[gdb/symtab] Fix language of frame without debug info
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = language_def (gsymbol->language ())->get_symbol_name_matcher (name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->name_of_this () == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->name (), host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->name_of_this (),
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->name_of_this ());
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->lookup_symbol_nonlocal (name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See language.h. */
2405
2406 struct block_symbol
2407 language_defn::lookup_symbol_nonlocal (const char *name,
2408 const struct block *block,
2409 const domain_enum domain) const
2410 {
2411 struct block_symbol result;
2412
2413 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2414 the current objfile. Searching the current objfile first is useful
2415 for both matching user expectations as well as performance. */
2416
2417 result = lookup_symbol_in_static_block (name, block, domain);
2418 if (result.symbol != NULL)
2419 return result;
2420
2421 /* If we didn't find a definition for a builtin type in the static block,
2422 search for it now. This is actually the right thing to do and can be
2423 a massive performance win. E.g., when debugging a program with lots of
2424 shared libraries we could search all of them only to find out the
2425 builtin type isn't defined in any of them. This is common for types
2426 like "void". */
2427 if (domain == VAR_DOMAIN)
2428 {
2429 struct gdbarch *gdbarch;
2430
2431 if (block == NULL)
2432 gdbarch = target_gdbarch ();
2433 else
2434 gdbarch = block_gdbarch (block);
2435 result.symbol = language_lookup_primitive_type_as_symbol (this,
2436 gdbarch, name);
2437 result.block = NULL;
2438 if (result.symbol != NULL)
2439 return result;
2440 }
2441
2442 return lookup_global_symbol (name, block, domain);
2443 }
2444
2445 /* See symtab.h. */
2446
2447 struct block_symbol
2448 lookup_symbol_in_static_block (const char *name,
2449 const struct block *block,
2450 const domain_enum domain)
2451 {
2452 const struct block *static_block = block_static_block (block);
2453 struct symbol *sym;
2454
2455 if (static_block == NULL)
2456 return {};
2457
2458 if (symbol_lookup_debug)
2459 {
2460 struct objfile *objfile = (block == nullptr
2461 ? nullptr : block_objfile (block));
2462
2463 fprintf_unfiltered (gdb_stdlog,
2464 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2465 " %s)\n",
2466 name,
2467 host_address_to_string (block),
2468 objfile_debug_name (objfile),
2469 domain_name (domain));
2470 }
2471
2472 sym = lookup_symbol_in_block (name,
2473 symbol_name_match_type::FULL,
2474 static_block, domain);
2475 if (symbol_lookup_debug)
2476 {
2477 fprintf_unfiltered (gdb_stdlog,
2478 "lookup_symbol_in_static_block (...) = %s\n",
2479 sym != NULL ? host_address_to_string (sym) : "NULL");
2480 }
2481 return (struct block_symbol) {sym, static_block};
2482 }
2483
2484 /* Perform the standard symbol lookup of NAME in OBJFILE:
2485 1) First search expanded symtabs, and if not found
2486 2) Search the "quick" symtabs (partial or .gdb_index).
2487 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2488
2489 static struct block_symbol
2490 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2491 const char *name, const domain_enum domain)
2492 {
2493 struct block_symbol result;
2494
2495 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2496
2497 if (symbol_lookup_debug)
2498 {
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2501 objfile_debug_name (objfile),
2502 block_index == GLOBAL_BLOCK
2503 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2504 name, domain_name (domain));
2505 }
2506
2507 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2508 name, domain);
2509 if (result.symbol != NULL)
2510 {
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_objfile (...) = %s"
2515 " (in symtabs)\n",
2516 host_address_to_string (result.symbol));
2517 }
2518 return result;
2519 }
2520
2521 result = lookup_symbol_via_quick_fns (objfile, block_index,
2522 name, domain);
2523 if (symbol_lookup_debug)
2524 {
2525 fprintf_unfiltered (gdb_stdlog,
2526 "lookup_symbol_in_objfile (...) = %s%s\n",
2527 result.symbol != NULL
2528 ? host_address_to_string (result.symbol)
2529 : "NULL",
2530 result.symbol != NULL ? " (via quick fns)" : "");
2531 }
2532 return result;
2533 }
2534
2535 /* Find the language for partial symbol with NAME. */
2536
2537 static enum language
2538 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2539 {
2540 for (objfile *objfile : current_program_space->objfiles ())
2541 {
2542 if (objfile->sf && objfile->sf->qf
2543 && objfile->sf->qf->lookup_global_symbol_language)
2544 continue;
2545 return language_unknown;
2546 }
2547
2548 for (objfile *objfile : current_program_space->objfiles ())
2549 {
2550 bool symbol_found_p;
2551 enum language lang
2552 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2553 &symbol_found_p);
2554 if (!symbol_found_p)
2555 continue;
2556 return lang;
2557 }
2558
2559 return language_unknown;
2560 }
2561
2562 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2563
2564 struct global_or_static_sym_lookup_data
2565 {
2566 /* The name of the symbol we are searching for. */
2567 const char *name;
2568
2569 /* The domain to use for our search. */
2570 domain_enum domain;
2571
2572 /* The block index in which to search. */
2573 enum block_enum block_index;
2574
2575 /* The field where the callback should store the symbol if found.
2576 It should be initialized to {NULL, NULL} before the search is started. */
2577 struct block_symbol result;
2578 };
2579
2580 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2581 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2582 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2583 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2584
2585 static int
2586 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2587 void *cb_data)
2588 {
2589 struct global_or_static_sym_lookup_data *data =
2590 (struct global_or_static_sym_lookup_data *) cb_data;
2591
2592 gdb_assert (data->result.symbol == NULL
2593 && data->result.block == NULL);
2594
2595 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2596 data->name, data->domain);
2597
2598 /* If we found a match, tell the iterator to stop. Otherwise,
2599 keep going. */
2600 return (data->result.symbol != NULL);
2601 }
2602
2603 /* This function contains the common code of lookup_{global,static}_symbol.
2604 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2605 the objfile to start the lookup in. */
2606
2607 static struct block_symbol
2608 lookup_global_or_static_symbol (const char *name,
2609 enum block_enum block_index,
2610 struct objfile *objfile,
2611 const domain_enum domain)
2612 {
2613 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2614 struct block_symbol result;
2615 struct global_or_static_sym_lookup_data lookup_data;
2616 struct block_symbol_cache *bsc;
2617 struct symbol_cache_slot *slot;
2618
2619 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2620 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2621
2622 /* First see if we can find the symbol in the cache.
2623 This works because we use the current objfile to qualify the lookup. */
2624 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2625 &bsc, &slot);
2626 if (result.symbol != NULL)
2627 {
2628 if (SYMBOL_LOOKUP_FAILED_P (result))
2629 return {};
2630 return result;
2631 }
2632
2633 /* Do a global search (of global blocks, heh). */
2634 if (result.symbol == NULL)
2635 {
2636 memset (&lookup_data, 0, sizeof (lookup_data));
2637 lookup_data.name = name;
2638 lookup_data.block_index = block_index;
2639 lookup_data.domain = domain;
2640 gdbarch_iterate_over_objfiles_in_search_order
2641 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2642 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2643 result = lookup_data.result;
2644 }
2645
2646 if (result.symbol != NULL)
2647 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2648 else
2649 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2650
2651 return result;
2652 }
2653
2654 /* See symtab.h. */
2655
2656 struct block_symbol
2657 lookup_static_symbol (const char *name, const domain_enum domain)
2658 {
2659 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_global_symbol (const char *name,
2666 const struct block *block,
2667 const domain_enum domain)
2668 {
2669 /* If a block was passed in, we want to search the corresponding
2670 global block first. This yields "more expected" behavior, and is
2671 needed to support 'FILENAME'::VARIABLE lookups. */
2672 const struct block *global_block = block_global_block (block);
2673 symbol *sym = NULL;
2674 if (global_block != nullptr)
2675 {
2676 sym = lookup_symbol_in_block (name,
2677 symbol_name_match_type::FULL,
2678 global_block, domain);
2679 if (sym != NULL && best_symbol (sym, domain))
2680 return { sym, global_block };
2681 }
2682
2683 struct objfile *objfile = nullptr;
2684 if (block != nullptr)
2685 {
2686 objfile = block_objfile (block);
2687 if (objfile->separate_debug_objfile_backlink != nullptr)
2688 objfile = objfile->separate_debug_objfile_backlink;
2689 }
2690
2691 block_symbol bs
2692 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 if (better_symbol (sym, bs.symbol, domain) == sym)
2694 return { sym, global_block };
2695 else
2696 return bs;
2697 }
2698
2699 bool
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return true;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile,
2732 enum block_enum block_index,
2733 const char *name)
2734 {
2735 struct compunit_symtab *cust;
2736 const struct blockvector *bv;
2737 const struct block *block;
2738 struct symbol *sym;
2739
2740 if (!objfile->sf)
2741 return NULL;
2742 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2743 STRUCT_DOMAIN);
2744 if (cust == NULL)
2745 return NULL;
2746
2747 bv = COMPUNIT_BLOCKVECTOR (cust);
2748 block = BLOCKVECTOR_BLOCK (bv, block_index);
2749 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2750 block_find_non_opaque_type, NULL);
2751 if (sym == NULL)
2752 error_in_psymtab_expansion (block_index, name, cust);
2753 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2754 return SYMBOL_TYPE (sym);
2755 }
2756
2757 /* Subroutine of basic_lookup_transparent_type to simplify it.
2758 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2759 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2760
2761 static struct type *
2762 basic_lookup_transparent_type_1 (struct objfile *objfile,
2763 enum block_enum block_index,
2764 const char *name)
2765 {
2766 const struct blockvector *bv;
2767 const struct block *block;
2768 const struct symbol *sym;
2769
2770 for (compunit_symtab *cust : objfile->compunits ())
2771 {
2772 bv = COMPUNIT_BLOCKVECTOR (cust);
2773 block = BLOCKVECTOR_BLOCK (bv, block_index);
2774 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2775 block_find_non_opaque_type, NULL);
2776 if (sym != NULL)
2777 {
2778 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2779 return SYMBOL_TYPE (sym);
2780 }
2781 }
2782
2783 return NULL;
2784 }
2785
2786 /* The standard implementation of lookup_transparent_type. This code
2787 was modeled on lookup_symbol -- the parts not relevant to looking
2788 up types were just left out. In particular it's assumed here that
2789 types are available in STRUCT_DOMAIN and only in file-static or
2790 global blocks. */
2791
2792 struct type *
2793 basic_lookup_transparent_type (const char *name)
2794 {
2795 struct type *t;
2796
2797 /* Now search all the global symbols. Do the symtab's first, then
2798 check the psymtab's. If a psymtab indicates the existence
2799 of the desired name as a global, then do psymtab-to-symtab
2800 conversion on the fly and return the found symbol. */
2801
2802 for (objfile *objfile : current_program_space->objfiles ())
2803 {
2804 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2805 if (t)
2806 return t;
2807 }
2808
2809 for (objfile *objfile : current_program_space->objfiles ())
2810 {
2811 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2812 if (t)
2813 return t;
2814 }
2815
2816 /* Now search the static file-level symbols.
2817 Not strictly correct, but more useful than an error.
2818 Do the symtab's first, then
2819 check the psymtab's. If a psymtab indicates the existence
2820 of the desired name as a file-level static, then do psymtab-to-symtab
2821 conversion on the fly and return the found symbol. */
2822
2823 for (objfile *objfile : current_program_space->objfiles ())
2824 {
2825 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2826 if (t)
2827 return t;
2828 }
2829
2830 for (objfile *objfile : current_program_space->objfiles ())
2831 {
2832 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2833 if (t)
2834 return t;
2835 }
2836
2837 return (struct type *) 0;
2838 }
2839
2840 /* See symtab.h. */
2841
2842 bool
2843 iterate_over_symbols (const struct block *block,
2844 const lookup_name_info &name,
2845 const domain_enum domain,
2846 gdb::function_view<symbol_found_callback_ftype> callback)
2847 {
2848 struct block_iterator iter;
2849 struct symbol *sym;
2850
2851 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2852 {
2853 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2854 {
2855 struct block_symbol block_sym = {sym, block};
2856
2857 if (!callback (&block_sym))
2858 return false;
2859 }
2860 }
2861 return true;
2862 }
2863
2864 /* See symtab.h. */
2865
2866 bool
2867 iterate_over_symbols_terminated
2868 (const struct block *block,
2869 const lookup_name_info &name,
2870 const domain_enum domain,
2871 gdb::function_view<symbol_found_callback_ftype> callback)
2872 {
2873 if (!iterate_over_symbols (block, name, domain, callback))
2874 return false;
2875 struct block_symbol block_sym = {nullptr, block};
2876 return callback (&block_sym);
2877 }
2878
2879 /* Find the compunit symtab associated with PC and SECTION.
2880 This will read in debug info as necessary. */
2881
2882 struct compunit_symtab *
2883 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2884 {
2885 struct compunit_symtab *best_cust = NULL;
2886 CORE_ADDR best_cust_range = 0;
2887 struct bound_minimal_symbol msymbol;
2888
2889 /* If we know that this is not a text address, return failure. This is
2890 necessary because we loop based on the block's high and low code
2891 addresses, which do not include the data ranges, and because
2892 we call find_pc_sect_psymtab which has a similar restriction based
2893 on the partial_symtab's texthigh and textlow. */
2894 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2895 if (msymbol.minsym && msymbol.minsym->data_p ())
2896 return NULL;
2897
2898 /* Search all symtabs for the one whose file contains our address, and which
2899 is the smallest of all the ones containing the address. This is designed
2900 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2901 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2902 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2903
2904 This happens for native ecoff format, where code from included files
2905 gets its own symtab. The symtab for the included file should have
2906 been read in already via the dependency mechanism.
2907 It might be swifter to create several symtabs with the same name
2908 like xcoff does (I'm not sure).
2909
2910 It also happens for objfiles that have their functions reordered.
2911 For these, the symtab we are looking for is not necessarily read in. */
2912
2913 for (objfile *obj_file : current_program_space->objfiles ())
2914 {
2915 for (compunit_symtab *cust : obj_file->compunits ())
2916 {
2917 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
2918 const struct block *global_block
2919 = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2920 CORE_ADDR start = BLOCK_START (global_block);
2921 CORE_ADDR end = BLOCK_END (global_block);
2922 bool in_range_p = start <= pc && pc < end;
2923 if (!in_range_p)
2924 continue;
2925
2926 if (BLOCKVECTOR_MAP (bv))
2927 {
2928 if (addrmap_find (BLOCKVECTOR_MAP (bv), pc) == nullptr)
2929 continue;
2930
2931 return cust;
2932 }
2933
2934 CORE_ADDR range = end - start;
2935 if (best_cust != nullptr
2936 && range >= best_cust_range)
2937 /* Cust doesn't have a smaller range than best_cust, skip it. */
2938 continue;
2939
2940 /* For an objfile that has its functions reordered,
2941 find_pc_psymtab will find the proper partial symbol table
2942 and we simply return its corresponding symtab. */
2943 /* In order to better support objfiles that contain both
2944 stabs and coff debugging info, we continue on if a psymtab
2945 can't be found. */
2946 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2947 {
2948 struct compunit_symtab *result;
2949
2950 result
2951 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2952 msymbol,
2953 pc,
2954 section,
2955 0);
2956 if (result != NULL)
2957 return result;
2958 }
2959
2960 if (section != 0)
2961 {
2962 struct symbol *sym = NULL;
2963 struct block_iterator iter;
2964
2965 for (int b_index = GLOBAL_BLOCK;
2966 b_index <= STATIC_BLOCK && sym == NULL;
2967 ++b_index)
2968 {
2969 const struct block *b = BLOCKVECTOR_BLOCK (bv, b_index);
2970 ALL_BLOCK_SYMBOLS (b, iter, sym)
2971 {
2972 fixup_symbol_section (sym, obj_file);
2973 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2974 sym),
2975 section))
2976 break;
2977 }
2978 }
2979 if (sym == NULL)
2980 continue; /* No symbol in this symtab matches
2981 section. */
2982 }
2983
2984 /* Cust is best found sofar, save it. */
2985 best_cust = cust;
2986 best_cust_range = range;
2987 }
2988 }
2989
2990 if (best_cust != NULL)
2991 return best_cust;
2992
2993 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2994
2995 for (objfile *objf : current_program_space->objfiles ())
2996 {
2997 struct compunit_symtab *result;
2998
2999 if (!objf->sf)
3000 continue;
3001 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
3002 msymbol,
3003 pc, section,
3004 1);
3005 if (result != NULL)
3006 return result;
3007 }
3008
3009 return NULL;
3010 }
3011
3012 /* Find the compunit symtab associated with PC.
