Move lookup_block_symbol to block.c, rename to block_lookup_symbol.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_symbol_aux_local (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_aux_symtabs (int block_index,
84 const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case LABEL_DOMAIN: return "LABEL_DOMAIN";
161 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
162 default: gdb_assert_not_reached ("bad domain_enum");
163 }
164 }
165
166 /* Return the name of a search_domain . */
167
168 const char *
169 search_domain_name (enum search_domain e)
170 {
171 switch (e)
172 {
173 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
174 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
175 case TYPES_DOMAIN: return "TYPES_DOMAIN";
176 case ALL_DOMAIN: return "ALL_DOMAIN";
177 default: gdb_assert_not_reached ("bad search_domain");
178 }
179 }
180
181 /* Set the primary field in SYMTAB. */
182
183 void
184 set_symtab_primary (struct symtab *symtab, int primary)
185 {
186 symtab->primary = primary;
187
188 if (symtab_create_debug && primary)
189 {
190 fprintf_unfiltered (gdb_stdlog,
191 "Created primary symtab %s for %s.\n",
192 host_address_to_string (symtab),
193 symtab_to_filename_for_display (symtab));
194 }
195 }
196
197 /* See whether FILENAME matches SEARCH_NAME using the rule that we
198 advertise to the user. (The manual's description of linespecs
199 describes what we advertise). Returns true if they match, false
200 otherwise. */
201
202 int
203 compare_filenames_for_search (const char *filename, const char *search_name)
204 {
205 int len = strlen (filename);
206 size_t search_len = strlen (search_name);
207
208 if (len < search_len)
209 return 0;
210
211 /* The tail of FILENAME must match. */
212 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
213 return 0;
214
215 /* Either the names must completely match, or the character
216 preceding the trailing SEARCH_NAME segment of FILENAME must be a
217 directory separator.
218
219 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
220 cannot match FILENAME "/path//dir/file.c" - as user has requested
221 absolute path. The sama applies for "c:\file.c" possibly
222 incorrectly hypothetically matching "d:\dir\c:\file.c".
223
224 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
225 compatible with SEARCH_NAME "file.c". In such case a compiler had
226 to put the "c:file.c" name into debug info. Such compatibility
227 works only on GDB built for DOS host. */
228 return (len == search_len
229 || (!IS_ABSOLUTE_PATH (search_name)
230 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
231 || (HAS_DRIVE_SPEC (filename)
232 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
233 }
234
235 /* Check for a symtab of a specific name by searching some symtabs.
236 This is a helper function for callbacks of iterate_over_symtabs.
237
238 If NAME is not absolute, then REAL_PATH is NULL
239 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
240
241 The return value, NAME, REAL_PATH, CALLBACK, and DATA
242 are identical to the `map_symtabs_matching_filename' method of
243 quick_symbol_functions.
244
245 FIRST and AFTER_LAST indicate the range of symtabs to search.
246 AFTER_LAST is one past the last symtab to search; NULL means to
247 search until the end of the list. */
248
249 int
250 iterate_over_some_symtabs (const char *name,
251 const char *real_path,
252 int (*callback) (struct symtab *symtab,
253 void *data),
254 void *data,
255 struct symtab *first,
256 struct symtab *after_last)
257 {
258 struct symtab *s = NULL;
259 const char* base_name = lbasename (name);
260
261 for (s = first; s != NULL && s != after_last; s = s->next)
262 {
263 if (compare_filenames_for_search (s->filename, name))
264 {
265 if (callback (s, data))
266 return 1;
267 continue;
268 }
269
270 /* Before we invoke realpath, which can get expensive when many
271 files are involved, do a quick comparison of the basenames. */
272 if (! basenames_may_differ
273 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
274 continue;
275
276 if (compare_filenames_for_search (symtab_to_fullname (s), name))
277 {
278 if (callback (s, data))
279 return 1;
280 continue;
281 }
282
283 /* If the user gave us an absolute path, try to find the file in
284 this symtab and use its absolute path. */
285 if (real_path != NULL)
286 {
287 const char *fullname = symtab_to_fullname (s);
288
289 gdb_assert (IS_ABSOLUTE_PATH (real_path));
290 gdb_assert (IS_ABSOLUTE_PATH (name));
291 if (FILENAME_CMP (real_path, fullname) == 0)
292 {
293 if (callback (s, data))
294 return 1;
295 continue;
296 }
297 }
298 }
299
300 return 0;
301 }
302
303 /* Check for a symtab of a specific name; first in symtabs, then in
304 psymtabs. *If* there is no '/' in the name, a match after a '/'
305 in the symtab filename will also work.
306
307 Calls CALLBACK with each symtab that is found and with the supplied
308 DATA. If CALLBACK returns true, the search stops. */
309
310 void
311 iterate_over_symtabs (const char *name,
312 int (*callback) (struct symtab *symtab,
313 void *data),
314 void *data)
315 {
316 struct objfile *objfile;
317 char *real_path = NULL;
318 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
319
320 /* Here we are interested in canonicalizing an absolute path, not
321 absolutizing a relative path. */
322 if (IS_ABSOLUTE_PATH (name))
323 {
324 real_path = gdb_realpath (name);
325 make_cleanup (xfree, real_path);
326 gdb_assert (IS_ABSOLUTE_PATH (real_path));
327 }
328
329 ALL_OBJFILES (objfile)
330 {
331 if (iterate_over_some_symtabs (name, real_path, callback, data,
332 objfile->symtabs, NULL))
333 {
334 do_cleanups (cleanups);
335 return;
336 }
337 }
338
339 /* Same search rules as above apply here, but now we look thru the
340 psymtabs. */
341
342 ALL_OBJFILES (objfile)
343 {
344 if (objfile->sf
345 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
346 name,
347 real_path,
348 callback,
349 data))
350 {
351 do_cleanups (cleanups);
352 return;
353 }
354 }
355
356 do_cleanups (cleanups);
357 }
358
359 /* The callback function used by lookup_symtab. */
360
361 static int
362 lookup_symtab_callback (struct symtab *symtab, void *data)
363 {
364 struct symtab **result_ptr = data;
365
366 *result_ptr = symtab;
367 return 1;
368 }
369
370 /* A wrapper for iterate_over_symtabs that returns the first matching
371 symtab, or NULL. */
372
373 struct symtab *
374 lookup_symtab (const char *name)
375 {
376 struct symtab *result = NULL;
377
378 iterate_over_symtabs (name, lookup_symtab_callback, &result);
379 return result;
380 }
381
382 \f
383 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
384 full method name, which consist of the class name (from T), the unadorned
385 method name from METHOD_ID, and the signature for the specific overload,
386 specified by SIGNATURE_ID. Note that this function is g++ specific. */
387
388 char *
389 gdb_mangle_name (struct type *type, int method_id, int signature_id)
390 {
391 int mangled_name_len;
392 char *mangled_name;
393 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
394 struct fn_field *method = &f[signature_id];
395 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
396 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
397 const char *newname = type_name_no_tag (type);
398
399 /* Does the form of physname indicate that it is the full mangled name
400 of a constructor (not just the args)? */
401 int is_full_physname_constructor;
402
403 int is_constructor;
404 int is_destructor = is_destructor_name (physname);
405 /* Need a new type prefix. */
406 char *const_prefix = method->is_const ? "C" : "";
407 char *volatile_prefix = method->is_volatile ? "V" : "";
408 char buf[20];
409 int len = (newname == NULL ? 0 : strlen (newname));
410
411 /* Nothing to do if physname already contains a fully mangled v3 abi name
412 or an operator name. */
413 if ((physname[0] == '_' && physname[1] == 'Z')
414 || is_operator_name (field_name))
415 return xstrdup (physname);
416
417 is_full_physname_constructor = is_constructor_name (physname);
418
419 is_constructor = is_full_physname_constructor
420 || (newname && strcmp (field_name, newname) == 0);
421
422 if (!is_destructor)
423 is_destructor = (strncmp (physname, "__dt", 4) == 0);
424
425 if (is_destructor || is_full_physname_constructor)
426 {
427 mangled_name = (char *) xmalloc (strlen (physname) + 1);
428 strcpy (mangled_name, physname);
429 return mangled_name;
430 }
431
432 if (len == 0)
433 {
434 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
435 }
436 else if (physname[0] == 't' || physname[0] == 'Q')
437 {
438 /* The physname for template and qualified methods already includes
439 the class name. */
440 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
441 newname = NULL;
442 len = 0;
443 }
444 else
445 {
446 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
447 volatile_prefix, len);
448 }
449 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
450 + strlen (buf) + len + strlen (physname) + 1);
451
452 mangled_name = (char *) xmalloc (mangled_name_len);
453 if (is_constructor)
454 mangled_name[0] = '\0';
455 else
456 strcpy (mangled_name, field_name);
457
458 strcat (mangled_name, buf);
459 /* If the class doesn't have a name, i.e. newname NULL, then we just
460 mangle it using 0 for the length of the class. Thus it gets mangled
461 as something starting with `::' rather than `classname::'. */
462 if (newname != NULL)
463 strcat (mangled_name, newname);
464
465 strcat (mangled_name, physname);
466 return (mangled_name);
467 }
468
469 /* Initialize the cplus_specific structure. 'cplus_specific' should
470 only be allocated for use with cplus symbols. */
471
472 static void
473 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
474 struct obstack *obstack)
475 {
476 /* A language_specific structure should not have been previously
477 initialized. */
478 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
479 gdb_assert (obstack != NULL);
480
481 gsymbol->language_specific.cplus_specific =
482 OBSTACK_ZALLOC (obstack, struct cplus_specific);
483 }
484
485 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
486 correctly allocated. For C++ symbols a cplus_specific struct is
487 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
488 OBJFILE can be NULL. */
489
490 void
491 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
492 const char *name,
493 struct obstack *obstack)
494 {
495 if (gsymbol->language == language_cplus)
496 {
497 if (gsymbol->language_specific.cplus_specific == NULL)
498 symbol_init_cplus_specific (gsymbol, obstack);
499
500 gsymbol->language_specific.cplus_specific->demangled_name = name;
501 }
502 else if (gsymbol->language == language_ada)
503 {
504 if (name == NULL)
505 {
506 gsymbol->ada_mangled = 0;
507 gsymbol->language_specific.obstack = obstack;
508 }
509 else
510 {
511 gsymbol->ada_mangled = 1;
512 gsymbol->language_specific.mangled_lang.demangled_name = name;
513 }
514 }
515 else
516 gsymbol->language_specific.mangled_lang.demangled_name = name;
517 }
518
519 /* Return the demangled name of GSYMBOL. */
520
521 const char *
522 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
523 {
524 if (gsymbol->language == language_cplus)
525 {
526 if (gsymbol->language_specific.cplus_specific != NULL)
527 return gsymbol->language_specific.cplus_specific->demangled_name;
528 else
529 return NULL;
530 }
531 else if (gsymbol->language == language_ada)
532 {
533 if (!gsymbol->ada_mangled)
534 return NULL;
535 /* Fall through. */
536 }
537
538 return gsymbol->language_specific.mangled_lang.demangled_name;
539 }
540
541 \f
542 /* Initialize the language dependent portion of a symbol
543 depending upon the language for the symbol. */
544
545 void
546 symbol_set_language (struct general_symbol_info *gsymbol,
547 enum language language,
548 struct obstack *obstack)
549 {
550 gsymbol->language = language;
551 if (gsymbol->language == language_d
552 || gsymbol->language == language_go
553 || gsymbol->language == language_java
554 || gsymbol->language == language_objc
555 || gsymbol->language == language_fortran)
556 {
557 symbol_set_demangled_name (gsymbol, NULL, obstack);
558 }
559 else if (gsymbol->language == language_ada)
560 {
561 gdb_assert (gsymbol->ada_mangled == 0);
562 gsymbol->language_specific.obstack = obstack;
563 }
564 else if (gsymbol->language == language_cplus)
565 gsymbol->language_specific.cplus_specific = NULL;
566 else
567 {
568 memset (&gsymbol->language_specific, 0,
569 sizeof (gsymbol->language_specific));
570 }
571 }
572
573 /* Functions to initialize a symbol's mangled name. */
574
575 /* Objects of this type are stored in the demangled name hash table. */
576 struct demangled_name_entry
577 {
578 const char *mangled;
579 char demangled[1];
580 };
581
582 /* Hash function for the demangled name hash. */
583
584 static hashval_t
585 hash_demangled_name_entry (const void *data)
586 {
587 const struct demangled_name_entry *e = data;
588
589 return htab_hash_string (e->mangled);
590 }
591
592 /* Equality function for the demangled name hash. */
593
594 static int
595 eq_demangled_name_entry (const void *a, const void *b)
596 {
597 const struct demangled_name_entry *da = a;
598 const struct demangled_name_entry *db = b;
599
600 return strcmp (da->mangled, db->mangled) == 0;
601 }
602
603 /* Create the hash table used for demangled names. Each hash entry is
604 a pair of strings; one for the mangled name and one for the demangled
605 name. The entry is hashed via just the mangled name. */
606
607 static void
608 create_demangled_names_hash (struct objfile *objfile)
609 {
610 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
611 The hash table code will round this up to the next prime number.
612 Choosing a much larger table size wastes memory, and saves only about
613 1% in symbol reading. */
614
615 objfile->per_bfd->demangled_names_hash = htab_create_alloc
616 (256, hash_demangled_name_entry, eq_demangled_name_entry,
617 NULL, xcalloc, xfree);
618 }
619
620 /* Try to determine the demangled name for a symbol, based on the
621 language of that symbol. If the language is set to language_auto,
622 it will attempt to find any demangling algorithm that works and
623 then set the language appropriately. The returned name is allocated
624 by the demangler and should be xfree'd. */
625
626 static char *
627 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
628 const char *mangled)
629 {
630 char *demangled = NULL;
631
632 if (gsymbol->language == language_unknown)
633 gsymbol->language = language_auto;
634
635 if (gsymbol->language == language_objc
636 || gsymbol->language == language_auto)
637 {
638 demangled =
639 objc_demangle (mangled, 0);
640 if (demangled != NULL)
641 {
642 gsymbol->language = language_objc;
643 return demangled;
644 }
645 }
646 if (gsymbol->language == language_cplus
647 || gsymbol->language == language_auto)
648 {
649 demangled =
650 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
651 if (demangled != NULL)
652 {
653 gsymbol->language = language_cplus;
654 return demangled;
655 }
656 }
657 if (gsymbol->language == language_java)
658 {
659 demangled =
660 gdb_demangle (mangled,
661 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
662 if (demangled != NULL)
663 {
664 gsymbol->language = language_java;
665 return demangled;
666 }
667 }
668 if (gsymbol->language == language_d
669 || gsymbol->language == language_auto)
670 {
671 demangled = d_demangle(mangled, 0);
672 if (demangled != NULL)
673 {
674 gsymbol->language = language_d;
675 return demangled;
676 }
677 }
678 /* FIXME(dje): Continually adding languages here is clumsy.
679 Better to just call la_demangle if !auto, and if auto then call
680 a utility routine that tries successive languages in turn and reports
681 which one it finds. I realize the la_demangle options may be different
682 for different languages but there's already a FIXME for that. */
683 if (gsymbol->language == language_go
684 || gsymbol->language == language_auto)
685 {
686 demangled = go_demangle (mangled, 0);
687 if (demangled != NULL)
688 {
689 gsymbol->language = language_go;
690 return demangled;
691 }
692 }
693
694 /* We could support `gsymbol->language == language_fortran' here to provide
695 module namespaces also for inferiors with only minimal symbol table (ELF
696 symbols). Just the mangling standard is not standardized across compilers
697 and there is no DW_AT_producer available for inferiors with only the ELF
698 symbols to check the mangling kind. */
699
700 /* Check for Ada symbols last. See comment below explaining why. */
701
702 if (gsymbol->language == language_auto)
703 {
704 const char *demangled = ada_decode (mangled);
705
706 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
707 {
708 /* Set the gsymbol language to Ada, but still return NULL.
709 Two reasons for that:
710
711 1. For Ada, we prefer computing the symbol's decoded name
712 on the fly rather than pre-compute it, in order to save
713 memory (Ada projects are typically very large).
714
715 2. There are some areas in the definition of the GNAT
716 encoding where, with a bit of bad luck, we might be able
717 to decode a non-Ada symbol, generating an incorrect
718 demangled name (Eg: names ending with "TB" for instance
719 are identified as task bodies and so stripped from
720 the decoded name returned).
721
722 Returning NULL, here, helps us get a little bit of
723 the best of both worlds. Because we're last, we should
724 not affect any of the other languages that were able to
725 demangle the symbol before us; we get to correctly tag
726 Ada symbols as such; and even if we incorrectly tagged
727 a non-Ada symbol, which should be rare, any routing
728 through the Ada language should be transparent (Ada
729 tries to behave much like C/C++ with non-Ada symbols). */
730 gsymbol->language = language_ada;
731 return NULL;
732 }
733 }
734
735 return NULL;
736 }
737
738 /* Set both the mangled and demangled (if any) names for GSYMBOL based
739 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
740 objfile's obstack; but if COPY_NAME is 0 and if NAME is
741 NUL-terminated, then this function assumes that NAME is already
742 correctly saved (either permanently or with a lifetime tied to the
743 objfile), and it will not be copied.
744
745 The hash table corresponding to OBJFILE is used, and the memory
746 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
747 so the pointer can be discarded after calling this function. */
748
749 /* We have to be careful when dealing with Java names: when we run
750 into a Java minimal symbol, we don't know it's a Java symbol, so it
751 gets demangled as a C++ name. This is unfortunate, but there's not
752 much we can do about it: but when demangling partial symbols and
753 regular symbols, we'd better not reuse the wrong demangled name.
754 (See PR gdb/1039.) We solve this by putting a distinctive prefix
755 on Java names when storing them in the hash table. */
756
757 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
758 don't mind the Java prefix so much: different languages have
759 different demangling requirements, so it's only natural that we
760 need to keep language data around in our demangling cache. But
761 it's not good that the minimal symbol has the wrong demangled name.
762 Unfortunately, I can't think of any easy solution to that
763 problem. */
764
765 #define JAVA_PREFIX "##JAVA$$"
766 #define JAVA_PREFIX_LEN 8
767
768 void
769 symbol_set_names (struct general_symbol_info *gsymbol,
770 const char *linkage_name, int len, int copy_name,
771 struct objfile *objfile)
772 {
773 struct demangled_name_entry **slot;
774 /* A 0-terminated copy of the linkage name. */
775 const char *linkage_name_copy;
776 /* A copy of the linkage name that might have a special Java prefix
777 added to it, for use when looking names up in the hash table. */
778 const char *lookup_name;
779 /* The length of lookup_name. */
780 int lookup_len;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name.
