Refactor Cortex-A8 erratum workaround in preparation
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63 #include "completer.h"
64
65 /* Forward declarations for local functions. */
66
67 static void rbreak_command (char *, int);
68
69 static int find_line_common (struct linetable *, int, int *, int);
70
71 static struct block_symbol
72 lookup_symbol_aux (const char *name,
73 const struct block *block,
74 const domain_enum domain,
75 enum language language,
76 struct field_of_this_result *);
77
78 static
79 struct block_symbol lookup_local_symbol (const char *name,
80 const struct block *block,
81 const domain_enum domain,
82 enum language language);
83
84 static struct block_symbol
85 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
86 const char *name, const domain_enum domain);
87
88 /* See symtab.h. */
89 const struct block_symbol null_block_symbol = { NULL, NULL };
90
91 extern initialize_file_ftype _initialize_symtab;
92
93 /* Program space key for finding name and language of "main". */
94
95 static const struct program_space_data *main_progspace_key;
96
97 /* Type of the data stored on the program space. */
98
99 struct main_info
100 {
101 /* Name of "main". */
102
103 char *name_of_main;
104
105 /* Language of "main". */
106
107 enum language language_of_main;
108 };
109
110 /* Program space key for finding its symbol cache. */
111
112 static const struct program_space_data *symbol_cache_key;
113
114 /* The default symbol cache size.
115 There is no extra cpu cost for large N (except when flushing the cache,
116 which is rare). The value here is just a first attempt. A better default
117 value may be higher or lower. A prime number can make up for a bad hash
118 computation, so that's why the number is what it is. */
119 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
120
121 /* The maximum symbol cache size.
122 There's no method to the decision of what value to use here, other than
123 there's no point in allowing a user typo to make gdb consume all memory. */
124 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
125
126 /* symbol_cache_lookup returns this if a previous lookup failed to find the
127 symbol in any objfile. */
128 #define SYMBOL_LOOKUP_FAILED \
129 ((struct block_symbol) {(struct symbol *) 1, NULL})
130 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
131
132 /* Recording lookups that don't find the symbol is just as important, if not
133 more so, than recording found symbols. */
134
135 enum symbol_cache_slot_state
136 {
137 SYMBOL_SLOT_UNUSED,
138 SYMBOL_SLOT_NOT_FOUND,
139 SYMBOL_SLOT_FOUND
140 };
141
142 struct symbol_cache_slot
143 {
144 enum symbol_cache_slot_state state;
145
146 /* The objfile that was current when the symbol was looked up.
147 This is only needed for global blocks, but for simplicity's sake
148 we allocate the space for both. If data shows the extra space used
149 for static blocks is a problem, we can split things up then.
150
151 Global blocks need cache lookup to include the objfile context because
152 we need to account for gdbarch_iterate_over_objfiles_in_search_order
153 which can traverse objfiles in, effectively, any order, depending on
154 the current objfile, thus affecting which symbol is found. Normally,
155 only the current objfile is searched first, and then the rest are
156 searched in recorded order; but putting cache lookup inside
157 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
158 Instead we just make the current objfile part of the context of
159 cache lookup. This means we can record the same symbol multiple times,
160 each with a different "current objfile" that was in effect when the
161 lookup was saved in the cache, but cache space is pretty cheap. */
162 const struct objfile *objfile_context;
163
164 union
165 {
166 struct block_symbol found;
167 struct
168 {
169 char *name;
170 domain_enum domain;
171 } not_found;
172 } value;
173 };
174
175 /* Symbols don't specify global vs static block.
176 So keep them in separate caches. */
177
178 struct block_symbol_cache
179 {
180 unsigned int hits;
181 unsigned int misses;
182 unsigned int collisions;
183
184 /* SYMBOLS is a variable length array of this size.
185 One can imagine that in general one cache (global/static) should be a
186 fraction of the size of the other, but there's no data at the moment
187 on which to decide. */
188 unsigned int size;
189
190 struct symbol_cache_slot symbols[1];
191 };
192
193 /* The symbol cache.
194
195 Searching for symbols in the static and global blocks over multiple objfiles
196 again and again can be slow, as can searching very big objfiles. This is a
197 simple cache to improve symbol lookup performance, which is critical to
198 overall gdb performance.
199
200 Symbols are hashed on the name, its domain, and block.
201 They are also hashed on their objfile for objfile-specific lookups. */
202
203 struct symbol_cache
204 {
205 struct block_symbol_cache *global_symbols;
206 struct block_symbol_cache *static_symbols;
207 };
208
209 /* When non-zero, print debugging messages related to symtab creation. */
210 unsigned int symtab_create_debug = 0;
211
212 /* When non-zero, print debugging messages related to symbol lookup. */
213 unsigned int symbol_lookup_debug = 0;
214
215 /* The size of the cache is staged here. */
216 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
217
218 /* The current value of the symbol cache size.
219 This is saved so that if the user enters a value too big we can restore
220 the original value from here. */
221 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
222
223 /* Non-zero if a file may be known by two different basenames.
224 This is the uncommon case, and significantly slows down gdb.
225 Default set to "off" to not slow down the common case. */
226 int basenames_may_differ = 0;
227
228 /* Allow the user to configure the debugger behavior with respect
229 to multiple-choice menus when more than one symbol matches during
230 a symbol lookup. */
231
232 const char multiple_symbols_ask[] = "ask";
233 const char multiple_symbols_all[] = "all";
234 const char multiple_symbols_cancel[] = "cancel";
235 static const char *const multiple_symbols_modes[] =
236 {
237 multiple_symbols_ask,
238 multiple_symbols_all,
239 multiple_symbols_cancel,
240 NULL
241 };
242 static const char *multiple_symbols_mode = multiple_symbols_all;
243
244 /* Read-only accessor to AUTO_SELECT_MODE. */
245
246 const char *
247 multiple_symbols_select_mode (void)
248 {
249 return multiple_symbols_mode;
250 }
251
252 /* Return the name of a domain_enum. */
253
254 const char *
255 domain_name (domain_enum e)
256 {
257 switch (e)
258 {
259 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
260 case VAR_DOMAIN: return "VAR_DOMAIN";
261 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
262 case MODULE_DOMAIN: return "MODULE_DOMAIN";
263 case LABEL_DOMAIN: return "LABEL_DOMAIN";
264 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
265 default: gdb_assert_not_reached ("bad domain_enum");
266 }
267 }
268
269 /* Return the name of a search_domain . */
270
271 const char *
272 search_domain_name (enum search_domain e)
273 {
274 switch (e)
275 {
276 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
277 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
278 case TYPES_DOMAIN: return "TYPES_DOMAIN";
279 case ALL_DOMAIN: return "ALL_DOMAIN";
280 default: gdb_assert_not_reached ("bad search_domain");
281 }
282 }
283
284 /* See symtab.h. */
285
286 struct symtab *
287 compunit_primary_filetab (const struct compunit_symtab *cust)
288 {
289 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
290
291 /* The primary file symtab is the first one in the list. */
292 return COMPUNIT_FILETABS (cust);
293 }
294
295 /* See symtab.h. */
296
297 enum language
298 compunit_language (const struct compunit_symtab *cust)
299 {
300 struct symtab *symtab = compunit_primary_filetab (cust);
301
302 /* The language of the compunit symtab is the language of its primary
303 source file. */
304 return SYMTAB_LANGUAGE (symtab);
305 }
306
307 /* See whether FILENAME matches SEARCH_NAME using the rule that we
308 advertise to the user. (The manual's description of linespecs
309 describes what we advertise). Returns true if they match, false
310 otherwise. */
311
312 int
313 compare_filenames_for_search (const char *filename, const char *search_name)
314 {
315 int len = strlen (filename);
316 size_t search_len = strlen (search_name);
317
318 if (len < search_len)
319 return 0;
320
321 /* The tail of FILENAME must match. */
322 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
323 return 0;
324
325 /* Either the names must completely match, or the character
326 preceding the trailing SEARCH_NAME segment of FILENAME must be a
327 directory separator.
328
329 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
330 cannot match FILENAME "/path//dir/file.c" - as user has requested
331 absolute path. The sama applies for "c:\file.c" possibly
332 incorrectly hypothetically matching "d:\dir\c:\file.c".
333
334 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
335 compatible with SEARCH_NAME "file.c". In such case a compiler had
336 to put the "c:file.c" name into debug info. Such compatibility
337 works only on GDB built for DOS host. */
338 return (len == search_len
339 || (!IS_ABSOLUTE_PATH (search_name)
340 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
341 || (HAS_DRIVE_SPEC (filename)
342 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
343 }
344
345 /* Same as compare_filenames_for_search, but for glob-style patterns.
346 Heads up on the order of the arguments. They match the order of
347 compare_filenames_for_search, but it's the opposite of the order of
348 arguments to gdb_filename_fnmatch. */
349
350 int
351 compare_glob_filenames_for_search (const char *filename,
352 const char *search_name)
353 {
354 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
355 all /s have to be explicitly specified. */
356 int file_path_elements = count_path_elements (filename);
357 int search_path_elements = count_path_elements (search_name);
358
359 if (search_path_elements > file_path_elements)
360 return 0;
361
362 if (IS_ABSOLUTE_PATH (search_name))
363 {
364 return (search_path_elements == file_path_elements
365 && gdb_filename_fnmatch (search_name, filename,
366 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
367 }
368
369 {
370 const char *file_to_compare
371 = strip_leading_path_elements (filename,
372 file_path_elements - search_path_elements);
373
374 return gdb_filename_fnmatch (search_name, file_to_compare,
375 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
376 }
377 }
378
379 /* Check for a symtab of a specific name by searching some symtabs.
380 This is a helper function for callbacks of iterate_over_symtabs.
381
382 If NAME is not absolute, then REAL_PATH is NULL
383 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
384
385 The return value, NAME, REAL_PATH, CALLBACK, and DATA
386 are identical to the `map_symtabs_matching_filename' method of
387 quick_symbol_functions.
388
389 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
390 Each symtab within the specified compunit symtab is also searched.
391 AFTER_LAST is one past the last compunit symtab to search; NULL means to
392 search until the end of the list. */
393
394 int
395 iterate_over_some_symtabs (const char *name,
396 const char *real_path,
397 int (*callback) (struct symtab *symtab,
398 void *data),
399 void *data,
400 struct compunit_symtab *first,
401 struct compunit_symtab *after_last)
402 {
403 struct compunit_symtab *cust;
404 struct symtab *s;
405 const char* base_name = lbasename (name);
406
407 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
408 {
409 ALL_COMPUNIT_FILETABS (cust, s)
410 {
411 if (compare_filenames_for_search (s->filename, name))
412 {
413 if (callback (s, data))
414 return 1;
415 continue;
416 }
417
418 /* Before we invoke realpath, which can get expensive when many
419 files are involved, do a quick comparison of the basenames. */
420 if (! basenames_may_differ
421 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
422 continue;
423
424 if (compare_filenames_for_search (symtab_to_fullname (s), name))
425 {
426 if (callback (s, data))
427 return 1;
428 continue;
429 }
430
431 /* If the user gave us an absolute path, try to find the file in
432 this symtab and use its absolute path. */
433 if (real_path != NULL)
434 {
435 const char *fullname = symtab_to_fullname (s);
436
437 gdb_assert (IS_ABSOLUTE_PATH (real_path));
438 gdb_assert (IS_ABSOLUTE_PATH (name));
439 if (FILENAME_CMP (real_path, fullname) == 0)
440 {
441 if (callback (s, data))
442 return 1;
443 continue;
444 }
445 }
446 }
447 }
448
449 return 0;
450 }
451
452 /* Check for a symtab of a specific name; first in symtabs, then in
453 psymtabs. *If* there is no '/' in the name, a match after a '/'
454 in the symtab filename will also work.
455
456 Calls CALLBACK with each symtab that is found and with the supplied
457 DATA. If CALLBACK returns true, the search stops. */
458
459 void
460 iterate_over_symtabs (const char *name,
461 int (*callback) (struct symtab *symtab,
462 void *data),
463 void *data)
464 {
465 struct objfile *objfile;
466 char *real_path = NULL;
467 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 make_cleanup (xfree, real_path);
475 gdb_assert (IS_ABSOLUTE_PATH (real_path));
476 }
477
478 ALL_OBJFILES (objfile)
479 {
480 if (iterate_over_some_symtabs (name, real_path, callback, data,
481 objfile->compunit_symtabs, NULL))
482 {
483 do_cleanups (cleanups);
484 return;
485 }
486 }
487
488 /* Same search rules as above apply here, but now we look thru the
489 psymtabs. */
490
491 ALL_OBJFILES (objfile)
492 {
493 if (objfile->sf
494 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
495 name,
496 real_path,
497 callback,
498 data))
499 {
500 do_cleanups (cleanups);
501 return;
502 }
503 }
504
505 do_cleanups (cleanups);
506 }
507
508 /* The callback function used by lookup_symtab. */
509
510 static int
511 lookup_symtab_callback (struct symtab *symtab, void *data)
512 {
513 struct symtab **result_ptr = (struct symtab **) data;
514
515 *result_ptr = symtab;
516 return 1;
517 }
518
519 /* A wrapper for iterate_over_symtabs that returns the first matching
520 symtab, or NULL. */
521
522 struct symtab *
523 lookup_symtab (const char *name)
524 {
525 struct symtab *result = NULL;
526
527 iterate_over_symtabs (name, lookup_symtab_callback, &result);
528 return result;
529 }
530
531 \f
532 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
533 full method name, which consist of the class name (from T), the unadorned
534 method name from METHOD_ID, and the signature for the specific overload,
535 specified by SIGNATURE_ID. Note that this function is g++ specific. */
536
537 char *
538 gdb_mangle_name (struct type *type, int method_id, int signature_id)
539 {
540 int mangled_name_len;
541 char *mangled_name;
542 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
543 struct fn_field *method = &f[signature_id];
544 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
545 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
546 const char *newname = type_name_no_tag (type);
547
548 /* Does the form of physname indicate that it is the full mangled name
549 of a constructor (not just the args)? */
550 int is_full_physname_constructor;
551
552 int is_constructor;
553 int is_destructor = is_destructor_name (physname);
554 /* Need a new type prefix. */
555 const char *const_prefix = method->is_const ? "C" : "";
556 const char *volatile_prefix = method->is_volatile ? "V" : "";
557 char buf[20];
558 int len = (newname == NULL ? 0 : strlen (newname));
559
560 /* Nothing to do if physname already contains a fully mangled v3 abi name
561 or an operator name. */
562 if ((physname[0] == '_' && physname[1] == 'Z')
563 || is_operator_name (field_name))
564 return xstrdup (physname);
565
566 is_full_physname_constructor = is_constructor_name (physname);
567
568 is_constructor = is_full_physname_constructor
569 || (newname && strcmp (field_name, newname) == 0);
570
571 if (!is_destructor)
572 is_destructor = (startswith (physname, "__dt"));
573
574 if (is_destructor || is_full_physname_constructor)
575 {
576 mangled_name = (char *) xmalloc (strlen (physname) + 1);
577 strcpy (mangled_name, physname);
578 return mangled_name;
579 }
580
581 if (len == 0)
582 {
583 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
584 }
585 else if (physname[0] == 't' || physname[0] == 'Q')
586 {
587 /* The physname for template and qualified methods already includes
588 the class name. */
589 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
590 newname = NULL;
591 len = 0;
592 }
593 else
594 {
595 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
596 volatile_prefix, len);
597 }
598 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
599 + strlen (buf) + len + strlen (physname) + 1);
600
601 mangled_name = (char *) xmalloc (mangled_name_len);
602 if (is_constructor)
603 mangled_name[0] = '\0';
604 else
605 strcpy (mangled_name, field_name);
606
607 strcat (mangled_name, buf);
608 /* If the class doesn't have a name, i.e. newname NULL, then we just
609 mangle it using 0 for the length of the class. Thus it gets mangled
610 as something starting with `::' rather than `classname::'. */
611 if (newname != NULL)
612 strcat (mangled_name, newname);
613
614 strcat (mangled_name, physname);
615 return (mangled_name);
616 }
617
618 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
619 correctly allocated. */
620
621 void
622 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
623 const char *name,
624 struct obstack *obstack)
625 {
626 if (gsymbol->language == language_ada)
627 {
628 if (name == NULL)
629 {
630 gsymbol->ada_mangled = 0;
631 gsymbol->language_specific.obstack = obstack;
632 }
633 else
634 {
635 gsymbol->ada_mangled = 1;
636 gsymbol->language_specific.demangled_name = name;
637 }
638 }
639 else
640 gsymbol->language_specific.demangled_name = name;
641 }
642
643 /* Return the demangled name of GSYMBOL. */
644
645 const char *
646 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
647 {
648 if (gsymbol->language == language_ada)
649 {
650 if (!gsymbol->ada_mangled)
651 return NULL;
652 /* Fall through. */
653 }
654
655 return gsymbol->language_specific.demangled_name;
656 }
657
658 \f
659 /* Initialize the language dependent portion of a symbol
660 depending upon the language for the symbol. */
661
662 void
663 symbol_set_language (struct general_symbol_info *gsymbol,
664 enum language language,
665 struct obstack *obstack)
666 {
667 gsymbol->language = language;
668 if (gsymbol->language == language_cplus
669 || gsymbol->language == language_d
670 || gsymbol->language == language_go
671 || gsymbol->language == language_java
672 || gsymbol->language == language_objc
673 || gsymbol->language == language_fortran)
674 {
675 symbol_set_demangled_name (gsymbol, NULL, obstack);
676 }
677 else if (gsymbol->language == language_ada)
678 {
679 gdb_assert (gsymbol->ada_mangled == 0);
680 gsymbol->language_specific.obstack = obstack;
681 }
682 else
683 {
684 memset (&gsymbol->language_specific, 0,
685 sizeof (gsymbol->language_specific));
686 }
687 }
688
689 /* Functions to initialize a symbol's mangled name. */
690
691 /* Objects of this type are stored in the demangled name hash table. */
692 struct demangled_name_entry
693 {
694 const char *mangled;
695 char demangled[1];
696 };
697
698 /* Hash function for the demangled name hash. */
699
700 static hashval_t
701 hash_demangled_name_entry (const void *data)
702 {
703 const struct demangled_name_entry *e
704 = (const struct demangled_name_entry *) data;
705
706 return htab_hash_string (e->mangled);
707 }
708
709 /* Equality function for the demangled name hash. */
710
711 static int
712 eq_demangled_name_entry (const void *a, const void *b)
713 {
714 const struct demangled_name_entry *da
715 = (const struct demangled_name_entry *) a;
716 const struct demangled_name_entry *db
717 = (const struct demangled_name_entry *) b;
718
719 return strcmp (da->mangled, db->mangled) == 0;
720 }
721
722 /* Create the hash table used for demangled names. Each hash entry is
723 a pair of strings; one for the mangled name and one for the demangled
724 name. The entry is hashed via just the mangled name. */
725
726 static void
727 create_demangled_names_hash (struct objfile *objfile)
728 {
729 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
730 The hash table code will round this up to the next prime number.
731 Choosing a much larger table size wastes memory, and saves only about
732 1% in symbol reading. */
733
734 objfile->per_bfd->demangled_names_hash = htab_create_alloc
735 (256, hash_demangled_name_entry, eq_demangled_name_entry,
736 NULL, xcalloc, xfree);
737 }
738
739 /* Try to determine the demangled name for a symbol, based on the
740 language of that symbol. If the language is set to language_auto,
741 it will attempt to find any demangling algorithm that works and
742 then set the language appropriately. The returned name is allocated
743 by the demangler and should be xfree'd. */
744
745 static char *
746 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
747 const char *mangled)
748 {
749 char *demangled = NULL;
750
751 if (gsymbol->language == language_unknown)
752 gsymbol->language = language_auto;
753
754 if (gsymbol->language == language_objc
755 || gsymbol->language == language_auto)
756 {
757 demangled =
758 objc_demangle (mangled, 0);
759 if (demangled != NULL)
760 {
761 gsymbol->language = language_objc;
762 return demangled;
763 }
764 }
765 if (gsymbol->language == language_cplus
766 || gsymbol->language == language_auto)
767 {
768 demangled =
769 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
770 if (demangled != NULL)
771 {
772 gsymbol->language = language_cplus;
773 return demangled;
774 }
775 }
776 if (gsymbol->language == language_java)
777 {
778 demangled =
779 gdb_demangle (mangled,
780 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
781 if (demangled != NULL)
782 {
783 gsymbol->language = language_java;
784 return demangled;
785 }
786 }
787 if (gsymbol->language == language_d
788 || gsymbol->language == language_auto)
789 {
790 demangled = d_demangle(mangled, 0);
791 if (demangled != NULL)
792 {
793 gsymbol->language = language_d;
794 return demangled;
795 }
796 }
797 /* FIXME(dje): Continually adding languages here is clumsy.
798 Better to just call la_demangle if !auto, and if auto then call
799 a utility routine that tries successive languages in turn and reports
800 which one it finds. I realize the la_demangle options may be different
801 for different languages but there's already a FIXME for that. */
802 if (gsymbol->language == language_go
803 || gsymbol->language == language_auto)
804 {
805 demangled = go_demangle (mangled, 0);
806 if (demangled != NULL)
807 {
808 gsymbol->language = language_go;
809 return demangled;
810 }
811 }
812
813 /* We could support `gsymbol->language == language_fortran' here to provide
814 module namespaces also for inferiors with only minimal symbol table (ELF
815 symbols). Just the mangling standard is not standardized across compilers
816 and there is no DW_AT_producer available for inferiors with only the ELF
817 symbols to check the mangling kind. */
818
819 /* Check for Ada symbols last. See comment below explaining why. */
820
821 if (gsymbol->language == language_auto)
822 {
823 const char *demangled = ada_decode (mangled);
824
825 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
826 {
827 /* Set the gsymbol language to Ada, but still return NULL.
828 Two reasons for that:
829
830 1. For Ada, we prefer computing the symbol's decoded name
831 on the fly rather than pre-compute it, in order to save
832 memory (Ada projects are typically very large).
833
834 2. There are some areas in the definition of the GNAT
835 encoding where, with a bit of bad luck, we might be able
836 to decode a non-Ada symbol, generating an incorrect
837 demangled name (Eg: names ending with "TB" for instance
838 are identified as task bodies and so stripped from
839 the decoded name returned).
840
841 Returning NULL, here, helps us get a little bit of
842 the best of both worlds. Because we're last, we should
843 not affect any of the other languages that were able to
844 demangle the symbol before us; we get to correctly tag
845 Ada symbols as such; and even if we incorrectly tagged
846 a non-Ada symbol, which should be rare, any routing
847 through the Ada language should be transparent (Ada
848 tries to behave much like C/C++ with non-Ada symbols). */
849 gsymbol->language = language_ada;
850 return NULL;
851 }
852 }
853
854 return NULL;
855 }
856
857 /* Set both the mangled and demangled (if any) names for GSYMBOL based
858 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
859 objfile's obstack; but if COPY_NAME is 0 and if NAME is
860 NUL-terminated, then this function assumes that NAME is already
861 correctly saved (either permanently or with a lifetime tied to the
862 objfile), and it will not be copied.
863
864 The hash table corresponding to OBJFILE is used, and the memory
865 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
866 so the pointer can be discarded after calling this function. */
867
868 /* We have to be careful when dealing with Java names: when we run
869 into a Java minimal symbol, we don't know it's a Java symbol, so it
870 gets demangled as a C++ name. This is unfortunate, but there's not
871 much we can do about it: but when demangling partial symbols and
872 regular symbols, we'd better not reuse the wrong demangled name.
873 (See PR gdb/1039.) We solve this by putting a distinctive prefix
874 on Java names when storing them in the hash table. */
875
876 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
877 don't mind the Java prefix so much: different languages have
878 different demangling requirements, so it's only natural that we
879 need to keep language data around in our demangling cache. But
880 it's not good that the minimal symbol has the wrong demangled name.
