psymtab cleanup patch 1/3
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <string.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observer.h"
59 #include "gdb_assert.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65
66 /* Prototypes for local functions */
67
68 static void rbreak_command (char *, int);
69
70 static void types_info (char *, int);
71
72 static void functions_info (char *, int);
73
74 static void variables_info (char *, int);
75
76 static void sources_info (char *, int);
77
78 static int find_line_common (struct linetable *, int, int *, int);
79
80 static struct symbol *lookup_symbol_aux (const char *name,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *is_a_field_of_this);
85
86 static
87 struct symbol *lookup_symbol_aux_local (const char *name,
88 const struct block *block,
89 const domain_enum domain,
90 enum language language);
91
92 static
93 struct symbol *lookup_symbol_aux_symtabs (int block_index,
94 const char *name,
95 const domain_enum domain);
96
97 static
98 struct symbol *lookup_symbol_aux_quick (struct objfile *objfile,
99 int block_index,
100 const char *name,
101 const domain_enum domain);
102
103 void _initialize_symtab (void);
104
105 /* */
106
107 /* When non-zero, print debugging messages related to symtab creation. */
108 unsigned int symtab_create_debug = 0;
109
110 /* Non-zero if a file may be known by two different basenames.
111 This is the uncommon case, and significantly slows down gdb.
112 Default set to "off" to not slow down the common case. */
113 int basenames_may_differ = 0;
114
115 /* Allow the user to configure the debugger behavior with respect
116 to multiple-choice menus when more than one symbol matches during
117 a symbol lookup. */
118
119 const char multiple_symbols_ask[] = "ask";
120 const char multiple_symbols_all[] = "all";
121 const char multiple_symbols_cancel[] = "cancel";
122 static const char *const multiple_symbols_modes[] =
123 {
124 multiple_symbols_ask,
125 multiple_symbols_all,
126 multiple_symbols_cancel,
127 NULL
128 };
129 static const char *multiple_symbols_mode = multiple_symbols_all;
130
131 /* Read-only accessor to AUTO_SELECT_MODE. */
132
133 const char *
134 multiple_symbols_select_mode (void)
135 {
136 return multiple_symbols_mode;
137 }
138
139 /* Block in which the most recently searched-for symbol was found.
140 Might be better to make this a parameter to lookup_symbol and
141 value_of_this. */
142
143 const struct block *block_found;
144
145 /* Return the name of a domain_enum. */
146
147 const char *
148 domain_name (domain_enum e)
149 {
150 switch (e)
151 {
152 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
153 case VAR_DOMAIN: return "VAR_DOMAIN";
154 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
155 case LABEL_DOMAIN: return "LABEL_DOMAIN";
156 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
157 default: gdb_assert_not_reached ("bad domain_enum");
158 }
159 }
160
161 /* Return the name of a search_domain . */
162
163 const char *
164 search_domain_name (enum search_domain e)
165 {
166 switch (e)
167 {
168 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
169 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
170 case TYPES_DOMAIN: return "TYPES_DOMAIN";
171 case ALL_DOMAIN: return "ALL_DOMAIN";
172 default: gdb_assert_not_reached ("bad search_domain");
173 }
174 }
175
176 /* Set the primary field in SYMTAB. */
177
178 void
179 set_symtab_primary (struct symtab *symtab, int primary)
180 {
181 symtab->primary = primary;
182
183 if (symtab_create_debug && primary)
184 {
185 fprintf_unfiltered (gdb_stdlog,
186 "Created primary symtab %s for %s.\n",
187 host_address_to_string (symtab),
188 symtab_to_filename_for_display (symtab));
189 }
190 }
191
192 /* See whether FILENAME matches SEARCH_NAME using the rule that we
193 advertise to the user. (The manual's description of linespecs
194 describes what we advertise). Returns true if they match, false
195 otherwise. */
196
197 int
198 compare_filenames_for_search (const char *filename, const char *search_name)
199 {
200 int len = strlen (filename);
201 size_t search_len = strlen (search_name);
202
203 if (len < search_len)
204 return 0;
205
206 /* The tail of FILENAME must match. */
207 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
208 return 0;
209
210 /* Either the names must completely match, or the character
211 preceding the trailing SEARCH_NAME segment of FILENAME must be a
212 directory separator.
213
214 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
215 cannot match FILENAME "/path//dir/file.c" - as user has requested
216 absolute path. The sama applies for "c:\file.c" possibly
217 incorrectly hypothetically matching "d:\dir\c:\file.c".
218
219 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
220 compatible with SEARCH_NAME "file.c". In such case a compiler had
221 to put the "c:file.c" name into debug info. Such compatibility
222 works only on GDB built for DOS host. */
223 return (len == search_len
224 || (!IS_ABSOLUTE_PATH (search_name)
225 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
226 || (HAS_DRIVE_SPEC (filename)
227 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
228 }
229
230 /* Check for a symtab of a specific name by searching some symtabs.
231 This is a helper function for callbacks of iterate_over_symtabs.
232
233 If NAME is not absolute, then REAL_PATH is NULL
234 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
235
236 The return value, NAME, REAL_PATH, CALLBACK, and DATA
237 are identical to the `map_symtabs_matching_filename' method of
238 quick_symbol_functions.
239
240 FIRST and AFTER_LAST indicate the range of symtabs to search.
241 AFTER_LAST is one past the last symtab to search; NULL means to
242 search until the end of the list. */
243
244 int
245 iterate_over_some_symtabs (const char *name,
246 const char *real_path,
247 int (*callback) (struct symtab *symtab,
248 void *data),
249 void *data,
250 struct symtab *first,
251 struct symtab *after_last)
252 {
253 struct symtab *s = NULL;
254 const char* base_name = lbasename (name);
255
256 for (s = first; s != NULL && s != after_last; s = s->next)
257 {
258 if (compare_filenames_for_search (s->filename, name))
259 {
260 if (callback (s, data))
261 return 1;
262 continue;
263 }
264
265 /* Before we invoke realpath, which can get expensive when many
266 files are involved, do a quick comparison of the basenames. */
267 if (! basenames_may_differ
268 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
269 continue;
270
271 if (compare_filenames_for_search (symtab_to_fullname (s), name))
272 {
273 if (callback (s, data))
274 return 1;
275 continue;
276 }
277
278 /* If the user gave us an absolute path, try to find the file in
279 this symtab and use its absolute path. */
280 if (real_path != NULL)
281 {
282 const char *fullname = symtab_to_fullname (s);
283
284 gdb_assert (IS_ABSOLUTE_PATH (real_path));
285 gdb_assert (IS_ABSOLUTE_PATH (name));
286 if (FILENAME_CMP (real_path, fullname) == 0)
287 {
288 if (callback (s, data))
289 return 1;
290 continue;
291 }
292 }
293 }
294
295 return 0;
296 }
297
298 /* Check for a symtab of a specific name; first in symtabs, then in
299 psymtabs. *If* there is no '/' in the name, a match after a '/'
300 in the symtab filename will also work.