788
789 As a side note, we have also observed some overlap between
790 the C++ mangling and Ada mangling, similarly to what has
791 been observed with Java. Because we don't store the demangled
792 name with the symbol, we don't need to use the same trick
793 as Java. */
794 if (!copy_name)
795 gsymbol->name = linkage_name;
796 else
797 {
798 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
799
800 memcpy (name, linkage_name, len);
801 name[len] = '\0';
802 gsymbol->name = name;
803 }
804 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
805
806 return;
807 }
808
809 if (per_bfd->demangled_names_hash == NULL)
810 create_demangled_names_hash (objfile);
811
812 /* The stabs reader generally provides names that are not
813 NUL-terminated; most of the other readers don't do this, so we
814 can just use the given copy, unless we're in the Java case. */
815 if (gsymbol->language == language_java)
816 {
817 char *alloc_name;
818
819 lookup_len = len + JAVA_PREFIX_LEN;
820 alloc_name = alloca (lookup_len + 1);
821 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
822 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
823 alloc_name[lookup_len] = '\0';
824
825 lookup_name = alloc_name;
826 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
827 }
828 else if (linkage_name[len] != '\0')
829 {
830 char *alloc_name;
831
832 lookup_len = len;
833 alloc_name = alloca (lookup_len + 1);
834 memcpy (alloc_name, linkage_name, len);
835 alloc_name[lookup_len] = '\0';
836
837 lookup_name = alloc_name;
838 linkage_name_copy = alloc_name;
839 }
840 else
841 {
842 lookup_len = len;
843 lookup_name = linkage_name;
844 linkage_name_copy = linkage_name;
845 }
846
847 entry.mangled = lookup_name;
848 slot = ((struct demangled_name_entry **)
849 htab_find_slot (per_bfd->demangled_names_hash,
850 &entry, INSERT));
851
852 /* If this name is not in the hash table, add it. */
853 if (*slot == NULL
854 /* A C version of the symbol may have already snuck into the table.
855 This happens to, e.g., main.init (__go_init_main). Cope. */
856 || (gsymbol->language == language_go
857 && (*slot)->demangled[0] == '\0'))
858 {
859 char *demangled_name = symbol_find_demangled_name (gsymbol,
860 linkage_name_copy);
861 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
862
863 /* Suppose we have demangled_name==NULL, copy_name==0, and
864 lookup_name==linkage_name. In this case, we already have the
865 mangled name saved, and we don't have a demangled name. So,
866 you might think we could save a little space by not recording
867 this in the hash table at all.
868
869 It turns out that it is actually important to still save such
870 an entry in the hash table, because storing this name gives
871 us better bcache hit rates for partial symbols. */
872 if (!copy_name && lookup_name == linkage_name)
873 {
874 *slot = obstack_alloc (&per_bfd->storage_obstack,
875 offsetof (struct demangled_name_entry,
876 demangled)
877 + demangled_len + 1);
878 (*slot)->mangled = lookup_name;
879 }
880 else
881 {
882 char *mangled_ptr;
883
884 /* If we must copy the mangled name, put it directly after
885 the demangled name so we can have a single
886 allocation. */
887 *slot = obstack_alloc (&per_bfd->storage_obstack,
888 offsetof (struct demangled_name_entry,
889 demangled)
890 + lookup_len + demangled_len + 2);
891 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
892 strcpy (mangled_ptr, lookup_name);
893 (*slot)->mangled = mangled_ptr;
894 }
895
896 if (demangled_name != NULL)
897 {
898 strcpy ((*slot)->demangled, demangled_name);
899 xfree (demangled_name);
900 }
901 else
902 (*slot)->demangled[0] = '\0';
903 }
904
905 gsymbol->name = (*slot)->mangled + lookup_len - len;
906 if ((*slot)->demangled[0] != '\0')
907 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
908 &per_bfd->storage_obstack);
909 else
910 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
911 }
912
913 /* Return the source code name of a symbol. In languages where
914 demangling is necessary, this is the demangled name. */
915
916 const char *
917 symbol_natural_name (const struct general_symbol_info *gsymbol)
918 {
919 switch (gsymbol->language)
920 {
921 case language_cplus:
922 case language_d:
923 case language_go:
924 case language_java:
925 case language_objc:
926 case language_fortran:
927 if (symbol_get_demangled_name (gsymbol) != NULL)
928 return symbol_get_demangled_name (gsymbol);
929 break;
930 case language_ada:
931 return ada_decode_symbol (gsymbol);
932 default:
933 break;
934 }
935 return gsymbol->name;
936 }
937
938 /* Return the demangled name for a symbol based on the language for
939 that symbol. If no demangled name exists, return NULL. */
940
941 const char *
942 symbol_demangled_name (const struct general_symbol_info *gsymbol)
943 {
944 const char *dem_name = NULL;
945
946 switch (gsymbol->language)
947 {
948 case language_cplus:
949 case language_d:
950 case language_go:
951 case language_java:
952 case language_objc:
953 case language_fortran:
954 dem_name = symbol_get_demangled_name (gsymbol);
955 break;
956 case language_ada:
957 dem_name = ada_decode_symbol (gsymbol);
958 break;
959 default:
960 break;
961 }
962 return dem_name;
963 }
964
965 /* Return the search name of a symbol---generally the demangled or
966 linkage name of the symbol, depending on how it will be searched for.
967 If there is no distinct demangled name, then returns the same value
968 (same pointer) as SYMBOL_LINKAGE_NAME. */
969
970 const char *
971 symbol_search_name (const struct general_symbol_info *gsymbol)
972 {
973 if (gsymbol->language == language_ada)
974 return gsymbol->name;
975 else
976 return symbol_natural_name (gsymbol);
977 }
978
979 /* Initialize the structure fields to zero values. */
980
981 void
982 init_sal (struct symtab_and_line *sal)
983 {
984 memset (sal, 0, sizeof (*sal));
985 }
986 \f
987
988 /* Return 1 if the two sections are the same, or if they could
989 plausibly be copies of each other, one in an original object
990 file and another in a separated debug file. */
991
992 int
993 matching_obj_sections (struct obj_section *obj_first,
994 struct obj_section *obj_second)
995 {
996 asection *first = obj_first? obj_first->the_bfd_section : NULL;
997 asection *second = obj_second? obj_second->the_bfd_section : NULL;
998 struct objfile *obj;
999
1000 /* If they're the same section, then they match. */
1001 if (first == second)
1002 return 1;
1003
1004 /* If either is NULL, give up. */
1005 if (first == NULL || second == NULL)
1006 return 0;
1007
1008 /* This doesn't apply to absolute symbols. */
1009 if (first->owner == NULL || second->owner == NULL)
1010 return 0;
1011
1012 /* If they're in the same object file, they must be different sections. */
1013 if (first->owner == second->owner)
1014 return 0;
1015
1016 /* Check whether the two sections are potentially corresponding. They must
1017 have the same size, address, and name. We can't compare section indexes,
1018 which would be more reliable, because some sections may have been
1019 stripped. */
1020 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1021 return 0;
1022
1023 /* In-memory addresses may start at a different offset, relativize them. */
1024 if (bfd_get_section_vma (first->owner, first)
1025 - bfd_get_start_address (first->owner)
1026 != bfd_get_section_vma (second->owner, second)
1027 - bfd_get_start_address (second->owner))
1028 return 0;
1029
1030 if (bfd_get_section_name (first->owner, first) == NULL
1031 || bfd_get_section_name (second->owner, second) == NULL
1032 || strcmp (bfd_get_section_name (first->owner, first),
1033 bfd_get_section_name (second->owner, second)) != 0)
1034 return 0;
1035
1036 /* Otherwise check that they are in corresponding objfiles. */
1037
1038 ALL_OBJFILES (obj)
1039 if (obj->obfd == first->owner)
1040 break;
1041 gdb_assert (obj != NULL);
1042
1043 if (obj->separate_debug_objfile != NULL
1044 && obj->separate_debug_objfile->obfd == second->owner)
1045 return 1;
1046 if (obj->separate_debug_objfile_backlink != NULL
1047 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1048 return 1;
1049
1050 return 0;
1051 }
1052
1053 struct symtab *
1054 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1055 {
1056 struct objfile *objfile;
1057 struct bound_minimal_symbol msymbol;
1058
1059 /* If we know that this is not a text address, return failure. This is
1060 necessary because we loop based on texthigh and textlow, which do
1061 not include the data ranges. */
1062 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1063 if (msymbol.minsym
1064 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1066 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1067 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1068 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1069 return NULL;
1070
1071 ALL_OBJFILES (objfile)
1072 {
1073 struct symtab *result = NULL;
1074
1075 if (objfile->sf)
1076 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1077 pc, section, 0);
1078 if (result)
1079 return result;
1080 }
1081
1082 return NULL;
1083 }
1084 \f
1085 /* Debug symbols usually don't have section information. We need to dig that
1086 out of the minimal symbols and stash that in the debug symbol. */
1087
1088 void
1089 fixup_section (struct general_symbol_info *ginfo,
1090 CORE_ADDR addr, struct objfile *objfile)
1091 {
1092 struct minimal_symbol *msym;
1093
1094 /* First, check whether a minimal symbol with the same name exists
1095 and points to the same address. The address check is required
1096 e.g. on PowerPC64, where the minimal symbol for a function will
1097 point to the function descriptor, while the debug symbol will
1098 point to the actual function code. */
1099 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1100 if (msym)
1101 ginfo->section = MSYMBOL_SECTION (msym);
1102 else
1103 {
1104 /* Static, function-local variables do appear in the linker
1105 (minimal) symbols, but are frequently given names that won't
1106 be found via lookup_minimal_symbol(). E.g., it has been
1107 observed in frv-uclinux (ELF) executables that a static,
1108 function-local variable named "foo" might appear in the
1109 linker symbols as "foo.6" or "foo.3". Thus, there is no
1110 point in attempting to extend the lookup-by-name mechanism to
1111 handle this case due to the fact that there can be multiple
1112 names.
1113
1114 So, instead, search the section table when lookup by name has
1115 failed. The ``addr'' and ``endaddr'' fields may have already
1116 been relocated. If so, the relocation offset (i.e. the
1117 ANOFFSET value) needs to be subtracted from these values when
1118 performing the comparison. We unconditionally subtract it,
1119 because, when no relocation has been performed, the ANOFFSET
1120 value will simply be zero.
1121
1122 The address of the symbol whose section we're fixing up HAS
1123 NOT BEEN adjusted (relocated) yet. It can't have been since
1124 the section isn't yet known and knowing the section is
1125 necessary in order to add the correct relocation value. In
1126 other words, we wouldn't even be in this function (attempting
1127 to compute the section) if it were already known.
1128
1129 Note that it is possible to search the minimal symbols
1130 (subtracting the relocation value if necessary) to find the
1131 matching minimal symbol, but this is overkill and much less
1132 efficient. It is not necessary to find the matching minimal
1133 symbol, only its section.
1134
1135 Note that this technique (of doing a section table search)
1136 can fail when unrelocated section addresses overlap. For
1137 this reason, we still attempt a lookup by name prior to doing
1138 a search of the section table. */
1139
1140 struct obj_section *s;
1141 int fallback = -1;
1142
1143 ALL_OBJFILE_OSECTIONS (objfile, s)
1144 {
1145 int idx = s - objfile->sections;
1146 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1147
1148 if (fallback == -1)
1149 fallback = idx;
1150
1151 if (obj_section_addr (s) - offset <= addr
1152 && addr < obj_section_endaddr (s) - offset)
1153 {
1154 ginfo->section = idx;
1155 return;
1156 }
1157 }
1158
1159 /* If we didn't find the section, assume it is in the first
1160 section. If there is no allocated section, then it hardly
1161 matters what we pick, so just pick zero. */
1162 if (fallback == -1)
1163 ginfo->section = 0;
1164 else
1165 ginfo->section = fallback;
1166 }
1167 }
1168
1169 struct symbol *
1170 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1171 {
1172 CORE_ADDR addr;
1173
1174 if (!sym)
1175 return NULL;
1176
1177 /* We either have an OBJFILE, or we can get at it from the sym's
1178 symtab. Anything else is a bug. */
1179 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1180
1181 if (objfile == NULL)
1182 objfile = SYMBOL_SYMTAB (sym)->objfile;
1183
1184 if (SYMBOL_OBJ_SECTION (objfile, sym))
1185 return sym;
1186
1187 /* We should have an objfile by now. */
1188 gdb_assert (objfile);
1189
1190 switch (SYMBOL_CLASS (sym))
1191 {
1192 case LOC_STATIC:
1193 case LOC_LABEL:
1194 addr = SYMBOL_VALUE_ADDRESS (sym);
1195 break;
1196 case LOC_BLOCK:
1197 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1198 break;
1199
1200 default:
1201 /* Nothing else will be listed in the minsyms -- no use looking
1202 it up. */
1203 return sym;
1204 }
1205
1206 fixup_section (&sym->ginfo, addr, objfile);
1207
1208 return sym;
1209 }
1210
1211 /* Compute the demangled form of NAME as used by the various symbol
1212 lookup functions. The result is stored in *RESULT_NAME. Returns a
1213 cleanup which can be used to clean up the result.
1214
1215 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1216 Normally, Ada symbol lookups are performed using the encoded name
1217 rather than the demangled name, and so it might seem to make sense
1218 for this function to return an encoded version of NAME.
1219 Unfortunately, we cannot do this, because this function is used in
1220 circumstances where it is not appropriate to try to encode NAME.
1221 For instance, when displaying the frame info, we demangle the name
1222 of each parameter, and then perform a symbol lookup inside our
1223 function using that demangled name. In Ada, certain functions
1224 have internally-generated parameters whose name contain uppercase
1225 characters. Encoding those name would result in those uppercase
1226 characters to become lowercase, and thus cause the symbol lookup
1227 to fail. */
1228
1229 struct cleanup *
1230 demangle_for_lookup (const char *name, enum language lang,
1231 const char **result_name)
1232 {
1233 char *demangled_name = NULL;
1234 const char *modified_name = NULL;
1235 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1236
1237 modified_name = name;
1238
1239 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1240 lookup, so we can always binary search. */
1241 if (lang == language_cplus)
1242 {
1243 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1244 if (demangled_name)
1245 {
1246 modified_name = demangled_name;
1247 make_cleanup (xfree, demangled_name);
1248 }
1249 else
1250 {
1251 /* If we were given a non-mangled name, canonicalize it
1252 according to the language (so far only for C++). */
1253 demangled_name = cp_canonicalize_string (name);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 }
1261 else if (lang == language_java)
1262 {
1263 demangled_name = gdb_demangle (name,
1264 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1265 if (demangled_name)
1266 {
1267 modified_name = demangled_name;
1268 make_cleanup (xfree, demangled_name);
1269 }
1270 }
1271 else if (lang == language_d)
1272 {
1273 demangled_name = d_demangle (name, 0);
1274 if (demangled_name)
1275 {
1276 modified_name = demangled_name;
1277 make_cleanup (xfree, demangled_name);
1278 }
1279 }
1280 else if (lang == language_go)
1281 {
1282 demangled_name = go_demangle (name, 0);
1283 if (demangled_name)
1284 {
1285 modified_name = demangled_name;
1286 make_cleanup (xfree, demangled_name);
1287 }
1288 }
1289
1290 *result_name = modified_name;
1291 return cleanup;
1292 }
1293
1294 /* See symtab.h.
1295
1296 This function (or rather its subordinates) have a bunch of loops and
1297 it would seem to be attractive to put in some QUIT's (though I'm not really
1298 sure whether it can run long enough to be really important). But there
1299 are a few calls for which it would appear to be bad news to quit
1300 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1301 that there is C++ code below which can error(), but that probably
1302 doesn't affect these calls since they are looking for a known
1303 variable and thus can probably assume it will never hit the C++
1304 code). */
1305
1306 struct symbol *
1307 lookup_symbol_in_language (const char *name, const struct block *block,
1308 const domain_enum domain, enum language lang,
1309 struct field_of_this_result *is_a_field_of_this)
1310 {
1311 const char *modified_name;
1312 struct symbol *returnval;
1313 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1314
1315 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1316 is_a_field_of_this);
1317 do_cleanups (cleanup);
1318
1319 return returnval;
1320 }
1321
1322 /* See symtab.h. */
1323
1324 struct symbol *
1325 lookup_symbol (const char *name, const struct block *block,
1326 domain_enum domain,
1327 struct field_of_this_result *is_a_field_of_this)
1328 {
1329 return lookup_symbol_in_language (name, block, domain,
1330 current_language->la_language,
1331 is_a_field_of_this);
1332 }
1333
1334 /* See symtab.h. */
1335
1336 struct symbol *
1337 lookup_language_this (const struct language_defn *lang,
1338 const struct block *block)
1339 {
1340 if (lang->la_name_of_this == NULL || block == NULL)
1341 return NULL;
1342
1343 while (block)
1344 {
1345 struct symbol *sym;
1346
1347 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1348 if (sym != NULL)
1349 {
1350 block_found = block;
1351 return sym;
1352 }
1353 if (BLOCK_FUNCTION (block))
1354 break;
1355 block = BLOCK_SUPERBLOCK (block);
1356 }
1357
1358 return NULL;
1359 }
1360
1361 /* Given TYPE, a structure/union,
1362 return 1 if the component named NAME from the ultimate target
1363 structure/union is defined, otherwise, return 0. */
1364
1365 static int
1366 check_field (struct type *type, const char *name,
1367 struct field_of_this_result *is_a_field_of_this)
1368 {
1369 int i;
1370
1371 /* The type may be a stub. */
1372 CHECK_TYPEDEF (type);
1373
1374 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1375 {
1376 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1377
1378 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1379 {
1380 is_a_field_of_this->type = type;
1381 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1382 return 1;
1383 }
1384 }
1385
1386 /* C++: If it was not found as a data field, then try to return it
1387 as a pointer to a method. */
1388
1389 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1390 {
1391 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1392 {
1393 is_a_field_of_this->type = type;
1394 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1395 return 1;
1396 }
1397 }
1398
1399 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1400 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1401 return 1;
1402
1403 return 0;
1404 }
1405
1406 /* Behave like lookup_symbol except that NAME is the natural name
1407 (e.g., demangled name) of the symbol that we're looking for. */
1408
1409 static struct symbol *
1410 lookup_symbol_aux (const char *name, const struct block *block,
1411 const domain_enum domain, enum language language,
1412 struct field_of_this_result *is_a_field_of_this)
1413 {
1414 struct symbol *sym;
1415 const struct language_defn *langdef;
1416
1417 /* Make sure we do something sensible with is_a_field_of_this, since
1418 the callers that set this parameter to some non-null value will
1419 certainly use it later. If we don't set it, the contents of
1420 is_a_field_of_this are undefined. */
1421 if (is_a_field_of_this != NULL)
1422 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1423
1424 /* Search specified block and its superiors. Don't search
1425 STATIC_BLOCK or GLOBAL_BLOCK. */
1426
1427 sym = lookup_symbol_aux_local (name, block, domain, language);
1428 if (sym != NULL)
1429 return sym;
1430
1431 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1432 check to see if NAME is a field of `this'. */
1433
1434 langdef = language_def (language);
1435
1436 /* Don't do this check if we are searching for a struct. It will
1437 not be found by check_field, but will be found by other
1438 means. */
1439 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1440 {
1441 struct symbol *sym = lookup_language_this (langdef, block);
1442
1443 if (sym)
1444 {
1445 struct type *t = sym->type;
1446
1447 /* I'm not really sure that type of this can ever
1448 be typedefed; just be safe. */
1449 CHECK_TYPEDEF (t);
1450 if (TYPE_CODE (t) == TYPE_CODE_PTR
1451 || TYPE_CODE (t) == TYPE_CODE_REF)
1452 t = TYPE_TARGET_TYPE (t);
1453
1454 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1455 && TYPE_CODE (t) != TYPE_CODE_UNION)
1456 error (_("Internal error: `%s' is not an aggregate"),
1457 langdef->la_name_of_this);
1458
1459 if (check_field (t, name, is_a_field_of_this))
1460 return NULL;
1461 }
1462 }
1463
1464 /* Now do whatever is appropriate for LANGUAGE to look
1465 up static and global variables. */
1466
1467 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1468 if (sym != NULL)
1469 return sym;
1470
1471 /* Now search all static file-level symbols. Not strictly correct,
1472 but more useful than an error. */
1473
1474 return lookup_static_symbol_aux (name, domain);
1475 }
1476
1477 /* See symtab.h. */
1478
1479 struct symbol *
1480 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1481 {
1482 struct objfile *objfile;
1483 struct symbol *sym;
1484
1485 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1486 if (sym != NULL)
1487 return sym;
1488
1489 ALL_OBJFILES (objfile)
1490 {
1491 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1492 if (sym != NULL)
1493 return sym;
1494 }
1495
1496 return NULL;
1497 }
1498
1499 /* Check to see if the symbol is defined in BLOCK or its superiors.
