of files, return zero;
2870 otherwise return non-zero. Optionally add FILE to the table if ADD
2871 is non-zero. If *FIRST is non-zero, forget the old table
2872 contents. */
2873 static int
2874 filename_seen (const char *file, int add, int *first)
2875 {
2876 /* Table of files seen so far. */
2877 static const char **tab = NULL;
2878 /* Allocated size of tab in elements.
2879 Start with one 256-byte block (when using GNU malloc.c).
2880 24 is the malloc overhead when range checking is in effect. */
2881 static int tab_alloc_size = (256 - 24) / sizeof (char *);
2882 /* Current size of tab in elements. */
2883 static int tab_cur_size;
2884 const char **p;
2885
2886 if (*first)
2887 {
2888 if (tab == NULL)
2889 tab = (const char **) xmalloc (tab_alloc_size * sizeof (*tab));
2890 tab_cur_size = 0;
2891 }
2892
2893 /* Is FILE in tab? */
2894 for (p = tab; p < tab + tab_cur_size; p++)
2895 if (strcmp (*p, file) == 0)
2896 return 1;
2897
2898 /* No; maybe add it to tab. */
2899 if (add)
2900 {
2901 if (tab_cur_size == tab_alloc_size)
2902 {
2903 tab_alloc_size *= 2;
2904 tab = (const char **) xrealloc ((char *) tab,
2905 tab_alloc_size * sizeof (*tab));
2906 }
2907 tab[tab_cur_size++] = file;
2908 }
2909
2910 return 0;
2911 }
2912
2913 /* Slave routine for sources_info. Force line breaks at ,'s.
2914 NAME is the name to print and *FIRST is nonzero if this is the first
2915 name printed. Set *FIRST to zero. */
2916 static void
2917 output_source_filename (const char *name, int *first)
2918 {
2919 /* Since a single source file can result in several partial symbol
2920 tables, we need to avoid printing it more than once. Note: if
2921 some of the psymtabs are read in and some are not, it gets
2922 printed both under "Source files for which symbols have been
2923 read" and "Source files for which symbols will be read in on
2924 demand". I consider this a reasonable way to deal with the
2925 situation. I'm not sure whether this can also happen for
2926 symtabs; it doesn't hurt to check. */
2927
2928 /* Was NAME already seen? */
2929 if (filename_seen (name, 1, first))
2930 {
2931 /* Yes; don't print it again. */
2932 return;
2933 }
2934 /* No; print it and reset *FIRST. */
2935 if (*first)
2936 {
2937 *first = 0;
2938 }
2939 else
2940 {
2941 printf_filtered (", ");
2942 }
2943
2944 wrap_here ("");
2945 fputs_filtered (name, gdb_stdout);
2946 }
2947
2948 static void
2949 sources_info (char *ignore, int from_tty)
2950 {
2951 struct symtab *s;
2952 struct partial_symtab *ps;
2953 struct objfile *objfile;
2954 int first;
2955
2956 if (!have_full_symbols () && !have_partial_symbols ())
2957 {
2958 error (_("No symbol table is loaded. Use the \"file\" command."));
2959 }
2960
2961 printf_filtered ("Source files for which symbols have been read in:\n\n");
2962
2963 first = 1;
2964 ALL_SYMTABS (objfile, s)
2965 {
2966 const char *fullname = symtab_to_fullname (s);
2967 output_source_filename (fullname ? fullname : s->filename, &first);
2968 }
2969 printf_filtered ("\n\n");
2970
2971 printf_filtered ("Source files for which symbols will be read in on demand:\n\n");
2972
2973 first = 1;
2974 ALL_PSYMTABS (objfile, ps)
2975 {
2976 if (!ps->readin)
2977 {
2978 const char *fullname = psymtab_to_fullname (ps);
2979 output_source_filename (fullname ? fullname : ps->filename, &first);
2980 }
2981 }
2982 printf_filtered ("\n");
2983 }
2984
2985 static int
2986 file_matches (char *file, char *files[], int nfiles)
2987 {
2988 int i;
2989
2990 if (file != NULL && nfiles != 0)
2991 {
2992 for (i = 0; i < nfiles; i++)
2993 {
2994 if (strcmp (files[i], lbasename (file)) == 0)
2995 return 1;
2996 }
2997 }
2998 else if (nfiles == 0)
2999 return 1;
3000 return 0;
3001 }
3002
3003 /* Free any memory associated with a search. */
3004 void
3005 free_search_symbols (struct symbol_search *symbols)
3006 {
3007 struct symbol_search *p;
3008 struct symbol_search *next;
3009
3010 for (p = symbols; p != NULL; p = next)
3011 {
3012 next = p->next;
3013 xfree (p);
3014 }
3015 }
3016
3017 static void
3018 do_free_search_symbols_cleanup (void *symbols)
3019 {
3020 free_search_symbols (symbols);
3021 }
3022
3023 struct cleanup *
3024 make_cleanup_free_search_symbols (struct symbol_search *symbols)
3025 {
3026 return make_cleanup (do_free_search_symbols_cleanup, symbols);
3027 }
3028
3029 /* Helper function for sort_search_symbols and qsort. Can only
3030 sort symbols, not minimal symbols. */
3031 static int
3032 compare_search_syms (const void *sa, const void *sb)
3033 {
3034 struct symbol_search **sym_a = (struct symbol_search **) sa;
3035 struct symbol_search **sym_b = (struct symbol_search **) sb;
3036
3037 return strcmp (SYMBOL_PRINT_NAME ((*sym_a)->symbol),
3038 SYMBOL_PRINT_NAME ((*sym_b)->symbol));
3039 }
3040
3041 /* Sort the ``nfound'' symbols in the list after prevtail. Leave
3042 prevtail where it is, but update its next pointer to point to
3043 the first of the sorted symbols. */
3044 static struct symbol_search *
3045 sort_search_symbols (struct symbol_search *prevtail, int nfound)
3046 {
3047 struct symbol_search **symbols, *symp, *old_next;
3048 int i;
3049
3050 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3051 * nfound);
3052 symp = prevtail->next;
3053 for (i = 0; i < nfound; i++)
3054 {
3055 symbols[i] = symp;
3056 symp = symp->next;
3057 }
3058 /* Generally NULL. */
3059 old_next = symp;
3060
3061 qsort (symbols, nfound, sizeof (struct symbol_search *),
3062 compare_search_syms);
3063
3064 symp = prevtail;
3065 for (i = 0; i < nfound; i++)
3066 {
3067 symp->next = symbols[i];
3068 symp = symp->next;
3069 }
3070 symp->next = old_next;
3071
3072 xfree (symbols);
3073 return symp;
3074 }
3075
3076 /* Search the symbol table for matches to the regular expression REGEXP,
3077 returning the results in *MATCHES.
3078
3079 Only symbols of KIND are searched:
3080 FUNCTIONS_DOMAIN - search all functions
3081 TYPES_DOMAIN - search all type names
3082 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3083 and constants (enums)
3084
3085 free_search_symbols should be called when *MATCHES is no longer needed.
3086
3087 The results are sorted locally; each symtab's global and static blocks are
3088 separately alphabetized.
