expand_symtab_containing_pc: Renamed from find_pc_sect_symtab_via_partial.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static
83 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
84 int block_index,
85 const char *name,
86 const domain_enum domain);
87
88 extern initialize_file_ftype _initialize_symtab;
89
90 /* Program space key for finding name and language of "main". */
91
92 static const struct program_space_data *main_progspace_key;
93
94 /* Type of the data stored on the program space. */
95
96 struct main_info
97 {
98 /* Name of "main". */
99
100 char *name_of_main;
101
102 /* Language of "main". */
103
104 enum language language_of_main;
105 };
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* Set the primary field in SYMTAB. */
177
178 void
179 set_symtab_primary (struct symtab *symtab, int primary)
180 {
181 symtab->primary = primary;
182
183 if (symtab_create_debug && primary)
184 {
185 fprintf_unfiltered (gdb_stdlog,
186 "Created primary symtab %s for %s.\n",
187 host_address_to_string (symtab),
188 symtab_to_filename_for_display (symtab));
189 }
190 }
191
192 /* See whether FILENAME matches SEARCH_NAME using the rule that we
193 advertise to the user. (The manual's description of linespecs
194 describes what we advertise). Returns true if they match, false
195 otherwise. */
196
197 int
198 compare_filenames_for_search (const char *filename, const char *search_name)
199 {
200 int len = strlen (filename);
201 size_t search_len = strlen (search_name);
202
203 if (len < search_len)
204 return 0;
205
206 /* The tail of FILENAME must match. */
207 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
208 return 0;
209
210 /* Either the names must completely match, or the character
211 preceding the trailing SEARCH_NAME segment of FILENAME must be a
212 directory separator.
213
214 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
215 cannot match FILENAME "/path//dir/file.c" - as user has requested
216 absolute path. The sama applies for "c:\file.c" possibly
217 incorrectly hypothetically matching "d:\dir\c:\file.c".
218
219 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
220 compatible with SEARCH_NAME "file.c". In such case a compiler had
221 to put the "c:file.c" name into debug info. Such compatibility
222 works only on GDB built for DOS host. */
223 return (len == search_len
224 || (!IS_ABSOLUTE_PATH (search_name)
225 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
226 || (HAS_DRIVE_SPEC (filename)
227 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
228 }
229
230 /* Check for a symtab of a specific name by searching some symtabs.
231 This is a helper function for callbacks of iterate_over_symtabs.
232
233 If NAME is not absolute, then REAL_PATH is NULL
234 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
235
236 The return value, NAME, REAL_PATH, CALLBACK, and DATA
237 are identical to the `map_symtabs_matching_filename' method of
238 quick_symbol_functions.
239
240 FIRST and AFTER_LAST indicate the range of symtabs to search.
241 AFTER_LAST is one past the last symtab to search; NULL means to
242 search until the end of the list. */
243
244 int
245 iterate_over_some_symtabs (const char *name,
246 const char *real_path,
247 int (*callback) (struct symtab *symtab,
248 void *data),
249 void *data,
250 struct symtab *first,
251 struct symtab *after_last)
252 {
253 struct symtab *s = NULL;
254 const char* base_name = lbasename (name);
255
256 for (s = first; s != NULL && s != after_last; s = s->next)
257 {
258 if (compare_filenames_for_search (s->filename, name))
259 {
260 if (callback (s, data))
261 return 1;
262 continue;
263 }
264
265 /* Before we invoke realpath, which can get expensive when many
266 files are involved, do a quick comparison of the basenames. */
267 if (! basenames_may_differ
268 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
269 continue;
270
271 if (compare_filenames_for_search (symtab_to_fullname (s), name))
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277
278 /* If the user gave us an absolute path, try to find the file in
279 this symtab and use its absolute path. */
280 if (real_path != NULL)
281 {
282 const char *fullname = symtab_to_fullname (s);
283
284 gdb_assert (IS_ABSOLUTE_PATH (real_path));
285 gdb_assert (IS_ABSOLUTE_PATH (name));
286 if (FILENAME_CMP (real_path, fullname) == 0)
287 {
288 if (callback (s, data))
289 return 1;
290 continue;
291 }
292 }
293 }
294
295 return 0;
296 }
297
298 /* Check for a symtab of a specific name; first in symtabs, then in
299 psymtabs. *If* there is no '/' in the name, a match after a '/'
300 in the symtab filename will also work.
301
302 Calls CALLBACK with each symtab that is found and with the supplied
303 DATA. If CALLBACK returns true, the search stops. */
304
305 void
306 iterate_over_symtabs (const char *name,
307 int (*callback) (struct symtab *symtab,
308 void *data),
309 void *data)
310 {
311 struct objfile *objfile;
312 char *real_path = NULL;
313 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
314
315 /* Here we are interested in canonicalizing an absolute path, not
316 absolutizing a relative path. */
317 if (IS_ABSOLUTE_PATH (name))
318 {
319 real_path = gdb_realpath (name);
320 make_cleanup (xfree, real_path);
321 gdb_assert (IS_ABSOLUTE_PATH (real_path));
322 }
323
324 ALL_OBJFILES (objfile)
325 {
326 if (iterate_over_some_symtabs (name, real_path, callback, data,
327 objfile->symtabs, NULL))
328 {
329 do_cleanups (cleanups);
330 return;
331 }
332 }
333
334 /* Same search rules as above apply here, but now we look thru the
335 psymtabs. */
336
337 ALL_OBJFILES (objfile)
338 {
339 if (objfile->sf
340 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
341 name,
342 real_path,
343 callback,
344 data))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 do_cleanups (cleanups);
352 }
353
354 /* The callback function used by lookup_symtab. */
355
356 static int
357 lookup_symtab_callback (struct symtab *symtab, void *data)
358 {
359 struct symtab **result_ptr = data;
360
361 *result_ptr = symtab;
362 return 1;
363 }
364
365 /* A wrapper for iterate_over_symtabs that returns the first matching
366 symtab, or NULL. */
367
368 struct symtab *
369 lookup_symtab (const char *name)
370 {
371 struct symtab *result = NULL;
372
373 iterate_over_symtabs (name, lookup_symtab_callback, &result);
374 return result;
375 }
376
377 \f
378 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
379 full method name, which consist of the class name (from T), the unadorned
380 method name from METHOD_ID, and the signature for the specific overload,
381 specified by SIGNATURE_ID. Note that this function is g++ specific. */
382
383 char *
384 gdb_mangle_name (struct type *type, int method_id, int signature_id)
385 {
386 int mangled_name_len;
387 char *mangled_name;
388 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
389 struct fn_field *method = &f[signature_id];
390 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
391 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
392 const char *newname = type_name_no_tag (type);
393
394 /* Does the form of physname indicate that it is the full mangled name
395 of a constructor (not just the args)? */
396 int is_full_physname_constructor;
397
398 int is_constructor;
399 int is_destructor = is_destructor_name (physname);
400 /* Need a new type prefix. */
401 char *const_prefix = method->is_const ? "C" : "";
402 char *volatile_prefix = method->is_volatile ? "V" : "";
403 char buf[20];
404 int len = (newname == NULL ? 0 : strlen (newname));
405
406 /* Nothing to do if physname already contains a fully mangled v3 abi name
407 or an operator name. */
408 if ((physname[0] == '_' && physname[1] == 'Z')
409 || is_operator_name (field_name))
410 return xstrdup (physname);
411
412 is_full_physname_constructor = is_constructor_name (physname);
413
414 is_constructor = is_full_physname_constructor
415 || (newname && strcmp (field_name, newname) == 0);
416
417 if (!is_destructor)
418 is_destructor = (strncmp (physname, "__dt", 4) == 0);
419
420 if (is_destructor || is_full_physname_constructor)
421 {
422 mangled_name = (char *) xmalloc (strlen (physname) + 1);
423 strcpy (mangled_name, physname);
424 return mangled_name;
425 }
426
427 if (len == 0)
428 {
429 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
430 }
431 else if (physname[0] == 't' || physname[0] == 'Q')
432 {
433 /* The physname for template and qualified methods already includes
434 the class name. */
435 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
436 newname = NULL;
437 len = 0;
438 }
439 else
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
442 volatile_prefix, len);
443 }
444 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
445 + strlen (buf) + len + strlen (physname) + 1);
446
447 mangled_name = (char *) xmalloc (mangled_name_len);
448 if (is_constructor)
449 mangled_name[0] = '\0';
450 else
451 strcpy (mangled_name, field_name);
452
453 strcat (mangled_name, buf);
454 /* If the class doesn't have a name, i.e. newname NULL, then we just
455 mangle it using 0 for the length of the class. Thus it gets mangled
456 as something starting with `::' rather than `classname::'. */
457 if (newname != NULL)
458 strcat (mangled_name, newname);
459
460 strcat (mangled_name, physname);
461 return (mangled_name);
462 }
463
464 /* Initialize the cplus_specific structure. 'cplus_specific' should
465 only be allocated for use with cplus symbols. */
466
467 static void
468 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
469 struct obstack *obstack)
470 {
471 /* A language_specific structure should not have been previously
472 initialized. */
473 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
474 gdb_assert (obstack != NULL);
475
476 gsymbol->language_specific.cplus_specific =
477 OBSTACK_ZALLOC (obstack, struct cplus_specific);
478 }
479
480 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
481 correctly allocated. For C++ symbols a cplus_specific struct is
482 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
483 OBJFILE can be NULL. */
484
485 void
486 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
487 const char *name,
488 struct obstack *obstack)
489 {
490 if (gsymbol->language == language_cplus)
491 {
492 if (gsymbol->language_specific.cplus_specific == NULL)
493 symbol_init_cplus_specific (gsymbol, obstack);
494
495 gsymbol->language_specific.cplus_specific->demangled_name = name;
496 }
497 else if (gsymbol->language == language_ada)
498 {
499 if (name == NULL)
500 {
501 gsymbol->ada_mangled = 0;
502 gsymbol->language_specific.obstack = obstack;
503 }
504 else
505 {
506 gsymbol->ada_mangled = 1;
507 gsymbol->language_specific.mangled_lang.demangled_name = name;
508 }
509 }
510 else
511 gsymbol->language_specific.mangled_lang.demangled_name = name;
512 }
513
514 /* Return the demangled name of GSYMBOL. */
515
516 const char *
517 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
518 {
519 if (gsymbol->language == language_cplus)
520 {
521 if (gsymbol->language_specific.cplus_specific != NULL)
522 return gsymbol->language_specific.cplus_specific->demangled_name;
523 else
524 return NULL;
525 }
526 else if (gsymbol->language == language_ada)
527 {
528 if (!gsymbol->ada_mangled)
529 return NULL;
530 /* Fall through. */
531 }
532
533 return gsymbol->language_specific.mangled_lang.demangled_name;
534 }
535
536 \f
537 /* Initialize the language dependent portion of a symbol
538 depending upon the language for the symbol. */
539
540 void
541 symbol_set_language (struct general_symbol_info *gsymbol,
542 enum language language,
543 struct obstack *obstack)
544 {
545 gsymbol->language = language;
546 if (gsymbol->language == language_d
547 || gsymbol->language == language_go
548 || gsymbol->language == language_java
549 || gsymbol->language == language_objc
550 || gsymbol->language == language_fortran)
551 {
552 symbol_set_demangled_name (gsymbol, NULL, obstack);
553 }
554 else if (gsymbol->language == language_ada)
555 {
556 gdb_assert (gsymbol->ada_mangled == 0);
557 gsymbol->language_specific.obstack = obstack;
558 }
559 else if (gsymbol->language == language_cplus)
560 gsymbol->language_specific.cplus_specific = NULL;
561 else
562 {
563 memset (&gsymbol->language_specific, 0,
564 sizeof (gsymbol->language_specific));
565 }
566 }
567
568 /* Functions to initialize a symbol's mangled name. */
569
570 /* Objects of this type are stored in the demangled name hash table. */
571 struct demangled_name_entry
572 {
573 const char *mangled;
574 char demangled[1];
575 };
576
577 /* Hash function for the demangled name hash. */
578
579 static hashval_t
580 hash_demangled_name_entry (const void *data)
581 {
582 const struct demangled_name_entry *e = data;
583
584 return htab_hash_string (e->mangled);
585 }
586
587 /* Equality function for the demangled name hash. */
588
589 static int
590 eq_demangled_name_entry (const void *a, const void *b)
591 {
592 const struct demangled_name_entry *da = a;
593 const struct demangled_name_entry *db = b;
594
595 return strcmp (da->mangled, db->mangled) == 0;
596 }
597
598 /* Create the hash table used for demangled names. Each hash entry is
599 a pair of strings; one for the mangled name and one for the demangled
600 name. The entry is hashed via just the mangled name. */
601
602 static void
603 create_demangled_names_hash (struct objfile *objfile)
604 {
605 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
606 The hash table code will round this up to the next prime number.
607 Choosing a much larger table size wastes memory, and saves only about
608 1% in symbol reading. */
609
610 objfile->per_bfd->demangled_names_hash = htab_create_alloc
611 (256, hash_demangled_name_entry, eq_demangled_name_entry,
612 NULL, xcalloc, xfree);
613 }
614
615 /* Try to determine the demangled name for a symbol, based on the
616 language of that symbol. If the language is set to language_auto,
617 it will attempt to find any demangling algorithm that works and
618 then set the language appropriately. The returned name is allocated
619 by the demangler and should be xfree'd. */
620
621 static char *
622 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
623 const char *mangled)
624 {
625 char *demangled = NULL;
626
627 if (gsymbol->language == language_unknown)
628 gsymbol->language = language_auto;
629
630 if (gsymbol->language == language_objc
631 || gsymbol->language == language_auto)
632 {
633 demangled =
634 objc_demangle (mangled, 0);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_objc;
638 return demangled;
639 }
640 }
641 if (gsymbol->language == language_cplus
642 || gsymbol->language == language_auto)
643 {
644 demangled =
645 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_cplus;
649 return demangled;
650 }
651 }
652 if (gsymbol->language == language_java)
653 {
654 demangled =
655 gdb_demangle (mangled,
656 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
657 if (demangled != NULL)
658 {
659 gsymbol->language = language_java;
660 return demangled;
661 }
662 }
663 if (gsymbol->language == language_d
664 || gsymbol->language == language_auto)
665 {
666 demangled = d_demangle(mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_d;
670 return demangled;
671 }
672 }
673 /* FIXME(dje): Continually adding languages here is clumsy.
674 Better to just call la_demangle if !auto, and if auto then call
675 a utility routine that tries successive languages in turn and reports
676 which one it finds. I realize the la_demangle options may be different
677 for different languages but there's already a FIXME for that. */
678 if (gsymbol->language == language_go
679 || gsymbol->language == language_auto)
680 {
681 demangled = go_demangle (mangled, 0);
682 if (demangled != NULL)
683 {
684 gsymbol->language = language_go;
685 return demangled;
686 }
687 }
688
689 /* We could support `gsymbol->language == language_fortran' here to provide
690 module namespaces also for inferiors with only minimal symbol table (ELF
691 symbols). Just the mangling standard is not standardized across compilers
692 and there is no DW_AT_producer available for inferiors with only the ELF
693 symbols to check the mangling kind. */
694
695 /* Check for Ada symbols last. See comment below explaining why. */
696
697 if (gsymbol->language == language_auto)
698 {
699 const char *demangled = ada_decode (mangled);
700
701 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
702 {
703 /* Set the gsymbol language to Ada, but still return NULL.
704 Two reasons for that:
705
706 1. For Ada, we prefer computing the symbol's decoded name
707 on the fly rather than pre-compute it, in order to save
708 memory (Ada projects are typically very large).
709
710 2. There are some areas in the definition of the GNAT
711 encoding where, with a bit of bad luck, we might be able
712 to decode a non-Ada symbol, generating an incorrect
713 demangled name (Eg: names ending with "TB" for instance
714 are identified as task bodies and so stripped from
715 the decoded name returned).
716
717 Returning NULL, here, helps us get a little bit of
718 the best of both worlds. Because we're last, we should
719 not affect any of the other languages that were able to
720 demangle the symbol before us; we get to correctly tag
721 Ada symbols as such; and even if we incorrectly tagged
722 a non-Ada symbol, which should be rare, any routing
723 through the Ada language should be transparent (Ada
724 tries to behave much like C/C++ with non-Ada symbols). */
725 gsymbol->language = language_ada;
726 return NULL;
727 }
728 }
729
730 return NULL;
731 }
732
733 /* Set both the mangled and demangled (if any) names for GSYMBOL based
734 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
735 objfile's obstack; but if COPY_NAME is 0 and if NAME is
736 NUL-terminated, then this function assumes that NAME is already
737 correctly saved (either permanently or with a lifetime tied to the
738 objfile), and it will not be copied.
739
740 The hash table corresponding to OBJFILE is used, and the memory
741 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
742 so the pointer can be discarded after calling this function. */
743
744 /* We have to be careful when dealing with Java names: when we run
745 into a Java minimal symbol, we don't know it's a Java symbol, so it
746 gets demangled as a C++ name. This is unfortunate, but there's not
747 much we can do about it: but when demangling partial symbols and
748 regular symbols, we'd better not reuse the wrong demangled name.
749 (See PR gdb/1039.) We solve this by putting a distinctive prefix
750 on Java names when storing them in the hash table. */
751
752 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
753 don't mind the Java prefix so much: different languages have
754 different demangling requirements, so it's only natural that we
755 need to keep language data around in our demangling cache. But
756 it's not good that the minimal symbol has the wrong demangled name.
757 Unfortunately, I can't think of any easy solution to that
758 problem. */
759
760 #define JAVA_PREFIX "##JAVA$$"
761 #define JAVA_PREFIX_LEN 8
762
763 void
764 symbol_set_names (struct general_symbol_info *gsymbol,
765 const char *linkage_name, int len, int copy_name,
766 struct objfile *objfile)
767 {
768 struct demangled_name_entry **slot;
769 /* A 0-terminated copy of the linkage name. */
770 const char *linkage_name_copy;
771 /* A copy of the linkage name that might have a special Java prefix
772 added to it, for use when looking names up in the hash table. */
773 const char *lookup_name;
774 /* The length of lookup_name. */
775 int lookup_len;
776 struct demangled_name_entry entry;
777 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
778
779 if (gsymbol->language == language_ada)
780 {
781 /* In Ada, we do the symbol lookups using the mangled name, so
782 we can save some space by not storing the demangled name.