1500 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1501
1502 static struct symbol *
1503 lookup_symbol_aux_local (const char *name, const struct block *block,
1504 const domain_enum domain,
1505 enum language language)
1506 {
1507 struct symbol *sym;
1508 const struct block *static_block = block_static_block (block);
1509 const char *scope = block_scope (block);
1510
1511 /* Check if either no block is specified or it's a global block. */
1512
1513 if (static_block == NULL)
1514 return NULL;
1515
1516 while (block != static_block)
1517 {
1518 sym = lookup_symbol_aux_block (name, block, domain);
1519 if (sym != NULL)
1520 return sym;
1521
1522 if (language == language_cplus || language == language_fortran)
1523 {
1524 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1525 domain);
1526 if (sym != NULL)
1527 return sym;
1528 }
1529
1530 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1531 break;
1532 block = BLOCK_SUPERBLOCK (block);
1533 }
1534
1535 /* We've reached the end of the function without finding a result. */
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct objfile *
1543 lookup_objfile_from_block (const struct block *block)
1544 {
1545 struct objfile *obj;
1546 struct symtab *s;
1547
1548 if (block == NULL)
1549 return NULL;
1550
1551 block = block_global_block (block);
1552 /* Go through SYMTABS.
1553 Non-primary symtabs share the block vector with their primary symtabs
1554 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1555 ALL_PRIMARY_SYMTABS (obj, s)
1556 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1557 {
1558 if (obj->separate_debug_objfile_backlink)
1559 obj = obj->separate_debug_objfile_backlink;
1560
1561 return obj;
1562 }
1563
1564 return NULL;
1565 }
1566
1567 /* See symtab.h. */
1568
1569 struct symbol *
1570 lookup_symbol_aux_block (const char *name, const struct block *block,
1571 const domain_enum domain)
1572 {
1573 struct symbol *sym;
1574
1575 sym = block_lookup_symbol (block, name, domain);
1576 if (sym)
1577 {
1578 block_found = block;
1579 return fixup_symbol_section (sym, NULL);
1580 }
1581
1582 return NULL;
1583 }
1584
1585 /* See symtab.h. */
1586
1587 struct symbol *
1588 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1589 const char *name,
1590 const domain_enum domain)
1591 {
1592 const struct objfile *objfile;
1593 struct symbol *sym;
1594 const struct blockvector *bv;
1595 const struct block *block;
1596 struct symtab *s;
1597
1598 for (objfile = main_objfile;
1599 objfile;
1600 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1601 {
1602 /* Go through symtabs. */
1603 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1604 {
1605 bv = BLOCKVECTOR (s);
1606 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1607 sym = block_lookup_symbol (block, name, domain);
1608 if (sym)
1609 {
1610 block_found = block;
1611 return fixup_symbol_section (sym, (struct objfile *)objfile);
1612 }
1613 }
1614
1615 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1616 name, domain);
1617 if (sym)
1618 return sym;
1619 }
1620
1621 return NULL;
1622 }
1623
1624 /* Check to see if the symbol is defined in one of the OBJFILE's
1625 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1626 depending on whether or not we want to search global symbols or
1627 static symbols. */
1628
1629 static struct symbol *
1630 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1631 const char *name, const domain_enum domain)
1632 {
1633 struct symbol *sym = NULL;
1634 const struct blockvector *bv;
1635 const struct block *block;
1636 struct symtab *s;
1637
1638 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1639 {
1640 bv = BLOCKVECTOR (s);
1641 block = BLOCKVECTOR_BLOCK (bv, block_index);
1642 sym = block_lookup_symbol (block, name, domain);
1643 if (sym)
1644 {
1645 block_found = block;
1646 return fixup_symbol_section (sym, objfile);
1647 }
1648 }
1649
1650 return NULL;
1651 }
1652
1653 /* Same as lookup_symbol_aux_objfile, except that it searches all
1654 objfiles. Return the first match found. */
1655
1656 static struct symbol *
1657 lookup_symbol_aux_symtabs (int block_index, const char *name,
1658 const domain_enum domain)
1659 {
1660 struct symbol *sym;
1661 struct objfile *objfile;
1662
1663 ALL_OBJFILES (objfile)
1664 {
1665 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1666 if (sym)
1667 return sym;
1668 }
1669
1670 return NULL;
1671 }
1672
1673 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1674 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1675 and all related objfiles. */
1676
1677 static struct symbol *
1678 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1679 const char *linkage_name,
1680 domain_enum domain)
1681 {
1682 enum language lang = current_language->la_language;
1683 const char *modified_name;
1684 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1685 &modified_name);
1686 struct objfile *main_objfile, *cur_objfile;
1687
1688 if (objfile->separate_debug_objfile_backlink)
1689 main_objfile = objfile->separate_debug_objfile_backlink;
1690 else
1691 main_objfile = objfile;
1692
1693 for (cur_objfile = main_objfile;
1694 cur_objfile;
1695 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1696 {
1697 struct symbol *sym;
1698
1699 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1700 modified_name, domain);
1701 if (sym == NULL)
1702 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1703 modified_name, domain);
1704 if (sym != NULL)
1705 {
1706 do_cleanups (cleanup);
1707 return sym;
1708 }
1709 }
1710
1711 do_cleanups (cleanup);
1712 return NULL;
1713 }
1714
1715 /* A helper function that throws an exception when a symbol was found
1716 in a psymtab but not in a symtab. */
1717
1718 static void ATTRIBUTE_NORETURN
1719 error_in_psymtab_expansion (int block_index, const char *name,
1720 struct symtab *symtab)
1721 {
1722 error (_("\
1723 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1724 %s may be an inlined function, or may be a template function\n \
1725 (if a template, try specifying an instantiation: %s<type>)."),
1726 block_index == GLOBAL_BLOCK ? "global" : "static",
1727 name, symtab_to_filename_for_display (symtab), name, name);
1728 }
1729
1730 /* A helper function for lookup_symbol_aux that interfaces with the
1731 "quick" symbol table functions. */
1732
1733 static struct symbol *
1734 lookup_symbol_aux_quick (struct objfile *objfile, int block_index,
1735 const char *name, const domain_enum domain)
1736 {
1737 struct symtab *symtab;
1738 const struct blockvector *bv;
1739 const struct block *block;
1740 struct symbol *sym;
1741
1742 if (!objfile->sf)
1743 return NULL;
1744 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1745 if (!symtab)
1746 return NULL;
1747
1748 bv = BLOCKVECTOR (symtab);
1749 block = BLOCKVECTOR_BLOCK (bv, block_index);
1750 sym = block_lookup_symbol (block, name, domain);
1751 if (!sym)
1752 error_in_psymtab_expansion (block_index, name, symtab);
1753 block_found = block;
1754 return fixup_symbol_section (sym, objfile);
1755 }
1756
1757 /* See symtab.h. */
1758
1759 struct symbol *
1760 basic_lookup_symbol_nonlocal (const char *name,
1761 const struct block *block,
1762 const domain_enum domain)
1763 {
1764 struct symbol *sym;
1765
1766 /* NOTE: carlton/2003-05-19: The comments below were written when
1767 this (or what turned into this) was part of lookup_symbol_aux;
1768 I'm much less worried about these questions now, since these
1769 decisions have turned out well, but I leave these comments here
1770 for posterity. */
1771
1772 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1773 not it would be appropriate to search the current global block
1774 here as well. (That's what this code used to do before the
1775 is_a_field_of_this check was moved up.) On the one hand, it's
1776 redundant with the lookup_symbol_aux_symtabs search that happens
1777 next. On the other hand, if decode_line_1 is passed an argument
1778 like filename:var, then the user presumably wants 'var' to be
1779 searched for in filename. On the third hand, there shouldn't be
1780 multiple global variables all of which are named 'var', and it's
1781 not like decode_line_1 has ever restricted its search to only
1782 global variables in a single filename. All in all, only
1783 searching the static block here seems best: it's correct and it's
1784 cleanest. */
1785
1786 /* NOTE: carlton/2002-12-05: There's also a possible performance
1787 issue here: if you usually search for global symbols in the
1788 current file, then it would be slightly better to search the
1789 current global block before searching all the symtabs. But there
1790 are other factors that have a much greater effect on performance
1791 than that one, so I don't think we should worry about that for
1792 now. */
1793
1794 sym = lookup_symbol_static (name, block, domain);
1795 if (sym != NULL)
1796 return sym;
1797
1798 return lookup_symbol_global (name, block, domain);
1799 }
1800
1801 /* See symtab.h. */
1802
1803 struct symbol *
1804 lookup_symbol_static (const char *name,
1805 const struct block *block,
1806 const domain_enum domain)
1807 {
1808 const struct block *static_block = block_static_block (block);
1809
1810 if (static_block != NULL)
1811 return lookup_symbol_aux_block (name, static_block, domain);
1812 else
1813 return NULL;
1814 }
1815
1816 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1817
1818 struct global_sym_lookup_data
1819 {
1820 /* The name of the symbol we are searching for. */
1821 const char *name;
1822
1823 /* The domain to use for our search. */
1824 domain_enum domain;
1825
1826 /* The field where the callback should store the symbol if found.
1827 It should be initialized to NULL before the search is started. */
1828 struct symbol *result;
1829 };
1830
1831 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1832 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1833 OBJFILE. The arguments for the search are passed via CB_DATA,
1834 which in reality is a pointer to struct global_sym_lookup_data. */
1835
1836 static int
1837 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1838 void *cb_data)
1839 {
1840 struct global_sym_lookup_data *data =
1841 (struct global_sym_lookup_data *) cb_data;
1842
1843 gdb_assert (data->result == NULL);
1844
1845 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1846 data->name, data->domain);
1847 if (data->result == NULL)
1848 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1849 data->name, data->domain);
1850
1851 /* If we found a match, tell the iterator to stop. Otherwise,
1852 keep going. */
1853 return (data->result != NULL);
1854 }
1855
1856 /* See symtab.h. */
1857
1858 struct symbol *
1859 lookup_symbol_global (const char *name,
1860 const struct block *block,
1861 const domain_enum domain)
1862 {
1863 struct symbol *sym = NULL;
1864 struct objfile *objfile = NULL;
1865 struct global_sym_lookup_data lookup_data;
1866
1867 /* Call library-specific lookup procedure. */
1868 objfile = lookup_objfile_from_block (block);
1869 if (objfile != NULL)
1870 sym = solib_global_lookup (objfile, name, domain);
1871 if (sym != NULL)
1872 return sym;
1873
1874 memset (&lookup_data, 0, sizeof (lookup_data));
1875 lookup_data.name = name;
1876 lookup_data.domain = domain;
1877 gdbarch_iterate_over_objfiles_in_search_order
1878 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1879 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1880
1881 return lookup_data.result;
1882 }
1883
1884 int
1885 symbol_matches_domain (enum language symbol_language,
1886 domain_enum symbol_domain,
1887 domain_enum domain)
1888 {
1889 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1890 A Java class declaration also defines a typedef for the class.
1891 Similarly, any Ada type declaration implicitly defines a typedef. */
1892 if (symbol_language == language_cplus
1893 || symbol_language == language_d
1894 || symbol_language == language_java
1895 || symbol_language == language_ada)
1896 {
1897 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1898 && symbol_domain == STRUCT_DOMAIN)
1899 return 1;
1900 }
1901 /* For all other languages, strict match is required. */
1902 return (symbol_domain == domain);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct type *
1908 lookup_transparent_type (const char *name)
1909 {
1910 return current_language->la_lookup_transparent_type (name);
1911 }
1912
1913 /* A helper for basic_lookup_transparent_type that interfaces with the
1914 "quick" symbol table functions. */
1915
1916 static struct type *
1917 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1918 const char *name)
1919 {
1920 struct symtab *symtab;
1921 const struct blockvector *bv;
1922 struct block *block;
1923 struct symbol *sym;
1924
1925 if (!objfile->sf)
1926 return NULL;
1927 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1928 STRUCT_DOMAIN);
1929 if (!symtab)
1930 return NULL;
1931
1932 bv = BLOCKVECTOR (symtab);
1933 block = BLOCKVECTOR_BLOCK (bv, block_index);
1934 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1935 if (!sym)
1936 error_in_psymtab_expansion (block_index, name, symtab);
1937
1938 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1939 return SYMBOL_TYPE (sym);
1940
1941 return NULL;
1942 }
1943
1944 /* The standard implementation of lookup_transparent_type. This code
1945 was modeled on lookup_symbol -- the parts not relevant to looking
1946 up types were just left out. In particular it's assumed here that
1947 types are available in STRUCT_DOMAIN and only in file-static or
1948 global blocks. */
1949
1950 struct type *
1951 basic_lookup_transparent_type (const char *name)
1952 {
1953 struct symbol *sym;
1954 struct symtab *s = NULL;
1955 const struct blockvector *bv;
1956 struct objfile *objfile;
1957 struct block *block;
1958 struct type *t;
1959
1960 /* Now search all the global symbols. Do the symtab's first, then
1961 check the psymtab's. If a psymtab indicates the existence
1962 of the desired name as a global, then do psymtab-to-symtab
1963 conversion on the fly and return the found symbol. */
1964
1965 ALL_OBJFILES (objfile)
1966 {
1967 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1968 {
1969 bv = BLOCKVECTOR (s);
1970 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1971 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1972 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1973 {
1974 return SYMBOL_TYPE (sym);
1975 }
1976 }
1977 }
1978
1979 ALL_OBJFILES (objfile)
1980 {
1981 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1982 if (t)
1983 return t;
1984 }
1985
1986 /* Now search the static file-level symbols.
1987 Not strictly correct, but more useful than an error.
1988 Do the symtab's first, then
1989 check the psymtab's. If a psymtab indicates the existence
1990 of the desired name as a file-level static, then do psymtab-to-symtab
1991 conversion on the fly and return the found symbol. */
1992
1993 ALL_OBJFILES (objfile)
1994 {
1995 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1996 {
1997 bv = BLOCKVECTOR (s);
1998 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1999 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
2000 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2001 {
2002 return SYMBOL_TYPE (sym);
2003 }
2004 }
2005 }
2006
2007 ALL_OBJFILES (objfile)
2008 {
2009 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2010 if (t)
2011 return t;
2012 }
2013
2014 return (struct type *) 0;
2015 }
2016
2017 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2018
2019 For each symbol that matches, CALLBACK is called. The symbol and
2020 DATA are passed to the callback.
2021
2022 If CALLBACK returns zero, the iteration ends. Otherwise, the
2023 search continues. */
2024
2025 void
2026 iterate_over_symbols (const struct block *block, const char *name,
2027 const domain_enum domain,
2028 symbol_found_callback_ftype *callback,
2029 void *data)
2030 {
2031 struct block_iterator iter;
2032 struct symbol *sym;
2033
2034 for (sym = block_iter_name_first (block, name, &iter);
2035 sym != NULL;
2036 sym = block_iter_name_next (name, &iter))
2037 {
2038 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2039 SYMBOL_DOMAIN (sym), domain))
2040 {
2041 if (!callback (sym, data))
2042 return;
2043 }
2044 }
2045 }
2046
2047 /* Find the symtab associated with PC and SECTION. Look through the
2048 psymtabs and read in another symtab if necessary. */
2049
2050 struct symtab *
2051 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2052 {
2053 struct block *b;
2054 const struct blockvector *bv;
2055 struct symtab *s = NULL;
2056 struct symtab *best_s = NULL;
2057 struct objfile *objfile;
2058 CORE_ADDR distance = 0;
2059 struct bound_minimal_symbol msymbol;
2060
2061 /* If we know that this is not a text address, return failure. This is
2062 necessary because we loop based on the block's high and low code
2063 addresses, which do not include the data ranges, and because
2064 we call find_pc_sect_psymtab which has a similar restriction based
2065 on the partial_symtab's texthigh and textlow. */
2066 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2067 if (msymbol.minsym
2068 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2069 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2070 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2071 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2072 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2073 return NULL;
2074
2075 /* Search all symtabs for the one whose file contains our address, and which
2076 is the smallest of all the ones containing the address. This is designed
2077 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2078 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2079 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2080
2081 This happens for native ecoff format, where code from included files
2082 gets its own symtab. The symtab for the included file should have
2083 been read in already via the dependency mechanism.
2084 It might be swifter to create several symtabs with the same name
2085 like xcoff does (I'm not sure).
2086
2087 It also happens for objfiles that have their functions reordered.
2088 For these, the symtab we are looking for is not necessarily read in. */
2089
2090 ALL_PRIMARY_SYMTABS (objfile, s)
2091 {
2092 bv = BLOCKVECTOR (s);
2093 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2094
2095 if (BLOCK_START (b) <= pc
2096 && BLOCK_END (b) > pc
2097 && (distance == 0
2098 || BLOCK_END (b) - BLOCK_START (b) < distance))
2099 {
2100 /* For an objfile that has its functions reordered,
2101 find_pc_psymtab will find the proper partial symbol table
2102 and we simply return its corresponding symtab. */
2103 /* In order to better support objfiles that contain both
2104 stabs and coff debugging info, we continue on if a psymtab
2105 can't be found. */
2106 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2107 {
2108 struct symtab *result;
2109
2110 result
2111 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2112 msymbol,
2113 pc, section,
2114 0);
2115 if (result)
2116 return result;
2117 }
2118 if (section != 0)
2119 {
2120 struct block_iterator iter;
2121 struct symbol *sym = NULL;
2122
2123 ALL_BLOCK_SYMBOLS (b, iter, sym)
2124 {
2125 fixup_symbol_section (sym, objfile);
2126 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2127 section))
2128 break;
2129 }
2130 if (sym == NULL)
2131 continue; /* No symbol in this symtab matches
2132 section. */
2133 }
2134 distance = BLOCK_END (b) - BLOCK_START (b);
2135 best_s = s;
2136 }
2137 }
2138
2139 if (best_s != NULL)
2140 return (best_s);
2141
2142 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2143
2144 ALL_OBJFILES (objfile)
2145 {
2146 struct symtab *result;
2147
2148 if (!objfile->sf)
2149 continue;
2150 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2151 msymbol,
2152 pc, section,
2153 1);
2154 if (result)
2155 return result;
2156 }
2157
2158 return NULL;
2159 }
2160
2161 /* Find the symtab associated with PC. Look through the psymtabs and read
2162 in another symtab if necessary. Backward compatibility, no section. */
2163
2164 struct symtab *
2165 find_pc_symtab (CORE_ADDR pc)
2166 {
2167 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2168 }
2169 \f
2170
2171 /* Find the source file and line number for a given PC value and SECTION.
