Unify gdb puts functions
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "cli/cli-cmds.h"
46 #include "fnmatch.h"
47 #include "hashtab.h"
48 #include "typeprint.h"
49
50 #include "gdbsupport/gdb_obstack.h"
51 #include "block.h"
52 #include "dictionary.h"
53
54 #include <sys/types.h>
55 #include <fcntl.h>
56 #include <sys/stat.h>
57 #include <ctype.h>
58 #include "cp-abi.h"
59 #include "cp-support.h"
60 #include "observable.h"
61 #include "solist.h"
62 #include "macrotab.h"
63 #include "macroscope.h"
64
65 #include "parser-defs.h"
66 #include "completer.h"
67 #include "progspace-and-thread.h"
68 #include "gdbsupport/gdb_optional.h"
69 #include "filename-seen-cache.h"
70 #include "arch-utils.h"
71 #include <algorithm>
72 #include "gdbsupport/gdb_string_view.h"
73 #include "gdbsupport/pathstuff.h"
74 #include "gdbsupport/common-utils.h"
75
76 /* Forward declarations for local functions. */
77
78 static void rbreak_command (const char *, int);
79
80 static int find_line_common (struct linetable *, int, int *, int);
81
82 static struct block_symbol
83 lookup_symbol_aux (const char *name,
84 symbol_name_match_type match_type,
85 const struct block *block,
86 const domain_enum domain,
87 enum language language,
88 struct field_of_this_result *);
89
90 static
91 struct block_symbol lookup_local_symbol (const char *name,
92 symbol_name_match_type match_type,
93 const struct block *block,
94 const domain_enum domain,
95 enum language language);
96
97 static struct block_symbol
98 lookup_symbol_in_objfile (struct objfile *objfile,
99 enum block_enum block_index,
100 const char *name, const domain_enum domain);
101
102 /* Type of the data stored on the program space. */
103
104 struct main_info
105 {
106 main_info () = default;
107
108 ~main_info ()
109 {
110 xfree (name_of_main);
111 }
112
113 /* Name of "main". */
114
115 char *name_of_main = nullptr;
116
117 /* Language of "main". */
118
119 enum language language_of_main = language_unknown;
120 };
121
122 /* Program space key for finding name and language of "main". */
123
124 static const program_space_key<main_info> main_progspace_key;
125
126 /* The default symbol cache size.
127 There is no extra cpu cost for large N (except when flushing the cache,
128 which is rare). The value here is just a first attempt. A better default
129 value may be higher or lower. A prime number can make up for a bad hash
130 computation, so that's why the number is what it is. */
131 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
132
133 /* The maximum symbol cache size.
134 There's no method to the decision of what value to use here, other than
135 there's no point in allowing a user typo to make gdb consume all memory. */
136 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
137
138 /* symbol_cache_lookup returns this if a previous lookup failed to find the
139 symbol in any objfile. */
140 #define SYMBOL_LOOKUP_FAILED \
141 ((struct block_symbol) {(struct symbol *) 1, NULL})
142 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
143
144 /* Recording lookups that don't find the symbol is just as important, if not
145 more so, than recording found symbols. */
146
147 enum symbol_cache_slot_state
148 {
149 SYMBOL_SLOT_UNUSED,
150 SYMBOL_SLOT_NOT_FOUND,
151 SYMBOL_SLOT_FOUND
152 };
153
154 struct symbol_cache_slot
155 {
156 enum symbol_cache_slot_state state;
157
158 /* The objfile that was current when the symbol was looked up.
159 This is only needed for global blocks, but for simplicity's sake
160 we allocate the space for both. If data shows the extra space used
161 for static blocks is a problem, we can split things up then.
162
163 Global blocks need cache lookup to include the objfile context because
164 we need to account for gdbarch_iterate_over_objfiles_in_search_order
165 which can traverse objfiles in, effectively, any order, depending on
166 the current objfile, thus affecting which symbol is found. Normally,
167 only the current objfile is searched first, and then the rest are
168 searched in recorded order; but putting cache lookup inside
169 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
170 Instead we just make the current objfile part of the context of
171 cache lookup. This means we can record the same symbol multiple times,
172 each with a different "current objfile" that was in effect when the
173 lookup was saved in the cache, but cache space is pretty cheap. */
174 const struct objfile *objfile_context;
175
176 union
177 {
178 struct block_symbol found;
179 struct
180 {
181 char *name;
182 domain_enum domain;
183 } not_found;
184 } value;
185 };
186
187 /* Clear out SLOT. */
188
189 static void
190 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
191 {
192 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
193 xfree (slot->value.not_found.name);
194 slot->state = SYMBOL_SLOT_UNUSED;
195 }
196
197 /* Symbols don't specify global vs static block.
198 So keep them in separate caches. */
199
200 struct block_symbol_cache
201 {
202 unsigned int hits;
203 unsigned int misses;
204 unsigned int collisions;
205
206 /* SYMBOLS is a variable length array of this size.
207 One can imagine that in general one cache (global/static) should be a
208 fraction of the size of the other, but there's no data at the moment
209 on which to decide. */
210 unsigned int size;
211
212 struct symbol_cache_slot symbols[1];
213 };
214
215 /* Clear all slots of BSC and free BSC. */
216
217 static void
218 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
219 {
220 if (bsc != nullptr)
221 {
222 for (unsigned int i = 0; i < bsc->size; i++)
223 symbol_cache_clear_slot (&bsc->symbols[i]);
224 xfree (bsc);
225 }
226 }
227
228 /* The symbol cache.
229
230 Searching for symbols in the static and global blocks over multiple objfiles
231 again and again can be slow, as can searching very big objfiles. This is a
232 simple cache to improve symbol lookup performance, which is critical to
233 overall gdb performance.
234
235 Symbols are hashed on the name, its domain, and block.
236 They are also hashed on their objfile for objfile-specific lookups. */
237
238 struct symbol_cache
239 {
240 symbol_cache () = default;
241
242 ~symbol_cache ()
243 {
244 destroy_block_symbol_cache (global_symbols);
245 destroy_block_symbol_cache (static_symbols);
246 }
247
248 struct block_symbol_cache *global_symbols = nullptr;
249 struct block_symbol_cache *static_symbols = nullptr;
250 };
251
252 /* Program space key for finding its symbol cache. */
253
254 static const program_space_key<symbol_cache> symbol_cache_key;
255
256 /* When non-zero, print debugging messages related to symtab creation. */
257 unsigned int symtab_create_debug = 0;
258
259 /* When non-zero, print debugging messages related to symbol lookup. */
260 unsigned int symbol_lookup_debug = 0;
261
262 /* The size of the cache is staged here. */
263 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
264
265 /* The current value of the symbol cache size.
266 This is saved so that if the user enters a value too big we can restore
267 the original value from here. */
268 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
269
270 /* True if a file may be known by two different basenames.
271 This is the uncommon case, and significantly slows down gdb.
272 Default set to "off" to not slow down the common case. */
273 bool basenames_may_differ = false;
274
275 /* Allow the user to configure the debugger behavior with respect
276 to multiple-choice menus when more than one symbol matches during
277 a symbol lookup. */
278
279 const char multiple_symbols_ask[] = "ask";
280 const char multiple_symbols_all[] = "all";
281 const char multiple_symbols_cancel[] = "cancel";
282 static const char *const multiple_symbols_modes[] =
283 {
284 multiple_symbols_ask,
285 multiple_symbols_all,
286 multiple_symbols_cancel,
287 NULL
288 };
289 static const char *multiple_symbols_mode = multiple_symbols_all;
290
291 /* Read-only accessor to AUTO_SELECT_MODE. */
292
293 const char *
294 multiple_symbols_select_mode (void)
295 {
296 return multiple_symbols_mode;
297 }
298
299 /* Return the name of a domain_enum. */
300
301 const char *
302 domain_name (domain_enum e)
303 {
304 switch (e)
305 {
306 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
307 case VAR_DOMAIN: return "VAR_DOMAIN";
308 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
309 case MODULE_DOMAIN: return "MODULE_DOMAIN";
310 case LABEL_DOMAIN: return "LABEL_DOMAIN";
311 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
312 default: gdb_assert_not_reached ("bad domain_enum");
313 }
314 }
315
316 /* Return the name of a search_domain . */
317
318 const char *
319 search_domain_name (enum search_domain e)
320 {
321 switch (e)
322 {
323 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
324 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
325 case TYPES_DOMAIN: return "TYPES_DOMAIN";
326 case MODULES_DOMAIN: return "MODULES_DOMAIN";
327 case ALL_DOMAIN: return "ALL_DOMAIN";
328 default: gdb_assert_not_reached ("bad search_domain");
329 }
330 }
331
332 /* See symtab.h. */
333
334 program_space *
335 symtab::pspace () const
336 {
337 return this->objfile ()->pspace;
338 }
339
340 /* See symtab.h. */
341
342 call_site *
343 compunit_symtab::find_call_site (CORE_ADDR pc) const
344 {
345 if (m_call_site_htab == nullptr)
346 return nullptr;
347
348 CORE_ADDR delta
349 = this->objfile ()->section_offsets[this->block_line_section ()];
350 CORE_ADDR unrelocated_pc = pc - delta;
351
352 struct call_site call_site_local (unrelocated_pc, nullptr, nullptr);
353 void **slot
354 = htab_find_slot (m_call_site_htab, &call_site_local, NO_INSERT);
355 if (slot == nullptr)
356 return nullptr;
357
358 return (call_site *) *slot;
359 }
360
361 /* See symtab.h. */
362
363 void
364 compunit_symtab::set_call_site_htab (htab_t call_site_htab)
365 {
366 gdb_assert (m_call_site_htab == nullptr);
367 m_call_site_htab = call_site_htab;
368 }
369
370 /* See symtab.h. */
371
372 void
373 compunit_symtab::set_primary_filetab (symtab *primary_filetab)
374 {
375 symtab *prev_filetab = nullptr;
376
377 /* Move PRIMARY_FILETAB to the head of the filetab list. */
378 for (symtab *filetab : this->filetabs ())
379 {
380 if (filetab == primary_filetab)
381 {
382 if (prev_filetab != nullptr)
383 {
384 prev_filetab->next = primary_filetab->next;
385 primary_filetab->next = m_filetabs;
386 m_filetabs = primary_filetab;
387 }
388
389 break;
390 }
391
392 prev_filetab = filetab;
393 }
394
395 gdb_assert (primary_filetab == m_filetabs);
396 }
397
398 /* See symtab.h. */
399
400 struct symtab *
401 compunit_symtab::primary_filetab () const
402 {
403 gdb_assert (m_filetabs != nullptr);
404
405 /* The primary file symtab is the first one in the list. */
406 return m_filetabs;
407 }
408
409 /* See symtab.h. */
410
411 enum language
412 compunit_language (const struct compunit_symtab *cust)
413 {
414 struct symtab *symtab = cust->primary_filetab ();
415
416 /* The language of the compunit symtab is the language of its primary
417 source file. */
418 return symtab->language ();
419 }
420
421 /* See symtab.h. */
422
423 bool
424 minimal_symbol::data_p () const
425 {
426 return type == mst_data
427 || type == mst_bss
428 || type == mst_abs
429 || type == mst_file_data
430 || type == mst_file_bss;
431 }
432
433 /* See symtab.h. */
434
435 bool
436 minimal_symbol::text_p () const
437 {
438 return type == mst_text
439 || type == mst_text_gnu_ifunc
440 || type == mst_data_gnu_ifunc
441 || type == mst_slot_got_plt
442 || type == mst_solib_trampoline
443 || type == mst_file_text;
444 }
445
446 /* See whether FILENAME matches SEARCH_NAME using the rule that we
447 advertise to the user. (The manual's description of linespecs
448 describes what we advertise). Returns true if they match, false
449 otherwise. */
450
451 bool
452 compare_filenames_for_search (const char *filename, const char *search_name)
453 {
454 int len = strlen (filename);
455 size_t search_len = strlen (search_name);
456
457 if (len < search_len)
458 return false;
459
460 /* The tail of FILENAME must match. */
461 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
462 return false;
463
464 /* Either the names must completely match, or the character
465 preceding the trailing SEARCH_NAME segment of FILENAME must be a
466 directory separator.
467
468 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
469 cannot match FILENAME "/path//dir/file.c" - as user has requested
470 absolute path. The sama applies for "c:\file.c" possibly
471 incorrectly hypothetically matching "d:\dir\c:\file.c".
472
473 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
474 compatible with SEARCH_NAME "file.c". In such case a compiler had
475 to put the "c:file.c" name into debug info. Such compatibility
476 works only on GDB built for DOS host. */
477 return (len == search_len
478 || (!IS_ABSOLUTE_PATH (search_name)
479 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
480 || (HAS_DRIVE_SPEC (filename)
481 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
482 }
483
484 /* Same as compare_filenames_for_search, but for glob-style patterns.
485 Heads up on the order of the arguments. They match the order of
486 compare_filenames_for_search, but it's the opposite of the order of
487 arguments to gdb_filename_fnmatch. */
488
489 bool
490 compare_glob_filenames_for_search (const char *filename,
491 const char *search_name)
492 {
493 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
494 all /s have to be explicitly specified. */
495 int file_path_elements = count_path_elements (filename);
496 int search_path_elements = count_path_elements (search_name);
497
498 if (search_path_elements > file_path_elements)
499 return false;
500
501 if (IS_ABSOLUTE_PATH (search_name))
502 {
503 return (search_path_elements == file_path_elements
504 && gdb_filename_fnmatch (search_name, filename,
505 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
506 }
507
508 {
509 const char *file_to_compare
510 = strip_leading_path_elements (filename,
511 file_path_elements - search_path_elements);
512
513 return gdb_filename_fnmatch (search_name, file_to_compare,
514 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
515 }
516 }
517
518 /* Check for a symtab of a specific name by searching some symtabs.
519 This is a helper function for callbacks of iterate_over_symtabs.
520
521 If NAME is not absolute, then REAL_PATH is NULL
522 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
523
524 The return value, NAME, REAL_PATH and CALLBACK are identical to the
525 `map_symtabs_matching_filename' method of quick_symbol_functions.
526
527 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
528 Each symtab within the specified compunit symtab is also searched.
529 AFTER_LAST is one past the last compunit symtab to search; NULL means to
530 search until the end of the list. */
531
532 bool
533 iterate_over_some_symtabs (const char *name,
534 const char *real_path,
535 struct compunit_symtab *first,
536 struct compunit_symtab *after_last,
537 gdb::function_view<bool (symtab *)> callback)
538 {
539 struct compunit_symtab *cust;
540 const char* base_name = lbasename (name);
541
542 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
543 {
544 for (symtab *s : cust->filetabs ())
545 {
546 if (compare_filenames_for_search (s->filename, name))
547 {
548 if (callback (s))
549 return true;
550 continue;
551 }
552
553 /* Before we invoke realpath, which can get expensive when many
554 files are involved, do a quick comparison of the basenames. */
555 if (! basenames_may_differ
556 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
557 continue;
558
559 if (compare_filenames_for_search (symtab_to_fullname (s), name))
560 {
561 if (callback (s))
562 return true;
563 continue;
564 }
565
566 /* If the user gave us an absolute path, try to find the file in
567 this symtab and use its absolute path. */
568 if (real_path != NULL)
569 {
570 const char *fullname = symtab_to_fullname (s);
571
572 gdb_assert (IS_ABSOLUTE_PATH (real_path));
573 gdb_assert (IS_ABSOLUTE_PATH (name));
574 gdb::unique_xmalloc_ptr<char> fullname_real_path
575 = gdb_realpath (fullname);
576 fullname = fullname_real_path.get ();
577 if (FILENAME_CMP (real_path, fullname) == 0)
578 {
579 if (callback (s))
580 return true;
581 continue;
582 }
583 }
584 }
585 }
586
587 return false;
588 }
589
590 /* Check for a symtab of a specific name; first in symtabs, then in
591 psymtabs. *If* there is no '/' in the name, a match after a '/'
592 in the symtab filename will also work.
593
594 Calls CALLBACK with each symtab that is found. If CALLBACK returns
595 true, the search stops. */
596
597 void
598 iterate_over_symtabs (const char *name,
599 gdb::function_view<bool (symtab *)> callback)
600 {
601 gdb::unique_xmalloc_ptr<char> real_path;
602
603 /* Here we are interested in canonicalizing an absolute path, not
604 absolutizing a relative path. */
605 if (IS_ABSOLUTE_PATH (name))
606 {
607 real_path = gdb_realpath (name);
608 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
609 }
610
611 for (objfile *objfile : current_program_space->objfiles ())
612 {
613 if (iterate_over_some_symtabs (name, real_path.get (),
614 objfile->compunit_symtabs, NULL,
615 callback))
616 return;
617 }
618
619 /* Same search rules as above apply here, but now we look thru the
620 psymtabs. */
621
622 for (objfile *objfile : current_program_space->objfiles ())
623 {
624 if (objfile->map_symtabs_matching_filename (name, real_path.get (),
625 callback))
626 return;
627 }
628 }
629
630 /* A wrapper for iterate_over_symtabs that returns the first matching
631 symtab, or NULL. */
632
633 struct symtab *
634 lookup_symtab (const char *name)
635 {
636 struct symtab *result = NULL;
637
638 iterate_over_symtabs (name, [&] (symtab *symtab)
639 {
640 result = symtab;
641 return true;
642 });
643
644 return result;
645 }
646
647 \f
648 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
649 full method name, which consist of the class name (from T), the unadorned
650 method name from METHOD_ID, and the signature for the specific overload,
651 specified by SIGNATURE_ID. Note that this function is g++ specific. */
652
653 char *
654 gdb_mangle_name (struct type *type, int method_id, int signature_id)
655 {
656 int mangled_name_len;
657 char *mangled_name;
658 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
659 struct fn_field *method = &f[signature_id];
660 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
661 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
662 const char *newname = type->name ();
663
664 /* Does the form of physname indicate that it is the full mangled name
665 of a constructor (not just the args)? */
666 int is_full_physname_constructor;
667
668 int is_constructor;
669 int is_destructor = is_destructor_name (physname);
670 /* Need a new type prefix. */
671 const char *const_prefix = method->is_const ? "C" : "";
672 const char *volatile_prefix = method->is_volatile ? "V" : "";
673 char buf[20];
674 int len = (newname == NULL ? 0 : strlen (newname));
675
676 /* Nothing to do if physname already contains a fully mangled v3 abi name
677 or an operator name. */
678 if ((physname[0] == '_' && physname[1] == 'Z')
679 || is_operator_name (field_name))
680 return xstrdup (physname);
681
682 is_full_physname_constructor = is_constructor_name (physname);
683
684 is_constructor = is_full_physname_constructor
685 || (newname && strcmp (field_name, newname) == 0);
686
687 if (!is_destructor)
688 is_destructor = (startswith (physname, "__dt"));
689
690 if (is_destructor || is_full_physname_constructor)
691 {
692 mangled_name = (char *) xmalloc (strlen (physname) + 1);
693 strcpy (mangled_name, physname);
694 return mangled_name;
695 }
696
697 if (len == 0)
698 {
699 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
700 }
701 else if (physname[0] == 't' || physname[0] == 'Q')
702 {
703 /* The physname for template and qualified methods already includes
704 the class name. */
705 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
706 newname = NULL;
707 len = 0;
708 }
709 else
710 {
711 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
712 volatile_prefix, len);
713 }
714 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
715 + strlen (buf) + len + strlen (physname) + 1);
716
717 mangled_name = (char *) xmalloc (mangled_name_len);
718 if (is_constructor)
719 mangled_name[0] = '\0';
720 else
721 strcpy (mangled_name, field_name);
722
723 strcat (mangled_name, buf);
724 /* If the class doesn't have a name, i.e. newname NULL, then we just
725 mangle it using 0 for the length of the class. Thus it gets mangled
726 as something starting with `::' rather than `classname::'. */
727 if (newname != NULL)
728 strcat (mangled_name, newname);
729
730 strcat (mangled_name, physname);
731 return (mangled_name);
732 }
733
734 /* See symtab.h. */
735
736 void
737 general_symbol_info::set_demangled_name (const char *name,
738 struct obstack *obstack)
739 {
740 if (language () == language_ada)
741 {
742 if (name == NULL)
743 {
744 ada_mangled = 0;
745 language_specific.obstack = obstack;
746 }
747 else
748 {
749 ada_mangled = 1;
750 language_specific.demangled_name = name;
751 }
752 }
753 else
754 language_specific.demangled_name = name;
755 }
756
757 \f
758 /* Initialize the language dependent portion of a symbol
759 depending upon the language for the symbol. */
760
761 void
762 general_symbol_info::set_language (enum language language,
763 struct obstack *obstack)
764 {
765 m_language = language;
766 if (language == language_cplus
767 || language == language_d
768 || language == language_go
769 || language == language_objc
770 || language == language_fortran)
771 {
772 set_demangled_name (NULL, obstack);
773 }
774 else if (language == language_ada)
775 {
776 gdb_assert (ada_mangled == 0);
777 language_specific.obstack = obstack;
778 }
779 else
780 {
781 memset (&language_specific, 0, sizeof (language_specific));
782 }
783 }
784
785 /* Functions to initialize a symbol's mangled name. */
786
787 /* Objects of this type are stored in the demangled name hash table. */
788 struct demangled_name_entry
789 {
790 demangled_name_entry (gdb::string_view mangled_name)
791 : mangled (mangled_name) {}
792
793 gdb::string_view mangled;
794 enum language language;
795 gdb::unique_xmalloc_ptr<char> demangled;
796 };
797
798 /* Hash function for the demangled name hash. */
799
800 static hashval_t
801 hash_demangled_name_entry (const void *data)
802 {
803 const struct demangled_name_entry *e
804 = (const struct demangled_name_entry *) data;
805
806 return fast_hash (e->mangled.data (), e->mangled.length ());
807 }
808
809 /* Equality function for the demangled name hash. */
810
811 static int
812 eq_demangled_name_entry (const void *a, const void *b)
813 {
814 const struct demangled_name_entry *da
815 = (const struct demangled_name_entry *) a;
816 const struct demangled_name_entry *db
817 = (const struct demangled_name_entry *) b;
818
819 return da->mangled == db->mangled;
820 }
821
822 static void
823 free_demangled_name_entry (void *data)
824 {
825 struct demangled_name_entry *e
826 = (struct demangled_name_entry *) data;
827
828 e->~demangled_name_entry();
829 }
830
831 /* Create the hash table used for demangled names. Each hash entry is
832 a pair of strings; one for the mangled name and one for the demangled
833 name. The entry is hashed via just the mangled name. */
834
835 static void
836 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
837 {
838 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
839 The hash table code will round this up to the next prime number.
840 Choosing a much larger table size wastes memory, and saves only about
841 1% in symbol reading. However, if the minsym count is already
842 initialized (e.g. because symbol name setting was deferred to
843 a background thread) we can initialize the hashtable with a count
844 based on that, because we will almost certainly have at least that
845 many entries. If we have a nonzero number but less than 256,
846 we still stay with 256 to have some space for psymbols, etc. */
847
848 /* htab will expand the table when it is 3/4th full, so we account for that
849 here. +2 to round up. */
850 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
851 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
852
853 per_bfd->demangled_names_hash.reset (htab_create_alloc
854 (count, hash_demangled_name_entry, eq_demangled_name_entry,
855 free_demangled_name_entry, xcalloc, xfree));
856 }
857
858 /* See symtab.h */
859
860 gdb::unique_xmalloc_ptr<char>
861 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
862 const char *mangled)
863 {
864 gdb::unique_xmalloc_ptr<char> demangled;
865 int i;
866
867 if (gsymbol->language () == language_unknown)
868 gsymbol->m_language = language_auto;
869
870 if (gsymbol->language () != language_auto)
871 {
872 const struct language_defn *lang = language_def (gsymbol->language ());
873
874 lang->sniff_from_mangled_name (mangled, &demangled);
875 return demangled;
876 }
877
878 for (i = language_unknown; i < nr_languages; ++i)
879 {
880 enum language l = (enum language) i;
881 const struct language_defn *lang = language_def (l);
882
883 if (lang->sniff_from_mangled_name (mangled, &demangled))
884 {
885 gsymbol->m_language = l;
886 return demangled;
887 }
888 }
889
890 return NULL;
891 }
892
893 /* Set both the mangled and demangled (if any) names for GSYMBOL based
894 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
895 objfile's obstack; but if COPY_NAME is 0 and if NAME is
896 NUL-terminated, then this function assumes that NAME is already
897 correctly saved (either permanently or with a lifetime tied to the
898 objfile), and it will not be copied.
899
900 The hash table corresponding to OBJFILE is used, and the memory
901 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
902 so the pointer can be discarded after calling this function. */
903
904 void
905 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
906 bool copy_name,
907 objfile_per_bfd_storage *per_bfd,
908 gdb::optional<hashval_t> hash)
909 {
910 struct demangled_name_entry **slot;
911
912 if (language () == language_ada)
913 {
914 /* In Ada, we do the symbol lookups using the mangled name, so
915 we can save some space by not storing the demangled name. */
916 if (!copy_name)
917 m_name = linkage_name.data ();
918 else
919 m_name = obstack_strndup (&per_bfd->storage_obstack,
920 linkage_name.data (),
921 linkage_name.length ());
922 set_demangled_name (NULL, &per_bfd->storage_obstack);
923
924 return;
925 }
926
927 if (per_bfd->demangled_names_hash == NULL)
928 create_demangled_names_hash (per_bfd);
929
930 struct demangled_name_entry entry (linkage_name);
931 if (!hash.has_value ())
932 hash = hash_demangled_name_entry (&entry);
933 slot = ((struct demangled_name_entry **)
934 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
935 &entry, *hash, INSERT));
936
937 /* The const_cast is safe because the only reason it is already
938 initialized is if we purposefully set it from a background
939 thread to avoid doing the work here. However, it is still
940 allocated from the heap and needs to be freed by us, just
941 like if we called symbol_find_demangled_name here. If this is
942 nullptr, we call symbol_find_demangled_name below, but we put
943 this smart pointer here to be sure that we don't leak this name. */
944 gdb::unique_xmalloc_ptr<char> demangled_name
945 (const_cast<char *> (language_specific.demangled_name));
946
947 /* If this name is not in the hash table, add it. */
948 if (*slot == NULL
949 /* A C version of the symbol may have already snuck into the table.