783
784 As a side note, we have also observed some overlap between
785 the C++ mangling and Ada mangling, similarly to what has
786 been observed with Java. Because we don't store the demangled
787 name with the symbol, we don't need to use the same trick
788 as Java. */
789 if (!copy_name)
790 gsymbol->name = linkage_name;
791 else
792 {
793 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 /* The stabs reader generally provides names that are not
808 NUL-terminated; most of the other readers don't do this, so we
809 can just use the given copy, unless we're in the Java case. */
810 if (gsymbol->language == language_java)
811 {
812 char *alloc_name;
813
814 lookup_len = len + JAVA_PREFIX_LEN;
815 alloc_name = alloca (lookup_len + 1);
816 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
817 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
818 alloc_name[lookup_len] = '\0';
819
820 lookup_name = alloc_name;
821 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
822 }
823 else if (linkage_name[len] != '\0')
824 {
825 char *alloc_name;
826
827 lookup_len = len;
828 alloc_name = alloca (lookup_len + 1);
829 memcpy (alloc_name, linkage_name, len);
830 alloc_name[lookup_len] = '\0';
831
832 lookup_name = alloc_name;
833 linkage_name_copy = alloc_name;
834 }
835 else
836 {
837 lookup_len = len;
838 lookup_name = linkage_name;
839 linkage_name_copy = linkage_name;
840 }
841
842 entry.mangled = lookup_name;
843 slot = ((struct demangled_name_entry **)
844 htab_find_slot (per_bfd->demangled_names_hash,
845 &entry, INSERT));
846
847 /* If this name is not in the hash table, add it. */
848 if (*slot == NULL
849 /* A C version of the symbol may have already snuck into the table.
850 This happens to, e.g., main.init (__go_init_main). Cope. */
851 || (gsymbol->language == language_go
852 && (*slot)->demangled[0] == '\0'))
853 {
854 char *demangled_name = symbol_find_demangled_name (gsymbol,
855 linkage_name_copy);
856 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
857
858 /* Suppose we have demangled_name==NULL, copy_name==0, and
859 lookup_name==linkage_name. In this case, we already have the
860 mangled name saved, and we don't have a demangled name. So,
861 you might think we could save a little space by not recording
862 this in the hash table at all.
863
864 It turns out that it is actually important to still save such
865 an entry in the hash table, because storing this name gives
866 us better bcache hit rates for partial symbols. */
867 if (!copy_name && lookup_name == linkage_name)
868 {
869 *slot = obstack_alloc (&per_bfd->storage_obstack,
870 offsetof (struct demangled_name_entry,
871 demangled)
872 + demangled_len + 1);
873 (*slot)->mangled = lookup_name;
874 }
875 else
876 {
877 char *mangled_ptr;
878
879 /* If we must copy the mangled name, put it directly after
880 the demangled name so we can have a single
881 allocation. */
882 *slot = obstack_alloc (&per_bfd->storage_obstack,
883 offsetof (struct demangled_name_entry,
884 demangled)
885 + lookup_len + demangled_len + 2);
886 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
887 strcpy (mangled_ptr, lookup_name);
888 (*slot)->mangled = mangled_ptr;
889 }
890
891 if (demangled_name != NULL)
892 {
893 strcpy ((*slot)->demangled, demangled_name);
894 xfree (demangled_name);
895 }
896 else
897 (*slot)->demangled[0] = '\0';
898 }
899
900 gsymbol->name = (*slot)->mangled + lookup_len - len;
901 if ((*slot)->demangled[0] != '\0')
902 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
903 &per_bfd->storage_obstack);
904 else
905 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
906 }
907
908 /* Return the source code name of a symbol. In languages where
909 demangling is necessary, this is the demangled name. */
910
911 const char *
912 symbol_natural_name (const struct general_symbol_info *gsymbol)
913 {
914 switch (gsymbol->language)
915 {
916 case language_cplus:
917 case language_d:
918 case language_go:
919 case language_java:
920 case language_objc:
921 case language_fortran:
922 if (symbol_get_demangled_name (gsymbol) != NULL)
923 return symbol_get_demangled_name (gsymbol);
924 break;
925 case language_ada:
926 return ada_decode_symbol (gsymbol);
927 default:
928 break;
929 }
930 return gsymbol->name;
931 }
932
933 /* Return the demangled name for a symbol based on the language for
934 that symbol. If no demangled name exists, return NULL. */
935
936 const char *
937 symbol_demangled_name (const struct general_symbol_info *gsymbol)
938 {
939 const char *dem_name = NULL;
940
941 switch (gsymbol->language)
942 {
943 case language_cplus:
944 case language_d:
945 case language_go:
946 case language_java:
947 case language_objc:
948 case language_fortran:
949 dem_name = symbol_get_demangled_name (gsymbol);
950 break;
951 case language_ada:
952 dem_name = ada_decode_symbol (gsymbol);
953 break;
954 default:
955 break;
956 }
957 return dem_name;
958 }
959
960 /* Return the search name of a symbol---generally the demangled or
961 linkage name of the symbol, depending on how it will be searched for.
962 If there is no distinct demangled name, then returns the same value
963 (same pointer) as SYMBOL_LINKAGE_NAME. */
964
965 const char *
966 symbol_search_name (const struct general_symbol_info *gsymbol)
967 {
968 if (gsymbol->language == language_ada)
969 return gsymbol->name;
970 else
971 return symbol_natural_name (gsymbol);
972 }
973
974 /* Initialize the structure fields to zero values. */
975
976 void
977 init_sal (struct symtab_and_line *sal)
978 {
979 memset (sal, 0, sizeof (*sal));
980 }
981 \f
982
983 /* Return 1 if the two sections are the same, or if they could
984 plausibly be copies of each other, one in an original object
985 file and another in a separated debug file. */
986
987 int
988 matching_obj_sections (struct obj_section *obj_first,
989 struct obj_section *obj_second)
990 {
991 asection *first = obj_first? obj_first->the_bfd_section : NULL;
992 asection *second = obj_second? obj_second->the_bfd_section : NULL;
993 struct objfile *obj;
994
995 /* If they're the same section, then they match. */
996 if (first == second)
997 return 1;
998
999 /* If either is NULL, give up. */
1000 if (first == NULL || second == NULL)
1001 return 0;
1002
1003 /* This doesn't apply to absolute symbols. */
1004 if (first->owner == NULL || second->owner == NULL)
1005 return 0;
1006
1007 /* If they're in the same object file, they must be different sections. */
1008 if (first->owner == second->owner)
1009 return 0;
1010
1011 /* Check whether the two sections are potentially corresponding. They must
1012 have the same size, address, and name. We can't compare section indexes,
1013 which would be more reliable, because some sections may have been
1014 stripped. */
1015 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1016 return 0;
1017
1018 /* In-memory addresses may start at a different offset, relativize them. */
1019 if (bfd_get_section_vma (first->owner, first)
1020 - bfd_get_start_address (first->owner)
1021 != bfd_get_section_vma (second->owner, second)
1022 - bfd_get_start_address (second->owner))
1023 return 0;
1024
1025 if (bfd_get_section_name (first->owner, first) == NULL
1026 || bfd_get_section_name (second->owner, second) == NULL
1027 || strcmp (bfd_get_section_name (first->owner, first),
1028 bfd_get_section_name (second->owner, second)) != 0)
1029 return 0;
1030
1031 /* Otherwise check that they are in corresponding objfiles. */
1032
1033 ALL_OBJFILES (obj)
1034 if (obj->obfd == first->owner)
1035 break;
1036 gdb_assert (obj != NULL);
1037
1038 if (obj->separate_debug_objfile != NULL
1039 && obj->separate_debug_objfile->obfd == second->owner)
1040 return 1;
1041 if (obj->separate_debug_objfile_backlink != NULL
1042 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1043 return 1;
1044
1045 return 0;
1046 }
1047
1048 /* See symtab.h. */
1049
1050 void
1051 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1052 {
1053 struct objfile *objfile;
1054 struct bound_minimal_symbol msymbol;
1055
1056 /* If we know that this is not a text address, return failure. This is
1057 necessary because we loop based on texthigh and textlow, which do
1058 not include the data ranges. */
1059 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1060 if (msymbol.minsym
1061 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1062 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1063 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1064 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1065 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1066 return;
1067
1068 ALL_OBJFILES (objfile)
1069 {
1070 struct symtab *s = NULL;
1071
1072 if (objfile->sf)
1073 s = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1074 pc, section, 0);
1075 if (s != NULL)
1076 return;
1077 }
1078 }
1079 \f
1080 /* Debug symbols usually don't have section information. We need to dig that
1081 out of the minimal symbols and stash that in the debug symbol. */
1082
1083 void
1084 fixup_section (struct general_symbol_info *ginfo,
1085 CORE_ADDR addr, struct objfile *objfile)
1086 {
1087 struct minimal_symbol *msym;
1088
1089 /* First, check whether a minimal symbol with the same name exists
1090 and points to the same address. The address check is required
1091 e.g. on PowerPC64, where the minimal symbol for a function will
1092 point to the function descriptor, while the debug symbol will
1093 point to the actual function code. */
1094 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1095 if (msym)
1096 ginfo->section = MSYMBOL_SECTION (msym);
1097 else
1098 {
1099 /* Static, function-local variables do appear in the linker
1100 (minimal) symbols, but are frequently given names that won't
1101 be found via lookup_minimal_symbol(). E.g., it has been
1102 observed in frv-uclinux (ELF) executables that a static,
1103 function-local variable named "foo" might appear in the
1104 linker symbols as "foo.6" or "foo.3". Thus, there is no
1105 point in attempting to extend the lookup-by-name mechanism to
1106 handle this case due to the fact that there can be multiple
1107 names.
1108
1109 So, instead, search the section table when lookup by name has
1110 failed. The ``addr'' and ``endaddr'' fields may have already
1111 been relocated. If so, the relocation offset (i.e. the
1112 ANOFFSET value) needs to be subtracted from these values when
1113 performing the comparison. We unconditionally subtract it,
1114 because, when no relocation has been performed, the ANOFFSET
1115 value will simply be zero.
1116
1117 The address of the symbol whose section we're fixing up HAS
1118 NOT BEEN adjusted (relocated) yet. It can't have been since
1119 the section isn't yet known and knowing the section is
1120 necessary in order to add the correct relocation value. In
1121 other words, we wouldn't even be in this function (attempting
1122 to compute the section) if it were already known.
1123
1124 Note that it is possible to search the minimal symbols
1125 (subtracting the relocation value if necessary) to find the
1126 matching minimal symbol, but this is overkill and much less
1127 efficient. It is not necessary to find the matching minimal
1128 symbol, only its section.
1129
1130 Note that this technique (of doing a section table search)
1131 can fail when unrelocated section addresses overlap. For
1132 this reason, we still attempt a lookup by name prior to doing
1133 a search of the section table. */
1134
1135 struct obj_section *s;
1136 int fallback = -1;
1137
1138 ALL_OBJFILE_OSECTIONS (objfile, s)
1139 {
1140 int idx = s - objfile->sections;
1141 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1142
1143 if (fallback == -1)
1144 fallback = idx;
1145
1146 if (obj_section_addr (s) - offset <= addr
1147 && addr < obj_section_endaddr (s) - offset)
1148 {
1149 ginfo->section = idx;
1150 return;
1151 }
1152 }
1153
1154 /* If we didn't find the section, assume it is in the first
1155 section. If there is no allocated section, then it hardly
1156 matters what we pick, so just pick zero. */
1157 if (fallback == -1)
1158 ginfo->section = 0;
1159 else
1160 ginfo->section = fallback;
1161 }
1162 }
1163
1164 struct symbol *
1165 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1166 {
1167 CORE_ADDR addr;
1168
1169 if (!sym)
1170 return NULL;
1171
1172 /* We either have an OBJFILE, or we can get at it from the sym's
1173 symtab. Anything else is a bug. */
1174 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1175
1176 if (objfile == NULL)
1177 objfile = SYMBOL_SYMTAB (sym)->objfile;
1178
1179 if (SYMBOL_OBJ_SECTION (objfile, sym))
1180 return sym;
1181
1182 /* We should have an objfile by now. */
1183 gdb_assert (objfile);
1184
1185 switch (SYMBOL_CLASS (sym))
1186 {
1187 case LOC_STATIC:
1188 case LOC_LABEL:
1189 addr = SYMBOL_VALUE_ADDRESS (sym);
1190 break;
1191 case LOC_BLOCK:
1192 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1193 break;
1194
1195 default:
1196 /* Nothing else will be listed in the minsyms -- no use looking
1197 it up. */
1198 return sym;
1199 }
1200
1201 fixup_section (&sym->ginfo, addr, objfile);
1202
1203 return sym;
1204 }
1205
1206 /* Compute the demangled form of NAME as used by the various symbol
1207 lookup functions. The result is stored in *RESULT_NAME. Returns a
1208 cleanup which can be used to clean up the result.
1209
1210 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1211 Normally, Ada symbol lookups are performed using the encoded name
1212 rather than the demangled name, and so it might seem to make sense
1213 for this function to return an encoded version of NAME.
1214 Unfortunately, we cannot do this, because this function is used in
1215 circumstances where it is not appropriate to try to encode NAME.
1216 For instance, when displaying the frame info, we demangle the name
1217 of each parameter, and then perform a symbol lookup inside our
1218 function using that demangled name. In Ada, certain functions
1219 have internally-generated parameters whose name contain uppercase
1220 characters. Encoding those name would result in those uppercase
1221 characters to become lowercase, and thus cause the symbol lookup
1222 to fail. */
1223
1224 struct cleanup *
1225 demangle_for_lookup (const char *name, enum language lang,
1226 const char **result_name)
1227 {
1228 char *demangled_name = NULL;
1229 const char *modified_name = NULL;
1230 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1231
1232 modified_name = name;
1233
1234 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1235 lookup, so we can always binary search. */
1236 if (lang == language_cplus)
1237 {
1238 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1239 if (demangled_name)
1240 {
1241 modified_name = demangled_name;
1242 make_cleanup (xfree, demangled_name);
1243 }
1244 else
1245 {
1246 /* If we were given a non-mangled name, canonicalize it
1247 according to the language (so far only for C++). */
1248 demangled_name = cp_canonicalize_string (name);
1249 if (demangled_name)
1250 {
1251 modified_name = demangled_name;
1252 make_cleanup (xfree, demangled_name);
1253 }
1254 }
1255 }
1256 else if (lang == language_java)
1257 {
1258 demangled_name = gdb_demangle (name,
1259 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1260 if (demangled_name)
1261 {
1262 modified_name = demangled_name;
1263 make_cleanup (xfree, demangled_name);
1264 }
1265 }
1266 else if (lang == language_d)
1267 {
1268 demangled_name = d_demangle (name, 0);
1269 if (demangled_name)
1270 {
1271 modified_name = demangled_name;
1272 make_cleanup (xfree, demangled_name);
1273 }
1274 }
1275 else if (lang == language_go)
1276 {
1277 demangled_name = go_demangle (name, 0);
1278 if (demangled_name)
1279 {
1280 modified_name = demangled_name;
1281 make_cleanup (xfree, demangled_name);
1282 }
1283 }
1284
1285 *result_name = modified_name;
1286 return cleanup;
1287 }
1288
1289 /* See symtab.h.
1290
1291 This function (or rather its subordinates) have a bunch of loops and
1292 it would seem to be attractive to put in some QUIT's (though I'm not really
1293 sure whether it can run long enough to be really important). But there
1294 are a few calls for which it would appear to be bad news to quit
1295 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1296 that there is C++ code below which can error(), but that probably
1297 doesn't affect these calls since they are looking for a known
1298 variable and thus can probably assume it will never hit the C++
1299 code). */
1300
1301 struct symbol *
1302 lookup_symbol_in_language (const char *name, const struct block *block,
1303 const domain_enum domain, enum language lang,
1304 struct field_of_this_result *is_a_field_of_this)
1305 {
1306 const char *modified_name;
1307 struct symbol *returnval;
1308 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1309
1310 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1311 is_a_field_of_this);
1312 do_cleanups (cleanup);
1313
1314 return returnval;
1315 }
1316
1317 /* See symtab.h. */
1318
1319 struct symbol *
1320 lookup_symbol (const char *name, const struct block *block,
1321 domain_enum domain,
1322 struct field_of_this_result *is_a_field_of_this)
1323 {
1324 return lookup_symbol_in_language (name, block, domain,
1325 current_language->la_language,
1326 is_a_field_of_this);
1327 }
1328
1329 /* See symtab.h. */
1330
1331 struct symbol *
1332 lookup_language_this (const struct language_defn *lang,
1333 const struct block *block)
1334 {
1335 if (lang->la_name_of_this == NULL || block == NULL)
1336 return NULL;
1337
1338 while (block)
1339 {
1340 struct symbol *sym;
1341
1342 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1343 if (sym != NULL)
1344 {
1345 block_found = block;
1346 return sym;
1347 }
1348 if (BLOCK_FUNCTION (block))
1349 break;
1350 block = BLOCK_SUPERBLOCK (block);
1351 }
1352
1353 return NULL;
1354 }
1355
1356 /* Given TYPE, a structure/union,
1357 return 1 if the component named NAME from the ultimate target
1358 structure/union is defined, otherwise, return 0. */
1359
1360 static int
1361 check_field (struct type *type, const char *name,
1362 struct field_of_this_result *is_a_field_of_this)
1363 {
1364 int i;
1365
1366 /* The type may be a stub. */
1367 CHECK_TYPEDEF (type);
1368
1369 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1370 {
1371 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1372
1373 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1374 {
1375 is_a_field_of_this->type = type;
1376 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1377 return 1;
1378 }
1379 }
1380
1381 /* C++: If it was not found as a data field, then try to return it
1382 as a pointer to a method. */
1383
1384 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1385 {
1386 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1387 {
1388 is_a_field_of_this->type = type;
1389 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1390 return 1;
1391 }
1392 }
1393
1394 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1395 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1396 return 1;
1397
1398 return 0;
1399 }
1400
1401 /* Behave like lookup_symbol except that NAME is the natural name
1402 (e.g., demangled name) of the symbol that we're looking for. */
1403
1404 static struct symbol *
1405 lookup_symbol_aux (const char *name, const struct block *block,
1406 const domain_enum domain, enum language language,
1407 struct field_of_this_result *is_a_field_of_this)
1408 {
1409 struct symbol *sym;
1410 const struct language_defn *langdef;
1411
1412 /* Make sure we do something sensible with is_a_field_of_this, since
1413 the callers that set this parameter to some non-null value will
1414 certainly use it later. If we don't set it, the contents of
1415 is_a_field_of_this are undefined. */
1416 if (is_a_field_of_this != NULL)
1417 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1418
1419 /* Search specified block and its superiors. Don't search
1420 STATIC_BLOCK or GLOBAL_BLOCK. */
1421
1422 sym = lookup_local_symbol (name, block, domain, language);
1423 if (sym != NULL)
1424 return sym;
1425
1426 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1427 check to see if NAME is a field of `this'. */
1428
1429 langdef = language_def (language);
1430
1431 /* Don't do this check if we are searching for a struct. It will
1432 not be found by check_field, but will be found by other
1433 means. */
1434 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1435 {
1436 struct symbol *sym = lookup_language_this (langdef, block);
1437
1438 if (sym)
1439 {
1440 struct type *t = sym->type;
1441
1442 /* I'm not really sure that type of this can ever
1443 be typedefed; just be safe. */
1444 CHECK_TYPEDEF (t);
1445 if (TYPE_CODE (t) == TYPE_CODE_PTR
1446 || TYPE_CODE (t) == TYPE_CODE_REF)
1447 t = TYPE_TARGET_TYPE (t);
1448
1449 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1450 && TYPE_CODE (t) != TYPE_CODE_UNION)
1451 error (_("Internal error: `%s' is not an aggregate"),
1452 langdef->la_name_of_this);
1453
1454 if (check_field (t, name, is_a_field_of_this))
1455 return NULL;
1456 }
1457 }
1458
1459 /* Now do whatever is appropriate for LANGUAGE to look
1460 up static and global variables. */
1461
1462 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1463 if (sym != NULL)
1464 return sym;
1465
1466 /* Now search all static file-level symbols. Not strictly correct,
1467 but more useful than an error. */
1468
1469 return lookup_static_symbol (name, domain);
1470 }
1471
1472 /* Check to see if the symbol is defined in BLOCK or its superiors.