2172 Return a structure containing a symtab pointer, a line number,
2173 and a pc range for the entire source line.
2174 The value's .pc field is NOT the specified pc.
2175 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2176 use the line that ends there. Otherwise, in that case, the line
2177 that begins there is used. */
2178
2179 /* The big complication here is that a line may start in one file, and end just
2180 before the start of another file. This usually occurs when you #include
2181 code in the middle of a subroutine. To properly find the end of a line's PC
2182 range, we must search all symtabs associated with this compilation unit, and
2183 find the one whose first PC is closer than that of the next line in this
2184 symtab. */
2185
2186 /* If it's worth the effort, we could be using a binary search. */
2187
2188 struct symtab_and_line
2189 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2190 {
2191 struct symtab *s;
2192 struct linetable *l;
2193 int len;
2194 int i;
2195 struct linetable_entry *item;
2196 struct symtab_and_line val;
2197 const struct blockvector *bv;
2198 struct bound_minimal_symbol msymbol;
2199 struct objfile *objfile;
2200
2201 /* Info on best line seen so far, and where it starts, and its file. */
2202
2203 struct linetable_entry *best = NULL;
2204 CORE_ADDR best_end = 0;
2205 struct symtab *best_symtab = 0;
2206
2207 /* Store here the first line number
2208 of a file which contains the line at the smallest pc after PC.
2209 If we don't find a line whose range contains PC,
2210 we will use a line one less than this,
2211 with a range from the start of that file to the first line's pc. */
2212 struct linetable_entry *alt = NULL;
2213
2214 /* Info on best line seen in this file. */
2215
2216 struct linetable_entry *prev;
2217
2218 /* If this pc is not from the current frame,
2219 it is the address of the end of a call instruction.
2220 Quite likely that is the start of the following statement.
2221 But what we want is the statement containing the instruction.
2222 Fudge the pc to make sure we get that. */
2223
2224 init_sal (&val); /* initialize to zeroes */
2225
2226 val.pspace = current_program_space;
2227
2228 /* It's tempting to assume that, if we can't find debugging info for
2229 any function enclosing PC, that we shouldn't search for line
2230 number info, either. However, GAS can emit line number info for
2231 assembly files --- very helpful when debugging hand-written
2232 assembly code. In such a case, we'd have no debug info for the
2233 function, but we would have line info. */
2234
2235 if (notcurrent)
2236 pc -= 1;
2237
2238 /* elz: added this because this function returned the wrong
2239 information if the pc belongs to a stub (import/export)
2240 to call a shlib function. This stub would be anywhere between
2241 two functions in the target, and the line info was erroneously
2242 taken to be the one of the line before the pc. */
2243
2244 /* RT: Further explanation:
2245
2246 * We have stubs (trampolines) inserted between procedures.
2247 *
2248 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2249 * exists in the main image.
2250 *
2251 * In the minimal symbol table, we have a bunch of symbols
2252 * sorted by start address. The stubs are marked as "trampoline",
2253 * the others appear as text. E.g.:
2254 *
2255 * Minimal symbol table for main image
2256 * main: code for main (text symbol)
2257 * shr1: stub (trampoline symbol)
2258 * foo: code for foo (text symbol)
2259 * ...
2260 * Minimal symbol table for "shr1" image:
2261 * ...
2262 * shr1: code for shr1 (text symbol)
2263 * ...
2264 *
2265 * So the code below is trying to detect if we are in the stub
2266 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2267 * and if found, do the symbolization from the real-code address
2268 * rather than the stub address.
2269 *
2270 * Assumptions being made about the minimal symbol table:
2271 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2272 * if we're really in the trampoline.s If we're beyond it (say
2273 * we're in "foo" in the above example), it'll have a closer
2274 * symbol (the "foo" text symbol for example) and will not
2275 * return the trampoline.
2276 * 2. lookup_minimal_symbol_text() will find a real text symbol
2277 * corresponding to the trampoline, and whose address will
2278 * be different than the trampoline address. I put in a sanity
2279 * check for the address being the same, to avoid an
2280 * infinite recursion.
2281 */
2282 msymbol = lookup_minimal_symbol_by_pc (pc);
2283 if (msymbol.minsym != NULL)
2284 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2285 {
2286 struct bound_minimal_symbol mfunsym
2287 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2288 NULL);
2289
2290 if (mfunsym.minsym == NULL)
2291 /* I eliminated this warning since it is coming out
2292 * in the following situation:
2293 * gdb shmain // test program with shared libraries
2294 * (gdb) break shr1 // function in shared lib
2295 * Warning: In stub for ...
2296 * In the above situation, the shared lib is not loaded yet,
2297 * so of course we can't find the real func/line info,
2298 * but the "break" still works, and the warning is annoying.
2299 * So I commented out the warning. RT */
2300 /* warning ("In stub for %s; unable to find real function/line info",
2301 SYMBOL_LINKAGE_NAME (msymbol)); */
2302 ;
2303 /* fall through */
2304 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2305 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2306 /* Avoid infinite recursion */
2307 /* See above comment about why warning is commented out. */
2308 /* warning ("In stub for %s; unable to find real function/line info",
2309 SYMBOL_LINKAGE_NAME (msymbol)); */
2310 ;
2311 /* fall through */
2312 else
2313 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2314 }
2315
2316
2317 s = find_pc_sect_symtab (pc, section);
2318 if (!s)
2319 {
2320 /* If no symbol information, return previous pc. */
2321 if (notcurrent)
2322 pc++;
2323 val.pc = pc;
2324 return val;
2325 }
2326
2327 bv = BLOCKVECTOR (s);
2328 objfile = s->objfile;
2329
2330 /* Look at all the symtabs that share this blockvector.
2331 They all have the same apriori range, that we found was right;
2332 but they have different line tables. */
2333
2334 ALL_OBJFILE_SYMTABS (objfile, s)
2335 {
2336 if (BLOCKVECTOR (s) != bv)
2337 continue;
2338
2339 /* Find the best line in this symtab. */
2340 l = LINETABLE (s);
2341 if (!l)
2342 continue;
2343 len = l->nitems;
2344 if (len <= 0)
2345 {
2346 /* I think len can be zero if the symtab lacks line numbers
2347 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2348 I'm not sure which, and maybe it depends on the symbol
2349 reader). */
2350 continue;
2351 }
2352
2353 prev = NULL;
2354 item = l->item; /* Get first line info. */
2355
2356 /* Is this file's first line closer than the first lines of other files?
2357 If so, record this file, and its first line, as best alternate. */
2358 if (item->pc > pc && (!alt || item->pc < alt->pc))
2359 alt = item;
2360
2361 for (i = 0; i < len; i++, item++)
2362 {
2363 /* Leave prev pointing to the linetable entry for the last line
2364 that started at or before PC. */
2365 if (item->pc > pc)
2366 break;
2367
2368 prev = item;
2369 }
2370
2371 /* At this point, prev points at the line whose start addr is <= pc, and
2372 item points at the next line. If we ran off the end of the linetable
2373 (pc >= start of the last line), then prev == item. If pc < start of
2374 the first line, prev will not be set. */
2375
2376 /* Is this file's best line closer than the best in the other files?
2377 If so, record this file, and its best line, as best so far. Don't
2378 save prev if it represents the end of a function (i.e. line number
2379 0) instead of a real line. */
2380
2381 if (prev && prev->line && (!best || prev->pc > best->pc))
2382 {
2383 best = prev;
2384 best_symtab = s;
2385
2386 /* Discard BEST_END if it's before the PC of the current BEST. */
2387 if (best_end <= best->pc)
2388 best_end = 0;
2389 }
2390
2391 /* If another line (denoted by ITEM) is in the linetable and its
2392 PC is after BEST's PC, but before the current BEST_END, then
2393 use ITEM's PC as the new best_end. */
2394 if (best && i < len && item->pc > best->pc
2395 && (best_end == 0 || best_end > item->pc))
2396 best_end = item->pc;
2397 }
2398
2399 if (!best_symtab)
2400 {
2401 /* If we didn't find any line number info, just return zeros.
2402 We used to return alt->line - 1 here, but that could be
2403 anywhere; if we don't have line number info for this PC,
2404 don't make some up. */
2405 val.pc = pc;
2406 }
2407 else if (best->line == 0)
2408 {
2409 /* If our best fit is in a range of PC's for which no line
2410 number info is available (line number is zero) then we didn't
2411 find any valid line information. */
2412 val.pc = pc;
2413 }
2414 else
2415 {
2416 val.symtab = best_symtab;
2417 val.line = best->line;
2418 val.pc = best->pc;
2419 if (best_end && (!alt || best_end < alt->pc))
2420 val.end = best_end;
2421 else if (alt)
2422 val.end = alt->pc;
2423 else
2424 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2425 }
2426 val.section = section;
2427 return val;
2428 }
2429
2430 /* Backward compatibility (no section). */
2431
2432 struct symtab_and_line
2433 find_pc_line (CORE_ADDR pc, int notcurrent)
2434 {
2435 struct obj_section *section;
2436
2437 section = find_pc_overlay (pc);
2438 if (pc_in_unmapped_range (pc, section))
2439 pc = overlay_mapped_address (pc, section);
2440 return find_pc_sect_line (pc, section, notcurrent);
2441 }
2442 \f
2443 /* Find line number LINE in any symtab whose name is the same as
2444 SYMTAB.
2445
2446 If found, return the symtab that contains the linetable in which it was
2447 found, set *INDEX to the index in the linetable of the best entry
2448 found, and set *EXACT_MATCH nonzero if the value returned is an
2449 exact match.
2450
2451 If not found, return NULL. */
2452
2453 struct symtab *
2454 find_line_symtab (struct symtab *symtab, int line,
2455 int *index, int *exact_match)
2456 {
2457 int exact = 0; /* Initialized here to avoid a compiler warning. */
2458
2459 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2460 so far seen. */
2461
2462 int best_index;
2463 struct linetable *best_linetable;
2464 struct symtab *best_symtab;
2465
2466 /* First try looking it up in the given symtab. */
2467 best_linetable = LINETABLE (symtab);
2468 best_symtab = symtab;
2469 best_index = find_line_common (best_linetable, line, &exact, 0);
2470 if (best_index < 0 || !exact)
2471 {
2472 /* Didn't find an exact match. So we better keep looking for
2473 another symtab with the same name. In the case of xcoff,
2474 multiple csects for one source file (produced by IBM's FORTRAN
2475 compiler) produce multiple symtabs (this is unavoidable
2476 assuming csects can be at arbitrary places in memory and that
2477 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2478
2479 /* BEST is the smallest linenumber > LINE so far seen,
2480 or 0 if none has been seen so far.
2481 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2482 int best;
2483
2484 struct objfile *objfile;
2485 struct symtab *s;
2486
2487 if (best_index >= 0)
2488 best = best_linetable->item[best_index].line;
2489 else
2490 best = 0;
2491
2492 ALL_OBJFILES (objfile)
2493 {
2494 if (objfile->sf)
2495 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2496 symtab_to_fullname (symtab));
2497 }
2498
2499 ALL_SYMTABS (objfile, s)
2500 {
2501 struct linetable *l;
2502 int ind;
2503
2504 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2505 continue;
2506 if (FILENAME_CMP (symtab_to_fullname (symtab),
2507 symtab_to_fullname (s)) != 0)
2508 continue;
2509 l = LINETABLE (s);
2510 ind = find_line_common (l, line, &exact, 0);
2511 if (ind >= 0)
2512 {
2513 if (exact)
2514 {
2515 best_index = ind;
2516 best_linetable = l;
2517 best_symtab = s;
2518 goto done;
2519 }
2520 if (best == 0 || l->item[ind].line < best)
2521 {
2522 best = l->item[ind].line;
2523 best_index = ind;
2524 best_linetable = l;
2525 best_symtab = s;
2526 }
2527 }
2528 }
2529 }
2530 done:
2531 if (best_index < 0)
2532 return NULL;
2533
2534 if (index)
2535 *index = best_index;
2536 if (exact_match)
2537 *exact_match = exact;
2538
2539 return best_symtab;
2540 }
2541
2542 /* Given SYMTAB, returns all the PCs function in the symtab that
2543 exactly match LINE. Returns NULL if there are no exact matches,
2544 but updates BEST_ITEM in this case. */
2545
2546 VEC (CORE_ADDR) *
2547 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2548 struct linetable_entry **best_item)
2549 {
2550 int start = 0;
2551 VEC (CORE_ADDR) *result = NULL;
2552
2553 /* First, collect all the PCs that are at this line. */
2554 while (1)
2555 {
2556 int was_exact;
2557 int idx;
2558
2559 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2560 if (idx < 0)
2561 break;
2562
2563 if (!was_exact)
2564 {
2565 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2566
2567 if (*best_item == NULL || item->line < (*best_item)->line)
2568 *best_item = item;
2569
2570 break;
2571 }
2572
2573 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2574 start = idx + 1;
2575 }
2576
2577 return result;
2578 }
2579
2580 \f
2581 /* Set the PC value for a given source file and line number and return true.
2582 Returns zero for invalid line number (and sets the PC to 0).
2583 The source file is specified with a struct symtab. */
2584
2585 int
2586 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2587 {
2588 struct linetable *l;
2589 int ind;
2590
2591 *pc = 0;
2592 if (symtab == 0)
2593 return 0;
2594
2595 symtab = find_line_symtab (symtab, line, &ind, NULL);
2596 if (symtab != NULL)
2597 {
2598 l = LINETABLE (symtab);
2599 *pc = l->item[ind].pc;
2600 return 1;
2601 }
2602 else
2603 return 0;
2604 }
2605
2606 /* Find the range of pc values in a line.
2607 Store the starting pc of the line into *STARTPTR
2608 and the ending pc (start of next line) into *ENDPTR.
2609 Returns 1 to indicate success.
2610 Returns 0 if could not find the specified line. */
2611
2612 int
2613 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2614 CORE_ADDR *endptr)
2615 {
2616 CORE_ADDR startaddr;
2617 struct symtab_and_line found_sal;
2618
2619 startaddr = sal.pc;
2620 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2621 return 0;
2622
2623 /* This whole function is based on address. For example, if line 10 has
2624 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2625 "info line *0x123" should say the line goes from 0x100 to 0x200
2626 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2627 This also insures that we never give a range like "starts at 0x134
2628 and ends at 0x12c". */
2629
2630 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2631 if (found_sal.line != sal.line)
2632 {
2633 /* The specified line (sal) has zero bytes. */
2634 *startptr = found_sal.pc;
2635 *endptr = found_sal.pc;
2636 }
2637 else
2638 {
2639 *startptr = found_sal.pc;
2640 *endptr = found_sal.end;
2641 }
2642 return 1;
2643 }
2644
2645 /* Given a line table and a line number, return the index into the line
2646 table for the pc of the nearest line whose number is >= the specified one.
2647 Return -1 if none is found. The value is >= 0 if it is an index.
2648 START is the index at which to start searching the line table.
2649
2650 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2651
2652 static int
2653 find_line_common (struct linetable *l, int lineno,
2654 int *exact_match, int start)
2655 {
2656 int i;
2657 int len;
2658
2659 /* BEST is the smallest linenumber > LINENO so far seen,
2660 or 0 if none has been seen so far.
2661 BEST_INDEX identifies the item for it. */
2662
2663 int best_index = -1;
2664 int best = 0;
2665
2666 *exact_match = 0;
2667
2668 if (lineno <= 0)
2669 return -1;
2670 if (l == 0)
2671 return -1;
2672
2673 len = l->nitems;
2674 for (i = start; i < len; i++)
2675 {
2676 struct linetable_entry *item = &(l->item[i]);
2677
2678 if (item->line == lineno)
2679 {
2680 /* Return the first (lowest address) entry which matches. */
2681 *exact_match = 1;
2682 return i;
2683 }
2684
2685 if (item->line > lineno && (best == 0 || item->line < best))
2686 {
2687 best = item->line;
2688 best_index = i;
2689 }
2690 }
2691
2692 /* If we got here, we didn't get an exact match. */
2693 return best_index;
2694 }
2695
2696 int
2697 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2698 {
2699 struct symtab_and_line sal;
2700
2701 sal = find_pc_line (pc, 0);
2702 *startptr = sal.pc;
2703 *endptr = sal.end;
2704 return sal.symtab != 0;
2705 }
2706
2707 /* Given a function symbol SYM, find the symtab and line for the start
2708 of the function.
2709 If the argument FUNFIRSTLINE is nonzero, we want the first line
2710 of real code inside the function. */
2711
2712 struct symtab_and_line
2713 find_function_start_sal (struct symbol *sym, int funfirstline)
2714 {
2715 struct symtab_and_line sal;
2716
2717 fixup_symbol_section (sym, NULL);
2718 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2719 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2720
2721 /* We always should have a line for the function start address.
2722 If we don't, something is odd. Create a plain SAL refering
2723 just the PC and hope that skip_prologue_sal (if requested)
2724 can find a line number for after the prologue. */
2725 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2726 {
2727 init_sal (&sal);
2728 sal.pspace = current_program_space;
2729 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2730 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2731 }
2732
2733 if (funfirstline)
2734 skip_prologue_sal (&sal);
2735
2736 return sal;
2737 }
2738
2739 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2740 address for that function that has an entry in SYMTAB's line info
2741 table. If such an entry cannot be found, return FUNC_ADDR
2742 unaltered. */
2743
2744 static CORE_ADDR
2745 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2746 {
2747 CORE_ADDR func_start, func_end;
2748 struct linetable *l;
2749 int i;
2750
2751 /* Give up if this symbol has no lineinfo table. */
2752 l = LINETABLE (symtab);
2753 if (l == NULL)
2754 return func_addr;
2755
2756 /* Get the range for the function's PC values, or give up if we
2757 cannot, for some reason. */
2758 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2759 return func_addr;
2760
2761 /* Linetable entries are ordered by PC values, see the commentary in
2762 symtab.h where `struct linetable' is defined. Thus, the first
2763 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2764 address we are looking for. */
2765 for (i = 0; i < l->nitems; i++)
2766 {
2767 struct linetable_entry *item = &(l->item[i]);
2768
2769 /* Don't use line numbers of zero, they mark special entries in
2770 the table. See the commentary on symtab.h before the
2771 definition of struct linetable. */
2772 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2773 return item->pc;
2774 }
2775
2776 return func_addr;
2777 }
2778
2779 /* Adjust SAL to the first instruction past the function prologue.