3013 This will read in debug info as necessary.
3014 Backward compatibility, no section. */
3015
3016 struct compunit_symtab *
3017 find_pc_compunit_symtab (CORE_ADDR pc)
3018 {
3019 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3020 }
3021
3022 /* See symtab.h. */
3023
3024 struct symbol *
3025 find_symbol_at_address (CORE_ADDR address)
3026 {
3027 for (objfile *objfile : current_program_space->objfiles ())
3028 {
3029 if (objfile->sf == NULL
3030 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3031 continue;
3032
3033 struct compunit_symtab *symtab
3034 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3035 if (symtab != NULL)
3036 {
3037 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3038
3039 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3040 {
3041 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3042 struct block_iterator iter;
3043 struct symbol *sym;
3044
3045 ALL_BLOCK_SYMBOLS (b, iter, sym)
3046 {
3047 if (SYMBOL_CLASS (sym) == LOC_STATIC
3048 && SYMBOL_VALUE_ADDRESS (sym) == address)
3049 return sym;
3050 }
3051 }
3052 }
3053 }
3054
3055 return NULL;
3056 }
3057
3058 \f
3059
3060 /* Find the source file and line number for a given PC value and SECTION.
3061 Return a structure containing a symtab pointer, a line number,
3062 and a pc range for the entire source line.
3063 The value's .pc field is NOT the specified pc.
3064 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3065 use the line that ends there. Otherwise, in that case, the line
3066 that begins there is used. */
3067
3068 /* The big complication here is that a line may start in one file, and end just
3069 before the start of another file. This usually occurs when you #include
3070 code in the middle of a subroutine. To properly find the end of a line's PC
3071 range, we must search all symtabs associated with this compilation unit, and
3072 find the one whose first PC is closer than that of the next line in this
3073 symtab. */
3074
3075 struct symtab_and_line
3076 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3077 {
3078 struct compunit_symtab *cust;
3079 struct linetable *l;
3080 int len;
3081 struct linetable_entry *item;
3082 const struct blockvector *bv;
3083 struct bound_minimal_symbol msymbol;
3084
3085 /* Info on best line seen so far, and where it starts, and its file. */
3086
3087 struct linetable_entry *best = NULL;
3088 CORE_ADDR best_end = 0;
3089 struct symtab *best_symtab = 0;
3090
3091 /* Store here the first line number
3092 of a file which contains the line at the smallest pc after PC.
3093 If we don't find a line whose range contains PC,
3094 we will use a line one less than this,
3095 with a range from the start of that file to the first line's pc. */
3096 struct linetable_entry *alt = NULL;
3097
3098 /* Info on best line seen in this file. */
3099
3100 struct linetable_entry *prev;
3101
3102 /* If this pc is not from the current frame,
3103 it is the address of the end of a call instruction.
3104 Quite likely that is the start of the following statement.
3105 But what we want is the statement containing the instruction.
3106 Fudge the pc to make sure we get that. */
3107
3108 /* It's tempting to assume that, if we can't find debugging info for
3109 any function enclosing PC, that we shouldn't search for line
3110 number info, either. However, GAS can emit line number info for
3111 assembly files --- very helpful when debugging hand-written
3112 assembly code. In such a case, we'd have no debug info for the
3113 function, but we would have line info. */
3114
3115 if (notcurrent)
3116 pc -= 1;
3117
3118 /* elz: added this because this function returned the wrong
3119 information if the pc belongs to a stub (import/export)
3120 to call a shlib function. This stub would be anywhere between
3121 two functions in the target, and the line info was erroneously
3122 taken to be the one of the line before the pc. */
3123
3124 /* RT: Further explanation:
3125
3126 * We have stubs (trampolines) inserted between procedures.
3127 *
3128 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3129 * exists in the main image.
3130 *
3131 * In the minimal symbol table, we have a bunch of symbols
3132 * sorted by start address. The stubs are marked as "trampoline",
3133 * the others appear as text. E.g.:
3134 *
3135 * Minimal symbol table for main image
3136 * main: code for main (text symbol)
3137 * shr1: stub (trampoline symbol)
3138 * foo: code for foo (text symbol)
3139 * ...
3140 * Minimal symbol table for "shr1" image:
3141 * ...
3142 * shr1: code for shr1 (text symbol)
3143 * ...
3144 *
3145 * So the code below is trying to detect if we are in the stub
3146 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3147 * and if found, do the symbolization from the real-code address
3148 * rather than the stub address.
3149 *
3150 * Assumptions being made about the minimal symbol table:
3151 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3152 * if we're really in the trampoline.s If we're beyond it (say
3153 * we're in "foo" in the above example), it'll have a closer
3154 * symbol (the "foo" text symbol for example) and will not
3155 * return the trampoline.
3156 * 2. lookup_minimal_symbol_text() will find a real text symbol
3157 * corresponding to the trampoline, and whose address will
3158 * be different than the trampoline address. I put in a sanity
3159 * check for the address being the same, to avoid an
3160 * infinite recursion.
3161 */
3162 msymbol = lookup_minimal_symbol_by_pc (pc);
3163 if (msymbol.minsym != NULL)
3164 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3165 {
3166 struct bound_minimal_symbol mfunsym
3167 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3168 NULL);
3169
3170 if (mfunsym.minsym == NULL)
3171 /* I eliminated this warning since it is coming out
3172 * in the following situation:
3173 * gdb shmain // test program with shared libraries
3174 * (gdb) break shr1 // function in shared lib
3175 * Warning: In stub for ...
3176 * In the above situation, the shared lib is not loaded yet,
3177 * so of course we can't find the real func/line info,
3178 * but the "break" still works, and the warning is annoying.
3179 * So I commented out the warning. RT */
3180 /* warning ("In stub for %s; unable to find real function/line info",
3181 msymbol->linkage_name ()); */
3182 ;
3183 /* fall through */
3184 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3185 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3186 /* Avoid infinite recursion */
3187 /* See above comment about why warning is commented out. */
3188 /* warning ("In stub for %s; unable to find real function/line info",
3189 msymbol->linkage_name ()); */
3190 ;
3191 /* fall through */
3192 else
3193 {
3194 /* Detect an obvious case of infinite recursion. If this
3195 should occur, we'd like to know about it, so error out,
3196 fatally. */
3197 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3198 internal_error (__FILE__, __LINE__,
3199 _("Infinite recursion detected in find_pc_sect_line;"
3200 "please file a bug report"));
3201
3202 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3203 }
3204 }
3205
3206 symtab_and_line val;
3207 val.pspace = current_program_space;
3208
3209 cust = find_pc_sect_compunit_symtab (pc, section);
3210 if (cust == NULL)
3211 {
3212 /* If no symbol information, return previous pc. */
3213 if (notcurrent)
3214 pc++;
3215 val.pc = pc;
3216 return val;
3217 }
3218
3219 bv = COMPUNIT_BLOCKVECTOR (cust);
3220
3221 /* Look at all the symtabs that share this blockvector.
3222 They all have the same apriori range, that we found was right;
3223 but they have different line tables. */
3224
3225 for (symtab *iter_s : compunit_filetabs (cust))
3226 {
3227 /* Find the best line in this symtab. */
3228 l = SYMTAB_LINETABLE (iter_s);
3229 if (!l)
3230 continue;
3231 len = l->nitems;
3232 if (len <= 0)
3233 {
3234 /* I think len can be zero if the symtab lacks line numbers
3235 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3236 I'm not sure which, and maybe it depends on the symbol
3237 reader). */
3238 continue;
3239 }
3240
3241 prev = NULL;
3242 item = l->item; /* Get first line info. */
3243
3244 /* Is this file's first line closer than the first lines of other files?
3245 If so, record this file, and its first line, as best alternate. */
3246 if (item->pc > pc && (!alt || item->pc < alt->pc))
3247 alt = item;
3248
3249 auto pc_compare = [](const CORE_ADDR & comp_pc,
3250 const struct linetable_entry & lhs)->bool
3251 {
3252 return comp_pc < lhs.pc;
3253 };
3254
3255 struct linetable_entry *first = item;
3256 struct linetable_entry *last = item + len;
3257 item = std::upper_bound (first, last, pc, pc_compare);
3258 if (item != first)
3259 prev = item - 1; /* Found a matching item. */
3260
3261 /* At this point, prev points at the line whose start addr is <= pc, and
3262 item points at the next line. If we ran off the end of the linetable
3263 (pc >= start of the last line), then prev == item. If pc < start of
3264 the first line, prev will not be set. */
3265
3266 /* Is this file's best line closer than the best in the other files?
3267 If so, record this file, and its best line, as best so far. Don't
3268 save prev if it represents the end of a function (i.e. line number
3269 0) instead of a real line. */
3270
3271 if (prev && prev->line && (!best || prev->pc > best->pc))
3272 {
3273 best = prev;
3274 best_symtab = iter_s;
3275
3276 /* If during the binary search we land on a non-statement entry,
3277 scan backward through entries at the same address to see if
3278 there is an entry marked as is-statement. In theory this
3279 duplication should have been removed from the line table
3280 during construction, this is just a double check. If the line
3281 table has had the duplication removed then this should be
3282 pretty cheap. */
3283 if (!best->is_stmt)
3284 {
3285 struct linetable_entry *tmp = best;
3286 while (tmp > first && (tmp - 1)->pc == tmp->pc
3287 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3288 --tmp;
3289 if (tmp->is_stmt)
3290 best = tmp;
3291 }
3292
3293 /* Discard BEST_END if it's before the PC of the current BEST. */
3294 if (best_end <= best->pc)
3295 best_end = 0;
3296 }
3297
3298 /* If another line (denoted by ITEM) is in the linetable and its
3299 PC is after BEST's PC, but before the current BEST_END, then
3300 use ITEM's PC as the new best_end. */
3301 if (best && item < last && item->pc > best->pc
3302 && (best_end == 0 || best_end > item->pc))
3303 best_end = item->pc;
3304 }
3305
3306 if (!best_symtab)
3307 {
3308 /* If we didn't find any line number info, just return zeros.
3309 We used to return alt->line - 1 here, but that could be
3310 anywhere; if we don't have line number info for this PC,
3311 don't make some up. */
3312 val.pc = pc;
3313 }
3314 else if (best->line == 0)
3315 {
3316 /* If our best fit is in a range of PC's for which no line
3317 number info is available (line number is zero) then we didn't
3318 find any valid line information. */
3319 val.pc = pc;
3320 }
3321 else
3322 {
3323 val.is_stmt = best->is_stmt;
3324 val.symtab = best_symtab;
3325 val.line = best->line;
3326 val.pc = best->pc;
3327 if (best_end && (!alt || best_end < alt->pc))
3328 val.end = best_end;
3329 else if (alt)
3330 val.end = alt->pc;
3331 else
3332 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3333 }
3334 val.section = section;
3335 return val;
3336 }
3337
3338 /* Backward compatibility (no section). */
3339
3340 struct symtab_and_line
3341 find_pc_line (CORE_ADDR pc, int notcurrent)
3342 {
3343 struct obj_section *section;
3344
3345 section = find_pc_overlay (pc);
3346 if (!pc_in_unmapped_range (pc, section))
3347 return find_pc_sect_line (pc, section, notcurrent);
3348
3349 /* If the original PC was an unmapped address then we translate this to a
3350 mapped address in order to lookup the sal. However, as the user
3351 passed us an unmapped address it makes more sense to return a result
3352 that has the pc and end fields translated to unmapped addresses. */
3353 pc = overlay_mapped_address (pc, section);
3354 symtab_and_line sal = find_pc_sect_line (pc, section, notcurrent);
3355 sal.pc = overlay_unmapped_address (sal.pc, section);
3356 sal.end = overlay_unmapped_address (sal.end, section);
3357 return sal;
3358 }
3359
3360 /* See symtab.h. */
3361
3362 struct symtab *
3363 find_pc_line_symtab (CORE_ADDR pc)
3364 {
3365 struct symtab_and_line sal;
3366
3367 /* This always passes zero for NOTCURRENT to find_pc_line.
3368 There are currently no callers that ever pass non-zero. */
3369 sal = find_pc_line (pc, 0);
3370 return sal.symtab;
3371 }
3372 \f
3373 /* Find line number LINE in any symtab whose name is the same as
3374 SYMTAB.
3375
3376 If found, return the symtab that contains the linetable in which it was
3377 found, set *INDEX to the index in the linetable of the best entry
3378 found, and set *EXACT_MATCH to true if the value returned is an
3379 exact match.
3380
3381 If not found, return NULL. */
3382
3383 struct symtab *
3384 find_line_symtab (struct symtab *sym_tab, int line,
3385 int *index, bool *exact_match)
3386 {
3387 int exact = 0; /* Initialized here to avoid a compiler warning. */
3388
3389 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3390 so far seen. */
3391
3392 int best_index;
3393 struct linetable *best_linetable;
3394 struct symtab *best_symtab;
3395
3396 /* First try looking it up in the given symtab. */
3397 best_linetable = SYMTAB_LINETABLE (sym_tab);
3398 best_symtab = sym_tab;
3399 best_index = find_line_common (best_linetable, line, &exact, 0);
3400 if (best_index < 0 || !exact)
3401 {
3402 /* Didn't find an exact match. So we better keep looking for
3403 another symtab with the same name. In the case of xcoff,
3404 multiple csects for one source file (produced by IBM's FORTRAN
3405 compiler) produce multiple symtabs (this is unavoidable
3406 assuming csects can be at arbitrary places in memory and that
3407 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3408
3409 /* BEST is the smallest linenumber > LINE so far seen,
3410 or 0 if none has been seen so far.
3411 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3412 int best;
3413
3414 if (best_index >= 0)
3415 best = best_linetable->item[best_index].line;
3416 else
3417 best = 0;
3418
3419 for (objfile *objfile : current_program_space->objfiles ())
3420 {
3421 if (objfile->sf)
3422 objfile->sf->qf->expand_symtabs_with_fullname
3423 (objfile, symtab_to_fullname (sym_tab));
3424 }
3425
3426 for (objfile *objfile : current_program_space->objfiles ())
3427 {
3428 for (compunit_symtab *cu : objfile->compunits ())
3429 {
3430 for (symtab *s : compunit_filetabs (cu))
3431 {
3432 struct linetable *l;
3433 int ind;
3434
3435 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3436 continue;
3437 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3438 symtab_to_fullname (s)) != 0)
3439 continue;
3440 l = SYMTAB_LINETABLE (s);
3441 ind = find_line_common (l, line, &exact, 0);
3442 if (ind >= 0)
3443 {
3444 if (exact)
3445 {
3446 best_index = ind;
3447 best_linetable = l;
3448 best_symtab = s;
3449 goto done;
3450 }
3451 if (best == 0 || l->item[ind].line < best)
3452 {
3453 best = l->item[ind].line;
3454 best_index = ind;
3455 best_linetable = l;
3456 best_symtab = s;
3457 }
3458 }
3459 }
3460 }
3461 }
3462 }
3463 done:
3464 if (best_index < 0)
3465 return NULL;
3466
3467 if (index)
3468 *index = best_index;
3469 if (exact_match)
3470 *exact_match = (exact != 0);
3471
3472 return best_symtab;
3473 }
3474
3475 /* Given SYMTAB, returns all the PCs function in the symtab that
3476 exactly match LINE. Returns an empty vector if there are no exact
3477 matches, but updates BEST_ITEM in this case. */
3478
3479 std::vector<CORE_ADDR>
3480 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3481 struct linetable_entry **best_item)
3482 {
3483 int start = 0;
3484 std::vector<CORE_ADDR> result;
3485
3486 /* First, collect all the PCs that are at this line. */
3487 while (1)
3488 {
3489 int was_exact;
3490 int idx;
3491
3492 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3493 start);
3494 if (idx < 0)
3495 break;
3496
3497 if (!was_exact)
3498 {
3499 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3500
3501 if (*best_item == NULL
3502 || (item->line < (*best_item)->line && item->is_stmt))
3503 *best_item = item;
3504
3505 break;
3506 }
3507
3508 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3509 start = idx + 1;
3510 }
3511
3512 return result;
3513 }
3514
3515 \f
3516 /* Set the PC value for a given source file and line number and return true.
3517 Returns false for invalid line number (and sets the PC to 0).
3518 The source file is specified with a struct symtab. */
3519
3520 bool
3521 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3522 {
3523 struct linetable *l;
3524 int ind;
3525
3526 *pc = 0;
3527 if (symtab == 0)
3528 return false;
3529
3530 symtab = find_line_symtab (symtab, line, &ind, NULL);
3531 if (symtab != NULL)
3532 {
3533 l = SYMTAB_LINETABLE (symtab);
3534 *pc = l->item[ind].pc;
3535 return true;
3536 }
3537 else
3538 return false;
3539 }
3540
3541 /* Find the range of pc values in a line.
3542 Store the starting pc of the line into *STARTPTR
3543 and the ending pc (start of next line) into *ENDPTR.