1473 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1474
1475 static struct symbol *
1476 lookup_local_symbol (const char *name, const struct block *block,
1477 const domain_enum domain,
1478 enum language language)
1479 {
1480 struct symbol *sym;
1481 const struct block *static_block = block_static_block (block);
1482 const char *scope = block_scope (block);
1483
1484 /* Check if either no block is specified or it's a global block. */
1485
1486 if (static_block == NULL)
1487 return NULL;
1488
1489 while (block != static_block)
1490 {
1491 sym = lookup_symbol_in_block (name, block, domain);
1492 if (sym != NULL)
1493 return sym;
1494
1495 if (language == language_cplus || language == language_fortran)
1496 {
1497 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1498 domain);
1499 if (sym != NULL)
1500 return sym;
1501 }
1502
1503 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1504 break;
1505 block = BLOCK_SUPERBLOCK (block);
1506 }
1507
1508 /* We've reached the end of the function without finding a result. */
1509
1510 return NULL;
1511 }
1512
1513 /* See symtab.h. */
1514
1515 struct objfile *
1516 lookup_objfile_from_block (const struct block *block)
1517 {
1518 struct objfile *obj;
1519 struct symtab *s;
1520
1521 if (block == NULL)
1522 return NULL;
1523
1524 block = block_global_block (block);
1525 /* Go through SYMTABS.
1526 Non-primary symtabs share the block vector with their primary symtabs
1527 so we use ALL_PRIMARY_SYMTABS here instead of ALL_SYMTABS. */
1528 ALL_PRIMARY_SYMTABS (obj, s)
1529 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1530 {
1531 if (obj->separate_debug_objfile_backlink)
1532 obj = obj->separate_debug_objfile_backlink;
1533
1534 return obj;
1535 }
1536
1537 return NULL;
1538 }
1539
1540 /* See symtab.h. */
1541
1542 struct symbol *
1543 lookup_symbol_in_block (const char *name, const struct block *block,
1544 const domain_enum domain)
1545 {
1546 struct symbol *sym;
1547
1548 sym = block_lookup_symbol (block, name, domain);
1549 if (sym)
1550 {
1551 block_found = block;
1552 return fixup_symbol_section (sym, NULL);
1553 }
1554
1555 return NULL;
1556 }
1557
1558 /* See symtab.h. */
1559
1560 struct symbol *
1561 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1562 const char *name,
1563 const domain_enum domain)
1564 {
1565 const struct objfile *objfile;
1566 struct symbol *sym;
1567 const struct blockvector *bv;
1568 const struct block *block;
1569 struct symtab *s;
1570
1571 for (objfile = main_objfile;
1572 objfile;
1573 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1574 {
1575 /* Go through symtabs. */
1576 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1577 {
1578 bv = BLOCKVECTOR (s);
1579 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1580 sym = block_lookup_symbol (block, name, domain);
1581 if (sym)
1582 {
1583 block_found = block;
1584 return fixup_symbol_section (sym, (struct objfile *)objfile);
1585 }
1586 }
1587
1588 sym = lookup_symbol_via_quick_fns ((struct objfile *) objfile,
1589 GLOBAL_BLOCK, name, domain);
1590 if (sym)
1591 return sym;
1592 }
1593
1594 return NULL;
1595 }
1596
1597 /* Check to see if the symbol is defined in one of the OBJFILE's
1598 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1599 depending on whether or not we want to search global symbols or
1600 static symbols. */
1601
1602 static struct symbol *
1603 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1604 const char *name, const domain_enum domain)
1605 {
1606 struct symbol *sym = NULL;
1607 const struct blockvector *bv;
1608 const struct block *block;
1609 struct symtab *s;
1610
1611 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1612 {
1613 bv = BLOCKVECTOR (s);
1614 block = BLOCKVECTOR_BLOCK (bv, block_index);
1615 sym = block_lookup_symbol (block, name, domain);
1616 if (sym)
1617 {
1618 block_found = block;
1619 return fixup_symbol_section (sym, objfile);
1620 }
1621 }
1622
1623 return NULL;
1624 }
1625
1626 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1627 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1628 and all related objfiles. */
1629
1630 static struct symbol *
1631 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1632 const char *linkage_name,
1633 domain_enum domain)
1634 {
1635 enum language lang = current_language->la_language;
1636 const char *modified_name;
1637 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1638 &modified_name);
1639 struct objfile *main_objfile, *cur_objfile;
1640
1641 if (objfile->separate_debug_objfile_backlink)
1642 main_objfile = objfile->separate_debug_objfile_backlink;
1643 else
1644 main_objfile = objfile;
1645
1646 for (cur_objfile = main_objfile;
1647 cur_objfile;
1648 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1649 {
1650 struct symbol *sym;
1651
1652 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1653 modified_name, domain);
1654 if (sym == NULL)
1655 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1656 modified_name, domain);
1657 if (sym != NULL)
1658 {
1659 do_cleanups (cleanup);
1660 return sym;
1661 }
1662 }
1663
1664 do_cleanups (cleanup);
1665 return NULL;
1666 }
1667
1668 /* A helper function that throws an exception when a symbol was found
1669 in a psymtab but not in a symtab. */
1670
1671 static void ATTRIBUTE_NORETURN
1672 error_in_psymtab_expansion (int block_index, const char *name,
1673 struct symtab *symtab)
1674 {
1675 error (_("\
1676 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1677 %s may be an inlined function, or may be a template function\n \
1678 (if a template, try specifying an instantiation: %s<type>)."),
1679 block_index == GLOBAL_BLOCK ? "global" : "static",
1680 name, symtab_to_filename_for_display (symtab), name, name);
1681 }
1682
1683 /* A helper function for various lookup routines that interfaces with
1684 the "quick" symbol table functions. */
1685
1686 static struct symbol *
1687 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1688 const char *name, const domain_enum domain)
1689 {
1690 struct symtab *symtab;
1691 const struct blockvector *bv;
1692 const struct block *block;
1693 struct symbol *sym;
1694
1695 if (!objfile->sf)
1696 return NULL;
1697 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1698 if (!symtab)
1699 return NULL;
1700
1701 bv = BLOCKVECTOR (symtab);
1702 block = BLOCKVECTOR_BLOCK (bv, block_index);
1703 sym = block_lookup_symbol (block, name, domain);
1704 if (!sym)
1705 error_in_psymtab_expansion (block_index, name, symtab);
1706 block_found = block;
1707 return fixup_symbol_section (sym, objfile);
1708 }
1709
1710 /* See symtab.h. */
1711
1712 struct symbol *
1713 basic_lookup_symbol_nonlocal (const char *name,
1714 const struct block *block,
1715 const domain_enum domain)
1716 {
1717 struct symbol *sym;
1718
1719 /* NOTE: carlton/2003-05-19: The comments below were written when
1720 this (or what turned into this) was part of lookup_symbol_aux;
1721 I'm much less worried about these questions now, since these
1722 decisions have turned out well, but I leave these comments here
1723 for posterity. */
1724
1725 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1726 not it would be appropriate to search the current global block
1727 here as well. (That's what this code used to do before the
1728 is_a_field_of_this check was moved up.) On the one hand, it's
1729 redundant with the lookup in all objfiles search that happens
1730 next. On the other hand, if decode_line_1 is passed an argument
1731 like filename:var, then the user presumably wants 'var' to be
1732 searched for in filename. On the third hand, there shouldn't be
1733 multiple global variables all of which are named 'var', and it's
1734 not like decode_line_1 has ever restricted its search to only
1735 global variables in a single filename. All in all, only
1736 searching the static block here seems best: it's correct and it's
1737 cleanest. */
1738
1739 /* NOTE: carlton/2002-12-05: There's also a possible performance
1740 issue here: if you usually search for global symbols in the
1741 current file, then it would be slightly better to search the
1742 current global block before searching all the symtabs. But there
1743 are other factors that have a much greater effect on performance
1744 than that one, so I don't think we should worry about that for
1745 now. */
1746
1747 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1748 the current objfile. Searching the current objfile first is useful
1749 for both matching user expectations as well as performance. */
1750
1751 sym = lookup_symbol_in_static_block (name, block, domain);
1752 if (sym != NULL)
1753 return sym;
1754
1755 return lookup_global_symbol (name, block, domain);
1756 }
1757
1758 /* See symtab.h. */
1759
1760 struct symbol *
1761 lookup_symbol_in_static_block (const char *name,
1762 const struct block *block,
1763 const domain_enum domain)
1764 {
1765 const struct block *static_block = block_static_block (block);
1766
1767 if (static_block != NULL)
1768 return lookup_symbol_in_block (name, static_block, domain);
1769 else
1770 return NULL;
1771 }
1772
1773 /* Perform the standard symbol lookup of NAME in OBJFILE:
1774 1) First search expanded symtabs, and if not found
1775 2) Search the "quick" symtabs (partial or .gdb_index).
1776 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1777
1778 static struct symbol *
1779 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1780 const char *name, const domain_enum domain)
1781 {
1782 struct symbol *result;
1783
1784 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1785 name, domain);
1786 if (result == NULL)
1787 {
1788 result = lookup_symbol_via_quick_fns (objfile, block_index,
1789 name, domain);
1790 }
1791
1792 return result;
1793 }
1794
1795 /* See symtab.h. */
1796
1797 struct symbol *
1798 lookup_static_symbol (const char *name, const domain_enum domain)
1799 {
1800 struct objfile *objfile;
1801 struct symbol *result;
1802
1803 ALL_OBJFILES (objfile)
1804 {
1805 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1806 if (result != NULL)
1807 return result;
1808 }
1809
1810 return NULL;
1811 }
1812
1813 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1814
1815 struct global_sym_lookup_data
1816 {
1817 /* The name of the symbol we are searching for. */
1818 const char *name;
1819
1820 /* The domain to use for our search. */
1821 domain_enum domain;
1822
1823 /* The field where the callback should store the symbol if found.
1824 It should be initialized to NULL before the search is started. */
1825 struct symbol *result;
1826 };
1827
1828 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1829 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1830 OBJFILE. The arguments for the search are passed via CB_DATA,
1831 which in reality is a pointer to struct global_sym_lookup_data. */
1832
1833 static int
1834 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1835 void *cb_data)
1836 {
1837 struct global_sym_lookup_data *data =
1838 (struct global_sym_lookup_data *) cb_data;
1839
1840 gdb_assert (data->result == NULL);
1841
1842 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1843 data->name, data->domain);
1844
1845 /* If we found a match, tell the iterator to stop. Otherwise,
1846 keep going. */
1847 return (data->result != NULL);
1848 }
1849
1850 /* See symtab.h. */
1851
1852 struct symbol *
1853 lookup_global_symbol (const char *name,
1854 const struct block *block,
1855 const domain_enum domain)
1856 {
1857 struct symbol *sym = NULL;
1858 struct objfile *objfile = NULL;
1859 struct global_sym_lookup_data lookup_data;
1860
1861 /* Call library-specific lookup procedure. */
1862 objfile = lookup_objfile_from_block (block);
1863 if (objfile != NULL)
1864 sym = solib_global_lookup (objfile, name, domain);
1865 if (sym != NULL)
1866 return sym;
1867
1868 memset (&lookup_data, 0, sizeof (lookup_data));
1869 lookup_data.name = name;
1870 lookup_data.domain = domain;
1871 gdbarch_iterate_over_objfiles_in_search_order
1872 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1873 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1874
1875 return lookup_data.result;
1876 }
1877
1878 int
1879 symbol_matches_domain (enum language symbol_language,
1880 domain_enum symbol_domain,
1881 domain_enum domain)
1882 {
1883 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1884 A Java class declaration also defines a typedef for the class.
1885 Similarly, any Ada type declaration implicitly defines a typedef. */
1886 if (symbol_language == language_cplus
1887 || symbol_language == language_d
1888 || symbol_language == language_java
1889 || symbol_language == language_ada)
1890 {
1891 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1892 && symbol_domain == STRUCT_DOMAIN)
1893 return 1;
1894 }
1895 /* For all other languages, strict match is required. */
1896 return (symbol_domain == domain);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct type *
1902 lookup_transparent_type (const char *name)
1903 {
1904 return current_language->la_lookup_transparent_type (name);
1905 }
1906
1907 /* A helper for basic_lookup_transparent_type that interfaces with the
1908 "quick" symbol table functions. */
1909
1910 static struct type *
1911 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1912 const char *name)
1913 {
1914 struct symtab *symtab;
1915 const struct blockvector *bv;
1916 struct block *block;
1917 struct symbol *sym;
1918
1919 if (!objfile->sf)
1920 return NULL;
1921 symtab = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1922 STRUCT_DOMAIN);
1923 if (!symtab)
1924 return NULL;
1925
1926 bv = BLOCKVECTOR (symtab);
1927 block = BLOCKVECTOR_BLOCK (bv, block_index);
1928 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1929 if (!sym)
1930 error_in_psymtab_expansion (block_index, name, symtab);
1931
1932 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1933 return SYMBOL_TYPE (sym);
1934
1935 return NULL;
1936 }
1937
1938 /* The standard implementation of lookup_transparent_type. This code
1939 was modeled on lookup_symbol -- the parts not relevant to looking
1940 up types were just left out. In particular it's assumed here that
1941 types are available in STRUCT_DOMAIN and only in file-static or
1942 global blocks. */
1943
1944 struct type *
1945 basic_lookup_transparent_type (const char *name)
1946 {
1947 struct symbol *sym;
1948 struct symtab *s = NULL;
1949 const struct blockvector *bv;
1950 struct objfile *objfile;
1951 struct block *block;
1952 struct type *t;
1953
1954 /* Now search all the global symbols. Do the symtab's first, then
1955 check the psymtab's. If a psymtab indicates the existence
1956 of the desired name as a global, then do psymtab-to-symtab
1957 conversion on the fly and return the found symbol. */
1958
1959 ALL_OBJFILES (objfile)
1960 {
1961 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1962 {
1963 bv = BLOCKVECTOR (s);
1964 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1965 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1966 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1967 {
1968 return SYMBOL_TYPE (sym);
1969 }
1970 }
1971 }
1972
1973 ALL_OBJFILES (objfile)
1974 {
1975 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1976 if (t)
1977 return t;
1978 }
1979
1980 /* Now search the static file-level symbols.
1981 Not strictly correct, but more useful than an error.
1982 Do the symtab's first, then
1983 check the psymtab's. If a psymtab indicates the existence
1984 of the desired name as a file-level static, then do psymtab-to-symtab
1985 conversion on the fly and return the found symbol. */
1986
1987 ALL_OBJFILES (objfile)
1988 {
1989 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1990 {
1991 bv = BLOCKVECTOR (s);
1992 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1993 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1994 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1995 {
1996 return SYMBOL_TYPE (sym);
1997 }
1998 }
1999 }
2000
2001 ALL_OBJFILES (objfile)
2002 {
2003 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2004 if (t)
2005 return t;
2006 }
2007
2008 return (struct type *) 0;
2009 }
2010
2011 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2012
2013 For each symbol that matches, CALLBACK is called. The symbol and
2014 DATA are passed to the callback.
2015
2016 If CALLBACK returns zero, the iteration ends. Otherwise, the
2017 search continues. */
2018
2019 void
2020 iterate_over_symbols (const struct block *block, const char *name,
2021 const domain_enum domain,
2022 symbol_found_callback_ftype *callback,
2023 void *data)
2024 {
2025 struct block_iterator iter;
2026 struct symbol *sym;
2027
2028 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2029 {
2030 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2031 SYMBOL_DOMAIN (sym), domain))
2032 {
2033 if (!callback (sym, data))
2034 return;
2035 }
2036 }
2037 }
2038
2039 /* Find the symtab associated with PC and SECTION. Look through the
2040 psymtabs and read in another symtab if necessary. */
2041
2042 struct symtab *
2043 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2044 {
2045 struct block *b;
2046 const struct blockvector *bv;
2047 struct symtab *s = NULL;
2048 struct symtab *best_s = NULL;
2049 struct objfile *objfile;
2050 CORE_ADDR distance = 0;
2051 struct bound_minimal_symbol msymbol;
2052
2053 /* If we know that this is not a text address, return failure. This is
2054 necessary because we loop based on the block's high and low code
2055 addresses, which do not include the data ranges, and because
2056 we call find_pc_sect_psymtab which has a similar restriction based
2057 on the partial_symtab's texthigh and textlow. */
2058 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2059 if (msymbol.minsym
2060 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2061 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2062 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2063 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2064 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2065 return NULL;
2066
2067 /* Search all symtabs for the one whose file contains our address, and which
2068 is the smallest of all the ones containing the address. This is designed
2069 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2070 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2071 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2072
2073 This happens for native ecoff format, where code from included files
2074 gets its own symtab. The symtab for the included file should have
2075 been read in already via the dependency mechanism.
2076 It might be swifter to create several symtabs with the same name
2077 like xcoff does (I'm not sure).