2780 If the PC was explicitly specified, the SAL is not changed.
2781 If the line number was explicitly specified, at most the SAL's PC
2782 is updated. If SAL is already past the prologue, then do nothing. */
2783
2784 void
2785 skip_prologue_sal (struct symtab_and_line *sal)
2786 {
2787 struct symbol *sym;
2788 struct symtab_and_line start_sal;
2789 struct cleanup *old_chain;
2790 CORE_ADDR pc, saved_pc;
2791 struct obj_section *section;
2792 const char *name;
2793 struct objfile *objfile;
2794 struct gdbarch *gdbarch;
2795 const struct block *b, *function_block;
2796 int force_skip, skip;
2797
2798 /* Do not change the SAL if PC was specified explicitly. */
2799 if (sal->explicit_pc)
2800 return;
2801
2802 old_chain = save_current_space_and_thread ();
2803 switch_to_program_space_and_thread (sal->pspace);
2804
2805 sym = find_pc_sect_function (sal->pc, sal->section);
2806 if (sym != NULL)
2807 {
2808 fixup_symbol_section (sym, NULL);
2809
2810 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2811 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2812 name = SYMBOL_LINKAGE_NAME (sym);
2813 objfile = SYMBOL_SYMTAB (sym)->objfile;
2814 }
2815 else
2816 {
2817 struct bound_minimal_symbol msymbol
2818 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2819
2820 if (msymbol.minsym == NULL)
2821 {
2822 do_cleanups (old_chain);
2823 return;
2824 }
2825
2826 objfile = msymbol.objfile;
2827 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2828 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2829 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2830 }
2831
2832 gdbarch = get_objfile_arch (objfile);
2833
2834 /* Process the prologue in two passes. In the first pass try to skip the
2835 prologue (SKIP is true) and verify there is a real need for it (indicated
2836 by FORCE_SKIP). If no such reason was found run a second pass where the
2837 prologue is not skipped (SKIP is false). */
2838
2839 skip = 1;
2840 force_skip = 1;
2841
2842 /* Be conservative - allow direct PC (without skipping prologue) only if we
2843 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2844 have to be set by the caller so we use SYM instead. */
2845 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2846 force_skip = 0;
2847
2848 saved_pc = pc;
2849 do
2850 {
2851 pc = saved_pc;
2852
2853 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2854 so that gdbarch_skip_prologue has something unique to work on. */
2855 if (section_is_overlay (section) && !section_is_mapped (section))
2856 pc = overlay_unmapped_address (pc, section);
2857
2858 /* Skip "first line" of function (which is actually its prologue). */
2859 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2860 if (gdbarch_skip_entrypoint_p (gdbarch))
2861 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2862 if (skip)
2863 pc = gdbarch_skip_prologue (gdbarch, pc);
2864
2865 /* For overlays, map pc back into its mapped VMA range. */
2866 pc = overlay_mapped_address (pc, section);
2867
2868 /* Calculate line number. */
2869 start_sal = find_pc_sect_line (pc, section, 0);
2870
2871 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2872 line is still part of the same function. */
2873 if (skip && start_sal.pc != pc
2874 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2875 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2876 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2877 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2878 {
2879 /* First pc of next line */
2880 pc = start_sal.end;
2881 /* Recalculate the line number (might not be N+1). */
2882 start_sal = find_pc_sect_line (pc, section, 0);
2883 }
2884
2885 /* On targets with executable formats that don't have a concept of
2886 constructors (ELF with .init has, PE doesn't), gcc emits a call
2887 to `__main' in `main' between the prologue and before user
2888 code. */
2889 if (gdbarch_skip_main_prologue_p (gdbarch)
2890 && name && strcmp_iw (name, "main") == 0)
2891 {
2892 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2893 /* Recalculate the line number (might not be N+1). */
2894 start_sal = find_pc_sect_line (pc, section, 0);
2895 force_skip = 1;
2896 }
2897 }
2898 while (!force_skip && skip--);
2899
2900 /* If we still don't have a valid source line, try to find the first
2901 PC in the lineinfo table that belongs to the same function. This
2902 happens with COFF debug info, which does not seem to have an
2903 entry in lineinfo table for the code after the prologue which has
2904 no direct relation to source. For example, this was found to be
2905 the case with the DJGPP target using "gcc -gcoff" when the
2906 compiler inserted code after the prologue to make sure the stack
2907 is aligned. */
2908 if (!force_skip && sym && start_sal.symtab == NULL)
2909 {
2910 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2911 /* Recalculate the line number. */
2912 start_sal = find_pc_sect_line (pc, section, 0);
2913 }
2914
2915 do_cleanups (old_chain);
2916
2917 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2918 forward SAL to the end of the prologue. */
2919 if (sal->pc >= pc)
2920 return;
2921
2922 sal->pc = pc;
2923 sal->section = section;
2924
2925 /* Unless the explicit_line flag was set, update the SAL line
2926 and symtab to correspond to the modified PC location. */
2927 if (sal->explicit_line)
2928 return;
2929
2930 sal->symtab = start_sal.symtab;
2931 sal->line = start_sal.line;
2932 sal->end = start_sal.end;
2933
2934 /* Check if we are now inside an inlined function. If we can,
2935 use the call site of the function instead. */
2936 b = block_for_pc_sect (sal->pc, sal->section);
2937 function_block = NULL;
2938 while (b != NULL)
2939 {
2940 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2941 function_block = b;
2942 else if (BLOCK_FUNCTION (b) != NULL)
2943 break;
2944 b = BLOCK_SUPERBLOCK (b);
2945 }
2946 if (function_block != NULL
2947 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2948 {
2949 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2950 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2951 }
2952 }
2953
2954 /* Determine if PC is in the prologue of a function. The prologue is the area
2955 between the first instruction of a function, and the first executable line.
2956 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
2957
2958 If non-zero, func_start is where we think the prologue starts, possibly
2959 by previous examination of symbol table information. */
2960
2961 int
2962 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
2963 {
2964 struct symtab_and_line sal;
2965 CORE_ADDR func_addr, func_end;
2966
2967 /* We have several sources of information we can consult to figure
2968 this out.
2969 - Compilers usually emit line number info that marks the prologue
2970 as its own "source line". So the ending address of that "line"
2971 is the end of the prologue. If available, this is the most
2972 reliable method.
2973 - The minimal symbols and partial symbols, which can usually tell
2974 us the starting and ending addresses of a function.
2975 - If we know the function's start address, we can call the
2976 architecture-defined gdbarch_skip_prologue function to analyze the
2977 instruction stream and guess where the prologue ends.
2978 - Our `func_start' argument; if non-zero, this is the caller's
2979 best guess as to the function's entry point. At the time of
2980 this writing, handle_inferior_event doesn't get this right, so
2981 it should be our last resort. */
2982
2983 /* Consult the partial symbol table, to find which function
2984 the PC is in. */
2985 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2986 {
2987 CORE_ADDR prologue_end;
2988
2989 /* We don't even have minsym information, so fall back to using
2990 func_start, if given. */
2991 if (! func_start)
2992 return 1; /* We *might* be in a prologue. */
2993
2994 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
2995
2996 return func_start <= pc && pc < prologue_end;
2997 }
2998
2999 /* If we have line number information for the function, that's
3000 usually pretty reliable. */
3001 sal = find_pc_line (func_addr, 0);
3002
3003 /* Now sal describes the source line at the function's entry point,
3004 which (by convention) is the prologue. The end of that "line",
3005 sal.end, is the end of the prologue.
3006
3007 Note that, for functions whose source code is all on a single
3008 line, the line number information doesn't always end up this way.
3009 So we must verify that our purported end-of-prologue address is
3010 *within* the function, not at its start or end. */
3011 if (sal.line == 0
3012 || sal.end <= func_addr
3013 || func_end <= sal.end)
3014 {
3015 /* We don't have any good line number info, so use the minsym
3016 information, together with the architecture-specific prologue
3017 scanning code. */
3018 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
3019
3020 return func_addr <= pc && pc < prologue_end;
3021 }
3022
3023 /* We have line number info, and it looks good. */
3024 return func_addr <= pc && pc < sal.end;
3025 }
3026
3027 /* Given PC at the function's start address, attempt to find the
3028 prologue end using SAL information. Return zero if the skip fails.
3029
3030 A non-optimized prologue traditionally has one SAL for the function
3031 and a second for the function body. A single line function has
3032 them both pointing at the same line.
3033
3034 An optimized prologue is similar but the prologue may contain
3035 instructions (SALs) from the instruction body. Need to skip those
3036 while not getting into the function body.
3037
3038 The functions end point and an increasing SAL line are used as
3039 indicators of the prologue's endpoint.
3040
3041 This code is based on the function refine_prologue_limit
3042 (found in ia64). */
3043
3044 CORE_ADDR
3045 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3046 {
3047 struct symtab_and_line prologue_sal;
3048 CORE_ADDR start_pc;
3049 CORE_ADDR end_pc;
3050 const struct block *bl;
3051
3052 /* Get an initial range for the function. */
3053 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3054 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3055
3056 prologue_sal = find_pc_line (start_pc, 0);
3057 if (prologue_sal.line != 0)
3058 {
3059 /* For languages other than assembly, treat two consecutive line
3060 entries at the same address as a zero-instruction prologue.
3061 The GNU assembler emits separate line notes for each instruction
3062 in a multi-instruction macro, but compilers generally will not
3063 do this. */
3064 if (prologue_sal.symtab->language != language_asm)
3065 {
3066 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
3067 int idx = 0;
3068
3069 /* Skip any earlier lines, and any end-of-sequence marker
3070 from a previous function. */
3071 while (linetable->item[idx].pc != prologue_sal.pc
3072 || linetable->item[idx].line == 0)
3073 idx++;
3074
3075 if (idx+1 < linetable->nitems
3076 && linetable->item[idx+1].line != 0
3077 && linetable->item[idx+1].pc == start_pc)
3078 return start_pc;
3079 }
3080
3081 /* If there is only one sal that covers the entire function,
3082 then it is probably a single line function, like
3083 "foo(){}". */
3084 if (prologue_sal.end >= end_pc)
3085 return 0;
3086
3087 while (prologue_sal.end < end_pc)
3088 {
3089 struct symtab_and_line sal;
3090
3091 sal = find_pc_line (prologue_sal.end, 0);
3092 if (sal.line == 0)
3093 break;
3094 /* Assume that a consecutive SAL for the same (or larger)
3095 line mark the prologue -> body transition. */
3096 if (sal.line >= prologue_sal.line)
3097 break;
3098 /* Likewise if we are in a different symtab altogether
3099 (e.g. within a file included via #include).  */
3100 if (sal.symtab != prologue_sal.symtab)
3101 break;
3102
3103 /* The line number is smaller. Check that it's from the
3104 same function, not something inlined. If it's inlined,
3105 then there is no point comparing the line numbers. */
3106 bl = block_for_pc (prologue_sal.end);
3107 while (bl)
3108 {
3109 if (block_inlined_p (bl))
3110 break;
3111 if (BLOCK_FUNCTION (bl))
3112 {
3113 bl = NULL;
3114 break;
3115 }
3116 bl = BLOCK_SUPERBLOCK (bl);
3117 }
3118 if (bl != NULL)
3119 break;
3120
3121 /* The case in which compiler's optimizer/scheduler has
3122 moved instructions into the prologue. We look ahead in
3123 the function looking for address ranges whose
3124 corresponding line number is less the first one that we
3125 found for the function. This is more conservative then
3126 refine_prologue_limit which scans a large number of SALs
3127 looking for any in the prologue. */
3128 prologue_sal = sal;
3129 }
3130 }
3131
3132 if (prologue_sal.end < end_pc)
3133 /* Return the end of this line, or zero if we could not find a
3134 line. */
3135 return prologue_sal.end;
3136 else
3137 /* Don't return END_PC, which is past the end of the function. */
3138 return prologue_sal.pc;
3139 }
3140 \f
3141 /* If P is of the form "operator[ \t]+..." where `...' is
3142 some legitimate operator text, return a pointer to the
3143 beginning of the substring of the operator text.
3144 Otherwise, return "". */
3145
3146 static const char *
3147 operator_chars (const char *p, const char **end)
3148 {
3149 *end = "";
3150 if (strncmp (p, "operator", 8))
3151 return *end;
3152 p += 8;
3153
3154 /* Don't get faked out by `operator' being part of a longer
3155 identifier. */
3156 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3157 return *end;
3158
3159 /* Allow some whitespace between `operator' and the operator symbol. */
3160 while (*p == ' ' || *p == '\t')
3161 p++;
3162
3163 /* Recognize 'operator TYPENAME'. */
3164
3165 if (isalpha (*p) || *p == '_' || *p == '$')
3166 {
3167 const char *q = p + 1;
3168
3169 while (isalnum (*q) || *q == '_' || *q == '$')
3170 q++;
3171 *end = q;
3172 return p;
3173 }
3174
3175 while (*p)
3176 switch (*p)
3177 {
3178 case '\\': /* regexp quoting */
3179 if (p[1] == '*')
3180 {
3181 if (p[2] == '=') /* 'operator\*=' */
3182 *end = p + 3;
3183 else /* 'operator\*' */
3184 *end = p + 2;
3185 return p;
3186 }
3187 else if (p[1] == '[')
3188 {
3189 if (p[2] == ']')
3190 error (_("mismatched quoting on brackets, "
3191 "try 'operator\\[\\]'"));
3192 else if (p[2] == '\\' && p[3] == ']')
3193 {
3194 *end = p + 4; /* 'operator\[\]' */
3195 return p;
3196 }
3197 else
3198 error (_("nothing is allowed between '[' and ']'"));
3199 }
3200 else
3201 {
3202 /* Gratuitous qoute: skip it and move on. */
3203 p++;
3204 continue;
3205 }
3206 break;
3207 case '!':
3208 case '=':
3209 case '*':
3210 case '/':
3211 case '%':
3212 case '^':
3213 if (p[1] == '=')
3214 *end = p + 2;
3215 else
3216 *end = p + 1;
3217 return p;
3218 case '<':
3219 case '>':
3220 case '+':
3221 case '-':
3222 case '&':
3223 case '|':
3224 if (p[0] == '-' && p[1] == '>')
3225 {
3226 /* Struct pointer member operator 'operator->'. */
3227 if (p[2] == '*')
3228 {
3229 *end = p + 3; /* 'operator->*' */
3230 return p;
3231 }
3232 else if (p[2] == '\\')
3233 {
3234 *end = p + 4; /* Hopefully 'operator->\*' */
3235 return p;
3236 }
3237 else
3238 {
3239 *end = p + 2; /* 'operator->' */
3240 return p;
3241 }
3242 }
3243 if (p[1] == '=' || p[1] == p[0])
3244 *end = p + 2;
3245 else
3246 *end = p + 1;
3247 return p;
3248 case '~':
3249 case ',':
3250 *end = p + 1;
3251 return p;
3252 case '(':
3253 if (p[1] != ')')
3254 error (_("`operator ()' must be specified "
3255 "without whitespace in `()'"));
3256 *end = p + 2;
3257 return p;
3258 case '?':
3259 if (p[1] != ':')
3260 error (_("`operator ?:' must be specified "
3261 "without whitespace in `?:'"));
3262 *end = p + 2;
3263 return p;
3264 case '[':
3265 if (p[1] != ']')
3266 error (_("`operator []' must be specified "
3267 "without whitespace in `[]'"));
3268 *end = p + 2;
3269 return p;
3270 default:
3271 error (_("`operator %s' not supported"), p);
3272 break;
3273 }
3274
3275 *end = "";
3276 return *end;
3277 }
3278 \f
3279
3280 /* Cache to watch for file names already seen by filename_seen. */
3281
3282 struct filename_seen_cache
3283 {
3284 /* Table of files seen so far. */
3285 htab_t tab;
3286 /* Initial size of the table. It automagically grows from here. */
3287 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3288 };
3289
3290 /* filename_seen_cache constructor. */
3291
3292 static struct filename_seen_cache *
3293 create_filename_seen_cache (void)
3294 {
3295 struct filename_seen_cache *cache;
3296
3297 cache = XNEW (struct filename_seen_cache);
3298 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3299 filename_hash, filename_eq,
3300 NULL, xcalloc, xfree);
3301
3302 return cache;
3303 }
3304
3305 /* Empty the cache, but do not delete it. */
3306
3307 static void
3308 clear_filename_seen_cache (struct filename_seen_cache *cache)
3309 {
3310 htab_empty (cache->tab);
3311 }
3312
3313 /* filename_seen_cache destructor.
3314 This takes a void * argument as it is generally used as a cleanup. */
3315
3316 static void
3317 delete_filename_seen_cache (void *ptr)
3318 {
3319 struct filename_seen_cache *cache = ptr;
3320
3321 htab_delete (cache->tab);
3322 xfree (cache);
3323 }
3324
3325 /* If FILE is not already in the table of files in CACHE, return zero;
3326 otherwise return non-zero. Optionally add FILE to the table if ADD
3327 is non-zero.
3328
3329 NOTE: We don't manage space for FILE, we assume FILE lives as long
3330 as the caller needs. */
3331
3332 static int
3333 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3334 {
3335 void **slot;
3336
3337 /* Is FILE in tab? */
3338 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3339 if (*slot != NULL)
3340 return 1;
3341
3342 /* No; maybe add it to tab. */
3343 if (add)
3344 *slot = (char *) file;
3345
3346 return 0;
3347 }
3348
3349 /* Data structure to maintain printing state for output_source_filename. */
3350
3351 struct output_source_filename_data
3352 {
3353 /* Cache of what we've seen so far. */
3354 struct filename_seen_cache *filename_seen_cache;
3355
3356 /* Flag of whether we're printing the first one. */
3357 int first;
3358 };
3359
3360 /* Slave routine for sources_info. Force line breaks at ,'s.