3544 Returns true to indicate success.
3545 Returns false if could not find the specified line. */
3546
3547 bool
3548 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3549 CORE_ADDR *endptr)
3550 {
3551 CORE_ADDR startaddr;
3552 struct symtab_and_line found_sal;
3553
3554 startaddr = sal.pc;
3555 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3556 return false;
3557
3558 /* This whole function is based on address. For example, if line 10 has
3559 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3560 "info line *0x123" should say the line goes from 0x100 to 0x200
3561 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3562 This also insures that we never give a range like "starts at 0x134
3563 and ends at 0x12c". */
3564
3565 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3566 if (found_sal.line != sal.line)
3567 {
3568 /* The specified line (sal) has zero bytes. */
3569 *startptr = found_sal.pc;
3570 *endptr = found_sal.pc;
3571 }
3572 else
3573 {
3574 *startptr = found_sal.pc;
3575 *endptr = found_sal.end;
3576 }
3577 return true;
3578 }
3579
3580 /* Given a line table and a line number, return the index into the line
3581 table for the pc of the nearest line whose number is >= the specified one.
3582 Return -1 if none is found. The value is >= 0 if it is an index.
3583 START is the index at which to start searching the line table.
3584
3585 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3586
3587 static int
3588 find_line_common (struct linetable *l, int lineno,
3589 int *exact_match, int start)
3590 {
3591 int i;
3592 int len;
3593
3594 /* BEST is the smallest linenumber > LINENO so far seen,
3595 or 0 if none has been seen so far.
3596 BEST_INDEX identifies the item for it. */
3597
3598 int best_index = -1;
3599 int best = 0;
3600
3601 *exact_match = 0;
3602
3603 if (lineno <= 0)
3604 return -1;
3605 if (l == 0)
3606 return -1;
3607
3608 len = l->nitems;
3609 for (i = start; i < len; i++)
3610 {
3611 struct linetable_entry *item = &(l->item[i]);
3612
3613 /* Ignore non-statements. */
3614 if (!item->is_stmt)
3615 continue;
3616
3617 if (item->line == lineno)
3618 {
3619 /* Return the first (lowest address) entry which matches. */
3620 *exact_match = 1;
3621 return i;
3622 }
3623
3624 if (item->line > lineno && (best == 0 || item->line < best))
3625 {
3626 best = item->line;
3627 best_index = i;
3628 }
3629 }
3630
3631 /* If we got here, we didn't get an exact match. */
3632 return best_index;
3633 }
3634
3635 bool
3636 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3637 {
3638 struct symtab_and_line sal;
3639
3640 sal = find_pc_line (pc, 0);
3641 *startptr = sal.pc;
3642 *endptr = sal.end;
3643 return sal.symtab != 0;
3644 }
3645
3646 /* Helper for find_function_start_sal. Does most of the work, except
3647 setting the sal's symbol. */
3648
3649 static symtab_and_line
3650 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3651 bool funfirstline)
3652 {
3653 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3654
3655 if (funfirstline && sal.symtab != NULL
3656 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3657 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3658 {
3659 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3660
3661 sal.pc = func_addr;
3662 if (gdbarch_skip_entrypoint_p (gdbarch))
3663 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3664 return sal;
3665 }
3666
3667 /* We always should have a line for the function start address.
3668 If we don't, something is odd. Create a plain SAL referring
3669 just the PC and hope that skip_prologue_sal (if requested)
3670 can find a line number for after the prologue. */
3671 if (sal.pc < func_addr)
3672 {
3673 sal = {};
3674 sal.pspace = current_program_space;
3675 sal.pc = func_addr;
3676 sal.section = section;
3677 }
3678
3679 if (funfirstline)
3680 skip_prologue_sal (&sal);
3681
3682 return sal;
3683 }
3684
3685 /* See symtab.h. */
3686
3687 symtab_and_line
3688 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3689 bool funfirstline)
3690 {
3691 symtab_and_line sal
3692 = find_function_start_sal_1 (func_addr, section, funfirstline);
3693
3694 /* find_function_start_sal_1 does a linetable search, so it finds
3695 the symtab and linenumber, but not a symbol. Fill in the
3696 function symbol too. */
3697 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3698
3699 return sal;
3700 }
3701
3702 /* See symtab.h. */
3703
3704 symtab_and_line
3705 find_function_start_sal (symbol *sym, bool funfirstline)
3706 {
3707 fixup_symbol_section (sym, NULL);
3708 symtab_and_line sal
3709 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3710 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3711 funfirstline);
3712 sal.symbol = sym;
3713 return sal;
3714 }
3715
3716
3717 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3718 address for that function that has an entry in SYMTAB's line info
3719 table. If such an entry cannot be found, return FUNC_ADDR
3720 unaltered. */
3721
3722 static CORE_ADDR
3723 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3724 {
3725 CORE_ADDR func_start, func_end;
3726 struct linetable *l;
3727 int i;
3728
3729 /* Give up if this symbol has no lineinfo table. */
3730 l = SYMTAB_LINETABLE (symtab);
3731 if (l == NULL)
3732 return func_addr;
3733
3734 /* Get the range for the function's PC values, or give up if we
3735 cannot, for some reason. */
3736 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3737 return func_addr;
3738
3739 /* Linetable entries are ordered by PC values, see the commentary in
3740 symtab.h where `struct linetable' is defined. Thus, the first
3741 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3742 address we are looking for. */
3743 for (i = 0; i < l->nitems; i++)
3744 {
3745 struct linetable_entry *item = &(l->item[i]);
3746
3747 /* Don't use line numbers of zero, they mark special entries in
3748 the table. See the commentary on symtab.h before the
3749 definition of struct linetable. */
3750 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3751 return item->pc;
3752 }
3753
3754 return func_addr;
3755 }
3756
3757 /* Adjust SAL to the first instruction past the function prologue.
3758 If the PC was explicitly specified, the SAL is not changed.
3759 If the line number was explicitly specified then the SAL can still be
3760 updated, unless the language for SAL is assembler, in which case the SAL
3761 will be left unchanged.
3762 If SAL is already past the prologue, then do nothing. */
3763
3764 void
3765 skip_prologue_sal (struct symtab_and_line *sal)
3766 {
3767 struct symbol *sym;
3768 struct symtab_and_line start_sal;
3769 CORE_ADDR pc, saved_pc;
3770 struct obj_section *section;
3771 const char *name;
3772 struct objfile *objfile;
3773 struct gdbarch *gdbarch;
3774 const struct block *b, *function_block;
3775 int force_skip, skip;
3776
3777 /* Do not change the SAL if PC was specified explicitly. */
3778 if (sal->explicit_pc)
3779 return;
3780
3781 /* In assembly code, if the user asks for a specific line then we should
3782 not adjust the SAL. The user already has instruction level
3783 visibility in this case, so selecting a line other than one requested
3784 is likely to be the wrong choice. */
3785 if (sal->symtab != nullptr
3786 && sal->explicit_line
3787 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3788 return;
3789
3790 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3791
3792 switch_to_program_space_and_thread (sal->pspace);
3793
3794 sym = find_pc_sect_function (sal->pc, sal->section);
3795 if (sym != NULL)
3796 {
3797 fixup_symbol_section (sym, NULL);
3798
3799 objfile = symbol_objfile (sym);
3800 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3801 section = SYMBOL_OBJ_SECTION (objfile, sym);
3802 name = sym->linkage_name ();
3803 }
3804 else
3805 {
3806 struct bound_minimal_symbol msymbol
3807 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3808
3809 if (msymbol.minsym == NULL)
3810 return;
3811
3812 objfile = msymbol.objfile;
3813 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3814 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3815 name = msymbol.minsym->linkage_name ();
3816 }
3817
3818 gdbarch = objfile->arch ();
3819
3820 /* Process the prologue in two passes. In the first pass try to skip the
3821 prologue (SKIP is true) and verify there is a real need for it (indicated
3822 by FORCE_SKIP). If no such reason was found run a second pass where the
3823 prologue is not skipped (SKIP is false). */
3824
3825 skip = 1;
3826 force_skip = 1;
3827
3828 /* Be conservative - allow direct PC (without skipping prologue) only if we
3829 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3830 have to be set by the caller so we use SYM instead. */
3831 if (sym != NULL
3832 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3833 force_skip = 0;
3834
3835 saved_pc = pc;
3836 do
3837 {
3838 pc = saved_pc;
3839
3840 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3841 so that gdbarch_skip_prologue has something unique to work on. */
3842 if (section_is_overlay (section) && !section_is_mapped (section))
3843 pc = overlay_unmapped_address (pc, section);
3844
3845 /* Skip "first line" of function (which is actually its prologue). */
3846 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3847 if (gdbarch_skip_entrypoint_p (gdbarch))
3848 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3849 if (skip)
3850 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3851
3852 /* For overlays, map pc back into its mapped VMA range. */
3853 pc = overlay_mapped_address (pc, section);
3854
3855 /* Calculate line number. */
3856 start_sal = find_pc_sect_line (pc, section, 0);
3857
3858 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3859 line is still part of the same function. */
3860 if (skip && start_sal.pc != pc
3861 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3862 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3863 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3864 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3865 {
3866 /* First pc of next line */
3867 pc = start_sal.end;
3868 /* Recalculate the line number (might not be N+1). */
3869 start_sal = find_pc_sect_line (pc, section, 0);
3870 }
3871
3872 /* On targets with executable formats that don't have a concept of
3873 constructors (ELF with .init has, PE doesn't), gcc emits a call
3874 to `__main' in `main' between the prologue and before user
3875 code. */
3876 if (gdbarch_skip_main_prologue_p (gdbarch)
3877 && name && strcmp_iw (name, "main") == 0)
3878 {
3879 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3880 /* Recalculate the line number (might not be N+1). */
3881 start_sal = find_pc_sect_line (pc, section, 0);
3882 force_skip = 1;
3883 }
3884 }
3885 while (!force_skip && skip--);
3886
3887 /* If we still don't have a valid source line, try to find the first
3888 PC in the lineinfo table that belongs to the same function. This
3889 happens with COFF debug info, which does not seem to have an
3890 entry in lineinfo table for the code after the prologue which has
3891 no direct relation to source. For example, this was found to be
3892 the case with the DJGPP target using "gcc -gcoff" when the
3893 compiler inserted code after the prologue to make sure the stack
3894 is aligned. */
3895 if (!force_skip && sym && start_sal.symtab == NULL)
3896 {
3897 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3898 /* Recalculate the line number. */
3899 start_sal = find_pc_sect_line (pc, section, 0);
3900 }
3901
3902 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3903 forward SAL to the end of the prologue. */
3904 if (sal->pc >= pc)
3905 return;
3906
3907 sal->pc = pc;
3908 sal->section = section;
3909 sal->symtab = start_sal.symtab;
3910 sal->line = start_sal.line;
3911 sal->end = start_sal.end;
3912
3913 /* Check if we are now inside an inlined function. If we can,
3914 use the call site of the function instead. */
3915 b = block_for_pc_sect (sal->pc, sal->section);
3916 function_block = NULL;
3917 while (b != NULL)
3918 {
3919 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3920 function_block = b;
3921 else if (BLOCK_FUNCTION (b) != NULL)
3922 break;
3923 b = BLOCK_SUPERBLOCK (b);
3924 }
3925 if (function_block != NULL
3926 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3927 {
3928 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3929 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3930 }
3931 }
3932
3933 /* Given PC at the function's start address, attempt to find the
3934 prologue end using SAL information. Return zero if the skip fails.
3935
3936 A non-optimized prologue traditionally has one SAL for the function
3937 and a second for the function body. A single line function has
3938 them both pointing at the same line.
3939
3940 An optimized prologue is similar but the prologue may contain
3941 instructions (SALs) from the instruction body. Need to skip those
3942 while not getting into the function body.
3943
3944 The functions end point and an increasing SAL line are used as
3945 indicators of the prologue's endpoint.
3946
3947 This code is based on the function refine_prologue_limit
3948 (found in ia64). */
3949
3950 CORE_ADDR
3951 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3952 {
3953 struct symtab_and_line prologue_sal;
3954 CORE_ADDR start_pc;
3955 CORE_ADDR end_pc;
3956 const struct block *bl;
3957
3958 /* Get an initial range for the function. */
3959 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3960 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3961
3962 prologue_sal = find_pc_line (start_pc, 0);
3963 if (prologue_sal.line != 0)
3964 {
3965 /* For languages other than assembly, treat two consecutive line
3966 entries at the same address as a zero-instruction prologue.
3967 The GNU assembler emits separate line notes for each instruction
3968 in a multi-instruction macro, but compilers generally will not
3969 do this. */
3970 if (prologue_sal.symtab->language != language_asm)
3971 {
3972 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3973 int idx = 0;
3974
3975 /* Skip any earlier lines, and any end-of-sequence marker
3976 from a previous function. */
3977 while (linetable->item[idx].pc != prologue_sal.pc
3978 || linetable->item[idx].line == 0)
3979 idx++;
3980
3981 if (idx+1 < linetable->nitems
3982 && linetable->item[idx+1].line != 0
3983 && linetable->item[idx+1].pc == start_pc)
3984 return start_pc;
3985 }
3986
3987 /* If there is only one sal that covers the entire function,
3988 then it is probably a single line function, like
3989 "foo(){}". */
3990 if (prologue_sal.end >= end_pc)
3991 return 0;
3992
3993 while (prologue_sal.end < end_pc)
3994 {
3995 struct symtab_and_line sal;
3996
3997 sal = find_pc_line (prologue_sal.end, 0);
3998 if (sal.line == 0)
3999 break;
4000 /* Assume that a consecutive SAL for the same (or larger)
4001 line mark the prologue -> body transition. */
4002 if (sal.line >= prologue_sal.line)
4003 break;
4004 /* Likewise if we are in a different symtab altogether
4005 (e.g. within a file included via #include).  */
4006 if (sal.symtab != prologue_sal.symtab)
4007 break;
4008
4009 /* The line number is smaller. Check that it's from the
4010 same function, not something inlined. If it's inlined,
4011 then there is no point comparing the line numbers. */
4012 bl = block_for_pc (prologue_sal.end);
4013 while (bl)
4014 {
4015 if (block_inlined_p (bl))
4016 break;
4017 if (BLOCK_FUNCTION (bl))
4018 {
4019 bl = NULL;
4020 break;
4021 }
4022 bl = BLOCK_SUPERBLOCK (bl);
4023 }
4024 if (bl != NULL)
4025 break;
4026
4027 /* The case in which compiler's optimizer/scheduler has
4028 moved instructions into the prologue. We look ahead in
4029 the function looking for address ranges whose
4030 corresponding line number is less the first one that we
4031 found for the function. This is more conservative then
4032 refine_prologue_limit which scans a large number of SALs
4033 looking for any in the prologue. */
4034 prologue_sal = sal;
4035 }
4036 }
4037
4038 if (prologue_sal.end < end_pc)
4039 /* Return the end of this line, or zero if we could not find a
4040 line. */
4041 return prologue_sal.end;
4042 else
4043 /* Don't return END_PC, which is past the end of the function. */
4044 return prologue_sal.pc;
4045 }
4046
4047 /* See symtab.h. */
4048
4049 symbol *
4050 find_function_alias_target (bound_minimal_symbol msymbol)
4051 {
4052 CORE_ADDR func_addr;
4053 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4054 return NULL;
4055
4056 symbol *sym = find_pc_function (func_addr);
4057 if (sym != NULL
4058 && SYMBOL_CLASS (sym) == LOC_BLOCK
4059 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4060 return sym;
4061
4062 return NULL;
4063 }
4064
4065 \f
4066 /* If P is of the form "operator[ \t]+..." where `...' is
4067 some legitimate operator text, return a pointer to the
4068 beginning of the substring of the operator text.