881 Unfortunately, I can't think of any easy solution to that
882 problem. */
883
884 #define JAVA_PREFIX "##JAVA$$"
885 #define JAVA_PREFIX_LEN 8
886
887 void
888 symbol_set_names (struct general_symbol_info *gsymbol,
889 const char *linkage_name, int len, int copy_name,
890 struct objfile *objfile)
891 {
892 struct demangled_name_entry **slot;
893 /* A 0-terminated copy of the linkage name. */
894 const char *linkage_name_copy;
895 /* A copy of the linkage name that might have a special Java prefix
896 added to it, for use when looking names up in the hash table. */
897 const char *lookup_name;
898 /* The length of lookup_name. */
899 int lookup_len;
900 struct demangled_name_entry entry;
901 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
902
903 if (gsymbol->language == language_ada)
904 {
905 /* In Ada, we do the symbol lookups using the mangled name, so
906 we can save some space by not storing the demangled name.
907
908 As a side note, we have also observed some overlap between
909 the C++ mangling and Ada mangling, similarly to what has
910 been observed with Java. Because we don't store the demangled
911 name with the symbol, we don't need to use the same trick
912 as Java. */
913 if (!copy_name)
914 gsymbol->name = linkage_name;
915 else
916 {
917 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
918 len + 1);
919
920 memcpy (name, linkage_name, len);
921 name[len] = '\0';
922 gsymbol->name = name;
923 }
924 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
925
926 return;
927 }
928
929 if (per_bfd->demangled_names_hash == NULL)
930 create_demangled_names_hash (objfile);
931
932 /* The stabs reader generally provides names that are not
933 NUL-terminated; most of the other readers don't do this, so we
934 can just use the given copy, unless we're in the Java case. */
935 if (gsymbol->language == language_java)
936 {
937 char *alloc_name;
938
939 lookup_len = len + JAVA_PREFIX_LEN;
940 alloc_name = (char *) alloca (lookup_len + 1);
941 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
942 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
943 alloc_name[lookup_len] = '\0';
944
945 lookup_name = alloc_name;
946 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
947 }
948 else if (linkage_name[len] != '\0')
949 {
950 char *alloc_name;
951
952 lookup_len = len;
953 alloc_name = (char *) alloca (lookup_len + 1);
954 memcpy (alloc_name, linkage_name, len);
955 alloc_name[lookup_len] = '\0';
956
957 lookup_name = alloc_name;
958 linkage_name_copy = alloc_name;
959 }
960 else
961 {
962 lookup_len = len;
963 lookup_name = linkage_name;
964 linkage_name_copy = linkage_name;
965 }
966
967 entry.mangled = lookup_name;
968 slot = ((struct demangled_name_entry **)
969 htab_find_slot (per_bfd->demangled_names_hash,
970 &entry, INSERT));
971
972 /* If this name is not in the hash table, add it. */
973 if (*slot == NULL
974 /* A C version of the symbol may have already snuck into the table.
975 This happens to, e.g., main.init (__go_init_main). Cope. */
976 || (gsymbol->language == language_go
977 && (*slot)->demangled[0] == '\0'))
978 {
979 char *demangled_name = symbol_find_demangled_name (gsymbol,
980 linkage_name_copy);
981 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
982
983 /* Suppose we have demangled_name==NULL, copy_name==0, and
984 lookup_name==linkage_name. In this case, we already have the
985 mangled name saved, and we don't have a demangled name. So,
986 you might think we could save a little space by not recording
987 this in the hash table at all.
988
989 It turns out that it is actually important to still save such
990 an entry in the hash table, because storing this name gives
991 us better bcache hit rates for partial symbols. */
992 if (!copy_name && lookup_name == linkage_name)
993 {
994 *slot
995 = ((struct demangled_name_entry *)
996 obstack_alloc (&per_bfd->storage_obstack,
997 offsetof (struct demangled_name_entry, demangled)
998 + demangled_len + 1));
999 (*slot)->mangled = lookup_name;
1000 }
1001 else
1002 {
1003 char *mangled_ptr;
1004
1005 /* If we must copy the mangled name, put it directly after
1006 the demangled name so we can have a single
1007 allocation. */
1008 *slot
1009 = ((struct demangled_name_entry *)
1010 obstack_alloc (&per_bfd->storage_obstack,
1011 offsetof (struct demangled_name_entry, demangled)
1012 + lookup_len + demangled_len + 2));
1013 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
1014 strcpy (mangled_ptr, lookup_name);
1015 (*slot)->mangled = mangled_ptr;
1016 }
1017
1018 if (demangled_name != NULL)
1019 {
1020 strcpy ((*slot)->demangled, demangled_name);
1021 xfree (demangled_name);
1022 }
1023 else
1024 (*slot)->demangled[0] = '\0';
1025 }
1026
1027 gsymbol->name = (*slot)->mangled + lookup_len - len;
1028 if ((*slot)->demangled[0] != '\0')
1029 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
1030 &per_bfd->storage_obstack);
1031 else
1032 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
1033 }
1034
1035 /* Return the source code name of a symbol. In languages where
1036 demangling is necessary, this is the demangled name. */
1037
1038 const char *
1039 symbol_natural_name (const struct general_symbol_info *gsymbol)
1040 {
1041 switch (gsymbol->language)
1042 {
1043 case language_cplus:
1044 case language_d:
1045 case language_go:
1046 case language_java:
1047 case language_objc:
1048 case language_fortran:
1049 if (symbol_get_demangled_name (gsymbol) != NULL)
1050 return symbol_get_demangled_name (gsymbol);
1051 break;
1052 case language_ada:
1053 return ada_decode_symbol (gsymbol);
1054 default:
1055 break;
1056 }
1057 return gsymbol->name;
1058 }
1059
1060 /* Return the demangled name for a symbol based on the language for
1061 that symbol. If no demangled name exists, return NULL. */
1062
1063 const char *
1064 symbol_demangled_name (const struct general_symbol_info *gsymbol)
1065 {
1066 const char *dem_name = NULL;
1067
1068 switch (gsymbol->language)
1069 {
1070 case language_cplus:
1071 case language_d:
1072 case language_go:
1073 case language_java:
1074 case language_objc:
1075 case language_fortran:
1076 dem_name = symbol_get_demangled_name (gsymbol);
1077 break;
1078 case language_ada:
1079 dem_name = ada_decode_symbol (gsymbol);
1080 break;
1081 default:
1082 break;
1083 }
1084 return dem_name;
1085 }
1086
1087 /* Return the search name of a symbol---generally the demangled or
1088 linkage name of the symbol, depending on how it will be searched for.
1089 If there is no distinct demangled name, then returns the same value
1090 (same pointer) as SYMBOL_LINKAGE_NAME. */
1091
1092 const char *
1093 symbol_search_name (const struct general_symbol_info *gsymbol)
1094 {
1095 if (gsymbol->language == language_ada)
1096 return gsymbol->name;
1097 else
1098 return symbol_natural_name (gsymbol);
1099 }
1100
1101 /* Initialize the structure fields to zero values. */
1102
1103 void
1104 init_sal (struct symtab_and_line *sal)
1105 {
1106 memset (sal, 0, sizeof (*sal));
1107 }
1108 \f
1109
1110 /* Return 1 if the two sections are the same, or if they could
1111 plausibly be copies of each other, one in an original object
1112 file and another in a separated debug file. */
1113
1114 int
1115 matching_obj_sections (struct obj_section *obj_first,
1116 struct obj_section *obj_second)
1117 {
1118 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1119 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1120 struct objfile *obj;
1121
1122 /* If they're the same section, then they match. */
1123 if (first == second)
1124 return 1;
1125
1126 /* If either is NULL, give up. */
1127 if (first == NULL || second == NULL)
1128 return 0;
1129
1130 /* This doesn't apply to absolute symbols. */
1131 if (first->owner == NULL || second->owner == NULL)
1132 return 0;
1133
1134 /* If they're in the same object file, they must be different sections. */
1135 if (first->owner == second->owner)
1136 return 0;
1137
1138 /* Check whether the two sections are potentially corresponding. They must
1139 have the same size, address, and name. We can't compare section indexes,
1140 which would be more reliable, because some sections may have been
1141 stripped. */
1142 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1143 return 0;
1144
1145 /* In-memory addresses may start at a different offset, relativize them. */
1146 if (bfd_get_section_vma (first->owner, first)
1147 - bfd_get_start_address (first->owner)
1148 != bfd_get_section_vma (second->owner, second)
1149 - bfd_get_start_address (second->owner))
1150 return 0;
1151
1152 if (bfd_get_section_name (first->owner, first) == NULL
1153 || bfd_get_section_name (second->owner, second) == NULL
1154 || strcmp (bfd_get_section_name (first->owner, first),
1155 bfd_get_section_name (second->owner, second)) != 0)
1156 return 0;
1157
1158 /* Otherwise check that they are in corresponding objfiles. */
1159
1160 ALL_OBJFILES (obj)
1161 if (obj->obfd == first->owner)
1162 break;
1163 gdb_assert (obj != NULL);
1164
1165 if (obj->separate_debug_objfile != NULL
1166 && obj->separate_debug_objfile->obfd == second->owner)
1167 return 1;
1168 if (obj->separate_debug_objfile_backlink != NULL
1169 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1170 return 1;
1171
1172 return 0;
1173 }
1174
1175 /* See symtab.h. */
1176
1177 void
1178 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1179 {
1180 struct objfile *objfile;
1181 struct bound_minimal_symbol msymbol;
1182
1183 /* If we know that this is not a text address, return failure. This is
1184 necessary because we loop based on texthigh and textlow, which do
1185 not include the data ranges. */
1186 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1187 if (msymbol.minsym
1188 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1189 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1190 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1191 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1192 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1193 return;
1194
1195 ALL_OBJFILES (objfile)
1196 {
1197 struct compunit_symtab *cust = NULL;
1198
1199 if (objfile->sf)
1200 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1201 pc, section, 0);
1202 if (cust)
1203 return;
1204 }
1205 }
1206 \f
1207 /* Hash function for the symbol cache. */
1208
1209 static unsigned int
1210 hash_symbol_entry (const struct objfile *objfile_context,
1211 const char *name, domain_enum domain)
1212 {
1213 unsigned int hash = (uintptr_t) objfile_context;
1214
1215 if (name != NULL)
1216 hash += htab_hash_string (name);
1217
1218 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1219 to map to the same slot. */
1220 if (domain == STRUCT_DOMAIN)
1221 hash += VAR_DOMAIN * 7;
1222 else
1223 hash += domain * 7;
1224
1225 return hash;
1226 }
1227
1228 /* Equality function for the symbol cache. */
1229
1230 static int
1231 eq_symbol_entry (const struct symbol_cache_slot *slot,
1232 const struct objfile *objfile_context,
1233 const char *name, domain_enum domain)
1234 {
1235 const char *slot_name;
1236 domain_enum slot_domain;
1237
1238 if (slot->state == SYMBOL_SLOT_UNUSED)
1239 return 0;
1240
1241 if (slot->objfile_context != objfile_context)
1242 return 0;
1243
1244 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1245 {
1246 slot_name = slot->value.not_found.name;
1247 slot_domain = slot->value.not_found.domain;
1248 }
1249 else
1250 {
1251 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1252 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1253 }
1254
1255 /* NULL names match. */
1256 if (slot_name == NULL && name == NULL)
1257 {
1258 /* But there's no point in calling symbol_matches_domain in the
1259 SYMBOL_SLOT_FOUND case. */
1260 if (slot_domain != domain)
1261 return 0;
1262 }
1263 else if (slot_name != NULL && name != NULL)
1264 {
1265 /* It's important that we use the same comparison that was done the
1266 first time through. If the slot records a found symbol, then this
1267 means using strcmp_iw on SYMBOL_SEARCH_NAME. See dictionary.c.
1268 It also means using symbol_matches_domain for found symbols.
1269 See block.c.
1270
1271 If the slot records a not-found symbol, then require a precise match.
1272 We could still be lax with whitespace like strcmp_iw though. */
1273
1274 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1275 {
1276 if (strcmp (slot_name, name) != 0)
1277 return 0;
1278 if (slot_domain != domain)
1279 return 0;
1280 }
1281 else
1282 {
1283 struct symbol *sym = slot->value.found.symbol;
1284
1285 if (strcmp_iw (slot_name, name) != 0)
1286 return 0;
1287 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1288 slot_domain, domain))
1289 return 0;
1290 }
1291 }
1292 else
1293 {
1294 /* Only one name is NULL. */
1295 return 0;
1296 }
1297
1298 return 1;
1299 }
1300
1301 /* Given a cache of size SIZE, return the size of the struct (with variable
1302 length array) in bytes. */
1303
1304 static size_t
1305 symbol_cache_byte_size (unsigned int size)
1306 {
1307 return (sizeof (struct block_symbol_cache)
1308 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1309 }
1310
1311 /* Resize CACHE. */
1312
1313 static void
1314 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1315 {
1316 /* If there's no change in size, don't do anything.
1317 All caches have the same size, so we can just compare with the size
1318 of the global symbols cache. */
1319 if ((cache->global_symbols != NULL
1320 && cache->global_symbols->size == new_size)
1321 || (cache->global_symbols == NULL
1322 && new_size == 0))
1323 return;
1324
1325 xfree (cache->global_symbols);
1326 xfree (cache->static_symbols);
1327
1328 if (new_size == 0)
1329 {
1330 cache->global_symbols = NULL;
1331 cache->static_symbols = NULL;
1332 }
1333 else
1334 {
1335 size_t total_size = symbol_cache_byte_size (new_size);
1336
1337 cache->global_symbols
1338 = (struct block_symbol_cache *) xcalloc (1, total_size);
1339 cache->static_symbols
1340 = (struct block_symbol_cache *) xcalloc (1, total_size);
1341 cache->global_symbols->size = new_size;
1342 cache->static_symbols->size = new_size;
1343 }
1344 }
1345
1346 /* Make a symbol cache of size SIZE. */
1347
1348 static struct symbol_cache *
1349 make_symbol_cache (unsigned int size)
1350 {
1351 struct symbol_cache *cache;
1352
1353 cache = XCNEW (struct symbol_cache);
1354 resize_symbol_cache (cache, symbol_cache_size);
1355 return cache;
1356 }
1357
1358 /* Free the space used by CACHE. */
1359
1360 static void
1361 free_symbol_cache (struct symbol_cache *cache)
1362 {
1363 xfree (cache->global_symbols);
1364 xfree (cache->static_symbols);
1365 xfree (cache);
1366 }
1367
1368 /* Return the symbol cache of PSPACE.
1369 Create one if it doesn't exist yet. */
1370
1371 static struct symbol_cache *
1372 get_symbol_cache (struct program_space *pspace)
1373 {
1374 struct symbol_cache *cache
1375 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1376
1377 if (cache == NULL)
1378 {
1379 cache = make_symbol_cache (symbol_cache_size);
1380 set_program_space_data (pspace, symbol_cache_key, cache);
1381 }
1382
1383 return cache;
1384 }
1385
1386 /* Delete the symbol cache of PSPACE.
1387 Called when PSPACE is destroyed. */
1388
1389 static void
1390 symbol_cache_cleanup (struct program_space *pspace, void *data)
1391 {
1392 struct symbol_cache *cache = (struct symbol_cache *) data;
1393
1394 free_symbol_cache (cache);
1395 }
1396
1397 /* Set the size of the symbol cache in all program spaces. */
1398
1399 static void
1400 set_symbol_cache_size (unsigned int new_size)
1401 {
1402 struct program_space *pspace;
1403
1404 ALL_PSPACES (pspace)
1405 {
1406 struct symbol_cache *cache
1407 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1408
1409 /* The pspace could have been created but not have a cache yet. */
1410 if (cache != NULL)
1411 resize_symbol_cache (cache, new_size);
1412 }
1413 }
1414
1415 /* Called when symbol-cache-size is set. */
1416
1417 static void
1418 set_symbol_cache_size_handler (char *args, int from_tty,
1419 struct cmd_list_element *c)
1420 {
1421 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1422 {
1423 /* Restore the previous value.
1424 This is the value the "show" command prints. */
1425 new_symbol_cache_size = symbol_cache_size;
1426
1427 error (_("Symbol cache size is too large, max is %u."),
1428 MAX_SYMBOL_CACHE_SIZE);
1429 }
1430 symbol_cache_size = new_symbol_cache_size;
1431
1432 set_symbol_cache_size (symbol_cache_size);
1433 }
1434
1435 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1436 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1437 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1438 failed (and thus this one will too), or NULL if the symbol is not present
1439 in the cache.
1440 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1441 set to the cache and slot of the symbol to save the result of a full lookup
1442 attempt. */
1443
1444 static struct block_symbol
1445 symbol_cache_lookup (struct symbol_cache *cache,
1446 struct objfile *objfile_context, int block,
1447 const char *name, domain_enum domain,
1448 struct block_symbol_cache **bsc_ptr,
1449 struct symbol_cache_slot **slot_ptr)
1450 {
1451 struct block_symbol_cache *bsc;
1452 unsigned int hash;
1453 struct symbol_cache_slot *slot;
1454
1455 if (block == GLOBAL_BLOCK)
1456 bsc = cache->global_symbols;
1457 else
1458 bsc = cache->static_symbols;
1459 if (bsc == NULL)
1460 {
1461 *bsc_ptr = NULL;
1462 *slot_ptr = NULL;
1463 return (struct block_symbol) {NULL, NULL};
1464 }
1465
1466 hash = hash_symbol_entry (objfile_context, name, domain);
1467 slot = bsc->symbols + hash % bsc->size;
1468
1469 if (eq_symbol_entry (slot, objfile_context, name, domain))
1470 {
1471 if (symbol_lookup_debug)
1472 fprintf_unfiltered (gdb_stdlog,
1473 "%s block symbol cache hit%s for %s, %s\n",
1474 block == GLOBAL_BLOCK ? "Global" : "Static",
1475 slot->state == SYMBOL_SLOT_NOT_FOUND
1476 ? " (not found)" : "",
1477 name, domain_name (domain));
1478 ++bsc->hits;
1479 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1480 return SYMBOL_LOOKUP_FAILED;
1481 return slot->value.found;
1482 }
1483
1484 /* Symbol is not present in the cache. */
1485
1486 *bsc_ptr = bsc;
1487 *slot_ptr = slot;
1488
1489 if (symbol_lookup_debug)
1490 {
1491 fprintf_unfiltered (gdb_stdlog,
1492 "%s block symbol cache miss for %s, %s\n",
1493 block == GLOBAL_BLOCK ? "Global" : "Static",
1494 name, domain_name (domain));
1495 }
1496 ++bsc->misses;
1497 return (struct block_symbol) {NULL, NULL};
1498 }
1499
1500 /* Clear out SLOT. */
1501
1502 static void
1503 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1504 {
1505 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1506 xfree (slot->value.not_found.name);
1507 slot->state = SYMBOL_SLOT_UNUSED;
1508 }
1509
1510 /* Mark SYMBOL as found in SLOT.
1511 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1512 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1513 necessarily the objfile the symbol was found in. */
1514
1515 static void
1516 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1517 struct symbol_cache_slot *slot,
1518 struct objfile *objfile_context,
1519 struct symbol *symbol,
1520 const struct block *block)
1521 {
1522 if (bsc == NULL)
1523 return;
1524 if (slot->state != SYMBOL_SLOT_UNUSED)
1525 {
1526 ++bsc->collisions;
1527 symbol_cache_clear_slot (slot);
1528 }
1529 slot->state = SYMBOL_SLOT_FOUND;
1530 slot->objfile_context = objfile_context;
1531 slot->value.found.symbol = symbol;
1532 slot->value.found.block = block;
1533 }
1534
1535 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1536 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1537 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1538
1539 static void
1540 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1541 struct symbol_cache_slot *slot,
1542 struct objfile *objfile_context,
1543 const char *name, domain_enum domain)
1544 {
1545 if (bsc == NULL)
1546 return;
1547 if (slot->state != SYMBOL_SLOT_UNUSED)
1548 {
1549 ++bsc->collisions;
1550 symbol_cache_clear_slot (slot);
1551 }
1552 slot->state = SYMBOL_SLOT_NOT_FOUND;
1553 slot->objfile_context = objfile_context;
1554 slot->value.not_found.name = xstrdup (name);
1555 slot->value.not_found.domain = domain;
1556 }
1557
1558 /* Flush the symbol cache of PSPACE. */
1559
1560 static void
1561 symbol_cache_flush (struct program_space *pspace)
1562 {
1563 struct symbol_cache *cache
1564 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1565 int pass;
1566
1567 if (cache == NULL)
1568 return;
1569 if (cache->global_symbols == NULL)
1570 {
1571 gdb_assert (symbol_cache_size == 0);
1572 gdb_assert (cache->static_symbols == NULL);
1573 return;
1574 }
1575
1576 /* If the cache is untouched since the last flush, early exit.