3361 NAME is the name to print.
3362 DATA contains the state for printing and watching for duplicates. */
3363
3364 static void
3365 output_source_filename (const char *name,
3366 struct output_source_filename_data *data)
3367 {
3368 /* Since a single source file can result in several partial symbol
3369 tables, we need to avoid printing it more than once. Note: if
3370 some of the psymtabs are read in and some are not, it gets
3371 printed both under "Source files for which symbols have been
3372 read" and "Source files for which symbols will be read in on
3373 demand". I consider this a reasonable way to deal with the
3374 situation. I'm not sure whether this can also happen for
3375 symtabs; it doesn't hurt to check. */
3376
3377 /* Was NAME already seen? */
3378 if (filename_seen (data->filename_seen_cache, name, 1))
3379 {
3380 /* Yes; don't print it again. */
3381 return;
3382 }
3383
3384 /* No; print it and reset *FIRST. */
3385 if (! data->first)
3386 printf_filtered (", ");
3387 data->first = 0;
3388
3389 wrap_here ("");
3390 fputs_filtered (name, gdb_stdout);
3391 }
3392
3393 /* A callback for map_partial_symbol_filenames. */
3394
3395 static void
3396 output_partial_symbol_filename (const char *filename, const char *fullname,
3397 void *data)
3398 {
3399 output_source_filename (fullname ? fullname : filename, data);
3400 }
3401
3402 static void
3403 sources_info (char *ignore, int from_tty)
3404 {
3405 struct symtab *s;
3406 struct objfile *objfile;
3407 struct output_source_filename_data data;
3408 struct cleanup *cleanups;
3409
3410 if (!have_full_symbols () && !have_partial_symbols ())
3411 {
3412 error (_("No symbol table is loaded. Use the \"file\" command."));
3413 }
3414
3415 data.filename_seen_cache = create_filename_seen_cache ();
3416 cleanups = make_cleanup (delete_filename_seen_cache,
3417 data.filename_seen_cache);
3418
3419 printf_filtered ("Source files for which symbols have been read in:\n\n");
3420
3421 data.first = 1;
3422 ALL_SYMTABS (objfile, s)
3423 {
3424 const char *fullname = symtab_to_fullname (s);
3425
3426 output_source_filename (fullname, &data);
3427 }
3428 printf_filtered ("\n\n");
3429
3430 printf_filtered ("Source files for which symbols "
3431 "will be read in on demand:\n\n");
3432
3433 clear_filename_seen_cache (data.filename_seen_cache);
3434 data.first = 1;
3435 map_symbol_filenames (output_partial_symbol_filename, &data,
3436 1 /*need_fullname*/);
3437 printf_filtered ("\n");
3438
3439 do_cleanups (cleanups);
3440 }
3441
3442 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3443 non-zero compare only lbasename of FILES. */
3444
3445 static int
3446 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3447 {
3448 int i;
3449
3450 if (file != NULL && nfiles != 0)
3451 {
3452 for (i = 0; i < nfiles; i++)
3453 {
3454 if (compare_filenames_for_search (file, (basenames
3455 ? lbasename (files[i])
3456 : files[i])))
3457 return 1;
3458 }
3459 }
3460 else if (nfiles == 0)
3461 return 1;
3462 return 0;
3463 }
3464
3465 /* Free any memory associated with a search. */
3466
3467 void
3468 free_search_symbols (struct symbol_search *symbols)
3469 {
3470 struct symbol_search *p;
3471 struct symbol_search *next;
3472
3473 for (p = symbols; p != NULL; p = next)
3474 {
3475 next = p->next;
3476 xfree (p);
3477 }
3478 }
3479
3480 static void
3481 do_free_search_symbols_cleanup (void *symbolsp)
3482 {
3483 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3484
3485 free_search_symbols (symbols);
3486 }
3487
3488 struct cleanup *
3489 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3490 {
3491 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3492 }
3493
3494 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3495 sort symbols, not minimal symbols. */
3496
3497 static int
3498 compare_search_syms (const void *sa, const void *sb)
3499 {
3500 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3501 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3502 int c;
3503
3504 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3505 if (c != 0)
3506 return c;
3507
3508 if (sym_a->block != sym_b->block)
3509 return sym_a->block - sym_b->block;
3510
3511 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3512 SYMBOL_PRINT_NAME (sym_b->symbol));
3513 }
3514
3515 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3516 The duplicates are freed, and the new list is returned in
3517 *NEW_HEAD, *NEW_TAIL. */
3518
3519 static void
3520 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3521 struct symbol_search **new_head,
3522 struct symbol_search **new_tail)
3523 {
3524 struct symbol_search **symbols, *symp, *old_next;
3525 int i, j, nunique;
3526
3527 gdb_assert (found != NULL && nfound > 0);
3528
3529 /* Build an array out of the list so we can easily sort them. */
3530 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3531 * nfound);
3532 symp = found;
3533 for (i = 0; i < nfound; i++)
3534 {
3535 gdb_assert (symp != NULL);
3536 gdb_assert (symp->block >= 0 && symp->block <= 1);
3537 symbols[i] = symp;
3538 symp = symp->next;
3539 }
3540 gdb_assert (symp == NULL);
3541
3542 qsort (symbols, nfound, sizeof (struct symbol_search *),
3543 compare_search_syms);
3544
3545 /* Collapse out the dups. */
3546 for (i = 1, j = 1; i < nfound; ++i)
3547 {
3548 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3549 symbols[j++] = symbols[i];
3550 else
3551 xfree (symbols[i]);
3552 }
3553 nunique = j;
3554 symbols[j - 1]->next = NULL;
3555
3556 /* Rebuild the linked list. */
3557 for (i = 0; i < nunique - 1; i++)
3558 symbols[i]->next = symbols[i + 1];
3559 symbols[nunique - 1]->next = NULL;
3560
3561 *new_head = symbols[0];
3562 *new_tail = symbols[nunique - 1];
3563 xfree (symbols);
3564 }
3565
3566 /* An object of this type is passed as the user_data to the
3567 expand_symtabs_matching method. */
3568 struct search_symbols_data
3569 {
3570 int nfiles;
3571 const char **files;
3572
3573 /* It is true if PREG contains valid data, false otherwise. */
3574 unsigned preg_p : 1;
3575 regex_t preg;
3576 };
3577
3578 /* A callback for expand_symtabs_matching. */
3579
3580 static int
3581 search_symbols_file_matches (const char *filename, void *user_data,
3582 int basenames)
3583 {
3584 struct search_symbols_data *data = user_data;
3585
3586 return file_matches (filename, data->files, data->nfiles, basenames);
3587 }
3588
3589 /* A callback for expand_symtabs_matching. */
3590
3591 static int
3592 search_symbols_name_matches (const char *symname, void *user_data)
3593 {
3594 struct search_symbols_data *data = user_data;
3595
3596 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3597 }
3598
3599 /* Search the symbol table for matches to the regular expression REGEXP,
3600 returning the results in *MATCHES.
3601
3602 Only symbols of KIND are searched:
3603 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3604 and constants (enums)
3605 FUNCTIONS_DOMAIN - search all functions
3606 TYPES_DOMAIN - search all type names
3607 ALL_DOMAIN - an internal error for this function
3608
3609 free_search_symbols should be called when *MATCHES is no longer needed.
3610
3611 Within each file the results are sorted locally; each symtab's global and
3612 static blocks are separately alphabetized.
3613 Duplicate entries are removed. */
3614
3615 void
3616 search_symbols (const char *regexp, enum search_domain kind,
3617 int nfiles, const char *files[],
3618 struct symbol_search **matches)
3619 {
3620 struct symtab *s;
3621 const struct blockvector *bv;
3622 struct block *b;
3623 int i = 0;
3624 struct block_iterator iter;
3625 struct symbol *sym;
3626 struct objfile *objfile;
3627 struct minimal_symbol *msymbol;
3628 int found_misc = 0;
3629 static const enum minimal_symbol_type types[]
3630 = {mst_data, mst_text, mst_abs};
3631 static const enum minimal_symbol_type types2[]
3632 = {mst_bss, mst_file_text, mst_abs};
3633 static const enum minimal_symbol_type types3[]
3634 = {mst_file_data, mst_solib_trampoline, mst_abs};
3635 static const enum minimal_symbol_type types4[]
3636 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3637 enum minimal_symbol_type ourtype;
3638 enum minimal_symbol_type ourtype2;
3639 enum minimal_symbol_type ourtype3;
3640 enum minimal_symbol_type ourtype4;
3641 struct symbol_search *found;
3642 struct symbol_search *tail;
3643 struct search_symbols_data datum;
3644 int nfound;
3645
3646 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3647 CLEANUP_CHAIN is freed only in the case of an error. */
3648 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3649 struct cleanup *retval_chain;
3650
3651 gdb_assert (kind <= TYPES_DOMAIN);
3652
3653 ourtype = types[kind];
3654 ourtype2 = types2[kind];
3655 ourtype3 = types3[kind];
3656 ourtype4 = types4[kind];
3657
3658 *matches = NULL;
3659 datum.preg_p = 0;
3660
3661 if (regexp != NULL)
3662 {
3663 /* Make sure spacing is right for C++ operators.
3664 This is just a courtesy to make the matching less sensitive
3665 to how many spaces the user leaves between 'operator'
3666 and <TYPENAME> or <OPERATOR>. */
3667 const char *opend;
3668 const char *opname = operator_chars (regexp, &opend);
3669 int errcode;
3670
3671 if (*opname)
3672 {
3673 int fix = -1; /* -1 means ok; otherwise number of
3674 spaces needed. */
3675
3676 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3677 {
3678 /* There should 1 space between 'operator' and 'TYPENAME'. */
3679 if (opname[-1] != ' ' || opname[-2] == ' ')
3680 fix = 1;
3681 }
3682 else
3683 {
3684 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3685 if (opname[-1] == ' ')
3686 fix = 0;
3687 }
3688 /* If wrong number of spaces, fix it. */
3689 if (fix >= 0)
3690 {
3691 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3692
3693 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3694 regexp = tmp;
3695 }
3696 }
3697
3698 errcode = regcomp (&datum.preg, regexp,
3699 REG_NOSUB | (case_sensitivity == case_sensitive_off
3700 ? REG_ICASE : 0));
3701 if (errcode != 0)
3702 {
3703 char *err = get_regcomp_error (errcode, &datum.preg);
3704
3705 make_cleanup (xfree, err);
3706 error (_("Invalid regexp (%s): %s"), err, regexp);
3707 }
3708 datum.preg_p = 1;
3709 make_regfree_cleanup (&datum.preg);
3710 }
3711
3712 /* Search through the partial symtabs *first* for all symbols
3713 matching the regexp. That way we don't have to reproduce all of
3714 the machinery below. */
3715
3716 datum.nfiles = nfiles;
3717 datum.files = files;
3718 expand_symtabs_matching ((nfiles == 0
3719 ? NULL
3720 : search_symbols_file_matches),
3721 search_symbols_name_matches,
3722 kind, &datum);
3723
3724 /* Here, we search through the minimal symbol tables for functions
3725 and variables that match, and force their symbols to be read.
3726 This is in particular necessary for demangled variable names,
3727 which are no longer put into the partial symbol tables.
3728 The symbol will then be found during the scan of symtabs below.
3729
3730 For functions, find_pc_symtab should succeed if we have debug info
3731 for the function, for variables we have to call
3732 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3733 has debug info.
3734 If the lookup fails, set found_misc so that we will rescan to print
3735 any matching symbols without debug info.
3736 We only search the objfile the msymbol came from, we no longer search
3737 all objfiles. In large programs (1000s of shared libs) searching all
3738 objfiles is not worth the pain. */
3739
3740 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3741 {
3742 ALL_MSYMBOLS (objfile, msymbol)
3743 {
3744 QUIT;
3745
3746 if (msymbol->created_by_gdb)
3747 continue;
3748
3749 if (MSYMBOL_TYPE (msymbol) == ourtype
3750 || MSYMBOL_TYPE (msymbol) == ourtype2
3751 || MSYMBOL_TYPE (msymbol) == ourtype3
3752 || MSYMBOL_TYPE (msymbol) == ourtype4)
3753 {
3754 if (!datum.preg_p
3755 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3756 NULL, 0) == 0)
3757 {
3758 /* Note: An important side-effect of these lookup functions
3759 is to expand the symbol table if msymbol is found, for the
3760 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3761 if (kind == FUNCTIONS_DOMAIN
3762 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3763 msymbol)) == NULL
3764 : (lookup_symbol_in_objfile_from_linkage_name
3765 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3766 == NULL))
3767 found_misc = 1;
3768 }
3769 }
3770 }
3771 }
3772
3773 found = NULL;
3774 tail = NULL;
3775 nfound = 0;
3776 retval_chain = make_cleanup_free_search_symbols (&found);
3777
3778 ALL_PRIMARY_SYMTABS (objfile, s)
3779 {
3780 bv = BLOCKVECTOR (s);
3781 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3782 {
3783 b = BLOCKVECTOR_BLOCK (bv, i);
3784 ALL_BLOCK_SYMBOLS (b, iter, sym)
3785 {
3786 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3787
3788 QUIT;
3789
3790 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3791 a substring of symtab_to_fullname as it may contain "./" etc. */
3792 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3793 || ((basenames_may_differ
3794 || file_matches (lbasename (real_symtab->filename),
3795 files, nfiles, 1))
3796 && file_matches (symtab_to_fullname (real_symtab),
3797 files, nfiles, 0)))
3798 && ((!datum.preg_p
3799 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3800 NULL, 0) == 0)
3801 && ((kind == VARIABLES_DOMAIN
3802 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3803 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3804 && SYMBOL_CLASS (sym) != LOC_BLOCK
3805 /* LOC_CONST can be used for more than just enums,
3806 e.g., c++ static const members.
3807 We only want to skip enums here. */
3808 && !(SYMBOL_CLASS (sym) == LOC_CONST
3809 && TYPE_CODE (SYMBOL_TYPE (sym))
3810 == TYPE_CODE_ENUM))
3811 || (kind == FUNCTIONS_DOMAIN
3812 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3813 || (kind == TYPES_DOMAIN
3814 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3815 {
3816 /* match */
3817 struct symbol_search *psr = (struct symbol_search *)
3818 xmalloc (sizeof (struct symbol_search));
3819 psr->block = i;
3820 psr->symtab = real_symtab;
3821 psr->symbol = sym;
3822 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3823 psr->next = NULL;
3824 if (tail == NULL)
3825 found = psr;
3826 else
3827 tail->next = psr;
3828 tail = psr;
3829 nfound ++;
3830 }
3831 }
3832 }
3833 }
3834
3835 if (found != NULL)
3836 {
3837 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3838 /* Note: nfound is no longer useful beyond this point. */
3839 }
3840
3841 /* If there are no eyes, avoid all contact. I mean, if there are
3842 no debug symbols, then print directly from the msymbol_vector. */
3843
3844 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3845 {
3846 ALL_MSYMBOLS (objfile, msymbol)
3847 {
3848 QUIT;
3849
3850 if (msymbol->created_by_gdb)
3851 continue;
3852
3853 if (MSYMBOL_TYPE (msymbol) == ourtype
3854 || MSYMBOL_TYPE (msymbol) == ourtype2
3855 || MSYMBOL_TYPE (msymbol) == ourtype3
3856 || MSYMBOL_TYPE (msymbol) == ourtype4)
3857 {
3858 if (!datum.preg_p
3859 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3860 NULL, 0) == 0)
3861 {
3862 /* For functions we can do a quick check of whether the
3863 symbol might be found via find_pc_symtab. */
3864 if (kind != FUNCTIONS_DOMAIN
3865 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3866 msymbol)) == NULL)
3867 {
3868 if (lookup_symbol_in_objfile_from_linkage_name
3869 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3870 == NULL)
3871 {
3872 /* match */
3873 struct symbol_search *psr = (struct symbol_search *)
3874 xmalloc (sizeof (struct symbol_search));
3875 psr->block = i;
3876 psr->msymbol.minsym = msymbol;
3877 psr->msymbol.objfile = objfile;
3878 psr->symtab = NULL;
3879 psr->symbol = NULL;
3880 psr->next = NULL;
3881 if (tail == NULL)
3882 found = psr;
3883 else
3884 tail->next = psr;
3885 tail = psr;
3886 }
3887 }
3888 }
3889 }
3890 }
3891 }
3892
3893 discard_cleanups (retval_chain);
3894 do_cleanups (old_chain);
3895 *matches = found;
3896 }
3897
3898 /* Helper function for symtab_symbol_info, this function uses
3899 the data returned from search_symbols() to print information
3900 regarding the match to gdb_stdout. */
3901
3902 static void
3903 print_symbol_info (enum search_domain kind,
3904 struct symtab *s, struct symbol *sym,
3905 int block, const char *last)
3906 {
3907 const char *s_filename = symtab_to_filename_for_display (s);
3908
3909 if (last == NULL || filename_cmp (last, s_filename) != 0)
3910 {
3911 fputs_filtered ("\nFile ", gdb_stdout);
3912 fputs_filtered (s_filename, gdb_stdout);
3913 fputs_filtered (":\n", gdb_stdout);
3914 }
3915
3916 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3917 printf_filtered ("static ");
3918
3919 /* Typedef that is not a C++ class. */
3920 if (kind == TYPES_DOMAIN
3921 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3922 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3923 /* variable, func, or typedef-that-is-c++-class. */
3924 else if (kind < TYPES_DOMAIN
3925 || (kind == TYPES_DOMAIN
3926 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3927 {
3928 type_print (SYMBOL_TYPE (sym),
3929 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3930 ? "" : SYMBOL_PRINT_NAME (sym)),
3931 gdb_stdout, 0);
3932
3933 printf_filtered (";\n");
3934 }
3935 }
3936
3937 /* This help function for symtab_symbol_info() prints information
3938 for non-debugging symbols to gdb_stdout. */
3939
3940 static void
3941 print_msymbol_info (struct bound_minimal_symbol msymbol)
3942 {
3943 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3944 char *tmp;
3945
3946 if (gdbarch_addr_bit (gdbarch) <= 32)
3947 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3948 & (CORE_ADDR) 0xffffffff,
3949 8);
3950 else
3951 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3952 16);
3953 printf_filtered ("%s %s\n",
3954 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3955 }
3956
3957 /* This is the guts of the commands "info functions", "info types", and
3958 "info variables". It calls search_symbols to find all matches and then
3959 print_[m]symbol_info to print out some useful information about the
3960 matches. */
3961
3962 static void
3963 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3964 {
3965 static const char * const classnames[] =
3966 {"variable", "function", "type"};
3967 struct symbol_search *symbols;
3968 struct symbol_search *p;
3969 struct cleanup *old_chain;
3970 const char *last_filename = NULL;
3971 int first = 1;
3972
3973 gdb_assert (kind <= TYPES_DOMAIN);
3974
3975 /* Must make sure that if we're interrupted, symbols gets freed. */
3976 search_symbols (regexp, kind, 0, NULL, &symbols);
3977 old_chain = make_cleanup_free_search_symbols (&symbols);
3978
3979 if (regexp != NULL)
3980 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3981 classnames[kind], regexp);
3982 else
3983 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3984
3985 for (p = symbols; p != NULL; p = p->next)
3986 {
3987 QUIT;
3988
3989 if (p->msymbol.minsym != NULL)
3990 {
3991 if (first)
3992 {
3993 printf_filtered (_("\nNon-debugging symbols:\n"));
3994 first = 0;
3995 }
3996 print_msymbol_info (p->msymbol);
3997 }
3998 else
3999 {
4000 print_symbol_info (kind,
4001 p->symtab,
4002 p->symbol,
4003 p->block,
4004 last_filename);
4005 last_filename = symtab_to_filename_for_display (p->symtab);
4006 }
4007 }
4008
4009 do_cleanups (old_chain);
4010 }
4011
4012 static void
4013 variables_info (char *regexp, int from_tty)
4014 {
4015 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
4016 }
4017
4018 static void
4019 functions_info (char *regexp, int from_tty)
4020 {
4021 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
4022 }
4023
4024
4025 static void
4026 types_info (char *regexp, int from_tty)
4027 {
4028 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
4029 }
4030
4031 /* Breakpoint all functions matching regular expression. */
4032
4033 void
4034 rbreak_command_wrapper (char *regexp, int from_tty)
4035 {
4036 rbreak_command (regexp, from_tty);
4037 }
4038
4039 /* A cleanup function that calls end_rbreak_breakpoints. */
4040
4041 static void
4042 do_end_rbreak_breakpoints (void *ignore)
4043 {
4044 end_rbreak_breakpoints ();
4045 }
4046
4047 static void
4048 rbreak_command (char *regexp, int from_tty)
4049 {
4050 struct symbol_search *ss;
4051 struct symbol_search *p;
4052 struct cleanup *old_chain;
4053 char *string = NULL;
4054 int len = 0;
4055 const char **files = NULL;
4056 const char *file_name;
4057 int nfiles = 0;
4058
4059 if (regexp)
4060 {
4061 char *colon = strchr (regexp, ':');
4062
4063 if (colon && *(colon + 1) != ':')
4064 {
4065 int colon_index;
4066 char *local_name;
4067
4068 colon_index = colon - regexp;
4069 local_name = alloca (colon_index + 1);
4070 memcpy (local_name, regexp, colon_index);
4071 local_name[colon_index--] = 0;
4072 while (isspace (local_name[colon_index]))
4073 local_name[colon_index--] = 0;
4074 file_name = local_name;
4075 files = &file_name;
4076 nfiles = 1;
4077 regexp = skip_spaces (colon + 1);
4078 }
4079 }
4080
4081 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4082 old_chain = make_cleanup_free_search_symbols (&ss);
4083 make_cleanup (free_current_contents, &string);
4084
4085 start_rbreak_breakpoints ();
4086 make_cleanup (do_end_rbreak_breakpoints, NULL);
4087 for (p = ss; p != NULL; p = p->next)
4088 {
4089 if (p->msymbol.minsym == NULL)
4090 {
4091 const char *fullname = symtab_to_fullname (p->symtab);
4092
4093 int newlen = (strlen (fullname)
4094 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4095 + 4);
4096
4097 if (newlen > len)
4098 {
4099 string = xrealloc (string, newlen);
4100 len = newlen;
4101 }
4102 strcpy (string, fullname);
4103 strcat (string, ":'");
4104 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4105 strcat (string, "'");
4106 break_command (string, from_tty);
4107 print_symbol_info (FUNCTIONS_DOMAIN,
4108 p->symtab,
4109 p->symbol,
4110 p->block,
4111 symtab_to_filename_for_display (p->symtab));
4112 }
4113 else
4114 {
4115 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4116
4117 if (newlen > len)
4118 {
4119 string = xrealloc (string, newlen);
4120 len = newlen;
4121 }
4122 strcpy (string, "'");
4123 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4124 strcat (string, "'");
4125
4126 break_command (string, from_tty);
4127 printf_filtered ("<function, no debug info> %s;\n",
4128 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4129 }
4130 }
4131
4132 do_cleanups (old_chain);
4133 }
4134 \f
4135
4136 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4137
4138 Either sym_text[sym_text_len] != '(' and then we search for any
4139 symbol starting with SYM_TEXT text.