4069 Otherwise, return "". */
4070
4071 static const char *
4072 operator_chars (const char *p, const char **end)
4073 {
4074 *end = "";
4075 if (!startswith (p, CP_OPERATOR_STR))
4076 return *end;
4077 p += CP_OPERATOR_LEN;
4078
4079 /* Don't get faked out by `operator' being part of a longer
4080 identifier. */
4081 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4082 return *end;
4083
4084 /* Allow some whitespace between `operator' and the operator symbol. */
4085 while (*p == ' ' || *p == '\t')
4086 p++;
4087
4088 /* Recognize 'operator TYPENAME'. */
4089
4090 if (isalpha (*p) || *p == '_' || *p == '$')
4091 {
4092 const char *q = p + 1;
4093
4094 while (isalnum (*q) || *q == '_' || *q == '$')
4095 q++;
4096 *end = q;
4097 return p;
4098 }
4099
4100 while (*p)
4101 switch (*p)
4102 {
4103 case '\\': /* regexp quoting */
4104 if (p[1] == '*')
4105 {
4106 if (p[2] == '=') /* 'operator\*=' */
4107 *end = p + 3;
4108 else /* 'operator\*' */
4109 *end = p + 2;
4110 return p;
4111 }
4112 else if (p[1] == '[')
4113 {
4114 if (p[2] == ']')
4115 error (_("mismatched quoting on brackets, "
4116 "try 'operator\\[\\]'"));
4117 else if (p[2] == '\\' && p[3] == ']')
4118 {
4119 *end = p + 4; /* 'operator\[\]' */
4120 return p;
4121 }
4122 else
4123 error (_("nothing is allowed between '[' and ']'"));
4124 }
4125 else
4126 {
4127 /* Gratuitous quote: skip it and move on. */
4128 p++;
4129 continue;
4130 }
4131 break;
4132 case '!':
4133 case '=':
4134 case '*':
4135 case '/':
4136 case '%':
4137 case '^':
4138 if (p[1] == '=')
4139 *end = p + 2;
4140 else
4141 *end = p + 1;
4142 return p;
4143 case '<':
4144 case '>':
4145 case '+':
4146 case '-':
4147 case '&':
4148 case '|':
4149 if (p[0] == '-' && p[1] == '>')
4150 {
4151 /* Struct pointer member operator 'operator->'. */
4152 if (p[2] == '*')
4153 {
4154 *end = p + 3; /* 'operator->*' */
4155 return p;
4156 }
4157 else if (p[2] == '\\')
4158 {
4159 *end = p + 4; /* Hopefully 'operator->\*' */
4160 return p;
4161 }
4162 else
4163 {
4164 *end = p + 2; /* 'operator->' */
4165 return p;
4166 }
4167 }
4168 if (p[1] == '=' || p[1] == p[0])
4169 *end = p + 2;
4170 else
4171 *end = p + 1;
4172 return p;
4173 case '~':
4174 case ',':
4175 *end = p + 1;
4176 return p;
4177 case '(':
4178 if (p[1] != ')')
4179 error (_("`operator ()' must be specified "
4180 "without whitespace in `()'"));
4181 *end = p + 2;
4182 return p;
4183 case '?':
4184 if (p[1] != ':')
4185 error (_("`operator ?:' must be specified "
4186 "without whitespace in `?:'"));
4187 *end = p + 2;
4188 return p;
4189 case '[':
4190 if (p[1] != ']')
4191 error (_("`operator []' must be specified "
4192 "without whitespace in `[]'"));
4193 *end = p + 2;
4194 return p;
4195 default:
4196 error (_("`operator %s' not supported"), p);
4197 break;
4198 }
4199
4200 *end = "";
4201 return *end;
4202 }
4203 \f
4204
4205 /* What part to match in a file name. */
4206
4207 struct filename_partial_match_opts
4208 {
4209 /* Only match the directory name part. */
4210 bool dirname = false;
4211
4212 /* Only match the basename part. */
4213 bool basename = false;
4214 };
4215
4216 /* Data structure to maintain printing state for output_source_filename. */
4217
4218 struct output_source_filename_data
4219 {
4220 /* Output only filenames matching REGEXP. */
4221 std::string regexp;
4222 gdb::optional<compiled_regex> c_regexp;
4223 /* Possibly only match a part of the filename. */
4224 filename_partial_match_opts partial_match;
4225
4226
4227 /* Cache of what we've seen so far. */
4228 struct filename_seen_cache *filename_seen_cache;
4229
4230 /* Flag of whether we're printing the first one. */
4231 int first;
4232 };
4233
4234 /* Slave routine for sources_info. Force line breaks at ,'s.
4235 NAME is the name to print.
4236 DATA contains the state for printing and watching for duplicates. */
4237
4238 static void
4239 output_source_filename (const char *name,
4240 struct output_source_filename_data *data)
4241 {
4242 /* Since a single source file can result in several partial symbol
4243 tables, we need to avoid printing it more than once. Note: if
4244 some of the psymtabs are read in and some are not, it gets
4245 printed both under "Source files for which symbols have been
4246 read" and "Source files for which symbols will be read in on
4247 demand". I consider this a reasonable way to deal with the
4248 situation. I'm not sure whether this can also happen for
4249 symtabs; it doesn't hurt to check. */
4250
4251 /* Was NAME already seen? */
4252 if (data->filename_seen_cache->seen (name))
4253 {
4254 /* Yes; don't print it again. */
4255 return;
4256 }
4257
4258 /* Does it match data->regexp? */
4259 if (data->c_regexp.has_value ())
4260 {
4261 const char *to_match;
4262 std::string dirname;
4263
4264 if (data->partial_match.dirname)
4265 {
4266 dirname = ldirname (name);
4267 to_match = dirname.c_str ();
4268 }
4269 else if (data->partial_match.basename)
4270 to_match = lbasename (name);
4271 else
4272 to_match = name;
4273
4274 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4275 return;
4276 }
4277
4278 /* Print it and reset *FIRST. */
4279 if (! data->first)
4280 printf_filtered (", ");
4281 data->first = 0;
4282
4283 wrap_here ("");
4284 fputs_styled (name, file_name_style.style (), gdb_stdout);
4285 }
4286
4287 /* A callback for map_partial_symbol_filenames. */
4288
4289 static void
4290 output_partial_symbol_filename (const char *filename, const char *fullname,
4291 void *data)
4292 {
4293 output_source_filename (fullname ? fullname : filename,
4294 (struct output_source_filename_data *) data);
4295 }
4296
4297 using isrc_flag_option_def
4298 = gdb::option::flag_option_def<filename_partial_match_opts>;
4299
4300 static const gdb::option::option_def info_sources_option_defs[] = {
4301
4302 isrc_flag_option_def {
4303 "dirname",
4304 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4305 N_("Show only the files having a dirname matching REGEXP."),
4306 },
4307
4308 isrc_flag_option_def {
4309 "basename",
4310 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4311 N_("Show only the files having a basename matching REGEXP."),
4312 },
4313
4314 };
4315
4316 /* Create an option_def_group for the "info sources" options, with
4317 ISRC_OPTS as context. */
4318
4319 static inline gdb::option::option_def_group
4320 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4321 {
4322 return {{info_sources_option_defs}, isrc_opts};
4323 }
4324
4325 /* Prints the header message for the source files that will be printed
4326 with the matching info present in DATA. SYMBOL_MSG is a message
4327 that tells what will or has been done with the symbols of the
4328 matching source files. */
4329
4330 static void
4331 print_info_sources_header (const char *symbol_msg,
4332 const struct output_source_filename_data *data)
4333 {
4334 puts_filtered (symbol_msg);
4335 if (!data->regexp.empty ())
4336 {
4337 if (data->partial_match.dirname)
4338 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4339 data->regexp.c_str ());
4340 else if (data->partial_match.basename)
4341 printf_filtered (_("(basename matching regular expression \"%s\")"),
4342 data->regexp.c_str ());
4343 else
4344 printf_filtered (_("(filename matching regular expression \"%s\")"),
4345 data->regexp.c_str ());
4346 }
4347 puts_filtered ("\n");
4348 }
4349
4350 /* Completer for "info sources". */
4351
4352 static void
4353 info_sources_command_completer (cmd_list_element *ignore,
4354 completion_tracker &tracker,
4355 const char *text, const char *word)
4356 {
4357 const auto group = make_info_sources_options_def_group (nullptr);
4358 if (gdb::option::complete_options
4359 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4360 return;
4361 }
4362
4363 static void
4364 info_sources_command (const char *args, int from_tty)
4365 {
4366 struct output_source_filename_data data;
4367
4368 if (!have_full_symbols () && !have_partial_symbols ())
4369 {
4370 error (_("No symbol table is loaded. Use the \"file\" command."));
4371 }
4372
4373 filename_seen_cache filenames_seen;
4374
4375 auto group = make_info_sources_options_def_group (&data.partial_match);
4376
4377 gdb::option::process_options
4378 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4379
4380 if (args != NULL && *args != '\000')
4381 data.regexp = args;
4382
4383 data.filename_seen_cache = &filenames_seen;
4384 data.first = 1;
4385
4386 if (data.partial_match.dirname && data.partial_match.basename)
4387 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4388 if ((data.partial_match.dirname || data.partial_match.basename)
4389 && data.regexp.empty ())
4390 error (_("Missing REGEXP for 'info sources'."));
4391
4392 if (data.regexp.empty ())
4393 data.c_regexp.reset ();
4394 else
4395 {
4396 int cflags = REG_NOSUB;
4397 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4398 cflags |= REG_ICASE;
4399 #endif
4400 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4401 _("Invalid regexp"));
4402 }
4403
4404 print_info_sources_header
4405 (_("Source files for which symbols have been read in:\n"), &data);
4406
4407 for (objfile *objfile : current_program_space->objfiles ())
4408 {
4409 for (compunit_symtab *cu : objfile->compunits ())
4410 {
4411 for (symtab *s : compunit_filetabs (cu))
4412 {
4413 const char *fullname = symtab_to_fullname (s);
4414
4415 output_source_filename (fullname, &data);
4416 }
4417 }
4418 }
4419 printf_filtered ("\n\n");
4420
4421 print_info_sources_header
4422 (_("Source files for which symbols will be read in on demand:\n"), &data);
4423
4424 filenames_seen.clear ();
4425 data.first = 1;
4426 map_symbol_filenames (output_partial_symbol_filename, &data,
4427 1 /*need_fullname*/);
4428 printf_filtered ("\n");
4429 }
4430
4431 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4432 true compare only lbasename of FILENAMES. */
4433
4434 static bool
4435 file_matches (const char *file, const std::vector<const char *> &filenames,
4436 bool basenames)
4437 {
4438 if (filenames.empty ())
4439 return true;
4440
4441 for (const char *name : filenames)
4442 {
4443 name = (basenames ? lbasename (name) : name);
4444 if (compare_filenames_for_search (file, name))
4445 return true;
4446 }
4447
4448 return false;
4449 }
4450
4451 /* Helper function for std::sort on symbol_search objects. Can only sort
4452 symbols, not minimal symbols. */
4453
4454 int
4455 symbol_search::compare_search_syms (const symbol_search &sym_a,
4456 const symbol_search &sym_b)
4457 {
4458 int c;
4459
4460 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4461 symbol_symtab (sym_b.symbol)->filename);
4462 if (c != 0)
4463 return c;
4464
4465 if (sym_a.block != sym_b.block)
4466 return sym_a.block - sym_b.block;
4467
4468 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4469 }
4470
4471 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4472 If SYM has no symbol_type or symbol_name, returns false. */
4473
4474 bool
4475 treg_matches_sym_type_name (const compiled_regex &treg,
4476 const struct symbol *sym)
4477 {
4478 struct type *sym_type;
4479 std::string printed_sym_type_name;
4480
4481 if (symbol_lookup_debug > 1)
4482 {
4483 fprintf_unfiltered (gdb_stdlog,
4484 "treg_matches_sym_type_name\n sym %s\n",
4485 sym->natural_name ());
4486 }
4487
4488 sym_type = SYMBOL_TYPE (sym);
4489 if (sym_type == NULL)
4490 return false;
4491
4492 {
4493 scoped_switch_to_sym_language_if_auto l (sym);
4494
4495 printed_sym_type_name = type_to_string (sym_type);
4496 }
4497
4498
4499 if (symbol_lookup_debug > 1)
4500 {
4501 fprintf_unfiltered (gdb_stdlog,
4502 " sym_type_name %s\n",
4503 printed_sym_type_name.c_str ());
4504 }
4505
4506
4507 if (printed_sym_type_name.empty ())
4508 return false;
4509
4510 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4511 }
4512
4513 /* See symtab.h. */
4514
4515 bool
4516 global_symbol_searcher::is_suitable_msymbol
4517 (const enum search_domain kind, const minimal_symbol *msymbol)
4518 {
4519 switch (MSYMBOL_TYPE (msymbol))
4520 {
4521 case mst_data:
4522 case mst_bss:
4523 case mst_file_data:
4524 case mst_file_bss:
4525 return kind == VARIABLES_DOMAIN;
4526 case mst_text:
4527 case mst_file_text:
4528 case mst_solib_trampoline:
4529 case mst_text_gnu_ifunc:
4530 return kind == FUNCTIONS_DOMAIN;
4531 default:
4532 return false;
4533 }
4534 }
4535
4536 /* See symtab.h. */
4537
4538 bool
4539 global_symbol_searcher::expand_symtabs
4540 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4541 {
4542 enum search_domain kind = m_kind;
4543 bool found_msymbol = false;
4544
4545 if (objfile->sf)
4546 objfile->sf->qf->expand_symtabs_matching
4547 (objfile,
4548 [&] (const char *filename, bool basenames)
4549 {
4550 return file_matches (filename, filenames, basenames);
4551 },
4552 &lookup_name_info::match_any (),
4553 [&] (const char *symname)
4554 {
4555 return (!preg.has_value ()
4556 || preg->exec (symname, 0, NULL, 0) == 0);
4557 },
4558 NULL,
4559 kind);
4560
4561 /* Here, we search through the minimal symbol tables for functions and
4562 variables that match, and force their symbols to be read. This is in
4563 particular necessary for demangled variable names, which are no longer
4564 put into the partial symbol tables. The symbol will then be found
4565 during the scan of symtabs later.
4566
4567 For functions, find_pc_symtab should succeed if we have debug info for
4568 the function, for variables we have to call
4569 lookup_symbol_in_objfile_from_linkage_name to determine if the
4570 variable has debug info. If the lookup fails, set found_msymbol so
4571 that we will rescan to print any matching symbols without debug info.
4572 We only search the objfile the msymbol came from, we no longer search
4573 all objfiles. In large programs (1000s of shared libs) searching all
4574 objfiles is not worth the pain. */
4575 if (filenames.empty ()
4576 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4577 {
4578 for (minimal_symbol *msymbol : objfile->msymbols ())
4579 {
4580 QUIT;
4581
4582 if (msymbol->created_by_gdb)
4583 continue;
4584
4585 if (is_suitable_msymbol (kind, msymbol))
4586 {
4587 if (!preg.has_value ()
4588 || preg->exec (msymbol->natural_name (), 0,
4589 NULL, 0) == 0)
4590 {
4591 /* An important side-effect of these lookup functions is
4592 to expand the symbol table if msymbol is found, later
4593 in the process we will add matching symbols or
4594 msymbols to the results list, and that requires that
4595 the symbols tables are expanded. */
4596 if (kind == FUNCTIONS_DOMAIN
4597 ? (find_pc_compunit_symtab
4598 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4599 == NULL)
4600 : (lookup_symbol_in_objfile_from_linkage_name
4601 (objfile, msymbol->linkage_name (),
4602 VAR_DOMAIN)
4603 .symbol == NULL))
4604 found_msymbol = true;
4605 }
4606 }
4607 }
4608 }
4609
4610 return found_msymbol;
4611 }
4612
4613 /* See symtab.h. */
4614
4615 bool
4616 global_symbol_searcher::add_matching_symbols
4617 (objfile *objfile,
4618 const gdb::optional<compiled_regex> &preg,
4619 const gdb::optional<compiled_regex> &treg,
4620 std::set<symbol_search> *result_set) const
4621 {
4622 enum search_domain kind = m_kind;
4623
4624 /* Add matching symbols (if not already present). */
4625 for (compunit_symtab *cust : objfile->compunits ())
4626 {
4627 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4628
4629 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4630 {
4631 struct block_iterator iter;
4632 struct symbol *sym;
4633 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4634
4635 ALL_BLOCK_SYMBOLS (b, iter, sym)
4636 {
4637 struct symtab *real_symtab = symbol_symtab (sym);
4638
4639 QUIT;
4640
4641 /* Check first sole REAL_SYMTAB->FILENAME. It does
4642 not need to be a substring of symtab_to_fullname as
4643 it may contain "./" etc. */
4644 if ((file_matches (real_symtab->filename, filenames, false)
4645 || ((basenames_may_differ
4646 || file_matches (lbasename (real_symtab->filename),
4647 filenames, true))
4648 && file_matches (symtab_to_fullname (real_symtab),
4649 filenames, false)))
4650 && ((!preg.has_value ()
4651 || preg->exec (sym->natural_name (), 0,
4652 NULL, 0) == 0)
4653 && ((kind == VARIABLES_DOMAIN
4654 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4655 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4656 && SYMBOL_CLASS (sym) != LOC_BLOCK
4657 /* LOC_CONST can be used for more than
4658 just enums, e.g., c++ static const
4659 members. We only want to skip enums
4660 here. */
4661 && !(SYMBOL_CLASS (sym) == LOC_CONST
4662 && (SYMBOL_TYPE (sym)->code ()
4663 == TYPE_CODE_ENUM))
4664 && (!treg.has_value ()
4665 || treg_matches_sym_type_name (*treg, sym)))
4666 || (kind == FUNCTIONS_DOMAIN
4667 && SYMBOL_CLASS (sym) == LOC_BLOCK
4668 && (!treg.has_value ()
4669 || treg_matches_sym_type_name (*treg,
4670 sym)))
4671 || (kind == TYPES_DOMAIN
4672 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4673 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4674 || (kind == MODULES_DOMAIN
4675 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4676 && SYMBOL_LINE (sym) != 0))))
4677 {
4678 if (result_set->size () < m_max_search_results)
4679 {
4680 /* Match, insert if not already in the results. */
4681 symbol_search ss (block, sym);
4682 if (result_set->find (ss) == result_set->end ())
4683 result_set->insert (ss);
4684 }
4685 else
4686 return false;
4687 }
4688 }
4689 }
4690 }
4691
4692 return true;
4693 }
4694
4695 /* See symtab.h. */
4696
4697 bool
4698 global_symbol_searcher::add_matching_msymbols
4699 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4700 std::vector<symbol_search> *results) const
4701 {
4702 enum search_domain kind = m_kind;
4703
4704 for (minimal_symbol *msymbol : objfile->msymbols ())
4705 {
4706 QUIT;
4707
4708 if (msymbol->created_by_gdb)
4709 continue;
4710
4711 if (is_suitable_msymbol (kind, msymbol))
4712 {
4713 if (!preg.has_value ()
4714 || preg->exec (msymbol->natural_name (), 0,
4715 NULL, 0) == 0)
4716 {
4717 /* For functions we can do a quick check of whether the
4718 symbol might be found via find_pc_symtab. */
4719 if (kind != FUNCTIONS_DOMAIN
4720 || (find_pc_compunit_symtab
4721 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4722 == NULL))
4723 {
4724 if (lookup_symbol_in_objfile_from_linkage_name
4725 (objfile, msymbol->linkage_name (),
4726 VAR_DOMAIN).symbol == NULL)
4727 {
4728 /* Matching msymbol, add it to the results list. */
4729 if (results->size () < m_max_search_results)
4730 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4731 else
4732 return false;
4733 }
4734 }
4735 }
4736 }
4737 }
4738
4739 return true;
4740 }
4741
4742 /* See symtab.h. */
4743
4744 std::vector<symbol_search>
4745 global_symbol_searcher::search () const
4746 {
4747 gdb::optional<compiled_regex> preg;
4748 gdb::optional<compiled_regex> treg;
4749
4750 gdb_assert (m_kind != ALL_DOMAIN);
4751
4752 if (m_symbol_name_regexp != NULL)
4753 {
4754 const char *symbol_name_regexp = m_symbol_name_regexp;
4755
4756 /* Make sure spacing is right for C++ operators.