950 This happens to, e.g., main.init (__go_init_main). Cope. */
951 || (language () == language_go && (*slot)->demangled == nullptr))
952 {
953 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
954 to true if the string might not be nullterminated. We have to make
955 this copy because demangling needs a nullterminated string. */
956 gdb::string_view linkage_name_copy;
957 if (copy_name)
958 {
959 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
960 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
961 alloc_name[linkage_name.length ()] = '\0';
962
963 linkage_name_copy = gdb::string_view (alloc_name,
964 linkage_name.length ());
965 }
966 else
967 linkage_name_copy = linkage_name;
968
969 if (demangled_name.get () == nullptr)
970 demangled_name
971 = symbol_find_demangled_name (this, linkage_name_copy.data ());
972
973 /* Suppose we have demangled_name==NULL, copy_name==0, and
974 linkage_name_copy==linkage_name. In this case, we already have the
975 mangled name saved, and we don't have a demangled name. So,
976 you might think we could save a little space by not recording
977 this in the hash table at all.
978
979 It turns out that it is actually important to still save such
980 an entry in the hash table, because storing this name gives
981 us better bcache hit rates for partial symbols. */
982 if (!copy_name)
983 {
984 *slot
985 = ((struct demangled_name_entry *)
986 obstack_alloc (&per_bfd->storage_obstack,
987 sizeof (demangled_name_entry)));
988 new (*slot) demangled_name_entry (linkage_name);
989 }
990 else
991 {
992 /* If we must copy the mangled name, put it directly after
993 the struct so we can have a single allocation. */
994 *slot
995 = ((struct demangled_name_entry *)
996 obstack_alloc (&per_bfd->storage_obstack,
997 sizeof (demangled_name_entry)
998 + linkage_name.length () + 1));
999 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
1000 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
1001 mangled_ptr [linkage_name.length ()] = '\0';
1002 new (*slot) demangled_name_entry
1003 (gdb::string_view (mangled_ptr, linkage_name.length ()));
1004 }
1005 (*slot)->demangled = std::move (demangled_name);
1006 (*slot)->language = language ();
1007 }
1008 else if (language () == language_unknown || language () == language_auto)
1009 m_language = (*slot)->language;
1010
1011 m_name = (*slot)->mangled.data ();
1012 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
1013 }
1014
1015 /* See symtab.h. */
1016
1017 const char *
1018 general_symbol_info::natural_name () const
1019 {
1020 switch (language ())
1021 {
1022 case language_cplus:
1023 case language_d:
1024 case language_go:
1025 case language_objc:
1026 case language_fortran:
1027 case language_rust:
1028 if (language_specific.demangled_name != nullptr)
1029 return language_specific.demangled_name;
1030 break;
1031 case language_ada:
1032 return ada_decode_symbol (this);
1033 default:
1034 break;
1035 }
1036 return linkage_name ();
1037 }
1038
1039 /* See symtab.h. */
1040
1041 const char *
1042 general_symbol_info::demangled_name () const
1043 {
1044 const char *dem_name = NULL;
1045
1046 switch (language ())
1047 {
1048 case language_cplus:
1049 case language_d:
1050 case language_go:
1051 case language_objc:
1052 case language_fortran:
1053 case language_rust:
1054 dem_name = language_specific.demangled_name;
1055 break;
1056 case language_ada:
1057 dem_name = ada_decode_symbol (this);
1058 break;
1059 default:
1060 break;
1061 }
1062 return dem_name;
1063 }
1064
1065 /* See symtab.h. */
1066
1067 const char *
1068 general_symbol_info::search_name () const
1069 {
1070 if (language () == language_ada)
1071 return linkage_name ();
1072 else
1073 return natural_name ();
1074 }
1075
1076 /* See symtab.h. */
1077
1078 struct obj_section *
1079 general_symbol_info::obj_section (const struct objfile *objfile) const
1080 {
1081 if (section_index () >= 0)
1082 return &objfile->sections[section_index ()];
1083 return nullptr;
1084 }
1085
1086 /* See symtab.h. */
1087
1088 bool
1089 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1090 const lookup_name_info &name)
1091 {
1092 symbol_name_matcher_ftype *name_match
1093 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1094 return name_match (gsymbol->search_name (), name, NULL);
1095 }
1096
1097 \f
1098
1099 /* Return true if the two sections are the same, or if they could
1100 plausibly be copies of each other, one in an original object
1101 file and another in a separated debug file. */
1102
1103 bool
1104 matching_obj_sections (struct obj_section *obj_first,
1105 struct obj_section *obj_second)
1106 {
1107 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1108 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1109
1110 /* If they're the same section, then they match. */
1111 if (first == second)
1112 return true;
1113
1114 /* If either is NULL, give up. */
1115 if (first == NULL || second == NULL)
1116 return false;
1117
1118 /* This doesn't apply to absolute symbols. */
1119 if (first->owner == NULL || second->owner == NULL)
1120 return false;
1121
1122 /* If they're in the same object file, they must be different sections. */
1123 if (first->owner == second->owner)
1124 return false;
1125
1126 /* Check whether the two sections are potentially corresponding. They must
1127 have the same size, address, and name. We can't compare section indexes,
1128 which would be more reliable, because some sections may have been
1129 stripped. */
1130 if (bfd_section_size (first) != bfd_section_size (second))
1131 return false;
1132
1133 /* In-memory addresses may start at a different offset, relativize them. */
1134 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1135 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1136 return false;
1137
1138 if (bfd_section_name (first) == NULL
1139 || bfd_section_name (second) == NULL
1140 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1141 return false;
1142
1143 /* Otherwise check that they are in corresponding objfiles. */
1144
1145 struct objfile *obj = NULL;
1146 for (objfile *objfile : current_program_space->objfiles ())
1147 if (objfile->obfd == first->owner)
1148 {
1149 obj = objfile;
1150 break;
1151 }
1152 gdb_assert (obj != NULL);
1153
1154 if (obj->separate_debug_objfile != NULL
1155 && obj->separate_debug_objfile->obfd == second->owner)
1156 return true;
1157 if (obj->separate_debug_objfile_backlink != NULL
1158 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1159 return true;
1160
1161 return false;
1162 }
1163
1164 /* See symtab.h. */
1165
1166 void
1167 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1168 {
1169 struct bound_minimal_symbol msymbol;
1170
1171 /* If we know that this is not a text address, return failure. This is
1172 necessary because we loop based on texthigh and textlow, which do
1173 not include the data ranges. */
1174 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1175 if (msymbol.minsym && msymbol.minsym->data_p ())
1176 return;
1177
1178 for (objfile *objfile : current_program_space->objfiles ())
1179 {
1180 struct compunit_symtab *cust
1181 = objfile->find_pc_sect_compunit_symtab (msymbol, pc, section, 0);
1182 if (cust)
1183 return;
1184 }
1185 }
1186 \f
1187 /* Hash function for the symbol cache. */
1188
1189 static unsigned int
1190 hash_symbol_entry (const struct objfile *objfile_context,
1191 const char *name, domain_enum domain)
1192 {
1193 unsigned int hash = (uintptr_t) objfile_context;
1194
1195 if (name != NULL)
1196 hash += htab_hash_string (name);
1197
1198 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1199 to map to the same slot. */
1200 if (domain == STRUCT_DOMAIN)
1201 hash += VAR_DOMAIN * 7;
1202 else
1203 hash += domain * 7;
1204
1205 return hash;
1206 }
1207
1208 /* Equality function for the symbol cache. */
1209
1210 static int
1211 eq_symbol_entry (const struct symbol_cache_slot *slot,
1212 const struct objfile *objfile_context,
1213 const char *name, domain_enum domain)
1214 {
1215 const char *slot_name;
1216 domain_enum slot_domain;
1217
1218 if (slot->state == SYMBOL_SLOT_UNUSED)
1219 return 0;
1220
1221 if (slot->objfile_context != objfile_context)
1222 return 0;
1223
1224 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1225 {
1226 slot_name = slot->value.not_found.name;
1227 slot_domain = slot->value.not_found.domain;
1228 }
1229 else
1230 {
1231 slot_name = slot->value.found.symbol->search_name ();
1232 slot_domain = slot->value.found.symbol->domain ();
1233 }
1234
1235 /* NULL names match. */
1236 if (slot_name == NULL && name == NULL)
1237 {
1238 /* But there's no point in calling symbol_matches_domain in the
1239 SYMBOL_SLOT_FOUND case. */
1240 if (slot_domain != domain)
1241 return 0;
1242 }
1243 else if (slot_name != NULL && name != NULL)
1244 {
1245 /* It's important that we use the same comparison that was done
1246 the first time through. If the slot records a found symbol,
1247 then this means using the symbol name comparison function of
1248 the symbol's language with symbol->search_name (). See
1249 dictionary.c. It also means using symbol_matches_domain for
1250 found symbols. See block.c.
1251
1252 If the slot records a not-found symbol, then require a precise match.
1253 We could still be lax with whitespace like strcmp_iw though. */
1254
1255 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1256 {
1257 if (strcmp (slot_name, name) != 0)
1258 return 0;
1259 if (slot_domain != domain)
1260 return 0;
1261 }
1262 else
1263 {
1264 struct symbol *sym = slot->value.found.symbol;
1265 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1266
1267 if (!symbol_matches_search_name (sym, lookup_name))
1268 return 0;
1269
1270 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1271 return 0;
1272 }
1273 }
1274 else
1275 {
1276 /* Only one name is NULL. */
1277 return 0;
1278 }
1279
1280 return 1;
1281 }
1282
1283 /* Given a cache of size SIZE, return the size of the struct (with variable
1284 length array) in bytes. */
1285
1286 static size_t
1287 symbol_cache_byte_size (unsigned int size)
1288 {
1289 return (sizeof (struct block_symbol_cache)
1290 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1291 }
1292
1293 /* Resize CACHE. */
1294
1295 static void
1296 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1297 {
1298 /* If there's no change in size, don't do anything.
1299 All caches have the same size, so we can just compare with the size
1300 of the global symbols cache. */
1301 if ((cache->global_symbols != NULL
1302 && cache->global_symbols->size == new_size)
1303 || (cache->global_symbols == NULL
1304 && new_size == 0))
1305 return;
1306
1307 destroy_block_symbol_cache (cache->global_symbols);
1308 destroy_block_symbol_cache (cache->static_symbols);
1309
1310 if (new_size == 0)
1311 {
1312 cache->global_symbols = NULL;
1313 cache->static_symbols = NULL;
1314 }
1315 else
1316 {
1317 size_t total_size = symbol_cache_byte_size (new_size);
1318
1319 cache->global_symbols
1320 = (struct block_symbol_cache *) xcalloc (1, total_size);
1321 cache->static_symbols
1322 = (struct block_symbol_cache *) xcalloc (1, total_size);
1323 cache->global_symbols->size = new_size;
1324 cache->static_symbols->size = new_size;
1325 }
1326 }
1327
1328 /* Return the symbol cache of PSPACE.
1329 Create one if it doesn't exist yet. */
1330
1331 static struct symbol_cache *
1332 get_symbol_cache (struct program_space *pspace)
1333 {
1334 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1335
1336 if (cache == NULL)
1337 {
1338 cache = symbol_cache_key.emplace (pspace);
1339 resize_symbol_cache (cache, symbol_cache_size);
1340 }
1341
1342 return cache;
1343 }
1344
1345 /* Set the size of the symbol cache in all program spaces. */
1346
1347 static void
1348 set_symbol_cache_size (unsigned int new_size)
1349 {
1350 for (struct program_space *pspace : program_spaces)
1351 {
1352 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1353
1354 /* The pspace could have been created but not have a cache yet. */
1355 if (cache != NULL)
1356 resize_symbol_cache (cache, new_size);
1357 }
1358 }
1359
1360 /* Called when symbol-cache-size is set. */
1361
1362 static void
1363 set_symbol_cache_size_handler (const char *args, int from_tty,
1364 struct cmd_list_element *c)
1365 {
1366 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1367 {
1368 /* Restore the previous value.
1369 This is the value the "show" command prints. */
1370 new_symbol_cache_size = symbol_cache_size;
1371
1372 error (_("Symbol cache size is too large, max is %u."),
1373 MAX_SYMBOL_CACHE_SIZE);
1374 }
1375 symbol_cache_size = new_symbol_cache_size;
1376
1377 set_symbol_cache_size (symbol_cache_size);
1378 }
1379
1380 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1381 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1382 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1383 failed (and thus this one will too), or NULL if the symbol is not present
1384 in the cache.
1385 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1386 can be used to save the result of a full lookup attempt. */
1387
1388 static struct block_symbol
1389 symbol_cache_lookup (struct symbol_cache *cache,
1390 struct objfile *objfile_context, enum block_enum block,
1391 const char *name, domain_enum domain,
1392 struct block_symbol_cache **bsc_ptr,
1393 struct symbol_cache_slot **slot_ptr)
1394 {
1395 struct block_symbol_cache *bsc;
1396 unsigned int hash;
1397 struct symbol_cache_slot *slot;
1398
1399 if (block == GLOBAL_BLOCK)
1400 bsc = cache->global_symbols;
1401 else
1402 bsc = cache->static_symbols;
1403 if (bsc == NULL)
1404 {
1405 *bsc_ptr = NULL;
1406 *slot_ptr = NULL;
1407 return {};
1408 }
1409
1410 hash = hash_symbol_entry (objfile_context, name, domain);
1411 slot = bsc->symbols + hash % bsc->size;
1412
1413 *bsc_ptr = bsc;
1414 *slot_ptr = slot;
1415
1416 if (eq_symbol_entry (slot, objfile_context, name, domain))
1417 {
1418 if (symbol_lookup_debug)
1419 fprintf_unfiltered (gdb_stdlog,
1420 "%s block symbol cache hit%s for %s, %s\n",
1421 block == GLOBAL_BLOCK ? "Global" : "Static",
1422 slot->state == SYMBOL_SLOT_NOT_FOUND
1423 ? " (not found)" : "",
1424 name, domain_name (domain));
1425 ++bsc->hits;
1426 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1427 return SYMBOL_LOOKUP_FAILED;
1428 return slot->value.found;
1429 }
1430
1431 /* Symbol is not present in the cache. */
1432
1433 if (symbol_lookup_debug)
1434 {
1435 fprintf_unfiltered (gdb_stdlog,
1436 "%s block symbol cache miss for %s, %s\n",
1437 block == GLOBAL_BLOCK ? "Global" : "Static",
1438 name, domain_name (domain));
1439 }
1440 ++bsc->misses;
1441 return {};
1442 }
1443
1444 /* Mark SYMBOL as found in SLOT.
1445 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1446 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1447 necessarily the objfile the symbol was found in. */
1448
1449 static void
1450 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1451 struct symbol_cache_slot *slot,
1452 struct objfile *objfile_context,
1453 struct symbol *symbol,
1454 const struct block *block)
1455 {
1456 if (bsc == NULL)
1457 return;
1458 if (slot->state != SYMBOL_SLOT_UNUSED)
1459 {
1460 ++bsc->collisions;
1461 symbol_cache_clear_slot (slot);
1462 }
1463 slot->state = SYMBOL_SLOT_FOUND;
1464 slot->objfile_context = objfile_context;
1465 slot->value.found.symbol = symbol;
1466 slot->value.found.block = block;
1467 }
1468
1469 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1470 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1471 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1472
1473 static void
1474 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1475 struct symbol_cache_slot *slot,
1476 struct objfile *objfile_context,
1477 const char *name, domain_enum domain)
1478 {
1479 if (bsc == NULL)
1480 return;
1481 if (slot->state != SYMBOL_SLOT_UNUSED)
1482 {
1483 ++bsc->collisions;
1484 symbol_cache_clear_slot (slot);
1485 }
1486 slot->state = SYMBOL_SLOT_NOT_FOUND;
1487 slot->objfile_context = objfile_context;
1488 slot->value.not_found.name = xstrdup (name);
1489 slot->value.not_found.domain = domain;
1490 }
1491
1492 /* Flush the symbol cache of PSPACE. */
1493
1494 static void
1495 symbol_cache_flush (struct program_space *pspace)
1496 {
1497 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1498 int pass;
1499
1500 if (cache == NULL)
1501 return;
1502 if (cache->global_symbols == NULL)
1503 {
1504 gdb_assert (symbol_cache_size == 0);
1505 gdb_assert (cache->static_symbols == NULL);
1506 return;
1507 }
1508
1509 /* If the cache is untouched since the last flush, early exit.
1510 This is important for performance during the startup of a program linked
1511 with 100s (or 1000s) of shared libraries. */
1512 if (cache->global_symbols->misses == 0
1513 && cache->static_symbols->misses == 0)
1514 return;
1515
1516 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1517 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1518
1519 for (pass = 0; pass < 2; ++pass)
1520 {
1521 struct block_symbol_cache *bsc
1522 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1523 unsigned int i;
1524
1525 for (i = 0; i < bsc->size; ++i)
1526 symbol_cache_clear_slot (&bsc->symbols[i]);
1527 }
1528
1529 cache->global_symbols->hits = 0;
1530 cache->global_symbols->misses = 0;
1531 cache->global_symbols->collisions = 0;
1532 cache->static_symbols->hits = 0;
1533 cache->static_symbols->misses = 0;
1534 cache->static_symbols->collisions = 0;
1535 }
1536
1537 /* Dump CACHE. */
1538
1539 static void
1540 symbol_cache_dump (const struct symbol_cache *cache)
1541 {
1542 int pass;
1543
1544 if (cache->global_symbols == NULL)
1545 {
1546 printf_filtered (" <disabled>\n");
1547 return;
1548 }
1549
1550 for (pass = 0; pass < 2; ++pass)
1551 {
1552 const struct block_symbol_cache *bsc
1553 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1554 unsigned int i;
1555
1556 if (pass == 0)
1557 printf_filtered ("Global symbols:\n");
1558 else
1559 printf_filtered ("Static symbols:\n");
1560
1561 for (i = 0; i < bsc->size; ++i)
1562 {
1563 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1564
1565 QUIT;
1566
1567 switch (slot->state)
1568 {
1569 case SYMBOL_SLOT_UNUSED:
1570 break;
1571 case SYMBOL_SLOT_NOT_FOUND:
1572 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1573 host_address_to_string (slot->objfile_context),
1574 slot->value.not_found.name,
1575 domain_name (slot->value.not_found.domain));
1576 break;
1577 case SYMBOL_SLOT_FOUND:
1578 {
1579 struct symbol *found = slot->value.found.symbol;
1580 const struct objfile *context = slot->objfile_context;
1581
1582 printf_filtered (" [%4u] = %s, %s %s\n", i,
1583 host_address_to_string (context),
1584 found->print_name (),
1585 domain_name (found->domain ()));
1586 break;
1587 }
1588 }
1589 }
1590 }
1591 }
1592
1593 /* The "mt print symbol-cache" command. */
1594
1595 static void
1596 maintenance_print_symbol_cache (const char *args, int from_tty)
1597 {
1598 for (struct program_space *pspace : program_spaces)
1599 {
1600 struct symbol_cache *cache;
1601
1602 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1603 pspace->num,
1604 pspace->symfile_object_file != NULL
1605 ? objfile_name (pspace->symfile_object_file)
1606 : "(no object file)");
1607
1608 /* If the cache hasn't been created yet, avoid creating one. */
1609 cache = symbol_cache_key.get (pspace);
1610 if (cache == NULL)
1611 printf_filtered (" <empty>\n");
1612 else
1613 symbol_cache_dump (cache);
1614 }
1615 }
1616
1617 /* The "mt flush-symbol-cache" command. */
1618
1619 static void
1620 maintenance_flush_symbol_cache (const char *args, int from_tty)
1621 {
1622 for (struct program_space *pspace : program_spaces)
1623 {
1624 symbol_cache_flush (pspace);
1625 }
1626 }
1627
1628 /* Print usage statistics of CACHE. */
1629
1630 static void
1631 symbol_cache_stats (struct symbol_cache *cache)
1632 {
1633 int pass;
1634
1635 if (cache->global_symbols == NULL)
1636 {
1637 printf_filtered (" <disabled>\n");
1638 return;
1639 }
1640
1641 for (pass = 0; pass < 2; ++pass)
1642 {
1643 const struct block_symbol_cache *bsc
1644 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1645
1646 QUIT;
1647
1648 if (pass == 0)
1649 printf_filtered ("Global block cache stats:\n");
1650 else
1651 printf_filtered ("Static block cache stats:\n");
1652
1653 printf_filtered (" size: %u\n", bsc->size);
1654 printf_filtered (" hits: %u\n", bsc->hits);
1655 printf_filtered (" misses: %u\n", bsc->misses);
1656 printf_filtered (" collisions: %u\n", bsc->collisions);
1657 }
1658 }
1659
1660 /* The "mt print symbol-cache-statistics" command. */
1661
1662 static void
1663 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1664 {
1665 for (struct program_space *pspace : program_spaces)
1666 {
1667 struct symbol_cache *cache;
1668
1669 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1670 pspace->num,
1671 pspace->symfile_object_file != NULL
1672 ? objfile_name (pspace->symfile_object_file)
1673 : "(no object file)");
1674
1675 /* If the cache hasn't been created yet, avoid creating one. */
1676 cache = symbol_cache_key.get (pspace);
1677 if (cache == NULL)
1678 printf_filtered (" empty, no stats available\n");
1679 else
1680 symbol_cache_stats (cache);
1681 }
1682 }
1683
1684 /* This module's 'new_objfile' observer. */
1685
1686 static void
1687 symtab_new_objfile_observer (struct objfile *objfile)
1688 {
1689 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1690 symbol_cache_flush (current_program_space);
1691 }
1692
1693 /* This module's 'free_objfile' observer. */
1694
1695 static void
1696 symtab_free_objfile_observer (struct objfile *objfile)
1697 {
1698 symbol_cache_flush (objfile->pspace);
1699 }
1700 \f
1701 /* Debug symbols usually don't have section information. We need to dig that
1702 out of the minimal symbols and stash that in the debug symbol. */
1703
1704 void
1705 fixup_section (struct general_symbol_info *ginfo,
1706 CORE_ADDR addr, struct objfile *objfile)
1707 {
1708 struct minimal_symbol *msym;
1709
1710 /* First, check whether a minimal symbol with the same name exists
1711 and points to the same address. The address check is required
1712 e.g. on PowerPC64, where the minimal symbol for a function will
1713 point to the function descriptor, while the debug symbol will
1714 point to the actual function code. */
1715 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1716 objfile);
1717 if (msym)
1718 ginfo->set_section_index (msym->section_index ());
1719 else
1720 {
1721 /* Static, function-local variables do appear in the linker
1722 (minimal) symbols, but are frequently given names that won't
1723 be found via lookup_minimal_symbol(). E.g., it has been
1724 observed in frv-uclinux (ELF) executables that a static,
1725 function-local variable named "foo" might appear in the
1726 linker symbols as "foo.6" or "foo.3". Thus, there is no
1727 point in attempting to extend the lookup-by-name mechanism to
1728 handle this case due to the fact that there can be multiple
1729 names.
1730
1731 So, instead, search the section table when lookup by name has
1732 failed. The ``addr'' and ``endaddr'' fields may have already
1733 been relocated. If so, the relocation offset needs to be
1734 subtracted from these values when performing the comparison.
1735 We unconditionally subtract it, because, when no relocation
1736 has been performed, the value will simply be zero.
1737
1738 The address of the symbol whose section we're fixing up HAS
1739 NOT BEEN adjusted (relocated) yet. It can't have been since
1740 the section isn't yet known and knowing the section is
1741 necessary in order to add the correct relocation value. In
1742 other words, we wouldn't even be in this function (attempting
1743 to compute the section) if it were already known.
1744
1745 Note that it is possible to search the minimal symbols
1746 (subtracting the relocation value if necessary) to find the
1747 matching minimal symbol, but this is overkill and much less
1748 efficient. It is not necessary to find the matching minimal
1749 symbol, only its section.
1750
1751 Note that this technique (of doing a section table search)
1752 can fail when unrelocated section addresses overlap. For
1753 this reason, we still attempt a lookup by name prior to doing
1754 a search of the section table. */
1755
1756 struct obj_section *s;
1757 int fallback = -1;
1758
1759 ALL_OBJFILE_OSECTIONS (objfile, s)
1760 {
1761 int idx = s - objfile->sections;
1762 CORE_ADDR offset = objfile->section_offsets[idx];
1763
1764 if (fallback == -1)
1765 fallback = idx;
1766
1767 if (s->addr () - offset <= addr && addr < s->endaddr () - offset)
1768 {
1769 ginfo->set_section_index (idx);
1770 return;
1771 }
1772 }
1773
1774 /* If we didn't find the section, assume it is in the first
1775 section. If there is no allocated section, then it hardly
1776 matters what we pick, so just pick zero. */
1777 if (fallback == -1)
1778 ginfo->set_section_index (0);
1779 else
1780 ginfo->set_section_index (fallback);
1781 }
1782 }
1783
1784 struct symbol *
1785 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1786 {
1787 CORE_ADDR addr;
1788
1789 if (!sym)
1790 return NULL;
1791
1792 if (!sym->is_objfile_owned ())
1793 return sym;
1794
1795 /* We either have an OBJFILE, or we can get at it from the sym's
1796 symtab. Anything else is a bug. */
1797 gdb_assert (objfile || symbol_symtab (sym));
1798
1799 if (objfile == NULL)
1800 objfile = symbol_objfile (sym);
1801
1802 if (sym->obj_section (objfile) != nullptr)
1803 return sym;
1804
1805 /* We should have an objfile by now. */
1806 gdb_assert (objfile);
1807
1808 switch (sym->aclass ())
1809 {
1810 case LOC_STATIC:
1811 case LOC_LABEL:
1812 addr = SYMBOL_VALUE_ADDRESS (sym);
1813 break;
1814 case LOC_BLOCK:
1815 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1816 break;
1817
1818 default:
1819 /* Nothing else will be listed in the minsyms -- no use looking
1820 it up. */
1821 return sym;
1822 }
1823
1824 fixup_section (sym, addr, objfile);
1825
1826 return sym;
1827 }
1828
1829 /* See symtab.h. */
1830
1831 demangle_for_lookup_info::demangle_for_lookup_info
1832 (const lookup_name_info &lookup_name, language lang)
1833 {
1834 demangle_result_storage storage;
1835
1836 if (lookup_name.ignore_parameters () && lang == language_cplus)
1837 {
1838 gdb::unique_xmalloc_ptr<char> without_params
1839 = cp_remove_params_if_any (lookup_name.c_str (),
1840 lookup_name.completion_mode ());
1841
1842 if (without_params != NULL)
1843 {
1844 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1845 m_demangled_name = demangle_for_lookup (without_params.get (),
1846 lang, storage);
1847 return;
1848 }
1849 }
1850
1851 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1852 m_demangled_name = lookup_name.c_str ();
1853 else
1854 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1855 lang, storage);
1856 }
1857
1858 /* See symtab.h. */
1859
1860 const lookup_name_info &
1861 lookup_name_info::match_any ()
1862 {
1863 /* Lookup any symbol that "" would complete. I.e., this matches all
1864 symbol names. */
1865 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1866 true);
1867
1868 return lookup_name;
1869 }
1870
1871 /* Compute the demangled form of NAME as used by the various symbol
1872 lookup functions. The result can either be the input NAME
1873 directly, or a pointer to a buffer owned by the STORAGE object.