301
302 Calls CALLBACK with each symtab that is found and with the supplied
303 DATA. If CALLBACK returns true, the search stops. */
304
305 void
306 iterate_over_symtabs (const char *name,
307 int (*callback) (struct symtab *symtab,
308 void *data),
309 void *data)
310 {
311 struct objfile *objfile;
312 char *real_path = NULL;
313 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
314
315 /* Here we are interested in canonicalizing an absolute path, not
316 absolutizing a relative path. */
317 if (IS_ABSOLUTE_PATH (name))
318 {
319 real_path = gdb_realpath (name);
320 make_cleanup (xfree, real_path);
321 gdb_assert (IS_ABSOLUTE_PATH (real_path));
322 }
323
324 ALL_OBJFILES (objfile)
325 {
326 if (iterate_over_some_symtabs (name, real_path, callback, data,
327 objfile->symtabs, NULL))
328 {
329 do_cleanups (cleanups);
330 return;
331 }
332 }
333
334 /* Same search rules as above apply here, but now we look thru the
335 psymtabs. */
336
337 ALL_OBJFILES (objfile)
338 {
339 if (objfile->sf
340 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
341 name,
342 real_path,
343 callback,
344 data))
345 {
346 do_cleanups (cleanups);
347 return;
348 }
349 }
350
351 do_cleanups (cleanups);
352 }
353
354 /* The callback function used by lookup_symtab. */
355
356 static int
357 lookup_symtab_callback (struct symtab *symtab, void *data)
358 {
359 struct symtab **result_ptr = data;
360
361 *result_ptr = symtab;
362 return 1;
363 }
364
365 /* A wrapper for iterate_over_symtabs that returns the first matching
366 symtab, or NULL. */
367
368 struct symtab *
369 lookup_symtab (const char *name)
370 {
371 struct symtab *result = NULL;
372
373 iterate_over_symtabs (name, lookup_symtab_callback, &result);
374 return result;
375 }
376
377 \f
378 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
379 full method name, which consist of the class name (from T), the unadorned
380 method name from METHOD_ID, and the signature for the specific overload,
381 specified by SIGNATURE_ID. Note that this function is g++ specific. */
382
383 char *
384 gdb_mangle_name (struct type *type, int method_id, int signature_id)
385 {
386 int mangled_name_len;
387 char *mangled_name;
388 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
389 struct fn_field *method = &f[signature_id];
390 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
391 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
392 const char *newname = type_name_no_tag (type);
393
394 /* Does the form of physname indicate that it is the full mangled name
395 of a constructor (not just the args)? */
396 int is_full_physname_constructor;
397
398 int is_constructor;
399 int is_destructor = is_destructor_name (physname);
400 /* Need a new type prefix. */
401 char *const_prefix = method->is_const ? "C" : "";
402 char *volatile_prefix = method->is_volatile ? "V" : "";
403 char buf[20];
404 int len = (newname == NULL ? 0 : strlen (newname));
405
406 /* Nothing to do if physname already contains a fully mangled v3 abi name
407 or an operator name. */
408 if ((physname[0] == '_' && physname[1] == 'Z')
409 || is_operator_name (field_name))
410 return xstrdup (physname);
411
412 is_full_physname_constructor = is_constructor_name (physname);
413
414 is_constructor = is_full_physname_constructor
415 || (newname && strcmp (field_name, newname) == 0);
416
417 if (!is_destructor)
418 is_destructor = (strncmp (physname, "__dt", 4) == 0);
419
420 if (is_destructor || is_full_physname_constructor)
421 {
422 mangled_name = (char *) xmalloc (strlen (physname) + 1);
423 strcpy (mangled_name, physname);
424 return mangled_name;
425 }
426
427 if (len == 0)
428 {
429 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
430 }
431 else if (physname[0] == 't' || physname[0] == 'Q')
432 {
433 /* The physname for template and qualified methods already includes
434 the class name. */
435 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
436 newname = NULL;
437 len = 0;
438 }
439 else
440 {
441 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
442 volatile_prefix, len);
443 }
444 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
445 + strlen (buf) + len + strlen (physname) + 1);
446
447 mangled_name = (char *) xmalloc (mangled_name_len);
448 if (is_constructor)
449 mangled_name[0] = '\0';
450 else
451 strcpy (mangled_name, field_name);
452
453 strcat (mangled_name, buf);
454 /* If the class doesn't have a name, i.e. newname NULL, then we just
455 mangle it using 0 for the length of the class. Thus it gets mangled
456 as something starting with `::' rather than `classname::'. */
457 if (newname != NULL)
458 strcat (mangled_name, newname);
459
460 strcat (mangled_name, physname);
461 return (mangled_name);
462 }
463
464 /* Initialize the cplus_specific structure. 'cplus_specific' should
465 only be allocated for use with cplus symbols. */
466
467 static void
468 symbol_init_cplus_specific (struct general_symbol_info *gsymbol,
469 struct obstack *obstack)
470 {
471 /* A language_specific structure should not have been previously
472 initialized. */
473 gdb_assert (gsymbol->language_specific.cplus_specific == NULL);
474 gdb_assert (obstack != NULL);
475
476 gsymbol->language_specific.cplus_specific =
477 OBSTACK_ZALLOC (obstack, struct cplus_specific);
478 }
479
480 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
481 correctly allocated. For C++ symbols a cplus_specific struct is
482 allocated so OBJFILE must not be NULL. If this is a non C++ symbol
483 OBJFILE can be NULL. */
484
485 void
486 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
487 const char *name,
488 struct obstack *obstack)
489 {
490 if (gsymbol->language == language_cplus)
491 {
492 if (gsymbol->language_specific.cplus_specific == NULL)
493 symbol_init_cplus_specific (gsymbol, obstack);
494
495 gsymbol->language_specific.cplus_specific->demangled_name = name;
496 }
497 else if (gsymbol->language == language_ada)
498 {
499 if (name == NULL)
500 {
501 gsymbol->ada_mangled = 0;