4757 This is just a courtesy to make the matching less sensitive
4758 to how many spaces the user leaves between 'operator'
4759 and <TYPENAME> or <OPERATOR>. */
4760 const char *opend;
4761 const char *opname = operator_chars (symbol_name_regexp, &opend);
4762
4763 if (*opname)
4764 {
4765 int fix = -1; /* -1 means ok; otherwise number of
4766 spaces needed. */
4767
4768 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4769 {
4770 /* There should 1 space between 'operator' and 'TYPENAME'. */
4771 if (opname[-1] != ' ' || opname[-2] == ' ')
4772 fix = 1;
4773 }
4774 else
4775 {
4776 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4777 if (opname[-1] == ' ')
4778 fix = 0;
4779 }
4780 /* If wrong number of spaces, fix it. */
4781 if (fix >= 0)
4782 {
4783 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4784
4785 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4786 symbol_name_regexp = tmp;
4787 }
4788 }
4789
4790 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4791 ? REG_ICASE : 0);
4792 preg.emplace (symbol_name_regexp, cflags,
4793 _("Invalid regexp"));
4794 }
4795
4796 if (m_symbol_type_regexp != NULL)
4797 {
4798 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4799 ? REG_ICASE : 0);
4800 treg.emplace (m_symbol_type_regexp, cflags,
4801 _("Invalid regexp"));
4802 }
4803
4804 bool found_msymbol = false;
4805 std::set<symbol_search> result_set;
4806 for (objfile *objfile : current_program_space->objfiles ())
4807 {
4808 /* Expand symtabs within objfile that possibly contain matching
4809 symbols. */
4810 found_msymbol |= expand_symtabs (objfile, preg);
4811
4812 /* Find matching symbols within OBJFILE and add them in to the
4813 RESULT_SET set. Use a set here so that we can easily detect
4814 duplicates as we go, and can therefore track how many unique
4815 matches we have found so far. */
4816 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4817 break;
4818 }
4819
4820 /* Convert the result set into a sorted result list, as std::set is
4821 defined to be sorted then no explicit call to std::sort is needed. */
4822 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4823
4824 /* If there are no debug symbols, then add matching minsyms. But if the
4825 user wants to see symbols matching a type regexp, then never give a
4826 minimal symbol, as we assume that a minimal symbol does not have a
4827 type. */
4828 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4829 && !m_exclude_minsyms
4830 && !treg.has_value ())
4831 {
4832 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4833 for (objfile *objfile : current_program_space->objfiles ())
4834 if (!add_matching_msymbols (objfile, preg, &result))
4835 break;
4836 }
4837
4838 return result;
4839 }
4840
4841 /* See symtab.h. */
4842
4843 std::string
4844 symbol_to_info_string (struct symbol *sym, int block,
4845 enum search_domain kind)
4846 {
4847 std::string str;
4848
4849 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4850
4851 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4852 str += "static ";
4853
4854 /* Typedef that is not a C++ class. */
4855 if (kind == TYPES_DOMAIN
4856 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4857 {
4858 string_file tmp_stream;
4859
4860 /* FIXME: For C (and C++) we end up with a difference in output here
4861 between how a typedef is printed, and non-typedefs are printed.
4862 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4863 appear C-like, while TYPE_PRINT doesn't.
4864
4865 For the struct printing case below, things are worse, we force
4866 printing of the ";" in this function, which is going to be wrong
4867 for languages that don't require a ";" between statements. */
4868 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4869 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4870 else
4871 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4872 str += tmp_stream.string ();
4873 }
4874 /* variable, func, or typedef-that-is-c++-class. */
4875 else if (kind < TYPES_DOMAIN
4876 || (kind == TYPES_DOMAIN
4877 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4878 {
4879 string_file tmp_stream;
4880
4881 type_print (SYMBOL_TYPE (sym),
4882 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4883 ? "" : sym->print_name ()),
4884 &tmp_stream, 0);
4885
4886 str += tmp_stream.string ();
4887 str += ";";
4888 }
4889 /* Printing of modules is currently done here, maybe at some future
4890 point we might want a language specific method to print the module
4891 symbol so that we can customise the output more. */
4892 else if (kind == MODULES_DOMAIN)
4893 str += sym->print_name ();
4894
4895 return str;
4896 }
4897
4898 /* Helper function for symbol info commands, for example 'info functions',
4899 'info variables', etc. KIND is the kind of symbol we searched for, and
4900 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4901 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4902 print file and line number information for the symbol as well. Skip
4903 printing the filename if it matches LAST. */
4904
4905 static void
4906 print_symbol_info (enum search_domain kind,
4907 struct symbol *sym,
4908 int block, const char *last)
4909 {
4910 scoped_switch_to_sym_language_if_auto l (sym);
4911 struct symtab *s = symbol_symtab (sym);
4912
4913 if (last != NULL)
4914 {
4915 const char *s_filename = symtab_to_filename_for_display (s);
4916
4917 if (filename_cmp (last, s_filename) != 0)
4918 {
4919 printf_filtered (_("\nFile %ps:\n"),
4920 styled_string (file_name_style.style (),
4921 s_filename));
4922 }
4923
4924 if (SYMBOL_LINE (sym) != 0)
4925 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4926 else
4927 puts_filtered ("\t");
4928 }
4929
4930 std::string str = symbol_to_info_string (sym, block, kind);
4931 printf_filtered ("%s\n", str.c_str ());
4932 }
4933
4934 /* This help function for symtab_symbol_info() prints information
4935 for non-debugging symbols to gdb_stdout. */
4936
4937 static void
4938 print_msymbol_info (struct bound_minimal_symbol msymbol)
4939 {
4940 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4941 char *tmp;
4942
4943 if (gdbarch_addr_bit (gdbarch) <= 32)
4944 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4945 & (CORE_ADDR) 0xffffffff,
4946 8);
4947 else
4948 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4949 16);
4950
4951 ui_file_style sym_style = (msymbol.minsym->text_p ()
4952 ? function_name_style.style ()
4953 : ui_file_style ());
4954
4955 printf_filtered (_("%ps %ps\n"),
4956 styled_string (address_style.style (), tmp),
4957 styled_string (sym_style, msymbol.minsym->print_name ()));
4958 }
4959
4960 /* This is the guts of the commands "info functions", "info types", and
4961 "info variables". It calls search_symbols to find all matches and then
4962 print_[m]symbol_info to print out some useful information about the
4963 matches. */
4964
4965 static void
4966 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4967 const char *regexp, enum search_domain kind,
4968 const char *t_regexp, int from_tty)
4969 {
4970 static const char * const classnames[] =
4971 {"variable", "function", "type", "module"};
4972 const char *last_filename = "";
4973 int first = 1;
4974
4975 gdb_assert (kind != ALL_DOMAIN);
4976
4977 if (regexp != nullptr && *regexp == '\0')
4978 regexp = nullptr;
4979
4980 global_symbol_searcher spec (kind, regexp);
4981 spec.set_symbol_type_regexp (t_regexp);
4982 spec.set_exclude_minsyms (exclude_minsyms);
4983 std::vector<symbol_search> symbols = spec.search ();
4984
4985 if (!quiet)
4986 {
4987 if (regexp != NULL)
4988 {
4989 if (t_regexp != NULL)
4990 printf_filtered
4991 (_("All %ss matching regular expression \"%s\""
4992 " with type matching regular expression \"%s\":\n"),
4993 classnames[kind], regexp, t_regexp);
4994 else
4995 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4996 classnames[kind], regexp);
4997 }
4998 else
4999 {
5000 if (t_regexp != NULL)
5001 printf_filtered
5002 (_("All defined %ss"
5003 " with type matching regular expression \"%s\" :\n"),
5004 classnames[kind], t_regexp);
5005 else
5006 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
5007 }
5008 }
5009
5010 for (const symbol_search &p : symbols)
5011 {
5012 QUIT;
5013
5014 if (p.msymbol.minsym != NULL)
5015 {
5016 if (first)
5017 {
5018 if (!quiet)
5019 printf_filtered (_("\nNon-debugging symbols:\n"));
5020 first = 0;
5021 }
5022 print_msymbol_info (p.msymbol);
5023 }
5024 else
5025 {
5026 print_symbol_info (kind,
5027 p.symbol,
5028 p.block,
5029 last_filename);
5030 last_filename
5031 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5032 }
5033 }
5034 }
5035
5036 /* Structure to hold the values of the options used by the 'info variables'
5037 and 'info functions' commands. These correspond to the -q, -t, and -n
5038 options. */
5039
5040 struct info_vars_funcs_options
5041 {
5042 bool quiet = false;
5043 bool exclude_minsyms = false;
5044 char *type_regexp = nullptr;
5045
5046 ~info_vars_funcs_options ()
5047 {
5048 xfree (type_regexp);
5049 }
5050 };
5051
5052 /* The options used by the 'info variables' and 'info functions'
5053 commands. */
5054
5055 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5056 gdb::option::boolean_option_def<info_vars_funcs_options> {
5057 "q",
5058 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5059 nullptr, /* show_cmd_cb */
5060 nullptr /* set_doc */
5061 },
5062
5063 gdb::option::boolean_option_def<info_vars_funcs_options> {
5064 "n",
5065 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5066 nullptr, /* show_cmd_cb */
5067 nullptr /* set_doc */
5068 },
5069
5070 gdb::option::string_option_def<info_vars_funcs_options> {
5071 "t",
5072 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5073 },
5074 nullptr, /* show_cmd_cb */
5075 nullptr /* set_doc */
5076 }
5077 };
5078
5079 /* Returns the option group used by 'info variables' and 'info
5080 functions'. */
5081
5082 static gdb::option::option_def_group
5083 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5084 {
5085 return {{info_vars_funcs_options_defs}, opts};
5086 }
5087
5088 /* Command completer for 'info variables' and 'info functions'. */
5089
5090 static void
5091 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5092 completion_tracker &tracker,
5093 const char *text, const char * /* word */)
5094 {
5095 const auto group
5096 = make_info_vars_funcs_options_def_group (nullptr);
5097 if (gdb::option::complete_options
5098 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5099 return;
5100
5101 const char *word = advance_to_expression_complete_word_point (tracker, text);
5102 symbol_completer (ignore, tracker, text, word);
5103 }
5104
5105 /* Implement the 'info variables' command. */
5106
5107 static void
5108 info_variables_command (const char *args, int from_tty)
5109 {
5110 info_vars_funcs_options opts;
5111 auto grp = make_info_vars_funcs_options_def_group (&opts);
5112 gdb::option::process_options
5113 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5114 if (args != nullptr && *args == '\0')
5115 args = nullptr;
5116
5117 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5118 opts.type_regexp, from_tty);
5119 }
5120
5121 /* Implement the 'info functions' command. */
5122
5123 static void
5124 info_functions_command (const char *args, int from_tty)
5125 {
5126 info_vars_funcs_options opts;
5127
5128 auto grp = make_info_vars_funcs_options_def_group (&opts);
5129 gdb::option::process_options
5130 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5131 if (args != nullptr && *args == '\0')
5132 args = nullptr;
5133
5134 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5135 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5136 }
5137
5138 /* Holds the -q option for the 'info types' command. */
5139
5140 struct info_types_options
5141 {
5142 bool quiet = false;
5143 };
5144
5145 /* The options used by the 'info types' command. */
5146
5147 static const gdb::option::option_def info_types_options_defs[] = {
5148 gdb::option::boolean_option_def<info_types_options> {
5149 "q",
5150 [] (info_types_options *opt) { return &opt->quiet; },
5151 nullptr, /* show_cmd_cb */
5152 nullptr /* set_doc */
5153 }
5154 };
5155
5156 /* Returns the option group used by 'info types'. */
5157
5158 static gdb::option::option_def_group
5159 make_info_types_options_def_group (info_types_options *opts)
5160 {
5161 return {{info_types_options_defs}, opts};
5162 }
5163
5164 /* Implement the 'info types' command. */
5165
5166 static void
5167 info_types_command (const char *args, int from_tty)
5168 {
5169 info_types_options opts;
5170
5171 auto grp = make_info_types_options_def_group (&opts);
5172 gdb::option::process_options
5173 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5174 if (args != nullptr && *args == '\0')
5175 args = nullptr;
5176 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5177 }
5178
5179 /* Command completer for 'info types' command. */
5180
5181 static void
5182 info_types_command_completer (struct cmd_list_element *ignore,
5183 completion_tracker &tracker,
5184 const char *text, const char * /* word */)
5185 {
5186 const auto group
5187 = make_info_types_options_def_group (nullptr);
5188 if (gdb::option::complete_options
5189 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5190 return;
5191
5192 const char *word = advance_to_expression_complete_word_point (tracker, text);
5193 symbol_completer (ignore, tracker, text, word);
5194 }
5195
5196 /* Implement the 'info modules' command. */
5197
5198 static void
5199 info_modules_command (const char *args, int from_tty)
5200 {
5201 info_types_options opts;
5202
5203 auto grp = make_info_types_options_def_group (&opts);
5204 gdb::option::process_options
5205 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5206 if (args != nullptr && *args == '\0')
5207 args = nullptr;
5208 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5209 from_tty);
5210 }
5211
5212 static void
5213 rbreak_command (const char *regexp, int from_tty)
5214 {
5215 std::string string;
5216 const char *file_name = nullptr;
5217
5218 if (regexp != nullptr)
5219 {
5220 const char *colon = strchr (regexp, ':');
5221
5222 /* Ignore the colon if it is part of a Windows drive. */
5223 if (HAS_DRIVE_SPEC (regexp)
5224 && (regexp[2] == '/' || regexp[2] == '\\'))
5225 colon = strchr (STRIP_DRIVE_SPEC (regexp), ':');
5226
5227 if (colon && *(colon + 1) != ':')
5228 {
5229 int colon_index;
5230 char *local_name;
5231
5232 colon_index = colon - regexp;
5233 local_name = (char *) alloca (colon_index + 1);
5234 memcpy (local_name, regexp, colon_index);
5235 local_name[colon_index--] = 0;
5236 while (isspace (local_name[colon_index]))
5237 local_name[colon_index--] = 0;
5238 file_name = local_name;
5239 regexp = skip_spaces (colon + 1);
5240 }
5241 }
5242
5243 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5244 if (file_name != nullptr)
5245 spec.filenames.push_back (file_name);
5246 std::vector<symbol_search> symbols = spec.search ();
5247
5248 scoped_rbreak_breakpoints finalize;
5249 for (const symbol_search &p : symbols)
5250 {
5251 if (p.msymbol.minsym == NULL)
5252 {
5253 struct symtab *symtab = symbol_symtab (p.symbol);
5254 const char *fullname = symtab_to_fullname (symtab);
5255
5256 string = string_printf ("%s:'%s'", fullname,
5257 p.symbol->linkage_name ());
5258 break_command (&string[0], from_tty);
5259 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5260 }
5261 else
5262 {
5263 string = string_printf ("'%s'",
5264 p.msymbol.minsym->linkage_name ());
5265
5266 break_command (&string[0], from_tty);
5267 printf_filtered ("<function, no debug info> %s;\n",
5268 p.msymbol.minsym->print_name ());
5269 }
5270 }
5271 }
5272 \f
5273
5274 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5275
5276 static int
5277 compare_symbol_name (const char *symbol_name, language symbol_language,
5278 const lookup_name_info &lookup_name,
5279 completion_match_result &match_res)
5280 {
5281 const language_defn *lang = language_def (symbol_language);
5282
5283 symbol_name_matcher_ftype *name_match
5284 = lang->get_symbol_name_matcher (lookup_name);
5285
5286 return name_match (symbol_name, lookup_name, &match_res);
5287 }
5288
5289 /* See symtab.h. */
5290
5291 bool
5292 completion_list_add_name (completion_tracker &tracker,
5293 language symbol_language,
5294 const char *symname,
5295 const lookup_name_info &lookup_name,
5296 const char *text, const char *word)
5297 {
5298 completion_match_result &match_res
5299 = tracker.reset_completion_match_result ();
5300
5301 /* Clip symbols that cannot match. */
5302 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5303 return false;
5304
5305 /* Refresh SYMNAME from the match string. It's potentially
5306 different depending on language. (E.g., on Ada, the match may be
5307 the encoded symbol name wrapped in "<>"). */
5308 symname = match_res.match.match ();
5309 gdb_assert (symname != NULL);
5310
5311 /* We have a match for a completion, so add SYMNAME to the current list
5312 of matches. Note that the name is moved to freshly malloc'd space. */
5313
5314 {
5315 gdb::unique_xmalloc_ptr<char> completion
5316 = make_completion_match_str (symname, text, word);