1577 This is important for performance during the startup of a program linked
1578 with 100s (or 1000s) of shared libraries. */
1579 if (cache->global_symbols->misses == 0
1580 && cache->static_symbols->misses == 0)
1581 return;
1582
1583 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1584 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1585
1586 for (pass = 0; pass < 2; ++pass)
1587 {
1588 struct block_symbol_cache *bsc
1589 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1590 unsigned int i;
1591
1592 for (i = 0; i < bsc->size; ++i)
1593 symbol_cache_clear_slot (&bsc->symbols[i]);
1594 }
1595
1596 cache->global_symbols->hits = 0;
1597 cache->global_symbols->misses = 0;
1598 cache->global_symbols->collisions = 0;
1599 cache->static_symbols->hits = 0;
1600 cache->static_symbols->misses = 0;
1601 cache->static_symbols->collisions = 0;
1602 }
1603
1604 /* Dump CACHE. */
1605
1606 static void
1607 symbol_cache_dump (const struct symbol_cache *cache)
1608 {
1609 int pass;
1610
1611 if (cache->global_symbols == NULL)
1612 {
1613 printf_filtered (" <disabled>\n");
1614 return;
1615 }
1616
1617 for (pass = 0; pass < 2; ++pass)
1618 {
1619 const struct block_symbol_cache *bsc
1620 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1621 unsigned int i;
1622
1623 if (pass == 0)
1624 printf_filtered ("Global symbols:\n");
1625 else
1626 printf_filtered ("Static symbols:\n");
1627
1628 for (i = 0; i < bsc->size; ++i)
1629 {
1630 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1631
1632 QUIT;
1633
1634 switch (slot->state)
1635 {
1636 case SYMBOL_SLOT_UNUSED:
1637 break;
1638 case SYMBOL_SLOT_NOT_FOUND:
1639 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1640 host_address_to_string (slot->objfile_context),
1641 slot->value.not_found.name,
1642 domain_name (slot->value.not_found.domain));
1643 break;
1644 case SYMBOL_SLOT_FOUND:
1645 {
1646 struct symbol *found = slot->value.found.symbol;
1647 const struct objfile *context = slot->objfile_context;
1648
1649 printf_filtered (" [%4u] = %s, %s %s\n", i,
1650 host_address_to_string (context),
1651 SYMBOL_PRINT_NAME (found),
1652 domain_name (SYMBOL_DOMAIN (found)));
1653 break;
1654 }
1655 }
1656 }
1657 }
1658 }
1659
1660 /* The "mt print symbol-cache" command. */
1661
1662 static void
1663 maintenance_print_symbol_cache (char *args, int from_tty)
1664 {
1665 struct program_space *pspace;
1666
1667 ALL_PSPACES (pspace)
1668 {
1669 struct symbol_cache *cache;
1670
1671 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1672 pspace->num,
1673 pspace->symfile_object_file != NULL
1674 ? objfile_name (pspace->symfile_object_file)
1675 : "(no object file)");
1676
1677 /* If the cache hasn't been created yet, avoid creating one. */
1678 cache
1679 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1680 if (cache == NULL)
1681 printf_filtered (" <empty>\n");
1682 else
1683 symbol_cache_dump (cache);
1684 }
1685 }
1686
1687 /* The "mt flush-symbol-cache" command. */
1688
1689 static void
1690 maintenance_flush_symbol_cache (char *args, int from_tty)
1691 {
1692 struct program_space *pspace;
1693
1694 ALL_PSPACES (pspace)
1695 {
1696 symbol_cache_flush (pspace);
1697 }
1698 }
1699
1700 /* Print usage statistics of CACHE. */
1701
1702 static void
1703 symbol_cache_stats (struct symbol_cache *cache)
1704 {
1705 int pass;
1706
1707 if (cache->global_symbols == NULL)
1708 {
1709 printf_filtered (" <disabled>\n");
1710 return;
1711 }
1712
1713 for (pass = 0; pass < 2; ++pass)
1714 {
1715 const struct block_symbol_cache *bsc
1716 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1717
1718 QUIT;
1719
1720 if (pass == 0)
1721 printf_filtered ("Global block cache stats:\n");
1722 else
1723 printf_filtered ("Static block cache stats:\n");
1724
1725 printf_filtered (" size: %u\n", bsc->size);
1726 printf_filtered (" hits: %u\n", bsc->hits);
1727 printf_filtered (" misses: %u\n", bsc->misses);
1728 printf_filtered (" collisions: %u\n", bsc->collisions);
1729 }
1730 }
1731
1732 /* The "mt print symbol-cache-statistics" command. */
1733
1734 static void
1735 maintenance_print_symbol_cache_statistics (char *args, int from_tty)
1736 {
1737 struct program_space *pspace;
1738
1739 ALL_PSPACES (pspace)
1740 {
1741 struct symbol_cache *cache;
1742
1743 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1744 pspace->num,
1745 pspace->symfile_object_file != NULL
1746 ? objfile_name (pspace->symfile_object_file)
1747 : "(no object file)");
1748
1749 /* If the cache hasn't been created yet, avoid creating one. */
1750 cache
1751 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1752 if (cache == NULL)
1753 printf_filtered (" empty, no stats available\n");
1754 else
1755 symbol_cache_stats (cache);
1756 }
1757 }
1758
1759 /* This module's 'new_objfile' observer. */
1760
1761 static void
1762 symtab_new_objfile_observer (struct objfile *objfile)
1763 {
1764 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1765 symbol_cache_flush (current_program_space);
1766 }
1767
1768 /* This module's 'free_objfile' observer. */
1769
1770 static void
1771 symtab_free_objfile_observer (struct objfile *objfile)
1772 {
1773 symbol_cache_flush (objfile->pspace);
1774 }
1775 \f
1776 /* Debug symbols usually don't have section information. We need to dig that
1777 out of the minimal symbols and stash that in the debug symbol. */
1778
1779 void
1780 fixup_section (struct general_symbol_info *ginfo,
1781 CORE_ADDR addr, struct objfile *objfile)
1782 {
1783 struct minimal_symbol *msym;
1784
1785 /* First, check whether a minimal symbol with the same name exists
1786 and points to the same address. The address check is required
1787 e.g. on PowerPC64, where the minimal symbol for a function will
1788 point to the function descriptor, while the debug symbol will
1789 point to the actual function code. */
1790 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1791 if (msym)
1792 ginfo->section = MSYMBOL_SECTION (msym);
1793 else
1794 {
1795 /* Static, function-local variables do appear in the linker
1796 (minimal) symbols, but are frequently given names that won't
1797 be found via lookup_minimal_symbol(). E.g., it has been
1798 observed in frv-uclinux (ELF) executables that a static,
1799 function-local variable named "foo" might appear in the
1800 linker symbols as "foo.6" or "foo.3". Thus, there is no
1801 point in attempting to extend the lookup-by-name mechanism to
1802 handle this case due to the fact that there can be multiple
1803 names.
1804
1805 So, instead, search the section table when lookup by name has
1806 failed. The ``addr'' and ``endaddr'' fields may have already
1807 been relocated. If so, the relocation offset (i.e. the
1808 ANOFFSET value) needs to be subtracted from these values when
1809 performing the comparison. We unconditionally subtract it,
1810 because, when no relocation has been performed, the ANOFFSET
1811 value will simply be zero.
1812
1813 The address of the symbol whose section we're fixing up HAS
1814 NOT BEEN adjusted (relocated) yet. It can't have been since
1815 the section isn't yet known and knowing the section is
1816 necessary in order to add the correct relocation value. In
1817 other words, we wouldn't even be in this function (attempting
1818 to compute the section) if it were already known.
1819
1820 Note that it is possible to search the minimal symbols
1821 (subtracting the relocation value if necessary) to find the
1822 matching minimal symbol, but this is overkill and much less
1823 efficient. It is not necessary to find the matching minimal
1824 symbol, only its section.
1825
1826 Note that this technique (of doing a section table search)
1827 can fail when unrelocated section addresses overlap. For
1828 this reason, we still attempt a lookup by name prior to doing
1829 a search of the section table. */
1830
1831 struct obj_section *s;
1832 int fallback = -1;
1833
1834 ALL_OBJFILE_OSECTIONS (objfile, s)
1835 {
1836 int idx = s - objfile->sections;
1837 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1838
1839 if (fallback == -1)
1840 fallback = idx;
1841
1842 if (obj_section_addr (s) - offset <= addr
1843 && addr < obj_section_endaddr (s) - offset)
1844 {
1845 ginfo->section = idx;
1846 return;
1847 }
1848 }
1849
1850 /* If we didn't find the section, assume it is in the first
1851 section. If there is no allocated section, then it hardly
1852 matters what we pick, so just pick zero. */
1853 if (fallback == -1)
1854 ginfo->section = 0;
1855 else
1856 ginfo->section = fallback;
1857 }
1858 }
1859
1860 struct symbol *
1861 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1862 {
1863 CORE_ADDR addr;
1864
1865 if (!sym)
1866 return NULL;
1867
1868 if (!SYMBOL_OBJFILE_OWNED (sym))
1869 return sym;
1870
1871 /* We either have an OBJFILE, or we can get at it from the sym's
1872 symtab. Anything else is a bug. */
1873 gdb_assert (objfile || symbol_symtab (sym));
1874
1875 if (objfile == NULL)
1876 objfile = symbol_objfile (sym);
1877
1878 if (SYMBOL_OBJ_SECTION (objfile, sym))
1879 return sym;
1880
1881 /* We should have an objfile by now. */
1882 gdb_assert (objfile);
1883
1884 switch (SYMBOL_CLASS (sym))
1885 {
1886 case LOC_STATIC:
1887 case LOC_LABEL:
1888 addr = SYMBOL_VALUE_ADDRESS (sym);
1889 break;
1890 case LOC_BLOCK:
1891 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1892 break;
1893
1894 default:
1895 /* Nothing else will be listed in the minsyms -- no use looking
1896 it up. */
1897 return sym;
1898 }
1899
1900 fixup_section (&sym->ginfo, addr, objfile);
1901
1902 return sym;
1903 }
1904
1905 /* Compute the demangled form of NAME as used by the various symbol
1906 lookup functions. The result is stored in *RESULT_NAME. Returns a
1907 cleanup which can be used to clean up the result.
1908
1909 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1910 Normally, Ada symbol lookups are performed using the encoded name
1911 rather than the demangled name, and so it might seem to make sense
1912 for this function to return an encoded version of NAME.
1913 Unfortunately, we cannot do this, because this function is used in
1914 circumstances where it is not appropriate to try to encode NAME.
1915 For instance, when displaying the frame info, we demangle the name
1916 of each parameter, and then perform a symbol lookup inside our
1917 function using that demangled name. In Ada, certain functions
1918 have internally-generated parameters whose name contain uppercase
1919 characters. Encoding those name would result in those uppercase
1920 characters to become lowercase, and thus cause the symbol lookup
1921 to fail. */
1922
1923 struct cleanup *
1924 demangle_for_lookup (const char *name, enum language lang,
1925 const char **result_name)
1926 {
1927 char *demangled_name = NULL;
1928 const char *modified_name = NULL;
1929 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1930
1931 modified_name = name;
1932
1933 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1934 lookup, so we can always binary search. */
1935 if (lang == language_cplus)
1936 {
1937 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1938 if (demangled_name)
1939 {
1940 modified_name = demangled_name;
1941 make_cleanup (xfree, demangled_name);
1942 }
1943 else
1944 {
1945 /* If we were given a non-mangled name, canonicalize it
1946 according to the language (so far only for C++). */
1947 demangled_name = cp_canonicalize_string (name);
1948 if (demangled_name)
1949 {
1950 modified_name = demangled_name;
1951 make_cleanup (xfree, demangled_name);
1952 }
1953 }
1954 }
1955 else if (lang == language_java)
1956 {
1957 demangled_name = gdb_demangle (name,
1958 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1959 if (demangled_name)
1960 {
1961 modified_name = demangled_name;
1962 make_cleanup (xfree, demangled_name);
1963 }
1964 }
1965 else if (lang == language_d)
1966 {
1967 demangled_name = d_demangle (name, 0);
1968 if (demangled_name)
1969 {
1970 modified_name = demangled_name;
1971 make_cleanup (xfree, demangled_name);
1972 }
1973 }
1974 else if (lang == language_go)
1975 {
1976 demangled_name = go_demangle (name, 0);
1977 if (demangled_name)
1978 {
1979 modified_name = demangled_name;
1980 make_cleanup (xfree, demangled_name);
1981 }
1982 }
1983
1984 *result_name = modified_name;
1985 return cleanup;
1986 }
1987
1988 /* See symtab.h.
1989
1990 This function (or rather its subordinates) have a bunch of loops and
1991 it would seem to be attractive to put in some QUIT's (though I'm not really
1992 sure whether it can run long enough to be really important). But there
1993 are a few calls for which it would appear to be bad news to quit
1994 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1995 that there is C++ code below which can error(), but that probably
1996 doesn't affect these calls since they are looking for a known
1997 variable and thus can probably assume it will never hit the C++
1998 code). */
1999
2000 struct block_symbol
2001 lookup_symbol_in_language (const char *name, const struct block *block,
2002 const domain_enum domain, enum language lang,
2003 struct field_of_this_result *is_a_field_of_this)
2004 {
2005 const char *modified_name;
2006 struct block_symbol returnval;
2007 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
2008
2009 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
2010 is_a_field_of_this);
2011 do_cleanups (cleanup);
2012
2013 return returnval;
2014 }
2015
2016 /* See symtab.h. */
2017
2018 struct block_symbol
2019 lookup_symbol (const char *name, const struct block *block,
2020 domain_enum domain,
2021 struct field_of_this_result *is_a_field_of_this)
2022 {
2023 return lookup_symbol_in_language (name, block, domain,
2024 current_language->la_language,
2025 is_a_field_of_this);
2026 }
2027
2028 /* See symtab.h. */
2029
2030 struct block_symbol
2031 lookup_language_this (const struct language_defn *lang,
2032 const struct block *block)
2033 {
2034 if (lang->la_name_of_this == NULL || block == NULL)
2035 return (struct block_symbol) {NULL, NULL};
2036
2037 if (symbol_lookup_debug > 1)
2038 {
2039 struct objfile *objfile = lookup_objfile_from_block (block);
2040
2041 fprintf_unfiltered (gdb_stdlog,
2042 "lookup_language_this (%s, %s (objfile %s))",
2043 lang->la_name, host_address_to_string (block),
2044 objfile_debug_name (objfile));
2045 }
2046
2047 while (block)
2048 {
2049 struct symbol *sym;
2050
2051 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
2052 if (sym != NULL)
2053 {
2054 if (symbol_lookup_debug > 1)
2055 {
2056 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2057 SYMBOL_PRINT_NAME (sym),
2058 host_address_to_string (sym),
2059 host_address_to_string (block));
2060 }
2061 return (struct block_symbol) {sym, block};
2062 }
2063 if (BLOCK_FUNCTION (block))
2064 break;
2065 block = BLOCK_SUPERBLOCK (block);
2066 }
2067
2068 if (symbol_lookup_debug > 1)
2069 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2070 return (struct block_symbol) {NULL, NULL};
2071 }
2072
2073 /* Given TYPE, a structure/union,
2074 return 1 if the component named NAME from the ultimate target
2075 structure/union is defined, otherwise, return 0. */
2076
2077 static int
2078 check_field (struct type *type, const char *name,
2079 struct field_of_this_result *is_a_field_of_this)
2080 {
2081 int i;
2082
2083 /* The type may be a stub. */
2084 type = check_typedef (type);
2085
2086 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2087 {
2088 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2089
2090 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2091 {
2092 is_a_field_of_this->type = type;
2093 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2094 return 1;
2095 }
2096 }
2097
2098 /* C++: If it was not found as a data field, then try to return it
2099 as a pointer to a method. */
2100
2101 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2102 {
2103 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2104 {
2105 is_a_field_of_this->type = type;
2106 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2107 return 1;
2108 }
2109 }
2110
2111 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2112 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2113 return 1;
2114
2115 return 0;
2116 }
2117
2118 /* Behave like lookup_symbol except that NAME is the natural name
2119 (e.g., demangled name) of the symbol that we're looking for. */
2120
2121 static struct block_symbol
2122 lookup_symbol_aux (const char *name, const struct block *block,
2123 const domain_enum domain, enum language language,
2124 struct field_of_this_result *is_a_field_of_this)
2125 {
2126 struct block_symbol result;
2127 const struct language_defn *langdef;
2128
2129 if (symbol_lookup_debug)
2130 {
2131 struct objfile *objfile = lookup_objfile_from_block (block);
2132
2133 fprintf_unfiltered (gdb_stdlog,
2134 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2135 name, host_address_to_string (block),
2136 objfile != NULL
2137 ? objfile_debug_name (objfile) : "NULL",
2138 domain_name (domain), language_str (language));
2139 }
2140
2141 /* Make sure we do something sensible with is_a_field_of_this, since
2142 the callers that set this parameter to some non-null value will
2143 certainly use it later. If we don't set it, the contents of
2144 is_a_field_of_this are undefined. */
2145 if (is_a_field_of_this != NULL)
2146 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2147
2148 /* Search specified block and its superiors. Don't search
2149 STATIC_BLOCK or GLOBAL_BLOCK. */
2150
2151 result = lookup_local_symbol (name, block, domain, language);
2152 if (result.symbol != NULL)
2153 {
2154 if (symbol_lookup_debug)
2155 {
2156 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2157 host_address_to_string (result.symbol));
2158 }
2159 return result;
2160 }
2161
2162 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2163 check to see if NAME is a field of `this'. */
2164
2165 langdef = language_def (language);
2166
2167 /* Don't do this check if we are searching for a struct. It will
2168 not be found by check_field, but will be found by other
2169 means. */
2170 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2171 {
2172 result = lookup_language_this (langdef, block);
2173
2174 if (result.symbol)
2175 {
2176 struct type *t = result.symbol->type;
2177
2178 /* I'm not really sure that type of this can ever
2179 be typedefed; just be safe. */
2180 t = check_typedef (t);
2181 if (TYPE_CODE (t) == TYPE_CODE_PTR
2182 || TYPE_CODE (t) == TYPE_CODE_REF)
2183 t = TYPE_TARGET_TYPE (t);
2184
2185 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2186 && TYPE_CODE (t) != TYPE_CODE_UNION)
2187 error (_("Internal error: `%s' is not an aggregate"),
2188 langdef->la_name_of_this);
2189
2190 if (check_field (t, name, is_a_field_of_this))
2191 {
2192 if (symbol_lookup_debug)
2193 {
2194 fprintf_unfiltered (gdb_stdlog,
2195 "lookup_symbol_aux (...) = NULL\n");
2196 }
2197 return (struct block_symbol) {NULL, NULL};
2198 }
2199 }
2200 }
2201
2202 /* Now do whatever is appropriate for LANGUAGE to look
2203 up static and global variables. */
2204
2205 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2206 if (result.symbol != NULL)
2207 {
2208 if (symbol_lookup_debug)
2209 {
2210 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2211 host_address_to_string (result.symbol));
2212 }
2213 return result;
2214 }
2215
2216 /* Now search all static file-level symbols. Not strictly correct,
2217 but more useful than an error. */
2218
2219 result = lookup_static_symbol (name, domain);
2220 if (symbol_lookup_debug)
2221 {
2222 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2223 result.symbol != NULL
2224 ? host_address_to_string (result.symbol)
2225 : "NULL");
2226 }
2227 return result;
2228 }
2229
2230 /* Check to see if the symbol is defined in BLOCK or its superiors.
2231 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2232
2233 static struct block_symbol
2234 lookup_local_symbol (const char *name, const struct block *block,
2235 const domain_enum domain,
2236 enum language language)
2237 {
2238 struct symbol *sym;
2239 const struct block *static_block = block_static_block (block);
2240 const char *scope = block_scope (block);
2241
2242 /* Check if either no block is specified or it's a global block. */
2243
2244 if (static_block == NULL)
2245 return (struct block_symbol) {NULL, NULL};
2246
2247 while (block != static_block)
2248 {
2249 sym = lookup_symbol_in_block (name, block, domain);
2250 if (sym != NULL)
2251 return (struct block_symbol) {sym, block};
2252
2253 if (language == language_cplus || language == language_fortran)
2254 {
2255 struct block_symbol sym
2256 = cp_lookup_symbol_imports_or_template (scope, name, block,
2257 domain);
2258
2259 if (sym.symbol != NULL)
2260 return sym;
2261 }
2262
2263 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2264 break;
2265 block = BLOCK_SUPERBLOCK (block);
2266 }
2267
2268 /* We've reached the end of the function without finding a result. */
2269
2270 return (struct block_symbol) {NULL, NULL};
2271 }
2272
2273 /* See symtab.h. */
2274
2275 struct objfile *
2276 lookup_objfile_from_block (const struct block *block)
2277 {
2278 struct objfile *obj;
2279 struct compunit_symtab *cust;
2280
2281 if (block == NULL)
2282 return NULL;
2283
2284 block = block_global_block (block);
2285 /* Look through all blockvectors. */
2286 ALL_COMPUNITS (obj, cust)
2287 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2288 GLOBAL_BLOCK))
2289 {
2290 if (obj->separate_debug_objfile_backlink)
2291 obj = obj->separate_debug_objfile_backlink;
2292
2293 return obj;
2294 }
2295
2296 return NULL;
2297 }
2298
2299 /* See symtab.h. */
2300
2301 struct symbol *
2302 lookup_symbol_in_block (const char *name, const struct block *block,
2303 const domain_enum domain)
2304 {
2305 struct symbol *sym;
2306
2307 if (symbol_lookup_debug > 1)
2308 {
2309 struct objfile *objfile = lookup_objfile_from_block (block);
2310
2311 fprintf_unfiltered (gdb_stdlog,
2312 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2313 name, host_address_to_string (block),
2314 objfile_debug_name (objfile),
2315 domain_name (domain));
2316 }
2317
2318 sym = block_lookup_symbol (block, name, domain);
2319 if (sym)
2320 {
2321 if (symbol_lookup_debug > 1)
2322 {
2323 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2324 host_address_to_string (sym));
2325 }
2326 return fixup_symbol_section (sym, NULL);
2327 }
2328
2329 if (symbol_lookup_debug > 1)
2330 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2331 return NULL;
2332 }
2333
2334 /* See symtab.h. */
2335
2336 struct block_symbol
2337 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2338 const char *name,
2339 const domain_enum domain)
2340 {
2341 struct objfile *objfile;
2342
2343 for (objfile = main_objfile;
2344 objfile;
2345 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2346 {
2347 struct block_symbol result
2348 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2349
2350 if (result.symbol != NULL)
2351 return result;
2352 }
2353
2354 return (struct block_symbol) {NULL, NULL};
2355 }
2356
2357 /* Check to see if the symbol is defined in one of the OBJFILE's
2358 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2359 depending on whether or not we want to search global symbols or
2360 static symbols. */
2361
2362 static struct block_symbol
2363 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2364 const char *name, const domain_enum domain)
2365 {
2366 struct compunit_symtab *cust;
2367
2368 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2369
2370 if (symbol_lookup_debug > 1)
2371 {
2372 fprintf_unfiltered (gdb_stdlog,
2373 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2374 objfile_debug_name (objfile),
2375 block_index == GLOBAL_BLOCK
2376 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2377 name, domain_name (domain));
2378 }
2379
2380 ALL_OBJFILE_COMPUNITS (objfile, cust)
2381 {
2382 const struct blockvector *bv;
2383 const struct block *block;
2384 struct block_symbol result;
2385
2386 bv = COMPUNIT_BLOCKVECTOR (cust);
2387 block = BLOCKVECTOR_BLOCK (bv, block_index);
2388 result.symbol = block_lookup_symbol_primary (block, name, domain);
2389 result.block = block;
2390 if (result.symbol != NULL)
2391 {
2392 if (symbol_lookup_debug > 1)
2393 {
2394 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398 result.symbol = fixup_symbol_section (result.symbol, objfile);
2399 return result;
2400
2401 }
2402 }
2403
2404 if (symbol_lookup_debug > 1)
2405 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2406 return (struct block_symbol) {NULL, NULL};
2407 }
2408
2409 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2410 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2411 and all associated separate debug objfiles.