2078
2079 It also happens for objfiles that have their functions reordered.
2080 For these, the symtab we are looking for is not necessarily read in. */
2081
2082 ALL_PRIMARY_SYMTABS (objfile, s)
2083 {
2084 bv = BLOCKVECTOR (s);
2085 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2086
2087 if (BLOCK_START (b) <= pc
2088 && BLOCK_END (b) > pc
2089 && (distance == 0
2090 || BLOCK_END (b) - BLOCK_START (b) < distance))
2091 {
2092 /* For an objfile that has its functions reordered,
2093 find_pc_psymtab will find the proper partial symbol table
2094 and we simply return its corresponding symtab. */
2095 /* In order to better support objfiles that contain both
2096 stabs and coff debugging info, we continue on if a psymtab
2097 can't be found. */
2098 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2099 {
2100 struct symtab *result;
2101
2102 result
2103 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2104 msymbol,
2105 pc, section,
2106 0);
2107 if (result)
2108 return result;
2109 }
2110 if (section != 0)
2111 {
2112 struct block_iterator iter;
2113 struct symbol *sym = NULL;
2114
2115 ALL_BLOCK_SYMBOLS (b, iter, sym)
2116 {
2117 fixup_symbol_section (sym, objfile);
2118 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2119 section))
2120 break;
2121 }
2122 if (sym == NULL)
2123 continue; /* No symbol in this symtab matches
2124 section. */
2125 }
2126 distance = BLOCK_END (b) - BLOCK_START (b);
2127 best_s = s;
2128 }
2129 }
2130
2131 if (best_s != NULL)
2132 return (best_s);
2133
2134 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2135
2136 ALL_OBJFILES (objfile)
2137 {
2138 struct symtab *result;
2139
2140 if (!objfile->sf)
2141 continue;
2142 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2143 msymbol,
2144 pc, section,
2145 1);
2146 if (result)
2147 return result;
2148 }
2149
2150 return NULL;
2151 }
2152
2153 /* Find the symtab associated with PC. Look through the psymtabs and read
2154 in another symtab if necessary. Backward compatibility, no section. */
2155
2156 struct symtab *
2157 find_pc_symtab (CORE_ADDR pc)
2158 {
2159 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2160 }
2161 \f
2162
2163 /* Find the source file and line number for a given PC value and SECTION.
2164 Return a structure containing a symtab pointer, a line number,
2165 and a pc range for the entire source line.
2166 The value's .pc field is NOT the specified pc.
2167 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2168 use the line that ends there. Otherwise, in that case, the line
2169 that begins there is used. */
2170
2171 /* The big complication here is that a line may start in one file, and end just
2172 before the start of another file. This usually occurs when you #include
2173 code in the middle of a subroutine. To properly find the end of a line's PC
2174 range, we must search all symtabs associated with this compilation unit, and
2175 find the one whose first PC is closer than that of the next line in this
2176 symtab. */
2177
2178 /* If it's worth the effort, we could be using a binary search. */
2179
2180 struct symtab_and_line
2181 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2182 {
2183 struct symtab *s;
2184 struct linetable *l;
2185 int len;
2186 int i;
2187 struct linetable_entry *item;
2188 struct symtab_and_line val;
2189 const struct blockvector *bv;
2190 struct bound_minimal_symbol msymbol;
2191 struct objfile *objfile;
2192
2193 /* Info on best line seen so far, and where it starts, and its file. */
2194
2195 struct linetable_entry *best = NULL;
2196 CORE_ADDR best_end = 0;
2197 struct symtab *best_symtab = 0;
2198
2199 /* Store here the first line number
2200 of a file which contains the line at the smallest pc after PC.
2201 If we don't find a line whose range contains PC,
2202 we will use a line one less than this,
2203 with a range from the start of that file to the first line's pc. */
2204 struct linetable_entry *alt = NULL;
2205
2206 /* Info on best line seen in this file. */
2207
2208 struct linetable_entry *prev;
2209
2210 /* If this pc is not from the current frame,
2211 it is the address of the end of a call instruction.
2212 Quite likely that is the start of the following statement.
2213 But what we want is the statement containing the instruction.
2214 Fudge the pc to make sure we get that. */
2215
2216 init_sal (&val); /* initialize to zeroes */
2217
2218 val.pspace = current_program_space;
2219
2220 /* It's tempting to assume that, if we can't find debugging info for
2221 any function enclosing PC, that we shouldn't search for line
2222 number info, either. However, GAS can emit line number info for
2223 assembly files --- very helpful when debugging hand-written
2224 assembly code. In such a case, we'd have no debug info for the
2225 function, but we would have line info. */
2226
2227 if (notcurrent)
2228 pc -= 1;
2229
2230 /* elz: added this because this function returned the wrong
2231 information if the pc belongs to a stub (import/export)
2232 to call a shlib function. This stub would be anywhere between
2233 two functions in the target, and the line info was erroneously
2234 taken to be the one of the line before the pc. */
2235
2236 /* RT: Further explanation:
2237
2238 * We have stubs (trampolines) inserted between procedures.
2239 *
2240 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2241 * exists in the main image.
2242 *
2243 * In the minimal symbol table, we have a bunch of symbols
2244 * sorted by start address. The stubs are marked as "trampoline",
2245 * the others appear as text. E.g.:
2246 *
2247 * Minimal symbol table for main image
2248 * main: code for main (text symbol)
2249 * shr1: stub (trampoline symbol)
2250 * foo: code for foo (text symbol)
2251 * ...
2252 * Minimal symbol table for "shr1" image:
2253 * ...
2254 * shr1: code for shr1 (text symbol)
2255 * ...
2256 *
2257 * So the code below is trying to detect if we are in the stub
2258 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2259 * and if found, do the symbolization from the real-code address
2260 * rather than the stub address.
2261 *
2262 * Assumptions being made about the minimal symbol table:
2263 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2264 * if we're really in the trampoline.s If we're beyond it (say
2265 * we're in "foo" in the above example), it'll have a closer
2266 * symbol (the "foo" text symbol for example) and will not
2267 * return the trampoline.
2268 * 2. lookup_minimal_symbol_text() will find a real text symbol
2269 * corresponding to the trampoline, and whose address will
2270 * be different than the trampoline address. I put in a sanity
2271 * check for the address being the same, to avoid an
2272 * infinite recursion.
2273 */
2274 msymbol = lookup_minimal_symbol_by_pc (pc);
2275 if (msymbol.minsym != NULL)
2276 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2277 {
2278 struct bound_minimal_symbol mfunsym
2279 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2280 NULL);
2281
2282 if (mfunsym.minsym == NULL)
2283 /* I eliminated this warning since it is coming out
2284 * in the following situation:
2285 * gdb shmain // test program with shared libraries
2286 * (gdb) break shr1 // function in shared lib
2287 * Warning: In stub for ...
2288 * In the above situation, the shared lib is not loaded yet,
2289 * so of course we can't find the real func/line info,
2290 * but the "break" still works, and the warning is annoying.
2291 * So I commented out the warning. RT */
2292 /* warning ("In stub for %s; unable to find real function/line info",
2293 SYMBOL_LINKAGE_NAME (msymbol)); */
2294 ;
2295 /* fall through */
2296 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2297 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2298 /* Avoid infinite recursion */
2299 /* See above comment about why warning is commented out. */
2300 /* warning ("In stub for %s; unable to find real function/line info",
2301 SYMBOL_LINKAGE_NAME (msymbol)); */
2302 ;
2303 /* fall through */
2304 else
2305 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2306 }
2307
2308
2309 s = find_pc_sect_symtab (pc, section);
2310 if (!s)
2311 {
2312 /* If no symbol information, return previous pc. */
2313 if (notcurrent)
2314 pc++;
2315 val.pc = pc;
2316 return val;
2317 }
2318
2319 bv = BLOCKVECTOR (s);
2320 objfile = s->objfile;
2321
2322 /* Look at all the symtabs that share this blockvector.
2323 They all have the same apriori range, that we found was right;
2324 but they have different line tables. */
2325
2326 ALL_OBJFILE_SYMTABS (objfile, s)
2327 {
2328 if (BLOCKVECTOR (s) != bv)
2329 continue;
2330
2331 /* Find the best line in this symtab. */
2332 l = LINETABLE (s);
2333 if (!l)
2334 continue;
2335 len = l->nitems;
2336 if (len <= 0)
2337 {
2338 /* I think len can be zero if the symtab lacks line numbers
2339 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2340 I'm not sure which, and maybe it depends on the symbol
2341 reader). */
2342 continue;
2343 }
2344
2345 prev = NULL;
2346 item = l->item; /* Get first line info. */
2347
2348 /* Is this file's first line closer than the first lines of other files?
2349 If so, record this file, and its first line, as best alternate. */
2350 if (item->pc > pc && (!alt || item->pc < alt->pc))
2351 alt = item;
2352
2353 for (i = 0; i < len; i++, item++)
2354 {
2355 /* Leave prev pointing to the linetable entry for the last line
2356 that started at or before PC. */
2357 if (item->pc > pc)
2358 break;
2359
2360 prev = item;
2361 }
2362
2363 /* At this point, prev points at the line whose start addr is <= pc, and
2364 item points at the next line. If we ran off the end of the linetable
2365 (pc >= start of the last line), then prev == item. If pc < start of
2366 the first line, prev will not be set. */
2367
2368 /* Is this file's best line closer than the best in the other files?
2369 If so, record this file, and its best line, as best so far. Don't
2370 save prev if it represents the end of a function (i.e. line number
2371 0) instead of a real line. */
2372
2373 if (prev && prev->line && (!best || prev->pc > best->pc))
2374 {
2375 best = prev;
2376 best_symtab = s;
2377
2378 /* Discard BEST_END if it's before the PC of the current BEST. */
2379 if (best_end <= best->pc)
2380 best_end = 0;
2381 }
2382
2383 /* If another line (denoted by ITEM) is in the linetable and its
2384 PC is after BEST's PC, but before the current BEST_END, then
2385 use ITEM's PC as the new best_end. */
2386 if (best && i < len && item->pc > best->pc
2387 && (best_end == 0 || best_end > item->pc))
2388 best_end = item->pc;
2389 }
2390
2391 if (!best_symtab)
2392 {
2393 /* If we didn't find any line number info, just return zeros.
2394 We used to return alt->line - 1 here, but that could be
2395 anywhere; if we don't have line number info for this PC,
2396 don't make some up. */
2397 val.pc = pc;
2398 }
2399 else if (best->line == 0)
2400 {
2401 /* If our best fit is in a range of PC's for which no line
2402 number info is available (line number is zero) then we didn't
2403 find any valid line information. */
2404 val.pc = pc;
2405 }
2406 else
2407 {
2408 val.symtab = best_symtab;
2409 val.line = best->line;
2410 val.pc = best->pc;
2411 if (best_end && (!alt || best_end < alt->pc))
2412 val.end = best_end;
2413 else if (alt)
2414 val.end = alt->pc;
2415 else
2416 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2417 }
2418 val.section = section;
2419 return val;
2420 }
2421
2422 /* Backward compatibility (no section). */
2423
2424 struct symtab_and_line
2425 find_pc_line (CORE_ADDR pc, int notcurrent)
2426 {
2427 struct obj_section *section;
2428
2429 section = find_pc_overlay (pc);
2430 if (pc_in_unmapped_range (pc, section))
2431 pc = overlay_mapped_address (pc, section);
2432 return find_pc_sect_line (pc, section, notcurrent);
2433 }
2434 \f
2435 /* Find line number LINE in any symtab whose name is the same as
2436 SYMTAB.
2437
2438 If found, return the symtab that contains the linetable in which it was
2439 found, set *INDEX to the index in the linetable of the best entry
2440 found, and set *EXACT_MATCH nonzero if the value returned is an
2441 exact match.
2442
2443 If not found, return NULL. */
2444
2445 struct symtab *
2446 find_line_symtab (struct symtab *symtab, int line,
2447 int *index, int *exact_match)
2448 {
2449 int exact = 0; /* Initialized here to avoid a compiler warning. */
2450
2451 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2452 so far seen. */
2453
2454 int best_index;
2455 struct linetable *best_linetable;
2456 struct symtab *best_symtab;
2457
2458 /* First try looking it up in the given symtab. */
2459 best_linetable = LINETABLE (symtab);
2460 best_symtab = symtab;
2461 best_index = find_line_common (best_linetable, line, &exact, 0);
2462 if (best_index < 0 || !exact)
2463 {
2464 /* Didn't find an exact match. So we better keep looking for
2465 another symtab with the same name. In the case of xcoff,
2466 multiple csects for one source file (produced by IBM's FORTRAN
2467 compiler) produce multiple symtabs (this is unavoidable
2468 assuming csects can be at arbitrary places in memory and that
2469 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2470
2471 /* BEST is the smallest linenumber > LINE so far seen,
2472 or 0 if none has been seen so far.
2473 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2474 int best;
2475
2476 struct objfile *objfile;
2477 struct symtab *s;
2478
2479 if (best_index >= 0)
2480 best = best_linetable->item[best_index].line;
2481 else
2482 best = 0;
2483
2484 ALL_OBJFILES (objfile)
2485 {
2486 if (objfile->sf)
2487 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2488 symtab_to_fullname (symtab));
2489 }
2490
2491 ALL_SYMTABS (objfile, s)
2492 {
2493 struct linetable *l;
2494 int ind;
2495
2496 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2497 continue;
2498 if (FILENAME_CMP (symtab_to_fullname (symtab),
2499 symtab_to_fullname (s)) != 0)
2500 continue;
2501 l = LINETABLE (s);
2502 ind = find_line_common (l, line, &exact, 0);
2503 if (ind >= 0)
2504 {
2505 if (exact)
2506 {
2507 best_index = ind;
2508 best_linetable = l;
2509 best_symtab = s;
2510 goto done;
2511 }
2512 if (best == 0 || l->item[ind].line < best)
2513 {
2514 best = l->item[ind].line;
2515 best_index = ind;
2516 best_linetable = l;
2517 best_symtab = s;
2518 }
2519 }
2520 }
2521 }
2522 done:
2523 if (best_index < 0)
2524 return NULL;
2525
2526 if (index)
2527 *index = best_index;
2528 if (exact_match)
2529 *exact_match = exact;
2530
2531 return best_symtab;
2532 }
2533
2534 /* Given SYMTAB, returns all the PCs function in the symtab that
2535 exactly match LINE. Returns NULL if there are no exact matches,
2536 but updates BEST_ITEM in this case. */
2537
2538 VEC (CORE_ADDR) *
2539 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2540 struct linetable_entry **best_item)
2541 {
2542 int start = 0;
2543 VEC (CORE_ADDR) *result = NULL;
2544
2545 /* First, collect all the PCs that are at this line. */
2546 while (1)
2547 {
2548 int was_exact;
2549 int idx;
2550
2551 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2552 if (idx < 0)
2553 break;
2554
2555 if (!was_exact)
2556 {
2557 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2558
2559 if (*best_item == NULL || item->line < (*best_item)->line)
2560 *best_item = item;
2561
2562 break;
2563 }
2564
2565 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2566 start = idx + 1;
2567 }
2568
2569 return result;
2570 }
2571
2572 \f
2573 /* Set the PC value for a given source file and line number and return true.
2574 Returns zero for invalid line number (and sets the PC to 0).
2575 The source file is specified with a struct symtab. */
2576
2577 int
2578 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2579 {
2580 struct linetable *l;
2581 int ind;
2582
2583 *pc = 0;
2584 if (symtab == 0)
2585 return 0;
2586
2587 symtab = find_line_symtab (symtab, line, &ind, NULL);
2588 if (symtab != NULL)
2589 {
2590 l = LINETABLE (symtab);
2591 *pc = l->item[ind].pc;
2592 return 1;
2593 }
2594 else
2595 return 0;
2596 }
2597
2598 /* Find the range of pc values in a line.
2599 Store the starting pc of the line into *STARTPTR
2600 and the ending pc (start of next line) into *ENDPTR.
2601 Returns 1 to indicate success.
2602 Returns 0 if could not find the specified line. */
2603
2604 int
2605 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2606 CORE_ADDR *endptr)
2607 {
2608 CORE_ADDR startaddr;
2609 struct symtab_and_line found_sal;
2610
2611 startaddr = sal.pc;
2612 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2613 return 0;
2614
2615 /* This whole function is based on address. For example, if line 10 has
2616 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2617 "info line *0x123" should say the line goes from 0x100 to 0x200
2618 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2619 This also insures that we never give a range like "starts at 0x134
2620 and ends at 0x12c". */
2621
2622 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2623 if (found_sal.line != sal.line)
2624 {
2625 /* The specified line (sal) has zero bytes. */
2626 *startptr = found_sal.pc;
2627 *endptr = found_sal.pc;
2628 }
2629 else
2630 {
2631 *startptr = found_sal.pc;
2632 *endptr = found_sal.end;
2633 }
2634 return 1;
2635 }
2636
2637 /* Given a line table and a line number, return the index into the line
2638 table for the pc of the nearest line whose number is >= the specified one.
2639 Return -1 if none is found. The value is >= 0 if it is an index.
2640 START is the index at which to start searching the line table.
2641
2642 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2643
2644 static int
2645 find_line_common (struct linetable *l, int lineno,
2646 int *exact_match, int start)
2647 {
2648 int i;
2649 int len;
2650
2651 /* BEST is the smallest linenumber > LINENO so far seen,
2652 or 0 if none has been seen so far.
2653 BEST_INDEX identifies the item for it. */
2654
2655 int best_index = -1;
2656 int best = 0;
2657
2658 *exact_match = 0;
2659
2660 if (lineno <= 0)
2661 return -1;
2662 if (l == 0)
2663 return -1;
2664
2665 len = l->nitems;
2666 for (i = start; i < len; i++)
2667 {
2668 struct linetable_entry *item = &(l->item[i]);
2669
2670 if (item->line == lineno)
2671 {
2672 /* Return the first (lowest address) entry which matches. */
2673 *exact_match = 1;
2674 return i;
2675 }
2676
2677 if (item->line > lineno && (best == 0 || item->line < best))
2678 {
2679 best = item->line;
2680 best_index = i;
2681 }
2682 }
2683
2684 /* If we got here, we didn't get an exact match. */
2685 return best_index;
2686 }
2687
2688 int
2689 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2690 {
2691 struct symtab_and_line sal;
2692
2693 sal = find_pc_line (pc, 0);
2694 *startptr = sal.pc;
2695 *endptr = sal.end;
2696 return sal.symtab != 0;
2697 }
2698
2699 /* Given a function symbol SYM, find the symtab and line for the start
2700 of the function.
2701 If the argument FUNFIRSTLINE is nonzero, we want the first line
2702 of real code inside the function. */
2703
2704 struct symtab_and_line
2705 find_function_start_sal (struct symbol *sym, int funfirstline)
2706 {
2707 struct symtab_and_line sal;
2708
2709 fixup_symbol_section (sym, NULL);
2710 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2711 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2712
2713 /* We always should have a line for the function start address.