1874
1875 For Ada, this function just returns NAME, unmodified.
1876 Normally, Ada symbol lookups are performed using the encoded name
1877 rather than the demangled name, and so it might seem to make sense
1878 for this function to return an encoded version of NAME.
1879 Unfortunately, we cannot do this, because this function is used in
1880 circumstances where it is not appropriate to try to encode NAME.
1881 For instance, when displaying the frame info, we demangle the name
1882 of each parameter, and then perform a symbol lookup inside our
1883 function using that demangled name. In Ada, certain functions
1884 have internally-generated parameters whose name contain uppercase
1885 characters. Encoding those name would result in those uppercase
1886 characters to become lowercase, and thus cause the symbol lookup
1887 to fail. */
1888
1889 const char *
1890 demangle_for_lookup (const char *name, enum language lang,
1891 demangle_result_storage &storage)
1892 {
1893 /* If we are using C++, D, or Go, demangle the name before doing a
1894 lookup, so we can always binary search. */
1895 if (lang == language_cplus)
1896 {
1897 gdb::unique_xmalloc_ptr<char> demangled_name
1898 = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1899 if (demangled_name != NULL)
1900 return storage.set_malloc_ptr (std::move (demangled_name));
1901
1902 /* If we were given a non-mangled name, canonicalize it
1903 according to the language (so far only for C++). */
1904 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1905 if (canon != nullptr)
1906 return storage.set_malloc_ptr (std::move (canon));
1907 }
1908 else if (lang == language_d)
1909 {
1910 gdb::unique_xmalloc_ptr<char> demangled_name = d_demangle (name, 0);
1911 if (demangled_name != NULL)
1912 return storage.set_malloc_ptr (std::move (demangled_name));
1913 }
1914 else if (lang == language_go)
1915 {
1916 gdb::unique_xmalloc_ptr<char> demangled_name
1917 = language_def (language_go)->demangle_symbol (name, 0);
1918 if (demangled_name != NULL)
1919 return storage.set_malloc_ptr (std::move (demangled_name));
1920 }
1921
1922 return name;
1923 }
1924
1925 /* See symtab.h. */
1926
1927 unsigned int
1928 search_name_hash (enum language language, const char *search_name)
1929 {
1930 return language_def (language)->search_name_hash (search_name);
1931 }
1932
1933 /* See symtab.h.
1934
1935 This function (or rather its subordinates) have a bunch of loops and
1936 it would seem to be attractive to put in some QUIT's (though I'm not really
1937 sure whether it can run long enough to be really important). But there
1938 are a few calls for which it would appear to be bad news to quit
1939 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1940 that there is C++ code below which can error(), but that probably
1941 doesn't affect these calls since they are looking for a known
1942 variable and thus can probably assume it will never hit the C++
1943 code). */
1944
1945 struct block_symbol
1946 lookup_symbol_in_language (const char *name, const struct block *block,
1947 const domain_enum domain, enum language lang,
1948 struct field_of_this_result *is_a_field_of_this)
1949 {
1950 demangle_result_storage storage;
1951 const char *modified_name = demangle_for_lookup (name, lang, storage);
1952
1953 return lookup_symbol_aux (modified_name,
1954 symbol_name_match_type::FULL,
1955 block, domain, lang,
1956 is_a_field_of_this);
1957 }
1958
1959 /* See symtab.h. */
1960
1961 struct block_symbol
1962 lookup_symbol (const char *name, const struct block *block,
1963 domain_enum domain,
1964 struct field_of_this_result *is_a_field_of_this)
1965 {
1966 return lookup_symbol_in_language (name, block, domain,
1967 current_language->la_language,
1968 is_a_field_of_this);
1969 }
1970
1971 /* See symtab.h. */
1972
1973 struct block_symbol
1974 lookup_symbol_search_name (const char *search_name, const struct block *block,
1975 domain_enum domain)
1976 {
1977 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1978 block, domain, language_asm, NULL);
1979 }
1980
1981 /* See symtab.h. */
1982
1983 struct block_symbol
1984 lookup_language_this (const struct language_defn *lang,
1985 const struct block *block)
1986 {
1987 if (lang->name_of_this () == NULL || block == NULL)
1988 return {};
1989
1990 if (symbol_lookup_debug > 1)
1991 {
1992 struct objfile *objfile = block_objfile (block);
1993
1994 fprintf_unfiltered (gdb_stdlog,
1995 "lookup_language_this (%s, %s (objfile %s))",
1996 lang->name (), host_address_to_string (block),
1997 objfile_debug_name (objfile));
1998 }
1999
2000 while (block)
2001 {
2002 struct symbol *sym;
2003
2004 sym = block_lookup_symbol (block, lang->name_of_this (),
2005 symbol_name_match_type::SEARCH_NAME,
2006 VAR_DOMAIN);
2007 if (sym != NULL)
2008 {
2009 if (symbol_lookup_debug > 1)
2010 {
2011 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
2012 sym->print_name (),
2013 host_address_to_string (sym),
2014 host_address_to_string (block));
2015 }
2016 return (struct block_symbol) {sym, block};
2017 }
2018 if (BLOCK_FUNCTION (block))
2019 break;
2020 block = BLOCK_SUPERBLOCK (block);
2021 }
2022
2023 if (symbol_lookup_debug > 1)
2024 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2025 return {};
2026 }
2027
2028 /* Given TYPE, a structure/union,
2029 return 1 if the component named NAME from the ultimate target
2030 structure/union is defined, otherwise, return 0. */
2031
2032 static int
2033 check_field (struct type *type, const char *name,
2034 struct field_of_this_result *is_a_field_of_this)
2035 {
2036 int i;
2037
2038 /* The type may be a stub. */
2039 type = check_typedef (type);
2040
2041 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
2042 {
2043 const char *t_field_name = type->field (i).name ();
2044
2045 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2046 {
2047 is_a_field_of_this->type = type;
2048 is_a_field_of_this->field = &type->field (i);
2049 return 1;
2050 }
2051 }
2052
2053 /* C++: If it was not found as a data field, then try to return it
2054 as a pointer to a method. */
2055
2056 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2057 {
2058 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2059 {
2060 is_a_field_of_this->type = type;
2061 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2062 return 1;
2063 }
2064 }
2065
2066 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2067 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2068 return 1;
2069
2070 return 0;
2071 }
2072
2073 /* Behave like lookup_symbol except that NAME is the natural name
2074 (e.g., demangled name) of the symbol that we're looking for. */
2075
2076 static struct block_symbol
2077 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2078 const struct block *block,
2079 const domain_enum domain, enum language language,
2080 struct field_of_this_result *is_a_field_of_this)
2081 {
2082 struct block_symbol result;
2083 const struct language_defn *langdef;
2084
2085 if (symbol_lookup_debug)
2086 {
2087 struct objfile *objfile = (block == nullptr
2088 ? nullptr : block_objfile (block));
2089
2090 fprintf_unfiltered (gdb_stdlog,
2091 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2092 name, host_address_to_string (block),
2093 objfile != NULL
2094 ? objfile_debug_name (objfile) : "NULL",
2095 domain_name (domain), language_str (language));
2096 }
2097
2098 /* Make sure we do something sensible with is_a_field_of_this, since
2099 the callers that set this parameter to some non-null value will
2100 certainly use it later. If we don't set it, the contents of
2101 is_a_field_of_this are undefined. */
2102 if (is_a_field_of_this != NULL)
2103 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2104
2105 /* Search specified block and its superiors. Don't search
2106 STATIC_BLOCK or GLOBAL_BLOCK. */
2107
2108 result = lookup_local_symbol (name, match_type, block, domain, language);
2109 if (result.symbol != NULL)
2110 {
2111 if (symbol_lookup_debug)
2112 {
2113 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2114 host_address_to_string (result.symbol));
2115 }
2116 return result;
2117 }
2118
2119 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2120 check to see if NAME is a field of `this'. */
2121
2122 langdef = language_def (language);
2123
2124 /* Don't do this check if we are searching for a struct. It will
2125 not be found by check_field, but will be found by other
2126 means. */
2127 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2128 {
2129 result = lookup_language_this (langdef, block);
2130
2131 if (result.symbol)
2132 {
2133 struct type *t = result.symbol->type ();
2134
2135 /* I'm not really sure that type of this can ever
2136 be typedefed; just be safe. */
2137 t = check_typedef (t);
2138 if (t->is_pointer_or_reference ())
2139 t = TYPE_TARGET_TYPE (t);
2140
2141 if (t->code () != TYPE_CODE_STRUCT
2142 && t->code () != TYPE_CODE_UNION)
2143 error (_("Internal error: `%s' is not an aggregate"),
2144 langdef->name_of_this ());
2145
2146 if (check_field (t, name, is_a_field_of_this))
2147 {
2148 if (symbol_lookup_debug)
2149 {
2150 fprintf_unfiltered (gdb_stdlog,
2151 "lookup_symbol_aux (...) = NULL\n");
2152 }
2153 return {};
2154 }
2155 }
2156 }
2157
2158 /* Now do whatever is appropriate for LANGUAGE to look
2159 up static and global variables. */
2160
2161 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2162 if (result.symbol != NULL)
2163 {
2164 if (symbol_lookup_debug)
2165 {
2166 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2167 host_address_to_string (result.symbol));
2168 }
2169 return result;
2170 }
2171
2172 /* Now search all static file-level symbols. Not strictly correct,
2173 but more useful than an error. */
2174
2175 result = lookup_static_symbol (name, domain);
2176 if (symbol_lookup_debug)
2177 {
2178 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2179 result.symbol != NULL
2180 ? host_address_to_string (result.symbol)
2181 : "NULL");
2182 }
2183 return result;
2184 }
2185
2186 /* Check to see if the symbol is defined in BLOCK or its superiors.
2187 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2188
2189 static struct block_symbol
2190 lookup_local_symbol (const char *name,
2191 symbol_name_match_type match_type,
2192 const struct block *block,
2193 const domain_enum domain,
2194 enum language language)
2195 {
2196 struct symbol *sym;
2197 const struct block *static_block = block_static_block (block);
2198 const char *scope = block_scope (block);
2199
2200 /* Check if either no block is specified or it's a global block. */
2201
2202 if (static_block == NULL)
2203 return {};
2204
2205 while (block != static_block)
2206 {
2207 sym = lookup_symbol_in_block (name, match_type, block, domain);
2208 if (sym != NULL)
2209 return (struct block_symbol) {sym, block};
2210
2211 if (language == language_cplus || language == language_fortran)
2212 {
2213 struct block_symbol blocksym
2214 = cp_lookup_symbol_imports_or_template (scope, name, block,
2215 domain);
2216
2217 if (blocksym.symbol != NULL)
2218 return blocksym;
2219 }
2220
2221 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2222 break;
2223 block = BLOCK_SUPERBLOCK (block);
2224 }
2225
2226 /* We've reached the end of the function without finding a result. */
2227
2228 return {};
2229 }
2230
2231 /* See symtab.h. */
2232
2233 struct symbol *
2234 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2235 const struct block *block,
2236 const domain_enum domain)
2237 {
2238 struct symbol *sym;
2239
2240 if (symbol_lookup_debug > 1)
2241 {
2242 struct objfile *objfile = (block == nullptr
2243 ? nullptr : block_objfile (block));
2244
2245 fprintf_unfiltered (gdb_stdlog,
2246 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2247 name, host_address_to_string (block),
2248 objfile_debug_name (objfile),
2249 domain_name (domain));
2250 }
2251
2252 sym = block_lookup_symbol (block, name, match_type, domain);
2253 if (sym)
2254 {
2255 if (symbol_lookup_debug > 1)
2256 {
2257 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2258 host_address_to_string (sym));
2259 }
2260 return fixup_symbol_section (sym, NULL);
2261 }
2262
2263 if (symbol_lookup_debug > 1)
2264 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2265 return NULL;
2266 }
2267
2268 /* See symtab.h. */
2269
2270 struct block_symbol
2271 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2272 enum block_enum block_index,
2273 const char *name,
2274 const domain_enum domain)
2275 {
2276 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2277
2278 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2279 {
2280 struct block_symbol result
2281 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2282
2283 if (result.symbol != nullptr)
2284 return result;
2285 }
2286
2287 return {};
2288 }
2289
2290 /* Check to see if the symbol is defined in one of the OBJFILE's
2291 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2292 depending on whether or not we want to search global symbols or
2293 static symbols. */
2294
2295 static struct block_symbol
2296 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2297 enum block_enum block_index, const char *name,
2298 const domain_enum domain)
2299 {
2300 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2301
2302 if (symbol_lookup_debug > 1)
2303 {
2304 fprintf_unfiltered (gdb_stdlog,
2305 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2306 objfile_debug_name (objfile),
2307 block_index == GLOBAL_BLOCK
2308 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2309 name, domain_name (domain));
2310 }
2311
2312 struct block_symbol other;
2313 other.symbol = NULL;
2314 for (compunit_symtab *cust : objfile->compunits ())
2315 {
2316 const struct blockvector *bv;
2317 const struct block *block;
2318 struct block_symbol result;
2319
2320 bv = cust->blockvector ();
2321 block = BLOCKVECTOR_BLOCK (bv, block_index);
2322 result.symbol = block_lookup_symbol_primary (block, name, domain);
2323 result.block = block;
2324 if (result.symbol == NULL)
2325 continue;
2326 if (best_symbol (result.symbol, domain))
2327 {
2328 other = result;
2329 break;
2330 }
2331 if (symbol_matches_domain (result.symbol->language (),
2332 result.symbol->domain (), domain))
2333 {
2334 struct symbol *better
2335 = better_symbol (other.symbol, result.symbol, domain);
2336 if (better != other.symbol)
2337 {
2338 other.symbol = better;
2339 other.block = block;
2340 }
2341 }
2342 }
2343
2344 if (other.symbol != NULL)
2345 {
2346 if (symbol_lookup_debug > 1)
2347 {
2348 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2349 host_address_to_string (other.symbol),
2350 host_address_to_string (other.block));
2351 }
2352 other.symbol = fixup_symbol_section (other.symbol, objfile);
2353 return other;
2354 }
2355
2356 if (symbol_lookup_debug > 1)
2357 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2358 return {};
2359 }
2360
2361 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2362 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2363 and all associated separate debug objfiles.
2364
2365 Normally we only look in OBJFILE, and not any separate debug objfiles
2366 because the outer loop will cause them to be searched too. This case is
2367 different. Here we're called from search_symbols where it will only
2368 call us for the objfile that contains a matching minsym. */
2369
2370 static struct block_symbol
2371 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2372 const char *linkage_name,
2373 domain_enum domain)
2374 {
2375 enum language lang = current_language->la_language;
2376 struct objfile *main_objfile;
2377
2378 demangle_result_storage storage;
2379 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2380
2381 if (objfile->separate_debug_objfile_backlink)
2382 main_objfile = objfile->separate_debug_objfile_backlink;
2383 else
2384 main_objfile = objfile;
2385
2386 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2387 {
2388 struct block_symbol result;
2389
2390 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2391 modified_name, domain);
2392 if (result.symbol == NULL)
2393 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2394 modified_name, domain);
2395 if (result.symbol != NULL)
2396 return result;
2397 }
2398
2399 return {};
2400 }
2401
2402 /* A helper function that throws an exception when a symbol was found
2403 in a psymtab but not in a symtab. */
2404
2405 static void ATTRIBUTE_NORETURN
2406 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2407 struct compunit_symtab *cust)
2408 {
2409 error (_("\
2410 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2411 %s may be an inlined function, or may be a template function\n \
2412 (if a template, try specifying an instantiation: %s<type>)."),
2413 block_index == GLOBAL_BLOCK ? "global" : "static",
2414 name,
2415 symtab_to_filename_for_display (cust->primary_filetab ()),
2416 name, name);
2417 }
2418
2419 /* A helper function for various lookup routines that interfaces with
2420 the "quick" symbol table functions. */
2421
2422 static struct block_symbol
2423 lookup_symbol_via_quick_fns (struct objfile *objfile,
2424 enum block_enum block_index, const char *name,
2425 const domain_enum domain)
2426 {
2427 struct compunit_symtab *cust;
2428 const struct blockvector *bv;
2429 const struct block *block;
2430 struct block_symbol result;
2431
2432 if (symbol_lookup_debug > 1)
2433 {
2434 fprintf_unfiltered (gdb_stdlog,
2435 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2436 objfile_debug_name (objfile),
2437 block_index == GLOBAL_BLOCK
2438 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2439 name, domain_name (domain));
2440 }
2441
2442 cust = objfile->lookup_symbol (block_index, name, domain);
2443 if (cust == NULL)
2444 {
2445 if (symbol_lookup_debug > 1)
2446 {
2447 fprintf_unfiltered (gdb_stdlog,
2448 "lookup_symbol_via_quick_fns (...) = NULL\n");
2449 }
2450 return {};
2451 }
2452
2453 bv = cust->blockvector ();
2454 block = BLOCKVECTOR_BLOCK (bv, block_index);
2455 result.symbol = block_lookup_symbol (block, name,
2456 symbol_name_match_type::FULL, domain);
2457 if (result.symbol == NULL)
2458 error_in_psymtab_expansion (block_index, name, cust);
2459
2460 if (symbol_lookup_debug > 1)
2461 {
2462 fprintf_unfiltered (gdb_stdlog,
2463 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2464 host_address_to_string (result.symbol),
2465 host_address_to_string (block));
2466 }
2467
2468 result.symbol = fixup_symbol_section (result.symbol, objfile);
2469 result.block = block;
2470 return result;
2471 }
2472
2473 /* See language.h. */
2474
2475 struct block_symbol
2476 language_defn::lookup_symbol_nonlocal (const char *name,
2477 const struct block *block,
2478 const domain_enum domain) const
2479 {
2480 struct block_symbol result;
2481
2482 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2483 the current objfile. Searching the current objfile first is useful
2484 for both matching user expectations as well as performance. */
2485
2486 result = lookup_symbol_in_static_block (name, block, domain);
2487 if (result.symbol != NULL)
2488 return result;
2489
2490 /* If we didn't find a definition for a builtin type in the static block,
2491 search for it now. This is actually the right thing to do and can be
2492 a massive performance win. E.g., when debugging a program with lots of
2493 shared libraries we could search all of them only to find out the
2494 builtin type isn't defined in any of them. This is common for types
2495 like "void". */
2496 if (domain == VAR_DOMAIN)
2497 {
2498 struct gdbarch *gdbarch;
2499
2500 if (block == NULL)
2501 gdbarch = target_gdbarch ();
2502 else
2503 gdbarch = block_gdbarch (block);
2504 result.symbol = language_lookup_primitive_type_as_symbol (this,
2505 gdbarch, name);
2506 result.block = NULL;
2507 if (result.symbol != NULL)
2508 return result;
2509 }
2510
2511 return lookup_global_symbol (name, block, domain);
2512 }
2513
2514 /* See symtab.h. */
2515
2516 struct block_symbol
2517 lookup_symbol_in_static_block (const char *name,
2518 const struct block *block,
2519 const domain_enum domain)
2520 {
2521 const struct block *static_block = block_static_block (block);
2522 struct symbol *sym;
2523
2524 if (static_block == NULL)
2525 return {};
2526
2527 if (symbol_lookup_debug)
2528 {
2529 struct objfile *objfile = (block == nullptr
2530 ? nullptr : block_objfile (block));
2531
2532 fprintf_unfiltered (gdb_stdlog,
2533 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2534 " %s)\n",
2535 name,
2536 host_address_to_string (block),
2537 objfile_debug_name (objfile),
2538 domain_name (domain));
2539 }
2540
2541 sym = lookup_symbol_in_block (name,
2542 symbol_name_match_type::FULL,
2543 static_block, domain);
2544 if (symbol_lookup_debug)
2545 {
2546 fprintf_unfiltered (gdb_stdlog,
2547 "lookup_symbol_in_static_block (...) = %s\n",
2548 sym != NULL ? host_address_to_string (sym) : "NULL");
2549 }
2550 return (struct block_symbol) {sym, static_block};
2551 }
2552
2553 /* Perform the standard symbol lookup of NAME in OBJFILE:
2554 1) First search expanded symtabs, and if not found
2555 2) Search the "quick" symtabs (partial or .gdb_index).
2556 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2557
2558 static struct block_symbol
2559 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2560 const char *name, const domain_enum domain)
2561 {
2562 struct block_symbol result;
2563
2564 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2565
2566 if (symbol_lookup_debug)
2567 {
2568 fprintf_unfiltered (gdb_stdlog,
2569 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2570 objfile_debug_name (objfile),
2571 block_index == GLOBAL_BLOCK
2572 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2573 name, domain_name (domain));
2574 }
2575
2576 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2577 name, domain);
2578 if (result.symbol != NULL)
2579 {
2580 if (symbol_lookup_debug)
2581 {
2582 fprintf_unfiltered (gdb_stdlog,
2583 "lookup_symbol_in_objfile (...) = %s"
2584 " (in symtabs)\n",
2585 host_address_to_string (result.symbol));
2586 }
2587 return result;
2588 }
2589
2590 result = lookup_symbol_via_quick_fns (objfile, block_index,
2591 name, domain);
2592 if (symbol_lookup_debug)
2593 {
2594 fprintf_unfiltered (gdb_stdlog,
2595 "lookup_symbol_in_objfile (...) = %s%s\n",
2596 result.symbol != NULL
2597 ? host_address_to_string (result.symbol)
2598 : "NULL",
2599 result.symbol != NULL ? " (via quick fns)" : "");
2600 }
2601 return result;
2602 }
2603
2604 /* Find the language for partial symbol with NAME. */
2605
2606 static enum language
2607 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2608 {
2609 for (objfile *objfile : current_program_space->objfiles ())
2610 {
2611 bool symbol_found_p;
2612 enum language lang
2613 = objfile->lookup_global_symbol_language (name, domain, &symbol_found_p);
2614 if (symbol_found_p)
2615 return lang;
2616 }
2617
2618 return language_unknown;
2619 }
2620
2621 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2622
2623 struct global_or_static_sym_lookup_data
2624 {
2625 /* The name of the symbol we are searching for. */
2626 const char *name;
2627
2628 /* The domain to use for our search. */
2629 domain_enum domain;
2630
2631 /* The block index in which to search. */
2632 enum block_enum block_index;
2633
2634 /* The field where the callback should store the symbol if found.
2635 It should be initialized to {NULL, NULL} before the search is started. */
2636 struct block_symbol result;
2637 };
2638
2639 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2640 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2641 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2642 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2643
2644 static int
2645 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2646 void *cb_data)
2647 {
2648 struct global_or_static_sym_lookup_data *data =
2649 (struct global_or_static_sym_lookup_data *) cb_data;
2650
2651 gdb_assert (data->result.symbol == NULL
2652 && data->result.block == NULL);
2653
2654 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2655 data->name, data->domain);
2656
2657 /* If we found a match, tell the iterator to stop. Otherwise,
2658 keep going. */
2659 return (data->result.symbol != NULL);
2660 }
2661
2662 /* This function contains the common code of lookup_{global,static}_symbol.
2663 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2664 the objfile to start the lookup in. */
2665
2666 static struct block_symbol
2667 lookup_global_or_static_symbol (const char *name,
2668 enum block_enum block_index,
2669 struct objfile *objfile,
2670 const domain_enum domain)
2671 {
2672 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2673 struct block_symbol result;
2674 struct global_or_static_sym_lookup_data lookup_data;
2675 struct block_symbol_cache *bsc;
2676 struct symbol_cache_slot *slot;
2677
2678 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2679 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2680
2681 /* First see if we can find the symbol in the cache.
2682 This works because we use the current objfile to qualify the lookup. */
2683 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2684 &bsc, &slot);
2685 if (result.symbol != NULL)
2686 {
2687 if (SYMBOL_LOOKUP_FAILED_P (result))
2688 return {};
2689 return result;
2690 }
2691
2692 /* Do a global search (of global blocks, heh). */
2693 if (result.symbol == NULL)
2694 {
2695 memset (&lookup_data, 0, sizeof (lookup_data));
2696 lookup_data.name = name;
2697 lookup_data.block_index = block_index;
2698 lookup_data.domain = domain;
2699 gdbarch_iterate_over_objfiles_in_search_order
2700 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2701 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2702 result = lookup_data.result;
2703 }
2704
2705 if (result.symbol != NULL)
2706 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2707 else
2708 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2709
2710 return result;
2711 }
2712
2713 /* See symtab.h. */
2714
2715 struct block_symbol
2716 lookup_static_symbol (const char *name, const domain_enum domain)
2717 {
2718 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2719 }
2720
2721 /* See symtab.h. */
2722
2723 struct block_symbol
2724 lookup_global_symbol (const char *name,
2725 const struct block *block,
2726 const domain_enum domain)
2727 {
2728 /* If a block was passed in, we want to search the corresponding
2729 global block first. This yields "more expected" behavior, and is
2730 needed to support 'FILENAME'::VARIABLE lookups. */
2731 const struct block *global_block = block_global_block (block);
2732 symbol *sym = NULL;
2733 if (global_block != nullptr)
2734 {
2735 sym = lookup_symbol_in_block (name,
2736 symbol_name_match_type::FULL,
2737 global_block, domain);
2738 if (sym != NULL && best_symbol (sym, domain))
2739 return { sym, global_block };
2740 }
2741
2742 struct objfile *objfile = nullptr;
2743 if (block != nullptr)
2744 {
2745 objfile = block_objfile (block);
2746 if (objfile->separate_debug_objfile_backlink != nullptr)
2747 objfile = objfile->separate_debug_objfile_backlink;
2748 }
2749
2750 block_symbol bs
2751 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2752 if (better_symbol (sym, bs.symbol, domain) == sym)
2753 return { sym, global_block };
2754 else
2755 return bs;
2756 }
2757
2758 bool
2759 symbol_matches_domain (enum language symbol_language,
2760 domain_enum symbol_domain,
2761 domain_enum domain)
2762 {
2763 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2764 Similarly, any Ada type declaration implicitly defines a typedef. */
2765 if (symbol_language == language_cplus
2766 || symbol_language == language_d
2767 || symbol_language == language_ada
2768 || symbol_language == language_rust)
2769 {
2770 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2771 && symbol_domain == STRUCT_DOMAIN)
2772 return true;
2773 }
2774 /* For all other languages, strict match is required. */
2775 return (symbol_domain == domain);
2776 }
2777
2778 /* See symtab.h. */
2779
2780 struct type *
2781 lookup_transparent_type (const char *name)
2782 {
2783 return current_language->lookup_transparent_type (name);
2784 }
2785
2786 /* A helper for basic_lookup_transparent_type that interfaces with the
2787 "quick" symbol table functions. */
2788
2789 static struct type *
2790 basic_lookup_transparent_type_quick (struct objfile *objfile,
2791 enum block_enum block_index,
2792 const char *name)
2793 {
2794 struct compunit_symtab *cust;
2795 const struct blockvector *bv;
2796 const struct block *block;
2797 struct symbol *sym;
2798
2799 cust = objfile->lookup_symbol (block_index, name, STRUCT_DOMAIN);
2800 if (cust == NULL)
2801 return NULL;
2802
2803 bv = cust->blockvector ();
2804 block = BLOCKVECTOR_BLOCK (bv, block_index);
2805 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2806 block_find_non_opaque_type, NULL);
2807 if (sym == NULL)
2808 error_in_psymtab_expansion (block_index, name, cust);
2809 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2810 return sym->type ();
2811 }
2812
2813 /* Subroutine of basic_lookup_transparent_type to simplify it.