3089 */
3090 void
3091 search_symbols (char *regexp, domain_enum kind, int nfiles, char *files[],
3092 struct symbol_search **matches)
3093 {
3094 struct symtab *s;
3095 struct partial_symtab *ps;
3096 struct blockvector *bv;
3097 struct block *b;
3098 int i = 0;
3099 struct dict_iterator iter;
3100 struct symbol *sym;
3101 struct partial_symbol **psym;
3102 struct objfile *objfile;
3103 struct minimal_symbol *msymbol;
3104 char *val;
3105 int found_misc = 0;
3106 static enum minimal_symbol_type types[]
3107 =
3108 {mst_data, mst_text, mst_abs, mst_unknown};
3109 static enum minimal_symbol_type types2[]
3110 =
3111 {mst_bss, mst_file_text, mst_abs, mst_unknown};
3112 static enum minimal_symbol_type types3[]
3113 =
3114 {mst_file_data, mst_solib_trampoline, mst_abs, mst_unknown};
3115 static enum minimal_symbol_type types4[]
3116 =
3117 {mst_file_bss, mst_text, mst_abs, mst_unknown};
3118 enum minimal_symbol_type ourtype;
3119 enum minimal_symbol_type ourtype2;
3120 enum minimal_symbol_type ourtype3;
3121 enum minimal_symbol_type ourtype4;
3122 struct symbol_search *sr;
3123 struct symbol_search *psr;
3124 struct symbol_search *tail;
3125 struct cleanup *old_chain = NULL;
3126
3127 if (kind < VARIABLES_DOMAIN)
3128 error (_("must search on specific domain"));
3129
3130 ourtype = types[(int) (kind - VARIABLES_DOMAIN)];
3131 ourtype2 = types2[(int) (kind - VARIABLES_DOMAIN)];
3132 ourtype3 = types3[(int) (kind - VARIABLES_DOMAIN)];
3133 ourtype4 = types4[(int) (kind - VARIABLES_DOMAIN)];
3134
3135 sr = *matches = NULL;
3136 tail = NULL;
3137
3138 if (regexp != NULL)
3139 {
3140 /* Make sure spacing is right for C++ operators.
3141 This is just a courtesy to make the matching less sensitive
3142 to how many spaces the user leaves between 'operator'
3143 and <TYPENAME> or <OPERATOR>. */
3144 char *opend;
3145 char *opname = operator_chars (regexp, &opend);
3146 if (*opname)
3147 {
3148 int fix = -1; /* -1 means ok; otherwise number of spaces needed. */
3149 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3150 {
3151 /* There should 1 space between 'operator' and 'TYPENAME'. */
3152 if (opname[-1] != ' ' || opname[-2] == ' ')
3153 fix = 1;
3154 }
3155 else
3156 {
3157 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3158 if (opname[-1] == ' ')
3159 fix = 0;
3160 }
3161 /* If wrong number of spaces, fix it. */
3162 if (fix >= 0)
3163 {
3164 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3165 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3166 regexp = tmp;
3167 }
3168 }
3169
3170 if (0 != (val = re_comp (regexp)))
3171 error (_("Invalid regexp (%s): %s"), val, regexp);
3172 }
3173
3174 /* Search through the partial symtabs *first* for all symbols
3175 matching the regexp. That way we don't have to reproduce all of
3176 the machinery below. */
3177
3178 ALL_PSYMTABS (objfile, ps)
3179 {
3180 struct partial_symbol **bound, **gbound, **sbound;
3181 int keep_going = 1;
3182
3183 if (ps->readin)
3184 continue;
3185
3186 gbound = objfile->global_psymbols.list + ps->globals_offset + ps->n_global_syms;
3187 sbound = objfile->static_psymbols.list + ps->statics_offset + ps->n_static_syms;
3188 bound = gbound;
3189
3190 /* Go through all of the symbols stored in a partial
3191 symtab in one loop. */
3192 psym = objfile->global_psymbols.list + ps->globals_offset;
3193 while (keep_going)
3194 {
3195 if (psym >= bound)
3196 {
3197 if (bound == gbound && ps->n_static_syms != 0)
3198 {
3199 psym = objfile->static_psymbols.list + ps->statics_offset;
3200 bound = sbound;
3201 }
3202 else
3203 keep_going = 0;
3204 continue;
3205 }
3206 else
3207 {
3208 QUIT;
3209
3210 /* If it would match (logic taken from loop below)
3211 load the file and go on to the next one. We check the
3212 filename here, but that's a bit bogus: we don't know
3213 what file it really comes from until we have full
3214 symtabs. The symbol might be in a header file included by
3215 this psymtab. This only affects Insight. */
3216 if (file_matches (ps->filename, files, nfiles)
3217 && ((regexp == NULL
3218 || re_exec (SYMBOL_NATURAL_NAME (*psym)) != 0)
3219 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (*psym) != LOC_TYPEDEF
3220 && SYMBOL_CLASS (*psym) != LOC_BLOCK)
3221 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (*psym) == LOC_BLOCK)
3222 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (*psym) == LOC_TYPEDEF))))
3223 {
3224 PSYMTAB_TO_SYMTAB (ps);
3225 keep_going = 0;
3226 }
3227 }
3228 psym++;
3229 }
3230 }
3231
3232 /* Here, we search through the minimal symbol tables for functions
3233 and variables that match, and force their symbols to be read.
3234 This is in particular necessary for demangled variable names,
3235 which are no longer put into the partial symbol tables.
3236 The symbol will then be found during the scan of symtabs below.
3237
3238 For functions, find_pc_symtab should succeed if we have debug info
3239 for the function, for variables we have to call lookup_symbol
3240 to determine if the variable has debug info.
3241 If the lookup fails, set found_misc so that we will rescan to print
3242 any matching symbols without debug info.
3243 */
3244
3245 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3246 {
3247 ALL_MSYMBOLS (objfile, msymbol)
3248 {
3249 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3250 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3251 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3252 MSYMBOL_TYPE (msymbol) == ourtype4)
3253 {
3254 if (regexp == NULL
3255 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3256 {
3257 if (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)))
3258 {
3259 /* FIXME: carlton/2003-02-04: Given that the
3260 semantics of lookup_symbol keeps on changing
3261 slightly, it would be a nice idea if we had a
3262 function lookup_symbol_minsym that found the
3263 symbol associated to a given minimal symbol (if
3264 any). */
3265 if (kind == FUNCTIONS_DOMAIN
3266 || lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3267 (struct block *) NULL,
3268 VAR_DOMAIN, 0)
3269 == NULL)
3270 found_misc = 1;
3271 }
3272 }
3273 }
3274 }
3275 }
3276
3277 ALL_PRIMARY_SYMTABS (objfile, s)
3278 {
3279 bv = BLOCKVECTOR (s);
3280 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3281 {
3282 struct symbol_search *prevtail = tail;
3283 int nfound = 0;
3284 b = BLOCKVECTOR_BLOCK (bv, i);
3285 ALL_BLOCK_SYMBOLS (b, iter, sym)
3286 {
3287 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3288 QUIT;
3289
3290 if (file_matches (real_symtab->filename, files, nfiles)
3291 && ((regexp == NULL
3292 || re_exec (SYMBOL_NATURAL_NAME (sym)) != 0)
3293 && ((kind == VARIABLES_DOMAIN && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3294 && SYMBOL_CLASS (sym) != LOC_BLOCK
3295 && SYMBOL_CLASS (sym) != LOC_CONST)
3296 || (kind == FUNCTIONS_DOMAIN && SYMBOL_CLASS (sym) == LOC_BLOCK)
3297 || (kind == TYPES_DOMAIN && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3298 {
3299 /* match */
3300 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3301 psr->block = i;
3302 psr->symtab = real_symtab;
3303 psr->symbol = sym;
3304 psr->msymbol = NULL;
3305 psr->next = NULL;
3306 if (tail == NULL)
3307 sr = psr;
3308 else
3309 tail->next = psr;
3310 tail = psr;
3311 nfound ++;
3312 }
3313 }
3314 if (nfound > 0)
3315 {
3316 if (prevtail == NULL)
3317 {
3318 struct symbol_search dummy;
3319
3320 dummy.next = sr;
3321 tail = sort_search_symbols (&dummy, nfound);
3322 sr = dummy.next;
3323
3324 old_chain = make_cleanup_free_search_symbols (sr);
3325 }
3326 else
3327 tail = sort_search_symbols (prevtail, nfound);
3328 }
3329 }
3330 }
3331
3332 /* If there are no eyes, avoid all contact. I mean, if there are
3333 no debug symbols, then print directly from the msymbol_vector. */
3334
3335 if (found_misc || kind != FUNCTIONS_DOMAIN)
3336 {
3337 ALL_MSYMBOLS (objfile, msymbol)
3338 {
3339 if (MSYMBOL_TYPE (msymbol) == ourtype ||
3340 MSYMBOL_TYPE (msymbol) == ourtype2 ||
3341 MSYMBOL_TYPE (msymbol) == ourtype3 ||
3342 MSYMBOL_TYPE (msymbol) == ourtype4)
3343 {
3344 if (regexp == NULL
3345 || re_exec (SYMBOL_NATURAL_NAME (msymbol)) != 0)
3346 {
3347 /* Functions: Look up by address. */
3348 if (kind != FUNCTIONS_DOMAIN ||
3349 (0 == find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol))))
3350 {
3351 /* Variables/Absolutes: Look up by name */
3352 if (lookup_symbol (SYMBOL_LINKAGE_NAME (msymbol),
3353 (struct block *) NULL, VAR_DOMAIN, 0)
3354 == NULL)
3355 {
3356 /* match */
3357 psr = (struct symbol_search *) xmalloc (sizeof (struct symbol_search));
3358 psr->block = i;
3359 psr->msymbol = msymbol;
3360 psr->symtab = NULL;
3361 psr->symbol = NULL;
3362 psr->next = NULL;
3363 if (tail == NULL)
3364 {
3365 sr = psr;
3366 old_chain = make_cleanup_free_search_symbols (sr);
3367 }
3368 else
3369 tail->next = psr;
3370 tail = psr;
3371 }
3372 }
3373 }
3374 }
3375 }
3376 }
3377
3378 *matches = sr;
3379 if (sr != NULL)
3380 discard_cleanups (old_chain);
3381 }
3382
3383 /* Helper function for symtab_symbol_info, this function uses
3384 the data returned from search_symbols() to print information
3385 regarding the match to gdb_stdout.