502 gsymbol->language_specific.obstack = obstack;
503 }
504 else
505 {
506 gsymbol->ada_mangled = 1;
507 gsymbol->language_specific.mangled_lang.demangled_name = name;
508 }
509 }
510 else
511 gsymbol->language_specific.mangled_lang.demangled_name = name;
512 }
513
514 /* Return the demangled name of GSYMBOL. */
515
516 const char *
517 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
518 {
519 if (gsymbol->language == language_cplus)
520 {
521 if (gsymbol->language_specific.cplus_specific != NULL)
522 return gsymbol->language_specific.cplus_specific->demangled_name;
523 else
524 return NULL;
525 }
526 else if (gsymbol->language == language_ada)
527 {
528 if (!gsymbol->ada_mangled)
529 return NULL;
530 /* Fall through. */
531 }
532
533 return gsymbol->language_specific.mangled_lang.demangled_name;
534 }
535
536 \f
537 /* Initialize the language dependent portion of a symbol
538 depending upon the language for the symbol. */
539
540 void
541 symbol_set_language (struct general_symbol_info *gsymbol,
542 enum language language,
543 struct obstack *obstack)
544 {
545 gsymbol->language = language;
546 if (gsymbol->language == language_d
547 || gsymbol->language == language_go
548 || gsymbol->language == language_java
549 || gsymbol->language == language_objc
550 || gsymbol->language == language_fortran)
551 {
552 symbol_set_demangled_name (gsymbol, NULL, obstack);
553 }
554 else if (gsymbol->language == language_ada)
555 {
556 gdb_assert (gsymbol->ada_mangled == 0);
557 gsymbol->language_specific.obstack = obstack;
558 }
559 else if (gsymbol->language == language_cplus)
560 gsymbol->language_specific.cplus_specific = NULL;
561 else
562 {
563 memset (&gsymbol->language_specific, 0,
564 sizeof (gsymbol->language_specific));
565 }
566 }
567
568 /* Functions to initialize a symbol's mangled name. */
569
570 /* Objects of this type are stored in the demangled name hash table. */
571 struct demangled_name_entry
572 {
573 const char *mangled;
574 char demangled[1];
575 };
576
577 /* Hash function for the demangled name hash. */
578
579 static hashval_t
580 hash_demangled_name_entry (const void *data)
581 {
582 const struct demangled_name_entry *e = data;
583
584 return htab_hash_string (e->mangled);
585 }
586
587 /* Equality function for the demangled name hash. */
588
589 static int
590 eq_demangled_name_entry (const void *a, const void *b)
591 {
592 const struct demangled_name_entry *da = a;
593 const struct demangled_name_entry *db = b;
594
595 return strcmp (da->mangled, db->mangled) == 0;
596 }
597
598 /* Create the hash table used for demangled names. Each hash entry is
599 a pair of strings; one for the mangled name and one for the demangled
600 name. The entry is hashed via just the mangled name. */
601
602 static void
603 create_demangled_names_hash (struct objfile *objfile)
604 {
605 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
606 The hash table code will round this up to the next prime number.
607 Choosing a much larger table size wastes memory, and saves only about
608 1% in symbol reading. */
609
610 objfile->per_bfd->demangled_names_hash = htab_create_alloc
611 (256, hash_demangled_name_entry, eq_demangled_name_entry,
612 NULL, xcalloc, xfree);
613 }
614
615 /* Try to determine the demangled name for a symbol, based on the
616 language of that symbol. If the language is set to language_auto,
617 it will attempt to find any demangling algorithm that works and
618 then set the language appropriately. The returned name is allocated
619 by the demangler and should be xfree'd. */
620
621 static char *
622 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
623 const char *mangled)
624 {
625 char *demangled = NULL;
626
627 if (gsymbol->language == language_unknown)
628 gsymbol->language = language_auto;
629
630 if (gsymbol->language == language_objc
631 || gsymbol->language == language_auto)
632 {
633 demangled =
634 objc_demangle (mangled, 0);
635 if (demangled != NULL)
636 {
637 gsymbol->language = language_objc;
638 return demangled;
639 }
640 }
641 if (gsymbol->language == language_cplus
642 || gsymbol->language == language_auto)
643 {
644 demangled =
645 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
646 if (demangled != NULL)
647 {
648 gsymbol->language = language_cplus;
649 return demangled;
650 }
651 }
652 if (gsymbol->language == language_java)
653 {
654 demangled =
655 gdb_demangle (mangled,
656 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
657 if (demangled != NULL)
658 {
659 gsymbol->language = language_java;
660 return demangled;
661 }
662 }
663 if (gsymbol->language == language_d
664 || gsymbol->language == language_auto)
665 {
666 demangled = d_demangle(mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_d;
670 return demangled;
671 }
672 }
673 /* FIXME(dje): Continually adding languages here is clumsy.
674 Better to just call la_demangle if !auto, and if auto then call
675 a utility routine that tries successive languages in turn and reports
676 which one it finds. I realize the la_demangle options may be different
677 for different languages but there's already a FIXME for that. */
678 if (gsymbol->language == language_go
679 || gsymbol->language == language_auto)
680 {
681 demangled = go_demangle (mangled, 0);
682 if (demangled != NULL)
683 {
684 gsymbol->language = language_go;
685 return demangled;
686 }
687 }
688
689 /* We could support `gsymbol->language == language_fortran' here to provide
690 module namespaces also for inferiors with only minimal symbol table (ELF
691 symbols). Just the mangling standard is not standardized across compilers
692 and there is no DW_AT_producer available for inferiors with only the ELF
693 symbols to check the mangling kind. */
694
695 /* Check for Ada symbols last. See comment below explaining why. */
696
697 if (gsymbol->language == language_auto)
698 {
699 const char *demangled = ada_decode (mangled);
700
701 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
702 {
703 /* Set the gsymbol language to Ada, but still return NULL.