2814 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2815 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2816
2817 static struct type *
2818 basic_lookup_transparent_type_1 (struct objfile *objfile,
2819 enum block_enum block_index,
2820 const char *name)
2821 {
2822 const struct blockvector *bv;
2823 const struct block *block;
2824 const struct symbol *sym;
2825
2826 for (compunit_symtab *cust : objfile->compunits ())
2827 {
2828 bv = cust->blockvector ();
2829 block = BLOCKVECTOR_BLOCK (bv, block_index);
2830 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2831 block_find_non_opaque_type, NULL);
2832 if (sym != NULL)
2833 {
2834 gdb_assert (!TYPE_IS_OPAQUE (sym->type ()));
2835 return sym->type ();
2836 }
2837 }
2838
2839 return NULL;
2840 }
2841
2842 /* The standard implementation of lookup_transparent_type. This code
2843 was modeled on lookup_symbol -- the parts not relevant to looking
2844 up types were just left out. In particular it's assumed here that
2845 types are available in STRUCT_DOMAIN and only in file-static or
2846 global blocks. */
2847
2848 struct type *
2849 basic_lookup_transparent_type (const char *name)
2850 {
2851 struct type *t;
2852
2853 /* Now search all the global symbols. Do the symtab's first, then
2854 check the psymtab's. If a psymtab indicates the existence
2855 of the desired name as a global, then do psymtab-to-symtab
2856 conversion on the fly and return the found symbol. */
2857
2858 for (objfile *objfile : current_program_space->objfiles ())
2859 {
2860 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2861 if (t)
2862 return t;
2863 }
2864
2865 for (objfile *objfile : current_program_space->objfiles ())
2866 {
2867 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2868 if (t)
2869 return t;
2870 }
2871
2872 /* Now search the static file-level symbols.
2873 Not strictly correct, but more useful than an error.
2874 Do the symtab's first, then
2875 check the psymtab's. If a psymtab indicates the existence
2876 of the desired name as a file-level static, then do psymtab-to-symtab
2877 conversion on the fly and return the found symbol. */
2878
2879 for (objfile *objfile : current_program_space->objfiles ())
2880 {
2881 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2882 if (t)
2883 return t;
2884 }
2885
2886 for (objfile *objfile : current_program_space->objfiles ())
2887 {
2888 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2889 if (t)
2890 return t;
2891 }
2892
2893 return (struct type *) 0;
2894 }
2895
2896 /* See symtab.h. */
2897
2898 bool
2899 iterate_over_symbols (const struct block *block,
2900 const lookup_name_info &name,
2901 const domain_enum domain,
2902 gdb::function_view<symbol_found_callback_ftype> callback)
2903 {
2904 struct block_iterator iter;
2905 struct symbol *sym;
2906
2907 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2908 {
2909 if (symbol_matches_domain (sym->language (), sym->domain (), domain))
2910 {
2911 struct block_symbol block_sym = {sym, block};
2912
2913 if (!callback (&block_sym))
2914 return false;
2915 }
2916 }
2917 return true;
2918 }
2919
2920 /* See symtab.h. */
2921
2922 bool
2923 iterate_over_symbols_terminated
2924 (const struct block *block,
2925 const lookup_name_info &name,
2926 const domain_enum domain,
2927 gdb::function_view<symbol_found_callback_ftype> callback)
2928 {
2929 if (!iterate_over_symbols (block, name, domain, callback))
2930 return false;
2931 struct block_symbol block_sym = {nullptr, block};
2932 return callback (&block_sym);
2933 }
2934
2935 /* Find the compunit symtab associated with PC and SECTION.
2936 This will read in debug info as necessary. */
2937
2938 struct compunit_symtab *
2939 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2940 {
2941 struct compunit_symtab *best_cust = NULL;
2942 CORE_ADDR best_cust_range = 0;
2943 struct bound_minimal_symbol msymbol;
2944
2945 /* If we know that this is not a text address, return failure. This is
2946 necessary because we loop based on the block's high and low code
2947 addresses, which do not include the data ranges, and because
2948 we call find_pc_sect_psymtab which has a similar restriction based
2949 on the partial_symtab's texthigh and textlow. */
2950 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2951 if (msymbol.minsym && msymbol.minsym->data_p ())
2952 return NULL;
2953
2954 /* Search all symtabs for the one whose file contains our address, and which
2955 is the smallest of all the ones containing the address. This is designed
2956 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2957 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2958 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2959
2960 This happens for native ecoff format, where code from included files
2961 gets its own symtab. The symtab for the included file should have
2962 been read in already via the dependency mechanism.
2963 It might be swifter to create several symtabs with the same name
2964 like xcoff does (I'm not sure).
2965
2966 It also happens for objfiles that have their functions reordered.
2967 For these, the symtab we are looking for is not necessarily read in. */
2968
2969 for (objfile *obj_file : current_program_space->objfiles ())
2970 {
2971 for (compunit_symtab *cust : obj_file->compunits ())
2972 {
2973 const struct blockvector *bv = cust->blockvector ();
2974 const struct block *global_block
2975 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2976 CORE_ADDR start = BLOCK_START (global_block);
2977 CORE_ADDR end = BLOCK_END (global_block);
2978 bool in_range_p = start <= pc && pc < end;
2979 if (!in_range_p)
2980 continue;
2981
2982 if (BLOCKVECTOR_MAP (bv))
2983 {
2984 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2985 continue;
2986
2987 return cust;
2988 }
2989
2990 CORE_ADDR range = end - start;
2991 if (best_cust != nullptr
2992 && range >= best_cust_range)
2993 /* Cust doesn't have a smaller range than best_cust, skip it. */
2994 continue;
2995
2996 /* For an objfile that has its functions reordered,
2997 find_pc_psymtab will find the proper partial symbol table
2998 and we simply return its corresponding symtab. */
2999 /* In order to better support objfiles that contain both
3000 stabs and coff debugging info, we continue on if a psymtab
3001 can't be found. */
3002 if ((obj_file->flags & OBJF_REORDERED) != 0)
3003 {
3004 struct compunit_symtab *result;
3005
3006 result
3007 = obj_file->find_pc_sect_compunit_symtab (msymbol,
3008 pc,
3009 section,
3010 0);
3011 if (result != NULL)
3012 return result;
3013 }
3014
3015 if (section != 0)
3016 {
3017 struct symbol *sym = NULL;
3018 struct block_iterator iter;
3019
3020 for (int b_index = GLOBAL_BLOCK;
3021 b_index <= STATIC_BLOCK && sym == NULL;
3022 ++b_index)
3023 {
3024 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
3025 ALL_BLOCK_SYMBOLS (b, iter, sym)
3026 {
3027 fixup_symbol_section (sym, obj_file);
3028 if (matching_obj_sections (sym->obj_section (obj_file),
3029 section))
3030 break;
3031 }
3032 }
3033 if (sym == NULL)
3034 continue; /* No symbol in this symtab matches
3035 section. */
3036 }
3037
3038 /* Cust is best found sofar, save it. */
3039 best_cust = cust;
3040 best_cust_range = range;
3041 }
3042 }
3043
3044 if (best_cust != NULL)
3045 return best_cust;
3046
3047 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
3048
3049 for (objfile *objf : current_program_space->objfiles ())
3050 {
3051 struct compunit_symtab *result
3052 = objf->find_pc_sect_compunit_symtab (msymbol, pc, section, 1);
3053 if (result != NULL)
3054 return result;
3055 }
3056
3057 return NULL;
3058 }
3059
3060 /* Find the compunit symtab associated with PC.
3061 This will read in debug info as necessary.
3062 Backward compatibility, no section. */
3063
3064 struct compunit_symtab *
3065 find_pc_compunit_symtab (CORE_ADDR pc)
3066 {
3067 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3068 }
3069
3070 /* See symtab.h. */
3071
3072 struct symbol *
3073 find_symbol_at_address (CORE_ADDR address)
3074 {
3075 /* A helper function to search a given symtab for a symbol matching
3076 ADDR. */
3077 auto search_symtab = [] (compunit_symtab *symtab, CORE_ADDR addr) -> symbol *
3078 {
3079 const struct blockvector *bv = symtab->blockvector ();
3080
3081 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3082 {
3083 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3084 struct block_iterator iter;
3085 struct symbol *sym;
3086
3087 ALL_BLOCK_SYMBOLS (b, iter, sym)
3088 {
3089 if (sym->aclass () == LOC_STATIC
3090 && SYMBOL_VALUE_ADDRESS (sym) == addr)
3091 return sym;
3092 }
3093 }
3094 return nullptr;
3095 };
3096
3097 for (objfile *objfile : current_program_space->objfiles ())
3098 {
3099 /* If this objfile was read with -readnow, then we need to
3100 search the symtabs directly. */
3101 if ((objfile->flags & OBJF_READNOW) != 0)
3102 {
3103 for (compunit_symtab *symtab : objfile->compunits ())
3104 {
3105 struct symbol *sym = search_symtab (symtab, address);
3106 if (sym != nullptr)
3107 return sym;
3108 }
3109 }
3110 else
3111 {
3112 struct compunit_symtab *symtab
3113 = objfile->find_compunit_symtab_by_address (address);
3114 if (symtab != NULL)
3115 {
3116 struct symbol *sym = search_symtab (symtab, address);
3117 if (sym != nullptr)
3118 return sym;
3119 }
3120 }
3121 }
3122
3123 return NULL;
3124 }
3125
3126 \f
3127
3128 /* Find the source file and line number for a given PC value and SECTION.
3129 Return a structure containing a symtab pointer, a line number,
3130 and a pc range for the entire source line.
3131 The value's .pc field is NOT the specified pc.
3132 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3133 use the line that ends there. Otherwise, in that case, the line
3134 that begins there is used. */
3135
3136 /* The big complication here is that a line may start in one file, and end just
3137 before the start of another file. This usually occurs when you #include
3138 code in the middle of a subroutine. To properly find the end of a line's PC
3139 range, we must search all symtabs associated with this compilation unit, and
3140 find the one whose first PC is closer than that of the next line in this
3141 symtab. */
3142
3143 struct symtab_and_line
3144 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3145 {
3146 struct compunit_symtab *cust;
3147 struct linetable *l;
3148 int len;
3149 struct linetable_entry *item;
3150 const struct blockvector *bv;
3151 struct bound_minimal_symbol msymbol;
3152
3153 /* Info on best line seen so far, and where it starts, and its file. */
3154
3155 struct linetable_entry *best = NULL;
3156 CORE_ADDR best_end = 0;
3157 struct symtab *best_symtab = 0;
3158
3159 /* Store here the first line number
3160 of a file which contains the line at the smallest pc after PC.
3161 If we don't find a line whose range contains PC,
3162 we will use a line one less than this,
3163 with a range from the start of that file to the first line's pc. */
3164 struct linetable_entry *alt = NULL;
3165
3166 /* Info on best line seen in this file. */
3167
3168 struct linetable_entry *prev;
3169
3170 /* If this pc is not from the current frame,
3171 it is the address of the end of a call instruction.
3172 Quite likely that is the start of the following statement.
3173 But what we want is the statement containing the instruction.
3174 Fudge the pc to make sure we get that. */
3175
3176 /* It's tempting to assume that, if we can't find debugging info for
3177 any function enclosing PC, that we shouldn't search for line
3178 number info, either. However, GAS can emit line number info for
3179 assembly files --- very helpful when debugging hand-written
3180 assembly code. In such a case, we'd have no debug info for the
3181 function, but we would have line info. */
3182
3183 if (notcurrent)
3184 pc -= 1;
3185
3186 /* elz: added this because this function returned the wrong
3187 information if the pc belongs to a stub (import/export)
3188 to call a shlib function. This stub would be anywhere between
3189 two functions in the target, and the line info was erroneously
3190 taken to be the one of the line before the pc. */
3191
3192 /* RT: Further explanation:
3193
3194 * We have stubs (trampolines) inserted between procedures.
3195 *
3196 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3197 * exists in the main image.
3198 *
3199 * In the minimal symbol table, we have a bunch of symbols
3200 * sorted by start address. The stubs are marked as "trampoline",
3201 * the others appear as text. E.g.:
3202 *
3203 * Minimal symbol table for main image
3204 * main: code for main (text symbol)
3205 * shr1: stub (trampoline symbol)
3206 * foo: code for foo (text symbol)
3207 * ...
3208 * Minimal symbol table for "shr1" image:
3209 * ...
3210 * shr1: code for shr1 (text symbol)
3211 * ...
3212 *
3213 * So the code below is trying to detect if we are in the stub
3214 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3215 * and if found, do the symbolization from the real-code address
3216 * rather than the stub address.
3217 *
3218 * Assumptions being made about the minimal symbol table:
3219 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3220 * if we're really in the trampoline.s If we're beyond it (say
3221 * we're in "foo" in the above example), it'll have a closer
3222 * symbol (the "foo" text symbol for example) and will not
3223 * return the trampoline.
3224 * 2. lookup_minimal_symbol_text() will find a real text symbol
3225 * corresponding to the trampoline, and whose address will
3226 * be different than the trampoline address. I put in a sanity
3227 * check for the address being the same, to avoid an
3228 * infinite recursion.
3229 */
3230 msymbol = lookup_minimal_symbol_by_pc (pc);
3231 if (msymbol.minsym != NULL)
3232 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3233 {
3234 struct bound_minimal_symbol mfunsym
3235 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3236 NULL);
3237
3238 if (mfunsym.minsym == NULL)
3239 /* I eliminated this warning since it is coming out
3240 * in the following situation:
3241 * gdb shmain // test program with shared libraries
3242 * (gdb) break shr1 // function in shared lib
3243 * Warning: In stub for ...
3244 * In the above situation, the shared lib is not loaded yet,
3245 * so of course we can't find the real func/line info,
3246 * but the "break" still works, and the warning is annoying.
3247 * So I commented out the warning. RT */
3248 /* warning ("In stub for %s; unable to find real function/line info",
3249 msymbol->linkage_name ()); */
3250 ;
3251 /* fall through */
3252 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3253 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3254 /* Avoid infinite recursion */
3255 /* See above comment about why warning is commented out. */
3256 /* warning ("In stub for %s; unable to find real function/line info",
3257 msymbol->linkage_name ()); */
3258 ;
3259 /* fall through */
3260 else
3261 {
3262 /* Detect an obvious case of infinite recursion. If this
3263 should occur, we'd like to know about it, so error out,
3264 fatally. */
3265 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3266 internal_error (__FILE__, __LINE__,
3267 _("Infinite recursion detected in find_pc_sect_line;"
3268 "please file a bug report"));
3269
3270 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3271 }
3272 }
3273
3274 symtab_and_line val;
3275 val.pspace = current_program_space;
3276
3277 cust = find_pc_sect_compunit_symtab (pc, section);
3278 if (cust == NULL)
3279 {
3280 /* If no symbol information, return previous pc. */
3281 if (notcurrent)
3282 pc++;
3283 val.pc = pc;
3284 return val;
3285 }
3286
3287 bv = cust->blockvector ();
3288
3289 /* Look at all the symtabs that share this blockvector.
3290 They all have the same apriori range, that we found was right;
3291 but they have different line tables. */
3292
3293 for (symtab *iter_s : cust->filetabs ())
3294 {
3295 /* Find the best line in this symtab. */
3296 l = iter_s->linetable ();
3297 if (!l)
3298 continue;
3299 len = l->nitems;
3300 if (len <= 0)
3301 {
3302 /* I think len can be zero if the symtab lacks line numbers
3303 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3304 I'm not sure which, and maybe it depends on the symbol
3305 reader). */
3306 continue;
3307 }
3308
3309 prev = NULL;
3310 item = l->item; /* Get first line info. */
3311
3312 /* Is this file's first line closer than the first lines of other files?
3313 If so, record this file, and its first line, as best alternate. */
3314 if (item->pc > pc && (!alt || item->pc < alt->pc))
3315 alt = item;
3316
3317 auto pc_compare = [](const CORE_ADDR & comp_pc,
3318 const struct linetable_entry & lhs)->bool
3319 {
3320 return comp_pc < lhs.pc;
3321 };
3322
3323 struct linetable_entry *first = item;
3324 struct linetable_entry *last = item + len;
3325 item = std::upper_bound (first, last, pc, pc_compare);
3326 if (item != first)
3327 prev = item - 1; /* Found a matching item. */
3328
3329 /* At this point, prev points at the line whose start addr is <= pc, and
3330 item points at the next line. If we ran off the end of the linetable
3331 (pc >= start of the last line), then prev == item. If pc < start of
3332 the first line, prev will not be set. */
3333
3334 /* Is this file's best line closer than the best in the other files?
3335 If so, record this file, and its best line, as best so far. Don't
3336 save prev if it represents the end of a function (i.e. line number
3337 0) instead of a real line. */
3338
3339 if (prev && prev->line && (!best || prev->pc > best->pc))
3340 {
3341 best = prev;
3342 best_symtab = iter_s;
3343
3344 /* If during the binary search we land on a non-statement entry,
3345 scan backward through entries at the same address to see if
3346 there is an entry marked as is-statement. In theory this
3347 duplication should have been removed from the line table
3348 during construction, this is just a double check. If the line
3349 table has had the duplication removed then this should be
3350 pretty cheap. */
3351 if (!best->is_stmt)
3352 {
3353 struct linetable_entry *tmp = best;
3354 while (tmp > first && (tmp - 1)->pc == tmp->pc
3355 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3356 --tmp;
3357 if (tmp->is_stmt)
3358 best = tmp;
3359 }
3360
3361 /* Discard BEST_END if it's before the PC of the current BEST. */
3362 if (best_end <= best->pc)
3363 best_end = 0;
3364 }
3365
3366 /* If another line (denoted by ITEM) is in the linetable and its
3367 PC is after BEST's PC, but before the current BEST_END, then
3368 use ITEM's PC as the new best_end. */
3369 if (best && item < last && item->pc > best->pc
3370 && (best_end == 0 || best_end > item->pc))
3371 best_end = item->pc;
3372 }
3373
3374 if (!best_symtab)
3375 {
3376 /* If we didn't find any line number info, just return zeros.
3377 We used to return alt->line - 1 here, but that could be
3378 anywhere; if we don't have line number info for this PC,
3379 don't make some up. */
3380 val.pc = pc;
3381 }
3382 else if (best->line == 0)
3383 {
3384 /* If our best fit is in a range of PC's for which no line
3385 number info is available (line number is zero) then we didn't
3386 find any valid line information. */
3387 val.pc = pc;
3388 }
3389 else
3390 {
3391 val.is_stmt = best->is_stmt;
3392 val.symtab = best_symtab;
3393 val.line = best->line;
3394 val.pc = best->pc;
3395 if (best_end && (!alt || best_end < alt->pc))
3396 val.end = best_end;
3397 else if (alt)
3398 val.end = alt->pc;
3399 else
3400 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3401 }
3402 val.section = section;
3403 return val;
3404 }
3405
3406 /* Backward compatibility (no section). */
3407
3408 struct symtab_and_line
3409 find_pc_line (CORE_ADDR pc, int notcurrent)
3410 {
3411 struct obj_section *section;
3412
3413 section = find_pc_overlay (pc);
3414 if (!pc_in_unmapped_range (pc, section))
3415 return find_pc_sect_line (pc, section, notcurrent);
3416
3417 /* If the original PC was an unmapped address then we translate this to a
3418 mapped address in order to lookup the sal. However, as the user
3419 passed us an unmapped address it makes more sense to return a result
3420 that has the pc and end fields translated to unmapped addresses. */
3421 pc = overlay_mapped_address (pc, section);
3422 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3423 sal.pc = overlay_unmapped_address (sal.pc, section);
3424 sal.end = overlay_unmapped_address (sal.end, section);
3425 return sal;
3426 }
3427
3428 /* See symtab.h. */
3429
3430 struct symtab *
3431 find_pc_line_symtab (CORE_ADDR pc)
3432 {
3433 struct symtab_and_line sal;
3434
3435 /* This always passes zero for NOTCURRENT to find_pc_line.
3436 There are currently no callers that ever pass non-zero. */
3437 sal = find_pc_line (pc, 0);
3438 return sal.symtab;
3439 }
3440 \f
3441 /* Find line number LINE in any symtab whose name is the same as
3442 SYMTAB.
3443
3444 If found, return the symtab that contains the linetable in which it was
3445 found, set *INDEX to the index in the linetable of the best entry
3446 found, and set *EXACT_MATCH to true if the value returned is an
3447 exact match.
3448
3449 If not found, return NULL. */
3450
3451 struct symtab *
3452 find_line_symtab (struct symtab *sym_tab, int line,
3453 int *index, bool *exact_match)
3454 {
3455 int exact = 0; /* Initialized here to avoid a compiler warning. */
3456
3457 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3458 so far seen. */
3459
3460 int best_index;
3461 struct linetable *best_linetable;
3462 struct symtab *best_symtab;
3463
3464 /* First try looking it up in the given symtab. */
3465 best_linetable = sym_tab->linetable ();
3466 best_symtab = sym_tab;
3467 best_index = find_line_common (best_linetable, line, &exact, 0);
3468 if (best_index < 0 || !exact)
3469 {
3470 /* Didn't find an exact match. So we better keep looking for
3471 another symtab with the same name. In the case of xcoff,
3472 multiple csects for one source file (produced by IBM's FORTRAN
3473 compiler) produce multiple symtabs (this is unavoidable
3474 assuming csects can be at arbitrary places in memory and that
3475 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3476
3477 /* BEST is the smallest linenumber > LINE so far seen,
3478 or 0 if none has been seen so far.
3479 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3480 int best;
3481
3482 if (best_index >= 0)
3483 best = best_linetable->item[best_index].line;
3484 else
3485 best = 0;
3486
3487 for (objfile *objfile : current_program_space->objfiles ())
3488 objfile->expand_symtabs_with_fullname (symtab_to_fullname (sym_tab));
3489
3490 for (objfile *objfile : current_program_space->objfiles ())
3491 {
3492 for (compunit_symtab *cu : objfile->compunits ())
3493 {
3494 for (symtab *s : cu->filetabs ())
3495 {
3496 struct linetable *l;
3497 int ind;
3498
3499 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3500 continue;
3501 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3502 symtab_to_fullname (s)) != 0)
3503 continue;
3504 l = s->linetable ();
3505 ind = find_line_common (l, line, &exact, 0);
3506 if (ind >= 0)
3507 {
3508 if (exact)
3509 {
3510 best_index = ind;
3511 best_linetable = l;
3512 best_symtab = s;
3513 goto done;
3514 }
3515 if (best == 0 || l->item[ind].line < best)
3516 {
3517 best = l->item[ind].line;
3518 best_index = ind;
3519 best_linetable = l;
3520 best_symtab = s;
3521 }
3522 }
3523 }
3524 }
3525 }
3526 }
3527 done:
3528 if (best_index < 0)
3529 return NULL;
3530
3531 if (index)
3532 *index = best_index;
3533 if (exact_match)
3534 *exact_match = (exact != 0);
3535
3536 return best_symtab;
3537 }
3538
3539 /* Given SYMTAB, returns all the PCs function in the symtab that
3540 exactly match LINE. Returns an empty vector if there are no exact
3541 matches, but updates BEST_ITEM in this case. */
3542
3543 std::vector<CORE_ADDR>
3544 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3545 struct linetable_entry **best_item)
3546 {
3547 int start = 0;
3548 std::vector<CORE_ADDR> result;
3549
3550 /* First, collect all the PCs that are at this line. */
3551 while (1)
3552 {
3553 int was_exact;
3554 int idx;
3555
3556 idx = find_line_common (symtab->linetable (), line, &was_exact,
3557 start);
3558 if (idx < 0)
3559 break;
3560
3561 if (!was_exact)
3562 {
3563 struct linetable_entry *item = &symtab->linetable ()->item[idx];
3564
3565 if (*best_item == NULL
3566 || (item->line < (*best_item)->line && item->is_stmt))
3567 *best_item = item;
3568
3569 break;
3570 }
3571
3572 result.push_back (symtab->linetable ()->item[idx].pc);
3573 start = idx + 1;
3574 }
3575
3576 return result;
3577 }
3578
3579 \f
3580 /* Set the PC value for a given source file and line number and return true.
3581 Returns false for invalid line number (and sets the PC to 0).
3582 The source file is specified with a struct symtab. */
3583
3584 bool
3585 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3586 {
3587 struct linetable *l;
3588 int ind;
3589
3590 *pc = 0;
3591 if (symtab == 0)
3592 return false;
3593
3594 symtab = find_line_symtab (symtab, line, &ind, NULL);
3595 if (symtab != NULL)
3596 {
3597 l = symtab->linetable ();
3598 *pc = l->item[ind].pc;
3599 return true;
3600 }
3601 else
3602 return false;
3603 }
3604
3605 /* Find the range of pc values in a line.
3606 Store the starting pc of the line into *STARTPTR
3607 and the ending pc (start of next line) into *ENDPTR.
3608 Returns true to indicate success.
3609 Returns false if could not find the specified line. */
3610
3611 bool
3612 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3613 CORE_ADDR *endptr)
3614 {
3615 CORE_ADDR startaddr;
3616 struct symtab_and_line found_sal;
3617
3618 startaddr = sal.pc;
3619 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3620 return false;
3621
3622 /* This whole function is based on address. For example, if line 10 has
3623 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3624 "info line *0x123" should say the line goes from 0x100 to 0x200
3625 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3626 This also insures that we never give a range like "starts at 0x134
3627 and ends at 0x12c". */
3628
3629 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3630 if (found_sal.line != sal.line)
3631 {
3632 /* The specified line (sal) has zero bytes. */
3633 *startptr = found_sal.pc;
3634 *endptr = found_sal.pc;
3635 }
3636 else
3637 {
3638 *startptr = found_sal.pc;
3639 *endptr = found_sal.end;
3640 }
3641 return true;
3642 }
3643
3644 /* Given a line table and a line number, return the index into the line
3645 table for the pc of the nearest line whose number is >= the specified one.