5317
5318 /* Here we pass the match-for-lcd object to add_completion. Some
5319 languages match the user text against substrings of symbol
5320 names in some cases. E.g., in C++, "b push_ba" completes to
5321 "std::vector::push_back", "std::string::push_back", etc., and
5322 in this case we want the completion lowest common denominator
5323 to be "push_back" instead of "std::". */
5324 tracker.add_completion (std::move (completion),
5325 &match_res.match_for_lcd, text, word);
5326 }
5327
5328 return true;
5329 }
5330
5331 /* completion_list_add_name wrapper for struct symbol. */
5332
5333 static void
5334 completion_list_add_symbol (completion_tracker &tracker,
5335 symbol *sym,
5336 const lookup_name_info &lookup_name,
5337 const char *text, const char *word)
5338 {
5339 if (!completion_list_add_name (tracker, sym->language (),
5340 sym->natural_name (),
5341 lookup_name, text, word))
5342 return;
5343
5344 /* C++ function symbols include the parameters within both the msymbol
5345 name and the symbol name. The problem is that the msymbol name will
5346 describe the parameters in the most basic way, with typedefs stripped
5347 out, while the symbol name will represent the types as they appear in
5348 the program. This means we will see duplicate entries in the
5349 completion tracker. The following converts the symbol name back to
5350 the msymbol name and removes the msymbol name from the completion
5351 tracker. */
5352 if (sym->language () == language_cplus
5353 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5354 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5355 {
5356 /* The call to canonicalize returns the empty string if the input
5357 string is already in canonical form, thanks to this we don't
5358 remove the symbol we just added above. */
5359 gdb::unique_xmalloc_ptr<char> str
5360 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5361 if (str != nullptr)
5362 tracker.remove_completion (str.get ());
5363 }
5364 }
5365
5366 /* completion_list_add_name wrapper for struct minimal_symbol. */
5367
5368 static void
5369 completion_list_add_msymbol (completion_tracker &tracker,
5370 minimal_symbol *sym,
5371 const lookup_name_info &lookup_name,
5372 const char *text, const char *word)
5373 {
5374 completion_list_add_name (tracker, sym->language (),
5375 sym->natural_name (),
5376 lookup_name, text, word);
5377 }
5378
5379
5380 /* ObjC: In case we are completing on a selector, look as the msymbol
5381 again and feed all the selectors into the mill. */
5382
5383 static void
5384 completion_list_objc_symbol (completion_tracker &tracker,
5385 struct minimal_symbol *msymbol,
5386 const lookup_name_info &lookup_name,
5387 const char *text, const char *word)
5388 {
5389 static char *tmp = NULL;
5390 static unsigned int tmplen = 0;
5391
5392 const char *method, *category, *selector;
5393 char *tmp2 = NULL;
5394
5395 method = msymbol->natural_name ();
5396
5397 /* Is it a method? */
5398 if ((method[0] != '-') && (method[0] != '+'))
5399 return;
5400
5401 if (text[0] == '[')
5402 /* Complete on shortened method method. */
5403 completion_list_add_name (tracker, language_objc,
5404 method + 1,
5405 lookup_name,
5406 text, word);
5407
5408 while ((strlen (method) + 1) >= tmplen)
5409 {
5410 if (tmplen == 0)
5411 tmplen = 1024;
5412 else
5413 tmplen *= 2;
5414 tmp = (char *) xrealloc (tmp, tmplen);
5415 }
5416 selector = strchr (method, ' ');
5417 if (selector != NULL)
5418 selector++;
5419
5420 category = strchr (method, '(');
5421
5422 if ((category != NULL) && (selector != NULL))
5423 {
5424 memcpy (tmp, method, (category - method));
5425 tmp[category - method] = ' ';
5426 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5427 completion_list_add_name (tracker, language_objc, tmp,
5428 lookup_name, text, word);
5429 if (text[0] == '[')
5430 completion_list_add_name (tracker, language_objc, tmp + 1,
5431 lookup_name, text, word);
5432 }
5433
5434 if (selector != NULL)
5435 {
5436 /* Complete on selector only. */
5437 strcpy (tmp, selector);
5438 tmp2 = strchr (tmp, ']');
5439 if (tmp2 != NULL)
5440 *tmp2 = '\0';
5441
5442 completion_list_add_name (tracker, language_objc, tmp,
5443 lookup_name, text, word);
5444 }
5445 }
5446
5447 /* Break the non-quoted text based on the characters which are in
5448 symbols. FIXME: This should probably be language-specific. */
5449
5450 static const char *
5451 language_search_unquoted_string (const char *text, const char *p)
5452 {
5453 for (; p > text; --p)
5454 {
5455 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5456 continue;
5457 else
5458 {
5459 if ((current_language->la_language == language_objc))
5460 {
5461 if (p[-1] == ':') /* Might be part of a method name. */
5462 continue;
5463 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5464 p -= 2; /* Beginning of a method name. */
5465 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5466 { /* Might be part of a method name. */
5467 const char *t = p;
5468
5469 /* Seeing a ' ' or a '(' is not conclusive evidence
5470 that we are in the middle of a method name. However,
5471 finding "-[" or "+[" should be pretty un-ambiguous.
5472 Unfortunately we have to find it now to decide. */
5473
5474 while (t > text)
5475 if (isalnum (t[-1]) || t[-1] == '_' ||
5476 t[-1] == ' ' || t[-1] == ':' ||
5477 t[-1] == '(' || t[-1] == ')')
5478 --t;
5479 else
5480 break;
5481
5482 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5483 p = t - 2; /* Method name detected. */
5484 /* Else we leave with p unchanged. */
5485 }
5486 }
5487 break;
5488 }
5489 }
5490 return p;
5491 }
5492
5493 static void
5494 completion_list_add_fields (completion_tracker &tracker,
5495 struct symbol *sym,
5496 const lookup_name_info &lookup_name,
5497 const char *text, const char *word)
5498 {
5499 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5500 {
5501 struct type *t = SYMBOL_TYPE (sym);
5502 enum type_code c = t->code ();
5503 int j;
5504
5505 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5506 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5507 if (TYPE_FIELD_NAME (t, j))
5508 completion_list_add_name (tracker, sym->language (),
5509 TYPE_FIELD_NAME (t, j),
5510 lookup_name, text, word);
5511 }
5512 }
5513
5514 /* See symtab.h. */
5515
5516 bool
5517 symbol_is_function_or_method (symbol *sym)
5518 {
5519 switch (SYMBOL_TYPE (sym)->code ())
5520 {
5521 case TYPE_CODE_FUNC:
5522 case TYPE_CODE_METHOD:
5523 return true;
5524 default:
5525 return false;
5526 }
5527 }
5528
5529 /* See symtab.h. */
5530
5531 bool
5532 symbol_is_function_or_method (minimal_symbol *msymbol)
5533 {
5534 switch (MSYMBOL_TYPE (msymbol))
5535 {
5536 case mst_text:
5537 case mst_text_gnu_ifunc:
5538 case mst_solib_trampoline:
5539 case mst_file_text:
5540 return true;
5541 default:
5542 return false;
5543 }
5544 }
5545
5546 /* See symtab.h. */
5547
5548 bound_minimal_symbol
5549 find_gnu_ifunc (const symbol *sym)
5550 {
5551 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5552 return {};
5553
5554 lookup_name_info lookup_name (sym->search_name (),
5555 symbol_name_match_type::SEARCH_NAME);
5556 struct objfile *objfile = symbol_objfile (sym);
5557
5558 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5559 minimal_symbol *ifunc = NULL;
5560
5561 iterate_over_minimal_symbols (objfile, lookup_name,
5562 [&] (minimal_symbol *minsym)
5563 {
5564 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5565 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5566 {
5567 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5568 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5569 {
5570 struct gdbarch *gdbarch = objfile->arch ();
5571 msym_addr
5572 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5573 msym_addr,
5574 current_top_target ());
5575 }
5576 if (msym_addr == address)
5577 {
5578 ifunc = minsym;
5579 return true;
5580 }
5581 }
5582 return false;
5583 });
5584
5585 if (ifunc != NULL)
5586 return {ifunc, objfile};
5587 return {};
5588 }
5589
5590 /* Add matching symbols from SYMTAB to the current completion list. */
5591
5592 static void
5593 add_symtab_completions (struct compunit_symtab *cust,
5594 completion_tracker &tracker,
5595 complete_symbol_mode mode,
5596 const lookup_name_info &lookup_name,
5597 const char *text, const char *word,
5598 enum type_code code)
5599 {
5600 struct symbol *sym;
5601 const struct block *b;
5602 struct block_iterator iter;
5603 int i;
5604
5605 if (cust == NULL)
5606 return;
5607
5608 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5609 {
5610 QUIT;
5611 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5612 ALL_BLOCK_SYMBOLS (b, iter, sym)
5613 {
5614 if (completion_skip_symbol (mode, sym))
5615 continue;
5616
5617 if (code == TYPE_CODE_UNDEF
5618 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5619 && SYMBOL_TYPE (sym)->code () == code))
5620 completion_list_add_symbol (tracker, sym,
5621 lookup_name,
5622 text, word);
5623 }
5624 }
5625 }
5626
5627 void
5628 default_collect_symbol_completion_matches_break_on
5629 (completion_tracker &tracker, complete_symbol_mode mode,
5630 symbol_name_match_type name_match_type,
5631 const char *text, const char *word,
5632 const char *break_on, enum type_code code)
5633 {
5634 /* Problem: All of the symbols have to be copied because readline
5635 frees them. I'm not going to worry about this; hopefully there
5636 won't be that many. */
5637
5638 struct symbol *sym;
5639 const struct block *b;
5640 const struct block *surrounding_static_block, *surrounding_global_block;
5641 struct block_iterator iter;
5642 /* The symbol we are completing on. Points in same buffer as text. */
5643 const char *sym_text;
5644
5645 /* Now look for the symbol we are supposed to complete on. */
5646 if (mode == complete_symbol_mode::LINESPEC)
5647 sym_text = text;
5648 else
5649 {
5650 const char *p;
5651 char quote_found;
5652 const char *quote_pos = NULL;
5653
5654 /* First see if this is a quoted string. */
5655 quote_found = '\0';
5656 for (p = text; *p != '\0'; ++p)
5657 {
5658 if (quote_found != '\0')
5659 {
5660 if (*p == quote_found)
5661 /* Found close quote. */
5662 quote_found = '\0';
5663 else if (*p == '\\' && p[1] == quote_found)
5664 /* A backslash followed by the quote character
5665 doesn't end the string. */
5666 ++p;
5667 }
5668 else if (*p == '\'' || *p == '"')
5669 {
5670 quote_found = *p;
5671 quote_pos = p;
5672 }
5673 }
5674 if (quote_found == '\'')
5675 /* A string within single quotes can be a symbol, so complete on it. */
5676 sym_text = quote_pos + 1;
5677 else if (quote_found == '"')
5678 /* A double-quoted string is never a symbol, nor does it make sense
5679 to complete it any other way. */
5680 {
5681 return;
5682 }
5683 else
5684 {
5685 /* It is not a quoted string. Break it based on the characters
5686 which are in symbols. */
5687 while (p > text)
5688 {
5689 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5690 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5691 --p;
5692 else
5693 break;
5694 }
5695 sym_text = p;
5696 }
5697 }
5698
5699 lookup_name_info lookup_name (sym_text, name_match_type, true);
5700
5701 /* At this point scan through the misc symbol vectors and add each
5702 symbol you find to the list. Eventually we want to ignore
5703 anything that isn't a text symbol (everything else will be
5704 handled by the psymtab code below). */
5705
5706 if (code == TYPE_CODE_UNDEF)
5707 {
5708 for (objfile *objfile : current_program_space->objfiles ())
5709 {
5710 for (minimal_symbol *msymbol : objfile->msymbols ())
5711 {
5712 QUIT;
5713
5714 if (completion_skip_symbol (mode, msymbol))
5715 continue;
5716
5717 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5718 sym_text, word);
5719
5720 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5721 sym_text, word);
5722 }
5723 }
5724 }
5725
5726 /* Add completions for all currently loaded symbol tables. */
5727 for (objfile *objfile : current_program_space->objfiles ())
5728 {
5729 for (compunit_symtab *cust : objfile->compunits ())
5730 add_symtab_completions (cust, tracker, mode, lookup_name,
5731 sym_text, word, code);
5732 }
5733
5734 /* Look through the partial symtabs for all symbols which begin by
5735 matching SYM_TEXT. Expand all CUs that you find to the list. */
5736 expand_symtabs_matching (NULL,
5737 lookup_name,
5738 NULL,
5739 [&] (compunit_symtab *symtab) /* expansion notify */
5740 {
5741 add_symtab_completions (symtab,
5742 tracker, mode, lookup_name,
5743 sym_text, word, code);
5744 },
5745 ALL_DOMAIN);
5746
5747 /* Search upwards from currently selected frame (so that we can
5748 complete on local vars). Also catch fields of types defined in
5749 this places which match our text string. Only complete on types
5750 visible from current context. */
5751
5752 b = get_selected_block (0);
5753 surrounding_static_block = block_static_block (b);
5754 surrounding_global_block = block_global_block (b);
5755 if (surrounding_static_block != NULL)
5756 while (b != surrounding_static_block)
5757 {
5758 QUIT;
5759
5760 ALL_BLOCK_SYMBOLS (b, iter, sym)
5761 {
5762 if (code == TYPE_CODE_UNDEF)
5763 {
5764 completion_list_add_symbol (tracker, sym, lookup_name,
5765 sym_text, word);
5766 completion_list_add_fields (tracker, sym, lookup_name,
5767 sym_text, word);
5768 }
5769 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5770 && SYMBOL_TYPE (sym)->code () == code)
5771 completion_list_add_symbol (tracker, sym, lookup_name,
5772 sym_text, word);
5773 }
5774
5775 /* Stop when we encounter an enclosing function. Do not stop for
5776 non-inlined functions - the locals of the enclosing function
5777 are in scope for a nested function. */
5778 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5779 break;
5780 b = BLOCK_SUPERBLOCK (b);
5781 }
5782
5783 /* Add fields from the file's types; symbols will be added below. */
5784
5785 if (code == TYPE_CODE_UNDEF)
5786 {
5787 if (surrounding_static_block != NULL)
5788 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5789 completion_list_add_fields (tracker, sym, lookup_name,
5790 sym_text, word);
5791
5792 if (surrounding_global_block != NULL)
5793 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5794 completion_list_add_fields (tracker, sym, lookup_name,
5795 sym_text, word);
5796 }
5797
5798 /* Skip macros if we are completing a struct tag -- arguable but
5799 usually what is expected. */
5800 if (current_language->macro_expansion () == macro_expansion_c
5801 && code == TYPE_CODE_UNDEF)
5802 {
5803 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5804
5805 /* This adds a macro's name to the current completion list. */
5806 auto add_macro_name = [&] (const char *macro_name,
5807 const macro_definition *,
5808 macro_source_file *,
5809 int)
5810 {
5811 completion_list_add_name (tracker, language_c, macro_name,
5812 lookup_name, sym_text, word);
5813 };
5814
5815 /* Add any macros visible in the default scope. Note that this
5816 may yield the occasional wrong result, because an expression
5817 might be evaluated in a scope other than the default. For
5818 example, if the user types "break file:line if <TAB>", the
5819 resulting expression will be evaluated at "file:line" -- but
5820 at there does not seem to be a way to detect this at
5821 completion time. */
5822 scope = default_macro_scope ();
5823 if (scope)
5824 macro_for_each_in_scope (scope->file, scope->line,
5825 add_macro_name);
5826
5827 /* User-defined macros are always visible. */
5828 macro_for_each (macro_user_macros, add_macro_name);
5829 }
5830 }
5831
5832 /* Collect all symbols (regardless of class) which begin by matching
5833 TEXT. */
5834
5835 void
5836 collect_symbol_completion_matches (completion_tracker &tracker,
5837 complete_symbol_mode mode,
5838 symbol_name_match_type name_match_type,
5839 const char *text, const char *word)
5840 {
5841 current_language->collect_symbol_completion_matches (tracker, mode,
5842 name_match_type,
5843 text, word,
5844 TYPE_CODE_UNDEF);
5845 }
5846
5847 /* Like collect_symbol_completion_matches, but only collect
5848 STRUCT_DOMAIN symbols whose type code is CODE. */
5849
5850 void
5851 collect_symbol_completion_matches_type (completion_tracker &tracker,
5852 const char *text, const char *word,
5853 enum type_code code)
5854 {
5855 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5856 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5857
5858 gdb_assert (code == TYPE_CODE_UNION
5859 || code == TYPE_CODE_STRUCT
5860 || code == TYPE_CODE_ENUM);
5861 current_language->collect_symbol_completion_matches (tracker, mode,
5862 name_match_type,
5863 text, word, code);
5864 }
5865
5866 /* Like collect_symbol_completion_matches, but collects a list of
5867 symbols defined in all source files named SRCFILE. */
5868
5869 void
5870 collect_file_symbol_completion_matches (completion_tracker &tracker,
5871 complete_symbol_mode mode,
5872 symbol_name_match_type name_match_type,
5873 const char *text, const char *word,
5874 const char *srcfile)
5875 {
5876 /* The symbol we are completing on. Points in same buffer as text. */
5877 const char *sym_text;
5878
5879 /* Now look for the symbol we are supposed to complete on.