2714 If we don't, something is odd. Create a plain SAL refering
2715 just the PC and hope that skip_prologue_sal (if requested)
2716 can find a line number for after the prologue. */
2717 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2718 {
2719 init_sal (&sal);
2720 sal.pspace = current_program_space;
2721 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2722 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2723 }
2724
2725 if (funfirstline)
2726 skip_prologue_sal (&sal);
2727
2728 return sal;
2729 }
2730
2731 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2732 address for that function that has an entry in SYMTAB's line info
2733 table. If such an entry cannot be found, return FUNC_ADDR
2734 unaltered. */
2735
2736 static CORE_ADDR
2737 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2738 {
2739 CORE_ADDR func_start, func_end;
2740 struct linetable *l;
2741 int i;
2742
2743 /* Give up if this symbol has no lineinfo table. */
2744 l = LINETABLE (symtab);
2745 if (l == NULL)
2746 return func_addr;
2747
2748 /* Get the range for the function's PC values, or give up if we
2749 cannot, for some reason. */
2750 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2751 return func_addr;
2752
2753 /* Linetable entries are ordered by PC values, see the commentary in
2754 symtab.h where `struct linetable' is defined. Thus, the first
2755 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2756 address we are looking for. */
2757 for (i = 0; i < l->nitems; i++)
2758 {
2759 struct linetable_entry *item = &(l->item[i]);
2760
2761 /* Don't use line numbers of zero, they mark special entries in
2762 the table. See the commentary on symtab.h before the
2763 definition of struct linetable. */
2764 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2765 return item->pc;
2766 }
2767
2768 return func_addr;
2769 }
2770
2771 /* Adjust SAL to the first instruction past the function prologue.
2772 If the PC was explicitly specified, the SAL is not changed.
2773 If the line number was explicitly specified, at most the SAL's PC
2774 is updated. If SAL is already past the prologue, then do nothing. */
2775
2776 void
2777 skip_prologue_sal (struct symtab_and_line *sal)
2778 {
2779 struct symbol *sym;
2780 struct symtab_and_line start_sal;
2781 struct cleanup *old_chain;
2782 CORE_ADDR pc, saved_pc;
2783 struct obj_section *section;
2784 const char *name;
2785 struct objfile *objfile;
2786 struct gdbarch *gdbarch;
2787 const struct block *b, *function_block;
2788 int force_skip, skip;
2789
2790 /* Do not change the SAL if PC was specified explicitly. */
2791 if (sal->explicit_pc)
2792 return;
2793
2794 old_chain = save_current_space_and_thread ();
2795 switch_to_program_space_and_thread (sal->pspace);
2796
2797 sym = find_pc_sect_function (sal->pc, sal->section);
2798 if (sym != NULL)
2799 {
2800 fixup_symbol_section (sym, NULL);
2801
2802 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2803 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2804 name = SYMBOL_LINKAGE_NAME (sym);
2805 objfile = SYMBOL_SYMTAB (sym)->objfile;
2806 }
2807 else
2808 {
2809 struct bound_minimal_symbol msymbol
2810 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2811
2812 if (msymbol.minsym == NULL)
2813 {
2814 do_cleanups (old_chain);
2815 return;
2816 }
2817
2818 objfile = msymbol.objfile;
2819 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2820 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2821 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2822 }
2823
2824 gdbarch = get_objfile_arch (objfile);
2825
2826 /* Process the prologue in two passes. In the first pass try to skip the
2827 prologue (SKIP is true) and verify there is a real need for it (indicated
2828 by FORCE_SKIP). If no such reason was found run a second pass where the
2829 prologue is not skipped (SKIP is false). */
2830
2831 skip = 1;
2832 force_skip = 1;
2833
2834 /* Be conservative - allow direct PC (without skipping prologue) only if we
2835 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2836 have to be set by the caller so we use SYM instead. */
2837 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2838 force_skip = 0;
2839
2840 saved_pc = pc;
2841 do
2842 {
2843 pc = saved_pc;
2844
2845 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2846 so that gdbarch_skip_prologue has something unique to work on. */
2847 if (section_is_overlay (section) && !section_is_mapped (section))
2848 pc = overlay_unmapped_address (pc, section);
2849
2850 /* Skip "first line" of function (which is actually its prologue). */
2851 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2852 if (gdbarch_skip_entrypoint_p (gdbarch))
2853 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2854 if (skip)
2855 pc = gdbarch_skip_prologue (gdbarch, pc);
2856
2857 /* For overlays, map pc back into its mapped VMA range. */
2858 pc = overlay_mapped_address (pc, section);
2859
2860 /* Calculate line number. */
2861 start_sal = find_pc_sect_line (pc, section, 0);
2862
2863 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2864 line is still part of the same function. */
2865 if (skip && start_sal.pc != pc
2866 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2867 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2868 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2869 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2870 {
2871 /* First pc of next line */
2872 pc = start_sal.end;
2873 /* Recalculate the line number (might not be N+1). */
2874 start_sal = find_pc_sect_line (pc, section, 0);
2875 }
2876
2877 /* On targets with executable formats that don't have a concept of
2878 constructors (ELF with .init has, PE doesn't), gcc emits a call
2879 to `__main' in `main' between the prologue and before user
2880 code. */
2881 if (gdbarch_skip_main_prologue_p (gdbarch)
2882 && name && strcmp_iw (name, "main") == 0)
2883 {
2884 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2885 /* Recalculate the line number (might not be N+1). */
2886 start_sal = find_pc_sect_line (pc, section, 0);
2887 force_skip = 1;
2888 }
2889 }
2890 while (!force_skip && skip--);
2891
2892 /* If we still don't have a valid source line, try to find the first
2893 PC in the lineinfo table that belongs to the same function. This
2894 happens with COFF debug info, which does not seem to have an
2895 entry in lineinfo table for the code after the prologue which has
2896 no direct relation to source. For example, this was found to be
2897 the case with the DJGPP target using "gcc -gcoff" when the
2898 compiler inserted code after the prologue to make sure the stack
2899 is aligned. */
2900 if (!force_skip && sym && start_sal.symtab == NULL)
2901 {
2902 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2903 /* Recalculate the line number. */
2904 start_sal = find_pc_sect_line (pc, section, 0);
2905 }
2906
2907 do_cleanups (old_chain);
2908
2909 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2910 forward SAL to the end of the prologue. */
2911 if (sal->pc >= pc)
2912 return;
2913
2914 sal->pc = pc;
2915 sal->section = section;
2916
2917 /* Unless the explicit_line flag was set, update the SAL line
2918 and symtab to correspond to the modified PC location. */
2919 if (sal->explicit_line)
2920 return;
2921
2922 sal->symtab = start_sal.symtab;
2923 sal->line = start_sal.line;
2924 sal->end = start_sal.end;
2925
2926 /* Check if we are now inside an inlined function. If we can,
2927 use the call site of the function instead. */
2928 b = block_for_pc_sect (sal->pc, sal->section);
2929 function_block = NULL;
2930 while (b != NULL)
2931 {
2932 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2933 function_block = b;
2934 else if (BLOCK_FUNCTION (b) != NULL)
2935 break;
2936 b = BLOCK_SUPERBLOCK (b);
2937 }
2938 if (function_block != NULL
2939 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2940 {
2941 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2942 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2943 }
2944 }
2945
2946 /* Given PC at the function's start address, attempt to find the
2947 prologue end using SAL information. Return zero if the skip fails.
2948
2949 A non-optimized prologue traditionally has one SAL for the function
2950 and a second for the function body. A single line function has
2951 them both pointing at the same line.
2952
2953 An optimized prologue is similar but the prologue may contain
2954 instructions (SALs) from the instruction body. Need to skip those
2955 while not getting into the function body.
2956
2957 The functions end point and an increasing SAL line are used as
2958 indicators of the prologue's endpoint.
2959
2960 This code is based on the function refine_prologue_limit
2961 (found in ia64). */
2962
2963 CORE_ADDR
2964 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2965 {
2966 struct symtab_and_line prologue_sal;
2967 CORE_ADDR start_pc;
2968 CORE_ADDR end_pc;
2969 const struct block *bl;
2970
2971 /* Get an initial range for the function. */
2972 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2973 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2974
2975 prologue_sal = find_pc_line (start_pc, 0);
2976 if (prologue_sal.line != 0)
2977 {
2978 /* For languages other than assembly, treat two consecutive line
2979 entries at the same address as a zero-instruction prologue.
2980 The GNU assembler emits separate line notes for each instruction
2981 in a multi-instruction macro, but compilers generally will not
2982 do this. */
2983 if (prologue_sal.symtab->language != language_asm)
2984 {
2985 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
2986 int idx = 0;
2987
2988 /* Skip any earlier lines, and any end-of-sequence marker
2989 from a previous function. */
2990 while (linetable->item[idx].pc != prologue_sal.pc
2991 || linetable->item[idx].line == 0)
2992 idx++;
2993
2994 if (idx+1 < linetable->nitems
2995 && linetable->item[idx+1].line != 0
2996 && linetable->item[idx+1].pc == start_pc)
2997 return start_pc;
2998 }
2999
3000 /* If there is only one sal that covers the entire function,
3001 then it is probably a single line function, like
3002 "foo(){}". */
3003 if (prologue_sal.end >= end_pc)
3004 return 0;
3005
3006 while (prologue_sal.end < end_pc)
3007 {
3008 struct symtab_and_line sal;
3009
3010 sal = find_pc_line (prologue_sal.end, 0);
3011 if (sal.line == 0)
3012 break;
3013 /* Assume that a consecutive SAL for the same (or larger)
3014 line mark the prologue -> body transition. */
3015 if (sal.line >= prologue_sal.line)
3016 break;
3017 /* Likewise if we are in a different symtab altogether
3018 (e.g. within a file included via #include).  */
3019 if (sal.symtab != prologue_sal.symtab)
3020 break;
3021
3022 /* The line number is smaller. Check that it's from the
3023 same function, not something inlined. If it's inlined,
3024 then there is no point comparing the line numbers. */
3025 bl = block_for_pc (prologue_sal.end);
3026 while (bl)
3027 {
3028 if (block_inlined_p (bl))
3029 break;
3030 if (BLOCK_FUNCTION (bl))
3031 {
3032 bl = NULL;
3033 break;
3034 }
3035 bl = BLOCK_SUPERBLOCK (bl);
3036 }
3037 if (bl != NULL)
3038 break;
3039
3040 /* The case in which compiler's optimizer/scheduler has
3041 moved instructions into the prologue. We look ahead in
3042 the function looking for address ranges whose
3043 corresponding line number is less the first one that we
3044 found for the function. This is more conservative then
3045 refine_prologue_limit which scans a large number of SALs
3046 looking for any in the prologue. */
3047 prologue_sal = sal;
3048 }
3049 }
3050
3051 if (prologue_sal.end < end_pc)
3052 /* Return the end of this line, or zero if we could not find a
3053 line. */
3054 return prologue_sal.end;
3055 else
3056 /* Don't return END_PC, which is past the end of the function. */
3057 return prologue_sal.pc;
3058 }
3059 \f
3060 /* If P is of the form "operator[ \t]+..." where `...' is
3061 some legitimate operator text, return a pointer to the
3062 beginning of the substring of the operator text.
3063 Otherwise, return "". */
3064
3065 static const char *
3066 operator_chars (const char *p, const char **end)
3067 {
3068 *end = "";
3069 if (strncmp (p, "operator", 8))
3070 return *end;
3071 p += 8;
3072
3073 /* Don't get faked out by `operator' being part of a longer
3074 identifier. */
3075 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3076 return *end;
3077
3078 /* Allow some whitespace between `operator' and the operator symbol. */
3079 while (*p == ' ' || *p == '\t')
3080 p++;
3081
3082 /* Recognize 'operator TYPENAME'. */
3083
3084 if (isalpha (*p) || *p == '_' || *p == '$')
3085 {
3086 const char *q = p + 1;
3087
3088 while (isalnum (*q) || *q == '_' || *q == '$')
3089 q++;
3090 *end = q;
3091 return p;
3092 }
3093
3094 while (*p)
3095 switch (*p)
3096 {
3097 case '\\': /* regexp quoting */
3098 if (p[1] == '*')
3099 {
3100 if (p[2] == '=') /* 'operator\*=' */
3101 *end = p + 3;
3102 else /* 'operator\*' */
3103 *end = p + 2;
3104 return p;
3105 }
3106 else if (p[1] == '[')
3107 {
3108 if (p[2] == ']')
3109 error (_("mismatched quoting on brackets, "
3110 "try 'operator\\[\\]'"));
3111 else if (p[2] == '\\' && p[3] == ']')
3112 {
3113 *end = p + 4; /* 'operator\[\]' */
3114 return p;
3115 }
3116 else
3117 error (_("nothing is allowed between '[' and ']'"));
3118 }
3119 else
3120 {
3121 /* Gratuitous qoute: skip it and move on. */
3122 p++;
3123 continue;
3124 }
3125 break;
3126 case '!':
3127 case '=':
3128 case '*':
3129 case '/':
3130 case '%':
3131 case '^':
3132 if (p[1] == '=')
3133 *end = p + 2;
3134 else
3135 *end = p + 1;
3136 return p;
3137 case '<':
3138 case '>':
3139 case '+':
3140 case '-':
3141 case '&':
3142 case '|':
3143 if (p[0] == '-' && p[1] == '>')
3144 {
3145 /* Struct pointer member operator 'operator->'. */
3146 if (p[2] == '*')
3147 {
3148 *end = p + 3; /* 'operator->*' */
3149 return p;
3150 }
3151 else if (p[2] == '\\')
3152 {
3153 *end = p + 4; /* Hopefully 'operator->\*' */
3154 return p;
3155 }
3156 else
3157 {
3158 *end = p + 2; /* 'operator->' */
3159 return p;
3160 }
3161 }
3162 if (p[1] == '=' || p[1] == p[0])
3163 *end = p + 2;
3164 else
3165 *end = p + 1;
3166 return p;
3167 case '~':
3168 case ',':
3169 *end = p + 1;
3170 return p;
3171 case '(':
3172 if (p[1] != ')')
3173 error (_("`operator ()' must be specified "
3174 "without whitespace in `()'"));
3175 *end = p + 2;
3176 return p;
3177 case '?':
3178 if (p[1] != ':')
3179 error (_("`operator ?:' must be specified "
3180 "without whitespace in `?:'"));
3181 *end = p + 2;
3182 return p;
3183 case '[':
3184 if (p[1] != ']')
3185 error (_("`operator []' must be specified "
3186 "without whitespace in `[]'"));
3187 *end = p + 2;
3188 return p;
3189 default:
3190 error (_("`operator %s' not supported"), p);
3191 break;
3192 }
3193
3194 *end = "";
3195 return *end;
3196 }
3197 \f
3198
3199 /* Cache to watch for file names already seen by filename_seen. */
3200
3201 struct filename_seen_cache
3202 {
3203 /* Table of files seen so far. */
3204 htab_t tab;
3205 /* Initial size of the table. It automagically grows from here. */
3206 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3207 };
3208
3209 /* filename_seen_cache constructor. */
3210
3211 static struct filename_seen_cache *
3212 create_filename_seen_cache (void)
3213 {
3214 struct filename_seen_cache *cache;
3215
3216 cache = XNEW (struct filename_seen_cache);
3217 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3218 filename_hash, filename_eq,
3219 NULL, xcalloc, xfree);
3220
3221 return cache;
3222 }
3223
3224 /* Empty the cache, but do not delete it. */
3225
3226 static void
3227 clear_filename_seen_cache (struct filename_seen_cache *cache)
3228 {
3229 htab_empty (cache->tab);
3230 }
3231
3232 /* filename_seen_cache destructor.
3233 This takes a void * argument as it is generally used as a cleanup. */
3234
3235 static void
3236 delete_filename_seen_cache (void *ptr)
3237 {
3238 struct filename_seen_cache *cache = ptr;
3239
3240 htab_delete (cache->tab);
3241 xfree (cache);
3242 }
3243
3244 /* If FILE is not already in the table of files in CACHE, return zero;
3245 otherwise return non-zero. Optionally add FILE to the table if ADD
3246 is non-zero.
3247
3248 NOTE: We don't manage space for FILE, we assume FILE lives as long
3249 as the caller needs. */
3250
3251 static int
3252 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3253 {
3254 void **slot;
3255
3256 /* Is FILE in tab? */
3257 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3258 if (*slot != NULL)
3259 return 1;
3260
3261 /* No; maybe add it to tab. */
3262 if (add)
3263 *slot = (char *) file;
3264
3265 return 0;
3266 }
3267
3268 /* Data structure to maintain printing state for output_source_filename. */
3269
3270 struct output_source_filename_data
3271 {
3272 /* Cache of what we've seen so far. */
3273 struct filename_seen_cache *filename_seen_cache;
3274
3275 /* Flag of whether we're printing the first one. */
3276 int first;
3277 };
3278
3279 /* Slave routine for sources_info. Force line breaks at ,'s.