4140
4141 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4142 be terminated at that point. Partial symbol tables do not have parameters
4143 information. */
4144
4145 static int
4146 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4147 {
4148 int (*ncmp) (const char *, const char *, size_t);
4149
4150 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4151
4152 if (ncmp (name, sym_text, sym_text_len) != 0)
4153 return 0;
4154
4155 if (sym_text[sym_text_len] == '(')
4156 {
4157 /* User searches for `name(someth...'. Require NAME to be terminated.
4158 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4159 present but accept even parameters presence. In this case this
4160 function is in fact strcmp_iw but whitespace skipping is not supported
4161 for tab completion. */
4162
4163 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4164 return 0;
4165 }
4166
4167 return 1;
4168 }
4169
4170 /* Free any memory associated with a completion list. */
4171
4172 static void
4173 free_completion_list (VEC (char_ptr) **list_ptr)
4174 {
4175 int i;
4176 char *p;
4177
4178 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4179 xfree (p);
4180 VEC_free (char_ptr, *list_ptr);
4181 }
4182
4183 /* Callback for make_cleanup. */
4184
4185 static void
4186 do_free_completion_list (void *list)
4187 {
4188 free_completion_list (list);
4189 }
4190
4191 /* Helper routine for make_symbol_completion_list. */
4192
4193 static VEC (char_ptr) *return_val;
4194
4195 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4196 completion_list_add_name \
4197 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4198
4199 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4200 completion_list_add_name \
4201 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4202
4203 /* Test to see if the symbol specified by SYMNAME (which is already
4204 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4205 characters. If so, add it to the current completion list. */
4206
4207 static void
4208 completion_list_add_name (const char *symname,
4209 const char *sym_text, int sym_text_len,
4210 const char *text, const char *word)
4211 {
4212 /* Clip symbols that cannot match. */
4213 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4214 return;
4215
4216 /* We have a match for a completion, so add SYMNAME to the current list
4217 of matches. Note that the name is moved to freshly malloc'd space. */
4218
4219 {
4220 char *new;
4221
4222 if (word == sym_text)
4223 {
4224 new = xmalloc (strlen (symname) + 5);
4225 strcpy (new, symname);
4226 }
4227 else if (word > sym_text)
4228 {
4229 /* Return some portion of symname. */
4230 new = xmalloc (strlen (symname) + 5);
4231 strcpy (new, symname + (word - sym_text));
4232 }
4233 else
4234 {
4235 /* Return some of SYM_TEXT plus symname. */
4236 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4237 strncpy (new, word, sym_text - word);
4238 new[sym_text - word] = '\0';
4239 strcat (new, symname);
4240 }
4241
4242 VEC_safe_push (char_ptr, return_val, new);
4243 }
4244 }
4245
4246 /* ObjC: In case we are completing on a selector, look as the msymbol
4247 again and feed all the selectors into the mill. */
4248
4249 static void
4250 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4251 const char *sym_text, int sym_text_len,
4252 const char *text, const char *word)
4253 {
4254 static char *tmp = NULL;
4255 static unsigned int tmplen = 0;
4256
4257 const char *method, *category, *selector;
4258 char *tmp2 = NULL;
4259
4260 method = MSYMBOL_NATURAL_NAME (msymbol);
4261
4262 /* Is it a method? */
4263 if ((method[0] != '-') && (method[0] != '+'))
4264 return;
4265
4266 if (sym_text[0] == '[')
4267 /* Complete on shortened method method. */
4268 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4269
4270 while ((strlen (method) + 1) >= tmplen)
4271 {
4272 if (tmplen == 0)
4273 tmplen = 1024;
4274 else
4275 tmplen *= 2;
4276 tmp = xrealloc (tmp, tmplen);
4277 }
4278 selector = strchr (method, ' ');
4279 if (selector != NULL)
4280 selector++;
4281
4282 category = strchr (method, '(');
4283
4284 if ((category != NULL) && (selector != NULL))
4285 {
4286 memcpy (tmp, method, (category - method));
4287 tmp[category - method] = ' ';
4288 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4289 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4290 if (sym_text[0] == '[')
4291 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4292 }
4293
4294 if (selector != NULL)
4295 {
4296 /* Complete on selector only. */
4297 strcpy (tmp, selector);
4298 tmp2 = strchr (tmp, ']');
4299 if (tmp2 != NULL)
4300 *tmp2 = '\0';
4301
4302 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4303 }
4304 }
4305
4306 /* Break the non-quoted text based on the characters which are in
4307 symbols. FIXME: This should probably be language-specific. */
4308
4309 static const char *
4310 language_search_unquoted_string (const char *text, const char *p)
4311 {
4312 for (; p > text; --p)
4313 {
4314 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4315 continue;
4316 else
4317 {
4318 if ((current_language->la_language == language_objc))
4319 {
4320 if (p[-1] == ':') /* Might be part of a method name. */
4321 continue;
4322 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4323 p -= 2; /* Beginning of a method name. */
4324 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4325 { /* Might be part of a method name. */
4326 const char *t = p;
4327
4328 /* Seeing a ' ' or a '(' is not conclusive evidence
4329 that we are in the middle of a method name. However,
4330 finding "-[" or "+[" should be pretty un-ambiguous.
4331 Unfortunately we have to find it now to decide. */
4332
4333 while (t > text)
4334 if (isalnum (t[-1]) || t[-1] == '_' ||
4335 t[-1] == ' ' || t[-1] == ':' ||
4336 t[-1] == '(' || t[-1] == ')')
4337 --t;
4338 else
4339 break;
4340
4341 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4342 p = t - 2; /* Method name detected. */
4343 /* Else we leave with p unchanged. */
4344 }
4345 }
4346 break;
4347 }
4348 }
4349 return p;
4350 }
4351
4352 static void
4353 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4354 int sym_text_len, const char *text,
4355 const char *word)
4356 {
4357 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4358 {
4359 struct type *t = SYMBOL_TYPE (sym);
4360 enum type_code c = TYPE_CODE (t);
4361 int j;
4362
4363 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4364 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4365 if (TYPE_FIELD_NAME (t, j))
4366 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4367 sym_text, sym_text_len, text, word);
4368 }
4369 }
4370
4371 /* Type of the user_data argument passed to add_macro_name or
4372 symbol_completion_matcher. The contents are simply whatever is
4373 needed by completion_list_add_name. */
4374 struct add_name_data
4375 {
4376 const char *sym_text;
4377 int sym_text_len;
4378 const char *text;
4379 const char *word;
4380 };
4381
4382 /* A callback used with macro_for_each and macro_for_each_in_scope.
4383 This adds a macro's name to the current completion list. */
4384
4385 static void
4386 add_macro_name (const char *name, const struct macro_definition *ignore,
4387 struct macro_source_file *ignore2, int ignore3,
4388 void *user_data)
4389 {
4390 struct add_name_data *datum = (struct add_name_data *) user_data;
4391
4392 completion_list_add_name (name,
4393 datum->sym_text, datum->sym_text_len,
4394 datum->text, datum->word);
4395 }
4396
4397 /* A callback for expand_symtabs_matching. */
4398
4399 static int
4400 symbol_completion_matcher (const char *name, void *user_data)
4401 {
4402 struct add_name_data *datum = (struct add_name_data *) user_data;
4403
4404 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4405 }
4406
4407 VEC (char_ptr) *
4408 default_make_symbol_completion_list_break_on (const char *text,
4409 const char *word,
4410 const char *break_on,
4411 enum type_code code)
4412 {
4413 /* Problem: All of the symbols have to be copied because readline
4414 frees them. I'm not going to worry about this; hopefully there
4415 won't be that many. */
4416
4417 struct symbol *sym;
4418 struct symtab *s;
4419 struct minimal_symbol *msymbol;
4420 struct objfile *objfile;
4421 const struct block *b;
4422 const struct block *surrounding_static_block, *surrounding_global_block;
4423 struct block_iterator iter;
4424 /* The symbol we are completing on. Points in same buffer as text. */
4425 const char *sym_text;
4426 /* Length of sym_text. */
4427 int sym_text_len;
4428 struct add_name_data datum;
4429 struct cleanup *back_to;
4430
4431 /* Now look for the symbol we are supposed to complete on. */
4432 {
4433 const char *p;
4434 char quote_found;
4435 const char *quote_pos = NULL;
4436
4437 /* First see if this is a quoted string. */
4438 quote_found = '\0';
4439 for (p = text; *p != '\0'; ++p)
4440 {
4441 if (quote_found != '\0')
4442 {
4443 if (*p == quote_found)
4444 /* Found close quote. */
4445 quote_found = '\0';
4446 else if (*p == '\\' && p[1] == quote_found)
4447 /* A backslash followed by the quote character
4448 doesn't end the string. */
4449 ++p;
4450 }
4451 else if (*p == '\'' || *p == '"')
4452 {
4453 quote_found = *p;
4454 quote_pos = p;
4455 }
4456 }
4457 if (quote_found == '\'')
4458 /* A string within single quotes can be a symbol, so complete on it. */
4459 sym_text = quote_pos + 1;
4460 else if (quote_found == '"')
4461 /* A double-quoted string is never a symbol, nor does it make sense
4462 to complete it any other way. */
4463 {
4464 return NULL;
4465 }
4466 else
4467 {
4468 /* It is not a quoted string. Break it based on the characters
4469 which are in symbols. */
4470 while (p > text)
4471 {
4472 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4473 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4474 --p;
4475 else
4476 break;
4477 }
4478 sym_text = p;
4479 }
4480 }
4481
4482 sym_text_len = strlen (sym_text);
4483
4484 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4485
4486 if (current_language->la_language == language_cplus
4487 || current_language->la_language == language_java
4488 || current_language->la_language == language_fortran)
4489 {
4490 /* These languages may have parameters entered by user but they are never
4491 present in the partial symbol tables. */
4492
4493 const char *cs = memchr (sym_text, '(', sym_text_len);
4494
4495 if (cs)
4496 sym_text_len = cs - sym_text;
4497 }
4498 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4499
4500 return_val = NULL;
4501 back_to = make_cleanup (do_free_completion_list, &return_val);
4502
4503 datum.sym_text = sym_text;
4504 datum.sym_text_len = sym_text_len;
4505 datum.text = text;
4506 datum.word = word;
4507
4508 /* Look through the partial symtabs for all symbols which begin
4509 by matching SYM_TEXT. Expand all CUs that you find to the list.
4510 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4511 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4512 &datum);
4513
4514 /* At this point scan through the misc symbol vectors and add each
4515 symbol you find to the list. Eventually we want to ignore
4516 anything that isn't a text symbol (everything else will be
4517 handled by the psymtab code above). */
4518
4519 if (code == TYPE_CODE_UNDEF)
4520 {
4521 ALL_MSYMBOLS (objfile, msymbol)
4522 {
4523 QUIT;
4524 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4525 word);
4526
4527 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4528 word);
4529 }
4530 }
4531
4532 /* Search upwards from currently selected frame (so that we can
4533 complete on local vars). Also catch fields of types defined in
4534 this places which match our text string. Only complete on types
4535 visible from current context. */
4536
4537 b = get_selected_block (0);
4538 surrounding_static_block = block_static_block (b);
4539 surrounding_global_block = block_global_block (b);
4540 if (surrounding_static_block != NULL)
4541 while (b != surrounding_static_block)
4542 {
4543 QUIT;
4544
4545 ALL_BLOCK_SYMBOLS (b, iter, sym)
4546 {
4547 if (code == TYPE_CODE_UNDEF)
4548 {
4549 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4550 word);
4551 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4552 word);
4553 }
4554 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4555 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4556 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4557 word);
4558 }
4559
4560 /* Stop when we encounter an enclosing function. Do not stop for
4561 non-inlined functions - the locals of the enclosing function
4562 are in scope for a nested function. */
4563 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4564 break;
4565 b = BLOCK_SUPERBLOCK (b);
4566 }
4567
4568 /* Add fields from the file's types; symbols will be added below. */
4569
4570 if (code == TYPE_CODE_UNDEF)
4571 {
4572 if (surrounding_static_block != NULL)
4573 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4574 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4575
4576 if (surrounding_global_block != NULL)
4577 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4578 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4579 }
4580
4581 /* Go through the symtabs and check the externs and statics for
4582 symbols which match. */
4583
4584 ALL_PRIMARY_SYMTABS (objfile, s)
4585 {
4586 QUIT;
4587 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4588 ALL_BLOCK_SYMBOLS (b, iter, sym)
4589 {
4590 if (code == TYPE_CODE_UNDEF
4591 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4592 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4593 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4594 }
4595 }
4596
4597 ALL_PRIMARY_SYMTABS (objfile, s)
4598 {
4599 QUIT;
4600 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4601 ALL_BLOCK_SYMBOLS (b, iter, sym)
4602 {
4603 if (code == TYPE_CODE_UNDEF
4604 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4605 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4606 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4607 }
4608 }
4609
4610 /* Skip macros if we are completing a struct tag -- arguable but
4611 usually what is expected. */
4612 if (current_language->la_macro_expansion == macro_expansion_c
4613 && code == TYPE_CODE_UNDEF)
4614 {
4615 struct macro_scope *scope;
4616
4617 /* Add any macros visible in the default scope. Note that this
4618 may yield the occasional wrong result, because an expression
4619 might be evaluated in a scope other than the default. For
4620 example, if the user types "break file:line if <TAB>", the
4621 resulting expression will be evaluated at "file:line" -- but
4622 at there does not seem to be a way to detect this at
4623 completion time. */
4624 scope = default_macro_scope ();
4625 if (scope)
4626 {
4627 macro_for_each_in_scope (scope->file, scope->line,
4628 add_macro_name, &datum);
4629 xfree (scope);
4630 }
4631
4632 /* User-defined macros are always visible. */
4633 macro_for_each (macro_user_macros, add_macro_name, &datum);
4634 }
4635
4636 discard_cleanups (back_to);
4637 return (return_val);
4638 }
4639
4640 VEC (char_ptr) *
4641 default_make_symbol_completion_list (const char *text, const char *word,
4642 enum type_code code)
4643 {
4644 return default_make_symbol_completion_list_break_on (text, word, "", code);
4645 }
4646
4647 /* Return a vector of all symbols (regardless of class) which begin by
4648 matching TEXT. If the answer is no symbols, then the return value
4649 is NULL. */
4650
4651 VEC (char_ptr) *
4652 make_symbol_completion_list (const char *text, const char *word)
4653 {
4654 return current_language->la_make_symbol_completion_list (text, word,
4655 TYPE_CODE_UNDEF);
4656 }
4657
4658 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4659 symbols whose type code is CODE. */
4660
4661 VEC (char_ptr) *
4662 make_symbol_completion_type (const char *text, const char *word,
4663 enum type_code code)
4664 {
4665 gdb_assert (code == TYPE_CODE_UNION
4666 || code == TYPE_CODE_STRUCT
4667 || code == TYPE_CODE_ENUM);
4668 return current_language->la_make_symbol_completion_list (text, word, code);
4669 }
4670
4671 /* Like make_symbol_completion_list, but suitable for use as a
4672 completion function. */
4673
4674 VEC (char_ptr) *
4675 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4676 const char *text, const char *word)
4677 {
4678 return make_symbol_completion_list (text, word);
4679 }
4680
4681 /* Like make_symbol_completion_list, but returns a list of symbols
4682 defined in a source file FILE. */
4683
4684 VEC (char_ptr) *
4685 make_file_symbol_completion_list (const char *text, const char *word,
4686 const char *srcfile)
4687 {
4688 struct symbol *sym;
4689 struct symtab *s;
4690 struct block *b;
4691 struct block_iterator iter;
4692 /* The symbol we are completing on. Points in same buffer as text. */
4693 const char *sym_text;
4694 /* Length of sym_text. */
4695 int sym_text_len;
4696
4697 /* Now look for the symbol we are supposed to complete on.