704 Two reasons for that:
705
706 1. For Ada, we prefer computing the symbol's decoded name
707 on the fly rather than pre-compute it, in order to save
708 memory (Ada projects are typically very large).
709
710 2. There are some areas in the definition of the GNAT
711 encoding where, with a bit of bad luck, we might be able
712 to decode a non-Ada symbol, generating an incorrect
713 demangled name (Eg: names ending with "TB" for instance
714 are identified as task bodies and so stripped from
715 the decoded name returned).
716
717 Returning NULL, here, helps us get a little bit of
718 the best of both worlds. Because we're last, we should
719 not affect any of the other languages that were able to
720 demangle the symbol before us; we get to correctly tag
721 Ada symbols as such; and even if we incorrectly tagged
722 a non-Ada symbol, which should be rare, any routing
723 through the Ada language should be transparent (Ada
724 tries to behave much like C/C++ with non-Ada symbols). */
725 gsymbol->language = language_ada;
726 return NULL;
727 }
728 }
729
730 return NULL;
731 }
732
733 /* Set both the mangled and demangled (if any) names for GSYMBOL based
734 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
735 objfile's obstack; but if COPY_NAME is 0 and if NAME is
736 NUL-terminated, then this function assumes that NAME is already
737 correctly saved (either permanently or with a lifetime tied to the
738 objfile), and it will not be copied.
739
740 The hash table corresponding to OBJFILE is used, and the memory
741 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
742 so the pointer can be discarded after calling this function. */
743
744 /* We have to be careful when dealing with Java names: when we run
745 into a Java minimal symbol, we don't know it's a Java symbol, so it
746 gets demangled as a C++ name. This is unfortunate, but there's not
747 much we can do about it: but when demangling partial symbols and
748 regular symbols, we'd better not reuse the wrong demangled name.
749 (See PR gdb/1039.) We solve this by putting a distinctive prefix
750 on Java names when storing them in the hash table. */
751
752 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
753 don't mind the Java prefix so much: different languages have
754 different demangling requirements, so it's only natural that we
755 need to keep language data around in our demangling cache. But
756 it's not good that the minimal symbol has the wrong demangled name.
757 Unfortunately, I can't think of any easy solution to that
758 problem. */
759
760 #define JAVA_PREFIX "##JAVA$$"
761 #define JAVA_PREFIX_LEN 8
762
763 void
764 symbol_set_names (struct general_symbol_info *gsymbol,
765 const char *linkage_name, int len, int copy_name,
766 struct objfile *objfile)
767 {
768 struct demangled_name_entry **slot;
769 /* A 0-terminated copy of the linkage name. */
770 const char *linkage_name_copy;
771 /* A copy of the linkage name that might have a special Java prefix
772 added to it, for use when looking names up in the hash table. */
773 const char *lookup_name;
774 /* The length of lookup_name. */
775 int lookup_len;
776 struct demangled_name_entry entry;
777 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
778
779 if (gsymbol->language == language_ada)
780 {
781 /* In Ada, we do the symbol lookups using the mangled name, so
782 we can save some space by not storing the demangled name.
783
784 As a side note, we have also observed some overlap between
785 the C++ mangling and Ada mangling, similarly to what has
786 been observed with Java. Because we don't store the demangled
787 name with the symbol, we don't need to use the same trick
788 as Java. */
789 if (!copy_name)
790 gsymbol->name = linkage_name;
791 else
792 {
793 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 /* The stabs reader generally provides names that are not
808 NUL-terminated; most of the other readers don't do this, so we
809 can just use the given copy, unless we're in the Java case. */
810 if (gsymbol->language == language_java)
811 {
812 char *alloc_name;
813
814 lookup_len = len + JAVA_PREFIX_LEN;
815 alloc_name = alloca (lookup_len + 1);
816 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
817 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
818 alloc_name[lookup_len] = '\0';
819
820 lookup_name = alloc_name;
821 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
822 }
823 else if (linkage_name[len] != '\0')
824 {
825 char *alloc_name;
826
827 lookup_len = len;
828 alloc_name = alloca (lookup_len + 1);
829 memcpy (alloc_name, linkage_name, len);
830 alloc_name[lookup_len] = '\0';
831
832 lookup_name = alloc_name;
833 linkage_name_copy = alloc_name;
834 }
835 else
836 {
837 lookup_len = len;
838 lookup_name = linkage_name;
839 linkage_name_copy = linkage_name;
840 }
841
842 entry.mangled = lookup_name;
843 slot = ((struct demangled_name_entry **)
844 htab_find_slot (per_bfd->demangled_names_hash,
845 &entry, INSERT));
846
847 /* If this name is not in the hash table, add it. */
848 if (*slot == NULL
849 /* A C version of the symbol may have already snuck into the table.
850 This happens to, e.g., main.init (__go_init_main). Cope. */
851 || (gsymbol->language == language_go
852 && (*slot)->demangled[0] == '\0'))
853 {
854 char *demangled_name = symbol_find_demangled_name (gsymbol,
855 linkage_name_copy);
856 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
857
858 /* Suppose we have demangled_name==NULL, copy_name==0, and
859 lookup_name==linkage_name. In this case, we already have the
860 mangled name saved, and we don't have a demangled name. So,
861 you might think we could save a little space by not recording
862 this in the hash table at all.