3386 */
3387 static void
3388 print_symbol_info (domain_enum kind, struct symtab *s, struct symbol *sym,
3389 int block, char *last)
3390 {
3391 if (last == NULL || strcmp (last, s->filename) != 0)
3392 {
3393 fputs_filtered ("\nFile ", gdb_stdout);
3394 fputs_filtered (s->filename, gdb_stdout);
3395 fputs_filtered (":\n", gdb_stdout);
3396 }
3397
3398 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3399 printf_filtered ("static ");
3400
3401 /* Typedef that is not a C++ class */
3402 if (kind == TYPES_DOMAIN
3403 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3404 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3405 /* variable, func, or typedef-that-is-c++-class */
3406 else if (kind < TYPES_DOMAIN ||
3407 (kind == TYPES_DOMAIN &&
3408 SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3409 {
3410 type_print (SYMBOL_TYPE (sym),
3411 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3412 ? "" : SYMBOL_PRINT_NAME (sym)),
3413 gdb_stdout, 0);
3414
3415 printf_filtered (";\n");
3416 }
3417 }
3418
3419 /* This help function for symtab_symbol_info() prints information
3420 for non-debugging symbols to gdb_stdout.
3421 */
3422 static void
3423 print_msymbol_info (struct minimal_symbol *msymbol)
3424 {
3425 struct gdbarch *gdbarch = get_objfile_arch (msymbol_objfile (msymbol));
3426 char *tmp;
3427
3428 if (gdbarch_addr_bit (gdbarch) <= 32)
3429 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol)
3430 & (CORE_ADDR) 0xffffffff,
3431 8);
3432 else
3433 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol),
3434 16);
3435 printf_filtered ("%s %s\n",
3436 tmp, SYMBOL_PRINT_NAME (msymbol));
3437 }
3438
3439 /* This is the guts of the commands "info functions", "info types", and
3440 "info variables". It calls search_symbols to find all matches and then
3441 print_[m]symbol_info to print out some useful information about the
3442 matches.
3443 */
3444 static void
3445 symtab_symbol_info (char *regexp, domain_enum kind, int from_tty)
3446 {
3447 static char *classnames[]
3448 =
3449 {"variable", "function", "type", "method"};
3450 struct symbol_search *symbols;
3451 struct symbol_search *p;
3452 struct cleanup *old_chain;
3453 char *last_filename = NULL;
3454 int first = 1;
3455
3456 /* must make sure that if we're interrupted, symbols gets freed */
3457 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3458 old_chain = make_cleanup_free_search_symbols (symbols);
3459
3460 printf_filtered (regexp
3461 ? "All %ss matching regular expression \"%s\":\n"
3462 : "All defined %ss:\n",
3463 classnames[(int) (kind - VARIABLES_DOMAIN)], regexp);
3464
3465 for (p = symbols; p != NULL; p = p->next)
3466 {
3467 QUIT;
3468
3469 if (p->msymbol != NULL)
3470 {
3471 if (first)
3472 {
3473 printf_filtered ("\nNon-debugging symbols:\n");
3474 first = 0;
3475 }
3476 print_msymbol_info (p->msymbol);
3477 }
3478 else
3479 {
3480 print_symbol_info (kind,
3481 p->symtab,
3482 p->symbol,
3483 p->block,
3484 last_filename);
3485 last_filename = p->symtab->filename;
3486 }
3487 }
3488
3489 do_cleanups (old_chain);
3490 }
3491
3492 static void
3493 variables_info (char *regexp, int from_tty)
3494 {
3495 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3496 }
3497
3498 static void
3499 functions_info (char *regexp, int from_tty)
3500 {
3501 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3502 }
3503
3504
3505 static void
3506 types_info (char *regexp, int from_tty)
3507 {
3508 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3509 }
3510
3511 /* Breakpoint all functions matching regular expression. */
3512
3513 void
3514 rbreak_command_wrapper (char *regexp, int from_tty)
3515 {
3516 rbreak_command (regexp, from_tty);
3517 }
3518
3519 static void
3520 rbreak_command (char *regexp, int from_tty)
3521 {
3522 struct symbol_search *ss;
3523 struct symbol_search *p;
3524 struct cleanup *old_chain;
3525
3526 search_symbols (regexp, FUNCTIONS_DOMAIN, 0, (char **) NULL, &ss);
3527 old_chain = make_cleanup_free_search_symbols (ss);
3528
3529 for (p = ss; p != NULL; p = p->next)
3530 {
3531 if (p->msymbol == NULL)
3532 {
3533 char *string = alloca (strlen (p->symtab->filename)
3534 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3535 + 4);
3536 strcpy (string, p->symtab->filename);
3537 strcat (string, ":'");
3538 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3539 strcat (string, "'");
3540 break_command (string, from_tty);
3541 print_symbol_info (FUNCTIONS_DOMAIN,
3542 p->symtab,
3543 p->symbol,
3544 p->block,
3545 p->symtab->filename);
3546 }
3547 else
3548 {
3549 char *string = alloca (strlen (SYMBOL_LINKAGE_NAME (p->msymbol))
3550 + 3);
3551 strcpy (string, "'");
3552 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol));
3553 strcat (string, "'");
3554
3555 break_command (string, from_tty);
3556 printf_filtered ("<function, no debug info> %s;\n",
3557 SYMBOL_PRINT_NAME (p->msymbol));
3558 }
3559 }
3560
3561 do_cleanups (old_chain);
3562 }
3563 \f
3564
3565 /* Helper routine for make_symbol_completion_list. */
3566
3567 static int return_val_size;
3568 static int return_val_index;
3569 static char **return_val;
3570
3571 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
3572 completion_list_add_name \
3573 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
3574
3575 /* Test to see if the symbol specified by SYMNAME (which is already
3576 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
3577 characters. If so, add it to the current completion list. */
3578
3579 static void
3580 completion_list_add_name (char *symname, char *sym_text, int sym_text_len,
3581 char *text, char *word)
3582 {
3583 int newsize;
3584 int i;
3585
3586 /* clip symbols that cannot match */
3587
3588 if (strncmp (symname, sym_text, sym_text_len) != 0)
3589 {
3590 return;
3591 }
3592
3593 /* We have a match for a completion, so add SYMNAME to the current list
3594 of matches. Note that the name is moved to freshly malloc'd space. */
3595
3596 {
3597 char *new;
3598 if (word == sym_text)
3599 {
3600 new = xmalloc (strlen (symname) + 5);
3601 strcpy (new, symname);
3602 }
3603 else if (word > sym_text)
3604 {
3605 /* Return some portion of symname. */
3606 new = xmalloc (strlen (symname) + 5);
3607 strcpy (new, symname + (word - sym_text));
3608 }
3609 else
3610 {
3611 /* Return some of SYM_TEXT plus symname. */