3646 Return -1 if none is found. The value is >= 0 if it is an index.
3647 START is the index at which to start searching the line table.
3648
3649 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3650
3651 static int
3652 find_line_common (struct linetable *l, int lineno,
3653 int *exact_match, int start)
3654 {
3655 int i;
3656 int len;
3657
3658 /* BEST is the smallest linenumber > LINENO so far seen,
3659 or 0 if none has been seen so far.
3660 BEST_INDEX identifies the item for it. */
3661
3662 int best_index = -1;
3663 int best = 0;
3664
3665 *exact_match = 0;
3666
3667 if (lineno <= 0)
3668 return -1;
3669 if (l == 0)
3670 return -1;
3671
3672 len = l->nitems;
3673 for (i = start; i < len; i++)
3674 {
3675 struct linetable_entry *item = &(l->item[i]);
3676
3677 /* Ignore non-statements. */
3678 if (!item->is_stmt)
3679 continue;
3680
3681 if (item->line == lineno)
3682 {
3683 /* Return the first (lowest address) entry which matches. */
3684 *exact_match = 1;
3685 return i;
3686 }
3687
3688 if (item->line > lineno && (best == 0 || item->line < best))
3689 {
3690 best = item->line;
3691 best_index = i;
3692 }
3693 }
3694
3695 /* If we got here, we didn't get an exact match. */
3696 return best_index;
3697 }
3698
3699 bool
3700 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3701 {
3702 struct symtab_and_line sal;
3703
3704 sal = find_pc_line (pc, 0);
3705 *startptr = sal.pc;
3706 *endptr = sal.end;
3707 return sal.symtab != 0;
3708 }
3709
3710 /* Helper for find_function_start_sal. Does most of the work, except
3711 setting the sal's symbol. */
3712
3713 static symtab_and_line
3714 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3715 bool funfirstline)
3716 {
3717 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3718
3719 if (funfirstline && sal.symtab != NULL
3720 && (sal.symtab->compunit ()->locations_valid ()
3721 || sal.symtab->language () == language_asm))
3722 {
3723 struct gdbarch *gdbarch = sal.symtab->objfile ()->arch ();
3724
3725 sal.pc = func_addr;
3726 if (gdbarch_skip_entrypoint_p (gdbarch))
3727 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3728 return sal;
3729 }
3730
3731 /* We always should have a line for the function start address.
3732 If we don't, something is odd. Create a plain SAL referring
3733 just the PC and hope that skip_prologue_sal (if requested)
3734 can find a line number for after the prologue. */
3735 if (sal.pc < func_addr)
3736 {
3737 sal = {};
3738 sal.pspace = current_program_space;
3739 sal.pc = func_addr;
3740 sal.section = section;
3741 }
3742
3743 if (funfirstline)
3744 skip_prologue_sal (&sal);
3745
3746 return sal;
3747 }
3748
3749 /* See symtab.h. */
3750
3751 symtab_and_line
3752 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3753 bool funfirstline)
3754 {
3755 symtab_and_line sal
3756 = find_function_start_sal_1 (func_addr, section, funfirstline);
3757
3758 /* find_function_start_sal_1 does a linetable search, so it finds
3759 the symtab and linenumber, but not a symbol. Fill in the
3760 function symbol too. */
3761 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3762
3763 return sal;
3764 }
3765
3766 /* See symtab.h. */
3767
3768 symtab_and_line
3769 find_function_start_sal (symbol *sym, bool funfirstline)
3770 {
3771 fixup_symbol_section (sym, NULL);
3772 symtab_and_line sal
3773 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3774 sym->obj_section (symbol_objfile (sym)),
3775 funfirstline);
3776 sal.symbol = sym;
3777 return sal;
3778 }
3779
3780
3781 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3782 address for that function that has an entry in SYMTAB's line info
3783 table. If such an entry cannot be found, return FUNC_ADDR
3784 unaltered. */
3785
3786 static CORE_ADDR
3787 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3788 {
3789 CORE_ADDR func_start, func_end;
3790 struct linetable *l;
3791 int i;
3792
3793 /* Give up if this symbol has no lineinfo table. */
3794 l = symtab->linetable ();
3795 if (l == NULL)
3796 return func_addr;
3797
3798 /* Get the range for the function's PC values, or give up if we
3799 cannot, for some reason. */
3800 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3801 return func_addr;
3802
3803 /* Linetable entries are ordered by PC values, see the commentary in
3804 symtab.h where `struct linetable' is defined. Thus, the first
3805 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3806 address we are looking for. */
3807 for (i = 0; i < l->nitems; i++)
3808 {
3809 struct linetable_entry *item = &(l->item[i]);
3810
3811 /* Don't use line numbers of zero, they mark special entries in
3812 the table. See the commentary on symtab.h before the
3813 definition of struct linetable. */
3814 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3815 return item->pc;
3816 }
3817
3818 return func_addr;
3819 }
3820
3821 /* Adjust SAL to the first instruction past the function prologue.
3822 If the PC was explicitly specified, the SAL is not changed.
3823 If the line number was explicitly specified then the SAL can still be
3824 updated, unless the language for SAL is assembler, in which case the SAL
3825 will be left unchanged.
3826 If SAL is already past the prologue, then do nothing. */
3827
3828 void
3829 skip_prologue_sal (struct symtab_and_line *sal)
3830 {
3831 struct symbol *sym;
3832 struct symtab_and_line start_sal;
3833 CORE_ADDR pc, saved_pc;
3834 struct obj_section *section;
3835 const char *name;
3836 struct objfile *objfile;
3837 struct gdbarch *gdbarch;
3838 const struct block *b, *function_block;
3839 int force_skip, skip;
3840
3841 /* Do not change the SAL if PC was specified explicitly. */
3842 if (sal->explicit_pc)
3843 return;
3844
3845 /* In assembly code, if the user asks for a specific line then we should
3846 not adjust the SAL. The user already has instruction level
3847 visibility in this case, so selecting a line other than one requested
3848 is likely to be the wrong choice. */
3849 if (sal->symtab != nullptr
3850 && sal->explicit_line
3851 && sal->symtab->language () == language_asm)
3852 return;
3853
3854 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3855
3856 switch_to_program_space_and_thread (sal->pspace);
3857
3858 sym = find_pc_sect_function (sal->pc, sal->section);
3859 if (sym != NULL)
3860 {
3861 fixup_symbol_section (sym, NULL);
3862
3863 objfile = symbol_objfile (sym);
3864 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3865 section = sym->obj_section (objfile);
3866 name = sym->linkage_name ();
3867 }
3868 else
3869 {
3870 struct bound_minimal_symbol msymbol
3871 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3872
3873 if (msymbol.minsym == NULL)
3874 return;
3875
3876 objfile = msymbol.objfile;
3877 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3878 section = msymbol.minsym->obj_section (objfile);
3879 name = msymbol.minsym->linkage_name ();
3880 }
3881
3882 gdbarch = objfile->arch ();
3883
3884 /* Process the prologue in two passes. In the first pass try to skip the
3885 prologue (SKIP is true) and verify there is a real need for it (indicated
3886 by FORCE_SKIP). If no such reason was found run a second pass where the
3887 prologue is not skipped (SKIP is false). */
3888
3889 skip = 1;
3890 force_skip = 1;
3891
3892 /* Be conservative - allow direct PC (without skipping prologue) only if we
3893 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3894 have to be set by the caller so we use SYM instead. */
3895 if (sym != NULL
3896 && symbol_symtab (sym)->compunit ()->locations_valid ())
3897 force_skip = 0;
3898
3899 saved_pc = pc;
3900 do
3901 {
3902 pc = saved_pc;
3903
3904 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3905 so that gdbarch_skip_prologue has something unique to work on. */
3906 if (section_is_overlay (section) && !section_is_mapped (section))
3907 pc = overlay_unmapped_address (pc, section);
3908
3909 /* Skip "first line" of function (which is actually its prologue). */
3910 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3911 if (gdbarch_skip_entrypoint_p (gdbarch))
3912 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3913 if (skip)
3914 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3915
3916 /* For overlays, map pc back into its mapped VMA range. */
3917 pc = overlay_mapped_address (pc, section);
3918
3919 /* Calculate line number. */
3920 start_sal = find_pc_sect_line (pc, section, 0);
3921
3922 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3923 line is still part of the same function. */
3924 if (skip && start_sal.pc != pc
3925 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3926 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3927 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3928 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3929 {
3930 /* First pc of next line */
3931 pc = start_sal.end;
3932 /* Recalculate the line number (might not be N+1). */
3933 start_sal = find_pc_sect_line (pc, section, 0);
3934 }
3935
3936 /* On targets with executable formats that don't have a concept of
3937 constructors (ELF with .init has, PE doesn't), gcc emits a call
3938 to `__main' in `main' between the prologue and before user
3939 code. */
3940 if (gdbarch_skip_main_prologue_p (gdbarch)
3941 && name && strcmp_iw (name, "main") == 0)
3942 {
3943 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3944 /* Recalculate the line number (might not be N+1). */
3945 start_sal = find_pc_sect_line (pc, section, 0);
3946 force_skip = 1;
3947 }
3948 }
3949 while (!force_skip && skip--);
3950
3951 /* If we still don't have a valid source line, try to find the first
3952 PC in the lineinfo table that belongs to the same function. This
3953 happens with COFF debug info, which does not seem to have an
3954 entry in lineinfo table for the code after the prologue which has
3955 no direct relation to source. For example, this was found to be
3956 the case with the DJGPP target using "gcc -gcoff" when the
3957 compiler inserted code after the prologue to make sure the stack
3958 is aligned. */
3959 if (!force_skip && sym && start_sal.symtab == NULL)
3960 {
3961 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3962 /* Recalculate the line number. */
3963 start_sal = find_pc_sect_line (pc, section, 0);
3964 }
3965
3966 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3967 forward SAL to the end of the prologue. */
3968 if (sal->pc >= pc)
3969 return;
3970
3971 sal->pc = pc;
3972 sal->section = section;
3973 sal->symtab = start_sal.symtab;
3974 sal->line = start_sal.line;
3975 sal->end = start_sal.end;
3976
3977 /* Check if we are now inside an inlined function. If we can,
3978 use the call site of the function instead. */
3979 b = block_for_pc_sect (sal->pc, sal->section);
3980 function_block = NULL;
3981 while (b != NULL)
3982 {
3983 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3984 function_block = b;
3985 else if (BLOCK_FUNCTION (b) != NULL)
3986 break;
3987 b = BLOCK_SUPERBLOCK (b);
3988 }
3989 if (function_block != NULL
3990 && BLOCK_FUNCTION (function_block)->line () != 0)
3991 {
3992 sal->line = BLOCK_FUNCTION (function_block)->line ();
3993 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3994 }
3995 }
3996
3997 /* Given PC at the function's start address, attempt to find the
3998 prologue end using SAL information. Return zero if the skip fails.
3999
4000 A non-optimized prologue traditionally has one SAL for the function
4001 and a second for the function body. A single line function has
4002 them both pointing at the same line.
4003
4004 An optimized prologue is similar but the prologue may contain
4005 instructions (SALs) from the instruction body. Need to skip those
4006 while not getting into the function body.
4007
4008 The functions end point and an increasing SAL line are used as
4009 indicators of the prologue's endpoint.
4010
4011 This code is based on the function refine_prologue_limit
4012 (found in ia64). */
4013
4014 CORE_ADDR
4015 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4016 {
4017 struct symtab_and_line prologue_sal;
4018 CORE_ADDR start_pc;
4019 CORE_ADDR end_pc;
4020 const struct block *bl;
4021
4022 /* Get an initial range for the function. */
4023 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4024 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4025
4026 prologue_sal = find_pc_line (start_pc, 0);
4027 if (prologue_sal.line != 0)
4028 {
4029 /* For languages other than assembly, treat two consecutive line
4030 entries at the same address as a zero-instruction prologue.
4031 The GNU assembler emits separate line notes for each instruction
4032 in a multi-instruction macro, but compilers generally will not
4033 do this. */
4034 if (prologue_sal.symtab->language () != language_asm)
4035 {
4036 struct linetable *linetable = prologue_sal.symtab->linetable ();
4037 int idx = 0;
4038
4039 /* Skip any earlier lines, and any end-of-sequence marker
4040 from a previous function. */
4041 while (linetable->item[idx].pc != prologue_sal.pc
4042 || linetable->item[idx].line == 0)
4043 idx++;
4044
4045 if (idx+1 < linetable->nitems
4046 && linetable->item[idx+1].line != 0
4047 && linetable->item[idx+1].pc == start_pc)
4048 return start_pc;
4049 }
4050
4051 /* If there is only one sal that covers the entire function,
4052 then it is probably a single line function, like
4053 "foo(){}". */
4054 if (prologue_sal.end >= end_pc)
4055 return 0;
4056
4057 while (prologue_sal.end < end_pc)
4058 {
4059 struct symtab_and_line sal;
4060
4061 sal = find_pc_line (prologue_sal.end, 0);
4062 if (sal.line == 0)
4063 break;
4064 /* Assume that a consecutive SAL for the same (or larger)
4065 line mark the prologue -> body transition. */
4066 if (sal.line >= prologue_sal.line)
4067 break;
4068 /* Likewise if we are in a different symtab altogether
4069 (e.g. within a file included via #include).  */
4070 if (sal.symtab != prologue_sal.symtab)
4071 break;
4072
4073 /* The line number is smaller. Check that it's from the
4074 same function, not something inlined. If it's inlined,
4075 then there is no point comparing the line numbers. */
4076 bl = block_for_pc (prologue_sal.end);
4077 while (bl)
4078 {
4079 if (block_inlined_p (bl))
4080 break;
4081 if (BLOCK_FUNCTION (bl))
4082 {
4083 bl = NULL;
4084 break;
4085 }
4086 bl = BLOCK_SUPERBLOCK (bl);
4087 }
4088 if (bl != NULL)
4089 break;
4090
4091 /* The case in which compiler's optimizer/scheduler has
4092 moved instructions into the prologue. We look ahead in
4093 the function looking for address ranges whose
4094 corresponding line number is less the first one that we
4095 found for the function. This is more conservative then
4096 refine_prologue_limit which scans a large number of SALs
4097 looking for any in the prologue. */
4098 prologue_sal = sal;
4099 }
4100 }
4101
4102 if (prologue_sal.end < end_pc)
4103 /* Return the end of this line, or zero if we could not find a
4104 line. */
4105 return prologue_sal.end;
4106 else
4107 /* Don't return END_PC, which is past the end of the function. */
4108 return prologue_sal.pc;
4109 }
4110
4111 /* See symtab.h. */
4112
4113 symbol *
4114 find_function_alias_target (bound_minimal_symbol msymbol)
4115 {
4116 CORE_ADDR func_addr;
4117 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4118 return NULL;
4119
4120 symbol *sym = find_pc_function (func_addr);
4121 if (sym != NULL
4122 && sym->aclass () == LOC_BLOCK
4123 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4124 return sym;
4125
4126 return NULL;
4127 }
4128
4129 \f
4130 /* If P is of the form "operator[ \t]+..." where `...' is
4131 some legitimate operator text, return a pointer to the
4132 beginning of the substring of the operator text.
4133 Otherwise, return "". */
4134
4135 static const char *
4136 operator_chars (const char *p, const char **end)
4137 {
4138 *end = "";
4139 if (!startswith (p, CP_OPERATOR_STR))
4140 return *end;
4141 p += CP_OPERATOR_LEN;
4142
4143 /* Don't get faked out by `operator' being part of a longer
4144 identifier. */
4145 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4146 return *end;
4147
4148 /* Allow some whitespace between `operator' and the operator symbol. */
4149 while (*p == ' ' || *p == '\t')
4150 p++;
4151
4152 /* Recognize 'operator TYPENAME'. */
4153
4154 if (isalpha (*p) || *p == '_' || *p == '$')
4155 {
4156 const char *q = p + 1;
4157
4158 while (isalnum (*q) || *q == '_' || *q == '$')
4159 q++;
4160 *end = q;
4161 return p;
4162 }
4163
4164 while (*p)
4165 switch (*p)
4166 {
4167 case '\\': /* regexp quoting */
4168 if (p[1] == '*')
4169 {
4170 if (p[2] == '=') /* 'operator\*=' */
4171 *end = p + 3;
4172 else /* 'operator\*' */
4173 *end = p + 2;
4174 return p;
4175 }
4176 else if (p[1] == '[')
4177 {
4178 if (p[2] == ']')
4179 error (_("mismatched quoting on brackets, "
4180 "try 'operator\\[\\]'"));
4181 else if (p[2] == '\\' && p[3] == ']')
4182 {
4183 *end = p + 4; /* 'operator\[\]' */
4184 return p;
4185 }
4186 else
4187 error (_("nothing is allowed between '[' and ']'"));
4188 }
4189 else
4190 {
4191 /* Gratuitous quote: skip it and move on. */
4192 p++;
4193 continue;
4194 }
4195 break;
4196 case '!':
4197 case '=':
4198 case '*':
4199 case '/':
4200 case '%':
4201 case '^':
4202 if (p[1] == '=')
4203 *end = p + 2;
4204 else
4205 *end = p + 1;
4206 return p;
4207 case '<':
4208 case '>':
4209 case '+':
4210 case '-':
4211 case '&':
4212 case '|':
4213 if (p[0] == '-' && p[1] == '>')
4214 {
4215 /* Struct pointer member operator 'operator->'. */
4216 if (p[2] == '*')
4217 {
4218 *end = p + 3; /* 'operator->*' */
4219 return p;
4220 }
4221 else if (p[2] == '\\')
4222 {
4223 *end = p + 4; /* Hopefully 'operator->\*' */
4224 return p;
4225 }
4226 else
4227 {
4228 *end = p + 2; /* 'operator->' */
4229 return p;
4230 }
4231 }
4232 if (p[1] == '=' || p[1] == p[0])
4233 *end = p + 2;
4234 else
4235 *end = p + 1;
4236 return p;
4237 case '~':
4238 case ',':
4239 *end = p + 1;
4240 return p;
4241 case '(':
4242 if (p[1] != ')')
4243 error (_("`operator ()' must be specified "
4244 "without whitespace in `()'"));
4245 *end = p + 2;
4246 return p;
4247 case '?':
4248 if (p[1] != ':')
4249 error (_("`operator ?:' must be specified "
4250 "without whitespace in `?:'"));
4251 *end = p + 2;
4252 return p;
4253 case '[':
4254 if (p[1] != ']')
4255 error (_("`operator []' must be specified "
4256 "without whitespace in `[]'"));
4257 *end = p + 2;
4258 return p;
4259 default:
4260 error (_("`operator %s' not supported"), p);
4261 break;
4262 }
4263
4264 *end = "";
4265 return *end;
4266 }
4267 \f
4268
4269 /* See class declaration. */
4270
4271 info_sources_filter::info_sources_filter (match_on match_type,
4272 const char *regexp)
4273 : m_match_type (match_type),
4274 m_regexp (regexp)
4275 {
4276 /* Setup the compiled regular expression M_C_REGEXP based on M_REGEXP. */
4277 if (m_regexp != nullptr && *m_regexp != '\0')
4278 {
4279 gdb_assert (m_regexp != nullptr);
4280
4281 int cflags = REG_NOSUB;
4282 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4283 cflags |= REG_ICASE;
4284 #endif
4285 m_c_regexp.emplace (m_regexp, cflags, _("Invalid regexp"));
4286 }
4287 }
4288
4289 /* See class declaration. */
4290
4291 bool
4292 info_sources_filter::matches (const char *fullname) const
4293 {
4294 /* Does it match regexp? */
4295 if (m_c_regexp.has_value ())
4296 {
4297 const char *to_match;
4298 std::string dirname;
4299
4300 switch (m_match_type)
4301 {
4302 case match_on::DIRNAME:
4303 dirname = ldirname (fullname);
4304 to_match = dirname.c_str ();
4305 break;
4306 case match_on::BASENAME:
4307 to_match = lbasename (fullname);
4308 break;
4309 case match_on::FULLNAME:
4310 to_match = fullname;
4311 break;
4312 default:
4313 gdb_assert_not_reached ("bad m_match_type");
4314 }
4315
4316 if (m_c_regexp->exec (to_match, 0, NULL, 0) != 0)
4317 return false;
4318 }
4319
4320 return true;
4321 }
4322
4323 /* Data structure to maintain the state used for printing the results of
4324 the 'info sources' command. */
4325
4326 struct output_source_filename_data
4327 {
4328 /* Create an object for displaying the results of the 'info sources'
4329 command to UIOUT. FILTER must remain valid and unchanged for the
4330 lifetime of this object as this object retains a reference to FILTER. */
4331 output_source_filename_data (struct ui_out *uiout,
4332 const info_sources_filter &filter)
4333 : m_filter (filter),
4334 m_uiout (uiout)
4335 { /* Nothing. */ }
4336
4337 DISABLE_COPY_AND_ASSIGN (output_source_filename_data);
4338
4339 /* Reset enough state of this object so we can match against a new set of
4340 files. The existing regular expression is retained though. */
4341 void reset_output ()
4342 {
4343 m_first = true;
4344 m_filename_seen_cache.clear ();
4345 }
4346
4347 /* Worker for sources_info, outputs the file name formatted for either
4348 cli or mi (based on the current_uiout). In cli mode displays
4349 FULLNAME with a comma separating this name from any previously
4350 printed name (line breaks are added at the comma). In MI mode
4351 outputs a tuple containing DISP_NAME (the files display name),
4352 FULLNAME, and EXPANDED_P (true when this file is from a fully
4353 expanded symtab, otherwise false). */
4354 void output (const char *disp_name, const char *fullname, bool expanded_p);
4355
4356 /* An overload suitable for use as a callback to
4357 quick_symbol_functions::map_symbol_filenames. */
4358 void operator() (const char *filename, const char *fullname)
4359 {
4360 /* The false here indicates that this file is from an unexpanded
4361 symtab. */
4362 output (filename, fullname, false);
4363 }
4364
4365 /* Return true if at least one filename has been printed (after a call to
4366 output) since either this object was created, or the last call to
4367 reset_output. */
4368 bool printed_filename_p () const
4369 {
4370 return !m_first;
4371 }
4372
4373 private:
4374
4375 /* Flag of whether we're printing the first one. */
4376 bool m_first = true;
4377
4378 /* Cache of what we've seen so far. */
4379 filename_seen_cache m_filename_seen_cache;
4380
4381 /* How source filename should be filtered. */
4382 const info_sources_filter &m_filter;
4383
4384 /* The object to which output is sent. */
4385 struct ui_out *m_uiout;
4386 };
4387
4388 /* See comment in class declaration above. */
4389
4390 void
4391 output_source_filename_data::output (const char *disp_name,
4392 const char *fullname,
4393 bool expanded_p)
4394 {
4395 /* Since a single source file can result in several partial symbol
4396 tables, we need to avoid printing it more than once. Note: if
4397 some of the psymtabs are read in and some are not, it gets
4398 printed both under "Source files for which symbols have been
4399 read" and "Source files for which symbols will be read in on
4400 demand". I consider this a reasonable way to deal with the
4401 situation. I'm not sure whether this can also happen for
4402 symtabs; it doesn't hurt to check. */
4403
4404 /* Was NAME already seen? If so, then don't print it again. */
4405 if (m_filename_seen_cache.seen (fullname))
4406 return;
4407
4408 /* If the filter rejects this file then don't print it. */
4409 if (!m_filter.matches (fullname))
4410 return;
4411
4412 ui_out_emit_tuple ui_emitter (m_uiout, nullptr);
4413
4414 /* Print it and reset *FIRST. */
4415 if (!m_first)
4416 m_uiout->text (", ");
4417 m_first = false;
4418
4419 m_uiout->wrap_hint (0);
4420 if (m_uiout->is_mi_like_p ())
4421 {
4422 m_uiout->field_string ("file", disp_name, file_name_style.style ());
4423 if (fullname != nullptr)
4424 m_uiout->field_string ("fullname", fullname,
4425 file_name_style.style ());
4426 m_uiout->field_string ("debug-fully-read",
4427 (expanded_p ? "true" : "false"));
4428 }
4429 else
4430 {
4431 if (fullname == nullptr)
4432 fullname = disp_name;
4433 m_uiout->field_string ("fullname", fullname,
4434 file_name_style.style ());
4435 }
4436 }
4437
4438 /* For the 'info sources' command, what part of the file names should we be
4439 matching the user supplied regular expression against? */
4440
4441 struct filename_partial_match_opts
4442 {
4443 /* Only match the directory name part. */
4444 bool dirname = false;
4445
4446 /* Only match the basename part. */
4447 bool basename = false;
4448 };
4449
4450 using isrc_flag_option_def
4451 = gdb::option::flag_option_def<filename_partial_match_opts>;
4452
4453 static const gdb::option::option_def info_sources_option_defs[] = {
4454
4455 isrc_flag_option_def {
4456 "dirname",
4457 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4458 N_("Show only the files having a dirname matching REGEXP."),
4459 },
4460
4461 isrc_flag_option_def {
4462 "basename",
4463 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4464 N_("Show only the files having a basename matching REGEXP."),
4465 },
4466
4467 };
4468
4469 /* Create an option_def_group for the "info sources" options, with
4470 ISRC_OPTS as context. */
4471
4472 static inline gdb::option::option_def_group
4473 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4474 {
4475 return {{info_sources_option_defs}, isrc_opts};
4476 }
4477
4478 /* Completer for "info sources". */
4479
4480 static void
4481 info_sources_command_completer (cmd_list_element *ignore,
4482 completion_tracker &tracker,
4483 const char *text, const char *word)
4484 {
4485 const auto group = make_info_sources_options_def_group (nullptr);
4486 if (gdb::option::complete_options
4487 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4488 return;
4489 }
4490
4491 /* See symtab.h. */
4492
4493 void
4494 info_sources_worker (struct ui_out *uiout,
4495 bool group_by_objfile,
4496 const info_sources_filter &filter)
4497 {
4498 output_source_filename_data data (uiout, filter);
4499
4500 ui_out_emit_list results_emitter (uiout, "files");
4501 gdb::optional<ui_out_emit_tuple> output_tuple;
4502 gdb::optional<ui_out_emit_list> sources_list;
4503
4504 gdb_assert (group_by_objfile || uiout->is_mi_like_p ());
4505
4506 for (objfile *objfile : current_program_space->objfiles ())
4507 {
4508 if (group_by_objfile)
4509 {
4510 output_tuple.emplace (uiout, nullptr);
4511 uiout->field_string ("filename", objfile_name (objfile),
4512 file_name_style.style ());
4513 uiout->text (":\n");
4514 bool debug_fully_readin = !objfile->has_unexpanded_symtabs ();
4515 if (uiout->is_mi_like_p ())
4516 {
4517 const char *debug_info_state;
4518 if (objfile_has_symbols (objfile))
4519 {
4520 if (debug_fully_readin)
4521 debug_info_state = "fully-read";
4522 else
4523 debug_info_state = "partially-read";
4524 }
4525 else
4526 debug_info_state = "none";
4527 current_uiout->field_string ("debug-info", debug_info_state);
4528 }
4529 else
4530 {
4531 if (!debug_fully_readin)
4532 uiout->text ("(Full debug information has not yet been read "
4533 "for this file.)\n");
4534 if (!objfile_has_symbols (objfile))
4535 uiout->text ("(Objfile has no debug information.)\n");
4536 uiout->text ("\n");
4537 }
4538 sources_list.emplace (uiout, "sources");
4539 }
4540
4541 for (compunit_symtab *cu : objfile->compunits ())
4542 {
4543 for (symtab *s : cu->filetabs ())
4544 {
4545 const char *file = symtab_to_filename_for_display (s);
4546 const char *fullname = symtab_to_fullname (s);
4547 data.output (file, fullname, true);
4548 }
4549 }
4550
4551 if (group_by_objfile)
4552 {
4553 objfile->map_symbol_filenames (data, true /* need_fullname */);
4554 if (data.printed_filename_p ())
4555 uiout->text ("\n\n");
4556 data.reset_output ();
4557 sources_list.reset ();
4558 output_tuple.reset ();
4559 }
4560 }
4561
4562 if (!group_by_objfile)
4563 {
4564 data.reset_output ();
4565 map_symbol_filenames (data, true /*need_fullname*/);
4566 }
4567 }
4568
4569 /* Implement the 'info sources' command. */
4570
4571 static void
4572 info_sources_command (const char *args, int from_tty)
4573 {
4574 if (!have_full_symbols () && !have_partial_symbols ())
4575 error (_("No symbol table is loaded. Use the \"file\" command."));
4576
4577 filename_partial_match_opts match_opts;
4578 auto group = make_info_sources_options_def_group (&match_opts);
4579 gdb::option::process_options
4580 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4581
4582 if (match_opts.dirname && match_opts.basename)
4583 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4584
4585 const char *regex = nullptr;
4586 if (args != NULL && *args != '\000')
4587 regex = args;
4588
4589 if ((match_opts.dirname || match_opts.basename) && regex == nullptr)
4590 error (_("Missing REGEXP for 'info sources'."));
4591
4592 info_sources_filter::match_on match_type;
4593 if (match_opts.dirname)
4594 match_type = info_sources_filter::match_on::DIRNAME;
4595 else if (match_opts.basename)
4596 match_type = info_sources_filter::match_on::BASENAME;
4597 else
4598 match_type = info_sources_filter::match_on::FULLNAME;
4599
4600 info_sources_filter filter (match_type, regex);
4601 info_sources_worker (current_uiout, true, filter);
4602 }
4603
4604 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4605 true compare only lbasename of FILENAMES. */
4606
4607 static bool
4608 file_matches (const char *file, const std::vector<const char *> &filenames,
4609 bool basenames)
4610 {
4611 if (filenames.empty ())
4612 return true;
4613
4614 for (const char *name : filenames)
4615 {
4616 name = (basenames ? lbasename (name) : name);
4617 if (compare_filenames_for_search (file, name))
4618 return true;
4619 }
4620
4621 return false;
4622 }
4623
4624 /* Helper function for std::sort on symbol_search objects. Can only sort
4625 symbols, not minimal symbols. */
4626
4627 int
4628 symbol_search::compare_search_syms (const symbol_search &sym_a,
4629 const symbol_search &sym_b)
4630 {
4631 int c;
4632
4633 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4634 symbol_symtab (sym_b.symbol)->filename);
4635 if (c != 0)
4636 return c;
4637
4638 if (sym_a.block != sym_b.block)
4639 return sym_a.block - sym_b.block;
4640
4641 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4642 }
4643
4644 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4645 If SYM has no symbol_type or symbol_name, returns false. */
4646
4647 bool
4648 treg_matches_sym_type_name (const compiled_regex &treg,
4649 const struct symbol *sym)
4650 {
4651 struct type *sym_type;
4652 std::string printed_sym_type_name;
4653
4654 if (symbol_lookup_debug > 1)
4655 {
4656 fprintf_unfiltered (gdb_stdlog,
4657 "treg_matches_sym_type_name\n sym %s\n",
4658 sym->natural_name ());
4659 }
4660
4661 sym_type = sym->type ();
4662 if (sym_type == NULL)
4663 return false;
4664
4665 {
4666 scoped_switch_to_sym_language_if_auto l (sym);
4667
4668 printed_sym_type_name = type_to_string (sym_type);
4669 }
4670
4671
4672 if (symbol_lookup_debug > 1)
4673 {
4674 fprintf_unfiltered (gdb_stdlog,
4675 " sym_type_name %s\n",
4676 printed_sym_type_name.c_str ());
4677 }
4678
4679
4680 if (printed_sym_type_name.empty ())
4681 return false;
4682
4683 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4684 }
4685
4686 /* See symtab.h. */
4687
4688 bool
4689 global_symbol_searcher::is_suitable_msymbol
4690 (const enum search_domain kind, const minimal_symbol *msymbol)
4691 {
4692 switch (MSYMBOL_TYPE (msymbol))
4693 {
4694 case mst_data:
4695 case mst_bss:
4696 case mst_file_data:
4697 case mst_file_bss:
4698 return kind == VARIABLES_DOMAIN;
4699 case mst_text:
4700 case mst_file_text:
4701 case mst_solib_trampoline:
4702 case mst_text_gnu_ifunc:
4703 return kind == FUNCTIONS_DOMAIN;
4704 default:
4705 return false;
4706 }
4707 }
4708
4709 /* See symtab.h. */
4710
4711 bool
4712 global_symbol_searcher::expand_symtabs
4713 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4714 {
4715 enum search_domain kind = m_kind;
4716 bool found_msymbol = false;
4717
4718 auto do_file_match = [&] (const char *filename, bool basenames)
4719 {
4720 return file_matches (filename, filenames, basenames);
4721 };
4722 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher = nullptr;
4723 if (!filenames.empty ())
4724 file_matcher = do_file_match;
4725
4726 objfile->expand_symtabs_matching
4727 (file_matcher,
4728 &lookup_name_info::match_any (),
4729 [&] (const char *symname)
4730 {
4731 return (!preg.has_value ()
4732 || preg->exec (symname, 0, NULL, 0) == 0);
4733 },
4734 NULL,
4735 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
4736 UNDEF_DOMAIN,
4737 kind);
4738
4739 /* Here, we search through the minimal symbol tables for functions and
4740 variables that match, and force their symbols to be read. This is in
4741 particular necessary for demangled variable names, which are no longer
4742 put into the partial symbol tables. The symbol will then be found
4743 during the scan of symtabs later.