863
864 It turns out that it is actually important to still save such
865 an entry in the hash table, because storing this name gives
866 us better bcache hit rates for partial symbols. */
867 if (!copy_name && lookup_name == linkage_name)
868 {
869 *slot = obstack_alloc (&per_bfd->storage_obstack,
870 offsetof (struct demangled_name_entry,
871 demangled)
872 + demangled_len + 1);
873 (*slot)->mangled = lookup_name;
874 }
875 else
876 {
877 char *mangled_ptr;
878
879 /* If we must copy the mangled name, put it directly after
880 the demangled name so we can have a single
881 allocation. */
882 *slot = obstack_alloc (&per_bfd->storage_obstack,
883 offsetof (struct demangled_name_entry,
884 demangled)
885 + lookup_len + demangled_len + 2);
886 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
887 strcpy (mangled_ptr, lookup_name);
888 (*slot)->mangled = mangled_ptr;
889 }
890
891 if (demangled_name != NULL)
892 {
893 strcpy ((*slot)->demangled, demangled_name);
894 xfree (demangled_name);
895 }
896 else
897 (*slot)->demangled[0] = '\0';
898 }
899
900 gsymbol->name = (*slot)->mangled + lookup_len - len;
901 if ((*slot)->demangled[0] != '\0')
902 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
903 &per_bfd->storage_obstack);
904 else
905 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
906 }
907
908 /* Return the source code name of a symbol. In languages where
909 demangling is necessary, this is the demangled name. */
910
911 const char *
912 symbol_natural_name (const struct general_symbol_info *gsymbol)
913 {
914 switch (gsymbol->language)
915 {
916 case language_cplus:
917 case language_d:
918 case language_go:
919 case language_java:
920 case language_objc:
921 case language_fortran:
922 if (symbol_get_demangled_name (gsymbol) != NULL)
923 return symbol_get_demangled_name (gsymbol);
924 break;
925 case language_ada:
926 return ada_decode_symbol (gsymbol);
927 default:
928 break;
929 }
930 return gsymbol->name;
931 }
932
933 /* Return the demangled name for a symbol based on the language for
934 that symbol. If no demangled name exists, return NULL. */
935
936 const char *
937 symbol_demangled_name (const struct general_symbol_info *gsymbol)
938 {
939 const char *dem_name = NULL;
940
941 switch (gsymbol->language)
942 {
943 case language_cplus:
944 case language_d:
945 case language_go:
946 case language_java:
947 case language_objc:
948 case language_fortran:
949 dem_name = symbol_get_demangled_name (gsymbol);
950 break;
951 case language_ada:
952 dem_name = ada_decode_symbol (gsymbol);
953 break;
954 default:
955 break;
956 }
957 return dem_name;
958 }
959
960 /* Return the search name of a symbol---generally the demangled or
961 linkage name of the symbol, depending on how it will be searched for.
962 If there is no distinct demangled name, then returns the same value
963 (same pointer) as SYMBOL_LINKAGE_NAME. */
964
965 const char *
966 symbol_search_name (const struct general_symbol_info *gsymbol)
967 {
968 if (gsymbol->language == language_ada)
969 return gsymbol->name;
970 else
971 return symbol_natural_name (gsymbol);
972 }
973
974 /* Initialize the structure fields to zero values. */
975
976 void
977 init_sal (struct symtab_and_line *sal)
978 {
979 sal->pspace = NULL;
980 sal->symtab = 0;
981 sal->section = 0;
982 sal->line = 0;
983 sal->pc = 0;
984 sal->end = 0;
985 sal->explicit_pc = 0;
986 sal->explicit_line = 0;
987 sal->probe = NULL;
988 }
989 \f
990
991 /* Return 1 if the two sections are the same, or if they could
992 plausibly be copies of each other, one in an original object
993 file and another in a separated debug file. */
994
995 int
996 matching_obj_sections (struct obj_section *obj_first,
997 struct obj_section *obj_second)
998 {
999 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1000 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1001 struct objfile *obj;
1002
1003 /* If they're the same section, then they match. */
1004 if (first == second)
1005 return 1;
1006
1007 /* If either is NULL, give up. */
1008 if (first == NULL || second == NULL)
1009 return 0;
1010
1011 /* This doesn't apply to absolute symbols. */
1012 if (first->owner == NULL || second->owner == NULL)
1013 return 0;
1014
1015 /* If they're in the same object file, they must be different sections. */
1016 if (first->owner == second->owner)
1017 return 0;
1018
1019 /* Check whether the two sections are potentially corresponding. They must
1020 have the same size, address, and name. We can't compare section indexes,
1021 which would be more reliable, because some sections may have been
1022 stripped. */
1023 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1024 return 0;
1025
1026 /* In-memory addresses may start at a different offset, relativize them. */
1027 if (bfd_get_section_vma (first->owner, first)
1028 - bfd_get_start_address (first->owner)
1029 != bfd_get_section_vma (second->owner, second)
1030 - bfd_get_start_address (second->owner))
1031 return 0;
1032
1033 if (bfd_get_section_name (first->owner, first) == NULL
1034 || bfd_get_section_name (second->owner, second) == NULL
1035 || strcmp (bfd_get_section_name (first->owner, first),
1036 bfd_get_section_name (second->owner, second)) != 0)
1037 return 0;
1038
1039 /* Otherwise check that they are in corresponding objfiles. */
1040
1041 ALL_OBJFILES (obj)
1042 if (obj->obfd == first->owner)
1043 break;
1044 gdb_assert (obj != NULL);
1045
1046 if (obj->separate_debug_objfile != NULL
1047 && obj->separate_debug_objfile->obfd == second->owner)
1048 return 1;
1049 if (obj->separate_debug_objfile_backlink != NULL
1050 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1051 return 1;
1052
1053 return 0;
1054 }
1055
1056 struct symtab *
1057 find_pc_sect_symtab_via_partial (CORE_ADDR pc, struct obj_section *section)
1058 {
1059 struct objfile *objfile;
1060 struct minimal_symbol *msymbol;
1061
1062 /* If we know that this is not a text address, return failure. This is
1063 necessary because we loop based on texthigh and textlow, which do
1064 not include the data ranges. */
1065 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
1066 if (msymbol
1067 && (MSYMBOL_TYPE (msymbol) == mst_data
1068 || MSYMBOL_TYPE (msymbol) == mst_bss
1069 || MSYMBOL_TYPE (msymbol) == mst_abs
1070 || MSYMBOL_TYPE (msymbol) == mst_file_data
1071 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
1072 return NULL;
1073
1074 ALL_OBJFILES (objfile)
1075 {
1076 struct symtab *result = NULL;
1077
1078 if (objfile->sf)
1079 result = objfile->sf->qf->find_pc_sect_symtab (objfile, msymbol,
1080 pc, section, 0);
1081 if (result)
1082 return result;
1083 }
1084
1085 return NULL;
1086 }
1087 \f
1088 /* Debug symbols usually don't have section information. We need to dig that
1089 out of the minimal symbols and stash that in the debug symbol. */
1090
1091 void
1092 fixup_section (struct general_symbol_info *ginfo,
1093 CORE_ADDR addr, struct objfile *objfile)
1094 {
1095 struct minimal_symbol *msym;
1096
1097 /* First, check whether a minimal symbol with the same name exists
1098 and points to the same address. The address check is required
1099 e.g. on PowerPC64, where the minimal symbol for a function will
1100 point to the function descriptor, while the debug symbol will
1101 point to the actual function code. */
1102 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1103 if (msym)
1104 ginfo->section = SYMBOL_SECTION (msym);
1105 else
1106 {
1107 /* Static, function-local variables do appear in the linker
1108 (minimal) symbols, but are frequently given names that won't
1109 be found via lookup_minimal_symbol(). E.g., it has been
1110 observed in frv-uclinux (ELF) executables that a static,
1111 function-local variable named "foo" might appear in the
1112 linker symbols as "foo.6" or "foo.3". Thus, there is no
1113 point in attempting to extend the lookup-by-name mechanism to
1114 handle this case due to the fact that there can be multiple
1115 names.