3612 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
3613 strncpy (new, word, sym_text - word);
3614 new[sym_text - word] = '\0';
3615 strcat (new, symname);
3616 }
3617
3618 if (return_val_index + 3 > return_val_size)
3619 {
3620 newsize = (return_val_size *= 2) * sizeof (char *);
3621 return_val = (char **) xrealloc ((char *) return_val, newsize);
3622 }
3623 return_val[return_val_index++] = new;
3624 return_val[return_val_index] = NULL;
3625 }
3626 }
3627
3628 /* ObjC: In case we are completing on a selector, look as the msymbol
3629 again and feed all the selectors into the mill. */
3630
3631 static void
3632 completion_list_objc_symbol (struct minimal_symbol *msymbol, char *sym_text,
3633 int sym_text_len, char *text, char *word)
3634 {
3635 static char *tmp = NULL;
3636 static unsigned int tmplen = 0;
3637
3638 char *method, *category, *selector;
3639 char *tmp2 = NULL;
3640
3641 method = SYMBOL_NATURAL_NAME (msymbol);
3642
3643 /* Is it a method? */
3644 if ((method[0] != '-') && (method[0] != '+'))
3645 return;
3646
3647 if (sym_text[0] == '[')
3648 /* Complete on shortened method method. */
3649 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
3650
3651 while ((strlen (method) + 1) >= tmplen)
3652 {
3653 if (tmplen == 0)
3654 tmplen = 1024;
3655 else
3656 tmplen *= 2;
3657 tmp = xrealloc (tmp, tmplen);
3658 }
3659 selector = strchr (method, ' ');
3660 if (selector != NULL)
3661 selector++;
3662
3663 category = strchr (method, '(');
3664
3665 if ((category != NULL) && (selector != NULL))
3666 {
3667 memcpy (tmp, method, (category - method));
3668 tmp[category - method] = ' ';
3669 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
3670 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3671 if (sym_text[0] == '[')
3672 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
3673 }
3674
3675 if (selector != NULL)
3676 {
3677 /* Complete on selector only. */
3678 strcpy (tmp, selector);
3679 tmp2 = strchr (tmp, ']');
3680 if (tmp2 != NULL)
3681 *tmp2 = '\0';
3682
3683 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
3684 }
3685 }
3686
3687 /* Break the non-quoted text based on the characters which are in
3688 symbols. FIXME: This should probably be language-specific. */
3689
3690 static char *
3691 language_search_unquoted_string (char *text, char *p)
3692 {
3693 for (; p > text; --p)
3694 {
3695 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3696 continue;
3697 else
3698 {
3699 if ((current_language->la_language == language_objc))
3700 {
3701 if (p[-1] == ':') /* might be part of a method name */
3702 continue;
3703 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
3704 p -= 2; /* beginning of a method name */
3705 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
3706 { /* might be part of a method name */
3707 char *t = p;
3708
3709 /* Seeing a ' ' or a '(' is not conclusive evidence
3710 that we are in the middle of a method name. However,
3711 finding "-[" or "+[" should be pretty un-ambiguous.
3712 Unfortunately we have to find it now to decide. */
3713
3714 while (t > text)
3715 if (isalnum (t[-1]) || t[-1] == '_' ||
3716 t[-1] == ' ' || t[-1] == ':' ||
3717 t[-1] == '(' || t[-1] == ')')
3718 --t;
3719 else
3720 break;
3721
3722 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
3723 p = t - 2; /* method name detected */
3724 /* else we leave with p unchanged */
3725 }
3726 }
3727 break;
3728 }
3729 }
3730 return p;
3731 }
3732
3733 static void
3734 completion_list_add_fields (struct symbol *sym, char *sym_text,
3735 int sym_text_len, char *text, char *word)
3736 {
3737 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
3738 {
3739 struct type *t = SYMBOL_TYPE (sym);
3740 enum type_code c = TYPE_CODE (t);
3741 int j;
3742
3743 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
3744 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
3745 if (TYPE_FIELD_NAME (t, j))
3746 completion_list_add_name (TYPE_FIELD_NAME (t, j),
3747 sym_text, sym_text_len, text, word);
3748 }
3749 }
3750
3751 /* Type of the user_data argument passed to add_macro_name. The
3752 contents are simply whatever is needed by
3753 completion_list_add_name. */
3754 struct add_macro_name_data
3755 {
3756 char *sym_text;
3757 int sym_text_len;
3758 char *text;
3759 char *word;
3760 };
3761
3762 /* A callback used with macro_for_each and macro_for_each_in_scope.
3763 This adds a macro's name to the current completion list. */
3764 static void
3765 add_macro_name (const char *name, const struct macro_definition *ignore,
3766 void *user_data)
3767 {
3768 struct add_macro_name_data *datum = (struct add_macro_name_data *) user_data;
3769 completion_list_add_name ((char *) name,
3770 datum->sym_text, datum->sym_text_len,
3771 datum->text, datum->word);
3772 }
3773
3774 char **
3775 default_make_symbol_completion_list (char *text, char *word)
3776 {
3777 /* Problem: All of the symbols have to be copied because readline
3778 frees them. I'm not going to worry about this; hopefully there
3779 won't be that many. */
3780
3781 struct symbol *sym;
3782 struct symtab *s;
3783 struct partial_symtab *ps;
3784 struct minimal_symbol *msymbol;
3785 struct objfile *objfile;
3786 struct block *b;
3787 const struct block *surrounding_static_block, *surrounding_global_block;
3788 struct dict_iterator iter;
3789 struct partial_symbol **psym;
3790 /* The symbol we are completing on. Points in same buffer as text. */
3791 char *sym_text;
3792 /* Length of sym_text. */
3793 int sym_text_len;
3794
3795 /* Now look for the symbol we are supposed to complete on. */
3796 {
3797 char *p;
3798 char quote_found;
3799 char *quote_pos = NULL;
3800
3801 /* First see if this is a quoted string. */
3802 quote_found = '\0';
3803 for (p = text; *p != '\0'; ++p)
3804 {
3805 if (quote_found != '\0')
3806 {
3807 if (*p == quote_found)
3808 /* Found close quote. */
3809 quote_found = '\0';
3810 else if (*p == '\\' && p[1] == quote_found)
3811 /* A backslash followed by the quote character
3812 doesn't end the string. */
3813 ++p;
3814 }
3815 else if (*p == '\'' || *p == '"')
3816 {
3817 quote_found = *p;
3818 quote_pos = p;
3819 }
3820 }
3821 if (quote_found == '\'')
3822 /* A string within single quotes can be a symbol, so complete on it. */
3823 sym_text = quote_pos + 1;
3824 else if (quote_found == '"')