2412
2413 Normally we only look in OBJFILE, and not any separate debug objfiles
2414 because the outer loop will cause them to be searched too. This case is
2415 different. Here we're called from search_symbols where it will only
2416 call us for the the objfile that contains a matching minsym. */
2417
2418 static struct block_symbol
2419 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2420 const char *linkage_name,
2421 domain_enum domain)
2422 {
2423 enum language lang = current_language->la_language;
2424 const char *modified_name;
2425 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
2426 &modified_name);
2427 struct objfile *main_objfile, *cur_objfile;
2428
2429 if (objfile->separate_debug_objfile_backlink)
2430 main_objfile = objfile->separate_debug_objfile_backlink;
2431 else
2432 main_objfile = objfile;
2433
2434 for (cur_objfile = main_objfile;
2435 cur_objfile;
2436 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2437 {
2438 struct block_symbol result;
2439
2440 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2441 modified_name, domain);
2442 if (result.symbol == NULL)
2443 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2444 modified_name, domain);
2445 if (result.symbol != NULL)
2446 {
2447 do_cleanups (cleanup);
2448 return result;
2449 }
2450 }
2451
2452 do_cleanups (cleanup);
2453 return (struct block_symbol) {NULL, NULL};
2454 }
2455
2456 /* A helper function that throws an exception when a symbol was found
2457 in a psymtab but not in a symtab. */
2458
2459 static void ATTRIBUTE_NORETURN
2460 error_in_psymtab_expansion (int block_index, const char *name,
2461 struct compunit_symtab *cust)
2462 {
2463 error (_("\
2464 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2465 %s may be an inlined function, or may be a template function\n \
2466 (if a template, try specifying an instantiation: %s<type>)."),
2467 block_index == GLOBAL_BLOCK ? "global" : "static",
2468 name,
2469 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2470 name, name);
2471 }
2472
2473 /* A helper function for various lookup routines that interfaces with
2474 the "quick" symbol table functions. */
2475
2476 static struct block_symbol
2477 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2478 const char *name, const domain_enum domain)
2479 {
2480 struct compunit_symtab *cust;
2481 const struct blockvector *bv;
2482 const struct block *block;
2483 struct block_symbol result;
2484
2485 if (!objfile->sf)
2486 return (struct block_symbol) {NULL, NULL};
2487
2488 if (symbol_lookup_debug > 1)
2489 {
2490 fprintf_unfiltered (gdb_stdlog,
2491 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2492 objfile_debug_name (objfile),
2493 block_index == GLOBAL_BLOCK
2494 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2495 name, domain_name (domain));
2496 }
2497
2498 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2499 if (cust == NULL)
2500 {
2501 if (symbol_lookup_debug > 1)
2502 {
2503 fprintf_unfiltered (gdb_stdlog,
2504 "lookup_symbol_via_quick_fns (...) = NULL\n");
2505 }
2506 return (struct block_symbol) {NULL, NULL};
2507 }
2508
2509 bv = COMPUNIT_BLOCKVECTOR (cust);
2510 block = BLOCKVECTOR_BLOCK (bv, block_index);
2511 result.symbol = block_lookup_symbol (block, name, domain);
2512 if (result.symbol == NULL)
2513 error_in_psymtab_expansion (block_index, name, cust);
2514
2515 if (symbol_lookup_debug > 1)
2516 {
2517 fprintf_unfiltered (gdb_stdlog,
2518 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2519 host_address_to_string (result.symbol),
2520 host_address_to_string (block));
2521 }
2522
2523 result.symbol = fixup_symbol_section (result.symbol, objfile);
2524 result.block = block;
2525 return result;
2526 }
2527
2528 /* See symtab.h. */
2529
2530 struct block_symbol
2531 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2532 const char *name,
2533 const struct block *block,
2534 const domain_enum domain)
2535 {
2536 struct block_symbol result;
2537
2538 /* NOTE: carlton/2003-05-19: The comments below were written when
2539 this (or what turned into this) was part of lookup_symbol_aux;
2540 I'm much less worried about these questions now, since these
2541 decisions have turned out well, but I leave these comments here
2542 for posterity. */
2543
2544 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2545 not it would be appropriate to search the current global block
2546 here as well. (That's what this code used to do before the
2547 is_a_field_of_this check was moved up.) On the one hand, it's
2548 redundant with the lookup in all objfiles search that happens
2549 next. On the other hand, if decode_line_1 is passed an argument
2550 like filename:var, then the user presumably wants 'var' to be
2551 searched for in filename. On the third hand, there shouldn't be
2552 multiple global variables all of which are named 'var', and it's
2553 not like decode_line_1 has ever restricted its search to only
2554 global variables in a single filename. All in all, only
2555 searching the static block here seems best: it's correct and it's
2556 cleanest. */
2557
2558 /* NOTE: carlton/2002-12-05: There's also a possible performance
2559 issue here: if you usually search for global symbols in the
2560 current file, then it would be slightly better to search the
2561 current global block before searching all the symtabs. But there
2562 are other factors that have a much greater effect on performance
2563 than that one, so I don't think we should worry about that for
2564 now. */
2565
2566 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2567 the current objfile. Searching the current objfile first is useful
2568 for both matching user expectations as well as performance. */
2569
2570 result = lookup_symbol_in_static_block (name, block, domain);
2571 if (result.symbol != NULL)
2572 return result;
2573
2574 /* If we didn't find a definition for a builtin type in the static block,
2575 search for it now. This is actually the right thing to do and can be
2576 a massive performance win. E.g., when debugging a program with lots of
2577 shared libraries we could search all of them only to find out the
2578 builtin type isn't defined in any of them. This is common for types
2579 like "void". */
2580 if (domain == VAR_DOMAIN)
2581 {
2582 struct gdbarch *gdbarch;
2583
2584 if (block == NULL)
2585 gdbarch = target_gdbarch ();
2586 else
2587 gdbarch = block_gdbarch (block);
2588 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2589 gdbarch, name);
2590 result.block = NULL;
2591 if (result.symbol != NULL)
2592 return result;
2593 }
2594
2595 return lookup_global_symbol (name, block, domain);
2596 }
2597
2598 /* See symtab.h. */
2599
2600 struct block_symbol
2601 lookup_symbol_in_static_block (const char *name,
2602 const struct block *block,
2603 const domain_enum domain)
2604 {
2605 const struct block *static_block = block_static_block (block);
2606 struct symbol *sym;
2607
2608 if (static_block == NULL)
2609 return (struct block_symbol) {NULL, NULL};
2610
2611 if (symbol_lookup_debug)
2612 {
2613 struct objfile *objfile = lookup_objfile_from_block (static_block);
2614
2615 fprintf_unfiltered (gdb_stdlog,
2616 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2617 " %s)\n",
2618 name,
2619 host_address_to_string (block),
2620 objfile_debug_name (objfile),
2621 domain_name (domain));
2622 }
2623
2624 sym = lookup_symbol_in_block (name, static_block, domain);
2625 if (symbol_lookup_debug)
2626 {
2627 fprintf_unfiltered (gdb_stdlog,
2628 "lookup_symbol_in_static_block (...) = %s\n",
2629 sym != NULL ? host_address_to_string (sym) : "NULL");
2630 }
2631 return (struct block_symbol) {sym, static_block};
2632 }
2633
2634 /* Perform the standard symbol lookup of NAME in OBJFILE:
2635 1) First search expanded symtabs, and if not found
2636 2) Search the "quick" symtabs (partial or .gdb_index).
2637 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2638
2639 static struct block_symbol
2640 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2641 const char *name, const domain_enum domain)
2642 {
2643 struct block_symbol result;
2644
2645 if (symbol_lookup_debug)
2646 {
2647 fprintf_unfiltered (gdb_stdlog,
2648 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2649 objfile_debug_name (objfile),
2650 block_index == GLOBAL_BLOCK
2651 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2652 name, domain_name (domain));
2653 }
2654
2655 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2656 name, domain);
2657 if (result.symbol != NULL)
2658 {
2659 if (symbol_lookup_debug)
2660 {
2661 fprintf_unfiltered (gdb_stdlog,
2662 "lookup_symbol_in_objfile (...) = %s"
2663 " (in symtabs)\n",
2664 host_address_to_string (result.symbol));
2665 }
2666 return result;
2667 }
2668
2669 result = lookup_symbol_via_quick_fns (objfile, block_index,
2670 name, domain);
2671 if (symbol_lookup_debug)
2672 {
2673 fprintf_unfiltered (gdb_stdlog,
2674 "lookup_symbol_in_objfile (...) = %s%s\n",
2675 result.symbol != NULL
2676 ? host_address_to_string (result.symbol)
2677 : "NULL",
2678 result.symbol != NULL ? " (via quick fns)" : "");
2679 }
2680 return result;
2681 }
2682
2683 /* See symtab.h. */
2684
2685 struct block_symbol
2686 lookup_static_symbol (const char *name, const domain_enum domain)
2687 {
2688 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2689 struct objfile *objfile;
2690 struct block_symbol result;
2691 struct block_symbol_cache *bsc;
2692 struct symbol_cache_slot *slot;
2693
2694 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2695 NULL for OBJFILE_CONTEXT. */
2696 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2697 &bsc, &slot);
2698 if (result.symbol != NULL)
2699 {
2700 if (SYMBOL_LOOKUP_FAILED_P (result))
2701 return (struct block_symbol) {NULL, NULL};
2702 return result;
2703 }
2704
2705 ALL_OBJFILES (objfile)
2706 {
2707 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2708 if (result.symbol != NULL)
2709 {
2710 /* Still pass NULL for OBJFILE_CONTEXT here. */
2711 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2712 result.block);
2713 return result;
2714 }
2715 }
2716
2717 /* Still pass NULL for OBJFILE_CONTEXT here. */
2718 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2719 return (struct block_symbol) {NULL, NULL};
2720 }
2721
2722 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2723
2724 struct global_sym_lookup_data
2725 {
2726 /* The name of the symbol we are searching for. */
2727 const char *name;
2728
2729 /* The domain to use for our search. */
2730 domain_enum domain;
2731
2732 /* The field where the callback should store the symbol if found.
2733 It should be initialized to {NULL, NULL} before the search is started. */
2734 struct block_symbol result;
2735 };
2736
2737 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2738 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2739 OBJFILE. The arguments for the search are passed via CB_DATA,
2740 which in reality is a pointer to struct global_sym_lookup_data. */
2741
2742 static int
2743 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2744 void *cb_data)
2745 {
2746 struct global_sym_lookup_data *data =
2747 (struct global_sym_lookup_data *) cb_data;
2748
2749 gdb_assert (data->result.symbol == NULL
2750 && data->result.block == NULL);
2751
2752 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2753 data->name, data->domain);
2754
2755 /* If we found a match, tell the iterator to stop. Otherwise,
2756 keep going. */
2757 return (data->result.symbol != NULL);
2758 }
2759
2760 /* See symtab.h. */
2761
2762 struct block_symbol
2763 lookup_global_symbol (const char *name,
2764 const struct block *block,
2765 const domain_enum domain)
2766 {
2767 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2768 struct block_symbol result;
2769 struct objfile *objfile;
2770 struct global_sym_lookup_data lookup_data;
2771 struct block_symbol_cache *bsc;
2772 struct symbol_cache_slot *slot;
2773
2774 objfile = lookup_objfile_from_block (block);
2775
2776 /* First see if we can find the symbol in the cache.
2777 This works because we use the current objfile to qualify the lookup. */
2778 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2779 &bsc, &slot);
2780 if (result.symbol != NULL)
2781 {
2782 if (SYMBOL_LOOKUP_FAILED_P (result))
2783 return (struct block_symbol) {NULL, NULL};
2784 return result;
2785 }
2786
2787 /* Call library-specific lookup procedure. */
2788 if (objfile != NULL)
2789 result = solib_global_lookup (objfile, name, domain);
2790
2791 /* If that didn't work go a global search (of global blocks, heh). */
2792 if (result.symbol == NULL)
2793 {
2794 memset (&lookup_data, 0, sizeof (lookup_data));
2795 lookup_data.name = name;
2796 lookup_data.domain = domain;
2797 gdbarch_iterate_over_objfiles_in_search_order
2798 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2799 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2800 result = lookup_data.result;
2801 }
2802
2803 if (result.symbol != NULL)
2804 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2805 else
2806 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2807
2808 return result;
2809 }
2810
2811 int
2812 symbol_matches_domain (enum language symbol_language,
2813 domain_enum symbol_domain,
2814 domain_enum domain)
2815 {
2816 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2817 A Java class declaration also defines a typedef for the class.
2818 Similarly, any Ada type declaration implicitly defines a typedef. */
2819 if (symbol_language == language_cplus
2820 || symbol_language == language_d
2821 || symbol_language == language_java
2822 || symbol_language == language_ada)
2823 {
2824 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2825 && symbol_domain == STRUCT_DOMAIN)
2826 return 1;
2827 }
2828 /* For all other languages, strict match is required. */
2829 return (symbol_domain == domain);
2830 }
2831
2832 /* See symtab.h. */
2833
2834 struct type *
2835 lookup_transparent_type (const char *name)
2836 {
2837 return current_language->la_lookup_transparent_type (name);
2838 }
2839
2840 /* A helper for basic_lookup_transparent_type that interfaces with the
2841 "quick" symbol table functions. */
2842
2843 static struct type *
2844 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2845 const char *name)
2846 {
2847 struct compunit_symtab *cust;
2848 const struct blockvector *bv;
2849 struct block *block;
2850 struct symbol *sym;
2851
2852 if (!objfile->sf)
2853 return NULL;
2854 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2855 STRUCT_DOMAIN);
2856 if (cust == NULL)
2857 return NULL;
2858
2859 bv = COMPUNIT_BLOCKVECTOR (cust);
2860 block = BLOCKVECTOR_BLOCK (bv, block_index);
2861 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2862 block_find_non_opaque_type, NULL);
2863 if (sym == NULL)
2864 error_in_psymtab_expansion (block_index, name, cust);
2865 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2866 return SYMBOL_TYPE (sym);
2867 }
2868
2869 /* Subroutine of basic_lookup_transparent_type to simplify it.
2870 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2871 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2872
2873 static struct type *
2874 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2875 const char *name)
2876 {
2877 const struct compunit_symtab *cust;
2878 const struct blockvector *bv;
2879 const struct block *block;
2880 const struct symbol *sym;
2881
2882 ALL_OBJFILE_COMPUNITS (objfile, cust)
2883 {
2884 bv = COMPUNIT_BLOCKVECTOR (cust);
2885 block = BLOCKVECTOR_BLOCK (bv, block_index);
2886 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2887 block_find_non_opaque_type, NULL);
2888 if (sym != NULL)
2889 {
2890 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2891 return SYMBOL_TYPE (sym);
2892 }
2893 }
2894
2895 return NULL;
2896 }
2897
2898 /* The standard implementation of lookup_transparent_type. This code
2899 was modeled on lookup_symbol -- the parts not relevant to looking
2900 up types were just left out. In particular it's assumed here that
2901 types are available in STRUCT_DOMAIN and only in file-static or
2902 global blocks. */
2903
2904 struct type *
2905 basic_lookup_transparent_type (const char *name)
2906 {
2907 struct objfile *objfile;
2908 struct type *t;
2909
2910 /* Now search all the global symbols. Do the symtab's first, then
2911 check the psymtab's. If a psymtab indicates the existence
2912 of the desired name as a global, then do psymtab-to-symtab
2913 conversion on the fly and return the found symbol. */
2914
2915 ALL_OBJFILES (objfile)
2916 {
2917 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2918 if (t)
2919 return t;
2920 }
2921
2922 ALL_OBJFILES (objfile)
2923 {
2924 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2925 if (t)
2926 return t;
2927 }
2928
2929 /* Now search the static file-level symbols.
2930 Not strictly correct, but more useful than an error.
2931 Do the symtab's first, then
2932 check the psymtab's. If a psymtab indicates the existence
2933 of the desired name as a file-level static, then do psymtab-to-symtab
2934 conversion on the fly and return the found symbol. */
2935
2936 ALL_OBJFILES (objfile)
2937 {
2938 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2939 if (t)
2940 return t;
2941 }
2942
2943 ALL_OBJFILES (objfile)
2944 {
2945 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2946 if (t)
2947 return t;
2948 }
2949
2950 return (struct type *) 0;
2951 }
2952
2953 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2954
2955 For each symbol that matches, CALLBACK is called. The symbol and
2956 DATA are passed to the callback.
2957
2958 If CALLBACK returns zero, the iteration ends. Otherwise, the
2959 search continues. */
2960
2961 void
2962 iterate_over_symbols (const struct block *block, const char *name,
2963 const domain_enum domain,
2964 symbol_found_callback_ftype *callback,
2965 void *data)
2966 {
2967 struct block_iterator iter;
2968 struct symbol *sym;
2969
2970 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2971 {
2972 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2973 SYMBOL_DOMAIN (sym), domain))
2974 {
2975 if (!callback (sym, data))
2976 return;
2977 }
2978 }
2979 }
2980
2981 /* Find the compunit symtab associated with PC and SECTION.
2982 This will read in debug info as necessary. */
2983
2984 struct compunit_symtab *
2985 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2986 {
2987 struct compunit_symtab *cust;
2988 struct compunit_symtab *best_cust = NULL;
2989 struct objfile *objfile;
2990 CORE_ADDR distance = 0;
2991 struct bound_minimal_symbol msymbol;
2992
2993 /* If we know that this is not a text address, return failure. This is
2994 necessary because we loop based on the block's high and low code
2995 addresses, which do not include the data ranges, and because
2996 we call find_pc_sect_psymtab which has a similar restriction based
2997 on the partial_symtab's texthigh and textlow. */
2998 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2999 if (msymbol.minsym
3000 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
3001 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
3002 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
3003 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
3004 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
3005 return NULL;
3006
3007 /* Search all symtabs for the one whose file contains our address, and which
3008 is the smallest of all the ones containing the address. This is designed
3009 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
3010 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
3011 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
3012
3013 This happens for native ecoff format, where code from included files
3014 gets its own symtab. The symtab for the included file should have
3015 been read in already via the dependency mechanism.
3016 It might be swifter to create several symtabs with the same name
3017 like xcoff does (I'm not sure).
3018
3019 It also happens for objfiles that have their functions reordered.
3020 For these, the symtab we are looking for is not necessarily read in. */
3021
3022 ALL_COMPUNITS (objfile, cust)
3023 {
3024 struct block *b;
3025 const struct blockvector *bv;
3026
3027 bv = COMPUNIT_BLOCKVECTOR (cust);
3028 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
3029
3030 if (BLOCK_START (b) <= pc
3031 && BLOCK_END (b) > pc
3032 && (distance == 0
3033 || BLOCK_END (b) - BLOCK_START (b) < distance))
3034 {
3035 /* For an objfile that has its functions reordered,
3036 find_pc_psymtab will find the proper partial symbol table
3037 and we simply return its corresponding symtab. */
3038 /* In order to better support objfiles that contain both
3039 stabs and coff debugging info, we continue on if a psymtab
3040 can't be found. */
3041 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
3042 {
3043 struct compunit_symtab *result;
3044
3045 result
3046 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3047 msymbol,
3048 pc, section,
3049 0);
3050 if (result != NULL)
3051 return result;
3052 }
3053 if (section != 0)
3054 {
3055 struct block_iterator iter;
3056 struct symbol *sym = NULL;
3057
3058 ALL_BLOCK_SYMBOLS (b, iter, sym)
3059 {
3060 fixup_symbol_section (sym, objfile);
3061 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
3062 section))
3063 break;
3064 }
3065 if (sym == NULL)
3066 continue; /* No symbol in this symtab matches
3067 section. */
3068 }
3069 distance = BLOCK_END (b) - BLOCK_START (b);
3070 best_cust = cust;
3071 }
3072 }
3073
3074 if (best_cust != NULL)
3075 return best_cust;
3076
3077 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3078
3079 ALL_OBJFILES (objfile)
3080 {
3081 struct compunit_symtab *result;
3082
3083 if (!objfile->sf)
3084 continue;
3085 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
3086 msymbol,
3087 pc, section,
3088 1);
3089 if (result != NULL)
3090 return result;
3091 }
3092
3093 return NULL;
3094 }
3095
3096 /* Find the compunit symtab associated with PC.
3097 This will read in debug info as necessary.
3098 Backward compatibility, no section. */
3099
3100 struct compunit_symtab *
3101 find_pc_compunit_symtab (CORE_ADDR pc)
3102 {
3103 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3104 }
3105 \f
3106
3107 /* Find the source file and line number for a given PC value and SECTION.
3108 Return a structure containing a symtab pointer, a line number,
3109 and a pc range for the entire source line.
3110 The value's .pc field is NOT the specified pc.
3111 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3112 use the line that ends there. Otherwise, in that case, the line
3113 that begins there is used. */
3114
3115 /* The big complication here is that a line may start in one file, and end just
3116 before the start of another file. This usually occurs when you #include
3117 code in the middle of a subroutine. To properly find the end of a line's PC
3118 range, we must search all symtabs associated with this compilation unit, and
3119 find the one whose first PC is closer than that of the next line in this
3120 symtab. */
3121
3122 /* If it's worth the effort, we could be using a binary search. */
3123
3124 struct symtab_and_line
3125 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3126 {
3127 struct compunit_symtab *cust;
3128 struct symtab *iter_s;
3129 struct linetable *l;
3130 int len;
3131 int i;
3132 struct linetable_entry *item;
3133 struct symtab_and_line val;
3134 const struct blockvector *bv;
3135 struct bound_minimal_symbol msymbol;
3136
3137 /* Info on best line seen so far, and where it starts, and its file. */
3138
3139 struct linetable_entry *best = NULL;
3140 CORE_ADDR best_end = 0;
3141 struct symtab *best_symtab = 0;
3142
3143 /* Store here the first line number
3144 of a file which contains the line at the smallest pc after PC.
3145 If we don't find a line whose range contains PC,
3146 we will use a line one less than this,
3147 with a range from the start of that file to the first line's pc. */
3148 struct linetable_entry *alt = NULL;
3149
3150 /* Info on best line seen in this file. */
3151
3152 struct linetable_entry *prev;
3153
3154 /* If this pc is not from the current frame,
3155 it is the address of the end of a call instruction.
3156 Quite likely that is the start of the following statement.
3157 But what we want is the statement containing the instruction.
3158 Fudge the pc to make sure we get that. */
3159
3160 init_sal (&val); /* initialize to zeroes */
3161
3162 val.pspace = current_program_space;
3163
3164 /* It's tempting to assume that, if we can't find debugging info for
3165 any function enclosing PC, that we shouldn't search for line
3166 number info, either. However, GAS can emit line number info for
3167 assembly files --- very helpful when debugging hand-written
3168 assembly code. In such a case, we'd have no debug info for the
3169 function, but we would have line info. */
3170
3171 if (notcurrent)
3172 pc -= 1;
3173
3174 /* elz: added this because this function returned the wrong
3175 information if the pc belongs to a stub (import/export)
3176 to call a shlib function. This stub would be anywhere between
3177 two functions in the target, and the line info was erroneously
3178 taken to be the one of the line before the pc. */
3179
3180 /* RT: Further explanation:
3181
3182 * We have stubs (trampolines) inserted between procedures.
3183 *
3184 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3185 * exists in the main image.
3186 *
3187 * In the minimal symbol table, we have a bunch of symbols
3188 * sorted by start address. The stubs are marked as "trampoline",
3189 * the others appear as text. E.g.:
3190 *
3191 * Minimal symbol table for main image
3192 * main: code for main (text symbol)
3193 * shr1: stub (trampoline symbol)
3194 * foo: code for foo (text symbol)
3195 * ...
3196 * Minimal symbol table for "shr1" image:
3197 * ...
3198 * shr1: code for shr1 (text symbol)
3199 * ...
3200 *
3201 * So the code below is trying to detect if we are in the stub
3202 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3203 * and if found, do the symbolization from the real-code address
3204 * rather than the stub address.
3205 *
3206 * Assumptions being made about the minimal symbol table:
3207 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3208 * if we're really in the trampoline.s If we're beyond it (say
3209 * we're in "foo" in the above example), it'll have a closer
3210 * symbol (the "foo" text symbol for example) and will not
3211 * return the trampoline.
3212 * 2. lookup_minimal_symbol_text() will find a real text symbol
3213 * corresponding to the trampoline, and whose address will
3214 * be different than the trampoline address. I put in a sanity
3215 * check for the address being the same, to avoid an
3216 * infinite recursion.
3217 */
3218 msymbol = lookup_minimal_symbol_by_pc (pc);
3219 if (msymbol.minsym != NULL)
3220 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3221 {
3222 struct bound_minimal_symbol mfunsym
3223 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3224 NULL);
3225
3226 if (mfunsym.minsym == NULL)
3227 /* I eliminated this warning since it is coming out
3228 * in the following situation:
3229 * gdb shmain // test program with shared libraries
3230 * (gdb) break shr1 // function in shared lib
3231 * Warning: In stub for ...
3232 * In the above situation, the shared lib is not loaded yet,
3233 * so of course we can't find the real func/line info,
3234 * but the "break" still works, and the warning is annoying.
3235 * So I commented out the warning. RT */
3236 /* warning ("In stub for %s; unable to find real function/line info",
3237 SYMBOL_LINKAGE_NAME (msymbol)); */
3238 ;
3239 /* fall through */
3240 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3241 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3242 /* Avoid infinite recursion */
3243 /* See above comment about why warning is commented out. */
3244 /* warning ("In stub for %s; unable to find real function/line info",
3245 SYMBOL_LINKAGE_NAME (msymbol)); */
3246 ;
3247 /* fall through */
3248 else
3249 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3250 }
3251
3252
3253 cust = find_pc_sect_compunit_symtab (pc, section);
3254 if (cust == NULL)
3255 {
3256 /* If no symbol information, return previous pc. */
3257 if (notcurrent)
3258 pc++;
3259 val.pc = pc;
3260 return val;
3261 }
3262
3263 bv = COMPUNIT_BLOCKVECTOR (cust);
3264
3265 /* Look at all the symtabs that share this blockvector.