1116
1117 So, instead, search the section table when lookup by name has
1118 failed. The ``addr'' and ``endaddr'' fields may have already
1119 been relocated. If so, the relocation offset (i.e. the
1120 ANOFFSET value) needs to be subtracted from these values when
1121 performing the comparison. We unconditionally subtract it,
1122 because, when no relocation has been performed, the ANOFFSET
1123 value will simply be zero.
1124
1125 The address of the symbol whose section we're fixing up HAS
1126 NOT BEEN adjusted (relocated) yet. It can't have been since
1127 the section isn't yet known and knowing the section is
1128 necessary in order to add the correct relocation value. In
1129 other words, we wouldn't even be in this function (attempting
1130 to compute the section) if it were already known.
1131
1132 Note that it is possible to search the minimal symbols
1133 (subtracting the relocation value if necessary) to find the
1134 matching minimal symbol, but this is overkill and much less
1135 efficient. It is not necessary to find the matching minimal
1136 symbol, only its section.
1137
1138 Note that this technique (of doing a section table search)
1139 can fail when unrelocated section addresses overlap. For
1140 this reason, we still attempt a lookup by name prior to doing
1141 a search of the section table. */
1142
1143 struct obj_section *s;
1144 int fallback = -1;
1145
1146 ALL_OBJFILE_OSECTIONS (objfile, s)
1147 {
1148 int idx = s - objfile->sections;
1149 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1150
1151 if (fallback == -1)
1152 fallback = idx;
1153
1154 if (obj_section_addr (s) - offset <= addr
1155 && addr < obj_section_endaddr (s) - offset)
1156 {
1157 ginfo->section = idx;
1158 return;
1159 }
1160 }
1161
1162 /* If we didn't find the section, assume it is in the first
1163 section. If there is no allocated section, then it hardly
1164 matters what we pick, so just pick zero. */
1165 if (fallback == -1)
1166 ginfo->section = 0;
1167 else
1168 ginfo->section = fallback;
1169 }
1170 }
1171
1172 struct symbol *
1173 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1174 {
1175 CORE_ADDR addr;
1176
1177 if (!sym)
1178 return NULL;
1179
1180 /* We either have an OBJFILE, or we can get at it from the sym's
1181 symtab. Anything else is a bug. */
1182 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1183
1184 if (objfile == NULL)
1185 objfile = SYMBOL_SYMTAB (sym)->objfile;
1186
1187 if (SYMBOL_OBJ_SECTION (objfile, sym))
1188 return sym;
1189
1190 /* We should have an objfile by now. */
1191 gdb_assert (objfile);
1192
1193 switch (SYMBOL_CLASS (sym))
1194 {
1195 case LOC_STATIC:
1196 case LOC_LABEL:
1197 addr = SYMBOL_VALUE_ADDRESS (sym);
1198 break;
1199 case LOC_BLOCK:
1200 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1201 break;
1202
1203 default:
1204 /* Nothing else will be listed in the minsyms -- no use looking
1205 it up. */
1206 return sym;
1207 }
1208
1209 fixup_section (&sym->ginfo, addr, objfile);
1210
1211 return sym;
1212 }
1213
1214 /* Compute the demangled form of NAME as used by the various symbol
1215 lookup functions. The result is stored in *RESULT_NAME. Returns a
1216 cleanup which can be used to clean up the result.
1217
1218 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1219 Normally, Ada symbol lookups are performed using the encoded name
1220 rather than the demangled name, and so it might seem to make sense
1221 for this function to return an encoded version of NAME.
1222 Unfortunately, we cannot do this, because this function is used in
1223 circumstances where it is not appropriate to try to encode NAME.
1224 For instance, when displaying the frame info, we demangle the name
1225 of each parameter, and then perform a symbol lookup inside our
1226 function using that demangled name. In Ada, certain functions
1227 have internally-generated parameters whose name contain uppercase
1228 characters. Encoding those name would result in those uppercase
1229 characters to become lowercase, and thus cause the symbol lookup
1230 to fail. */
1231
1232 struct cleanup *
1233 demangle_for_lookup (const char *name, enum language lang,
1234 const char **result_name)
1235 {
1236 char *demangled_name = NULL;
1237 const char *modified_name = NULL;
1238 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1239
1240 modified_name = name;
1241
1242 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1243 lookup, so we can always binary search. */
1244 if (lang == language_cplus)
1245 {
1246 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1247 if (demangled_name)
1248 {
1249 modified_name = demangled_name;
1250 make_cleanup (xfree, demangled_name);
1251 }
1252 else
1253 {
1254 /* If we were given a non-mangled name, canonicalize it
1255 according to the language (so far only for C++). */
1256 demangled_name = cp_canonicalize_string (name);
1257 if (demangled_name)
1258 {
1259 modified_name = demangled_name;
1260 make_cleanup (xfree, demangled_name);
1261 }
1262 }
1263 }
1264 else if (lang == language_java)
1265 {
1266 demangled_name = gdb_demangle (name,
1267 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1268 if (demangled_name)
1269 {
1270 modified_name = demangled_name;
1271 make_cleanup (xfree, demangled_name);
1272 }
1273 }
1274 else if (lang == language_d)
1275 {
1276 demangled_name = d_demangle (name, 0);
1277 if (demangled_name)
1278 {
1279 modified_name = demangled_name;
1280 make_cleanup (xfree, demangled_name);
1281 }
1282 }
1283 else if (lang == language_go)
1284 {
1285 demangled_name = go_demangle (name, 0);
1286 if (demangled_name)
1287 {
1288 modified_name = demangled_name;
1289 make_cleanup (xfree, demangled_name);
1290 }
1291 }
1292
1293 *result_name = modified_name;
1294 return cleanup;
1295 }
1296
1297 /* Find the definition for a specified symbol name NAME
1298 in domain DOMAIN, visible from lexical block BLOCK.