3825 /* A double-quoted string is never a symbol, nor does it make sense
3826 to complete it any other way. */
3827 {
3828 return_val = (char **) xmalloc (sizeof (char *));
3829 return_val[0] = NULL;
3830 return return_val;
3831 }
3832 else
3833 {
3834 /* It is not a quoted string. Break it based on the characters
3835 which are in symbols. */
3836 while (p > text)
3837 {
3838 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
3839 --p;
3840 else
3841 break;
3842 }
3843 sym_text = p;
3844 }
3845 }
3846
3847 sym_text_len = strlen (sym_text);
3848
3849 return_val_size = 100;
3850 return_val_index = 0;
3851 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
3852 return_val[0] = NULL;
3853
3854 /* Look through the partial symtabs for all symbols which begin
3855 by matching SYM_TEXT. Add each one that you find to the list. */
3856
3857 ALL_PSYMTABS (objfile, ps)
3858 {
3859 /* If the psymtab's been read in we'll get it when we search
3860 through the blockvector. */
3861 if (ps->readin)
3862 continue;
3863
3864 for (psym = objfile->global_psymbols.list + ps->globals_offset;
3865 psym < (objfile->global_psymbols.list + ps->globals_offset
3866 + ps->n_global_syms);
3867 psym++)
3868 {
3869 /* If interrupted, then quit. */
3870 QUIT;
3871 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3872 }
3873
3874 for (psym = objfile->static_psymbols.list + ps->statics_offset;
3875 psym < (objfile->static_psymbols.list + ps->statics_offset
3876 + ps->n_static_syms);
3877 psym++)
3878 {
3879 QUIT;
3880 COMPLETION_LIST_ADD_SYMBOL (*psym, sym_text, sym_text_len, text, word);
3881 }
3882 }
3883
3884 /* At this point scan through the misc symbol vectors and add each
3885 symbol you find to the list. Eventually we want to ignore
3886 anything that isn't a text symbol (everything else will be
3887 handled by the psymtab code above). */
3888
3889 ALL_MSYMBOLS (objfile, msymbol)
3890 {
3891 QUIT;
3892 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text, word);
3893
3894 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text, word);
3895 }
3896
3897 /* Search upwards from currently selected frame (so that we can
3898 complete on local vars). Also catch fields of types defined in
3899 this places which match our text string. Only complete on types
3900 visible from current context. */
3901
3902 b = get_selected_block (0);
3903 surrounding_static_block = block_static_block (b);
3904 surrounding_global_block = block_global_block (b);
3905 if (surrounding_static_block != NULL)
3906 while (b != surrounding_static_block)
3907 {
3908 QUIT;
3909
3910 ALL_BLOCK_SYMBOLS (b, iter, sym)
3911 {
3912 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
3913 word);
3914 completion_list_add_fields (sym, sym_text, sym_text_len, text,
3915 word);
3916 }
3917
3918 /* Stop when we encounter an enclosing function. Do not stop for
3919 non-inlined functions - the locals of the enclosing function
3920 are in scope for a nested function. */
3921 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3922 break;
3923 b = BLOCK_SUPERBLOCK (b);
3924 }
3925
3926 /* Add fields from the file's types; symbols will be added below. */
3927
3928 if (surrounding_static_block != NULL)
3929 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
3930 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3931
3932 if (surrounding_global_block != NULL)
3933 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
3934 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
3935
3936 /* Go through the symtabs and check the externs and statics for
3937 symbols which match. */
3938
3939 ALL_PRIMARY_SYMTABS (objfile, s)
3940 {
3941 QUIT;
3942 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
3943 ALL_BLOCK_SYMBOLS (b, iter, sym)
3944 {
3945 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3946 }
3947 }
3948
3949 ALL_PRIMARY_SYMTABS (objfile, s)
3950 {
3951 QUIT;
3952 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
3953 ALL_BLOCK_SYMBOLS (b, iter, sym)
3954 {
3955 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
3956 }
3957 }
3958
3959 if (current_language->la_macro_expansion == macro_expansion_c)
3960 {
3961 struct macro_scope *scope;
3962 struct add_macro_name_data datum;
3963
3964 datum.sym_text = sym_text;
3965 datum.sym_text_len = sym_text_len;
3966 datum.text = text;
3967 datum.word = word;
3968
3969 /* Add any macros visible in the default scope. Note that this
3970 may yield the occasional wrong result, because an expression
3971 might be evaluated in a scope other than the default. For
3972 example, if the user types "break file:line if <TAB>", the
3973 resulting expression will be evaluated at "file:line" -- but
3974 at there does not seem to be a way to detect this at
3975 completion time. */
3976 scope = default_macro_scope ();
3977 if (scope)
3978 {
3979 macro_for_each_in_scope (scope->file, scope->line,
3980 add_macro_name, &datum);
3981 xfree (scope);
3982 }
3983
3984 /* User-defined macros are always visible. */
3985 macro_for_each (macro_user_macros, add_macro_name, &datum);
3986 }
3987
3988 return (return_val);
3989 }
3990
3991 /* Return a NULL terminated array of all symbols (regardless of class)
3992 which begin by matching TEXT. If the answer is no symbols, then
3993 the return value is an array which contains only a NULL pointer. */
3994
3995 char **
3996 make_symbol_completion_list (char *text, char *word)
3997 {
3998 return current_language->la_make_symbol_completion_list (text, word);
3999 }
4000
4001 /* Like make_symbol_completion_list, but suitable for use as a
4002 completion function. */
4003
4004 char **
4005 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4006 char *text, char *word)
4007 {
4008 return make_symbol_completion_list (text, word);
4009 }
4010
4011 /* Like make_symbol_completion_list, but returns a list of symbols
4012 defined in a source file FILE. */
4013
4014 char **
4015 make_file_symbol_completion_list (char *text, char *word, char *srcfile)
4016 {
4017 struct symbol *sym;
4018 struct symtab *s;
4019 struct block *b;
4020 struct dict_iterator iter;
4021 /* The symbol we are completing on. Points in same buffer as text. */
4022 char *sym_text;
4023 /* Length of sym_text. */
4024 int sym_text_len;
4025
4026 /* Now look for the symbol we are supposed to complete on.