3266 They all have the same apriori range, that we found was right;
3267 but they have different line tables. */
3268
3269 ALL_COMPUNIT_FILETABS (cust, iter_s)
3270 {
3271 /* Find the best line in this symtab. */
3272 l = SYMTAB_LINETABLE (iter_s);
3273 if (!l)
3274 continue;
3275 len = l->nitems;
3276 if (len <= 0)
3277 {
3278 /* I think len can be zero if the symtab lacks line numbers
3279 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3280 I'm not sure which, and maybe it depends on the symbol
3281 reader). */
3282 continue;
3283 }
3284
3285 prev = NULL;
3286 item = l->item; /* Get first line info. */
3287
3288 /* Is this file's first line closer than the first lines of other files?
3289 If so, record this file, and its first line, as best alternate. */
3290 if (item->pc > pc && (!alt || item->pc < alt->pc))
3291 alt = item;
3292
3293 for (i = 0; i < len; i++, item++)
3294 {
3295 /* Leave prev pointing to the linetable entry for the last line
3296 that started at or before PC. */
3297 if (item->pc > pc)
3298 break;
3299
3300 prev = item;
3301 }
3302
3303 /* At this point, prev points at the line whose start addr is <= pc, and
3304 item points at the next line. If we ran off the end of the linetable
3305 (pc >= start of the last line), then prev == item. If pc < start of
3306 the first line, prev will not be set. */
3307
3308 /* Is this file's best line closer than the best in the other files?
3309 If so, record this file, and its best line, as best so far. Don't
3310 save prev if it represents the end of a function (i.e. line number
3311 0) instead of a real line. */
3312
3313 if (prev && prev->line && (!best || prev->pc > best->pc))
3314 {
3315 best = prev;
3316 best_symtab = iter_s;
3317
3318 /* Discard BEST_END if it's before the PC of the current BEST. */
3319 if (best_end <= best->pc)
3320 best_end = 0;
3321 }
3322
3323 /* If another line (denoted by ITEM) is in the linetable and its
3324 PC is after BEST's PC, but before the current BEST_END, then
3325 use ITEM's PC as the new best_end. */
3326 if (best && i < len && item->pc > best->pc
3327 && (best_end == 0 || best_end > item->pc))
3328 best_end = item->pc;
3329 }
3330
3331 if (!best_symtab)
3332 {
3333 /* If we didn't find any line number info, just return zeros.
3334 We used to return alt->line - 1 here, but that could be
3335 anywhere; if we don't have line number info for this PC,
3336 don't make some up. */
3337 val.pc = pc;
3338 }
3339 else if (best->line == 0)
3340 {
3341 /* If our best fit is in a range of PC's for which no line
3342 number info is available (line number is zero) then we didn't
3343 find any valid line information. */
3344 val.pc = pc;
3345 }
3346 else
3347 {
3348 val.symtab = best_symtab;
3349 val.line = best->line;
3350 val.pc = best->pc;
3351 if (best_end && (!alt || best_end < alt->pc))
3352 val.end = best_end;
3353 else if (alt)
3354 val.end = alt->pc;
3355 else
3356 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3357 }
3358 val.section = section;
3359 return val;
3360 }
3361
3362 /* Backward compatibility (no section). */
3363
3364 struct symtab_and_line
3365 find_pc_line (CORE_ADDR pc, int notcurrent)
3366 {
3367 struct obj_section *section;
3368
3369 section = find_pc_overlay (pc);
3370 if (pc_in_unmapped_range (pc, section))
3371 pc = overlay_mapped_address (pc, section);
3372 return find_pc_sect_line (pc, section, notcurrent);
3373 }
3374
3375 /* See symtab.h. */
3376
3377 struct symtab *
3378 find_pc_line_symtab (CORE_ADDR pc)
3379 {
3380 struct symtab_and_line sal;
3381
3382 /* This always passes zero for NOTCURRENT to find_pc_line.
3383 There are currently no callers that ever pass non-zero. */
3384 sal = find_pc_line (pc, 0);
3385 return sal.symtab;
3386 }
3387 \f
3388 /* Find line number LINE in any symtab whose name is the same as
3389 SYMTAB.
3390
3391 If found, return the symtab that contains the linetable in which it was
3392 found, set *INDEX to the index in the linetable of the best entry
3393 found, and set *EXACT_MATCH nonzero if the value returned is an
3394 exact match.
3395
3396 If not found, return NULL. */
3397
3398 struct symtab *
3399 find_line_symtab (struct symtab *symtab, int line,
3400 int *index, int *exact_match)
3401 {
3402 int exact = 0; /* Initialized here to avoid a compiler warning. */
3403
3404 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3405 so far seen. */
3406
3407 int best_index;
3408 struct linetable *best_linetable;
3409 struct symtab *best_symtab;
3410
3411 /* First try looking it up in the given symtab. */
3412 best_linetable = SYMTAB_LINETABLE (symtab);
3413 best_symtab = symtab;
3414 best_index = find_line_common (best_linetable, line, &exact, 0);
3415 if (best_index < 0 || !exact)
3416 {
3417 /* Didn't find an exact match. So we better keep looking for
3418 another symtab with the same name. In the case of xcoff,
3419 multiple csects for one source file (produced by IBM's FORTRAN
3420 compiler) produce multiple symtabs (this is unavoidable
3421 assuming csects can be at arbitrary places in memory and that
3422 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3423
3424 /* BEST is the smallest linenumber > LINE so far seen,
3425 or 0 if none has been seen so far.
3426 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3427 int best;
3428
3429 struct objfile *objfile;
3430 struct compunit_symtab *cu;
3431 struct symtab *s;
3432
3433 if (best_index >= 0)
3434 best = best_linetable->item[best_index].line;
3435 else
3436 best = 0;
3437
3438 ALL_OBJFILES (objfile)
3439 {
3440 if (objfile->sf)
3441 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
3442 symtab_to_fullname (symtab));
3443 }
3444
3445 ALL_FILETABS (objfile, cu, s)
3446 {
3447 struct linetable *l;
3448 int ind;
3449
3450 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3451 continue;
3452 if (FILENAME_CMP (symtab_to_fullname (symtab),
3453 symtab_to_fullname (s)) != 0)
3454 continue;
3455 l = SYMTAB_LINETABLE (s);
3456 ind = find_line_common (l, line, &exact, 0);
3457 if (ind >= 0)
3458 {
3459 if (exact)
3460 {
3461 best_index = ind;
3462 best_linetable = l;
3463 best_symtab = s;
3464 goto done;
3465 }
3466 if (best == 0 || l->item[ind].line < best)
3467 {
3468 best = l->item[ind].line;
3469 best_index = ind;
3470 best_linetable = l;
3471 best_symtab = s;
3472 }
3473 }
3474 }
3475 }
3476 done:
3477 if (best_index < 0)
3478 return NULL;
3479
3480 if (index)
3481 *index = best_index;
3482 if (exact_match)
3483 *exact_match = exact;
3484
3485 return best_symtab;
3486 }
3487
3488 /* Given SYMTAB, returns all the PCs function in the symtab that
3489 exactly match LINE. Returns NULL if there are no exact matches,
3490 but updates BEST_ITEM in this case. */
3491
3492 VEC (CORE_ADDR) *
3493 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3494 struct linetable_entry **best_item)
3495 {
3496 int start = 0;
3497 VEC (CORE_ADDR) *result = NULL;
3498
3499 /* First, collect all the PCs that are at this line. */
3500 while (1)
3501 {
3502 int was_exact;
3503 int idx;
3504
3505 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3506 start);
3507 if (idx < 0)
3508 break;
3509
3510 if (!was_exact)
3511 {
3512 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3513
3514 if (*best_item == NULL || item->line < (*best_item)->line)
3515 *best_item = item;
3516
3517 break;
3518 }
3519
3520 VEC_safe_push (CORE_ADDR, result,
3521 SYMTAB_LINETABLE (symtab)->item[idx].pc);
3522 start = idx + 1;
3523 }
3524
3525 return result;
3526 }
3527
3528 \f
3529 /* Set the PC value for a given source file and line number and return true.
3530 Returns zero for invalid line number (and sets the PC to 0).
3531 The source file is specified with a struct symtab. */
3532
3533 int
3534 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3535 {
3536 struct linetable *l;
3537 int ind;
3538
3539 *pc = 0;
3540 if (symtab == 0)
3541 return 0;
3542
3543 symtab = find_line_symtab (symtab, line, &ind, NULL);
3544 if (symtab != NULL)
3545 {
3546 l = SYMTAB_LINETABLE (symtab);
3547 *pc = l->item[ind].pc;
3548 return 1;
3549 }
3550 else
3551 return 0;
3552 }
3553
3554 /* Find the range of pc values in a line.
3555 Store the starting pc of the line into *STARTPTR
3556 and the ending pc (start of next line) into *ENDPTR.
3557 Returns 1 to indicate success.
3558 Returns 0 if could not find the specified line. */
3559
3560 int
3561 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3562 CORE_ADDR *endptr)
3563 {
3564 CORE_ADDR startaddr;
3565 struct symtab_and_line found_sal;
3566
3567 startaddr = sal.pc;
3568 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3569 return 0;
3570
3571 /* This whole function is based on address. For example, if line 10 has
3572 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3573 "info line *0x123" should say the line goes from 0x100 to 0x200
3574 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3575 This also insures that we never give a range like "starts at 0x134
3576 and ends at 0x12c". */
3577
3578 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3579 if (found_sal.line != sal.line)
3580 {
3581 /* The specified line (sal) has zero bytes. */
3582 *startptr = found_sal.pc;
3583 *endptr = found_sal.pc;
3584 }
3585 else
3586 {
3587 *startptr = found_sal.pc;
3588 *endptr = found_sal.end;
3589 }
3590 return 1;
3591 }
3592
3593 /* Given a line table and a line number, return the index into the line
3594 table for the pc of the nearest line whose number is >= the specified one.
3595 Return -1 if none is found. The value is >= 0 if it is an index.
3596 START is the index at which to start searching the line table.
3597
3598 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3599
3600 static int
3601 find_line_common (struct linetable *l, int lineno,
3602 int *exact_match, int start)
3603 {
3604 int i;
3605 int len;
3606
3607 /* BEST is the smallest linenumber > LINENO so far seen,
3608 or 0 if none has been seen so far.
3609 BEST_INDEX identifies the item for it. */
3610
3611 int best_index = -1;
3612 int best = 0;
3613
3614 *exact_match = 0;
3615
3616 if (lineno <= 0)
3617 return -1;
3618 if (l == 0)
3619 return -1;
3620
3621 len = l->nitems;
3622 for (i = start; i < len; i++)
3623 {
3624 struct linetable_entry *item = &(l->item[i]);
3625
3626 if (item->line == lineno)
3627 {
3628 /* Return the first (lowest address) entry which matches. */
3629 *exact_match = 1;
3630 return i;
3631 }
3632
3633 if (item->line > lineno && (best == 0 || item->line < best))
3634 {
3635 best = item->line;
3636 best_index = i;
3637 }
3638 }
3639
3640 /* If we got here, we didn't get an exact match. */
3641 return best_index;
3642 }
3643
3644 int
3645 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3646 {
3647 struct symtab_and_line sal;
3648
3649 sal = find_pc_line (pc, 0);
3650 *startptr = sal.pc;
3651 *endptr = sal.end;
3652 return sal.symtab != 0;
3653 }
3654
3655 /* Given a function symbol SYM, find the symtab and line for the start
3656 of the function.
3657 If the argument FUNFIRSTLINE is nonzero, we want the first line
3658 of real code inside the function.
3659 This function should return SALs matching those from minsym_found,
3660 otherwise false multiple-locations breakpoints could be placed. */
3661
3662 struct symtab_and_line
3663 find_function_start_sal (struct symbol *sym, int funfirstline)
3664 {
3665 struct symtab_and_line sal;
3666 struct obj_section *section;
3667
3668 fixup_symbol_section (sym, NULL);
3669 section = SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym);
3670 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)), section, 0);
3671
3672 if (funfirstline && sal.symtab != NULL
3673 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3674 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3675 {
3676 struct gdbarch *gdbarch = symbol_arch (sym);
3677
3678 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3679 if (gdbarch_skip_entrypoint_p (gdbarch))
3680 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3681 return sal;
3682 }
3683
3684 /* We always should have a line for the function start address.
3685 If we don't, something is odd. Create a plain SAL refering
3686 just the PC and hope that skip_prologue_sal (if requested)
3687 can find a line number for after the prologue. */
3688 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
3689 {
3690 init_sal (&sal);
3691 sal.pspace = current_program_space;
3692 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3693 sal.section = section;
3694 }
3695
3696 if (funfirstline)
3697 skip_prologue_sal (&sal);
3698
3699 return sal;
3700 }
3701
3702 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3703 address for that function that has an entry in SYMTAB's line info
3704 table. If such an entry cannot be found, return FUNC_ADDR
3705 unaltered. */
3706
3707 static CORE_ADDR
3708 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3709 {
3710 CORE_ADDR func_start, func_end;
3711 struct linetable *l;
3712 int i;
3713
3714 /* Give up if this symbol has no lineinfo table. */
3715 l = SYMTAB_LINETABLE (symtab);
3716 if (l == NULL)
3717 return func_addr;
3718
3719 /* Get the range for the function's PC values, or give up if we
3720 cannot, for some reason. */
3721 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3722 return func_addr;
3723
3724 /* Linetable entries are ordered by PC values, see the commentary in
3725 symtab.h where `struct linetable' is defined. Thus, the first
3726 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3727 address we are looking for. */
3728 for (i = 0; i < l->nitems; i++)
3729 {
3730 struct linetable_entry *item = &(l->item[i]);
3731
3732 /* Don't use line numbers of zero, they mark special entries in
3733 the table. See the commentary on symtab.h before the
3734 definition of struct linetable. */
3735 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3736 return item->pc;
3737 }
3738
3739 return func_addr;
3740 }
3741
3742 /* Adjust SAL to the first instruction past the function prologue.
3743 If the PC was explicitly specified, the SAL is not changed.
3744 If the line number was explicitly specified, at most the SAL's PC
3745 is updated. If SAL is already past the prologue, then do nothing. */
3746
3747 void
3748 skip_prologue_sal (struct symtab_and_line *sal)
3749 {
3750 struct symbol *sym;
3751 struct symtab_and_line start_sal;
3752 struct cleanup *old_chain;
3753 CORE_ADDR pc, saved_pc;
3754 struct obj_section *section;
3755 const char *name;
3756 struct objfile *objfile;
3757 struct gdbarch *gdbarch;
3758 const struct block *b, *function_block;
3759 int force_skip, skip;
3760
3761 /* Do not change the SAL if PC was specified explicitly. */
3762 if (sal->explicit_pc)
3763 return;
3764
3765 old_chain = save_current_space_and_thread ();
3766 switch_to_program_space_and_thread (sal->pspace);
3767
3768 sym = find_pc_sect_function (sal->pc, sal->section);
3769 if (sym != NULL)
3770 {
3771 fixup_symbol_section (sym, NULL);
3772
3773 objfile = symbol_objfile (sym);
3774 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
3775 section = SYMBOL_OBJ_SECTION (objfile, sym);
3776 name = SYMBOL_LINKAGE_NAME (sym);
3777 }
3778 else
3779 {
3780 struct bound_minimal_symbol msymbol
3781 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3782
3783 if (msymbol.minsym == NULL)
3784 {
3785 do_cleanups (old_chain);
3786 return;
3787 }
3788
3789 objfile = msymbol.objfile;
3790 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3791 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3792 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3793 }
3794
3795 gdbarch = get_objfile_arch (objfile);
3796
3797 /* Process the prologue in two passes. In the first pass try to skip the
3798 prologue (SKIP is true) and verify there is a real need for it (indicated
3799 by FORCE_SKIP). If no such reason was found run a second pass where the
3800 prologue is not skipped (SKIP is false). */
3801
3802 skip = 1;
3803 force_skip = 1;
3804
3805 /* Be conservative - allow direct PC (without skipping prologue) only if we
3806 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3807 have to be set by the caller so we use SYM instead. */
3808 if (sym != NULL
3809 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3810 force_skip = 0;
3811
3812 saved_pc = pc;
3813 do
3814 {
3815 pc = saved_pc;
3816
3817 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3818 so that gdbarch_skip_prologue has something unique to work on. */
3819 if (section_is_overlay (section) && !section_is_mapped (section))
3820 pc = overlay_unmapped_address (pc, section);
3821
3822 /* Skip "first line" of function (which is actually its prologue). */
3823 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3824 if (gdbarch_skip_entrypoint_p (gdbarch))
3825 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3826 if (skip)
3827 pc = gdbarch_skip_prologue (gdbarch, pc);
3828
3829 /* For overlays, map pc back into its mapped VMA range. */
3830 pc = overlay_mapped_address (pc, section);
3831
3832 /* Calculate line number. */
3833 start_sal = find_pc_sect_line (pc, section, 0);
3834
3835 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3836 line is still part of the same function. */
3837 if (skip && start_sal.pc != pc
3838 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3839 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3840 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3841 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3842 {
3843 /* First pc of next line */
3844 pc = start_sal.end;
3845 /* Recalculate the line number (might not be N+1). */
3846 start_sal = find_pc_sect_line (pc, section, 0);
3847 }
3848
3849 /* On targets with executable formats that don't have a concept of
3850 constructors (ELF with .init has, PE doesn't), gcc emits a call
3851 to `__main' in `main' between the prologue and before user
3852 code. */
3853 if (gdbarch_skip_main_prologue_p (gdbarch)
3854 && name && strcmp_iw (name, "main") == 0)
3855 {
3856 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3857 /* Recalculate the line number (might not be N+1). */
3858 start_sal = find_pc_sect_line (pc, section, 0);
3859 force_skip = 1;
3860 }
3861 }
3862 while (!force_skip && skip--);
3863
3864 /* If we still don't have a valid source line, try to find the first
3865 PC in the lineinfo table that belongs to the same function. This
3866 happens with COFF debug info, which does not seem to have an
3867 entry in lineinfo table for the code after the prologue which has
3868 no direct relation to source. For example, this was found to be
3869 the case with the DJGPP target using "gcc -gcoff" when the
3870 compiler inserted code after the prologue to make sure the stack
3871 is aligned. */
3872 if (!force_skip && sym && start_sal.symtab == NULL)
3873 {
3874 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3875 /* Recalculate the line number. */
3876 start_sal = find_pc_sect_line (pc, section, 0);
3877 }
3878
3879 do_cleanups (old_chain);
3880
3881 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3882 forward SAL to the end of the prologue. */
3883 if (sal->pc >= pc)
3884 return;
3885
3886 sal->pc = pc;
3887 sal->section = section;
3888
3889 /* Unless the explicit_line flag was set, update the SAL line
3890 and symtab to correspond to the modified PC location. */
3891 if (sal->explicit_line)
3892 return;
3893
3894 sal->symtab = start_sal.symtab;
3895 sal->line = start_sal.line;
3896 sal->end = start_sal.end;
3897
3898 /* Check if we are now inside an inlined function. If we can,
3899 use the call site of the function instead. */
3900 b = block_for_pc_sect (sal->pc, sal->section);
3901 function_block = NULL;
3902 while (b != NULL)
3903 {
3904 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3905 function_block = b;
3906 else if (BLOCK_FUNCTION (b) != NULL)
3907 break;
3908 b = BLOCK_SUPERBLOCK (b);
3909 }
3910 if (function_block != NULL
3911 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3912 {
3913 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3914 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3915 }
3916 }
3917
3918 /* Given PC at the function's start address, attempt to find the
3919 prologue end using SAL information. Return zero if the skip fails.
3920
3921 A non-optimized prologue traditionally has one SAL for the function
3922 and a second for the function body. A single line function has
3923 them both pointing at the same line.
3924
3925 An optimized prologue is similar but the prologue may contain
3926 instructions (SALs) from the instruction body. Need to skip those
3927 while not getting into the function body.
3928
3929 The functions end point and an increasing SAL line are used as
3930 indicators of the prologue's endpoint.
3931
3932 This code is based on the function refine_prologue_limit
3933 (found in ia64). */
3934
3935 CORE_ADDR
3936 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3937 {
3938 struct symtab_and_line prologue_sal;
3939 CORE_ADDR start_pc;
3940 CORE_ADDR end_pc;
3941 const struct block *bl;
3942
3943 /* Get an initial range for the function. */
3944 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3945 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3946
3947 prologue_sal = find_pc_line (start_pc, 0);
3948 if (prologue_sal.line != 0)
3949 {
3950 /* For languages other than assembly, treat two consecutive line
3951 entries at the same address as a zero-instruction prologue.
3952 The GNU assembler emits separate line notes for each instruction
3953 in a multi-instruction macro, but compilers generally will not
3954 do this. */
3955 if (prologue_sal.symtab->language != language_asm)
3956 {
3957 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3958 int idx = 0;
3959
3960 /* Skip any earlier lines, and any end-of-sequence marker
3961 from a previous function. */
3962 while (linetable->item[idx].pc != prologue_sal.pc
3963 || linetable->item[idx].line == 0)
3964 idx++;
3965
3966 if (idx+1 < linetable->nitems
3967 && linetable->item[idx+1].line != 0
3968 && linetable->item[idx+1].pc == start_pc)
3969 return start_pc;
3970 }
3971
3972 /* If there is only one sal that covers the entire function,
3973 then it is probably a single line function, like
3974 "foo(){}". */
3975 if (prologue_sal.end >= end_pc)
3976 return 0;
3977
3978 while (prologue_sal.end < end_pc)
3979 {
3980 struct symtab_and_line sal;
3981
3982 sal = find_pc_line (prologue_sal.end, 0);
3983 if (sal.line == 0)
3984 break;
3985 /* Assume that a consecutive SAL for the same (or larger)
3986 line mark the prologue -> body transition. */
3987 if (sal.line >= prologue_sal.line)
3988 break;
3989 /* Likewise if we are in a different symtab altogether
3990 (e.g. within a file included via #include).  */
3991 if (sal.symtab != prologue_sal.symtab)
3992 break;
3993
3994 /* The line number is smaller. Check that it's from the
3995 same function, not something inlined. If it's inlined,
3996 then there is no point comparing the line numbers. */
3997 bl = block_for_pc (prologue_sal.end);
3998 while (bl)
3999 {
4000 if (block_inlined_p (bl))
4001 break;
4002 if (BLOCK_FUNCTION (bl))
4003 {
4004 bl = NULL;
4005 break;
4006 }
4007 bl = BLOCK_SUPERBLOCK (bl);
4008 }
4009 if (bl != NULL)
4010 break;
4011
4012 /* The case in which compiler's optimizer/scheduler has
4013 moved instructions into the prologue. We look ahead in
4014 the function looking for address ranges whose
4015 corresponding line number is less the first one that we
4016 found for the function. This is more conservative then
4017 refine_prologue_limit which scans a large number of SALs
4018 looking for any in the prologue. */
4019 prologue_sal = sal;
4020 }
4021 }
4022
4023 if (prologue_sal.end < end_pc)
4024 /* Return the end of this line, or zero if we could not find a
4025 line. */
4026 return prologue_sal.end;
4027 else
4028 /* Don't return END_PC, which is past the end of the function. */
4029 return prologue_sal.pc;
4030 }
4031 \f
4032 /* If P is of the form "operator[ \t]+..." where `...' is
4033 some legitimate operator text, return a pointer to the
4034 beginning of the substring of the operator text.