5880 FIXME: This should be language-specific. */
5881 if (mode == complete_symbol_mode::LINESPEC)
5882 sym_text = text;
5883 else
5884 {
5885 const char *p;
5886 char quote_found;
5887 const char *quote_pos = NULL;
5888
5889 /* First see if this is a quoted string. */
5890 quote_found = '\0';
5891 for (p = text; *p != '\0'; ++p)
5892 {
5893 if (quote_found != '\0')
5894 {
5895 if (*p == quote_found)
5896 /* Found close quote. */
5897 quote_found = '\0';
5898 else if (*p == '\\' && p[1] == quote_found)
5899 /* A backslash followed by the quote character
5900 doesn't end the string. */
5901 ++p;
5902 }
5903 else if (*p == '\'' || *p == '"')
5904 {
5905 quote_found = *p;
5906 quote_pos = p;
5907 }
5908 }
5909 if (quote_found == '\'')
5910 /* A string within single quotes can be a symbol, so complete on it. */
5911 sym_text = quote_pos + 1;
5912 else if (quote_found == '"')
5913 /* A double-quoted string is never a symbol, nor does it make sense
5914 to complete it any other way. */
5915 {
5916 return;
5917 }
5918 else
5919 {
5920 /* Not a quoted string. */
5921 sym_text = language_search_unquoted_string (text, p);
5922 }
5923 }
5924
5925 lookup_name_info lookup_name (sym_text, name_match_type, true);
5926
5927 /* Go through symtabs for SRCFILE and check the externs and statics
5928 for symbols which match. */
5929 iterate_over_symtabs (srcfile, [&] (symtab *s)
5930 {
5931 add_symtab_completions (SYMTAB_COMPUNIT (s),
5932 tracker, mode, lookup_name,
5933 sym_text, word, TYPE_CODE_UNDEF);
5934 return false;
5935 });
5936 }
5937
5938 /* A helper function for make_source_files_completion_list. It adds
5939 another file name to a list of possible completions, growing the
5940 list as necessary. */
5941
5942 static void
5943 add_filename_to_list (const char *fname, const char *text, const char *word,
5944 completion_list *list)
5945 {
5946 list->emplace_back (make_completion_match_str (fname, text, word));
5947 }
5948
5949 static int
5950 not_interesting_fname (const char *fname)
5951 {
5952 static const char *illegal_aliens[] = {
5953 "_globals_", /* inserted by coff_symtab_read */
5954 NULL
5955 };
5956 int i;
5957
5958 for (i = 0; illegal_aliens[i]; i++)
5959 {
5960 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5961 return 1;
5962 }
5963 return 0;
5964 }
5965
5966 /* An object of this type is passed as the user_data argument to
5967 map_partial_symbol_filenames. */
5968 struct add_partial_filename_data
5969 {
5970 struct filename_seen_cache *filename_seen_cache;
5971 const char *text;
5972 const char *word;
5973 int text_len;
5974 completion_list *list;
5975 };
5976
5977 /* A callback for map_partial_symbol_filenames. */
5978
5979 static void
5980 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5981 void *user_data)
5982 {
5983 struct add_partial_filename_data *data
5984 = (struct add_partial_filename_data *) user_data;
5985
5986 if (not_interesting_fname (filename))
5987 return;
5988 if (!data->filename_seen_cache->seen (filename)
5989 && filename_ncmp (filename, data->text, data->text_len) == 0)
5990 {
5991 /* This file matches for a completion; add it to the
5992 current list of matches. */
5993 add_filename_to_list (filename, data->text, data->word, data->list);
5994 }
5995 else
5996 {
5997 const char *base_name = lbasename (filename);
5998
5999 if (base_name != filename
6000 && !data->filename_seen_cache->seen (base_name)
6001 && filename_ncmp (base_name, data->text, data->text_len) == 0)
6002 add_filename_to_list (base_name, data->text, data->word, data->list);
6003 }
6004 }
6005
6006 /* Return a list of all source files whose names begin with matching
6007 TEXT. The file names are looked up in the symbol tables of this
6008 program. */
6009
6010 completion_list
6011 make_source_files_completion_list (const char *text, const char *word)
6012 {
6013 size_t text_len = strlen (text);
6014 completion_list list;
6015 const char *base_name;
6016 struct add_partial_filename_data datum;
6017
6018 if (!have_full_symbols () && !have_partial_symbols ())
6019 return list;
6020
6021 filename_seen_cache filenames_seen;
6022
6023 for (objfile *objfile : current_program_space->objfiles ())
6024 {
6025 for (compunit_symtab *cu : objfile->compunits ())
6026 {
6027 for (symtab *s : compunit_filetabs (cu))
6028 {
6029 if (not_interesting_fname (s->filename))
6030 continue;
6031 if (!filenames_seen.seen (s->filename)
6032 && filename_ncmp (s->filename, text, text_len) == 0)
6033 {
6034 /* This file matches for a completion; add it to the current
6035 list of matches. */
6036 add_filename_to_list (s->filename, text, word, &list);
6037 }
6038 else
6039 {
6040 /* NOTE: We allow the user to type a base name when the
6041 debug info records leading directories, but not the other
6042 way around. This is what subroutines of breakpoint
6043 command do when they parse file names. */
6044 base_name = lbasename (s->filename);
6045 if (base_name != s->filename
6046 && !filenames_seen.seen (base_name)
6047 && filename_ncmp (base_name, text, text_len) == 0)
6048 add_filename_to_list (base_name, text, word, &list);
6049 }
6050 }
6051 }
6052 }
6053
6054 datum.filename_seen_cache = &filenames_seen;
6055 datum.text = text;
6056 datum.word = word;
6057 datum.text_len = text_len;
6058 datum.list = &list;
6059 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6060 0 /*need_fullname*/);
6061
6062 return list;
6063 }
6064 \f
6065 /* Track MAIN */
6066
6067 /* Return the "main_info" object for the current program space. If
6068 the object has not yet been created, create it and fill in some
6069 default values. */
6070
6071 static struct main_info *
6072 get_main_info (void)
6073 {
6074 struct main_info *info = main_progspace_key.get (current_program_space);
6075
6076 if (info == NULL)
6077 {
6078 /* It may seem strange to store the main name in the progspace
6079 and also in whatever objfile happens to see a main name in
6080 its debug info. The reason for this is mainly historical:
6081 gdb returned "main" as the name even if no function named
6082 "main" was defined the program; and this approach lets us
6083 keep compatibility. */
6084 info = main_progspace_key.emplace (current_program_space);
6085 }
6086
6087 return info;
6088 }
6089
6090 static void
6091 set_main_name (const char *name, enum language lang)
6092 {
6093 struct main_info *info = get_main_info ();
6094
6095 if (info->name_of_main != NULL)
6096 {
6097 xfree (info->name_of_main);
6098 info->name_of_main = NULL;
6099 info->language_of_main = language_unknown;
6100 }
6101 if (name != NULL)
6102 {
6103 info->name_of_main = xstrdup (name);
6104 info->language_of_main = lang;
6105 }
6106 }
6107
6108 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6109 accordingly. */
6110
6111 static void
6112 find_main_name (void)
6113 {
6114 const char *new_main_name;
6115
6116 /* First check the objfiles to see whether a debuginfo reader has
6117 picked up the appropriate main name. Historically the main name
6118 was found in a more or less random way; this approach instead
6119 relies on the order of objfile creation -- which still isn't
6120 guaranteed to get the correct answer, but is just probably more
6121 accurate. */
6122 for (objfile *objfile : current_program_space->objfiles ())
6123 {
6124 if (objfile->per_bfd->name_of_main != NULL)
6125 {
6126 set_main_name (objfile->per_bfd->name_of_main,
6127 objfile->per_bfd->language_of_main);
6128 return;
6129 }
6130 }
6131
6132 /* Try to see if the main procedure is in Ada. */
6133 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6134 be to add a new method in the language vector, and call this
6135 method for each language until one of them returns a non-empty
6136 name. This would allow us to remove this hard-coded call to
6137 an Ada function. It is not clear that this is a better approach
6138 at this point, because all methods need to be written in a way
6139 such that false positives never be returned. For instance, it is
6140 important that a method does not return a wrong name for the main
6141 procedure if the main procedure is actually written in a different
6142 language. It is easy to guaranty this with Ada, since we use a
6143 special symbol generated only when the main in Ada to find the name
6144 of the main procedure. It is difficult however to see how this can
6145 be guarantied for languages such as C, for instance. This suggests
6146 that order of call for these methods becomes important, which means
6147 a more complicated approach. */
6148 new_main_name = ada_main_name ();
6149 if (new_main_name != NULL)
6150 {
6151 set_main_name (new_main_name, language_ada);
6152 return;
6153 }
6154
6155 new_main_name = d_main_name ();
6156 if (new_main_name != NULL)
6157 {
6158 set_main_name (new_main_name, language_d);
6159 return;
6160 }
6161
6162 new_main_name = go_main_name ();
6163 if (new_main_name != NULL)
6164 {
6165 set_main_name (new_main_name, language_go);
6166 return;
6167 }
6168
6169 new_main_name = pascal_main_name ();
6170 if (new_main_name != NULL)
6171 {
6172 set_main_name (new_main_name, language_pascal);
6173 return;
6174 }
6175
6176 /* The languages above didn't identify the name of the main procedure.
6177 Fallback to "main". */
6178
6179 /* Try to find language for main in psymtabs. */
6180 enum language lang
6181 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6182 if (lang != language_unknown)
6183 {
6184 set_main_name ("main", lang);
6185 return;
6186 }
6187
6188 set_main_name ("main", language_unknown);
6189 }
6190
6191 /* See symtab.h. */
6192
6193 const char *
6194 main_name ()
6195 {
6196 struct main_info *info = get_main_info ();
6197
6198 if (info->name_of_main == NULL)
6199 find_main_name ();
6200
6201 return info->name_of_main;
6202 }
6203
6204 /* Return the language of the main function. If it is not known,
6205 return language_unknown. */
6206
6207 enum language
6208 main_language (void)
6209 {
6210 struct main_info *info = get_main_info ();
6211
6212 if (info->name_of_main == NULL)
6213 find_main_name ();
6214
6215 return info->language_of_main;
6216 }
6217
6218 /* Handle ``executable_changed'' events for the symtab module. */
6219
6220 static void
6221 symtab_observer_executable_changed (void)
6222 {
6223 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6224 set_main_name (NULL, language_unknown);
6225 }
6226
6227 /* Return 1 if the supplied producer string matches the ARM RealView
6228 compiler (armcc). */
6229
6230 bool
6231 producer_is_realview (const char *producer)
6232 {
6233 static const char *const arm_idents[] = {
6234 "ARM C Compiler, ADS",
6235 "Thumb C Compiler, ADS",
6236 "ARM C++ Compiler, ADS",
6237 "Thumb C++ Compiler, ADS",
6238 "ARM/Thumb C/C++ Compiler, RVCT",
6239 "ARM C/C++ Compiler, RVCT"
6240 };
6241 int i;
6242
6243 if (producer == NULL)
6244 return false;
6245
6246 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6247 if (startswith (producer, arm_idents[i]))
6248 return true;
6249
6250 return false;
6251 }
6252
6253 \f
6254
6255 /* The next index to hand out in response to a registration request. */
6256
6257 static int next_aclass_value = LOC_FINAL_VALUE;
6258
6259 /* The maximum number of "aclass" registrations we support. This is
6260 constant for convenience. */
6261 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6262
6263 /* The objects representing the various "aclass" values. The elements
6264 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6265 elements are those registered at gdb initialization time. */
6266
6267 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6268
6269 /* The globally visible pointer. This is separate from 'symbol_impl'
6270 so that it can be const. */
6271
6272 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6273
6274 /* Make sure we saved enough room in struct symbol. */
6275
6276 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6277
6278 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6279 is the ops vector associated with this index. This returns the new
6280 index, which should be used as the aclass_index field for symbols
6281 of this type. */
6282
6283 int
6284 register_symbol_computed_impl (enum address_class aclass,
6285 const struct symbol_computed_ops *ops)
6286 {
6287 int result = next_aclass_value++;
6288
6289 gdb_assert (aclass == LOC_COMPUTED);
6290 gdb_assert (result < MAX_SYMBOL_IMPLS);
6291 symbol_impl[result].aclass = aclass;
6292 symbol_impl[result].ops_computed = ops;
6293
6294 /* Sanity check OPS. */
6295 gdb_assert (ops != NULL);
6296 gdb_assert (ops->tracepoint_var_ref != NULL);
6297 gdb_assert (ops->describe_location != NULL);
6298 gdb_assert (ops->get_symbol_read_needs != NULL);
6299 gdb_assert (ops->read_variable != NULL);
6300
6301 return result;
6302 }
6303
6304 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6305 OPS is the ops vector associated with this index. This returns the
6306 new index, which should be used as the aclass_index field for symbols
6307 of this type. */
6308
6309 int
6310 register_symbol_block_impl (enum address_class aclass,
6311 const struct symbol_block_ops *ops)
6312 {
6313 int result = next_aclass_value++;
6314
6315 gdb_assert (aclass == LOC_BLOCK);
6316 gdb_assert (result < MAX_SYMBOL_IMPLS);
6317 symbol_impl[result].aclass = aclass;
6318 symbol_impl[result].ops_block = ops;
6319
6320 /* Sanity check OPS. */
6321 gdb_assert (ops != NULL);
6322 gdb_assert (ops->find_frame_base_location != NULL);
6323
6324 return result;
6325 }
6326
6327 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6328 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6329 this index. This returns the new index, which should be used as
6330 the aclass_index field for symbols of this type. */
6331
6332 int
6333 register_symbol_register_impl (enum address_class aclass,
6334 const struct symbol_register_ops *ops)
6335 {
6336 int result = next_aclass_value++;
6337
6338 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6339 gdb_assert (result < MAX_SYMBOL_IMPLS);
6340 symbol_impl[result].aclass = aclass;
6341 symbol_impl[result].ops_register = ops;
6342
6343 return result;
6344 }
6345
6346 /* Initialize elements of 'symbol_impl' for the constants in enum
6347 address_class. */
6348
6349 static void
6350 initialize_ordinary_address_classes (void)
6351 {
6352 int i;
6353
6354 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6355 symbol_impl[i].aclass = (enum address_class) i;
6356 }
6357
6358 \f
6359
6360 /* See symtab.h. */
6361
6362 struct objfile *
6363 symbol_objfile (const struct symbol *symbol)
6364 {
6365 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6366 return SYMTAB_OBJFILE (symbol->owner.symtab);
6367 }
6368
6369 /* See symtab.h. */
6370
6371 struct gdbarch *
6372 symbol_arch (const struct symbol *symbol)
6373 {
6374 if (!SYMBOL_OBJFILE_OWNED (symbol))
6375 return symbol->owner.arch;
6376 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6377 }
6378
6379 /* See symtab.h. */
6380
6381 struct symtab *
6382 symbol_symtab (const struct symbol *symbol)
6383 {
6384 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6385 return symbol->owner.symtab;
6386 }
6387
6388 /* See symtab.h. */
6389
6390 void
6391 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6392 {
6393 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6394 symbol->owner.symtab = symtab;
6395 }
6396
6397 /* See symtab.h. */
6398
6399 CORE_ADDR
6400 get_symbol_address (const struct symbol *sym)
6401 {
6402 gdb_assert (sym->maybe_copied);
6403 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6404
6405 const char *linkage_name = sym->linkage_name ();
6406
6407 for (objfile *objfile : current_program_space->objfiles ())
6408 {
6409 if (objfile->separate_debug_objfile_backlink != nullptr)
6410 continue;
6411
6412 bound_minimal_symbol minsym
6413 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6414 if (minsym.minsym != nullptr)
6415 return BMSYMBOL_VALUE_ADDRESS (minsym);
6416 }
6417 return sym->value.address;
6418 }
6419
6420 /* See symtab.h. */
6421
6422 CORE_ADDR
6423 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6424 {
6425 gdb_assert (minsym->maybe_copied);
6426 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6427
6428 const char *linkage_name = minsym->linkage_name ();
6429
6430 for (objfile *objfile : current_program_space->objfiles ())
6431 {
6432 if (objfile->separate_debug_objfile_backlink == nullptr
6433 && (objfile->flags & OBJF_MAINLINE) != 0)
6434 {
6435 bound_minimal_symbol found
6436 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6437 if (found.minsym != nullptr)
6438 return BMSYMBOL_VALUE_ADDRESS (found);