4027 FIXME: This should be language-specific. */
4028 {
4029 char *p;
4030 char quote_found;
4031 char *quote_pos = NULL;
4032
4033 /* First see if this is a quoted string. */
4034 quote_found = '\0';
4035 for (p = text; *p != '\0'; ++p)
4036 {
4037 if (quote_found != '\0')
4038 {
4039 if (*p == quote_found)
4040 /* Found close quote. */
4041 quote_found = '\0';
4042 else if (*p == '\\' && p[1] == quote_found)
4043 /* A backslash followed by the quote character
4044 doesn't end the string. */
4045 ++p;
4046 }
4047 else if (*p == '\'' || *p == '"')
4048 {
4049 quote_found = *p;
4050 quote_pos = p;
4051 }
4052 }
4053 if (quote_found == '\'')
4054 /* A string within single quotes can be a symbol, so complete on it. */
4055 sym_text = quote_pos + 1;
4056 else if (quote_found == '"')
4057 /* A double-quoted string is never a symbol, nor does it make sense
4058 to complete it any other way. */
4059 {
4060 return_val = (char **) xmalloc (sizeof (char *));
4061 return_val[0] = NULL;
4062 return return_val;
4063 }
4064 else
4065 {
4066 /* Not a quoted string. */
4067 sym_text = language_search_unquoted_string (text, p);
4068 }
4069 }
4070
4071 sym_text_len = strlen (sym_text);
4072
4073 return_val_size = 10;
4074 return_val_index = 0;
4075 return_val = (char **) xmalloc ((return_val_size + 1) * sizeof (char *));
4076 return_val[0] = NULL;
4077
4078 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4079 in). */
4080 s = lookup_symtab (srcfile);
4081 if (s == NULL)
4082 {
4083 /* Maybe they typed the file with leading directories, while the
4084 symbol tables record only its basename. */
4085 const char *tail = lbasename (srcfile);
4086
4087 if (tail > srcfile)
4088 s = lookup_symtab (tail);
4089 }
4090
4091 /* If we have no symtab for that file, return an empty list. */
4092 if (s == NULL)
4093 return (return_val);
4094
4095 /* Go through this symtab and check the externs and statics for
4096 symbols which match. */
4097
4098 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4099 ALL_BLOCK_SYMBOLS (b, iter, sym)
4100 {
4101 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4102 }
4103
4104 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4105 ALL_BLOCK_SYMBOLS (b, iter, sym)
4106 {
4107 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4108 }
4109
4110 return (return_val);
4111 }
4112
4113 /* A helper function for make_source_files_completion_list. It adds
4114 another file name to a list of possible completions, growing the
4115 list as necessary. */
4116
4117 static void
4118 add_filename_to_list (const char *fname, char *text, char *word,
4119 char ***list, int *list_used, int *list_alloced)
4120 {
4121 char *new;
4122 size_t fnlen = strlen (fname);
4123
4124 if (*list_used + 1 >= *list_alloced)
4125 {
4126 *list_alloced *= 2;
4127 *list = (char **) xrealloc ((char *) *list,
4128 *list_alloced * sizeof (char *));
4129 }
4130
4131 if (word == text)
4132 {
4133 /* Return exactly fname. */
4134 new = xmalloc (fnlen + 5);
4135 strcpy (new, fname);
4136 }
4137 else if (word > text)
4138 {
4139 /* Return some portion of fname. */
4140 new = xmalloc (fnlen + 5);
4141 strcpy (new, fname + (word - text));
4142 }
4143 else
4144 {
4145 /* Return some of TEXT plus fname. */
4146 new = xmalloc (fnlen + (text - word) + 5);
4147 strncpy (new, word, text - word);
4148 new[text - word] = '\0';
4149 strcat (new, fname);
4150 }
4151 (*list)[*list_used] = new;
4152 (*list)[++*list_used] = NULL;
4153 }
4154
4155 static int
4156 not_interesting_fname (const char *fname)
4157 {
4158 static const char *illegal_aliens[] = {
4159 "_globals_", /* inserted by coff_symtab_read */
4160 NULL
4161 };
4162 int i;
4163
4164 for (i = 0; illegal_aliens[i]; i++)
4165 {
4166 if (strcmp (fname, illegal_aliens[i]) == 0)
4167 return 1;
4168 }
4169 return 0;
4170 }
4171
4172 /* Return a NULL terminated array of all source files whose names
4173 begin with matching TEXT. The file names are looked up in the
4174 symbol tables of this program. If the answer is no matchess, then
4175 the return value is an array which contains only a NULL pointer. */
4176
4177 char **
4178 make_source_files_completion_list (char *text, char *word)
4179 {
4180 struct symtab *s;
4181 struct partial_symtab *ps;
4182 struct objfile *objfile;
4183 int first = 1;
4184 int list_alloced = 1;
4185 int list_used = 0;
4186 size_t text_len = strlen (text);
4187 char **list = (char **) xmalloc (list_alloced * sizeof (char *));
4188 const char *base_name;
4189
4190 list[0] = NULL;
4191
4192 if (!have_full_symbols () && !have_partial_symbols ())
4193 return list;
4194
4195 ALL_SYMTABS (objfile, s)
4196 {
4197 if (not_interesting_fname (s->filename))
4198 continue;
4199 if (!filename_seen (s->filename, 1, &first)
4200 #if HAVE_DOS_BASED_FILE_SYSTEM
4201 && strncasecmp (s->filename, text, text_len) == 0
4202 #else
4203 && strncmp (s->filename, text, text_len) == 0
4204 #endif
4205 )
4206 {
4207 /* This file matches for a completion; add it to the current
4208 list of matches. */
4209 add_filename_to_list (s->filename, text, word,
4210 &list, &list_used, &list_alloced);
4211 }
4212 else
4213 {
4214 /* NOTE: We allow the user to type a base name when the
4215 debug info records leading directories, but not the other
4216 way around. This is what subroutines of breakpoint
4217 command do when they parse file names. */
4218 base_name = lbasename (s->filename);
4219 if (base_name != s->filename
4220 && !filename_seen (base_name, 1, &first)
4221 #if HAVE_DOS_BASED_FILE_SYSTEM
4222 && strncasecmp (base_name, text, text_len) == 0
4223 #else
4224 && strncmp (base_name, text, text_len) == 0
4225 #endif
4226 )
4227 add_filename_to_list (base_name, text, word,
4228 &list, &list_used, &list_alloced);
4229 }
4230 }
4231
4232 ALL_PSYMTABS (objfile, ps)
4233 {
4234 if (not_interesting_fname (ps->filename))
4235 continue;
4236 if (!ps->readin)
4237 {
4238 if (!filename_seen (ps->filename, 1, &first)
4239 #if HAVE_DOS_BASED_FILE_SYSTEM
4240 && strncasecmp (ps->filename, text, text_len) == 0
4241 #else
4242 && strncmp (ps->filename, text, text_len) == 0
4243 #endif
4244 )
4245 {
4246 /* This file matches for a completion; add it to the
4247 current list of matches. */
4248 add_filename_to_list (ps->filename, text, word,
4249 &list, &list_used, &list_alloced);
4250
4251 }
4252 else
4253 {
4254 base_name = lbasename (ps->filename);
4255 if (base_name != ps->filename
4256 && !filename_seen (base_name, 1, &first)
4257 #if HAVE_DOS_BASED_FILE_SYSTEM
4258 && strncasecmp (base_name, text, text_len) == 0
4259 #else
4260 && strncmp (base_name, text, text_len) == 0
4261 #endif
4262 )
4263 add_filename_to_list (base_name, text, word,
4264 &list, &list_used, &list_alloced);
4265 }
4266 }
4267 }
4268
4269 return list;
4270 }
4271
4272 /* Determine if PC is in the prologue of a function. The prologue is the area
4273 between the first instruction of a function, and the first executable line.
4274 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4275
4276 If non-zero, func_start is where we think the prologue starts, possibly
4277 by previous examination of symbol table information.
4278 */
4279
4280 int
4281 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4282 {
4283 struct symtab_and_line sal;
4284 CORE_ADDR func_addr, func_end;
4285
4286 /* We have several sources of information we can consult to figure
4287 this out.
4288 - Compilers usually emit line number info that marks the prologue
4289 as its own "source line". So the ending address of that "line"
4290 is the end of the prologue. If available, this is the most
4291 reliable method.
4292 - The minimal symbols and partial symbols, which can usually tell
4293 us the starting and ending addresses of a function.
4294 - If we know the function's start address, we can call the
4295 architecture-defined gdbarch_skip_prologue function to analyze the
4296 instruction stream and guess where the prologue ends.
4297 - Our `func_start' argument; if non-zero, this is the caller's
4298 best guess as to the function's entry point. At the time of
4299 this writing, handle_inferior_event doesn't get this right, so
4300 it should be our last resort. */
4301
4302 /* Consult the partial symbol table, to find which function
4303 the PC is in. */
4304 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4305 {
4306 CORE_ADDR prologue_end;
4307
4308 /* We don't even have minsym information, so fall back to using
4309 func_start, if given. */
4310 if (! func_start)
4311 return 1; /* We *might* be in a prologue. */
4312
4313 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4314
4315 return func_start <= pc && pc < prologue_end;
4316 }
4317
4318 /* If we have line number information for the function, that's
4319 usually pretty reliable. */
4320 sal = find_pc_line (func_addr, 0);
4321
4322 /* Now sal describes the source line at the function's entry point,
4323 which (by convention) is the prologue. The end of that "line",
4324 sal.end, is the end of the prologue.
4325
4326 Note that, for functions whose source code is all on a single
4327 line, the line number information doesn't always end up this way.