4035 Otherwise, return "". */
4036
4037 static const char *
4038 operator_chars (const char *p, const char **end)
4039 {
4040 *end = "";
4041 if (!startswith (p, "operator"))
4042 return *end;
4043 p += 8;
4044
4045 /* Don't get faked out by `operator' being part of a longer
4046 identifier. */
4047 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4048 return *end;
4049
4050 /* Allow some whitespace between `operator' and the operator symbol. */
4051 while (*p == ' ' || *p == '\t')
4052 p++;
4053
4054 /* Recognize 'operator TYPENAME'. */
4055
4056 if (isalpha (*p) || *p == '_' || *p == '$')
4057 {
4058 const char *q = p + 1;
4059
4060 while (isalnum (*q) || *q == '_' || *q == '$')
4061 q++;
4062 *end = q;
4063 return p;
4064 }
4065
4066 while (*p)
4067 switch (*p)
4068 {
4069 case '\\': /* regexp quoting */
4070 if (p[1] == '*')
4071 {
4072 if (p[2] == '=') /* 'operator\*=' */
4073 *end = p + 3;
4074 else /* 'operator\*' */
4075 *end = p + 2;
4076 return p;
4077 }
4078 else if (p[1] == '[')
4079 {
4080 if (p[2] == ']')
4081 error (_("mismatched quoting on brackets, "
4082 "try 'operator\\[\\]'"));
4083 else if (p[2] == '\\' && p[3] == ']')
4084 {
4085 *end = p + 4; /* 'operator\[\]' */
4086 return p;
4087 }
4088 else
4089 error (_("nothing is allowed between '[' and ']'"));
4090 }
4091 else
4092 {
4093 /* Gratuitous qoute: skip it and move on. */
4094 p++;
4095 continue;
4096 }
4097 break;
4098 case '!':
4099 case '=':
4100 case '*':
4101 case '/':
4102 case '%':
4103 case '^':
4104 if (p[1] == '=')
4105 *end = p + 2;
4106 else
4107 *end = p + 1;
4108 return p;
4109 case '<':
4110 case '>':
4111 case '+':
4112 case '-':
4113 case '&':
4114 case '|':
4115 if (p[0] == '-' && p[1] == '>')
4116 {
4117 /* Struct pointer member operator 'operator->'. */
4118 if (p[2] == '*')
4119 {
4120 *end = p + 3; /* 'operator->*' */
4121 return p;
4122 }
4123 else if (p[2] == '\\')
4124 {
4125 *end = p + 4; /* Hopefully 'operator->\*' */
4126 return p;
4127 }
4128 else
4129 {
4130 *end = p + 2; /* 'operator->' */
4131 return p;
4132 }
4133 }
4134 if (p[1] == '=' || p[1] == p[0])
4135 *end = p + 2;
4136 else
4137 *end = p + 1;
4138 return p;
4139 case '~':
4140 case ',':
4141 *end = p + 1;
4142 return p;
4143 case '(':
4144 if (p[1] != ')')
4145 error (_("`operator ()' must be specified "
4146 "without whitespace in `()'"));
4147 *end = p + 2;
4148 return p;
4149 case '?':
4150 if (p[1] != ':')
4151 error (_("`operator ?:' must be specified "
4152 "without whitespace in `?:'"));
4153 *end = p + 2;
4154 return p;
4155 case '[':
4156 if (p[1] != ']')
4157 error (_("`operator []' must be specified "
4158 "without whitespace in `[]'"));
4159 *end = p + 2;
4160 return p;
4161 default:
4162 error (_("`operator %s' not supported"), p);
4163 break;
4164 }
4165
4166 *end = "";
4167 return *end;
4168 }
4169 \f
4170
4171 /* Cache to watch for file names already seen by filename_seen. */
4172
4173 struct filename_seen_cache
4174 {
4175 /* Table of files seen so far. */
4176 htab_t tab;
4177 /* Initial size of the table. It automagically grows from here. */
4178 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
4179 };
4180
4181 /* filename_seen_cache constructor. */
4182
4183 static struct filename_seen_cache *
4184 create_filename_seen_cache (void)
4185 {
4186 struct filename_seen_cache *cache = XNEW (struct filename_seen_cache);
4187
4188 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
4189 filename_hash, filename_eq,
4190 NULL, xcalloc, xfree);
4191
4192 return cache;
4193 }
4194
4195 /* Empty the cache, but do not delete it. */
4196
4197 static void
4198 clear_filename_seen_cache (struct filename_seen_cache *cache)
4199 {
4200 htab_empty (cache->tab);
4201 }
4202
4203 /* filename_seen_cache destructor.
4204 This takes a void * argument as it is generally used as a cleanup. */
4205
4206 static void
4207 delete_filename_seen_cache (void *ptr)
4208 {
4209 struct filename_seen_cache *cache = (struct filename_seen_cache *) ptr;
4210
4211 htab_delete (cache->tab);
4212 xfree (cache);
4213 }
4214
4215 /* If FILE is not already in the table of files in CACHE, return zero;
4216 otherwise return non-zero. Optionally add FILE to the table if ADD
4217 is non-zero.
4218
4219 NOTE: We don't manage space for FILE, we assume FILE lives as long
4220 as the caller needs. */
4221
4222 static int
4223 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
4224 {
4225 void **slot;
4226
4227 /* Is FILE in tab? */
4228 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
4229 if (*slot != NULL)
4230 return 1;
4231
4232 /* No; maybe add it to tab. */
4233 if (add)
4234 *slot = (char *) file;
4235
4236 return 0;
4237 }
4238
4239 /* Data structure to maintain printing state for output_source_filename. */
4240
4241 struct output_source_filename_data
4242 {
4243 /* Cache of what we've seen so far. */
4244 struct filename_seen_cache *filename_seen_cache;
4245
4246 /* Flag of whether we're printing the first one. */
4247 int first;
4248 };
4249
4250 /* Slave routine for sources_info. Force line breaks at ,'s.
4251 NAME is the name to print.
4252 DATA contains the state for printing and watching for duplicates. */
4253
4254 static void
4255 output_source_filename (const char *name,
4256 struct output_source_filename_data *data)
4257 {
4258 /* Since a single source file can result in several partial symbol
4259 tables, we need to avoid printing it more than once. Note: if
4260 some of the psymtabs are read in and some are not, it gets
4261 printed both under "Source files for which symbols have been
4262 read" and "Source files for which symbols will be read in on
4263 demand". I consider this a reasonable way to deal with the
4264 situation. I'm not sure whether this can also happen for
4265 symtabs; it doesn't hurt to check. */
4266
4267 /* Was NAME already seen? */
4268 if (filename_seen (data->filename_seen_cache, name, 1))
4269 {
4270 /* Yes; don't print it again. */
4271 return;
4272 }
4273
4274 /* No; print it and reset *FIRST. */
4275 if (! data->first)
4276 printf_filtered (", ");
4277 data->first = 0;
4278
4279 wrap_here ("");
4280 fputs_filtered (name, gdb_stdout);
4281 }
4282
4283 /* A callback for map_partial_symbol_filenames. */
4284
4285 static void
4286 output_partial_symbol_filename (const char *filename, const char *fullname,
4287 void *data)
4288 {
4289 output_source_filename (fullname ? fullname : filename,
4290 (struct output_source_filename_data *) data);
4291 }
4292
4293 static void
4294 sources_info (char *ignore, int from_tty)
4295 {
4296 struct compunit_symtab *cu;
4297 struct symtab *s;
4298 struct objfile *objfile;
4299 struct output_source_filename_data data;
4300 struct cleanup *cleanups;
4301
4302 if (!have_full_symbols () && !have_partial_symbols ())
4303 {
4304 error (_("No symbol table is loaded. Use the \"file\" command."));
4305 }
4306
4307 data.filename_seen_cache = create_filename_seen_cache ();
4308 cleanups = make_cleanup (delete_filename_seen_cache,
4309 data.filename_seen_cache);
4310
4311 printf_filtered ("Source files for which symbols have been read in:\n\n");
4312
4313 data.first = 1;
4314 ALL_FILETABS (objfile, cu, s)
4315 {
4316 const char *fullname = symtab_to_fullname (s);
4317
4318 output_source_filename (fullname, &data);
4319 }
4320 printf_filtered ("\n\n");
4321
4322 printf_filtered ("Source files for which symbols "
4323 "will be read in on demand:\n\n");
4324
4325 clear_filename_seen_cache (data.filename_seen_cache);
4326 data.first = 1;
4327 map_symbol_filenames (output_partial_symbol_filename, &data,
4328 1 /*need_fullname*/);
4329 printf_filtered ("\n");
4330
4331 do_cleanups (cleanups);
4332 }
4333
4334 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4335 non-zero compare only lbasename of FILES. */
4336
4337 static int
4338 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4339 {
4340 int i;
4341
4342 if (file != NULL && nfiles != 0)
4343 {
4344 for (i = 0; i < nfiles; i++)
4345 {
4346 if (compare_filenames_for_search (file, (basenames
4347 ? lbasename (files[i])
4348 : files[i])))
4349 return 1;
4350 }
4351 }
4352 else if (nfiles == 0)
4353 return 1;
4354 return 0;
4355 }
4356
4357 /* Free any memory associated with a search. */
4358
4359 void
4360 free_search_symbols (struct symbol_search *symbols)
4361 {
4362 struct symbol_search *p;
4363 struct symbol_search *next;
4364
4365 for (p = symbols; p != NULL; p = next)
4366 {
4367 next = p->next;
4368 xfree (p);
4369 }
4370 }
4371
4372 static void
4373 do_free_search_symbols_cleanup (void *symbolsp)
4374 {
4375 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
4376
4377 free_search_symbols (symbols);
4378 }
4379
4380 struct cleanup *
4381 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
4382 {
4383 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
4384 }
4385
4386 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4387 sort symbols, not minimal symbols. */
4388
4389 static int
4390 compare_search_syms (const void *sa, const void *sb)
4391 {
4392 struct symbol_search *sym_a = *(struct symbol_search **) sa;
4393 struct symbol_search *sym_b = *(struct symbol_search **) sb;
4394 int c;
4395
4396 c = FILENAME_CMP (symbol_symtab (sym_a->symbol)->filename,
4397 symbol_symtab (sym_b->symbol)->filename);
4398 if (c != 0)
4399 return c;
4400
4401 if (sym_a->block != sym_b->block)
4402 return sym_a->block - sym_b->block;
4403
4404 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
4405 SYMBOL_PRINT_NAME (sym_b->symbol));
4406 }
4407
4408 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
4409 The duplicates are freed, and the new list is returned in
4410 *NEW_HEAD, *NEW_TAIL. */
4411
4412 static void
4413 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
4414 struct symbol_search **new_head,
4415 struct symbol_search **new_tail)
4416 {
4417 struct symbol_search **symbols, *symp;
4418 int i, j, nunique;
4419
4420 gdb_assert (found != NULL && nfound > 0);
4421
4422 /* Build an array out of the list so we can easily sort them. */
4423 symbols = XNEWVEC (struct symbol_search *, nfound);
4424
4425 symp = found;
4426 for (i = 0; i < nfound; i++)
4427 {
4428 gdb_assert (symp != NULL);
4429 gdb_assert (symp->block >= 0 && symp->block <= 1);
4430 symbols[i] = symp;
4431 symp = symp->next;
4432 }
4433 gdb_assert (symp == NULL);
4434
4435 qsort (symbols, nfound, sizeof (struct symbol_search *),
4436 compare_search_syms);
4437
4438 /* Collapse out the dups. */
4439 for (i = 1, j = 1; i < nfound; ++i)
4440 {
4441 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
4442 symbols[j++] = symbols[i];
4443 else
4444 xfree (symbols[i]);
4445 }
4446 nunique = j;
4447 symbols[j - 1]->next = NULL;
4448
4449 /* Rebuild the linked list. */
4450 for (i = 0; i < nunique - 1; i++)
4451 symbols[i]->next = symbols[i + 1];
4452 symbols[nunique - 1]->next = NULL;
4453
4454 *new_head = symbols[0];
4455 *new_tail = symbols[nunique - 1];
4456 xfree (symbols);
4457 }
4458
4459 /* An object of this type is passed as the user_data to the
4460 expand_symtabs_matching method. */
4461 struct search_symbols_data
4462 {
4463 int nfiles;
4464 const char **files;
4465
4466 /* It is true if PREG contains valid data, false otherwise. */
4467 unsigned preg_p : 1;
4468 regex_t preg;
4469 };
4470
4471 /* A callback for expand_symtabs_matching. */
4472
4473 static int
4474 search_symbols_file_matches (const char *filename, void *user_data,
4475 int basenames)
4476 {
4477 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4478
4479 return file_matches (filename, data->files, data->nfiles, basenames);
4480 }
4481
4482 /* A callback for expand_symtabs_matching. */
4483
4484 static int
4485 search_symbols_name_matches (const char *symname, void *user_data)
4486 {
4487 struct search_symbols_data *data = (struct search_symbols_data *) user_data;
4488
4489 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
4490 }
4491
4492 /* Search the symbol table for matches to the regular expression REGEXP,
4493 returning the results in *MATCHES.
4494
4495 Only symbols of KIND are searched:
4496 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4497 and constants (enums)
4498 FUNCTIONS_DOMAIN - search all functions
4499 TYPES_DOMAIN - search all type names
4500 ALL_DOMAIN - an internal error for this function
4501
4502 free_search_symbols should be called when *MATCHES is no longer needed.
4503
4504 Within each file the results are sorted locally; each symtab's global and
4505 static blocks are separately alphabetized.
4506 Duplicate entries are removed. */
4507
4508 void
4509 search_symbols (const char *regexp, enum search_domain kind,
4510 int nfiles, const char *files[],
4511 struct symbol_search **matches)
4512 {
4513 struct compunit_symtab *cust;
4514 const struct blockvector *bv;
4515 struct block *b;
4516 int i = 0;
4517 struct block_iterator iter;
4518 struct symbol *sym;
4519 struct objfile *objfile;
4520 struct minimal_symbol *msymbol;
4521 int found_misc = 0;
4522 static const enum minimal_symbol_type types[]
4523 = {mst_data, mst_text, mst_abs};
4524 static const enum minimal_symbol_type types2[]
4525 = {mst_bss, mst_file_text, mst_abs};
4526 static const enum minimal_symbol_type types3[]
4527 = {mst_file_data, mst_solib_trampoline, mst_abs};
4528 static const enum minimal_symbol_type types4[]
4529 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4530 enum minimal_symbol_type ourtype;
4531 enum minimal_symbol_type ourtype2;
4532 enum minimal_symbol_type ourtype3;
4533 enum minimal_symbol_type ourtype4;
4534 struct symbol_search *found;
4535 struct symbol_search *tail;
4536 struct search_symbols_data datum;
4537 int nfound;
4538
4539 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
4540 CLEANUP_CHAIN is freed only in the case of an error. */
4541 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
4542 struct cleanup *retval_chain;
4543
4544 gdb_assert (kind <= TYPES_DOMAIN);
4545
4546 ourtype = types[kind];
4547 ourtype2 = types2[kind];
4548 ourtype3 = types3[kind];
4549 ourtype4 = types4[kind];
4550
4551 *matches = NULL;
4552 datum.preg_p = 0;
4553
4554 if (regexp != NULL)
4555 {
4556 /* Make sure spacing is right for C++ operators.
4557 This is just a courtesy to make the matching less sensitive
4558 to how many spaces the user leaves between 'operator'
4559 and <TYPENAME> or <OPERATOR>. */
4560 const char *opend;
4561 const char *opname = operator_chars (regexp, &opend);
4562 int errcode;
4563
4564 if (*opname)
4565 {
4566 int fix = -1; /* -1 means ok; otherwise number of
4567 spaces needed. */
4568
4569 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4570 {
4571 /* There should 1 space between 'operator' and 'TYPENAME'. */
4572 if (opname[-1] != ' ' || opname[-2] == ' ')
4573 fix = 1;
4574 }
4575 else
4576 {
4577 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4578 if (opname[-1] == ' ')
4579 fix = 0;
4580 }
4581 /* If wrong number of spaces, fix it. */
4582 if (fix >= 0)
4583 {
4584 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4585
4586 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4587 regexp = tmp;
4588 }
4589 }
4590
4591 errcode = regcomp (&datum.preg, regexp,
4592 REG_NOSUB | (case_sensitivity == case_sensitive_off
4593 ? REG_ICASE : 0));
4594 if (errcode != 0)
4595 {
4596 char *err = get_regcomp_error (errcode, &datum.preg);
4597
4598 make_cleanup (xfree, err);
4599 error (_("Invalid regexp (%s): %s"), err, regexp);
4600 }
4601 datum.preg_p = 1;
4602 make_regfree_cleanup (&datum.preg);
4603 }
4604
4605 /* Search through the partial symtabs *first* for all symbols
4606 matching the regexp. That way we don't have to reproduce all of
4607 the machinery below. */
4608
4609 datum.nfiles = nfiles;
4610 datum.files = files;
4611 expand_symtabs_matching ((nfiles == 0
4612 ? NULL
4613 : search_symbols_file_matches),
4614 search_symbols_name_matches,
4615 NULL, kind, &datum);
4616
4617 /* Here, we search through the minimal symbol tables for functions
4618 and variables that match, and force their symbols to be read.
4619 This is in particular necessary for demangled variable names,
4620 which are no longer put into the partial symbol tables.
4621 The symbol will then be found during the scan of symtabs below.
4622
4623 For functions, find_pc_symtab should succeed if we have debug info
4624 for the function, for variables we have to call
4625 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4626 has debug info.
4627 If the lookup fails, set found_misc so that we will rescan to print
4628 any matching symbols without debug info.
4629 We only search the objfile the msymbol came from, we no longer search
4630 all objfiles. In large programs (1000s of shared libs) searching all
4631 objfiles is not worth the pain. */
4632
4633 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4634 {
4635 ALL_MSYMBOLS (objfile, msymbol)
4636 {
4637 QUIT;
4638
4639 if (msymbol->created_by_gdb)
4640 continue;
4641
4642 if (MSYMBOL_TYPE (msymbol) == ourtype
4643 || MSYMBOL_TYPE (msymbol) == ourtype2
4644 || MSYMBOL_TYPE (msymbol) == ourtype3
4645 || MSYMBOL_TYPE (msymbol) == ourtype4)
4646 {
4647 if (!datum.preg_p
4648 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4649 NULL, 0) == 0)
4650 {
4651 /* Note: An important side-effect of these lookup functions
4652 is to expand the symbol table if msymbol is found, for the
4653 benefit of the next loop on ALL_COMPUNITS. */
4654 if (kind == FUNCTIONS_DOMAIN
4655 ? (find_pc_compunit_symtab
4656 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
4657 : (lookup_symbol_in_objfile_from_linkage_name
4658 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4659 .symbol == NULL))
4660 found_misc = 1;
4661 }
4662 }
4663 }
4664 }
4665
4666 found = NULL;
4667 tail = NULL;
4668 nfound = 0;
4669 retval_chain = make_cleanup_free_search_symbols (&found);
4670
4671 ALL_COMPUNITS (objfile, cust)
4672 {
4673 bv = COMPUNIT_BLOCKVECTOR (cust);
4674 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4675 {
4676 b = BLOCKVECTOR_BLOCK (bv, i);
4677 ALL_BLOCK_SYMBOLS (b, iter, sym)
4678 {
4679 struct symtab *real_symtab = symbol_symtab (sym);
4680
4681 QUIT;
4682
4683 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
4684 a substring of symtab_to_fullname as it may contain "./" etc. */
4685 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4686 || ((basenames_may_differ
4687 || file_matches (lbasename (real_symtab->filename),
4688 files, nfiles, 1))
4689 && file_matches (symtab_to_fullname (real_symtab),
4690 files, nfiles, 0)))
4691 && ((!datum.preg_p
4692 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
4693 NULL, 0) == 0)
4694 && ((kind == VARIABLES_DOMAIN
4695 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4696 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4697 && SYMBOL_CLASS (sym) != LOC_BLOCK
4698 /* LOC_CONST can be used for more than just enums,
4699 e.g., c++ static const members.