3280 NAME is the name to print.
3281 DATA contains the state for printing and watching for duplicates. */
3282
3283 static void
3284 output_source_filename (const char *name,
3285 struct output_source_filename_data *data)
3286 {
3287 /* Since a single source file can result in several partial symbol
3288 tables, we need to avoid printing it more than once. Note: if
3289 some of the psymtabs are read in and some are not, it gets
3290 printed both under "Source files for which symbols have been
3291 read" and "Source files for which symbols will be read in on
3292 demand". I consider this a reasonable way to deal with the
3293 situation. I'm not sure whether this can also happen for
3294 symtabs; it doesn't hurt to check. */
3295
3296 /* Was NAME already seen? */
3297 if (filename_seen (data->filename_seen_cache, name, 1))
3298 {
3299 /* Yes; don't print it again. */
3300 return;
3301 }
3302
3303 /* No; print it and reset *FIRST. */
3304 if (! data->first)
3305 printf_filtered (", ");
3306 data->first = 0;
3307
3308 wrap_here ("");
3309 fputs_filtered (name, gdb_stdout);
3310 }
3311
3312 /* A callback for map_partial_symbol_filenames. */
3313
3314 static void
3315 output_partial_symbol_filename (const char *filename, const char *fullname,
3316 void *data)
3317 {
3318 output_source_filename (fullname ? fullname : filename, data);
3319 }
3320
3321 static void
3322 sources_info (char *ignore, int from_tty)
3323 {
3324 struct symtab *s;
3325 struct objfile *objfile;
3326 struct output_source_filename_data data;
3327 struct cleanup *cleanups;
3328
3329 if (!have_full_symbols () && !have_partial_symbols ())
3330 {
3331 error (_("No symbol table is loaded. Use the \"file\" command."));
3332 }
3333
3334 data.filename_seen_cache = create_filename_seen_cache ();
3335 cleanups = make_cleanup (delete_filename_seen_cache,
3336 data.filename_seen_cache);
3337
3338 printf_filtered ("Source files for which symbols have been read in:\n\n");
3339
3340 data.first = 1;
3341 ALL_SYMTABS (objfile, s)
3342 {
3343 const char *fullname = symtab_to_fullname (s);
3344
3345 output_source_filename (fullname, &data);
3346 }
3347 printf_filtered ("\n\n");
3348
3349 printf_filtered ("Source files for which symbols "
3350 "will be read in on demand:\n\n");
3351
3352 clear_filename_seen_cache (data.filename_seen_cache);
3353 data.first = 1;
3354 map_symbol_filenames (output_partial_symbol_filename, &data,
3355 1 /*need_fullname*/);
3356 printf_filtered ("\n");
3357
3358 do_cleanups (cleanups);
3359 }
3360
3361 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3362 non-zero compare only lbasename of FILES. */
3363
3364 static int
3365 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3366 {
3367 int i;
3368
3369 if (file != NULL && nfiles != 0)
3370 {
3371 for (i = 0; i < nfiles; i++)
3372 {
3373 if (compare_filenames_for_search (file, (basenames
3374 ? lbasename (files[i])
3375 : files[i])))
3376 return 1;
3377 }
3378 }
3379 else if (nfiles == 0)
3380 return 1;
3381 return 0;
3382 }
3383
3384 /* Free any memory associated with a search. */
3385
3386 void
3387 free_search_symbols (struct symbol_search *symbols)
3388 {
3389 struct symbol_search *p;
3390 struct symbol_search *next;
3391
3392 for (p = symbols; p != NULL; p = next)
3393 {
3394 next = p->next;
3395 xfree (p);
3396 }
3397 }
3398
3399 static void
3400 do_free_search_symbols_cleanup (void *symbolsp)
3401 {
3402 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3403
3404 free_search_symbols (symbols);
3405 }
3406
3407 struct cleanup *
3408 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3409 {
3410 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3411 }
3412
3413 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3414 sort symbols, not minimal symbols. */
3415
3416 static int
3417 compare_search_syms (const void *sa, const void *sb)
3418 {
3419 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3420 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3421 int c;
3422
3423 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3424 if (c != 0)
3425 return c;
3426
3427 if (sym_a->block != sym_b->block)
3428 return sym_a->block - sym_b->block;
3429
3430 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3431 SYMBOL_PRINT_NAME (sym_b->symbol));
3432 }
3433
3434 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3435 The duplicates are freed, and the new list is returned in
3436 *NEW_HEAD, *NEW_TAIL. */
3437
3438 static void
3439 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3440 struct symbol_search **new_head,
3441 struct symbol_search **new_tail)
3442 {
3443 struct symbol_search **symbols, *symp, *old_next;
3444 int i, j, nunique;
3445
3446 gdb_assert (found != NULL && nfound > 0);
3447
3448 /* Build an array out of the list so we can easily sort them. */
3449 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3450 * nfound);
3451 symp = found;
3452 for (i = 0; i < nfound; i++)
3453 {
3454 gdb_assert (symp != NULL);
3455 gdb_assert (symp->block >= 0 && symp->block <= 1);
3456 symbols[i] = symp;
3457 symp = symp->next;
3458 }
3459 gdb_assert (symp == NULL);
3460
3461 qsort (symbols, nfound, sizeof (struct symbol_search *),
3462 compare_search_syms);
3463
3464 /* Collapse out the dups. */
3465 for (i = 1, j = 1; i < nfound; ++i)
3466 {
3467 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3468 symbols[j++] = symbols[i];
3469 else
3470 xfree (symbols[i]);
3471 }
3472 nunique = j;
3473 symbols[j - 1]->next = NULL;
3474
3475 /* Rebuild the linked list. */
3476 for (i = 0; i < nunique - 1; i++)
3477 symbols[i]->next = symbols[i + 1];
3478 symbols[nunique - 1]->next = NULL;
3479
3480 *new_head = symbols[0];
3481 *new_tail = symbols[nunique - 1];
3482 xfree (symbols);
3483 }
3484
3485 /* An object of this type is passed as the user_data to the
3486 expand_symtabs_matching method. */
3487 struct search_symbols_data
3488 {
3489 int nfiles;
3490 const char **files;
3491
3492 /* It is true if PREG contains valid data, false otherwise. */
3493 unsigned preg_p : 1;
3494 regex_t preg;
3495 };
3496
3497 /* A callback for expand_symtabs_matching. */
3498
3499 static int
3500 search_symbols_file_matches (const char *filename, void *user_data,
3501 int basenames)
3502 {
3503 struct search_symbols_data *data = user_data;
3504
3505 return file_matches (filename, data->files, data->nfiles, basenames);
3506 }
3507
3508 /* A callback for expand_symtabs_matching. */
3509
3510 static int
3511 search_symbols_name_matches (const char *symname, void *user_data)
3512 {
3513 struct search_symbols_data *data = user_data;
3514
3515 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3516 }
3517
3518 /* Search the symbol table for matches to the regular expression REGEXP,
3519 returning the results in *MATCHES.
3520
3521 Only symbols of KIND are searched:
3522 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3523 and constants (enums)
3524 FUNCTIONS_DOMAIN - search all functions
3525 TYPES_DOMAIN - search all type names
3526 ALL_DOMAIN - an internal error for this function
3527
3528 free_search_symbols should be called when *MATCHES is no longer needed.
3529
3530 Within each file the results are sorted locally; each symtab's global and
3531 static blocks are separately alphabetized.
3532 Duplicate entries are removed. */
3533
3534 void
3535 search_symbols (const char *regexp, enum search_domain kind,
3536 int nfiles, const char *files[],
3537 struct symbol_search **matches)
3538 {
3539 struct symtab *s;
3540 const struct blockvector *bv;
3541 struct block *b;
3542 int i = 0;
3543 struct block_iterator iter;
3544 struct symbol *sym;
3545 struct objfile *objfile;
3546 struct minimal_symbol *msymbol;
3547 int found_misc = 0;
3548 static const enum minimal_symbol_type types[]
3549 = {mst_data, mst_text, mst_abs};
3550 static const enum minimal_symbol_type types2[]
3551 = {mst_bss, mst_file_text, mst_abs};
3552 static const enum minimal_symbol_type types3[]
3553 = {mst_file_data, mst_solib_trampoline, mst_abs};
3554 static const enum minimal_symbol_type types4[]
3555 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3556 enum minimal_symbol_type ourtype;
3557 enum minimal_symbol_type ourtype2;
3558 enum minimal_symbol_type ourtype3;
3559 enum minimal_symbol_type ourtype4;
3560 struct symbol_search *found;
3561 struct symbol_search *tail;
3562 struct search_symbols_data datum;
3563 int nfound;
3564
3565 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3566 CLEANUP_CHAIN is freed only in the case of an error. */
3567 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3568 struct cleanup *retval_chain;
3569
3570 gdb_assert (kind <= TYPES_DOMAIN);
3571
3572 ourtype = types[kind];
3573 ourtype2 = types2[kind];
3574 ourtype3 = types3[kind];
3575 ourtype4 = types4[kind];
3576
3577 *matches = NULL;
3578 datum.preg_p = 0;
3579
3580 if (regexp != NULL)
3581 {
3582 /* Make sure spacing is right for C++ operators.
3583 This is just a courtesy to make the matching less sensitive
3584 to how many spaces the user leaves between 'operator'
3585 and <TYPENAME> or <OPERATOR>. */
3586 const char *opend;
3587 const char *opname = operator_chars (regexp, &opend);
3588 int errcode;
3589
3590 if (*opname)
3591 {
3592 int fix = -1; /* -1 means ok; otherwise number of
3593 spaces needed. */
3594
3595 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3596 {
3597 /* There should 1 space between 'operator' and 'TYPENAME'. */
3598 if (opname[-1] != ' ' || opname[-2] == ' ')
3599 fix = 1;
3600 }
3601 else
3602 {
3603 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3604 if (opname[-1] == ' ')
3605 fix = 0;
3606 }
3607 /* If wrong number of spaces, fix it. */
3608 if (fix >= 0)
3609 {
3610 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3611
3612 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3613 regexp = tmp;
3614 }
3615 }
3616
3617 errcode = regcomp (&datum.preg, regexp,
3618 REG_NOSUB | (case_sensitivity == case_sensitive_off
3619 ? REG_ICASE : 0));
3620 if (errcode != 0)
3621 {
3622 char *err = get_regcomp_error (errcode, &datum.preg);
3623
3624 make_cleanup (xfree, err);
3625 error (_("Invalid regexp (%s): %s"), err, regexp);
3626 }
3627 datum.preg_p = 1;
3628 make_regfree_cleanup (&datum.preg);
3629 }
3630
3631 /* Search through the partial symtabs *first* for all symbols
3632 matching the regexp. That way we don't have to reproduce all of
3633 the machinery below. */
3634
3635 datum.nfiles = nfiles;
3636 datum.files = files;
3637 expand_symtabs_matching ((nfiles == 0
3638 ? NULL
3639 : search_symbols_file_matches),
3640 search_symbols_name_matches,
3641 kind, &datum);
3642
3643 /* Here, we search through the minimal symbol tables for functions
3644 and variables that match, and force their symbols to be read.
3645 This is in particular necessary for demangled variable names,
3646 which are no longer put into the partial symbol tables.
3647 The symbol will then be found during the scan of symtabs below.
3648
3649 For functions, find_pc_symtab should succeed if we have debug info
3650 for the function, for variables we have to call
3651 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3652 has debug info.
3653 If the lookup fails, set found_misc so that we will rescan to print
3654 any matching symbols without debug info.
3655 We only search the objfile the msymbol came from, we no longer search
3656 all objfiles. In large programs (1000s of shared libs) searching all
3657 objfiles is not worth the pain. */
3658
3659 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3660 {
3661 ALL_MSYMBOLS (objfile, msymbol)
3662 {
3663 QUIT;
3664
3665 if (msymbol->created_by_gdb)
3666 continue;
3667
3668 if (MSYMBOL_TYPE (msymbol) == ourtype
3669 || MSYMBOL_TYPE (msymbol) == ourtype2
3670 || MSYMBOL_TYPE (msymbol) == ourtype3
3671 || MSYMBOL_TYPE (msymbol) == ourtype4)
3672 {
3673 if (!datum.preg_p
3674 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3675 NULL, 0) == 0)
3676 {
3677 /* Note: An important side-effect of these lookup functions
3678 is to expand the symbol table if msymbol is found, for the
3679 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3680 if (kind == FUNCTIONS_DOMAIN
3681 ? find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3682 msymbol)) == NULL
3683 : (lookup_symbol_in_objfile_from_linkage_name
3684 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3685 == NULL))
3686 found_misc = 1;
3687 }
3688 }
3689 }
3690 }
3691
3692 found = NULL;
3693 tail = NULL;
3694 nfound = 0;
3695 retval_chain = make_cleanup_free_search_symbols (&found);
3696
3697 ALL_PRIMARY_SYMTABS (objfile, s)
3698 {
3699 bv = BLOCKVECTOR (s);
3700 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3701 {
3702 b = BLOCKVECTOR_BLOCK (bv, i);
3703 ALL_BLOCK_SYMBOLS (b, iter, sym)
3704 {
3705 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3706
3707 QUIT;
3708
3709 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3710 a substring of symtab_to_fullname as it may contain "./" etc. */
3711 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3712 || ((basenames_may_differ
3713 || file_matches (lbasename (real_symtab->filename),
3714 files, nfiles, 1))
3715 && file_matches (symtab_to_fullname (real_symtab),
3716 files, nfiles, 0)))
3717 && ((!datum.preg_p
3718 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3719 NULL, 0) == 0)
3720 && ((kind == VARIABLES_DOMAIN
3721 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3722 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3723 && SYMBOL_CLASS (sym) != LOC_BLOCK
3724 /* LOC_CONST can be used for more than just enums,
3725 e.g., c++ static const members.
3726 We only want to skip enums here. */
3727 && !(SYMBOL_CLASS (sym) == LOC_CONST
3728 && TYPE_CODE (SYMBOL_TYPE (sym))
3729 == TYPE_CODE_ENUM))
3730 || (kind == FUNCTIONS_DOMAIN
3731 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3732 || (kind == TYPES_DOMAIN
3733 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3734 {
3735 /* match */
3736 struct symbol_search *psr = (struct symbol_search *)
3737 xmalloc (sizeof (struct symbol_search));
3738 psr->block = i;
3739 psr->symtab = real_symtab;
3740 psr->symbol = sym;
3741 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3742 psr->next = NULL;
3743 if (tail == NULL)
3744 found = psr;
3745 else
3746 tail->next = psr;
3747 tail = psr;
3748 nfound ++;
3749 }
3750 }
3751 }
3752 }
3753
3754 if (found != NULL)
3755 {
3756 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3757 /* Note: nfound is no longer useful beyond this point. */
3758 }
3759
3760 /* If there are no eyes, avoid all contact. I mean, if there are
3761 no debug symbols, then print directly from the msymbol_vector. */
3762
3763 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3764 {
3765 ALL_MSYMBOLS (objfile, msymbol)
3766 {
3767 QUIT;
3768
3769 if (msymbol->created_by_gdb)
3770 continue;
3771
3772 if (MSYMBOL_TYPE (msymbol) == ourtype
3773 || MSYMBOL_TYPE (msymbol) == ourtype2
3774 || MSYMBOL_TYPE (msymbol) == ourtype3
3775 || MSYMBOL_TYPE (msymbol) == ourtype4)
3776 {
3777 if (!datum.preg_p
3778 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3779 NULL, 0) == 0)
3780 {
3781 /* For functions we can do a quick check of whether the
3782 symbol might be found via find_pc_symtab. */
3783 if (kind != FUNCTIONS_DOMAIN
3784 || find_pc_symtab (MSYMBOL_VALUE_ADDRESS (objfile,
3785 msymbol)) == NULL)
3786 {
3787 if (lookup_symbol_in_objfile_from_linkage_name
3788 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3789 == NULL)
3790 {
3791 /* match */
3792 struct symbol_search *psr = (struct symbol_search *)
3793 xmalloc (sizeof (struct symbol_search));
3794 psr->block = i;
3795 psr->msymbol.minsym = msymbol;
3796 psr->msymbol.objfile = objfile;
3797 psr->symtab = NULL;
3798 psr->symbol = NULL;
3799 psr->next = NULL;
3800 if (tail == NULL)
3801 found = psr;
3802 else
3803 tail->next = psr;
3804 tail = psr;
3805 }
3806 }
3807 }
3808 }
3809 }
3810 }
3811
3812 discard_cleanups (retval_chain);
3813 do_cleanups (old_chain);
3814 *matches = found;
3815 }
3816
3817 /* Helper function for symtab_symbol_info, this function uses
3818 the data returned from search_symbols() to print information
3819 regarding the match to gdb_stdout. */
3820
3821 static void
3822 print_symbol_info (enum search_domain kind,
3823 struct symtab *s, struct symbol *sym,
3824 int block, const char *last)
3825 {
3826 const char *s_filename = symtab_to_filename_for_display (s);
3827
3828 if (last == NULL || filename_cmp (last, s_filename) != 0)
3829 {
3830 fputs_filtered ("\nFile ", gdb_stdout);
3831 fputs_filtered (s_filename, gdb_stdout);
3832 fputs_filtered (":\n", gdb_stdout);
3833 }
3834
3835 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3836 printf_filtered ("static ");
3837
3838 /* Typedef that is not a C++ class. */
3839 if (kind == TYPES_DOMAIN
3840 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3841 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3842 /* variable, func, or typedef-that-is-c++-class. */
3843 else if (kind < TYPES_DOMAIN
3844 || (kind == TYPES_DOMAIN
3845 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3846 {
3847 type_print (SYMBOL_TYPE (sym),
3848 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3849 ? "" : SYMBOL_PRINT_NAME (sym)),
3850 gdb_stdout, 0);
3851
3852 printf_filtered (";\n");
3853 }
3854 }
3855
3856 /* This help function for symtab_symbol_info() prints information
3857 for non-debugging symbols to gdb_stdout. */
3858
3859 static void
3860 print_msymbol_info (struct bound_minimal_symbol msymbol)
3861 {
3862 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3863 char *tmp;
3864
3865 if (gdbarch_addr_bit (gdbarch) <= 32)
3866 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3867 & (CORE_ADDR) 0xffffffff,
3868 8);
3869 else
3870 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3871 16);
3872 printf_filtered ("%s %s\n",
3873 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3874 }
3875
3876 /* This is the guts of the commands "info functions", "info types", and
3877 "info variables". It calls search_symbols to find all matches and then
3878 print_[m]symbol_info to print out some useful information about the
3879 matches. */
3880
3881 static void
3882 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3883 {
3884 static const char * const classnames[] =
3885 {"variable", "function", "type"};
3886 struct symbol_search *symbols;
3887 struct symbol_search *p;
3888 struct cleanup *old_chain;
3889 const char *last_filename = NULL;
3890 int first = 1;
3891
3892 gdb_assert (kind <= TYPES_DOMAIN);
3893
3894 /* Must make sure that if we're interrupted, symbols gets freed. */
3895 search_symbols (regexp, kind, 0, NULL, &symbols);
3896 old_chain = make_cleanup_free_search_symbols (&symbols);
3897
3898 if (regexp != NULL)
3899 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3900 classnames[kind], regexp);
3901 else
3902 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3903
3904 for (p = symbols; p != NULL; p = p->next)
3905 {
3906 QUIT;
3907
3908 if (p->msymbol.minsym != NULL)
3909 {
3910 if (first)
3911 {
3912 printf_filtered (_("\nNon-debugging symbols:\n"));
3913 first = 0;
3914 }
3915 print_msymbol_info (p->msymbol);
3916 }
3917 else
3918 {
3919 print_symbol_info (kind,
3920 p->symtab,
3921 p->symbol,
3922 p->block,
3923 last_filename);
3924 last_filename = symtab_to_filename_for_display (p->symtab);
3925 }
3926 }
3927
3928 do_cleanups (old_chain);
3929 }
3930
3931 static void
3932 variables_info (char *regexp, int from_tty)
3933 {
3934 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3935 }
3936
3937 static void
3938 functions_info (char *regexp, int from_tty)
3939 {
3940 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3941 }
3942
3943
3944 static void
3945 types_info (char *regexp, int from_tty)
3946 {
3947 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3948 }
3949
3950 /* Breakpoint all functions matching regular expression. */
3951
3952 void
3953 rbreak_command_wrapper (char *regexp, int from_tty)
3954 {
3955 rbreak_command (regexp, from_tty);
3956 }
3957
3958 /* A cleanup function that calls end_rbreak_breakpoints. */
3959
3960 static void
3961 do_end_rbreak_breakpoints (void *ignore)
3962 {
3963 end_rbreak_breakpoints ();
3964 }
3965
3966 static void
3967 rbreak_command (char *regexp, int from_tty)
3968 {
3969 struct symbol_search *ss;
3970 struct symbol_search *p;
3971 struct cleanup *old_chain;
3972 char *string = NULL;
3973 int len = 0;
3974 const char **files = NULL;
3975 const char *file_name;
3976 int nfiles = 0;
3977
3978 if (regexp)
3979 {
3980 char *colon = strchr (regexp, ':');
3981
3982 if (colon && *(colon + 1) != ':')
3983 {
3984 int colon_index;
3985 char *local_name;
3986
3987 colon_index = colon - regexp;
3988 local_name = alloca (colon_index + 1);
3989 memcpy (local_name, regexp, colon_index);
3990 local_name[colon_index--] = 0;
3991 while (isspace (local_name[colon_index]))
3992 local_name[colon_index--] = 0;
3993 file_name = local_name;
3994 files = &file_name;
3995 nfiles = 1;
3996 regexp = skip_spaces (colon + 1);
3997 }
3998 }
3999
4000 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
4001 old_chain = make_cleanup_free_search_symbols (&ss);
4002 make_cleanup (free_current_contents, &string);
4003
4004 start_rbreak_breakpoints ();
4005 make_cleanup (do_end_rbreak_breakpoints, NULL);
4006 for (p = ss; p != NULL; p = p->next)
4007 {
4008 if (p->msymbol.minsym == NULL)
4009 {
4010 const char *fullname = symtab_to_fullname (p->symtab);
4011
4012 int newlen = (strlen (fullname)
4013 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4014 + 4);
4015
4016 if (newlen > len)
4017 {
4018 string = xrealloc (string, newlen);
4019 len = newlen;
4020 }
4021 strcpy (string, fullname);
4022 strcat (string, ":'");
4023 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4024 strcat (string, "'");
4025 break_command (string, from_tty);
4026 print_symbol_info (FUNCTIONS_DOMAIN,
4027 p->symtab,
4028 p->symbol,
4029 p->block,
4030 symtab_to_filename_for_display (p->symtab));
4031 }
4032 else
4033 {
4034 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4035
4036 if (newlen > len)
4037 {
4038 string = xrealloc (string, newlen);
4039 len = newlen;
4040 }
4041 strcpy (string, "'");
4042 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4043 strcat (string, "'");
4044
4045 break_command (string, from_tty);
4046 printf_filtered ("<function, no debug info> %s;\n",
4047 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4048 }
4049 }
4050
4051 do_cleanups (old_chain);
4052 }
4053 \f
4054
4055 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4056
4057 Either sym_text[sym_text_len] != '(' and then we search for any
4058 symbol starting with SYM_TEXT text.