4744
4745 For functions, find_pc_symtab should succeed if we have debug info for
4746 the function, for variables we have to call
4747 lookup_symbol_in_objfile_from_linkage_name to determine if the
4748 variable has debug info. If the lookup fails, set found_msymbol so
4749 that we will rescan to print any matching symbols without debug info.
4750 We only search the objfile the msymbol came from, we no longer search
4751 all objfiles. In large programs (1000s of shared libs) searching all
4752 objfiles is not worth the pain. */
4753 if (filenames.empty ()
4754 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4755 {
4756 for (minimal_symbol *msymbol : objfile->msymbols ())
4757 {
4758 QUIT;
4759
4760 if (msymbol->created_by_gdb)
4761 continue;
4762
4763 if (is_suitable_msymbol (kind, msymbol))
4764 {
4765 if (!preg.has_value ()
4766 || preg->exec (msymbol->natural_name (), 0,
4767 NULL, 0) == 0)
4768 {
4769 /* An important side-effect of these lookup functions is
4770 to expand the symbol table if msymbol is found, later
4771 in the process we will add matching symbols or
4772 msymbols to the results list, and that requires that
4773 the symbols tables are expanded. */
4774 if (kind == FUNCTIONS_DOMAIN
4775 ? (find_pc_compunit_symtab
4776 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4777 == NULL)
4778 : (lookup_symbol_in_objfile_from_linkage_name
4779 (objfile, msymbol->linkage_name (),
4780 VAR_DOMAIN)
4781 .symbol == NULL))
4782 found_msymbol = true;
4783 }
4784 }
4785 }
4786 }
4787
4788 return found_msymbol;
4789 }
4790
4791 /* See symtab.h. */
4792
4793 bool
4794 global_symbol_searcher::add_matching_symbols
4795 (objfile *objfile,
4796 const gdb::optional<compiled_regex> &preg,
4797 const gdb::optional<compiled_regex> &treg,
4798 std::set<symbol_search> *result_set) const
4799 {
4800 enum search_domain kind = m_kind;
4801
4802 /* Add matching symbols (if not already present). */
4803 for (compunit_symtab *cust : objfile->compunits ())
4804 {
4805 const struct blockvector *bv = cust->blockvector ();
4806
4807 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4808 {
4809 struct block_iterator iter;
4810 struct symbol *sym;
4811 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4812
4813 ALL_BLOCK_SYMBOLS (b, iter, sym)
4814 {
4815 struct symtab *real_symtab = symbol_symtab (sym);
4816
4817 QUIT;
4818
4819 /* Check first sole REAL_SYMTAB->FILENAME. It does
4820 not need to be a substring of symtab_to_fullname as
4821 it may contain "./" etc. */
4822 if ((file_matches (real_symtab->filename, filenames, false)
4823 || ((basenames_may_differ
4824 || file_matches (lbasename (real_symtab->filename),
4825 filenames, true))
4826 && file_matches (symtab_to_fullname (real_symtab),
4827 filenames, false)))
4828 && ((!preg.has_value ()
4829 || preg->exec (sym->natural_name (), 0,
4830 NULL, 0) == 0)
4831 && ((kind == VARIABLES_DOMAIN
4832 && sym->aclass () != LOC_TYPEDEF
4833 && sym->aclass () != LOC_UNRESOLVED
4834 && sym->aclass () != LOC_BLOCK
4835 /* LOC_CONST can be used for more than
4836 just enums, e.g., c++ static const
4837 members. We only want to skip enums
4838 here. */
4839 && !(sym->aclass () == LOC_CONST
4840 && (sym->type ()->code ()
4841 == TYPE_CODE_ENUM))
4842 && (!treg.has_value ()
4843 || treg_matches_sym_type_name (*treg, sym)))
4844 || (kind == FUNCTIONS_DOMAIN
4845 && sym->aclass () == LOC_BLOCK
4846 && (!treg.has_value ()
4847 || treg_matches_sym_type_name (*treg,
4848 sym)))
4849 || (kind == TYPES_DOMAIN
4850 && sym->aclass () == LOC_TYPEDEF
4851 && sym->domain () != MODULE_DOMAIN)
4852 || (kind == MODULES_DOMAIN
4853 && sym->domain () == MODULE_DOMAIN
4854 && sym->line () != 0))))
4855 {
4856 if (result_set->size () < m_max_search_results)
4857 {
4858 /* Match, insert if not already in the results. */
4859 symbol_search ss (block, sym);
4860 if (result_set->find (ss) == result_set->end ())
4861 result_set->insert (ss);
4862 }
4863 else
4864 return false;
4865 }
4866 }
4867 }
4868 }
4869
4870 return true;
4871 }
4872
4873 /* See symtab.h. */
4874
4875 bool
4876 global_symbol_searcher::add_matching_msymbols
4877 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4878 std::vector<symbol_search> *results) const
4879 {
4880 enum search_domain kind = m_kind;
4881
4882 for (minimal_symbol *msymbol : objfile->msymbols ())
4883 {
4884 QUIT;
4885
4886 if (msymbol->created_by_gdb)
4887 continue;
4888
4889 if (is_suitable_msymbol (kind, msymbol))
4890 {
4891 if (!preg.has_value ()
4892 || preg->exec (msymbol->natural_name (), 0,
4893 NULL, 0) == 0)
4894 {
4895 /* For functions we can do a quick check of whether the
4896 symbol might be found via find_pc_symtab. */
4897 if (kind != FUNCTIONS_DOMAIN
4898 || (find_pc_compunit_symtab
4899 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4900 == NULL))
4901 {
4902 if (lookup_symbol_in_objfile_from_linkage_name
4903 (objfile, msymbol->linkage_name (),
4904 VAR_DOMAIN).symbol == NULL)
4905 {
4906 /* Matching msymbol, add it to the results list. */
4907 if (results->size () < m_max_search_results)
4908 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4909 else
4910 return false;
4911 }
4912 }
4913 }
4914 }
4915 }
4916
4917 return true;
4918 }
4919
4920 /* See symtab.h. */
4921
4922 std::vector<symbol_search>
4923 global_symbol_searcher::search () const
4924 {
4925 gdb::optional<compiled_regex> preg;
4926 gdb::optional<compiled_regex> treg;
4927
4928 gdb_assert (m_kind != ALL_DOMAIN);
4929
4930 if (m_symbol_name_regexp != NULL)
4931 {
4932 const char *symbol_name_regexp = m_symbol_name_regexp;
4933
4934 /* Make sure spacing is right for C++ operators.
4935 This is just a courtesy to make the matching less sensitive
4936 to how many spaces the user leaves between 'operator'
4937 and <TYPENAME> or <OPERATOR>. */
4938 const char *opend;
4939 const char *opname = operator_chars (symbol_name_regexp, &opend);
4940
4941 if (*opname)
4942 {
4943 int fix = -1; /* -1 means ok; otherwise number of
4944 spaces needed. */
4945
4946 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4947 {
4948 /* There should 1 space between 'operator' and 'TYPENAME'. */
4949 if (opname[-1] != ' ' || opname[-2] == ' ')
4950 fix = 1;
4951 }
4952 else
4953 {
4954 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4955 if (opname[-1] == ' ')
4956 fix = 0;
4957 }
4958 /* If wrong number of spaces, fix it. */
4959 if (fix >= 0)
4960 {
4961 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4962
4963 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4964 symbol_name_regexp = tmp;
4965 }
4966 }
4967
4968 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4969 ? REG_ICASE : 0);
4970 preg.emplace (symbol_name_regexp, cflags,
4971 _("Invalid regexp"));
4972 }
4973
4974 if (m_symbol_type_regexp != NULL)
4975 {
4976 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4977 ? REG_ICASE : 0);
4978 treg.emplace (m_symbol_type_regexp, cflags,
4979 _("Invalid regexp"));
4980 }
4981
4982 bool found_msymbol = false;
4983 std::set<symbol_search> result_set;
4984 for (objfile *objfile : current_program_space->objfiles ())
4985 {
4986 /* Expand symtabs within objfile that possibly contain matching
4987 symbols. */
4988 found_msymbol |= expand_symtabs (objfile, preg);
4989
4990 /* Find matching symbols within OBJFILE and add them in to the
4991 RESULT_SET set. Use a set here so that we can easily detect
4992 duplicates as we go, and can therefore track how many unique
4993 matches we have found so far. */
4994 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4995 break;
4996 }
4997
4998 /* Convert the result set into a sorted result list, as std::set is
4999 defined to be sorted then no explicit call to std::sort is needed. */
5000 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
5001
5002 /* If there are no debug symbols, then add matching minsyms. But if the
5003 user wants to see symbols matching a type regexp, then never give a
5004 minimal symbol, as we assume that a minimal symbol does not have a
5005 type. */
5006 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
5007 && !m_exclude_minsyms
5008 && !treg.has_value ())
5009 {
5010 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
5011 for (objfile *objfile : current_program_space->objfiles ())
5012 if (!add_matching_msymbols (objfile, preg, &result))
5013 break;
5014 }
5015
5016 return result;
5017 }
5018
5019 /* See symtab.h. */
5020
5021 std::string
5022 symbol_to_info_string (struct symbol *sym, int block,
5023 enum search_domain kind)
5024 {
5025 std::string str;
5026
5027 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
5028
5029 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
5030 str += "static ";
5031
5032 /* Typedef that is not a C++ class. */
5033 if (kind == TYPES_DOMAIN
5034 && sym->domain () != STRUCT_DOMAIN)
5035 {
5036 string_file tmp_stream;
5037
5038 /* FIXME: For C (and C++) we end up with a difference in output here
5039 between how a typedef is printed, and non-typedefs are printed.
5040 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
5041 appear C-like, while TYPE_PRINT doesn't.
5042
5043 For the struct printing case below, things are worse, we force
5044 printing of the ";" in this function, which is going to be wrong
5045 for languages that don't require a ";" between statements. */
5046 if (sym->type ()->code () == TYPE_CODE_TYPEDEF)
5047 typedef_print (sym->type (), sym, &tmp_stream);
5048 else
5049 type_print (sym->type (), "", &tmp_stream, -1);
5050 str += tmp_stream.string ();
5051 }
5052 /* variable, func, or typedef-that-is-c++-class. */
5053 else if (kind < TYPES_DOMAIN
5054 || (kind == TYPES_DOMAIN
5055 && sym->domain () == STRUCT_DOMAIN))
5056 {
5057 string_file tmp_stream;
5058
5059 type_print (sym->type (),
5060 (sym->aclass () == LOC_TYPEDEF
5061 ? "" : sym->print_name ()),
5062 &tmp_stream, 0);
5063
5064 str += tmp_stream.string ();
5065 str += ";";
5066 }
5067 /* Printing of modules is currently done here, maybe at some future
5068 point we might want a language specific method to print the module
5069 symbol so that we can customise the output more. */
5070 else if (kind == MODULES_DOMAIN)
5071 str += sym->print_name ();
5072
5073 return str;
5074 }
5075
5076 /* Helper function for symbol info commands, for example 'info functions',
5077 'info variables', etc. KIND is the kind of symbol we searched for, and
5078 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
5079 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
5080 print file and line number information for the symbol as well. Skip
5081 printing the filename if it matches LAST. */
5082
5083 static void
5084 print_symbol_info (enum search_domain kind,
5085 struct symbol *sym,
5086 int block, const char *last)
5087 {
5088 scoped_switch_to_sym_language_if_auto l (sym);
5089 struct symtab *s = symbol_symtab (sym);
5090
5091 if (last != NULL)
5092 {
5093 const char *s_filename = symtab_to_filename_for_display (s);
5094
5095 if (filename_cmp (last, s_filename) != 0)
5096 {
5097 printf_filtered (_("\nFile %ps:\n"),
5098 styled_string (file_name_style.style (),
5099 s_filename));
5100 }
5101
5102 if (sym->line () != 0)
5103 printf_filtered ("%d:\t", sym->line ());
5104 else
5105 gdb_puts ("\t");
5106 }
5107
5108 std::string str = symbol_to_info_string (sym, block, kind);
5109 printf_filtered ("%s\n", str.c_str ());
5110 }
5111
5112 /* This help function for symtab_symbol_info() prints information
5113 for non-debugging symbols to gdb_stdout. */
5114
5115 static void
5116 print_msymbol_info (struct bound_minimal_symbol msymbol)
5117 {
5118 struct gdbarch *gdbarch = msymbol.objfile->arch ();
5119 char *tmp;
5120
5121 if (gdbarch_addr_bit (gdbarch) <= 32)
5122 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
5123 & (CORE_ADDR) 0xffffffff,
5124 8);
5125 else
5126 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
5127 16);
5128
5129 ui_file_style sym_style = (msymbol.minsym->text_p ()
5130 ? function_name_style.style ()
5131 : ui_file_style ());
5132
5133 printf_filtered (_("%ps %ps\n"),
5134 styled_string (address_style.style (), tmp),
5135 styled_string (sym_style, msymbol.minsym->print_name ()));
5136 }
5137
5138 /* This is the guts of the commands "info functions", "info types", and
5139 "info variables". It calls search_symbols to find all matches and then
5140 print_[m]symbol_info to print out some useful information about the
5141 matches. */
5142
5143 static void
5144 symtab_symbol_info (bool quiet, bool exclude_minsyms,
5145 const char *regexp, enum search_domain kind,
5146 const char *t_regexp, int from_tty)
5147 {
5148 static const char * const classnames[] =
5149 {"variable", "function", "type", "module"};
5150 const char *last_filename = "";
5151 int first = 1;
5152
5153 gdb_assert (kind != ALL_DOMAIN);
5154
5155 if (regexp != nullptr && *regexp == '\0')
5156 regexp = nullptr;
5157
5158 global_symbol_searcher spec (kind, regexp);
5159 spec.set_symbol_type_regexp (t_regexp);
5160 spec.set_exclude_minsyms (exclude_minsyms);
5161 std::vector<symbol_search> symbols = spec.search ();
5162
5163 if (!quiet)
5164 {
5165 if (regexp != NULL)
5166 {
5167 if (t_regexp != NULL)
5168 printf_filtered
5169 (_("All %ss matching regular expression \"%s\""
5170 " with type matching regular expression \"%s\":\n"),
5171 classnames[kind], regexp, t_regexp);
5172 else
5173 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
5174 classnames[kind], regexp);
5175 }
5176 else
5177 {
5178 if (t_regexp != NULL)
5179 printf_filtered
5180 (_("All defined %ss"
5181 " with type matching regular expression \"%s\" :\n"),
5182 classnames[kind], t_regexp);
5183 else
5184 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5185 }
5186 }
5187
5188 for (const symbol_search &p : symbols)
5189 {
5190 QUIT;
5191
5192 if (p.msymbol.minsym != NULL)
5193 {
5194 if (first)
5195 {
5196 if (!quiet)
5197 printf_filtered (_("\nNon-debugging symbols:\n"));
5198 first = 0;
5199 }
5200 print_msymbol_info (p.msymbol);
5201 }
5202 else
5203 {
5204 print_symbol_info (kind,
5205 p.symbol,
5206 p.block,
5207 last_filename);
5208 last_filename
5209 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5210 }
5211 }
5212 }
5213
5214 /* Structure to hold the values of the options used by the 'info variables'
5215 and 'info functions' commands. These correspond to the -q, -t, and -n
5216 options. */
5217
5218 struct info_vars_funcs_options
5219 {
5220 bool quiet = false;
5221 bool exclude_minsyms = false;
5222 std::string type_regexp;
5223 };
5224
5225 /* The options used by the 'info variables' and 'info functions'
5226 commands. */
5227
5228 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5229 gdb::option::boolean_option_def<info_vars_funcs_options> {
5230 "q",
5231 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5232 nullptr, /* show_cmd_cb */
5233 nullptr /* set_doc */
5234 },
5235
5236 gdb::option::boolean_option_def<info_vars_funcs_options> {
5237 "n",
5238 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5239 nullptr, /* show_cmd_cb */
5240 nullptr /* set_doc */
5241 },
5242
5243 gdb::option::string_option_def<info_vars_funcs_options> {
5244 "t",
5245 [] (info_vars_funcs_options *opt) { return &opt->type_regexp; },
5246 nullptr, /* show_cmd_cb */
5247 nullptr /* set_doc */
5248 }
5249 };
5250
5251 /* Returns the option group used by 'info variables' and 'info
5252 functions'. */
5253
5254 static gdb::option::option_def_group
5255 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5256 {
5257 return {{info_vars_funcs_options_defs}, opts};
5258 }
5259
5260 /* Command completer for 'info variables' and 'info functions'. */
5261
5262 static void
5263 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5264 completion_tracker &tracker,
5265 const char *text, const char * /* word */)
5266 {
5267 const auto group
5268 = make_info_vars_funcs_options_def_group (nullptr);
5269 if (gdb::option::complete_options
5270 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5271 return;
5272
5273 const char *word = advance_to_expression_complete_word_point (tracker, text);
5274 symbol_completer (ignore, tracker, text, word);
5275 }
5276
5277 /* Implement the 'info variables' command. */
5278
5279 static void
5280 info_variables_command (const char *args, int from_tty)
5281 {
5282 info_vars_funcs_options opts;
5283 auto grp = make_info_vars_funcs_options_def_group (&opts);
5284 gdb::option::process_options
5285 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5286 if (args != nullptr && *args == '\0')
5287 args = nullptr;
5288
5289 symtab_symbol_info
5290 (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5291 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5292 from_tty);
5293 }
5294
5295 /* Implement the 'info functions' command. */
5296
5297 static void
5298 info_functions_command (const char *args, int from_tty)
5299 {
5300 info_vars_funcs_options opts;
5301
5302 auto grp = make_info_vars_funcs_options_def_group (&opts);
5303 gdb::option::process_options
5304 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5305 if (args != nullptr && *args == '\0')
5306 args = nullptr;
5307
5308 symtab_symbol_info
5309 (opts.quiet, opts.exclude_minsyms, args, FUNCTIONS_DOMAIN,
5310 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
5311 from_tty);
5312 }
5313
5314 /* Holds the -q option for the 'info types' command. */
5315
5316 struct info_types_options
5317 {
5318 bool quiet = false;
5319 };
5320
5321 /* The options used by the 'info types' command. */
5322
5323 static const gdb::option::option_def info_types_options_defs[] = {
5324 gdb::option::boolean_option_def<info_types_options> {
5325 "q",
5326 [] (info_types_options *opt) { return &opt->quiet; },
5327 nullptr, /* show_cmd_cb */
5328 nullptr /* set_doc */
5329 }
5330 };
5331
5332 /* Returns the option group used by 'info types'. */
5333
5334 static gdb::option::option_def_group
5335 make_info_types_options_def_group (info_types_options *opts)
5336 {
5337 return {{info_types_options_defs}, opts};
5338 }
5339
5340 /* Implement the 'info types' command. */
5341
5342 static void
5343 info_types_command (const char *args, int from_tty)
5344 {
5345 info_types_options opts;
5346
5347 auto grp = make_info_types_options_def_group (&opts);
5348 gdb::option::process_options
5349 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5350 if (args != nullptr && *args == '\0')
5351 args = nullptr;
5352 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5353 }
5354
5355 /* Command completer for 'info types' command. */
5356
5357 static void
5358 info_types_command_completer (struct cmd_list_element *ignore,
5359 completion_tracker &tracker,
5360 const char *text, const char * /* word */)
5361 {
5362 const auto group
5363 = make_info_types_options_def_group (nullptr);
5364 if (gdb::option::complete_options
5365 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5366 return;
5367
5368 const char *word = advance_to_expression_complete_word_point (tracker, text);
5369 symbol_completer (ignore, tracker, text, word);
5370 }
5371
5372 /* Implement the 'info modules' command. */
5373
5374 static void
5375 info_modules_command (const char *args, int from_tty)
5376 {
5377 info_types_options opts;
5378
5379 auto grp = make_info_types_options_def_group (&opts);
5380 gdb::option::process_options
5381 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5382 if (args != nullptr && *args == '\0')
5383 args = nullptr;
5384 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5385 from_tty);
5386 }
5387
5388 static void
5389 rbreak_command (const char *regexp, int from_tty)
5390 {
5391 std::string string;
5392 const char *file_name = nullptr;
5393
5394 if (regexp != nullptr)
5395 {
5396 const char *colon = strchr (regexp, ':');
5397
5398 /* Ignore the colon if it is part of a Windows drive. */
5399 if (HAS_DRIVE_SPEC (regexp)
5400 && (regexp[2] == '/' || regexp[2] == '\\'))
5401 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5402
5403 if (colon && *(colon + 1) != ':')
5404 {
5405 int colon_index;
5406 char *local_name;
5407
5408 colon_index = colon - regexp;
5409 local_name = (char *) alloca (colon_index + 1);
5410 memcpy (local_name, regexp, colon_index);
5411 local_name[colon_index--] = 0;
5412 while (isspace (local_name[colon_index]))
5413 local_name[colon_index--] = 0;
5414 file_name = local_name;
5415 regexp = skip_spaces (colon + 1);
5416 }
5417 }
5418
5419 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5420 if (file_name != nullptr)
5421 spec.filenames.push_back (file_name);
5422 std::vector<symbol_search> symbols = spec.search ();
5423
5424 scoped_rbreak_breakpoints finalize;
5425 for (const symbol_search &p : symbols)
5426 {
5427 if (p.msymbol.minsym == NULL)
5428 {
5429 struct symtab *symtab = symbol_symtab (p.symbol);
5430 const char *fullname = symtab_to_fullname (symtab);
5431
5432 string = string_printf ("%s:'%s'", fullname,
5433 p.symbol->linkage_name ());
5434 break_command (&string[0], from_tty);
5435 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5436 }
5437 else
5438 {
5439 string = string_printf ("'%s'",
5440 p.msymbol.minsym->linkage_name ());
5441
5442 break_command (&string[0], from_tty);
5443 printf_filtered ("<function, no debug info> %s;\n",
5444 p.msymbol.minsym->print_name ());
5445 }
5446 }
5447 }
5448 \f
5449
5450 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5451
5452 static int
5453 compare_symbol_name (const char *symbol_name, language symbol_language,
5454 const lookup_name_info &lookup_name,
5455 completion_match_result &match_res)
5456 {
5457 const language_defn *lang = language_def (symbol_language);
5458
5459 symbol_name_matcher_ftype *name_match
5460 = lang->get_symbol_name_matcher (lookup_name);
5461
5462 return name_match (symbol_name, lookup_name, &match_res);
5463 }
5464
5465 /* See symtab.h. */
5466
5467 bool
5468 completion_list_add_name (completion_tracker &tracker,
5469 language symbol_language,
5470 const char *symname,
5471 const lookup_name_info &lookup_name,
5472 const char *text, const char *word)
5473 {
5474 completion_match_result &match_res
5475 = tracker.reset_completion_match_result ();
5476
5477 /* Clip symbols that cannot match. */
5478 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5479 return false;
5480
5481 /* Refresh SYMNAME from the match string. It's potentially
5482 different depending on language. (E.g., on Ada, the match may be
5483 the encoded symbol name wrapped in "<>"). */
5484 symname = match_res.match.match ();
5485 gdb_assert (symname != NULL);
5486
5487 /* We have a match for a completion, so add SYMNAME to the current list
5488 of matches. Note that the name is moved to freshly malloc'd space. */
5489
5490 {
5491 gdb::unique_xmalloc_ptr<char> completion
5492 = make_completion_match_str (symname, text, word);
5493
5494 /* Here we pass the match-for-lcd object to add_completion. Some
5495 languages match the user text against substrings of symbol
5496 names in some cases. E.g., in C++, "b push_ba" completes to
5497 "std::vector::push_back", "std::string::push_back", etc., and
5498 in this case we want the completion lowest common denominator
5499 to be "push_back" instead of "std::". */
5500 tracker.add_completion (std::move (completion),
5501 &match_res.match_for_lcd, text, word);
5502 }
5503
5504 return true;
5505 }
5506
5507 /* completion_list_add_name wrapper for struct symbol. */
5508
5509 static void
5510 completion_list_add_symbol (completion_tracker &tracker,
5511 symbol *sym,
5512 const lookup_name_info &lookup_name,
5513 const char *text, const char *word)
5514 {
5515 if (!completion_list_add_name (tracker, sym->language (),
5516 sym->natural_name (),
5517 lookup_name, text, word))
5518 return;
5519
5520 /* C++ function symbols include the parameters within both the msymbol
5521 name and the symbol name. The problem is that the msymbol name will
5522 describe the parameters in the most basic way, with typedefs stripped
5523 out, while the symbol name will represent the types as they appear in
5524 the program. This means we will see duplicate entries in the
5525 completion tracker. The following converts the symbol name back to
5526 the msymbol name and removes the msymbol name from the completion
5527 tracker. */
5528 if (sym->language () == language_cplus
5529 && sym->domain () == VAR_DOMAIN
5530 && sym->aclass () == LOC_BLOCK)
5531 {
5532 /* The call to canonicalize returns the empty string if the input
5533 string is already in canonical form, thanks to this we don't