1299 Returns the struct symbol pointer, or zero if no symbol is found.
1300 C++: if IS_A_FIELD_OF_THIS is nonzero on entry, check to see if
1301 NAME is a field of the current implied argument `this'. If so set
1302 *IS_A_FIELD_OF_THIS to 1, otherwise set it to zero.
1303 BLOCK_FOUND is set to the block in which NAME is found (in the case of
1304 a field of `this', value_of_this sets BLOCK_FOUND to the proper value.) */
1305
1306 /* This function (or rather its subordinates) have a bunch of loops and
1307 it would seem to be attractive to put in some QUIT's (though I'm not really
1308 sure whether it can run long enough to be really important). But there
1309 are a few calls for which it would appear to be bad news to quit
1310 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1311 that there is C++ code below which can error(), but that probably
1312 doesn't affect these calls since they are looking for a known
1313 variable and thus can probably assume it will never hit the C++
1314 code). */
1315
1316 struct symbol *
1317 lookup_symbol_in_language (const char *name, const struct block *block,
1318 const domain_enum domain, enum language lang,
1319 struct field_of_this_result *is_a_field_of_this)
1320 {
1321 const char *modified_name;
1322 struct symbol *returnval;
1323 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1324
1325 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1326 is_a_field_of_this);
1327 do_cleanups (cleanup);
1328
1329 return returnval;
1330 }
1331
1332 /* Behave like lookup_symbol_in_language, but performed with the
1333 current language. */
1334
1335 struct symbol *
1336 lookup_symbol (const char *name, const struct block *block,
1337 domain_enum domain,
1338 struct field_of_this_result *is_a_field_of_this)
1339 {
1340 return lookup_symbol_in_language (name, block, domain,
1341 current_language->la_language,
1342 is_a_field_of_this);
1343 }
1344
1345 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1346 found, or NULL if not found. */
1347
1348 struct symbol *
1349 lookup_language_this (const struct language_defn *lang,
1350 const struct block *block)
1351 {
1352 if (lang->la_name_of_this == NULL || block == NULL)
1353 return NULL;
1354
1355 while (block)
1356 {
1357 struct symbol *sym;
1358
1359 sym = lookup_block_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1360 if (sym != NULL)
1361 {
1362 block_found = block;
1363 return sym;
1364 }
1365 if (BLOCK_FUNCTION (block))
1366 break;
1367 block = BLOCK_SUPERBLOCK (block);
1368 }
1369
1370 return NULL;
1371 }
1372
1373 /* Given TYPE, a structure/union,
1374 return 1 if the component named NAME from the ultimate target
1375 structure/union is defined, otherwise, return 0. */
1376
1377 static int
1378 check_field (struct type *type, const char *name,
1379 struct field_of_this_result *is_a_field_of_this)
1380 {
1381 int i;
1382
1383 /* The type may be a stub. */
1384 CHECK_TYPEDEF (type);
1385
1386 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1387 {
1388 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1389
1390 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1391 {
1392 is_a_field_of_this->type = type;
1393 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1394 return 1;
1395 }
1396 }
1397
1398 /* C++: If it was not found as a data field, then try to return it
1399 as a pointer to a method. */
1400
1401 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1402 {
1403 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1404 {
1405 is_a_field_of_this->type = type;
1406 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1407 return 1;
1408 }
1409 }
1410
1411 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1412 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1413 return 1;
1414
1415 return 0;
1416 }
1417
1418 /* Behave like lookup_symbol except that NAME is the natural name
1419 (e.g., demangled name) of the symbol that we're looking for. */
1420
1421 static struct symbol *
1422 lookup_symbol_aux (const char *name, const struct block *block,
1423 const domain_enum domain, enum language language,
1424 struct field_of_this_result *is_a_field_of_this)
1425 {
1426 struct symbol *sym;
1427 const struct language_defn *langdef;
1428
1429 /* Make sure we do something sensible with is_a_field_of_this, since
1430 the callers that set this parameter to some non-null value will
1431 certainly use it later. If we don't set it, the contents of
1432 is_a_field_of_this are undefined. */
1433 if (is_a_field_of_this != NULL)
1434 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1435
1436 /* Search specified block and its superiors. Don't search
1437 STATIC_BLOCK or GLOBAL_BLOCK. */
1438
1439 sym = lookup_symbol_aux_local (name, block, domain, language);
1440 if (sym != NULL)
1441 return sym;
1442
1443 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1444 check to see if NAME is a field of `this'. */
1445
1446 langdef = language_def (language);
1447
1448 /* Don't do this check if we are searching for a struct. It will
1449 not be found by check_field, but will be found by other
1450 means. */
1451 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1452 {
1453 struct symbol *sym = lookup_language_this (langdef, block);
1454
1455 if (sym)
1456 {
1457 struct type *t = sym->type;
1458
1459 /* I'm not really sure that type of this can ever
1460 be typedefed; just be safe. */
1461 CHECK_TYPEDEF (t);
1462 if (TYPE_CODE (t) == TYPE_CODE_PTR
1463 || TYPE_CODE (t) == TYPE_CODE_REF)
1464 t = TYPE_TARGET_TYPE (t);
1465
1466 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1467 && TYPE_CODE (t) != TYPE_CODE_UNION)
1468 error (_("Internal error: `%s' is not an aggregate"),
1469 langdef->la_name_of_this);
1470
1471 if (check_field (t, name, is_a_field_of_this))
1472 return NULL;
1473 }
1474 }
1475
1476 /* Now do whatever is appropriate for LANGUAGE to look
1477 up static and global variables. */
1478
1479 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1480 if (sym != NULL)
1481 return sym;
1482
1483 /* Now search all static file-level symbols. Not strictly correct,
1484 but more useful than an error. */
1485
1486 return lookup_static_symbol_aux (name, domain);
1487 }
1488
1489 /* Search all static file-level symbols for NAME from DOMAIN. Do the symtabs
1490 first, then check the psymtabs. If a psymtab indicates the existence of the
1491 desired name as a file-level static, then do psymtab-to-symtab conversion on
1492 the fly and return the found symbol. */
1493
1494 struct symbol *
1495 lookup_static_symbol_aux (const char *name, const domain_enum domain)
1496 {
1497 struct objfile *objfile;
1498 struct symbol *sym;
1499
1500 sym = lookup_symbol_aux_symtabs (STATIC_BLOCK, name, domain);
1501 if (sym != NULL)
1502 return sym;
1503
1504 ALL_OBJFILES (objfile)
1505 {
1506 sym = lookup_symbol_aux_quick (objfile, STATIC_BLOCK, name, domain);
1507 if (sym != NULL)
1508 return sym;
1509 }
1510
1511 return NULL;
1512 }
1513
1514 /* Check to see if the symbol is defined in BLOCK or its superiors.