4700 We only want to skip enums here. */
4701 && !(SYMBOL_CLASS (sym) == LOC_CONST
4702 && (TYPE_CODE (SYMBOL_TYPE (sym))
4703 == TYPE_CODE_ENUM)))
4704 || (kind == FUNCTIONS_DOMAIN
4705 && SYMBOL_CLASS (sym) == LOC_BLOCK)
4706 || (kind == TYPES_DOMAIN
4707 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4708 {
4709 /* match */
4710 struct symbol_search *psr = XCNEW (struct symbol_search);
4711
4712 psr->block = i;
4713 psr->symbol = sym;
4714 psr->next = NULL;
4715 if (tail == NULL)
4716 found = psr;
4717 else
4718 tail->next = psr;
4719 tail = psr;
4720 nfound ++;
4721 }
4722 }
4723 }
4724 }
4725
4726 if (found != NULL)
4727 {
4728 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
4729 /* Note: nfound is no longer useful beyond this point. */
4730 }
4731
4732 /* If there are no eyes, avoid all contact. I mean, if there are
4733 no debug symbols, then add matching minsyms. */
4734
4735 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4736 {
4737 ALL_MSYMBOLS (objfile, msymbol)
4738 {
4739 QUIT;
4740
4741 if (msymbol->created_by_gdb)
4742 continue;
4743
4744 if (MSYMBOL_TYPE (msymbol) == ourtype
4745 || MSYMBOL_TYPE (msymbol) == ourtype2
4746 || MSYMBOL_TYPE (msymbol) == ourtype3
4747 || MSYMBOL_TYPE (msymbol) == ourtype4)
4748 {
4749 if (!datum.preg_p
4750 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
4751 NULL, 0) == 0)
4752 {
4753 /* For functions we can do a quick check of whether the
4754 symbol might be found via find_pc_symtab. */
4755 if (kind != FUNCTIONS_DOMAIN
4756 || (find_pc_compunit_symtab
4757 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
4758 {
4759 if (lookup_symbol_in_objfile_from_linkage_name
4760 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
4761 .symbol == NULL)
4762 {
4763 /* match */
4764 struct symbol_search *psr = XNEW (struct symbol_search);
4765 psr->block = i;
4766 psr->msymbol.minsym = msymbol;
4767 psr->msymbol.objfile = objfile;
4768 psr->symbol = NULL;
4769 psr->next = NULL;
4770 if (tail == NULL)
4771 found = psr;
4772 else
4773 tail->next = psr;
4774 tail = psr;
4775 }
4776 }
4777 }
4778 }
4779 }
4780 }
4781
4782 discard_cleanups (retval_chain);
4783 do_cleanups (old_chain);
4784 *matches = found;
4785 }
4786
4787 /* Helper function for symtab_symbol_info, this function uses
4788 the data returned from search_symbols() to print information
4789 regarding the match to gdb_stdout. */
4790
4791 static void
4792 print_symbol_info (enum search_domain kind,
4793 struct symbol *sym,
4794 int block, const char *last)
4795 {
4796 struct symtab *s = symbol_symtab (sym);
4797 const char *s_filename = symtab_to_filename_for_display (s);
4798
4799 if (last == NULL || filename_cmp (last, s_filename) != 0)
4800 {
4801 fputs_filtered ("\nFile ", gdb_stdout);
4802 fputs_filtered (s_filename, gdb_stdout);
4803 fputs_filtered (":\n", gdb_stdout);
4804 }
4805
4806 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4807 printf_filtered ("static ");
4808
4809 /* Typedef that is not a C++ class. */
4810 if (kind == TYPES_DOMAIN
4811 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4812 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4813 /* variable, func, or typedef-that-is-c++-class. */
4814 else if (kind < TYPES_DOMAIN
4815 || (kind == TYPES_DOMAIN
4816 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4817 {
4818 type_print (SYMBOL_TYPE (sym),
4819 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4820 ? "" : SYMBOL_PRINT_NAME (sym)),
4821 gdb_stdout, 0);
4822
4823 printf_filtered (";\n");
4824 }
4825 }
4826
4827 /* This help function for symtab_symbol_info() prints information
4828 for non-debugging symbols to gdb_stdout. */
4829
4830 static void
4831 print_msymbol_info (struct bound_minimal_symbol msymbol)
4832 {
4833 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4834 char *tmp;
4835
4836 if (gdbarch_addr_bit (gdbarch) <= 32)
4837 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4838 & (CORE_ADDR) 0xffffffff,
4839 8);
4840 else
4841 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4842 16);
4843 printf_filtered ("%s %s\n",
4844 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4845 }
4846
4847 /* This is the guts of the commands "info functions", "info types", and
4848 "info variables". It calls search_symbols to find all matches and then
4849 print_[m]symbol_info to print out some useful information about the
4850 matches. */
4851
4852 static void
4853 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
4854 {
4855 static const char * const classnames[] =
4856 {"variable", "function", "type"};
4857 struct symbol_search *symbols;
4858 struct symbol_search *p;
4859 struct cleanup *old_chain;
4860 const char *last_filename = NULL;
4861 int first = 1;
4862
4863 gdb_assert (kind <= TYPES_DOMAIN);
4864
4865 /* Must make sure that if we're interrupted, symbols gets freed. */
4866 search_symbols (regexp, kind, 0, NULL, &symbols);
4867 old_chain = make_cleanup_free_search_symbols (&symbols);
4868
4869 if (regexp != NULL)
4870 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4871 classnames[kind], regexp);
4872 else
4873 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4874
4875 for (p = symbols; p != NULL; p = p->next)
4876 {
4877 QUIT;
4878
4879 if (p->msymbol.minsym != NULL)
4880 {
4881 if (first)
4882 {
4883 printf_filtered (_("\nNon-debugging symbols:\n"));
4884 first = 0;
4885 }
4886 print_msymbol_info (p->msymbol);
4887 }
4888 else
4889 {
4890 print_symbol_info (kind,
4891 p->symbol,
4892 p->block,
4893 last_filename);
4894 last_filename
4895 = symtab_to_filename_for_display (symbol_symtab (p->symbol));
4896 }
4897 }
4898
4899 do_cleanups (old_chain);
4900 }
4901
4902 static void
4903 variables_info (char *regexp, int from_tty)
4904 {
4905 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4906 }
4907
4908 static void
4909 functions_info (char *regexp, int from_tty)
4910 {
4911 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4912 }
4913
4914
4915 static void
4916 types_info (char *regexp, int from_tty)
4917 {
4918 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4919 }
4920
4921 /* Breakpoint all functions matching regular expression. */
4922
4923 void
4924 rbreak_command_wrapper (char *regexp, int from_tty)
4925 {
4926 rbreak_command (regexp, from_tty);
4927 }
4928
4929 /* A cleanup function that calls end_rbreak_breakpoints. */
4930
4931 static void
4932 do_end_rbreak_breakpoints (void *ignore)
4933 {
4934 end_rbreak_breakpoints ();
4935 }
4936
4937 static void
4938 rbreak_command (char *regexp, int from_tty)
4939 {
4940 struct symbol_search *ss;
4941 struct symbol_search *p;
4942 struct cleanup *old_chain;
4943 char *string = NULL;
4944 int len = 0;
4945 const char **files = NULL;
4946 const char *file_name;
4947 int nfiles = 0;
4948
4949 if (regexp)
4950 {
4951 char *colon = strchr (regexp, ':');
4952
4953 if (colon && *(colon + 1) != ':')
4954 {
4955 int colon_index;
4956 char *local_name;
4957
4958 colon_index = colon - regexp;
4959 local_name = (char *) alloca (colon_index + 1);
4960 memcpy (local_name, regexp, colon_index);
4961 local_name[colon_index--] = 0;
4962 while (isspace (local_name[colon_index]))
4963 local_name[colon_index--] = 0;
4964 file_name = local_name;
4965 files = &file_name;
4966 nfiles = 1;
4967 regexp = skip_spaces (colon + 1);
4968 }
4969 }
4970
4971 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4972 old_chain = make_cleanup_free_search_symbols (&ss);
4973 make_cleanup (free_current_contents, &string);
4974
4975 start_rbreak_breakpoints ();
4976 make_cleanup (do_end_rbreak_breakpoints, NULL);
4977 for (p = ss; p != NULL; p = p->next)
4978 {
4979 if (p->msymbol.minsym == NULL)
4980 {
4981 struct symtab *symtab = symbol_symtab (p->symbol);
4982 const char *fullname = symtab_to_fullname (symtab);
4983
4984 int newlen = (strlen (fullname)
4985 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4986 + 4);
4987
4988 if (newlen > len)
4989 {
4990 string = (char *) xrealloc (string, newlen);
4991 len = newlen;
4992 }
4993 strcpy (string, fullname);
4994 strcat (string, ":'");
4995 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4996 strcat (string, "'");
4997 break_command (string, from_tty);
4998 print_symbol_info (FUNCTIONS_DOMAIN,
4999 p->symbol,
5000 p->block,
5001 symtab_to_filename_for_display (symtab));
5002 }
5003 else
5004 {
5005 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
5006
5007 if (newlen > len)
5008 {
5009 string = (char *) xrealloc (string, newlen);
5010 len = newlen;
5011 }
5012 strcpy (string, "'");
5013 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
5014 strcat (string, "'");
5015
5016 break_command (string, from_tty);
5017 printf_filtered ("<function, no debug info> %s;\n",
5018 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
5019 }
5020 }
5021
5022 do_cleanups (old_chain);
5023 }
5024 \f
5025
5026 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
5027
5028 Either sym_text[sym_text_len] != '(' and then we search for any
5029 symbol starting with SYM_TEXT text.
5030
5031 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
5032 be terminated at that point. Partial symbol tables do not have parameters
5033 information. */
5034
5035 static int
5036 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
5037 {
5038 int (*ncmp) (const char *, const char *, size_t);
5039
5040 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
5041
5042 if (ncmp (name, sym_text, sym_text_len) != 0)
5043 return 0;
5044
5045 if (sym_text[sym_text_len] == '(')
5046 {
5047 /* User searches for `name(someth...'. Require NAME to be terminated.
5048 Normally psymtabs and gdbindex have no parameter types so '\0' will be
5049 present but accept even parameters presence. In this case this
5050 function is in fact strcmp_iw but whitespace skipping is not supported
5051 for tab completion. */
5052
5053 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
5054 return 0;
5055 }
5056
5057 return 1;
5058 }
5059
5060 /* Free any memory associated with a completion list. */
5061
5062 static void
5063 free_completion_list (VEC (char_ptr) **list_ptr)
5064 {
5065 int i;
5066 char *p;
5067
5068 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
5069 xfree (p);
5070 VEC_free (char_ptr, *list_ptr);
5071 }
5072
5073 /* Callback for make_cleanup. */
5074
5075 static void
5076 do_free_completion_list (void *list)
5077 {
5078 free_completion_list ((VEC (char_ptr) **) list);
5079 }
5080
5081 /* Helper routine for make_symbol_completion_list. */
5082
5083 static VEC (char_ptr) *return_val;
5084
5085 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5086 completion_list_add_name \
5087 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5088
5089 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
5090 completion_list_add_name \
5091 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
5092
5093 /* Tracker for how many unique completions have been generated. Used
5094 to terminate completion list generation early if the list has grown
5095 to a size so large as to be useless. This helps avoid GDB seeming
5096 to lock up in the event the user requests to complete on something
5097 vague that necessitates the time consuming expansion of many symbol
5098 tables. */
5099
5100 static completion_tracker_t completion_tracker;
5101
5102 /* Test to see if the symbol specified by SYMNAME (which is already
5103 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
5104 characters. If so, add it to the current completion list. */
5105
5106 static void
5107 completion_list_add_name (const char *symname,
5108 const char *sym_text, int sym_text_len,
5109 const char *text, const char *word)
5110 {
5111 /* Clip symbols that cannot match. */
5112 if (!compare_symbol_name (symname, sym_text, sym_text_len))
5113 return;
5114
5115 /* We have a match for a completion, so add SYMNAME to the current list
5116 of matches. Note that the name is moved to freshly malloc'd space. */
5117
5118 {
5119 char *newobj;
5120 enum maybe_add_completion_enum add_status;
5121
5122 if (word == sym_text)
5123 {
5124 newobj = (char *) xmalloc (strlen (symname) + 5);
5125 strcpy (newobj, symname);
5126 }
5127 else if (word > sym_text)
5128 {
5129 /* Return some portion of symname. */
5130 newobj = (char *) xmalloc (strlen (symname) + 5);
5131 strcpy (newobj, symname + (word - sym_text));
5132 }
5133 else
5134 {
5135 /* Return some of SYM_TEXT plus symname. */
5136 newobj = (char *) xmalloc (strlen (symname) + (sym_text - word) + 5);
5137 strncpy (newobj, word, sym_text - word);
5138 newobj[sym_text - word] = '\0';
5139 strcat (newobj, symname);
5140 }
5141
5142 add_status = maybe_add_completion (completion_tracker, newobj);
5143
5144 switch (add_status)
5145 {
5146 case MAYBE_ADD_COMPLETION_OK:
5147 VEC_safe_push (char_ptr, return_val, newobj);
5148 break;
5149 case MAYBE_ADD_COMPLETION_OK_MAX_REACHED:
5150 VEC_safe_push (char_ptr, return_val, newobj);
5151 throw_max_completions_reached_error ();
5152 case MAYBE_ADD_COMPLETION_MAX_REACHED:
5153 xfree (newobj);
5154 throw_max_completions_reached_error ();
5155 case MAYBE_ADD_COMPLETION_DUPLICATE:
5156 xfree (newobj);
5157 break;
5158 }
5159 }
5160 }
5161
5162 /* ObjC: In case we are completing on a selector, look as the msymbol
5163 again and feed all the selectors into the mill. */
5164
5165 static void
5166 completion_list_objc_symbol (struct minimal_symbol *msymbol,
5167 const char *sym_text, int sym_text_len,
5168 const char *text, const char *word)
5169 {
5170 static char *tmp = NULL;
5171 static unsigned int tmplen = 0;
5172
5173 const char *method, *category, *selector;
5174 char *tmp2 = NULL;
5175
5176 method = MSYMBOL_NATURAL_NAME (msymbol);
5177
5178 /* Is it a method? */
5179 if ((method[0] != '-') && (method[0] != '+'))
5180 return;
5181
5182 if (sym_text[0] == '[')
5183 /* Complete on shortened method method. */
5184 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
5185
5186 while ((strlen (method) + 1) >= tmplen)
5187 {
5188 if (tmplen == 0)
5189 tmplen = 1024;
5190 else
5191 tmplen *= 2;
5192 tmp = (char *) xrealloc (tmp, tmplen);
5193 }
5194 selector = strchr (method, ' ');
5195 if (selector != NULL)
5196 selector++;
5197
5198 category = strchr (method, '(');
5199
5200 if ((category != NULL) && (selector != NULL))
5201 {
5202 memcpy (tmp, method, (category - method));
5203 tmp[category - method] = ' ';
5204 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5205 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5206 if (sym_text[0] == '[')
5207 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
5208 }
5209
5210 if (selector != NULL)
5211 {
5212 /* Complete on selector only. */
5213 strcpy (tmp, selector);
5214 tmp2 = strchr (tmp, ']');
5215 if (tmp2 != NULL)
5216 *tmp2 = '\0';
5217
5218 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
5219 }
5220 }
5221
5222 /* Break the non-quoted text based on the characters which are in
5223 symbols. FIXME: This should probably be language-specific. */
5224
5225 static const char *
5226 language_search_unquoted_string (const char *text, const char *p)
5227 {
5228 for (; p > text; --p)
5229 {
5230 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5231 continue;
5232 else
5233 {
5234 if ((current_language->la_language == language_objc))
5235 {
5236 if (p[-1] == ':') /* Might be part of a method name. */
5237 continue;
5238 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5239 p -= 2; /* Beginning of a method name. */
5240 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5241 { /* Might be part of a method name. */
5242 const char *t = p;
5243
5244 /* Seeing a ' ' or a '(' is not conclusive evidence
5245 that we are in the middle of a method name. However,
5246 finding "-[" or "+[" should be pretty un-ambiguous.
5247 Unfortunately we have to find it now to decide. */
5248
5249 while (t > text)
5250 if (isalnum (t[-1]) || t[-1] == '_' ||
5251 t[-1] == ' ' || t[-1] == ':' ||
5252 t[-1] == '(' || t[-1] == ')')
5253 --t;
5254 else
5255 break;
5256
5257 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5258 p = t - 2; /* Method name detected. */
5259 /* Else we leave with p unchanged. */
5260 }
5261 }
5262 break;
5263 }
5264 }
5265 return p;
5266 }
5267
5268 static void
5269 completion_list_add_fields (struct symbol *sym, const char *sym_text,
5270 int sym_text_len, const char *text,
5271 const char *word)
5272 {
5273 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5274 {
5275 struct type *t = SYMBOL_TYPE (sym);
5276 enum type_code c = TYPE_CODE (t);
5277 int j;
5278
5279 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5280 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5281 if (TYPE_FIELD_NAME (t, j))
5282 completion_list_add_name (TYPE_FIELD_NAME (t, j),
5283 sym_text, sym_text_len, text, word);
5284 }
5285 }
5286
5287 /* Type of the user_data argument passed to add_macro_name,
5288 symbol_completion_matcher and symtab_expansion_callback. */
5289
5290 struct add_name_data
5291 {
5292 /* Arguments required by completion_list_add_name. */
5293 const char *sym_text;
5294 int sym_text_len;
5295 const char *text;
5296 const char *word;
5297
5298 /* Extra argument required for add_symtab_completions. */
5299 enum type_code code;
5300 };
5301
5302 /* A callback used with macro_for_each and macro_for_each_in_scope.
5303 This adds a macro's name to the current completion list. */
5304
5305 static void
5306 add_macro_name (const char *name, const struct macro_definition *ignore,
5307 struct macro_source_file *ignore2, int ignore3,
5308 void *user_data)
5309 {
5310 struct add_name_data *datum = (struct add_name_data *) user_data;
5311
5312 completion_list_add_name (name,
5313 datum->sym_text, datum->sym_text_len,
5314 datum->text, datum->word);
5315 }
5316
5317 /* A callback for expand_symtabs_matching. */
5318
5319 static int
5320 symbol_completion_matcher (const char *name, void *user_data)
5321 {
5322 struct add_name_data *datum = (struct add_name_data *) user_data;
5323
5324 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
5325 }
5326
5327 /* Add matching symbols from SYMTAB to the current completion list. */
5328
5329 static void
5330 add_symtab_completions (struct compunit_symtab *cust,
5331 const char *sym_text, int sym_text_len,
5332 const char *text, const char *word,
5333 enum type_code code)
5334 {
5335 struct symbol *sym;
5336 const struct block *b;
5337 struct block_iterator iter;
5338 int i;
5339
5340 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5341 {
5342 QUIT;
5343 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5344 ALL_BLOCK_SYMBOLS (b, iter, sym)
5345 {
5346 if (code == TYPE_CODE_UNDEF
5347 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5348 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5349 COMPLETION_LIST_ADD_SYMBOL (sym,
5350 sym_text, sym_text_len,
5351 text, word);
5352 }
5353 }
5354 }
5355
5356 /* Callback to add completions to the current list when symbol tables
5357 are expanded during completion list generation. */
5358
5359 static void
5360 symtab_expansion_callback (struct compunit_symtab *symtab,
5361 void *user_data)
5362 {
5363 struct add_name_data *datum = (struct add_name_data *) user_data;
5364
5365 add_symtab_completions (symtab,
5366 datum->sym_text, datum->sym_text_len,
5367 datum->text, datum->word,
5368 datum->code);
5369 }
5370
5371 static void
5372 default_make_symbol_completion_list_break_on_1 (const char *text,
5373 const char *word,
5374 const char *break_on,
5375 enum type_code code)
5376 {
5377 /* Problem: All of the symbols have to be copied because readline
5378 frees them. I'm not going to worry about this; hopefully there
5379 won't be that many. */
5380
5381 struct symbol *sym;
5382 struct compunit_symtab *cust;
5383 struct minimal_symbol *msymbol;
5384 struct objfile *objfile;
5385 const struct block *b;
5386 const struct block *surrounding_static_block, *surrounding_global_block;
5387 struct block_iterator iter;
5388 /* The symbol we are completing on. Points in same buffer as text. */
5389 const char *sym_text;
5390 /* Length of sym_text. */
5391 int sym_text_len;
5392 struct add_name_data datum;
5393 struct cleanup *cleanups;
5394
5395 /* Now look for the symbol we are supposed to complete on. */
5396 {
5397 const char *p;
5398 char quote_found;
5399 const char *quote_pos = NULL;
5400
5401 /* First see if this is a quoted string. */
5402 quote_found = '\0';
5403 for (p = text; *p != '\0'; ++p)
5404 {
5405 if (quote_found != '\0')
5406 {
5407 if (*p == quote_found)
5408 /* Found close quote. */
5409 quote_found = '\0';
5410 else if (*p == '\\' && p[1] == quote_found)
5411 /* A backslash followed by the quote character
5412 doesn't end the string. */
5413 ++p;
5414 }
5415 else if (*p == '\'' || *p == '"')
5416 {
5417 quote_found = *p;
5418 quote_pos = p;
5419 }
5420 }
5421 if (quote_found == '\'')
5422 /* A string within single quotes can be a symbol, so complete on it. */
5423 sym_text = quote_pos + 1;
5424 else if (quote_found == '"')
5425 /* A double-quoted string is never a symbol, nor does it make sense
5426 to complete it any other way. */
5427 {
5428 return;
5429 }
5430 else
5431 {
5432 /* It is not a quoted string. Break it based on the characters
5433 which are in symbols. */
5434 while (p > text)
5435 {
5436 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5437 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5438 --p;
5439 else
5440 break;
5441 }
5442 sym_text = p;
5443 }
5444 }
5445
5446 sym_text_len = strlen (sym_text);
5447
5448 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
5449
5450 if (current_language->la_language == language_cplus
5451 || current_language->la_language == language_java
5452 || current_language->la_language == language_fortran)
5453 {
5454 /* These languages may have parameters entered by user but they are never
5455 present in the partial symbol tables. */
5456
5457 const char *cs = (const char *) memchr (sym_text, '(', sym_text_len);
5458
5459 if (cs)
5460 sym_text_len = cs - sym_text;
5461 }
5462 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
5463
5464 completion_tracker = new_completion_tracker ();
5465 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5466
5467 datum.sym_text = sym_text;
5468 datum.sym_text_len = sym_text_len;
5469 datum.text = text;
5470 datum.word = word;
5471 datum.code = code;
5472
5473 /* At this point scan through the misc symbol vectors and add each
5474 symbol you find to the list. Eventually we want to ignore
5475 anything that isn't a text symbol (everything else will be
5476 handled by the psymtab code below). */
5477
5478 if (code == TYPE_CODE_UNDEF)
5479 {
5480 ALL_MSYMBOLS (objfile, msymbol)
5481 {
5482 QUIT;
5483 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
5484 word);
5485
5486 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
5487 word);
5488 }
5489 }
5490
5491 /* Add completions for all currently loaded symbol tables. */
5492 ALL_COMPUNITS (objfile, cust)
5493 add_symtab_completions (cust, sym_text, sym_text_len, text, word,
5494 code);
5495
5496 /* Look through the partial symtabs for all symbols which begin
5497 by matching SYM_TEXT. Expand all CUs that you find to the list.
5498 symtab_expansion_callback is called for each expanded symtab,
5499 causing those symtab's completions to be added to the list too. */
5500 expand_symtabs_matching (NULL, symbol_completion_matcher,
5501 symtab_expansion_callback, ALL_DOMAIN,
5502 &datum);
5503
5504 /* Search upwards from currently selected frame (so that we can
5505 complete on local vars). Also catch fields of types defined in
5506 this places which match our text string. Only complete on types
5507 visible from current context. */
5508
5509 b = get_selected_block (0);
5510 surrounding_static_block = block_static_block (b);
5511 surrounding_global_block = block_global_block (b);
5512 if (surrounding_static_block != NULL)
5513 while (b != surrounding_static_block)
5514 {
5515 QUIT;
5516
5517 ALL_BLOCK_SYMBOLS (b, iter, sym)
5518 {
5519 if (code == TYPE_CODE_UNDEF)
5520 {
5521 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5522 word);
5523 completion_list_add_fields (sym, sym_text, sym_text_len, text,
5524 word);
5525 }
5526 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5527 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5528 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
5529 word);
5530 }
5531
5532 /* Stop when we encounter an enclosing function. Do not stop for
5533 non-inlined functions - the locals of the enclosing function
5534 are in scope for a nested function. */
5535 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5536 break;
5537 b = BLOCK_SUPERBLOCK (b);
5538 }
5539
5540 /* Add fields from the file's types; symbols will be added below. */
5541
5542 if (code == TYPE_CODE_UNDEF)
5543 {
5544 if (surrounding_static_block != NULL)
5545 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5546 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5547
5548 if (surrounding_global_block != NULL)
5549 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5550 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
5551 }
5552
5553 /* Skip macros if we are completing a struct tag -- arguable but
5554 usually what is expected. */
5555 if (current_language->la_macro_expansion == macro_expansion_c
5556 && code == TYPE_CODE_UNDEF)
5557 {
5558 struct macro_scope *scope;
5559
5560 /* Add any macros visible in the default scope. Note that this
5561 may yield the occasional wrong result, because an expression
5562 might be evaluated in a scope other than the default. For
5563 example, if the user types "break file:line if <TAB>", the
5564 resulting expression will be evaluated at "file:line" -- but
5565 at there does not seem to be a way to detect this at
5566 completion time. */
5567 scope = default_macro_scope ();
5568 if (scope)
5569 {
5570 macro_for_each_in_scope (scope->file, scope->line,
5571 add_macro_name, &datum);
5572 xfree (scope);
5573 }
5574
5575 /* User-defined macros are always visible. */
5576 macro_for_each (macro_user_macros, add_macro_name, &datum);
5577 }
5578
5579 do_cleanups (cleanups);
5580 }
5581
5582 VEC (char_ptr) *
5583 default_make_symbol_completion_list_break_on (const char *text,
5584 const char *word,
5585 const char *break_on,
5586 enum type_code code)
5587 {
5588 struct cleanup *back_to;
5589
5590 return_val = NULL;
5591 back_to = make_cleanup (do_free_completion_list, &return_val);
5592
5593 TRY
5594 {
5595 default_make_symbol_completion_list_break_on_1 (text, word,
5596 break_on, code);
5597 }
5598 CATCH (except, RETURN_MASK_ERROR)
5599 {
5600 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5601 throw_exception (except);
5602 }
5603 END_CATCH
5604
5605 discard_cleanups (back_to);
5606 return return_val;
5607 }
5608
5609 VEC (char_ptr) *
5610 default_make_symbol_completion_list (const char *text, const char *word,
5611 enum type_code code)
5612 {
5613 return default_make_symbol_completion_list_break_on (text, word, "", code);
5614 }
5615
5616 /* Return a vector of all symbols (regardless of class) which begin by
5617 matching TEXT. If the answer is no symbols, then the return value
5618 is NULL. */
5619
5620 VEC (char_ptr) *
5621 make_symbol_completion_list (const char *text, const char *word)
5622 {
5623 return current_language->la_make_symbol_completion_list (text, word,
5624 TYPE_CODE_UNDEF);
5625 }
5626
5627 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
5628 symbols whose type code is CODE. */
5629
5630 VEC (char_ptr) *
5631 make_symbol_completion_type (const char *text, const char *word,
5632 enum type_code code)
5633 {
5634 gdb_assert (code == TYPE_CODE_UNION
5635 || code == TYPE_CODE_STRUCT
5636 || code == TYPE_CODE_ENUM);
5637 return current_language->la_make_symbol_completion_list (text, word, code);
5638 }
5639
5640 /* Like make_symbol_completion_list, but suitable for use as a
5641 completion function. */
5642
5643 VEC (char_ptr) *
5644 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
5645 const char *text, const char *word)
5646 {
5647 return make_symbol_completion_list (text, word);
5648 }
5649
5650 /* Like make_symbol_completion_list, but returns a list of symbols
5651 defined in a source file FILE. */
5652
5653 static VEC (char_ptr) *
5654 make_file_symbol_completion_list_1 (const char *text, const char *word,
5655 const char *srcfile)
5656 {
5657 struct symbol *sym;
5658 struct symtab *s;
5659 struct block *b;
5660 struct block_iterator iter;
5661 /* The symbol we are completing on. Points in same buffer as text. */
5662 const char *sym_text;
5663 /* Length of sym_text. */
5664 int sym_text_len;
5665
5666 /* Now look for the symbol we are supposed to complete on.