4328 So we must verify that our purported end-of-prologue address is
4329 *within* the function, not at its start or end. */
4330 if (sal.line == 0
4331 || sal.end <= func_addr
4332 || func_end <= sal.end)
4333 {
4334 /* We don't have any good line number info, so use the minsym
4335 information, together with the architecture-specific prologue
4336 scanning code. */
4337 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4338
4339 return func_addr <= pc && pc < prologue_end;
4340 }
4341
4342 /* We have line number info, and it looks good. */
4343 return func_addr <= pc && pc < sal.end;
4344 }
4345
4346 /* Given PC at the function's start address, attempt to find the
4347 prologue end using SAL information. Return zero if the skip fails.
4348
4349 A non-optimized prologue traditionally has one SAL for the function
4350 and a second for the function body. A single line function has
4351 them both pointing at the same line.
4352
4353 An optimized prologue is similar but the prologue may contain
4354 instructions (SALs) from the instruction body. Need to skip those
4355 while not getting into the function body.
4356
4357 The functions end point and an increasing SAL line are used as
4358 indicators of the prologue's endpoint.
4359
4360 This code is based on the function refine_prologue_limit (versions
4361 found in both ia64 and ppc). */
4362
4363 CORE_ADDR
4364 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4365 {
4366 struct symtab_and_line prologue_sal;
4367 CORE_ADDR start_pc;
4368 CORE_ADDR end_pc;
4369 struct block *bl;
4370
4371 /* Get an initial range for the function. */
4372 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4373 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4374
4375 prologue_sal = find_pc_line (start_pc, 0);
4376 if (prologue_sal.line != 0)
4377 {
4378 /* For langauges other than assembly, treat two consecutive line
4379 entries at the same address as a zero-instruction prologue.
4380 The GNU assembler emits separate line notes for each instruction
4381 in a multi-instruction macro, but compilers generally will not
4382 do this. */
4383 if (prologue_sal.symtab->language != language_asm)
4384 {
4385 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4386 int exact;
4387 int idx = 0;
4388
4389 /* Skip any earlier lines, and any end-of-sequence marker
4390 from a previous function. */
4391 while (linetable->item[idx].pc != prologue_sal.pc
4392 || linetable->item[idx].line == 0)
4393 idx++;
4394
4395 if (idx+1 < linetable->nitems
4396 && linetable->item[idx+1].line != 0
4397 && linetable->item[idx+1].pc == start_pc)
4398 return start_pc;
4399 }
4400
4401 /* If there is only one sal that covers the entire function,
4402 then it is probably a single line function, like
4403 "foo(){}". */
4404 if (prologue_sal.end >= end_pc)
4405 return 0;
4406
4407 while (prologue_sal.end < end_pc)
4408 {
4409 struct symtab_and_line sal;
4410
4411 sal = find_pc_line (prologue_sal.end, 0);
4412 if (sal.line == 0)
4413 break;
4414 /* Assume that a consecutive SAL for the same (or larger)
4415 line mark the prologue -> body transition. */
4416 if (sal.line >= prologue_sal.line)
4417 break;
4418
4419 /* The line number is smaller. Check that it's from the
4420 same function, not something inlined. If it's inlined,
4421 then there is no point comparing the line numbers. */
4422 bl = block_for_pc (prologue_sal.end);
4423 while (bl)
4424 {
4425 if (block_inlined_p (bl))
4426 break;
4427 if (BLOCK_FUNCTION (bl))
4428 {
4429 bl = NULL;
4430 break;
4431 }
4432 bl = BLOCK_SUPERBLOCK (bl);
4433 }
4434 if (bl != NULL)
4435 break;
4436
4437 /* The case in which compiler's optimizer/scheduler has
4438 moved instructions into the prologue. We look ahead in
4439 the function looking for address ranges whose
4440 corresponding line number is less the first one that we
4441 found for the function. This is more conservative then
4442 refine_prologue_limit which scans a large number of SALs
4443 looking for any in the prologue */
4444 prologue_sal = sal;
4445 }
4446 }
4447
4448 if (prologue_sal.end < end_pc)
4449 /* Return the end of this line, or zero if we could not find a
4450 line. */
4451 return prologue_sal.end;
4452 else
4453 /* Don't return END_PC, which is past the end of the function. */
4454 return prologue_sal.pc;
4455 }
4456 \f
4457 struct symtabs_and_lines
4458 decode_line_spec (char *string, int funfirstline)
4459 {
4460 struct symtabs_and_lines sals;
4461 struct symtab_and_line cursal;
4462
4463 if (string == 0)
4464 error (_("Empty line specification."));
4465
4466 /* We use whatever is set as the current source line. We do not try
4467 and get a default or it will recursively call us! */
4468 cursal = get_current_source_symtab_and_line ();
4469
4470 sals = decode_line_1 (&string, funfirstline,
4471 cursal.symtab, cursal.line,
4472 (char ***) NULL, NULL);
4473
4474 if (*string)
4475 error (_("Junk at end of line specification: %s"), string);
4476 return sals;
4477 }
4478
4479 /* Track MAIN */
4480 static char *name_of_main;
4481
4482 void
4483 set_main_name (const char *name)
4484 {
4485 if (name_of_main != NULL)
4486 {
4487 xfree (name_of_main);
4488 name_of_main = NULL;
4489 }
4490 if (name != NULL)
4491 {
4492 name_of_main = xstrdup (name);
4493 }
4494 }
4495
4496 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4497 accordingly. */
4498
4499 static void
4500 find_main_name (void)
4501 {
4502 const char *new_main_name;
4503
4504 /* Try to see if the main procedure is in Ada. */
4505 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4506 be to add a new method in the language vector, and call this
4507 method for each language until one of them returns a non-empty
4508 name. This would allow us to remove this hard-coded call to
4509 an Ada function. It is not clear that this is a better approach
4510 at this point, because all methods need to be written in a way
4511 such that false positives never be returned. For instance, it is
4512 important that a method does not return a wrong name for the main
4513 procedure if the main procedure is actually written in a different
4514 language. It is easy to guaranty this with Ada, since we use a
4515 special symbol generated only when the main in Ada to find the name
4516 of the main procedure. It is difficult however to see how this can
4517 be guarantied for languages such as C, for instance. This suggests
4518 that order of call for these methods becomes important, which means
4519 a more complicated approach. */
4520 new_main_name = ada_main_name ();
4521 if (new_main_name != NULL)
4522 {
4523 set_main_name (new_main_name);
4524 return;
4525 }
4526
4527 new_main_name = pascal_main_name ();
4528 if (new_main_name != NULL)
4529 {
4530 set_main_name (new_main_name);
4531 return;
4532 }
4533
4534 /* The languages above didn't identify the name of the main procedure.