4059
4060 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4061 be terminated at that point. Partial symbol tables do not have parameters
4062 information. */
4063
4064 static int
4065 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4066 {
4067 int (*ncmp) (const char *, const char *, size_t);
4068
4069 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4070
4071 if (ncmp (name, sym_text, sym_text_len) != 0)
4072 return 0;
4073
4074 if (sym_text[sym_text_len] == '(')
4075 {
4076 /* User searches for `name(someth...'. Require NAME to be terminated.
4077 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4078 present but accept even parameters presence. In this case this
4079 function is in fact strcmp_iw but whitespace skipping is not supported
4080 for tab completion. */
4081
4082 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4083 return 0;
4084 }
4085
4086 return 1;
4087 }
4088
4089 /* Free any memory associated with a completion list. */
4090
4091 static void
4092 free_completion_list (VEC (char_ptr) **list_ptr)
4093 {
4094 int i;
4095 char *p;
4096
4097 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4098 xfree (p);
4099 VEC_free (char_ptr, *list_ptr);
4100 }
4101
4102 /* Callback for make_cleanup. */
4103
4104 static void
4105 do_free_completion_list (void *list)
4106 {
4107 free_completion_list (list);
4108 }
4109
4110 /* Helper routine for make_symbol_completion_list. */
4111
4112 static VEC (char_ptr) *return_val;
4113
4114 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4115 completion_list_add_name \
4116 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4117
4118 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4119 completion_list_add_name \
4120 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4121
4122 /* Test to see if the symbol specified by SYMNAME (which is already
4123 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4124 characters. If so, add it to the current completion list. */
4125
4126 static void
4127 completion_list_add_name (const char *symname,
4128 const char *sym_text, int sym_text_len,
4129 const char *text, const char *word)
4130 {
4131 /* Clip symbols that cannot match. */
4132 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4133 return;
4134
4135 /* We have a match for a completion, so add SYMNAME to the current list
4136 of matches. Note that the name is moved to freshly malloc'd space. */
4137
4138 {
4139 char *new;
4140
4141 if (word == sym_text)
4142 {
4143 new = xmalloc (strlen (symname) + 5);
4144 strcpy (new, symname);
4145 }
4146 else if (word > sym_text)
4147 {
4148 /* Return some portion of symname. */
4149 new = xmalloc (strlen (symname) + 5);
4150 strcpy (new, symname + (word - sym_text));
4151 }
4152 else
4153 {
4154 /* Return some of SYM_TEXT plus symname. */
4155 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4156 strncpy (new, word, sym_text - word);
4157 new[sym_text - word] = '\0';
4158 strcat (new, symname);
4159 }
4160
4161 VEC_safe_push (char_ptr, return_val, new);
4162 }
4163 }
4164
4165 /* ObjC: In case we are completing on a selector, look as the msymbol
4166 again and feed all the selectors into the mill. */
4167
4168 static void
4169 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4170 const char *sym_text, int sym_text_len,
4171 const char *text, const char *word)
4172 {
4173 static char *tmp = NULL;
4174 static unsigned int tmplen = 0;
4175
4176 const char *method, *category, *selector;
4177 char *tmp2 = NULL;
4178
4179 method = MSYMBOL_NATURAL_NAME (msymbol);
4180
4181 /* Is it a method? */
4182 if ((method[0] != '-') && (method[0] != '+'))
4183 return;
4184
4185 if (sym_text[0] == '[')
4186 /* Complete on shortened method method. */
4187 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4188
4189 while ((strlen (method) + 1) >= tmplen)
4190 {
4191 if (tmplen == 0)
4192 tmplen = 1024;
4193 else
4194 tmplen *= 2;
4195 tmp = xrealloc (tmp, tmplen);
4196 }
4197 selector = strchr (method, ' ');
4198 if (selector != NULL)
4199 selector++;
4200
4201 category = strchr (method, '(');
4202
4203 if ((category != NULL) && (selector != NULL))
4204 {
4205 memcpy (tmp, method, (category - method));
4206 tmp[category - method] = ' ';
4207 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4208 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4209 if (sym_text[0] == '[')
4210 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4211 }
4212
4213 if (selector != NULL)
4214 {
4215 /* Complete on selector only. */
4216 strcpy (tmp, selector);
4217 tmp2 = strchr (tmp, ']');
4218 if (tmp2 != NULL)
4219 *tmp2 = '\0';
4220
4221 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4222 }
4223 }
4224
4225 /* Break the non-quoted text based on the characters which are in
4226 symbols. FIXME: This should probably be language-specific. */
4227
4228 static const char *
4229 language_search_unquoted_string (const char *text, const char *p)
4230 {
4231 for (; p > text; --p)
4232 {
4233 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4234 continue;
4235 else
4236 {
4237 if ((current_language->la_language == language_objc))
4238 {
4239 if (p[-1] == ':') /* Might be part of a method name. */
4240 continue;
4241 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4242 p -= 2; /* Beginning of a method name. */
4243 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4244 { /* Might be part of a method name. */
4245 const char *t = p;
4246
4247 /* Seeing a ' ' or a '(' is not conclusive evidence
4248 that we are in the middle of a method name. However,
4249 finding "-[" or "+[" should be pretty un-ambiguous.
4250 Unfortunately we have to find it now to decide. */
4251
4252 while (t > text)
4253 if (isalnum (t[-1]) || t[-1] == '_' ||
4254 t[-1] == ' ' || t[-1] == ':' ||
4255 t[-1] == '(' || t[-1] == ')')
4256 --t;
4257 else
4258 break;
4259
4260 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4261 p = t - 2; /* Method name detected. */
4262 /* Else we leave with p unchanged. */
4263 }
4264 }
4265 break;
4266 }
4267 }
4268 return p;
4269 }
4270
4271 static void
4272 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4273 int sym_text_len, const char *text,
4274 const char *word)
4275 {
4276 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4277 {
4278 struct type *t = SYMBOL_TYPE (sym);
4279 enum type_code c = TYPE_CODE (t);
4280 int j;
4281
4282 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4283 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4284 if (TYPE_FIELD_NAME (t, j))
4285 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4286 sym_text, sym_text_len, text, word);
4287 }
4288 }
4289
4290 /* Type of the user_data argument passed to add_macro_name or
4291 symbol_completion_matcher. The contents are simply whatever is
4292 needed by completion_list_add_name. */
4293 struct add_name_data
4294 {
4295 const char *sym_text;
4296 int sym_text_len;
4297 const char *text;
4298 const char *word;
4299 };
4300
4301 /* A callback used with macro_for_each and macro_for_each_in_scope.
4302 This adds a macro's name to the current completion list. */
4303
4304 static void
4305 add_macro_name (const char *name, const struct macro_definition *ignore,
4306 struct macro_source_file *ignore2, int ignore3,
4307 void *user_data)
4308 {
4309 struct add_name_data *datum = (struct add_name_data *) user_data;
4310
4311 completion_list_add_name (name,
4312 datum->sym_text, datum->sym_text_len,
4313 datum->text, datum->word);
4314 }
4315
4316 /* A callback for expand_symtabs_matching. */
4317
4318 static int
4319 symbol_completion_matcher (const char *name, void *user_data)
4320 {
4321 struct add_name_data *datum = (struct add_name_data *) user_data;
4322
4323 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4324 }
4325
4326 VEC (char_ptr) *
4327 default_make_symbol_completion_list_break_on (const char *text,
4328 const char *word,
4329 const char *break_on,
4330 enum type_code code)
4331 {
4332 /* Problem: All of the symbols have to be copied because readline
4333 frees them. I'm not going to worry about this; hopefully there
4334 won't be that many. */
4335
4336 struct symbol *sym;
4337 struct symtab *s;
4338 struct minimal_symbol *msymbol;
4339 struct objfile *objfile;
4340 const struct block *b;
4341 const struct block *surrounding_static_block, *surrounding_global_block;
4342 struct block_iterator iter;
4343 /* The symbol we are completing on. Points in same buffer as text. */
4344 const char *sym_text;
4345 /* Length of sym_text. */
4346 int sym_text_len;
4347 struct add_name_data datum;
4348 struct cleanup *back_to;
4349
4350 /* Now look for the symbol we are supposed to complete on. */
4351 {
4352 const char *p;
4353 char quote_found;
4354 const char *quote_pos = NULL;
4355
4356 /* First see if this is a quoted string. */
4357 quote_found = '\0';
4358 for (p = text; *p != '\0'; ++p)
4359 {
4360 if (quote_found != '\0')
4361 {
4362 if (*p == quote_found)
4363 /* Found close quote. */
4364 quote_found = '\0';
4365 else if (*p == '\\' && p[1] == quote_found)
4366 /* A backslash followed by the quote character
4367 doesn't end the string. */
4368 ++p;
4369 }
4370 else if (*p == '\'' || *p == '"')
4371 {
4372 quote_found = *p;
4373 quote_pos = p;
4374 }
4375 }
4376 if (quote_found == '\'')
4377 /* A string within single quotes can be a symbol, so complete on it. */
4378 sym_text = quote_pos + 1;
4379 else if (quote_found == '"')
4380 /* A double-quoted string is never a symbol, nor does it make sense
4381 to complete it any other way. */
4382 {
4383 return NULL;
4384 }
4385 else
4386 {
4387 /* It is not a quoted string. Break it based on the characters
4388 which are in symbols. */
4389 while (p > text)
4390 {
4391 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4392 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4393 --p;
4394 else
4395 break;
4396 }
4397 sym_text = p;
4398 }
4399 }
4400
4401 sym_text_len = strlen (sym_text);
4402
4403 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4404
4405 if (current_language->la_language == language_cplus
4406 || current_language->la_language == language_java
4407 || current_language->la_language == language_fortran)
4408 {
4409 /* These languages may have parameters entered by user but they are never
4410 present in the partial symbol tables. */
4411
4412 const char *cs = memchr (sym_text, '(', sym_text_len);
4413
4414 if (cs)
4415 sym_text_len = cs - sym_text;
4416 }
4417 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4418
4419 return_val = NULL;
4420 back_to = make_cleanup (do_free_completion_list, &return_val);
4421
4422 datum.sym_text = sym_text;
4423 datum.sym_text_len = sym_text_len;
4424 datum.text = text;
4425 datum.word = word;
4426
4427 /* Look through the partial symtabs for all symbols which begin
4428 by matching SYM_TEXT. Expand all CUs that you find to the list.
4429 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4430 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4431 &datum);
4432
4433 /* At this point scan through the misc symbol vectors and add each
4434 symbol you find to the list. Eventually we want to ignore
4435 anything that isn't a text symbol (everything else will be
4436 handled by the psymtab code above). */
4437
4438 if (code == TYPE_CODE_UNDEF)
4439 {
4440 ALL_MSYMBOLS (objfile, msymbol)
4441 {
4442 QUIT;
4443 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4444 word);
4445
4446 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4447 word);
4448 }
4449 }
4450
4451 /* Search upwards from currently selected frame (so that we can
4452 complete on local vars). Also catch fields of types defined in
4453 this places which match our text string. Only complete on types
4454 visible from current context. */
4455
4456 b = get_selected_block (0);
4457 surrounding_static_block = block_static_block (b);
4458 surrounding_global_block = block_global_block (b);
4459 if (surrounding_static_block != NULL)
4460 while (b != surrounding_static_block)
4461 {
4462 QUIT;
4463
4464 ALL_BLOCK_SYMBOLS (b, iter, sym)
4465 {
4466 if (code == TYPE_CODE_UNDEF)
4467 {
4468 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4469 word);
4470 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4471 word);
4472 }
4473 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4474 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4475 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4476 word);
4477 }
4478
4479 /* Stop when we encounter an enclosing function. Do not stop for
4480 non-inlined functions - the locals of the enclosing function
4481 are in scope for a nested function. */
4482 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4483 break;
4484 b = BLOCK_SUPERBLOCK (b);
4485 }
4486
4487 /* Add fields from the file's types; symbols will be added below. */
4488
4489 if (code == TYPE_CODE_UNDEF)
4490 {
4491 if (surrounding_static_block != NULL)
4492 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4493 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4494
4495 if (surrounding_global_block != NULL)
4496 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4497 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4498 }
4499
4500 /* Go through the symtabs and check the externs and statics for
4501 symbols which match. */
4502
4503 ALL_PRIMARY_SYMTABS (objfile, s)
4504 {
4505 QUIT;
4506 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4507 ALL_BLOCK_SYMBOLS (b, iter, sym)
4508 {
4509 if (code == TYPE_CODE_UNDEF
4510 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4511 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4512 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4513 }
4514 }
4515
4516 ALL_PRIMARY_SYMTABS (objfile, s)
4517 {
4518 QUIT;
4519 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4520 ALL_BLOCK_SYMBOLS (b, iter, sym)
4521 {
4522 if (code == TYPE_CODE_UNDEF
4523 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4524 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4525 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4526 }
4527 }
4528
4529 /* Skip macros if we are completing a struct tag -- arguable but
4530 usually what is expected. */
4531 if (current_language->la_macro_expansion == macro_expansion_c
4532 && code == TYPE_CODE_UNDEF)
4533 {
4534 struct macro_scope *scope;
4535
4536 /* Add any macros visible in the default scope. Note that this
4537 may yield the occasional wrong result, because an expression
4538 might be evaluated in a scope other than the default. For
4539 example, if the user types "break file:line if <TAB>", the
4540 resulting expression will be evaluated at "file:line" -- but
4541 at there does not seem to be a way to detect this at
4542 completion time. */
4543 scope = default_macro_scope ();
4544 if (scope)
4545 {
4546 macro_for_each_in_scope (scope->file, scope->line,
4547 add_macro_name, &datum);
4548 xfree (scope);
4549 }
4550
4551 /* User-defined macros are always visible. */
4552 macro_for_each (macro_user_macros, add_macro_name, &datum);
4553 }
4554
4555 discard_cleanups (back_to);
4556 return (return_val);
4557 }
4558
4559 VEC (char_ptr) *
4560 default_make_symbol_completion_list (const char *text, const char *word,
4561 enum type_code code)
4562 {
4563 return default_make_symbol_completion_list_break_on (text, word, "", code);
4564 }
4565
4566 /* Return a vector of all symbols (regardless of class) which begin by
4567 matching TEXT. If the answer is no symbols, then the return value
4568 is NULL. */
4569
4570 VEC (char_ptr) *
4571 make_symbol_completion_list (const char *text, const char *word)
4572 {
4573 return current_language->la_make_symbol_completion_list (text, word,
4574 TYPE_CODE_UNDEF);
4575 }
4576
4577 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4578 symbols whose type code is CODE. */
4579
4580 VEC (char_ptr) *
4581 make_symbol_completion_type (const char *text, const char *word,
4582 enum type_code code)
4583 {
4584 gdb_assert (code == TYPE_CODE_UNION
4585 || code == TYPE_CODE_STRUCT
4586 || code == TYPE_CODE_ENUM);
4587 return current_language->la_make_symbol_completion_list (text, word, code);
4588 }
4589
4590 /* Like make_symbol_completion_list, but suitable for use as a
4591 completion function. */
4592
4593 VEC (char_ptr) *
4594 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4595 const char *text, const char *word)
4596 {
4597 return make_symbol_completion_list (text, word);
4598 }
4599
4600 /* Like make_symbol_completion_list, but returns a list of symbols
4601 defined in a source file FILE. */
4602
4603 VEC (char_ptr) *
4604 make_file_symbol_completion_list (const char *text, const char *word,
4605 const char *srcfile)
4606 {
4607 struct symbol *sym;
4608 struct symtab *s;
4609 struct block *b;
4610 struct block_iterator iter;
4611 /* The symbol we are completing on. Points in same buffer as text. */
4612 const char *sym_text;
4613 /* Length of sym_text. */
4614 int sym_text_len;
4615
4616 /* Now look for the symbol we are supposed to complete on.