5667 FIXME: This should be language-specific. */
5668 {
5669 const char *p;
5670 char quote_found;
5671 const char *quote_pos = NULL;
5672
5673 /* First see if this is a quoted string. */
5674 quote_found = '\0';
5675 for (p = text; *p != '\0'; ++p)
5676 {
5677 if (quote_found != '\0')
5678 {
5679 if (*p == quote_found)
5680 /* Found close quote. */
5681 quote_found = '\0';
5682 else if (*p == '\\' && p[1] == quote_found)
5683 /* A backslash followed by the quote character
5684 doesn't end the string. */
5685 ++p;
5686 }
5687 else if (*p == '\'' || *p == '"')
5688 {
5689 quote_found = *p;
5690 quote_pos = p;
5691 }
5692 }
5693 if (quote_found == '\'')
5694 /* A string within single quotes can be a symbol, so complete on it. */
5695 sym_text = quote_pos + 1;
5696 else if (quote_found == '"')
5697 /* A double-quoted string is never a symbol, nor does it make sense
5698 to complete it any other way. */
5699 {
5700 return NULL;
5701 }
5702 else
5703 {
5704 /* Not a quoted string. */
5705 sym_text = language_search_unquoted_string (text, p);
5706 }
5707 }
5708
5709 sym_text_len = strlen (sym_text);
5710
5711 /* Find the symtab for SRCFILE (this loads it if it was not yet read
5712 in). */
5713 s = lookup_symtab (srcfile);
5714 if (s == NULL)
5715 {
5716 /* Maybe they typed the file with leading directories, while the
5717 symbol tables record only its basename. */
5718 const char *tail = lbasename (srcfile);
5719
5720 if (tail > srcfile)
5721 s = lookup_symtab (tail);
5722 }
5723
5724 /* If we have no symtab for that file, return an empty list. */
5725 if (s == NULL)
5726 return (return_val);
5727
5728 /* Go through this symtab and check the externs and statics for
5729 symbols which match. */
5730
5731 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
5732 ALL_BLOCK_SYMBOLS (b, iter, sym)
5733 {
5734 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5735 }
5736
5737 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
5738 ALL_BLOCK_SYMBOLS (b, iter, sym)
5739 {
5740 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
5741 }
5742
5743 return (return_val);
5744 }
5745
5746 /* Wrapper around make_file_symbol_completion_list_1
5747 to handle MAX_COMPLETIONS_REACHED_ERROR. */
5748
5749 VEC (char_ptr) *
5750 make_file_symbol_completion_list (const char *text, const char *word,
5751 const char *srcfile)
5752 {
5753 struct cleanup *back_to, *cleanups;
5754
5755 completion_tracker = new_completion_tracker ();
5756 cleanups = make_cleanup_free_completion_tracker (&completion_tracker);
5757 return_val = NULL;
5758 back_to = make_cleanup (do_free_completion_list, &return_val);
5759
5760 TRY
5761 {
5762 make_file_symbol_completion_list_1 (text, word, srcfile);
5763 }
5764 CATCH (except, RETURN_MASK_ERROR)
5765 {
5766 if (except.error != MAX_COMPLETIONS_REACHED_ERROR)
5767 throw_exception (except);
5768 }
5769 END_CATCH
5770
5771 discard_cleanups (back_to);
5772 do_cleanups (cleanups);
5773 return return_val;
5774 }
5775
5776 /* A helper function for make_source_files_completion_list. It adds
5777 another file name to a list of possible completions, growing the
5778 list as necessary. */
5779
5780 static void
5781 add_filename_to_list (const char *fname, const char *text, const char *word,
5782 VEC (char_ptr) **list)
5783 {
5784 char *newobj;
5785 size_t fnlen = strlen (fname);
5786
5787 if (word == text)
5788 {
5789 /* Return exactly fname. */
5790 newobj = (char *) xmalloc (fnlen + 5);
5791 strcpy (newobj, fname);
5792 }
5793 else if (word > text)
5794 {
5795 /* Return some portion of fname. */
5796 newobj = (char *) xmalloc (fnlen + 5);
5797 strcpy (newobj, fname + (word - text));
5798 }
5799 else
5800 {
5801 /* Return some of TEXT plus fname. */
5802 newobj = (char *) xmalloc (fnlen + (text - word) + 5);
5803 strncpy (newobj, word, text - word);
5804 newobj[text - word] = '\0';
5805 strcat (newobj, fname);
5806 }
5807 VEC_safe_push (char_ptr, *list, newobj);
5808 }
5809
5810 static int
5811 not_interesting_fname (const char *fname)
5812 {
5813 static const char *illegal_aliens[] = {
5814 "_globals_", /* inserted by coff_symtab_read */
5815 NULL
5816 };
5817 int i;
5818
5819 for (i = 0; illegal_aliens[i]; i++)
5820 {
5821 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5822 return 1;
5823 }
5824 return 0;
5825 }
5826
5827 /* An object of this type is passed as the user_data argument to
5828 map_partial_symbol_filenames. */
5829 struct add_partial_filename_data
5830 {
5831 struct filename_seen_cache *filename_seen_cache;
5832 const char *text;
5833 const char *word;
5834 int text_len;
5835 VEC (char_ptr) **list;
5836 };
5837
5838 /* A callback for map_partial_symbol_filenames. */
5839
5840 static void
5841 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5842 void *user_data)
5843 {
5844 struct add_partial_filename_data *data
5845 = (struct add_partial_filename_data *) user_data;
5846
5847 if (not_interesting_fname (filename))
5848 return;
5849 if (!filename_seen (data->filename_seen_cache, filename, 1)
5850 && filename_ncmp (filename, data->text, data->text_len) == 0)
5851 {
5852 /* This file matches for a completion; add it to the
5853 current list of matches. */
5854 add_filename_to_list (filename, data->text, data->word, data->list);
5855 }
5856 else
5857 {
5858 const char *base_name = lbasename (filename);
5859
5860 if (base_name != filename
5861 && !filename_seen (data->filename_seen_cache, base_name, 1)
5862 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5863 add_filename_to_list (base_name, data->text, data->word, data->list);
5864 }
5865 }
5866
5867 /* Return a vector of all source files whose names begin with matching
5868 TEXT. The file names are looked up in the symbol tables of this
5869 program. If the answer is no matchess, then the return value is
5870 NULL. */
5871
5872 VEC (char_ptr) *
5873 make_source_files_completion_list (const char *text, const char *word)
5874 {
5875 struct compunit_symtab *cu;
5876 struct symtab *s;
5877 struct objfile *objfile;
5878 size_t text_len = strlen (text);
5879 VEC (char_ptr) *list = NULL;
5880 const char *base_name;
5881 struct add_partial_filename_data datum;
5882 struct filename_seen_cache *filename_seen_cache;
5883 struct cleanup *back_to, *cache_cleanup;
5884
5885 if (!have_full_symbols () && !have_partial_symbols ())
5886 return list;
5887
5888 back_to = make_cleanup (do_free_completion_list, &list);
5889
5890 filename_seen_cache = create_filename_seen_cache ();
5891 cache_cleanup = make_cleanup (delete_filename_seen_cache,
5892 filename_seen_cache);
5893
5894 ALL_FILETABS (objfile, cu, s)
5895 {
5896 if (not_interesting_fname (s->filename))
5897 continue;
5898 if (!filename_seen (filename_seen_cache, s->filename, 1)
5899 && filename_ncmp (s->filename, text, text_len) == 0)
5900 {
5901 /* This file matches for a completion; add it to the current
5902 list of matches. */
5903 add_filename_to_list (s->filename, text, word, &list);
5904 }
5905 else
5906 {
5907 /* NOTE: We allow the user to type a base name when the
5908 debug info records leading directories, but not the other
5909 way around. This is what subroutines of breakpoint
5910 command do when they parse file names. */
5911 base_name = lbasename (s->filename);
5912 if (base_name != s->filename
5913 && !filename_seen (filename_seen_cache, base_name, 1)
5914 && filename_ncmp (base_name, text, text_len) == 0)
5915 add_filename_to_list (base_name, text, word, &list);
5916 }
5917 }
5918
5919 datum.filename_seen_cache = filename_seen_cache;
5920 datum.text = text;
5921 datum.word = word;
5922 datum.text_len = text_len;
5923 datum.list = &list;
5924 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5925 0 /*need_fullname*/);
5926
5927 do_cleanups (cache_cleanup);
5928 discard_cleanups (back_to);
5929
5930 return list;
5931 }
5932 \f
5933 /* Track MAIN */
5934
5935 /* Return the "main_info" object for the current program space. If
5936 the object has not yet been created, create it and fill in some
5937 default values. */
5938
5939 static struct main_info *
5940 get_main_info (void)
5941 {
5942 struct main_info *info
5943 = (struct main_info *) program_space_data (current_program_space,
5944 main_progspace_key);
5945
5946 if (info == NULL)
5947 {
5948 /* It may seem strange to store the main name in the progspace
5949 and also in whatever objfile happens to see a main name in
5950 its debug info. The reason for this is mainly historical:
5951 gdb returned "main" as the name even if no function named
5952 "main" was defined the program; and this approach lets us
5953 keep compatibility. */
5954 info = XCNEW (struct main_info);
5955 info->language_of_main = language_unknown;
5956 set_program_space_data (current_program_space, main_progspace_key,
5957 info);
5958 }
5959
5960 return info;
5961 }
5962
5963 /* A cleanup to destroy a struct main_info when a progspace is
5964 destroyed. */
5965
5966 static void
5967 main_info_cleanup (struct program_space *pspace, void *data)
5968 {
5969 struct main_info *info = (struct main_info *) data;
5970
5971 if (info != NULL)
5972 xfree (info->name_of_main);
5973 xfree (info);
5974 }
5975
5976 static void
5977 set_main_name (const char *name, enum language lang)
5978 {
5979 struct main_info *info = get_main_info ();
5980
5981 if (info->name_of_main != NULL)
5982 {
5983 xfree (info->name_of_main);
5984 info->name_of_main = NULL;
5985 info->language_of_main = language_unknown;
5986 }
5987 if (name != NULL)
5988 {
5989 info->name_of_main = xstrdup (name);
5990 info->language_of_main = lang;
5991 }
5992 }
5993
5994 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5995 accordingly. */
5996
5997 static void
5998 find_main_name (void)
5999 {
6000 const char *new_main_name;
6001 struct objfile *objfile;
6002
6003 /* First check the objfiles to see whether a debuginfo reader has
6004 picked up the appropriate main name. Historically the main name
6005 was found in a more or less random way; this approach instead
6006 relies on the order of objfile creation -- which still isn't
6007 guaranteed to get the correct answer, but is just probably more
6008 accurate. */
6009 ALL_OBJFILES (objfile)
6010 {
6011 if (objfile->per_bfd->name_of_main != NULL)
6012 {
6013 set_main_name (objfile->per_bfd->name_of_main,
6014 objfile->per_bfd->language_of_main);
6015 return;
6016 }
6017 }
6018
6019 /* Try to see if the main procedure is in Ada. */
6020 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6021 be to add a new method in the language vector, and call this
6022 method for each language until one of them returns a non-empty
6023 name. This would allow us to remove this hard-coded call to
6024 an Ada function. It is not clear that this is a better approach
6025 at this point, because all methods need to be written in a way
6026 such that false positives never be returned. For instance, it is
6027 important that a method does not return a wrong name for the main
6028 procedure if the main procedure is actually written in a different
6029 language. It is easy to guaranty this with Ada, since we use a
6030 special symbol generated only when the main in Ada to find the name
6031 of the main procedure. It is difficult however to see how this can
6032 be guarantied for languages such as C, for instance. This suggests
6033 that order of call for these methods becomes important, which means
6034 a more complicated approach. */
6035 new_main_name = ada_main_name ();
6036 if (new_main_name != NULL)
6037 {
6038 set_main_name (new_main_name, language_ada);
6039 return;
6040 }
6041
6042 new_main_name = d_main_name ();
6043 if (new_main_name != NULL)
6044 {
6045 set_main_name (new_main_name, language_d);
6046 return;
6047 }
6048
6049 new_main_name = go_main_name ();
6050 if (new_main_name != NULL)
6051 {
6052 set_main_name (new_main_name, language_go);
6053 return;
6054 }
6055
6056 new_main_name = pascal_main_name ();
6057 if (new_main_name != NULL)
6058 {
6059 set_main_name (new_main_name, language_pascal);
6060 return;
6061 }
6062
6063 /* The languages above didn't identify the name of the main procedure.
6064 Fallback to "main". */
6065 set_main_name ("main", language_unknown);
6066 }
6067
6068 char *
6069 main_name (void)
6070 {
6071 struct main_info *info = get_main_info ();
6072
6073 if (info->name_of_main == NULL)
6074 find_main_name ();
6075
6076 return info->name_of_main;
6077 }
6078
6079 /* Return the language of the main function. If it is not known,
6080 return language_unknown. */
6081
6082 enum language
6083 main_language (void)
6084 {
6085 struct main_info *info = get_main_info ();
6086
6087 if (info->name_of_main == NULL)
6088 find_main_name ();
6089
6090 return info->language_of_main;
6091 }
6092
6093 /* Handle ``executable_changed'' events for the symtab module. */
6094
6095 static void
6096 symtab_observer_executable_changed (void)
6097 {
6098 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6099 set_main_name (NULL, language_unknown);
6100 }
6101
6102 /* Return 1 if the supplied producer string matches the ARM RealView
6103 compiler (armcc). */
6104
6105 int
6106 producer_is_realview (const char *producer)
6107 {
6108 static const char *const arm_idents[] = {
6109 "ARM C Compiler, ADS",
6110 "Thumb C Compiler, ADS",
6111 "ARM C++ Compiler, ADS",
6112 "Thumb C++ Compiler, ADS",
6113 "ARM/Thumb C/C++ Compiler, RVCT",
6114 "ARM C/C++ Compiler, RVCT"
6115 };
6116 int i;
6117
6118 if (producer == NULL)
6119 return 0;
6120
6121 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6122 if (startswith (producer, arm_idents[i]))
6123 return 1;
6124
6125 return 0;
6126 }
6127
6128 \f
6129
6130 /* The next index to hand out in response to a registration request. */
6131
6132 static int next_aclass_value = LOC_FINAL_VALUE;
6133
6134 /* The maximum number of "aclass" registrations we support. This is
6135 constant for convenience. */
6136 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6137
6138 /* The objects representing the various "aclass" values. The elements
6139 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6140 elements are those registered at gdb initialization time. */
6141
6142 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6143
6144 /* The globally visible pointer. This is separate from 'symbol_impl'
6145 so that it can be const. */
6146
6147 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6148
6149 /* Make sure we saved enough room in struct symbol. */
6150
6151 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6152
6153 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6154 is the ops vector associated with this index. This returns the new
6155 index, which should be used as the aclass_index field for symbols
6156 of this type. */
6157
6158 int
6159 register_symbol_computed_impl (enum address_class aclass,
6160 const struct symbol_computed_ops *ops)
6161 {
6162 int result = next_aclass_value++;
6163
6164 gdb_assert (aclass == LOC_COMPUTED);
6165 gdb_assert (result < MAX_SYMBOL_IMPLS);
6166 symbol_impl[result].aclass = aclass;
6167 symbol_impl[result].ops_computed = ops;
6168
6169 /* Sanity check OPS. */
6170 gdb_assert (ops != NULL);
6171 gdb_assert (ops->tracepoint_var_ref != NULL);
6172 gdb_assert (ops->describe_location != NULL);
6173 gdb_assert (ops->read_needs_frame != NULL);
6174 gdb_assert (ops->read_variable != NULL);
6175
6176 return result;
6177 }
6178
6179 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6180 OPS is the ops vector associated with this index. This returns the
6181 new index, which should be used as the aclass_index field for symbols
6182 of this type. */
6183
6184 int
6185 register_symbol_block_impl (enum address_class aclass,
6186 const struct symbol_block_ops *ops)
6187 {
6188 int result = next_aclass_value++;
6189
6190 gdb_assert (aclass == LOC_BLOCK);
6191 gdb_assert (result < MAX_SYMBOL_IMPLS);
6192 symbol_impl[result].aclass = aclass;
6193 symbol_impl[result].ops_block = ops;
6194
6195 /* Sanity check OPS. */
6196 gdb_assert (ops != NULL);
6197 gdb_assert (ops->find_frame_base_location != NULL);
6198
6199 return result;
6200 }
6201
6202 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6203 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6204 this index. This returns the new index, which should be used as
6205 the aclass_index field for symbols of this type. */
6206
6207 int
6208 register_symbol_register_impl (enum address_class aclass,
6209 const struct symbol_register_ops *ops)
6210 {
6211 int result = next_aclass_value++;
6212
6213 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6214 gdb_assert (result < MAX_SYMBOL_IMPLS);
6215 symbol_impl[result].aclass = aclass;
6216 symbol_impl[result].ops_register = ops;
6217
6218 return result;
6219 }
6220
6221 /* Initialize elements of 'symbol_impl' for the constants in enum
6222 address_class. */
6223
6224 static void
6225 initialize_ordinary_address_classes (void)
6226 {
6227 int i;
6228
6229 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6230 symbol_impl[i].aclass = (enum address_class) i;
6231 }
6232
6233 \f
6234
6235 /* Helper function to initialize the fields of an objfile-owned symbol.
6236 It assumed that *SYM is already all zeroes. */
6237
6238 static void
6239 initialize_objfile_symbol_1 (struct symbol *sym)
6240 {
6241 SYMBOL_OBJFILE_OWNED (sym) = 1;
6242 SYMBOL_SECTION (sym) = -1;
6243 }
6244
6245 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6246
6247 void
6248 initialize_objfile_symbol (struct symbol *sym)
6249 {
6250 memset (sym, 0, sizeof (*sym));
6251 initialize_objfile_symbol_1 (sym);
6252 }
6253
6254 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6255 obstack. */
6256
6257 struct symbol *
6258 allocate_symbol (struct objfile *objfile)
6259 {
6260 struct symbol *result;
6261
6262 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6263 initialize_objfile_symbol_1 (result);
6264
6265 return result;
6266 }
6267
6268 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6269 obstack. */
6270
6271 struct template_symbol *
6272 allocate_template_symbol (struct objfile *objfile)
6273 {
6274 struct template_symbol *result;
6275
6276 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6277 initialize_objfile_symbol_1 (&result->base);
6278
6279 return result;
6280 }
6281
6282 /* See symtab.h. */
6283
6284 struct objfile *
6285 symbol_objfile (const struct symbol *symbol)
6286 {
6287 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6288 return SYMTAB_OBJFILE (symbol->owner.symtab);
6289 }
6290
6291 /* See symtab.h. */
6292
6293 struct gdbarch *
6294 symbol_arch (const struct symbol *symbol)
6295 {
6296 if (!SYMBOL_OBJFILE_OWNED (symbol))
6297 return symbol->owner.arch;
6298 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6299 }
6300
6301 /* See symtab.h. */
6302
6303 struct symtab *
6304 symbol_symtab (const struct symbol *symbol)
6305 {
6306 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6307 return symbol->owner.symtab;
6308 }
6309
6310 /* See symtab.h. */
6311
6312 void
6313 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6314 {
6315 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6316 symbol->owner.symtab = symtab;
6317 }
6318
6319 \f
6320
6321 void
6322 _initialize_symtab (void)
6323 {
6324 initialize_ordinary_address_classes ();
6325
6326 main_progspace_key
6327 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6328
6329 symbol_cache_key
6330 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6331
6332 add_info ("variables", variables_info, _("\
6333 All global and static variable names, or those matching REGEXP."));
6334 if (dbx_commands)
6335 add_com ("whereis", class_info, variables_info, _("\
6336 All global and static variable names, or those matching REGEXP."));
6337
6338 add_info ("functions", functions_info,
6339 _("All function names, or those matching REGEXP."));
6340
6341 /* FIXME: This command has at least the following problems:
6342 1. It prints builtin types (in a very strange and confusing fashion).
6343 2. It doesn't print right, e.g. with
6344 typedef struct foo *FOO
6345 type_print prints "FOO" when we want to make it (in this situation)
6346 print "struct foo *".
6347 I also think "ptype" or "whatis" is more likely to be useful (but if
6348 there is much disagreement "info types" can be fixed). */
6349 add_info ("types", types_info,
6350 _("All type names, or those matching REGEXP."));
6351
6352 add_info ("sources", sources_info,
6353 _("Source files in the program."));
6354
6355 add_com ("rbreak", class_breakpoint, rbreak_command,
6356 _("Set a breakpoint for all functions matching REGEXP."));
6357
6358 add_setshow_enum_cmd ("multiple-symbols", no_class,
6359 multiple_symbols_modes, &multiple_symbols_mode,
6360 _("\
6361 Set the debugger behavior when more than one symbol are possible matches\n\
6362 in an expression."), _("\
6363 Show how the debugger handles ambiguities in expressions."), _("\
6364 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6365 NULL, NULL, &setlist, &showlist);
6366
6367 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6368 &basenames_may_differ, _("\
6369 Set whether a source file may have multiple base names."), _("\
6370 Show whether a source file may have multiple base names."), _("\
6371 (A \"base name\" is the name of a file with the directory part removed.\n\
6372 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6373 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6374 before comparing them. Canonicalization is an expensive operation,\n\
6375 but it allows the same file be known by more than one base name.\n\
6376 If not set (the default), all source files are assumed to have just\n\
6377 one base name, and gdb will do file name comparisons more efficiently."),
6378 NULL, NULL,
6379 &setlist, &showlist);
6380
6381 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6382 _("Set debugging of symbol table creation."),
6383 _("Show debugging of symbol table creation."), _("\
6384 When enabled (non-zero), debugging messages are printed when building\n\
6385 symbol tables. A value of 1 (one) normally provides enough information.\n\
6386 A value greater than 1 provides more verbose information."),
6387 NULL,
6388 NULL,
6389 &setdebuglist, &showdebuglist);
6390
6391 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6392 _("\
6393 Set debugging of symbol lookup."), _("\
6394 Show debugging of symbol lookup."), _("\
6395 When enabled (non-zero), symbol lookups are logged."),
6396 NULL, NULL,
6397 &setdebuglist, &showdebuglist);
6398
6399 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6400 &new_symbol_cache_size,
6401 _("Set the size of the symbol cache."),
6402 _("Show the size of the symbol cache."), _("\
6403 The size of the symbol cache.\n\
6404 If zero then the symbol cache is disabled."),
6405 set_symbol_cache_size_handler, NULL,
6406 &maintenance_set_cmdlist,
6407 &maintenance_show_cmdlist);
6408
6409 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6410 _("Dump the symbol cache for each program space."),
6411 &maintenanceprintlist);
6412
6413 add_cmd ("symbol-cache-statistics", class_maintenance,
6414 maintenance_print_symbol_cache_statistics,
6415 _("Print symbol cache statistics for each program space."),
6416 &maintenanceprintlist);
6417
6418 add_cmd ("flush-symbol-cache", class_maintenance,
6419 maintenance_flush_symbol_cache,
6420 _("Flush the symbol cache for each program space."),
6421 &maintenancelist);
6422
6423 observer_attach_executable_changed (symtab_observer_executable_changed);
6424 observer_attach_new_objfile (symtab_new_objfile_observer);
6425 observer_attach_free_objfile (symtab_free_objfile_observer);
6426 }