5534 remove the symbol we just added above. */
5535 gdb::unique_xmalloc_ptr<char> str
5536 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5537 if (str != nullptr)
5538 tracker.remove_completion (str.get ());
5539 }
5540 }
5541
5542 /* completion_list_add_name wrapper for struct minimal_symbol. */
5543
5544 static void
5545 completion_list_add_msymbol (completion_tracker &tracker,
5546 minimal_symbol *sym,
5547 const lookup_name_info &lookup_name,
5548 const char *text, const char *word)
5549 {
5550 completion_list_add_name (tracker, sym->language (),
5551 sym->natural_name (),
5552 lookup_name, text, word);
5553 }
5554
5555
5556 /* ObjC: In case we are completing on a selector, look as the msymbol
5557 again and feed all the selectors into the mill. */
5558
5559 static void
5560 completion_list_objc_symbol (completion_tracker &tracker,
5561 struct minimal_symbol *msymbol,
5562 const lookup_name_info &lookup_name,
5563 const char *text, const char *word)
5564 {
5565 static char *tmp = NULL;
5566 static unsigned int tmplen = 0;
5567
5568 const char *method, *category, *selector;
5569 char *tmp2 = NULL;
5570
5571 method = msymbol->natural_name ();
5572
5573 /* Is it a method? */
5574 if ((method[0] != '-') && (method[0] != '+'))
5575 return;
5576
5577 if (text[0] == '[')
5578 /* Complete on shortened method method. */
5579 completion_list_add_name (tracker, language_objc,
5580 method + 1,
5581 lookup_name,
5582 text, word);
5583
5584 while ((strlen (method) + 1) >= tmplen)
5585 {
5586 if (tmplen == 0)
5587 tmplen = 1024;
5588 else
5589 tmplen *= 2;
5590 tmp = (char *) xrealloc (tmp, tmplen);
5591 }
5592 selector = strchr (method, ' ');
5593 if (selector != NULL)
5594 selector++;
5595
5596 category = strchr (method, '(');
5597
5598 if ((category != NULL) && (selector != NULL))
5599 {
5600 memcpy (tmp, method, (category - method));
5601 tmp[category - method] = ' ';
5602 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5603 completion_list_add_name (tracker, language_objc, tmp,
5604 lookup_name, text, word);
5605 if (text[0] == '[')
5606 completion_list_add_name (tracker, language_objc, tmp + 1,
5607 lookup_name, text, word);
5608 }
5609
5610 if (selector != NULL)
5611 {
5612 /* Complete on selector only. */
5613 strcpy (tmp, selector);
5614 tmp2 = strchr (tmp, ']');
5615 if (tmp2 != NULL)
5616 *tmp2 = '\0';
5617
5618 completion_list_add_name (tracker, language_objc, tmp,
5619 lookup_name, text, word);
5620 }
5621 }
5622
5623 /* Break the non-quoted text based on the characters which are in
5624 symbols. FIXME: This should probably be language-specific. */
5625
5626 static const char *
5627 language_search_unquoted_string (const char *text, const char *p)
5628 {
5629 for (; p > text; --p)
5630 {
5631 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5632 continue;
5633 else
5634 {
5635 if ((current_language->la_language == language_objc))
5636 {
5637 if (p[-1] == ':') /* Might be part of a method name. */
5638 continue;
5639 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5640 p -= 2; /* Beginning of a method name. */
5641 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5642 { /* Might be part of a method name. */
5643 const char *t = p;
5644
5645 /* Seeing a ' ' or a '(' is not conclusive evidence
5646 that we are in the middle of a method name. However,
5647 finding "-[" or "+[" should be pretty un-ambiguous.
5648 Unfortunately we have to find it now to decide. */
5649
5650 while (t > text)
5651 if (isalnum (t[-1]) || t[-1] == '_' ||
5652 t[-1] == ' ' || t[-1] == ':' ||
5653 t[-1] == '(' || t[-1] == ')')
5654 --t;
5655 else
5656 break;
5657
5658 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5659 p = t - 2; /* Method name detected. */
5660 /* Else we leave with p unchanged. */
5661 }
5662 }
5663 break;
5664 }
5665 }
5666 return p;
5667 }
5668
5669 static void
5670 completion_list_add_fields (completion_tracker &tracker,
5671 struct symbol *sym,
5672 const lookup_name_info &lookup_name,
5673 const char *text, const char *word)
5674 {
5675 if (sym->aclass () == LOC_TYPEDEF)
5676 {
5677 struct type *t = sym->type ();
5678 enum type_code c = t->code ();
5679 int j;
5680
5681 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5682 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5683 if (t->field (j).name ())
5684 completion_list_add_name (tracker, sym->language (),
5685 t->field (j).name (),
5686 lookup_name, text, word);
5687 }
5688 }
5689
5690 /* See symtab.h. */
5691
5692 bool
5693 symbol_is_function_or_method (symbol *sym)
5694 {
5695 switch (sym->type ()->code ())
5696 {
5697 case TYPE_CODE_FUNC:
5698 case TYPE_CODE_METHOD:
5699 return true;
5700 default:
5701 return false;
5702 }
5703 }
5704
5705 /* See symtab.h. */
5706
5707 bool
5708 symbol_is_function_or_method (minimal_symbol *msymbol)
5709 {
5710 switch (MSYMBOL_TYPE (msymbol))
5711 {
5712 case mst_text:
5713 case mst_text_gnu_ifunc:
5714 case mst_solib_trampoline:
5715 case mst_file_text:
5716 return true;
5717 default:
5718 return false;
5719 }
5720 }
5721
5722 /* See symtab.h. */
5723
5724 bound_minimal_symbol
5725 find_gnu_ifunc (const symbol *sym)
5726 {
5727 if (sym->aclass () != LOC_BLOCK)
5728 return {};
5729
5730 lookup_name_info lookup_name (sym->search_name (),
5731 symbol_name_match_type::SEARCH_NAME);
5732 struct objfile *objfile = symbol_objfile (sym);
5733
5734 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5735 minimal_symbol *ifunc = NULL;
5736
5737 iterate_over_minimal_symbols (objfile, lookup_name,
5738 [&] (minimal_symbol *minsym)
5739 {
5740 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5741 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5742 {
5743 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5744 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5745 {
5746 struct gdbarch *gdbarch = objfile->arch ();
5747 msym_addr = gdbarch_convert_from_func_ptr_addr
5748 (gdbarch, msym_addr, current_inferior ()->top_target ());
5749 }
5750 if (msym_addr == address)
5751 {
5752 ifunc = minsym;
5753 return true;
5754 }
5755 }
5756 return false;
5757 });
5758
5759 if (ifunc != NULL)
5760 return {ifunc, objfile};
5761 return {};
5762 }
5763
5764 /* Add matching symbols from SYMTAB to the current completion list. */
5765
5766 static void
5767 add_symtab_completions (struct compunit_symtab *cust,
5768 completion_tracker &tracker,
5769 complete_symbol_mode mode,
5770 const lookup_name_info &lookup_name,
5771 const char *text, const char *word,
5772 enum type_code code)
5773 {
5774 struct symbol *sym;
5775 const struct block *b;
5776 struct block_iterator iter;
5777 int i;
5778
5779 if (cust == NULL)
5780 return;
5781
5782 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5783 {
5784 QUIT;
5785 b = BLOCKVECTOR_BLOCK (cust->blockvector (), i);
5786 ALL_BLOCK_SYMBOLS (b, iter, sym)
5787 {
5788 if (completion_skip_symbol (mode, sym))
5789 continue;
5790
5791 if (code == TYPE_CODE_UNDEF
5792 || (sym->domain () == STRUCT_DOMAIN
5793 && sym->type ()->code () == code))
5794 completion_list_add_symbol (tracker, sym,
5795 lookup_name,
5796 text, word);
5797 }
5798 }
5799 }
5800
5801 void
5802 default_collect_symbol_completion_matches_break_on
5803 (completion_tracker &tracker, complete_symbol_mode mode,
5804 symbol_name_match_type name_match_type,
5805 const char *text, const char *word,
5806 const char *break_on, enum type_code code)
5807 {
5808 /* Problem: All of the symbols have to be copied because readline
5809 frees them. I'm not going to worry about this; hopefully there
5810 won't be that many. */
5811
5812 struct symbol *sym;
5813 const struct block *b;
5814 const struct block *surrounding_static_block, *surrounding_global_block;
5815 struct block_iterator iter;
5816 /* The symbol we are completing on. Points in same buffer as text. */
5817 const char *sym_text;
5818
5819 /* Now look for the symbol we are supposed to complete on. */
5820 if (mode == complete_symbol_mode::LINESPEC)
5821 sym_text = text;
5822 else
5823 {
5824 const char *p;
5825 char quote_found;
5826 const char *quote_pos = NULL;
5827
5828 /* First see if this is a quoted string. */
5829 quote_found = '\0';
5830 for (p = text; *p != '\0'; ++p)
5831 {
5832 if (quote_found != '\0')
5833 {
5834 if (*p == quote_found)
5835 /* Found close quote. */
5836 quote_found = '\0';
5837 else if (*p == '\\' && p[1] == quote_found)
5838 /* A backslash followed by the quote character
5839 doesn't end the string. */
5840 ++p;
5841 }
5842 else if (*p == '\'' || *p == '"')
5843 {
5844 quote_found = *p;
5845 quote_pos = p;
5846 }
5847 }
5848 if (quote_found == '\'')
5849 /* A string within single quotes can be a symbol, so complete on it. */
5850 sym_text = quote_pos + 1;
5851 else if (quote_found == '"')
5852 /* A double-quoted string is never a symbol, nor does it make sense
5853 to complete it any other way. */
5854 {
5855 return;
5856 }
5857 else
5858 {
5859 /* It is not a quoted string. Break it based on the characters
5860 which are in symbols. */
5861 while (p > text)
5862 {
5863 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5864 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5865 --p;
5866 else
5867 break;
5868 }
5869 sym_text = p;
5870 }
5871 }
5872
5873 lookup_name_info lookup_name (sym_text, name_match_type, true);
5874
5875 /* At this point scan through the misc symbol vectors and add each
5876 symbol you find to the list. Eventually we want to ignore
5877 anything that isn't a text symbol (everything else will be
5878 handled by the psymtab code below). */
5879
5880 if (code == TYPE_CODE_UNDEF)
5881 {
5882 for (objfile *objfile : current_program_space->objfiles ())
5883 {
5884 for (minimal_symbol *msymbol : objfile->msymbols ())
5885 {
5886 QUIT;
5887
5888 if (completion_skip_symbol (mode, msymbol))
5889 continue;
5890
5891 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5892 sym_text, word);
5893
5894 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5895 sym_text, word);
5896 }
5897 }
5898 }
5899
5900 /* Add completions for all currently loaded symbol tables. */
5901 for (objfile *objfile : current_program_space->objfiles ())
5902 {
5903 for (compunit_symtab *cust : objfile->compunits ())
5904 add_symtab_completions (cust, tracker, mode, lookup_name,
5905 sym_text, word, code);
5906 }
5907
5908 /* Look through the partial symtabs for all symbols which begin by
5909 matching SYM_TEXT. Expand all CUs that you find to the list. */
5910 expand_symtabs_matching (NULL,
5911 lookup_name,
5912 NULL,
5913 [&] (compunit_symtab *symtab) /* expansion notify */
5914 {
5915 add_symtab_completions (symtab,
5916 tracker, mode, lookup_name,
5917 sym_text, word, code);
5918 return true;
5919 },
5920 SEARCH_GLOBAL_BLOCK | SEARCH_STATIC_BLOCK,
5921 ALL_DOMAIN);
5922
5923 /* Search upwards from currently selected frame (so that we can
5924 complete on local vars). Also catch fields of types defined in
5925 this places which match our text string. Only complete on types
5926 visible from current context. */
5927
5928 b = get_selected_block (0);
5929 surrounding_static_block = block_static_block (b);
5930 surrounding_global_block = block_global_block (b);
5931 if (surrounding_static_block != NULL)
5932 while (b != surrounding_static_block)
5933 {
5934 QUIT;
5935
5936 ALL_BLOCK_SYMBOLS (b, iter, sym)
5937 {
5938 if (code == TYPE_CODE_UNDEF)
5939 {
5940 completion_list_add_symbol (tracker, sym, lookup_name,
5941 sym_text, word);
5942 completion_list_add_fields (tracker, sym, lookup_name,
5943 sym_text, word);
5944 }
5945 else if (sym->domain () == STRUCT_DOMAIN
5946 && sym->type ()->code () == code)
5947 completion_list_add_symbol (tracker, sym, lookup_name,
5948 sym_text, word);
5949 }
5950
5951 /* Stop when we encounter an enclosing function. Do not stop for
5952 non-inlined functions - the locals of the enclosing function
5953 are in scope for a nested function. */
5954 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5955 break;
5956 b = BLOCK_SUPERBLOCK (b);
5957 }
5958
5959 /* Add fields from the file's types; symbols will be added below. */
5960
5961 if (code == TYPE_CODE_UNDEF)
5962 {
5963 if (surrounding_static_block != NULL)
5964 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5965 completion_list_add_fields (tracker, sym, lookup_name,
5966 sym_text, word);
5967
5968 if (surrounding_global_block != NULL)
5969 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5970 completion_list_add_fields (tracker, sym, lookup_name,
5971 sym_text, word);
5972 }
5973
5974 /* Skip macros if we are completing a struct tag -- arguable but
5975 usually what is expected. */
5976 if (current_language->macro_expansion () == macro_expansion_c
5977 && code == TYPE_CODE_UNDEF)
5978 {
5979 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5980
5981 /* This adds a macro's name to the current completion list. */
5982 auto add_macro_name = [&] (const char *macro_name,
5983 const macro_definition *,
5984 macro_source_file *,
5985 int)
5986 {
5987 completion_list_add_name (tracker, language_c, macro_name,
5988 lookup_name, sym_text, word);
5989 };
5990
5991 /* Add any macros visible in the default scope. Note that this
5992 may yield the occasional wrong result, because an expression
5993 might be evaluated in a scope other than the default. For
5994 example, if the user types "break file:line if <TAB>", the
5995 resulting expression will be evaluated at "file:line" -- but
5996 at there does not seem to be a way to detect this at
5997 completion time. */
5998 scope = default_macro_scope ();
5999 if (scope)
6000 macro_for_each_in_scope (scope->file, scope->line,
6001 add_macro_name);
6002
6003 /* User-defined macros are always visible. */
6004 macro_for_each (macro_user_macros, add_macro_name);
6005 }
6006 }
6007
6008 /* Collect all symbols (regardless of class) which begin by matching
6009 TEXT. */
6010
6011 void
6012 collect_symbol_completion_matches (completion_tracker &tracker,
6013 complete_symbol_mode mode,
6014 symbol_name_match_type name_match_type,
6015 const char *text, const char *word)
6016 {
6017 current_language->collect_symbol_completion_matches (tracker, mode,
6018 name_match_type,
6019 text, word,
6020 TYPE_CODE_UNDEF);
6021 }
6022
6023 /* Like collect_symbol_completion_matches, but only collect
6024 STRUCT_DOMAIN symbols whose type code is CODE. */
6025
6026 void
6027 collect_symbol_completion_matches_type (completion_tracker &tracker,
6028 const char *text, const char *word,
6029 enum type_code code)
6030 {
6031 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
6032 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
6033
6034 gdb_assert (code == TYPE_CODE_UNION
6035 || code == TYPE_CODE_STRUCT
6036 || code == TYPE_CODE_ENUM);
6037 current_language->collect_symbol_completion_matches (tracker, mode,
6038 name_match_type,
6039 text, word, code);
6040 }
6041
6042 /* Like collect_symbol_completion_matches, but collects a list of
6043 symbols defined in all source files named SRCFILE. */
6044
6045 void
6046 collect_file_symbol_completion_matches (completion_tracker &tracker,
6047 complete_symbol_mode mode,
6048 symbol_name_match_type name_match_type,
6049 const char *text, const char *word,
6050 const char *srcfile)
6051 {
6052 /* The symbol we are completing on. Points in same buffer as text. */
6053 const char *sym_text;
6054
6055 /* Now look for the symbol we are supposed to complete on.
6056 FIXME: This should be language-specific. */
6057 if (mode == complete_symbol_mode::LINESPEC)
6058 sym_text = text;
6059 else
6060 {
6061 const char *p;
6062 char quote_found;
6063 const char *quote_pos = NULL;
6064
6065 /* First see if this is a quoted string. */
6066 quote_found = '\0';
6067 for (p = text; *p != '\0'; ++p)
6068 {
6069 if (quote_found != '\0')
6070 {
6071 if (*p == quote_found)
6072 /* Found close quote. */
6073 quote_found = '\0';
6074 else if (*p == '\\' && p[1] == quote_found)
6075 /* A backslash followed by the quote character
6076 doesn't end the string. */
6077 ++p;
6078 }
6079 else if (*p == '\'' || *p == '"')
6080 {
6081 quote_found = *p;
6082 quote_pos = p;
6083 }
6084 }
6085 if (quote_found == '\'')
6086 /* A string within single quotes can be a symbol, so complete on it. */
6087 sym_text = quote_pos + 1;
6088 else if (quote_found == '"')
6089 /* A double-quoted string is never a symbol, nor does it make sense
6090 to complete it any other way. */
6091 {
6092 return;
6093 }
6094 else
6095 {
6096 /* Not a quoted string. */
6097 sym_text = language_search_unquoted_string (text, p);
6098 }
6099 }
6100
6101 lookup_name_info lookup_name (sym_text, name_match_type, true);
6102
6103 /* Go through symtabs for SRCFILE and check the externs and statics
6104 for symbols which match. */
6105 iterate_over_symtabs (srcfile, [&] (symtab *s)
6106 {
6107 add_symtab_completions (s->compunit (),
6108 tracker, mode, lookup_name,
6109 sym_text, word, TYPE_CODE_UNDEF);
6110 return false;
6111 });
6112 }
6113
6114 /* A helper function for make_source_files_completion_list. It adds
6115 another file name to a list of possible completions, growing the
6116 list as necessary. */
6117
6118 static void
6119 add_filename_to_list (const char *fname, const char *text, const char *word,
6120 completion_list *list)
6121 {
6122 list->emplace_back (make_completion_match_str (fname, text, word));
6123 }
6124
6125 static int
6126 not_interesting_fname (const char *fname)
6127 {
6128 static const char *illegal_aliens[] = {
6129 "_globals_", /* inserted by coff_symtab_read */
6130 NULL
6131 };
6132 int i;
6133
6134 for (i = 0; illegal_aliens[i]; i++)
6135 {
6136 if (filename_cmp (fname, illegal_aliens[i]) == 0)
6137 return 1;
6138 }
6139 return 0;
6140 }
6141
6142 /* An object of this type is passed as the callback argument to
6143 map_partial_symbol_filenames. */
6144 struct add_partial_filename_data
6145 {
6146 struct filename_seen_cache *filename_seen_cache;
6147 const char *text;
6148 const char *word;
6149 int text_len;
6150 completion_list *list;
6151
6152 void operator() (const char *filename, const char *fullname);
6153 };
6154
6155 /* A callback for map_partial_symbol_filenames. */
6156
6157 void
6158 add_partial_filename_data::operator() (const char *filename,
6159 const char *fullname)
6160 {
6161 if (not_interesting_fname (filename))
6162 return;
6163 if (!filename_seen_cache->seen (filename)
6164 && filename_ncmp (filename, text, text_len) == 0)
6165 {
6166 /* This file matches for a completion; add it to the
6167 current list of matches. */
6168 add_filename_to_list (filename, text, word, list);
6169 }
6170 else
6171 {
6172 const char *base_name = lbasename (filename);
6173
6174 if (base_name != filename
6175 && !filename_seen_cache->seen (base_name)
6176 && filename_ncmp (base_name, text, text_len) == 0)
6177 add_filename_to_list (base_name, text, word, list);
6178 }
6179 }
6180
6181 /* Return a list of all source files whose names begin with matching
6182 TEXT. The file names are looked up in the symbol tables of this
6183 program. */
6184
6185 completion_list
6186 make_source_files_completion_list (const char *text, const char *word)
6187 {
6188 size_t text_len = strlen (text);
6189 completion_list list;
6190 const char *base_name;
6191 struct add_partial_filename_data datum;
6192
6193 if (!have_full_symbols () && !have_partial_symbols ())
6194 return list;
6195
6196 filename_seen_cache filenames_seen;
6197
6198 for (objfile *objfile : current_program_space->objfiles ())
6199 {
6200 for (compunit_symtab *cu : objfile->compunits ())
6201 {
6202 for (symtab *s : cu->filetabs ())
6203 {
6204 if (not_interesting_fname (s->filename))
6205 continue;
6206 if (!filenames_seen.seen (s->filename)
6207 && filename_ncmp (s->filename, text, text_len) == 0)
6208 {
6209 /* This file matches for a completion; add it to the current
6210 list of matches. */
6211 add_filename_to_list (s->filename, text, word, &list);
6212 }
6213 else
6214 {
6215 /* NOTE: We allow the user to type a base name when the
6216 debug info records leading directories, but not the other
6217 way around. This is what subroutines of breakpoint
6218 command do when they parse file names. */
6219 base_name = lbasename (s->filename);
6220 if (base_name != s->filename
6221 && !filenames_seen.seen (base_name)
6222 && filename_ncmp (base_name, text, text_len) == 0)
6223 add_filename_to_list (base_name, text, word, &list);
6224 }
6225 }
6226 }
6227 }
6228
6229 datum.filename_seen_cache = &filenames_seen;
6230 datum.text = text;
6231 datum.word = word;
6232 datum.text_len = text_len;
6233 datum.list = &list;
6234 map_symbol_filenames (datum, false /*need_fullname*/);
6235
6236 return list;
6237 }
6238 \f
6239 /* Track MAIN */
6240
6241 /* Return the "main_info" object for the current program space. If
6242 the object has not yet been created, create it and fill in some
6243 default values. */
6244
6245 static struct main_info *
6246 get_main_info (void)
6247 {
6248 struct main_info *info = main_progspace_key.get (current_program_space);
6249
6250 if (info == NULL)
6251 {
6252 /* It may seem strange to store the main name in the progspace
6253 and also in whatever objfile happens to see a main name in
6254 its debug info. The reason for this is mainly historical:
6255 gdb returned "main" as the name even if no function named
6256 "main" was defined the program; and this approach lets us
6257 keep compatibility. */
6258 info = main_progspace_key.emplace (current_program_space);
6259 }
6260
6261 return info;
6262 }
6263
6264 static void
6265 set_main_name (const char *name, enum language lang)
6266 {
6267 struct main_info *info = get_main_info ();
6268
6269 if (info->name_of_main != NULL)
6270 {
6271 xfree (info->name_of_main);
6272 info->name_of_main = NULL;
6273 info->language_of_main = language_unknown;
6274 }
6275 if (name != NULL)
6276 {
6277 info->name_of_main = xstrdup (name);
6278 info->language_of_main = lang;
6279 }
6280 }
6281
6282 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6283 accordingly. */
6284
6285 static void
6286 find_main_name (void)
6287 {
6288 const char *new_main_name;
6289
6290 /* First check the objfiles to see whether a debuginfo reader has
6291 picked up the appropriate main name. Historically the main name
6292 was found in a more or less random way; this approach instead
6293 relies on the order of objfile creation -- which still isn't
6294 guaranteed to get the correct answer, but is just probably more
6295 accurate. */
6296 for (objfile *objfile : current_program_space->objfiles ())
6297 {
6298 if (objfile->per_bfd->name_of_main != NULL)
6299 {
6300 set_main_name (objfile->per_bfd->name_of_main,
6301 objfile->per_bfd->language_of_main);
6302 return;
6303 }
6304 }
6305
6306 /* Try to see if the main procedure is in Ada. */
6307 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6308 be to add a new method in the language vector, and call this
6309 method for each language until one of them returns a non-empty
6310 name. This would allow us to remove this hard-coded call to
6311 an Ada function. It is not clear that this is a better approach
6312 at this point, because all methods need to be written in a way
6313 such that false positives never be returned. For instance, it is
6314 important that a method does not return a wrong name for the main
6315 procedure if the main procedure is actually written in a different
6316 language. It is easy to guaranty this with Ada, since we use a
6317 special symbol generated only when the main in Ada to find the name
6318 of the main procedure. It is difficult however to see how this can
6319 be guarantied for languages such as C, for instance. This suggests
6320 that order of call for these methods becomes important, which means
6321 a more complicated approach. */
6322 new_main_name = ada_main_name ();
6323 if (new_main_name != NULL)
6324 {
6325 set_main_name (new_main_name, language_ada);
6326 return;
6327 }
6328
6329 new_main_name = d_main_name ();
6330 if (new_main_name != NULL)
6331 {
6332 set_main_name (new_main_name, language_d);
6333 return;
6334 }
6335
6336 new_main_name = go_main_name ();
6337 if (new_main_name != NULL)
6338 {
6339 set_main_name (new_main_name, language_go);
6340 return;
6341 }
6342
6343 new_main_name = pascal_main_name ();
6344 if (new_main_name != NULL)
6345 {
6346 set_main_name (new_main_name, language_pascal);
6347 return;
6348 }
6349
6350 /* The languages above didn't identify the name of the main procedure.