4698 FIXME: This should be language-specific. */
4699 {
4700 const char *p;
4701 char quote_found;
4702 const char *quote_pos = NULL;
4703
4704 /* First see if this is a quoted string. */
4705 quote_found = '\0';
4706 for (p = text; *p != '\0'; ++p)
4707 {
4708 if (quote_found != '\0')
4709 {
4710 if (*p == quote_found)
4711 /* Found close quote. */
4712 quote_found = '\0';
4713 else if (*p == '\\' && p[1] == quote_found)
4714 /* A backslash followed by the quote character
4715 doesn't end the string. */
4716 ++p;
4717 }
4718 else if (*p == '\'' || *p == '"')
4719 {
4720 quote_found = *p;
4721 quote_pos = p;
4722 }
4723 }
4724 if (quote_found == '\'')
4725 /* A string within single quotes can be a symbol, so complete on it. */
4726 sym_text = quote_pos + 1;
4727 else if (quote_found == '"')
4728 /* A double-quoted string is never a symbol, nor does it make sense
4729 to complete it any other way. */
4730 {
4731 return NULL;
4732 }
4733 else
4734 {
4735 /* Not a quoted string. */
4736 sym_text = language_search_unquoted_string (text, p);
4737 }
4738 }
4739
4740 sym_text_len = strlen (sym_text);
4741
4742 return_val = NULL;
4743
4744 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4745 in). */
4746 s = lookup_symtab (srcfile);
4747 if (s == NULL)
4748 {
4749 /* Maybe they typed the file with leading directories, while the
4750 symbol tables record only its basename. */
4751 const char *tail = lbasename (srcfile);
4752
4753 if (tail > srcfile)
4754 s = lookup_symtab (tail);
4755 }
4756
4757 /* If we have no symtab for that file, return an empty list. */
4758 if (s == NULL)
4759 return (return_val);
4760
4761 /* Go through this symtab and check the externs and statics for
4762 symbols which match. */
4763
4764 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4765 ALL_BLOCK_SYMBOLS (b, iter, sym)
4766 {
4767 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4768 }
4769
4770 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4771 ALL_BLOCK_SYMBOLS (b, iter, sym)
4772 {
4773 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4774 }
4775
4776 return (return_val);
4777 }
4778
4779 /* A helper function for make_source_files_completion_list. It adds
4780 another file name to a list of possible completions, growing the
4781 list as necessary. */
4782
4783 static void
4784 add_filename_to_list (const char *fname, const char *text, const char *word,
4785 VEC (char_ptr) **list)
4786 {
4787 char *new;
4788 size_t fnlen = strlen (fname);
4789
4790 if (word == text)
4791 {
4792 /* Return exactly fname. */
4793 new = xmalloc (fnlen + 5);
4794 strcpy (new, fname);
4795 }
4796 else if (word > text)
4797 {
4798 /* Return some portion of fname. */
4799 new = xmalloc (fnlen + 5);
4800 strcpy (new, fname + (word - text));
4801 }
4802 else
4803 {
4804 /* Return some of TEXT plus fname. */
4805 new = xmalloc (fnlen + (text - word) + 5);
4806 strncpy (new, word, text - word);
4807 new[text - word] = '\0';
4808 strcat (new, fname);
4809 }
4810 VEC_safe_push (char_ptr, *list, new);
4811 }
4812
4813 static int
4814 not_interesting_fname (const char *fname)
4815 {
4816 static const char *illegal_aliens[] = {
4817 "_globals_", /* inserted by coff_symtab_read */
4818 NULL
4819 };
4820 int i;
4821
4822 for (i = 0; illegal_aliens[i]; i++)
4823 {
4824 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4825 return 1;
4826 }
4827 return 0;
4828 }
4829
4830 /* An object of this type is passed as the user_data argument to
4831 map_partial_symbol_filenames. */
4832 struct add_partial_filename_data
4833 {
4834 struct filename_seen_cache *filename_seen_cache;
4835 const char *text;
4836 const char *word;
4837 int text_len;
4838 VEC (char_ptr) **list;
4839 };
4840
4841 /* A callback for map_partial_symbol_filenames. */
4842
4843 static void
4844 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4845 void *user_data)
4846 {
4847 struct add_partial_filename_data *data = user_data;
4848
4849 if (not_interesting_fname (filename))
4850 return;
4851 if (!filename_seen (data->filename_seen_cache, filename, 1)
4852 && filename_ncmp (filename, data->text, data->text_len) == 0)
4853 {
4854 /* This file matches for a completion; add it to the
4855 current list of matches. */
4856 add_filename_to_list (filename, data->text, data->word, data->list);
4857 }
4858 else
4859 {
4860 const char *base_name = lbasename (filename);
4861
4862 if (base_name != filename
4863 && !filename_seen (data->filename_seen_cache, base_name, 1)
4864 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4865 add_filename_to_list (base_name, data->text, data->word, data->list);
4866 }
4867 }
4868
4869 /* Return a vector of all source files whose names begin with matching
4870 TEXT. The file names are looked up in the symbol tables of this
4871 program. If the answer is no matchess, then the return value is
4872 NULL. */
4873
4874 VEC (char_ptr) *
4875 make_source_files_completion_list (const char *text, const char *word)
4876 {
4877 struct symtab *s;
4878 struct objfile *objfile;
4879 size_t text_len = strlen (text);
4880 VEC (char_ptr) *list = NULL;
4881 const char *base_name;
4882 struct add_partial_filename_data datum;
4883 struct filename_seen_cache *filename_seen_cache;
4884 struct cleanup *back_to, *cache_cleanup;
4885
4886 if (!have_full_symbols () && !have_partial_symbols ())
4887 return list;
4888
4889 back_to = make_cleanup (do_free_completion_list, &list);
4890
4891 filename_seen_cache = create_filename_seen_cache ();
4892 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4893 filename_seen_cache);
4894
4895 ALL_SYMTABS (objfile, s)
4896 {
4897 if (not_interesting_fname (s->filename))
4898 continue;
4899 if (!filename_seen (filename_seen_cache, s->filename, 1)
4900 && filename_ncmp (s->filename, text, text_len) == 0)
4901 {
4902 /* This file matches for a completion; add it to the current
4903 list of matches. */
4904 add_filename_to_list (s->filename, text, word, &list);
4905 }
4906 else
4907 {
4908 /* NOTE: We allow the user to type a base name when the
4909 debug info records leading directories, but not the other
4910 way around. This is what subroutines of breakpoint
4911 command do when they parse file names. */
4912 base_name = lbasename (s->filename);
4913 if (base_name != s->filename
4914 && !filename_seen (filename_seen_cache, base_name, 1)
4915 && filename_ncmp (base_name, text, text_len) == 0)
4916 add_filename_to_list (base_name, text, word, &list);
4917 }
4918 }
4919
4920 datum.filename_seen_cache = filename_seen_cache;
4921 datum.text = text;
4922 datum.word = word;
4923 datum.text_len = text_len;
4924 datum.list = &list;
4925 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4926 0 /*need_fullname*/);
4927
4928 do_cleanups (cache_cleanup);
4929 discard_cleanups (back_to);
4930
4931 return list;
4932 }
4933 \f
4934 /* Track MAIN */
4935
4936 /* Return the "main_info" object for the current program space. If
4937 the object has not yet been created, create it and fill in some
4938 default values. */
4939
4940 static struct main_info *
4941 get_main_info (void)
4942 {
4943 struct main_info *info = program_space_data (current_program_space,
4944 main_progspace_key);
4945
4946 if (info == NULL)
4947 {
4948 /* It may seem strange to store the main name in the progspace
4949 and also in whatever objfile happens to see a main name in
4950 its debug info. The reason for this is mainly historical:
4951 gdb returned "main" as the name even if no function named
4952 "main" was defined the program; and this approach lets us
4953 keep compatibility. */
4954 info = XCNEW (struct main_info);
4955 info->language_of_main = language_unknown;
4956 set_program_space_data (current_program_space, main_progspace_key,
4957 info);
4958 }
4959
4960 return info;
4961 }
4962
4963 /* A cleanup to destroy a struct main_info when a progspace is
4964 destroyed. */
4965
4966 static void
4967 main_info_cleanup (struct program_space *pspace, void *data)
4968 {
4969 struct main_info *info = data;
4970
4971 if (info != NULL)
4972 xfree (info->name_of_main);
4973 xfree (info);
4974 }
4975
4976 static void
4977 set_main_name (const char *name, enum language lang)
4978 {
4979 struct main_info *info = get_main_info ();
4980
4981 if (info->name_of_main != NULL)
4982 {
4983 xfree (info->name_of_main);
4984 info->name_of_main = NULL;
4985 info->language_of_main = language_unknown;
4986 }
4987 if (name != NULL)
4988 {
4989 info->name_of_main = xstrdup (name);
4990 info->language_of_main = lang;
4991 }
4992 }
4993
4994 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4995 accordingly. */
4996
4997 static void
4998 find_main_name (void)
4999 {
5000 const char *new_main_name;
5001 struct objfile *objfile;
5002
5003 /* First check the objfiles to see whether a debuginfo reader has
5004 picked up the appropriate main name. Historically the main name
5005 was found in a more or less random way; this approach instead
5006 relies on the order of objfile creation -- which still isn't
5007 guaranteed to get the correct answer, but is just probably more
5008 accurate. */
5009 ALL_OBJFILES (objfile)
5010 {
5011 if (objfile->per_bfd->name_of_main != NULL)
5012 {
5013 set_main_name (objfile->per_bfd->name_of_main,
5014 objfile->per_bfd->language_of_main);
5015 return;
5016 }
5017 }
5018
5019 /* Try to see if the main procedure is in Ada. */
5020 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5021 be to add a new method in the language vector, and call this
5022 method for each language until one of them returns a non-empty
5023 name. This would allow us to remove this hard-coded call to
5024 an Ada function. It is not clear that this is a better approach
5025 at this point, because all methods need to be written in a way
5026 such that false positives never be returned. For instance, it is
5027 important that a method does not return a wrong name for the main
5028 procedure if the main procedure is actually written in a different
5029 language. It is easy to guaranty this with Ada, since we use a
5030 special symbol generated only when the main in Ada to find the name
5031 of the main procedure. It is difficult however to see how this can
5032 be guarantied for languages such as C, for instance. This suggests
5033 that order of call for these methods becomes important, which means
5034 a more complicated approach. */
5035 new_main_name = ada_main_name ();
5036 if (new_main_name != NULL)
5037 {
5038 set_main_name (new_main_name, language_ada);
5039 return;
5040 }
5041
5042 new_main_name = d_main_name ();
5043 if (new_main_name != NULL)
5044 {
5045 set_main_name (new_main_name, language_d);
5046 return;
5047 }
5048
5049 new_main_name = go_main_name ();
5050 if (new_main_name != NULL)
5051 {
5052 set_main_name (new_main_name, language_go);
5053 return;
5054 }
5055
5056 new_main_name = pascal_main_name ();
5057 if (new_main_name != NULL)
5058 {
5059 set_main_name (new_main_name, language_pascal);
5060 return;
5061 }
5062
5063 /* The languages above didn't identify the name of the main procedure.
5064 Fallback to "main". */
5065 set_main_name ("main", language_unknown);
5066 }
5067
5068 char *
5069 main_name (void)
5070 {
5071 struct main_info *info = get_main_info ();
5072
5073 if (info->name_of_main == NULL)
5074 find_main_name ();
5075
5076 return info->name_of_main;
5077 }
5078
5079 /* Return the language of the main function. If it is not known,
5080 return language_unknown. */
5081
5082 enum language
5083 main_language (void)
5084 {
5085 struct main_info *info = get_main_info ();
5086
5087 if (info->name_of_main == NULL)
5088 find_main_name ();
5089
5090 return info->language_of_main;
5091 }
5092
5093 /* Handle ``executable_changed'' events for the symtab module. */
5094
5095 static void
5096 symtab_observer_executable_changed (void)
5097 {
5098 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5099 set_main_name (NULL, language_unknown);
5100 }
5101
5102 /* Return 1 if the supplied producer string matches the ARM RealView
5103 compiler (armcc). */
5104
5105 int
5106 producer_is_realview (const char *producer)
5107 {
5108 static const char *const arm_idents[] = {
5109 "ARM C Compiler, ADS",
5110 "Thumb C Compiler, ADS",
5111 "ARM C++ Compiler, ADS",
5112 "Thumb C++ Compiler, ADS",
5113 "ARM/Thumb C/C++ Compiler, RVCT",
5114 "ARM C/C++ Compiler, RVCT"
5115 };
5116 int i;
5117
5118 if (producer == NULL)
5119 return 0;
5120
5121 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5122 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5123 return 1;
5124
5125 return 0;
5126 }
5127
5128 \f
5129
5130 /* The next index to hand out in response to a registration request. */
5131
5132 static int next_aclass_value = LOC_FINAL_VALUE;
5133
5134 /* The maximum number of "aclass" registrations we support. This is
5135 constant for convenience. */
5136 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5137
5138 /* The objects representing the various "aclass" values. The elements
5139 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5140 elements are those registered at gdb initialization time. */
5141
5142 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5143
5144 /* The globally visible pointer. This is separate from 'symbol_impl'
5145 so that it can be const. */
5146
5147 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5148
5149 /* Make sure we saved enough room in struct symbol. */
5150
5151 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5152
5153 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5154 is the ops vector associated with this index. This returns the new
5155 index, which should be used as the aclass_index field for symbols
5156 of this type. */
5157
5158 int
5159 register_symbol_computed_impl (enum address_class aclass,
5160 const struct symbol_computed_ops *ops)
5161 {
5162 int result = next_aclass_value++;
5163
5164 gdb_assert (aclass == LOC_COMPUTED);
5165 gdb_assert (result < MAX_SYMBOL_IMPLS);
5166 symbol_impl[result].aclass = aclass;
5167 symbol_impl[result].ops_computed = ops;
5168
5169 /* Sanity check OPS. */
5170 gdb_assert (ops != NULL);
5171 gdb_assert (ops->tracepoint_var_ref != NULL);
5172 gdb_assert (ops->describe_location != NULL);
5173 gdb_assert (ops->read_needs_frame != NULL);
5174 gdb_assert (ops->read_variable != NULL);
5175
5176 return result;
5177 }
5178
5179 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5180 OPS is the ops vector associated with this index. This returns the
5181 new index, which should be used as the aclass_index field for symbols
5182 of this type. */
5183
5184 int
5185 register_symbol_block_impl (enum address_class aclass,
5186 const struct symbol_block_ops *ops)
5187 {
5188 int result = next_aclass_value++;
5189
5190 gdb_assert (aclass == LOC_BLOCK);
5191 gdb_assert (result < MAX_SYMBOL_IMPLS);
5192 symbol_impl[result].aclass = aclass;
5193 symbol_impl[result].ops_block = ops;
5194
5195 /* Sanity check OPS. */
5196 gdb_assert (ops != NULL);
5197 gdb_assert (ops->find_frame_base_location != NULL);
5198
5199 return result;
5200 }
5201
5202 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5203 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5204 this index. This returns the new index, which should be used as
5205 the aclass_index field for symbols of this type. */
5206
5207 int
5208 register_symbol_register_impl (enum address_class aclass,
5209 const struct symbol_register_ops *ops)
5210 {
5211 int result = next_aclass_value++;
5212
5213 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5214 gdb_assert (result < MAX_SYMBOL_IMPLS);
5215 symbol_impl[result].aclass = aclass;
5216 symbol_impl[result].ops_register = ops;
5217
5218 return result;
5219 }
5220
5221 /* Initialize elements of 'symbol_impl' for the constants in enum
5222 address_class. */
5223
5224 static void
5225 initialize_ordinary_address_classes (void)
5226 {
5227 int i;
5228
5229 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5230 symbol_impl[i].aclass = i;
5231 }
5232
5233 \f
5234
5235 /* Initialize the symbol SYM. */
5236
5237 void
5238 initialize_symbol (struct symbol *sym)
5239 {
5240 memset (sym, 0, sizeof (*sym));
5241 SYMBOL_SECTION (sym) = -1;
5242 }
5243
5244 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5245 obstack. */
5246
5247 struct symbol *
5248 allocate_symbol (struct objfile *objfile)
5249 {
5250 struct symbol *result;
5251
5252 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5253 SYMBOL_SECTION (result) = -1;
5254
5255 return result;
5256 }
5257
5258 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5259 obstack. */
5260
5261 struct template_symbol *
5262 allocate_template_symbol (struct objfile *objfile)
5263 {
5264 struct template_symbol *result;
5265
5266 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5267 SYMBOL_SECTION (&result->base) = -1;
5268
5269 return result;
5270 }
5271
5272 \f
5273
5274 void
5275 _initialize_symtab (void)
5276 {
5277 initialize_ordinary_address_classes ();
5278
5279 main_progspace_key
5280 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5281
5282 add_info ("variables", variables_info, _("\
5283 All global and static variable names, or those matching REGEXP."));
5284 if (dbx_commands)
5285 add_com ("whereis", class_info, variables_info, _("\
5286 All global and static variable names, or those matching REGEXP."));
5287
5288 add_info ("functions", functions_info,
5289 _("All function names, or those matching REGEXP."));
5290
5291 /* FIXME: This command has at least the following problems:
5292 1. It prints builtin types (in a very strange and confusing fashion).
5293 2. It doesn't print right, e.g. with
5294 typedef struct foo *FOO
5295 type_print prints "FOO" when we want to make it (in this situation)
5296 print "struct foo *".
5297 I also think "ptype" or "whatis" is more likely to be useful (but if
5298 there is much disagreement "info types" can be fixed). */
5299 add_info ("types", types_info,
5300 _("All type names, or those matching REGEXP."));
5301
5302 add_info ("sources", sources_info,
5303 _("Source files in the program."));
5304
5305 add_com ("rbreak", class_breakpoint, rbreak_command,
5306 _("Set a breakpoint for all functions matching REGEXP."));
5307
5308 if (xdb_commands)
5309 {
5310 add_com ("lf", class_info, sources_info,
5311 _("Source files in the program"));
5312 add_com ("lg", class_info, variables_info, _("\
5313 All global and static variable names, or those matching REGEXP."));
5314 }
5315
5316 add_setshow_enum_cmd ("multiple-symbols", no_class,
5317 multiple_symbols_modes, &multiple_symbols_mode,
5318 _("\
5319 Set the debugger behavior when more than one symbol are possible matches\n\
5320 in an expression."), _("\
5321 Show how the debugger handles ambiguities in expressions."), _("\
5322 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5323 NULL, NULL, &setlist, &showlist);
5324
5325 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5326 &basenames_may_differ, _("\
5327 Set whether a source file may have multiple base names."), _("\
5328 Show whether a source file may have multiple base names."), _("\
5329 (A \"base name\" is the name of a file with the directory part removed.\n\
5330 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5331 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5332 before comparing them. Canonicalization is an expensive operation,\n\
5333 but it allows the same file be known by more than one base name.\n\
5334 If not set (the default), all source files are assumed to have just\n\
5335 one base name, and gdb will do file name comparisons more efficiently."),
5336 NULL, NULL,
5337 &setlist, &showlist);
5338
5339 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5340 _("Set debugging of symbol table creation."),
5341 _("Show debugging of symbol table creation."), _("\
5342 When enabled (non-zero), debugging messages are printed when building\n\
5343 symbol tables. A value of 1 (one) normally provides enough information.\n\
5344 A value greater than 1 provides more verbose information."),
5345 NULL,
5346 NULL,
5347 &setdebuglist, &showdebuglist);
5348
5349 observer_attach_executable_changed (symtab_observer_executable_changed);
5350 }