6439 }
6440 }
6441 return minsym->value.address + objf->section_offsets[minsym->section];
6442 }
6443
6444 \f
6445
6446 /* Hold the sub-commands of 'info module'. */
6447
6448 static struct cmd_list_element *info_module_cmdlist = NULL;
6449
6450 /* See symtab.h. */
6451
6452 std::vector<module_symbol_search>
6453 search_module_symbols (const char *module_regexp, const char *regexp,
6454 const char *type_regexp, search_domain kind)
6455 {
6456 std::vector<module_symbol_search> results;
6457
6458 /* Search for all modules matching MODULE_REGEXP. */
6459 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6460 spec1.set_exclude_minsyms (true);
6461 std::vector<symbol_search> modules = spec1.search ();
6462
6463 /* Now search for all symbols of the required KIND matching the required
6464 regular expressions. We figure out which ones are in which modules
6465 below. */
6466 global_symbol_searcher spec2 (kind, regexp);
6467 spec2.set_symbol_type_regexp (type_regexp);
6468 spec2.set_exclude_minsyms (true);
6469 std::vector<symbol_search> symbols = spec2.search ();
6470
6471 /* Now iterate over all MODULES, checking to see which items from
6472 SYMBOLS are in each module. */
6473 for (const symbol_search &p : modules)
6474 {
6475 QUIT;
6476
6477 /* This is a module. */
6478 gdb_assert (p.symbol != nullptr);
6479
6480 std::string prefix = p.symbol->print_name ();
6481 prefix += "::";
6482
6483 for (const symbol_search &q : symbols)
6484 {
6485 if (q.symbol == nullptr)
6486 continue;
6487
6488 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6489 prefix.size ()) != 0)
6490 continue;
6491
6492 results.push_back ({p, q});
6493 }
6494 }
6495
6496 return results;
6497 }
6498
6499 /* Implement the core of both 'info module functions' and 'info module
6500 variables'. */
6501
6502 static void
6503 info_module_subcommand (bool quiet, const char *module_regexp,
6504 const char *regexp, const char *type_regexp,
6505 search_domain kind)
6506 {
6507 /* Print a header line. Don't build the header line bit by bit as this
6508 prevents internationalisation. */
6509 if (!quiet)
6510 {
6511 if (module_regexp == nullptr)
6512 {
6513 if (type_regexp == nullptr)
6514 {
6515 if (regexp == nullptr)
6516 printf_filtered ((kind == VARIABLES_DOMAIN
6517 ? _("All variables in all modules:")
6518 : _("All functions in all modules:")));
6519 else
6520 printf_filtered
6521 ((kind == VARIABLES_DOMAIN
6522 ? _("All variables matching regular expression"
6523 " \"%s\" in all modules:")
6524 : _("All functions matching regular expression"
6525 " \"%s\" in all modules:")),
6526 regexp);
6527 }
6528 else
6529 {
6530 if (regexp == nullptr)
6531 printf_filtered
6532 ((kind == VARIABLES_DOMAIN
6533 ? _("All variables with type matching regular "
6534 "expression \"%s\" in all modules:")
6535 : _("All functions with type matching regular "
6536 "expression \"%s\" in all modules:")),
6537 type_regexp);
6538 else
6539 printf_filtered
6540 ((kind == VARIABLES_DOMAIN
6541 ? _("All variables matching regular expression "
6542 "\"%s\",\n\twith type matching regular "
6543 "expression \"%s\" in all modules:")
6544 : _("All functions matching regular expression "
6545 "\"%s\",\n\twith type matching regular "
6546 "expression \"%s\" in all modules:")),
6547 regexp, type_regexp);
6548 }
6549 }
6550 else
6551 {
6552 if (type_regexp == nullptr)
6553 {
6554 if (regexp == nullptr)
6555 printf_filtered
6556 ((kind == VARIABLES_DOMAIN
6557 ? _("All variables in all modules matching regular "
6558 "expression \"%s\":")
6559 : _("All functions in all modules matching regular "
6560 "expression \"%s\":")),
6561 module_regexp);
6562 else
6563 printf_filtered
6564 ((kind == VARIABLES_DOMAIN
6565 ? _("All variables matching regular expression "
6566 "\"%s\",\n\tin all modules matching regular "
6567 "expression \"%s\":")
6568 : _("All functions matching regular expression "
6569 "\"%s\",\n\tin all modules matching regular "
6570 "expression \"%s\":")),
6571 regexp, module_regexp);
6572 }
6573 else
6574 {
6575 if (regexp == nullptr)
6576 printf_filtered
6577 ((kind == VARIABLES_DOMAIN
6578 ? _("All variables with type matching regular "
6579 "expression \"%s\"\n\tin all modules matching "
6580 "regular expression \"%s\":")
6581 : _("All functions with type matching regular "
6582 "expression \"%s\"\n\tin all modules matching "
6583 "regular expression \"%s\":")),
6584 type_regexp, module_regexp);
6585 else
6586 printf_filtered
6587 ((kind == VARIABLES_DOMAIN
6588 ? _("All variables matching regular expression "
6589 "\"%s\",\n\twith type matching regular expression "
6590 "\"%s\",\n\tin all modules matching regular "
6591 "expression \"%s\":")
6592 : _("All functions matching regular expression "
6593 "\"%s\",\n\twith type matching regular expression "
6594 "\"%s\",\n\tin all modules matching regular "
6595 "expression \"%s\":")),
6596 regexp, type_regexp, module_regexp);
6597 }
6598 }
6599 printf_filtered ("\n");
6600 }
6601
6602 /* Find all symbols of type KIND matching the given regular expressions
6603 along with the symbols for the modules in which those symbols
6604 reside. */
6605 std::vector<module_symbol_search> module_symbols
6606 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6607
6608 std::sort (module_symbols.begin (), module_symbols.end (),
6609 [] (const module_symbol_search &a, const module_symbol_search &b)
6610 {
6611 if (a.first < b.first)
6612 return true;
6613 else if (a.first == b.first)
6614 return a.second < b.second;
6615 else
6616 return false;
6617 });
6618
6619 const char *last_filename = "";
6620 const symbol *last_module_symbol = nullptr;
6621 for (const module_symbol_search &ms : module_symbols)
6622 {
6623 const symbol_search &p = ms.first;
6624 const symbol_search &q = ms.second;
6625
6626 gdb_assert (q.symbol != nullptr);
6627
6628 if (last_module_symbol != p.symbol)
6629 {
6630 printf_filtered ("\n");
6631 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6632 last_module_symbol = p.symbol;
6633 last_filename = "";
6634 }
6635
6636 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6637 last_filename);
6638 last_filename
6639 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6640 }
6641 }
6642
6643 /* Hold the option values for the 'info module .....' sub-commands. */
6644
6645 struct info_modules_var_func_options
6646 {
6647 bool quiet = false;
6648 char *type_regexp = nullptr;
6649 char *module_regexp = nullptr;
6650
6651 ~info_modules_var_func_options ()
6652 {
6653 xfree (type_regexp);
6654 xfree (module_regexp);
6655 }
6656 };
6657
6658 /* The options used by 'info module variables' and 'info module functions'
6659 commands. */
6660
6661 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6662 gdb::option::boolean_option_def<info_modules_var_func_options> {
6663 "q",
6664 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6665 nullptr, /* show_cmd_cb */
6666 nullptr /* set_doc */
6667 },
6668
6669 gdb::option::string_option_def<info_modules_var_func_options> {
6670 "t",
6671 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6672 nullptr, /* show_cmd_cb */
6673 nullptr /* set_doc */
6674 },
6675
6676 gdb::option::string_option_def<info_modules_var_func_options> {
6677 "m",
6678 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6679 nullptr, /* show_cmd_cb */
6680 nullptr /* set_doc */
6681 }
6682 };
6683
6684 /* Return the option group used by the 'info module ...' sub-commands. */
6685
6686 static inline gdb::option::option_def_group
6687 make_info_modules_var_func_options_def_group
6688 (info_modules_var_func_options *opts)
6689 {
6690 return {{info_modules_var_func_options_defs}, opts};
6691 }
6692
6693 /* Implements the 'info module functions' command. */
6694
6695 static void
6696 info_module_functions_command (const char *args, int from_tty)
6697 {
6698 info_modules_var_func_options opts;
6699 auto grp = make_info_modules_var_func_options_def_group (&opts);
6700 gdb::option::process_options
6701 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6702 if (args != nullptr && *args == '\0')
6703 args = nullptr;
6704
6705 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6706 opts.type_regexp, FUNCTIONS_DOMAIN);
6707 }
6708
6709 /* Implements the 'info module variables' command. */
6710
6711 static void
6712 info_module_variables_command (const char *args, int from_tty)
6713 {
6714 info_modules_var_func_options opts;
6715 auto grp = make_info_modules_var_func_options_def_group (&opts);
6716 gdb::option::process_options
6717 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6718 if (args != nullptr && *args == '\0')
6719 args = nullptr;
6720
6721 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6722 opts.type_regexp, VARIABLES_DOMAIN);
6723 }
6724
6725 /* Command completer for 'info module ...' sub-commands. */
6726
6727 static void
6728 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6729 completion_tracker &tracker,
6730 const char *text,
6731 const char * /* word */)
6732 {
6733
6734 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6735 if (gdb::option::complete_options
6736 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6737 return;
6738
6739 const char *word = advance_to_expression_complete_word_point (tracker, text);
6740 symbol_completer (ignore, tracker, text, word);
6741 }
6742
6743 \f
6744
6745 void _initialize_symtab ();
6746 void
6747 _initialize_symtab ()
6748 {
6749 cmd_list_element *c;
6750
6751 initialize_ordinary_address_classes ();
6752
6753 c = add_info ("variables", info_variables_command,
6754 info_print_args_help (_("\
6755 All global and static variable names or those matching REGEXPs.\n\
6756 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6757 Prints the global and static variables.\n"),
6758 _("global and static variables"),
6759 true));
6760 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6761 if (dbx_commands)
6762 {
6763 c = add_com ("whereis", class_info, info_variables_command,
6764 info_print_args_help (_("\
6765 All global and static variable names, or those matching REGEXPs.\n\
6766 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6767 Prints the global and static variables.\n"),
6768 _("global and static variables"),
6769 true));
6770 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6771 }
6772
6773 c = add_info ("functions", info_functions_command,
6774 info_print_args_help (_("\
6775 All function names or those matching REGEXPs.\n\
6776 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6777 Prints the functions.\n"),
6778 _("functions"),
6779 true));
6780 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6781
6782 c = add_info ("types", info_types_command, _("\
6783 All type names, or those matching REGEXP.\n\
6784 Usage: info types [-q] [REGEXP]\n\
6785 Print information about all types matching REGEXP, or all types if no\n\
6786 REGEXP is given. The optional flag -q disables printing of headers."));
6787 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6788
6789 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6790
6791 static std::string info_sources_help
6792 = gdb::option::build_help (_("\
6793 All source files in the program or those matching REGEXP.\n\
6794 Usage: info sources [OPTION]... [REGEXP]\n\
6795 By default, REGEXP is used to match anywhere in the filename.\n\
6796 \n\
6797 Options:\n\
6798 %OPTIONS%"),
6799 info_sources_opts);
6800
6801 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6802 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6803
6804 c = add_info ("modules", info_modules_command,
6805 _("All module names, or those matching REGEXP."));
6806 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6807
6808 add_basic_prefix_cmd ("module", class_info, _("\
6809 Print information about modules."),
6810 &info_module_cmdlist, "info module ",
6811 0, &infolist);
6812
6813 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6814 Display functions arranged by modules.\n\
6815 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6816 Print a summary of all functions within each Fortran module, grouped by\n\
6817 module and file. For each function the line on which the function is\n\
6818 defined is given along with the type signature and name of the function.\n\
6819 \n\
6820 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6821 listed. If MODREGEXP is provided then only functions in modules matching\n\
6822 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6823 type signature matches TYPEREGEXP are listed.\n\
6824 \n\
6825 The -q flag suppresses printing some header information."),
6826 &info_module_cmdlist);
6827 set_cmd_completer_handle_brkchars
6828 (c, info_module_var_func_command_completer);
6829
6830 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6831 Display variables arranged by modules.\n\
6832 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6833 Print a summary of all variables within each Fortran module, grouped by\n\
6834 module and file. For each variable the line on which the variable is\n\
6835 defined is given along with the type and name of the variable.\n\
6836 \n\
6837 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6838 listed. If MODREGEXP is provided then only variables in modules matching\n\
6839 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6840 type matches TYPEREGEXP are listed.\n\
6841 \n\
6842 The -q flag suppresses printing some header information."),
6843 &info_module_cmdlist);
6844 set_cmd_completer_handle_brkchars
6845 (c, info_module_var_func_command_completer);
6846
6847 add_com ("rbreak", class_breakpoint, rbreak_command,
6848 _("Set a breakpoint for all functions matching REGEXP."));
6849
6850 add_setshow_enum_cmd ("multiple-symbols", no_class,
6851 multiple_symbols_modes, &multiple_symbols_mode,
6852 _("\
6853 Set how the debugger handles ambiguities in expressions."), _("\
6854 Show how the debugger handles ambiguities in expressions."), _("\
6855 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6856 NULL, NULL, &setlist, &showlist);
6857
6858 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6859 &basenames_may_differ, _("\
6860 Set whether a source file may have multiple base names."), _("\
6861 Show whether a source file may have multiple base names."), _("\
6862 (A \"base name\" is the name of a file with the directory part removed.\n\
6863 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6864 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6865 before comparing them. Canonicalization is an expensive operation,\n\
6866 but it allows the same file be known by more than one base name.\n\
6867 If not set (the default), all source files are assumed to have just\n\
6868 one base name, and gdb will do file name comparisons more efficiently."),
6869 NULL, NULL,
6870 &setlist, &showlist);
6871
6872 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6873 _("Set debugging of symbol table creation."),
6874 _("Show debugging of symbol table creation."), _("\
6875 When enabled (non-zero), debugging messages are printed when building\n\
6876 symbol tables. A value of 1 (one) normally provides enough information.\n\
6877 A value greater than 1 provides more verbose information."),
6878 NULL,
6879 NULL,
6880 &setdebuglist, &showdebuglist);
6881
6882 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6883 _("\
6884 Set debugging of symbol lookup."), _("\
6885 Show debugging of symbol lookup."), _("\
6886 When enabled (non-zero), symbol lookups are logged."),
6887 NULL, NULL,
6888 &setdebuglist, &showdebuglist);
6889
6890 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6891 &new_symbol_cache_size,
6892 _("Set the size of the symbol cache."),
6893 _("Show the size of the symbol cache."), _("\
6894 The size of the symbol cache.\n\
6895 If zero then the symbol cache is disabled."),
6896 set_symbol_cache_size_handler, NULL,
6897 &maintenance_set_cmdlist,
6898 &maintenance_show_cmdlist);
6899
6900 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6901 _("Dump the symbol cache for each program space."),
6902 &maintenanceprintlist);
6903
6904 add_cmd ("symbol-cache-statistics", class_maintenance,
6905 maintenance_print_symbol_cache_statistics,
6906 _("Print symbol cache statistics for each program space."),
6907 &maintenanceprintlist);
6908
6909 add_cmd ("flush-symbol-cache", class_maintenance,
6910 maintenance_flush_symbol_cache,
6911 _("Flush the symbol cache for each program space."),
6912 &maintenancelist);
6913
6914 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6915 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6916 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6917 }