4617 FIXME: This should be language-specific. */
4618 {
4619 const char *p;
4620 char quote_found;
4621 const char *quote_pos = NULL;
4622
4623 /* First see if this is a quoted string. */
4624 quote_found = '\0';
4625 for (p = text; *p != '\0'; ++p)
4626 {
4627 if (quote_found != '\0')
4628 {
4629 if (*p == quote_found)
4630 /* Found close quote. */
4631 quote_found = '\0';
4632 else if (*p == '\\' && p[1] == quote_found)
4633 /* A backslash followed by the quote character
4634 doesn't end the string. */
4635 ++p;
4636 }
4637 else if (*p == '\'' || *p == '"')
4638 {
4639 quote_found = *p;
4640 quote_pos = p;
4641 }
4642 }
4643 if (quote_found == '\'')
4644 /* A string within single quotes can be a symbol, so complete on it. */
4645 sym_text = quote_pos + 1;
4646 else if (quote_found == '"')
4647 /* A double-quoted string is never a symbol, nor does it make sense
4648 to complete it any other way. */
4649 {
4650 return NULL;
4651 }
4652 else
4653 {
4654 /* Not a quoted string. */
4655 sym_text = language_search_unquoted_string (text, p);
4656 }
4657 }
4658
4659 sym_text_len = strlen (sym_text);
4660
4661 return_val = NULL;
4662
4663 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4664 in). */
4665 s = lookup_symtab (srcfile);
4666 if (s == NULL)
4667 {
4668 /* Maybe they typed the file with leading directories, while the
4669 symbol tables record only its basename. */
4670 const char *tail = lbasename (srcfile);
4671
4672 if (tail > srcfile)
4673 s = lookup_symtab (tail);
4674 }
4675
4676 /* If we have no symtab for that file, return an empty list. */
4677 if (s == NULL)
4678 return (return_val);
4679
4680 /* Go through this symtab and check the externs and statics for
4681 symbols which match. */
4682
4683 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4684 ALL_BLOCK_SYMBOLS (b, iter, sym)
4685 {
4686 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4687 }
4688
4689 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4690 ALL_BLOCK_SYMBOLS (b, iter, sym)
4691 {
4692 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4693 }
4694
4695 return (return_val);
4696 }
4697
4698 /* A helper function for make_source_files_completion_list. It adds
4699 another file name to a list of possible completions, growing the
4700 list as necessary. */
4701
4702 static void
4703 add_filename_to_list (const char *fname, const char *text, const char *word,
4704 VEC (char_ptr) **list)
4705 {
4706 char *new;
4707 size_t fnlen = strlen (fname);
4708
4709 if (word == text)
4710 {
4711 /* Return exactly fname. */
4712 new = xmalloc (fnlen + 5);
4713 strcpy (new, fname);
4714 }
4715 else if (word > text)
4716 {
4717 /* Return some portion of fname. */
4718 new = xmalloc (fnlen + 5);
4719 strcpy (new, fname + (word - text));
4720 }
4721 else
4722 {
4723 /* Return some of TEXT plus fname. */
4724 new = xmalloc (fnlen + (text - word) + 5);
4725 strncpy (new, word, text - word);
4726 new[text - word] = '\0';
4727 strcat (new, fname);
4728 }
4729 VEC_safe_push (char_ptr, *list, new);
4730 }
4731
4732 static int
4733 not_interesting_fname (const char *fname)
4734 {
4735 static const char *illegal_aliens[] = {
4736 "_globals_", /* inserted by coff_symtab_read */
4737 NULL
4738 };
4739 int i;
4740
4741 for (i = 0; illegal_aliens[i]; i++)
4742 {
4743 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4744 return 1;
4745 }
4746 return 0;
4747 }
4748
4749 /* An object of this type is passed as the user_data argument to
4750 map_partial_symbol_filenames. */
4751 struct add_partial_filename_data
4752 {
4753 struct filename_seen_cache *filename_seen_cache;
4754 const char *text;
4755 const char *word;
4756 int text_len;
4757 VEC (char_ptr) **list;
4758 };
4759
4760 /* A callback for map_partial_symbol_filenames. */
4761
4762 static void
4763 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4764 void *user_data)
4765 {
4766 struct add_partial_filename_data *data = user_data;
4767
4768 if (not_interesting_fname (filename))
4769 return;
4770 if (!filename_seen (data->filename_seen_cache, filename, 1)
4771 && filename_ncmp (filename, data->text, data->text_len) == 0)
4772 {
4773 /* This file matches for a completion; add it to the
4774 current list of matches. */
4775 add_filename_to_list (filename, data->text, data->word, data->list);
4776 }
4777 else
4778 {
4779 const char *base_name = lbasename (filename);
4780
4781 if (base_name != filename
4782 && !filename_seen (data->filename_seen_cache, base_name, 1)
4783 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4784 add_filename_to_list (base_name, data->text, data->word, data->list);
4785 }
4786 }
4787
4788 /* Return a vector of all source files whose names begin with matching
4789 TEXT. The file names are looked up in the symbol tables of this
4790 program. If the answer is no matchess, then the return value is
4791 NULL. */
4792
4793 VEC (char_ptr) *
4794 make_source_files_completion_list (const char *text, const char *word)
4795 {
4796 struct symtab *s;
4797 struct objfile *objfile;
4798 size_t text_len = strlen (text);
4799 VEC (char_ptr) *list = NULL;
4800 const char *base_name;
4801 struct add_partial_filename_data datum;
4802 struct filename_seen_cache *filename_seen_cache;
4803 struct cleanup *back_to, *cache_cleanup;
4804
4805 if (!have_full_symbols () && !have_partial_symbols ())
4806 return list;
4807
4808 back_to = make_cleanup (do_free_completion_list, &list);
4809
4810 filename_seen_cache = create_filename_seen_cache ();
4811 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4812 filename_seen_cache);
4813
4814 ALL_SYMTABS (objfile, s)
4815 {
4816 if (not_interesting_fname (s->filename))
4817 continue;
4818 if (!filename_seen (filename_seen_cache, s->filename, 1)
4819 && filename_ncmp (s->filename, text, text_len) == 0)
4820 {
4821 /* This file matches for a completion; add it to the current
4822 list of matches. */
4823 add_filename_to_list (s->filename, text, word, &list);
4824 }
4825 else
4826 {
4827 /* NOTE: We allow the user to type a base name when the
4828 debug info records leading directories, but not the other
4829 way around. This is what subroutines of breakpoint
4830 command do when they parse file names. */
4831 base_name = lbasename (s->filename);
4832 if (base_name != s->filename
4833 && !filename_seen (filename_seen_cache, base_name, 1)
4834 && filename_ncmp (base_name, text, text_len) == 0)
4835 add_filename_to_list (base_name, text, word, &list);
4836 }
4837 }
4838
4839 datum.filename_seen_cache = filename_seen_cache;
4840 datum.text = text;
4841 datum.word = word;
4842 datum.text_len = text_len;
4843 datum.list = &list;
4844 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4845 0 /*need_fullname*/);
4846
4847 do_cleanups (cache_cleanup);
4848 discard_cleanups (back_to);
4849
4850 return list;
4851 }
4852 \f
4853 /* Track MAIN */
4854
4855 /* Return the "main_info" object for the current program space. If
4856 the object has not yet been created, create it and fill in some
4857 default values. */
4858
4859 static struct main_info *
4860 get_main_info (void)
4861 {
4862 struct main_info *info = program_space_data (current_program_space,
4863 main_progspace_key);
4864
4865 if (info == NULL)
4866 {
4867 /* It may seem strange to store the main name in the progspace
4868 and also in whatever objfile happens to see a main name in
4869 its debug info. The reason for this is mainly historical:
4870 gdb returned "main" as the name even if no function named
4871 "main" was defined the program; and this approach lets us
4872 keep compatibility. */
4873 info = XCNEW (struct main_info);
4874 info->language_of_main = language_unknown;
4875 set_program_space_data (current_program_space, main_progspace_key,
4876 info);
4877 }
4878
4879 return info;
4880 }
4881
4882 /* A cleanup to destroy a struct main_info when a progspace is
4883 destroyed. */
4884
4885 static void
4886 main_info_cleanup (struct program_space *pspace, void *data)
4887 {
4888 struct main_info *info = data;
4889
4890 if (info != NULL)
4891 xfree (info->name_of_main);
4892 xfree (info);
4893 }
4894
4895 static void
4896 set_main_name (const char *name, enum language lang)
4897 {
4898 struct main_info *info = get_main_info ();
4899
4900 if (info->name_of_main != NULL)
4901 {
4902 xfree (info->name_of_main);
4903 info->name_of_main = NULL;
4904 info->language_of_main = language_unknown;
4905 }
4906 if (name != NULL)
4907 {
4908 info->name_of_main = xstrdup (name);
4909 info->language_of_main = lang;
4910 }
4911 }
4912
4913 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4914 accordingly. */
4915
4916 static void
4917 find_main_name (void)
4918 {
4919 const char *new_main_name;
4920 struct objfile *objfile;
4921
4922 /* First check the objfiles to see whether a debuginfo reader has
4923 picked up the appropriate main name. Historically the main name
4924 was found in a more or less random way; this approach instead
4925 relies on the order of objfile creation -- which still isn't
4926 guaranteed to get the correct answer, but is just probably more
4927 accurate. */
4928 ALL_OBJFILES (objfile)
4929 {
4930 if (objfile->per_bfd->name_of_main != NULL)
4931 {
4932 set_main_name (objfile->per_bfd->name_of_main,
4933 objfile->per_bfd->language_of_main);
4934 return;
4935 }
4936 }
4937
4938 /* Try to see if the main procedure is in Ada. */
4939 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4940 be to add a new method in the language vector, and call this
4941 method for each language until one of them returns a non-empty
4942 name. This would allow us to remove this hard-coded call to
4943 an Ada function. It is not clear that this is a better approach
4944 at this point, because all methods need to be written in a way
4945 such that false positives never be returned. For instance, it is
4946 important that a method does not return a wrong name for the main
4947 procedure if the main procedure is actually written in a different
4948 language. It is easy to guaranty this with Ada, since we use a
4949 special symbol generated only when the main in Ada to find the name
4950 of the main procedure. It is difficult however to see how this can
4951 be guarantied for languages such as C, for instance. This suggests
4952 that order of call for these methods becomes important, which means
4953 a more complicated approach. */
4954 new_main_name = ada_main_name ();
4955 if (new_main_name != NULL)
4956 {
4957 set_main_name (new_main_name, language_ada);
4958 return;
4959 }
4960
4961 new_main_name = d_main_name ();
4962 if (new_main_name != NULL)
4963 {
4964 set_main_name (new_main_name, language_d);
4965 return;
4966 }
4967
4968 new_main_name = go_main_name ();
4969 if (new_main_name != NULL)
4970 {
4971 set_main_name (new_main_name, language_go);
4972 return;
4973 }
4974
4975 new_main_name = pascal_main_name ();
4976 if (new_main_name != NULL)
4977 {
4978 set_main_name (new_main_name, language_pascal);
4979 return;
4980 }
4981
4982 /* The languages above didn't identify the name of the main procedure.
4983 Fallback to "main". */
4984 set_main_name ("main", language_unknown);
4985 }
4986
4987 char *
4988 main_name (void)
4989 {
4990 struct main_info *info = get_main_info ();
4991
4992 if (info->name_of_main == NULL)
4993 find_main_name ();
4994
4995 return info->name_of_main;
4996 }
4997
4998 /* Return the language of the main function. If it is not known,
4999 return language_unknown. */
5000
5001 enum language
5002 main_language (void)
5003 {
5004 struct main_info *info = get_main_info ();
5005
5006 if (info->name_of_main == NULL)
5007 find_main_name ();
5008
5009 return info->language_of_main;
5010 }
5011
5012 /* Handle ``executable_changed'' events for the symtab module. */
5013
5014 static void
5015 symtab_observer_executable_changed (void)
5016 {
5017 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5018 set_main_name (NULL, language_unknown);
5019 }
5020
5021 /* Return 1 if the supplied producer string matches the ARM RealView
5022 compiler (armcc). */
5023
5024 int
5025 producer_is_realview (const char *producer)
5026 {
5027 static const char *const arm_idents[] = {
5028 "ARM C Compiler, ADS",
5029 "Thumb C Compiler, ADS",
5030 "ARM C++ Compiler, ADS",
5031 "Thumb C++ Compiler, ADS",
5032 "ARM/Thumb C/C++ Compiler, RVCT",
5033 "ARM C/C++ Compiler, RVCT"
5034 };
5035 int i;
5036
5037 if (producer == NULL)
5038 return 0;
5039
5040 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5041 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5042 return 1;
5043
5044 return 0;
5045 }
5046
5047 \f
5048
5049 /* The next index to hand out in response to a registration request. */
5050
5051 static int next_aclass_value = LOC_FINAL_VALUE;
5052
5053 /* The maximum number of "aclass" registrations we support. This is
5054 constant for convenience. */
5055 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5056
5057 /* The objects representing the various "aclass" values. The elements
5058 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5059 elements are those registered at gdb initialization time. */
5060
5061 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5062
5063 /* The globally visible pointer. This is separate from 'symbol_impl'
5064 so that it can be const. */
5065
5066 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5067
5068 /* Make sure we saved enough room in struct symbol. */
5069
5070 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5071
5072 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5073 is the ops vector associated with this index. This returns the new
5074 index, which should be used as the aclass_index field for symbols
5075 of this type. */
5076
5077 int
5078 register_symbol_computed_impl (enum address_class aclass,
5079 const struct symbol_computed_ops *ops)
5080 {
5081 int result = next_aclass_value++;
5082
5083 gdb_assert (aclass == LOC_COMPUTED);
5084 gdb_assert (result < MAX_SYMBOL_IMPLS);
5085 symbol_impl[result].aclass = aclass;
5086 symbol_impl[result].ops_computed = ops;
5087
5088 /* Sanity check OPS. */
5089 gdb_assert (ops != NULL);
5090 gdb_assert (ops->tracepoint_var_ref != NULL);
5091 gdb_assert (ops->describe_location != NULL);
5092 gdb_assert (ops->read_needs_frame != NULL);
5093 gdb_assert (ops->read_variable != NULL);
5094
5095 return result;
5096 }
5097
5098 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5099 OPS is the ops vector associated with this index. This returns the
5100 new index, which should be used as the aclass_index field for symbols
5101 of this type. */
5102
5103 int
5104 register_symbol_block_impl (enum address_class aclass,
5105 const struct symbol_block_ops *ops)
5106 {
5107 int result = next_aclass_value++;
5108
5109 gdb_assert (aclass == LOC_BLOCK);
5110 gdb_assert (result < MAX_SYMBOL_IMPLS);
5111 symbol_impl[result].aclass = aclass;
5112 symbol_impl[result].ops_block = ops;
5113
5114 /* Sanity check OPS. */
5115 gdb_assert (ops != NULL);
5116 gdb_assert (ops->find_frame_base_location != NULL);
5117
5118 return result;
5119 }
5120
5121 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5122 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5123 this index. This returns the new index, which should be used as
5124 the aclass_index field for symbols of this type. */
5125
5126 int
5127 register_symbol_register_impl (enum address_class aclass,
5128 const struct symbol_register_ops *ops)
5129 {
5130 int result = next_aclass_value++;
5131
5132 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5133 gdb_assert (result < MAX_SYMBOL_IMPLS);
5134 symbol_impl[result].aclass = aclass;
5135 symbol_impl[result].ops_register = ops;
5136
5137 return result;
5138 }
5139
5140 /* Initialize elements of 'symbol_impl' for the constants in enum
5141 address_class. */
5142
5143 static void
5144 initialize_ordinary_address_classes (void)
5145 {
5146 int i;
5147
5148 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5149 symbol_impl[i].aclass = i;
5150 }
5151
5152 \f
5153
5154 /* Initialize the symbol SYM. */
5155
5156 void
5157 initialize_symbol (struct symbol *sym)
5158 {
5159 memset (sym, 0, sizeof (*sym));
5160 SYMBOL_SECTION (sym) = -1;
5161 }
5162
5163 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5164 obstack. */
5165
5166 struct symbol *
5167 allocate_symbol (struct objfile *objfile)
5168 {
5169 struct symbol *result;
5170
5171 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5172 SYMBOL_SECTION (result) = -1;
5173
5174 return result;
5175 }
5176
5177 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5178 obstack. */
5179
5180 struct template_symbol *
5181 allocate_template_symbol (struct objfile *objfile)
5182 {
5183 struct template_symbol *result;
5184
5185 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5186 SYMBOL_SECTION (&result->base) = -1;
5187
5188 return result;
5189 }
5190
5191 \f
5192
5193 void
5194 _initialize_symtab (void)
5195 {
5196 initialize_ordinary_address_classes ();
5197
5198 main_progspace_key
5199 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5200
5201 add_info ("variables", variables_info, _("\
5202 All global and static variable names, or those matching REGEXP."));
5203 if (dbx_commands)
5204 add_com ("whereis", class_info, variables_info, _("\
5205 All global and static variable names, or those matching REGEXP."));
5206
5207 add_info ("functions", functions_info,
5208 _("All function names, or those matching REGEXP."));
5209
5210 /* FIXME: This command has at least the following problems:
5211 1. It prints builtin types (in a very strange and confusing fashion).
5212 2. It doesn't print right, e.g. with
5213 typedef struct foo *FOO
5214 type_print prints "FOO" when we want to make it (in this situation)
5215 print "struct foo *".
5216 I also think "ptype" or "whatis" is more likely to be useful (but if
5217 there is much disagreement "info types" can be fixed). */
5218 add_info ("types", types_info,
5219 _("All type names, or those matching REGEXP."));
5220
5221 add_info ("sources", sources_info,
5222 _("Source files in the program."));
5223
5224 add_com ("rbreak", class_breakpoint, rbreak_command,
5225 _("Set a breakpoint for all functions matching REGEXP."));
5226
5227 if (xdb_commands)
5228 {
5229 add_com ("lf", class_info, sources_info,
5230 _("Source files in the program"));
5231 add_com ("lg", class_info, variables_info, _("\
5232 All global and static variable names, or those matching REGEXP."));
5233 }
5234
5235 add_setshow_enum_cmd ("multiple-symbols", no_class,
5236 multiple_symbols_modes, &multiple_symbols_mode,
5237 _("\
5238 Set the debugger behavior when more than one symbol are possible matches\n\
5239 in an expression."), _("\
5240 Show how the debugger handles ambiguities in expressions."), _("\
5241 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5242 NULL, NULL, &setlist, &showlist);
5243
5244 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5245 &basenames_may_differ, _("\
5246 Set whether a source file may have multiple base names."), _("\
5247 Show whether a source file may have multiple base names."), _("\
5248 (A \"base name\" is the name of a file with the directory part removed.\n\
5249 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5250 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5251 before comparing them. Canonicalization is an expensive operation,\n\
5252 but it allows the same file be known by more than one base name.\n\
5253 If not set (the default), all source files are assumed to have just\n\
5254 one base name, and gdb will do file name comparisons more efficiently."),
5255 NULL, NULL,
5256 &setlist, &showlist);
5257
5258 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5259 _("Set debugging of symbol table creation."),
5260 _("Show debugging of symbol table creation."), _("\
5261 When enabled (non-zero), debugging messages are printed when building\n\
5262 symbol tables. A value of 1 (one) normally provides enough information.\n\
5263 A value greater than 1 provides more verbose information."),
5264 NULL,
5265 NULL,
5266 &setdebuglist, &showdebuglist);
5267
5268 observer_attach_executable_changed (symtab_observer_executable_changed);
5269 }