4535 Fallback to "main". */
4536 set_main_name ("main");
4537 }
4538
4539 char *
4540 main_name (void)
4541 {
4542 if (name_of_main == NULL)
4543 find_main_name ();
4544
4545 return name_of_main;
4546 }
4547
4548 /* Handle ``executable_changed'' events for the symtab module. */
4549
4550 static void
4551 symtab_observer_executable_changed (void)
4552 {
4553 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
4554 set_main_name (NULL);
4555 }
4556
4557 /* Helper to expand_line_sal below. Appends new sal to SAL,
4558 initializing it from SYMTAB, LINENO and PC. */
4559 static void
4560 append_expanded_sal (struct symtabs_and_lines *sal,
4561 struct symtab *symtab,
4562 int lineno, CORE_ADDR pc)
4563 {
4564 sal->sals = xrealloc (sal->sals,
4565 sizeof (sal->sals[0])
4566 * (sal->nelts + 1));
4567 init_sal (sal->sals + sal->nelts);
4568 sal->sals[sal->nelts].symtab = symtab;
4569 sal->sals[sal->nelts].section = NULL;
4570 sal->sals[sal->nelts].end = 0;
4571 sal->sals[sal->nelts].line = lineno;
4572 sal->sals[sal->nelts].pc = pc;
4573 ++sal->nelts;
4574 }
4575
4576 /* Helper to expand_line_sal below. Search in the symtabs for any
4577 linetable entry that exactly matches FILENAME and LINENO and append
4578 them to RET. If there is at least one match, return 1; otherwise,
4579 return 0, and return the best choice in BEST_ITEM and BEST_SYMTAB. */
4580
4581 static int
4582 append_exact_match_to_sals (char *filename, int lineno,
4583 struct symtabs_and_lines *ret,
4584 struct linetable_entry **best_item,
4585 struct symtab **best_symtab)
4586 {
4587 struct objfile *objfile;
4588 struct symtab *symtab;
4589 int exact = 0;
4590 int j;
4591 *best_item = 0;
4592 *best_symtab = 0;
4593
4594 ALL_SYMTABS (objfile, symtab)
4595 {
4596 if (strcmp (filename, symtab->filename) == 0)
4597 {
4598 struct linetable *l;
4599 int len;
4600 l = LINETABLE (symtab);
4601 if (!l)
4602 continue;
4603 len = l->nitems;
4604
4605 for (j = 0; j < len; j++)
4606 {
4607 struct linetable_entry *item = &(l->item[j]);
4608
4609 if (item->line == lineno)
4610 {
4611 exact = 1;
4612 append_expanded_sal (ret, symtab, lineno, item->pc);
4613 }
4614 else if (!exact && item->line > lineno
4615 && (*best_item == NULL
4616 || item->line < (*best_item)->line))
4617 {
4618 *best_item = item;
4619 *best_symtab = symtab;
4620 }
4621 }
4622 }
4623 }
4624 return exact;
4625 }
4626
4627 /* Compute a set of all sals in
4628 the entire program that correspond to same file
4629 and line as SAL and return those. If there
4630 are several sals that belong to the same block,
4631 only one sal for the block is included in results. */
4632
4633 struct symtabs_and_lines
4634 expand_line_sal (struct symtab_and_line sal)
4635 {
4636 struct symtabs_and_lines ret, this_line;
4637 int i, j;
4638 struct objfile *objfile;
4639 struct partial_symtab *psymtab;
4640 struct symtab *symtab;
4641 int lineno;
4642 int deleted = 0;
4643 struct block **blocks = NULL;
4644 int *filter;
4645
4646 ret.nelts = 0;
4647 ret.sals = NULL;
4648
4649 if (sal.symtab == NULL || sal.line == 0 || sal.pc != 0)
4650 {
4651 ret.sals = xmalloc (sizeof (struct symtab_and_line));
4652 ret.sals[0] = sal;
4653 ret.nelts = 1;
4654 return ret;
4655 }
4656 else
4657 {
4658 struct linetable_entry *best_item = 0;
4659 struct symtab *best_symtab = 0;
4660 int exact = 0;
4661
4662 lineno = sal.line;
4663
4664 /* We need to find all symtabs for a file which name
4665 is described by sal. We cannot just directly
4666 iterate over symtabs, since a symtab might not be
4667 yet created. We also cannot iterate over psymtabs,
4668 calling PSYMTAB_TO_SYMTAB and working on that symtab,
4669 since PSYMTAB_TO_SYMTAB will return NULL for psymtab
4670 corresponding to an included file. Therefore, we do
4671 first pass over psymtabs, reading in those with
4672 the right name. Then, we iterate over symtabs, knowing
4673 that all symtabs we're interested in are loaded. */
4674
4675 ALL_PSYMTABS (objfile, psymtab)
4676 {
4677 if (strcmp (sal.symtab->filename,
4678 psymtab->filename) == 0)
4679 PSYMTAB_TO_SYMTAB (psymtab);
4680 }
4681
4682 /* Now search the symtab for exact matches and append them. If
4683 none is found, append the best_item and all its exact
4684 matches. */
4685 exact = append_exact_match_to_sals (sal.symtab->filename, lineno,
4686 &ret, &best_item, &best_symtab);
4687 if (!exact && best_item)
4688 append_exact_match_to_sals (best_symtab->filename, best_item->line,
4689 &ret, &best_item, &best_symtab);
4690 }
4691
4692 /* For optimized code, compiler can scatter one source line accross
4693 disjoint ranges of PC values, even when no duplicate functions
4694 or inline functions are involved. For example, 'for (;;)' inside
4695 non-template non-inline non-ctor-or-dtor function can result
4696 in two PC ranges. In this case, we don't want to set breakpoint
4697 on first PC of each range. To filter such cases, we use containing
4698 blocks -- for each PC found above we see if there are other PCs
4699 that are in the same block. If yes, the other PCs are filtered out. */
4700
4701 filter = alloca (ret.nelts * sizeof (int));
4702 blocks = alloca (ret.nelts * sizeof (struct block *));
4703 for (i = 0; i < ret.nelts; ++i)
4704 {
4705 filter[i] = 1;
4706 blocks[i] = block_for_pc (ret.sals[i].pc);
4707 }
4708
4709 for (i = 0; i < ret.nelts; ++i)
4710 if (blocks[i] != NULL)
4711 for (j = i+1; j < ret.nelts; ++j)
4712 if (blocks[j] == blocks[i])
4713 {
4714 filter[j] = 0;
4715 ++deleted;
4716 break;
4717 }
4718
4719 {
4720 struct symtab_and_line *final =
4721 xmalloc (sizeof (struct symtab_and_line) * (ret.nelts-deleted));
4722
4723 for (i = 0, j = 0; i < ret.nelts; ++i)
4724 if (filter[i])
4725 final[j++] = ret.sals[i];
4726
4727 ret.nelts -= deleted;
4728 xfree (ret.sals);
4729 ret.sals = final;
4730 }
4731
4732 return ret;
4733 }
4734
4735
4736 void
4737 _initialize_symtab (void)
4738 {
4739 add_info ("variables", variables_info, _("\
4740 All global and static variable names, or those matching REGEXP."));
4741 if (dbx_commands)
4742 add_com ("whereis", class_info, variables_info, _("\
4743 All global and static variable names, or those matching REGEXP."));
4744
4745 add_info ("functions", functions_info,
4746 _("All function names, or those matching REGEXP."));
4747
4748 /* FIXME: This command has at least the following problems:
4749 1. It prints builtin types (in a very strange and confusing fashion).
4750 2. It doesn't print right, e.g. with
4751 typedef struct foo *FOO
4752 type_print prints "FOO" when we want to make it (in this situation)
4753 print "struct foo *".
4754 I also think "ptype" or "whatis" is more likely to be useful (but if
4755 there is much disagreement "info types" can be fixed). */
4756 add_info ("types", types_info,
4757 _("All type names, or those matching REGEXP."));
4758
4759 add_info ("sources", sources_info,
4760 _("Source files in the program."));
4761
4762 add_com ("rbreak", class_breakpoint, rbreak_command,
4763 _("Set a breakpoint for all functions matching REGEXP."));
4764
4765 if (xdb_commands)
4766 {
4767 add_com ("lf", class_info, sources_info,
4768 _("Source files in the program"));
4769 add_com ("lg", class_info, variables_info, _("\
4770 All global and static variable names, or those matching REGEXP."));
4771 }
4772
4773 add_setshow_enum_cmd ("multiple-symbols", no_class,
4774 multiple_symbols_modes, &multiple_symbols_mode,
4775 _("\
4776 Set the debugger behavior when more than one symbol are possible matches\n\
4777 in an expression."), _("\
4778 Show how the debugger handles ambiguities in expressions."), _("\
4779 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
4780 NULL, NULL, &setlist, &showlist);
4781
4782 /* Initialize the one built-in type that isn't language dependent... */
4783 builtin_type_error = init_type (TYPE_CODE_ERROR, 0, 0,
4784 "<unknown type>", (struct objfile *) NULL);
4785
4786 observer_attach_executable_changed (symtab_observer_executable_changed);
4787 }