6351 Fallback to "main". */
6352
6353 /* Try to find language for main in psymtabs. */
6354 enum language lang
6355 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6356 if (lang != language_unknown)
6357 {
6358 set_main_name ("main", lang);
6359 return;
6360 }
6361
6362 set_main_name ("main", language_unknown);
6363 }
6364
6365 /* See symtab.h. */
6366
6367 const char *
6368 main_name ()
6369 {
6370 struct main_info *info = get_main_info ();
6371
6372 if (info->name_of_main == NULL)
6373 find_main_name ();
6374
6375 return info->name_of_main;
6376 }
6377
6378 /* Return the language of the main function. If it is not known,
6379 return language_unknown. */
6380
6381 enum language
6382 main_language (void)
6383 {
6384 struct main_info *info = get_main_info ();
6385
6386 if (info->name_of_main == NULL)
6387 find_main_name ();
6388
6389 return info->language_of_main;
6390 }
6391
6392 /* Handle ``executable_changed'' events for the symtab module. */
6393
6394 static void
6395 symtab_observer_executable_changed (void)
6396 {
6397 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6398 set_main_name (NULL, language_unknown);
6399 }
6400
6401 /* Return 1 if the supplied producer string matches the ARM RealView
6402 compiler (armcc). */
6403
6404 bool
6405 producer_is_realview (const char *producer)
6406 {
6407 static const char *const arm_idents[] = {
6408 "ARM C Compiler, ADS",
6409 "Thumb C Compiler, ADS",
6410 "ARM C++ Compiler, ADS",
6411 "Thumb C++ Compiler, ADS",
6412 "ARM/Thumb C/C++ Compiler, RVCT",
6413 "ARM C/C++ Compiler, RVCT"
6414 };
6415
6416 if (producer == NULL)
6417 return false;
6418
6419 for (const char *ident : arm_idents)
6420 if (startswith (producer, ident))
6421 return true;
6422
6423 return false;
6424 }
6425
6426 \f
6427
6428 /* The next index to hand out in response to a registration request. */
6429
6430 static int next_aclass_value = LOC_FINAL_VALUE;
6431
6432 /* The maximum number of "aclass" registrations we support. This is
6433 constant for convenience. */
6434 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6435
6436 /* The objects representing the various "aclass" values. The elements
6437 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6438 elements are those registered at gdb initialization time. */
6439
6440 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6441
6442 /* The globally visible pointer. This is separate from 'symbol_impl'
6443 so that it can be const. */
6444
6445 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6446
6447 /* Make sure we saved enough room in struct symbol. */
6448
6449 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6450
6451 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6452 is the ops vector associated with this index. This returns the new
6453 index, which should be used as the aclass_index field for symbols
6454 of this type. */
6455
6456 int
6457 register_symbol_computed_impl (enum address_class aclass,
6458 const struct symbol_computed_ops *ops)
6459 {
6460 int result = next_aclass_value++;
6461
6462 gdb_assert (aclass == LOC_COMPUTED);
6463 gdb_assert (result < MAX_SYMBOL_IMPLS);
6464 symbol_impl[result].aclass = aclass;
6465 symbol_impl[result].ops_computed = ops;
6466
6467 /* Sanity check OPS. */
6468 gdb_assert (ops != NULL);
6469 gdb_assert (ops->tracepoint_var_ref != NULL);
6470 gdb_assert (ops->describe_location != NULL);
6471 gdb_assert (ops->get_symbol_read_needs != NULL);
6472 gdb_assert (ops->read_variable != NULL);
6473
6474 return result;
6475 }
6476
6477 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6478 OPS is the ops vector associated with this index. This returns the
6479 new index, which should be used as the aclass_index field for symbols
6480 of this type. */
6481
6482 int
6483 register_symbol_block_impl (enum address_class aclass,
6484 const struct symbol_block_ops *ops)
6485 {
6486 int result = next_aclass_value++;
6487
6488 gdb_assert (aclass == LOC_BLOCK);
6489 gdb_assert (result < MAX_SYMBOL_IMPLS);
6490 symbol_impl[result].aclass = aclass;
6491 symbol_impl[result].ops_block = ops;
6492
6493 /* Sanity check OPS. */
6494 gdb_assert (ops != NULL);
6495 gdb_assert (ops->find_frame_base_location != NULL);
6496
6497 return result;
6498 }
6499
6500 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6501 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6502 this index. This returns the new index, which should be used as
6503 the aclass_index field for symbols of this type. */
6504
6505 int
6506 register_symbol_register_impl (enum address_class aclass,
6507 const struct symbol_register_ops *ops)
6508 {
6509 int result = next_aclass_value++;
6510
6511 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6512 gdb_assert (result < MAX_SYMBOL_IMPLS);
6513 symbol_impl[result].aclass = aclass;
6514 symbol_impl[result].ops_register = ops;
6515
6516 return result;
6517 }
6518
6519 /* Initialize elements of 'symbol_impl' for the constants in enum
6520 address_class. */
6521
6522 static void
6523 initialize_ordinary_address_classes (void)
6524 {
6525 int i;
6526
6527 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6528 symbol_impl[i].aclass = (enum address_class) i;
6529 }
6530
6531 \f
6532
6533 /* See symtab.h. */
6534
6535 struct objfile *
6536 symbol_objfile (const struct symbol *symbol)
6537 {
6538 gdb_assert (symbol->is_objfile_owned ());
6539 return symbol->owner.symtab->objfile ();
6540 }
6541
6542 /* See symtab.h. */
6543
6544 struct gdbarch *
6545 symbol_arch (const struct symbol *symbol)
6546 {
6547 if (!symbol->is_objfile_owned ())
6548 return symbol->owner.arch;
6549 return symbol->owner.symtab->objfile ()->arch ();
6550 }
6551
6552 /* See symtab.h. */
6553
6554 struct symtab *
6555 symbol_symtab (const struct symbol *symbol)
6556 {
6557 gdb_assert (symbol->is_objfile_owned ());
6558 return symbol->owner.symtab;
6559 }
6560
6561 /* See symtab.h. */
6562
6563 void
6564 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6565 {
6566 gdb_assert (symbol->is_objfile_owned ());
6567 symbol->owner.symtab = symtab;
6568 }
6569
6570 /* See symtab.h. */
6571
6572 CORE_ADDR
6573 get_symbol_address (const struct symbol *sym)
6574 {
6575 gdb_assert (sym->maybe_copied);
6576 gdb_assert (sym->aclass () == LOC_STATIC);
6577
6578 const char *linkage_name = sym->linkage_name ();
6579
6580 for (objfile *objfile : current_program_space->objfiles ())
6581 {
6582 if (objfile->separate_debug_objfile_backlink != nullptr)
6583 continue;
6584
6585 bound_minimal_symbol minsym
6586 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6587 if (minsym.minsym != nullptr)
6588 return BMSYMBOL_VALUE_ADDRESS (minsym);
6589 }
6590 return sym->value.address;
6591 }
6592
6593 /* See symtab.h. */
6594
6595 CORE_ADDR
6596 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6597 {
6598 gdb_assert (minsym->maybe_copied);
6599 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6600
6601 const char *linkage_name = minsym->linkage_name ();
6602
6603 for (objfile *objfile : current_program_space->objfiles ())
6604 {
6605 if (objfile->separate_debug_objfile_backlink == nullptr
6606 && (objfile->flags & OBJF_MAINLINE) != 0)
6607 {
6608 bound_minimal_symbol found
6609 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6610 if (found.minsym != nullptr)
6611 return BMSYMBOL_VALUE_ADDRESS (found);
6612 }
6613 }
6614 return (minsym->value.address
6615 + objf->section_offsets[minsym->section_index ()]);
6616 }
6617
6618 \f
6619
6620 /* Hold the sub-commands of 'info module'. */
6621
6622 static struct cmd_list_element *info_module_cmdlist = NULL;
6623
6624 /* See symtab.h. */
6625
6626 std::vector<module_symbol_search>
6627 search_module_symbols (const char *module_regexp, const char *regexp,
6628 const char *type_regexp, search_domain kind)
6629 {
6630 std::vector<module_symbol_search> results;
6631
6632 /* Search for all modules matching MODULE_REGEXP. */
6633 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6634 spec1.set_exclude_minsyms (true);
6635 std::vector<symbol_search> modules = spec1.search ();
6636
6637 /* Now search for all symbols of the required KIND matching the required
6638 regular expressions. We figure out which ones are in which modules
6639 below. */
6640 global_symbol_searcher spec2 (kind, regexp);
6641 spec2.set_symbol_type_regexp (type_regexp);
6642 spec2.set_exclude_minsyms (true);
6643 std::vector<symbol_search> symbols = spec2.search ();
6644
6645 /* Now iterate over all MODULES, checking to see which items from
6646 SYMBOLS are in each module. */
6647 for (const symbol_search &p : modules)
6648 {
6649 QUIT;
6650
6651 /* This is a module. */
6652 gdb_assert (p.symbol != nullptr);
6653
6654 std::string prefix = p.symbol->print_name ();
6655 prefix += "::";
6656
6657 for (const symbol_search &q : symbols)
6658 {
6659 if (q.symbol == nullptr)
6660 continue;
6661
6662 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6663 prefix.size ()) != 0)
6664 continue;
6665
6666 results.push_back ({p, q});
6667 }
6668 }
6669
6670 return results;
6671 }
6672
6673 /* Implement the core of both 'info module functions' and 'info module
6674 variables'. */
6675
6676 static void
6677 info_module_subcommand (bool quiet, const char *module_regexp,
6678 const char *regexp, const char *type_regexp,
6679 search_domain kind)
6680 {
6681 /* Print a header line. Don't build the header line bit by bit as this
6682 prevents internationalisation. */
6683 if (!quiet)
6684 {
6685 if (module_regexp == nullptr)
6686 {
6687 if (type_regexp == nullptr)
6688 {
6689 if (regexp == nullptr)
6690 printf_filtered ((kind == VARIABLES_DOMAIN
6691 ? _("All variables in all modules:")
6692 : _("All functions in all modules:")));
6693 else
6694 printf_filtered
6695 ((kind == VARIABLES_DOMAIN
6696 ? _("All variables matching regular expression"
6697 " \"%s\" in all modules:")
6698 : _("All functions matching regular expression"
6699 " \"%s\" in all modules:")),
6700 regexp);
6701 }
6702 else
6703 {
6704 if (regexp == nullptr)
6705 printf_filtered
6706 ((kind == VARIABLES_DOMAIN
6707 ? _("All variables with type matching regular "
6708 "expression \"%s\" in all modules:")
6709 : _("All functions with type matching regular "
6710 "expression \"%s\" in all modules:")),
6711 type_regexp);
6712 else
6713 printf_filtered
6714 ((kind == VARIABLES_DOMAIN
6715 ? _("All variables matching regular expression "
6716 "\"%s\",\n\twith type matching regular "
6717 "expression \"%s\" in all modules:")
6718 : _("All functions matching regular expression "
6719 "\"%s\",\n\twith type matching regular "
6720 "expression \"%s\" in all modules:")),
6721 regexp, type_regexp);
6722 }
6723 }
6724 else
6725 {
6726 if (type_regexp == nullptr)
6727 {
6728 if (regexp == nullptr)
6729 printf_filtered
6730 ((kind == VARIABLES_DOMAIN
6731 ? _("All variables in all modules matching regular "
6732 "expression \"%s\":")
6733 : _("All functions in all modules matching regular "
6734 "expression \"%s\":")),
6735 module_regexp);
6736 else
6737 printf_filtered
6738 ((kind == VARIABLES_DOMAIN
6739 ? _("All variables matching regular expression "
6740 "\"%s\",\n\tin all modules matching regular "
6741 "expression \"%s\":")
6742 : _("All functions matching regular expression "
6743 "\"%s\",\n\tin all modules matching regular "
6744 "expression \"%s\":")),
6745 regexp, module_regexp);
6746 }
6747 else
6748 {
6749 if (regexp == nullptr)
6750 printf_filtered
6751 ((kind == VARIABLES_DOMAIN
6752 ? _("All variables with type matching regular "
6753 "expression \"%s\"\n\tin all modules matching "
6754 "regular expression \"%s\":")
6755 : _("All functions with type matching regular "
6756 "expression \"%s\"\n\tin all modules matching "
6757 "regular expression \"%s\":")),
6758 type_regexp, module_regexp);
6759 else
6760 printf_filtered
6761 ((kind == VARIABLES_DOMAIN
6762 ? _("All variables matching regular expression "
6763 "\"%s\",\n\twith type matching regular expression "
6764 "\"%s\",\n\tin all modules matching regular "
6765 "expression \"%s\":")
6766 : _("All functions matching regular expression "
6767 "\"%s\",\n\twith type matching regular expression "
6768 "\"%s\",\n\tin all modules matching regular "
6769 "expression \"%s\":")),
6770 regexp, type_regexp, module_regexp);
6771 }
6772 }
6773 printf_filtered ("\n");
6774 }
6775
6776 /* Find all symbols of type KIND matching the given regular expressions
6777 along with the symbols for the modules in which those symbols
6778 reside. */
6779 std::vector<module_symbol_search> module_symbols
6780 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6781
6782 std::sort (module_symbols.begin (), module_symbols.end (),
6783 [] (const module_symbol_search &a, const module_symbol_search &b)
6784 {
6785 if (a.first < b.first)
6786 return true;
6787 else if (a.first == b.first)
6788 return a.second < b.second;
6789 else
6790 return false;
6791 });
6792
6793 const char *last_filename = "";
6794 const symbol *last_module_symbol = nullptr;
6795 for (const module_symbol_search &ms : module_symbols)
6796 {
6797 const symbol_search &p = ms.first;
6798 const symbol_search &q = ms.second;
6799
6800 gdb_assert (q.symbol != nullptr);
6801
6802 if (last_module_symbol != p.symbol)
6803 {
6804 printf_filtered ("\n");
6805 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6806 last_module_symbol = p.symbol;
6807 last_filename = "";
6808 }
6809
6810 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6811 last_filename);
6812 last_filename
6813 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6814 }
6815 }
6816
6817 /* Hold the option values for the 'info module .....' sub-commands. */
6818
6819 struct info_modules_var_func_options
6820 {
6821 bool quiet = false;
6822 std::string type_regexp;
6823 std::string module_regexp;
6824 };
6825
6826 /* The options used by 'info module variables' and 'info module functions'
6827 commands. */
6828
6829 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6830 gdb::option::boolean_option_def<info_modules_var_func_options> {
6831 "q",
6832 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6833 nullptr, /* show_cmd_cb */
6834 nullptr /* set_doc */
6835 },
6836
6837 gdb::option::string_option_def<info_modules_var_func_options> {
6838 "t",
6839 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6840 nullptr, /* show_cmd_cb */
6841 nullptr /* set_doc */
6842 },
6843
6844 gdb::option::string_option_def<info_modules_var_func_options> {
6845 "m",
6846 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6847 nullptr, /* show_cmd_cb */
6848 nullptr /* set_doc */
6849 }
6850 };
6851
6852 /* Return the option group used by the 'info module ...' sub-commands. */
6853
6854 static inline gdb::option::option_def_group
6855 make_info_modules_var_func_options_def_group
6856 (info_modules_var_func_options *opts)
6857 {
6858 return {{info_modules_var_func_options_defs}, opts};
6859 }
6860
6861 /* Implements the 'info module functions' command. */
6862
6863 static void
6864 info_module_functions_command (const char *args, int from_tty)
6865 {
6866 info_modules_var_func_options opts;
6867 auto grp = make_info_modules_var_func_options_def_group (&opts);
6868 gdb::option::process_options
6869 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6870 if (args != nullptr && *args == '\0')
6871 args = nullptr;
6872
6873 info_module_subcommand
6874 (opts.quiet,
6875 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6876 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6877 FUNCTIONS_DOMAIN);
6878 }
6879
6880 /* Implements the 'info module variables' command. */
6881
6882 static void
6883 info_module_variables_command (const char *args, int from_tty)
6884 {
6885 info_modules_var_func_options opts;
6886 auto grp = make_info_modules_var_func_options_def_group (&opts);
6887 gdb::option::process_options
6888 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6889 if (args != nullptr && *args == '\0')
6890 args = nullptr;
6891
6892 info_module_subcommand
6893 (opts.quiet,
6894 opts.module_regexp.empty () ? nullptr : opts.module_regexp.c_str (), args,
6895 opts.type_regexp.empty () ? nullptr : opts.type_regexp.c_str (),
6896 VARIABLES_DOMAIN);
6897 }
6898
6899 /* Command completer for 'info module ...' sub-commands. */
6900
6901 static void
6902 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6903 completion_tracker &tracker,
6904 const char *text,
6905 const char * /* word */)
6906 {
6907
6908 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6909 if (gdb::option::complete_options
6910 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6911 return;
6912
6913 const char *word = advance_to_expression_complete_word_point (tracker, text);
6914 symbol_completer (ignore, tracker, text, word);
6915 }
6916
6917 \f
6918
6919 void _initialize_symtab ();
6920 void
6921 _initialize_symtab ()
6922 {
6923 cmd_list_element *c;
6924
6925 initialize_ordinary_address_classes ();
6926
6927 c = add_info ("variables", info_variables_command,
6928 info_print_args_help (_("\
6929 All global and static variable names or those matching REGEXPs.\n\
6930 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6931 Prints the global and static variables.\n"),
6932 _("global and static variables"),
6933 true));
6934 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6935 if (dbx_commands)
6936 {
6937 c = add_com ("whereis", class_info, info_variables_command,
6938 info_print_args_help (_("\
6939 All global and static variable names, or those matching REGEXPs.\n\
6940 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6941 Prints the global and static variables.\n"),
6942 _("global and static variables"),
6943 true));
6944 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6945 }
6946
6947 c = add_info ("functions", info_functions_command,
6948 info_print_args_help (_("\
6949 All function names or those matching REGEXPs.\n\
6950 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6951 Prints the functions.\n"),
6952 _("functions"),
6953 true));
6954 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6955
6956 c = add_info ("types", info_types_command, _("\
6957 All type names, or those matching REGEXP.\n\
6958 Usage: info types [-q] [REGEXP]\n\
6959 Print information about all types matching REGEXP, or all types if no\n\
6960 REGEXP is given. The optional flag -q disables printing of headers."));
6961 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6962
6963 const auto info_sources_opts
6964 = make_info_sources_options_def_group (nullptr);
6965
6966 static std::string info_sources_help
6967 = gdb::option::build_help (_("\
6968 All source files in the program or those matching REGEXP.\n\
6969 Usage: info sources [OPTION]... [REGEXP]\n\
6970 By default, REGEXP is used to match anywhere in the filename.\n\
6971 \n\
6972 Options:\n\
6973 %OPTIONS%"),
6974 info_sources_opts);
6975
6976 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6977 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6978
6979 c = add_info ("modules", info_modules_command,
6980 _("All module names, or those matching REGEXP."));
6981 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6982
6983 add_basic_prefix_cmd ("module", class_info, _("\
6984 Print information about modules."),
6985 &info_module_cmdlist, 0, &infolist);
6986
6987 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6988 Display functions arranged by modules.\n\
6989 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6990 Print a summary of all functions within each Fortran module, grouped by\n\
6991 module and file. For each function the line on which the function is\n\
6992 defined is given along with the type signature and name of the function.\n\
6993 \n\
6994 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6995 listed. If MODREGEXP is provided then only functions in modules matching\n\
6996 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6997 type signature matches TYPEREGEXP are listed.\n\
6998 \n\
6999 The -q flag suppresses printing some header information."),
7000 &info_module_cmdlist);
7001 set_cmd_completer_handle_brkchars
7002 (c, info_module_var_func_command_completer);
7003
7004 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
7005 Display variables arranged by modules.\n\
7006 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
7007 Print a summary of all variables within each Fortran module, grouped by\n\
7008 module and file. For each variable the line on which the variable is\n\
7009 defined is given along with the type and name of the variable.\n\
7010 \n\
7011 If REGEXP is provided then only variables whose name matches REGEXP are\n\
7012 listed. If MODREGEXP is provided then only variables in modules matching\n\
7013 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
7014 type matches TYPEREGEXP are listed.\n\
7015 \n\
7016 The -q flag suppresses printing some header information."),
7017 &info_module_cmdlist);
7018 set_cmd_completer_handle_brkchars
7019 (c, info_module_var_func_command_completer);
7020
7021 add_com ("rbreak", class_breakpoint, rbreak_command,
7022 _("Set a breakpoint for all functions matching REGEXP."));
7023
7024 add_setshow_enum_cmd ("multiple-symbols", no_class,
7025 multiple_symbols_modes, &multiple_symbols_mode,
7026 _("\
7027 Set how the debugger handles ambiguities in expressions."), _("\
7028 Show how the debugger handles ambiguities in expressions."), _("\
7029 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
7030 NULL, NULL, &setlist, &showlist);
7031
7032 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
7033 &basenames_may_differ, _("\
7034 Set whether a source file may have multiple base names."), _("\
7035 Show whether a source file may have multiple base names."), _("\
7036 (A \"base name\" is the name of a file with the directory part removed.\n\
7037 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
7038 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
7039 before comparing them. Canonicalization is an expensive operation,\n\
7040 but it allows the same file be known by more than one base name.\n\
7041 If not set (the default), all source files are assumed to have just\n\
7042 one base name, and gdb will do file name comparisons more efficiently."),
7043 NULL, NULL,
7044 &setlist, &showlist);
7045
7046 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
7047 _("Set debugging of symbol table creation."),
7048 _("Show debugging of symbol table creation."), _("\
7049 When enabled (non-zero), debugging messages are printed when building\n\
7050 symbol tables. A value of 1 (one) normally provides enough information.\n\
7051 A value greater than 1 provides more verbose information."),
7052 NULL,
7053 NULL,
7054 &setdebuglist, &showdebuglist);
7055
7056 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
7057 _("\
7058 Set debugging of symbol lookup."), _("\
7059 Show debugging of symbol lookup."), _("\
7060 When enabled (non-zero), symbol lookups are logged."),
7061 NULL, NULL,
7062 &setdebuglist, &showdebuglist);
7063
7064 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
7065 &new_symbol_cache_size,
7066 _("Set the size of the symbol cache."),
7067 _("Show the size of the symbol cache."), _("\
7068 The size of the symbol cache.\n\
7069 If zero then the symbol cache is disabled."),
7070 set_symbol_cache_size_handler, NULL,
7071 &maintenance_set_cmdlist,
7072 &maintenance_show_cmdlist);
7073
7074 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
7075 _("Dump the symbol cache for each program space."),
7076 &maintenanceprintlist);
7077
7078 add_cmd ("symbol-cache-statistics", class_maintenance,
7079 maintenance_print_symbol_cache_statistics,
7080 _("Print symbol cache statistics for each program space."),
7081 &maintenanceprintlist);
7082
7083 cmd_list_element *maintenance_flush_symbol_cache_cmd
7084 = add_cmd ("symbol-cache", class_maintenance,
7085 maintenance_flush_symbol_cache,
7086 _("Flush the symbol cache for each program space."),
7087 &maintenanceflushlist);
7088 c = add_alias_cmd ("flush-symbol-cache", maintenance_flush_symbol_cache_cmd,
7089 class_maintenance, 0, &maintenancelist);
7090 deprecate_cmd (c, "maintenancelist flush symbol-cache");
7091
7092 gdb::observers::executable_changed.attach (symtab_observer_executable_changed,
7093 "symtab");
7094 gdb::observers::new_objfile.attach (symtab_new_objfile_observer, "symtab");
7095 gdb::observers::free_objfile.attach (symtab_free_objfile_observer, "symtab");
7096 }