1515 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1516
1517 static struct symbol *
1518 lookup_symbol_aux_local (const char *name, const struct block *block,
1519 const domain_enum domain,
1520 enum language language)
1521 {
1522 struct symbol *sym;
1523 const struct block *static_block = block_static_block (block);
1524 const char *scope = block_scope (block);
1525
1526 /* Check if either no block is specified or it's a global block. */
1527
1528 if (static_block == NULL)
1529 return NULL;
1530
1531 while (block != static_block)
1532 {
1533 sym = lookup_symbol_aux_block (name, block, domain);
1534 if (sym != NULL)
1535 return sym;
1536
1537 if (language == language_cplus || language == language_fortran)
1538 {
1539 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1540 domain);
1541 if (sym != NULL)
1542 return sym;
1543 }
1544
1545 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1546 break;
1547 block = BLOCK_SUPERBLOCK (block);
1548 }
1549
1550 /* We've reached the edge of the function without finding a result. */
1551
1552 return NULL;
1553 }
1554
1555 /* Look up OBJFILE to BLOCK. */
1556
1557 struct objfile *
1558 lookup_objfile_from_block (const struct block *block)
1559 {
1560 struct objfile *obj;
1561 struct symtab *s;
1562
1563 if (block == NULL)
1564 return NULL;
1565
1566 block = block_global_block (block);
1567 /* Go through SYMTABS. */
1568 ALL_SYMTABS (obj, s)
1569 if (block == BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK))
1570 {
1571 if (obj->separate_debug_objfile_backlink)
1572 obj = obj->separate_debug_objfile_backlink;
1573
1574 return obj;
1575 }
1576
1577 return NULL;
1578 }
1579
1580 /* Look up a symbol in a block; if found, fixup the symbol, and set
1581 block_found appropriately. */
1582
1583 struct symbol *
1584 lookup_symbol_aux_block (const char *name, const struct block *block,
1585 const domain_enum domain)
1586 {
1587 struct symbol *sym;
1588
1589 sym = lookup_block_symbol (block, name, domain);
1590 if (sym)
1591 {
1592 block_found = block;
1593 return fixup_symbol_section (sym, NULL);
1594 }
1595
1596 return NULL;
1597 }
1598
1599 /* Check all global symbols in OBJFILE in symtabs and
1600 psymtabs. */
1601
1602 struct symbol *
1603 lookup_global_symbol_from_objfile (const struct objfile *main_objfile,
1604 const char *name,
1605 const domain_enum domain)
1606 {
1607 const struct objfile *objfile;
1608 struct symbol *sym;
1609 struct blockvector *bv;
1610 const struct block *block;
1611 struct symtab *s;
1612
1613 for (objfile = main_objfile;
1614 objfile;
1615 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1616 {
1617 /* Go through symtabs. */
1618 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1619 {
1620 bv = BLOCKVECTOR (s);
1621 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1622 sym = lookup_block_symbol (block, name, domain);
1623 if (sym)
1624 {
1625 block_found = block;
1626 return fixup_symbol_section (sym, (struct objfile *)objfile);
1627 }
1628 }
1629
1630 sym = lookup_symbol_aux_quick ((struct objfile *) objfile, GLOBAL_BLOCK,
1631 name, domain);
1632 if (sym)
1633 return sym;
1634 }
1635
1636 return NULL;
1637 }
1638
1639 /* Check to see if the symbol is defined in one of the OBJFILE's
1640 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1641 depending on whether or not we want to search global symbols or
1642 static symbols. */
1643
1644 static struct symbol *
1645 lookup_symbol_aux_objfile (struct objfile *objfile, int block_index,
1646 const char *name, const domain_enum domain)
1647 {
1648 struct symbol *sym = NULL;
1649 struct blockvector *bv;
1650 const struct block *block;
1651 struct symtab *s;
1652
1653 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1654 {
1655 bv = BLOCKVECTOR (s);
1656 block = BLOCKVECTOR_BLOCK (bv, block_index);
1657 sym = lookup_block_symbol (block, name, domain);
1658 if (sym)
1659 {
1660 block_found = block;
1661 return fixup_symbol_section (sym, objfile);
1662 }
1663 }
1664
1665 return NULL;
1666 }
1667
1668 /* Same as lookup_symbol_aux_objfile, except that it searches all
1669 objfiles. Return the first match found. */
1670
1671 static struct symbol *
1672 lookup_symbol_aux_symtabs (int block_index, const char *name,
1673 const domain_enum domain)
1674 {
1675 struct symbol *sym;
1676 struct objfile *objfile;
1677
1678 ALL_OBJFILES (objfile)
1679 {
1680 sym = lookup_symbol_aux_objfile (objfile, block_index, name, domain);
1681 if (sym)
1682 return sym;
1683 }
1684
1685 return NULL;
1686 }
1687
1688 /* Wrapper around lookup_symbol_aux_objfile for search_symbols.
1689 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1690 and all related objfiles. */
1691
1692 static struct symbol *
1693 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1694 const char *linkage_name,
1695 domain_enum domain)
1696 {
1697 enum language lang = current_language->la_language;
1698 const char *modified_name;
1699 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1700 &modified_name);
1701 struct objfile *main_objfile, *cur_objfile;
1702
1703 if (objfile->separate_debug_objfile_backlink)
1704 main_objfile = objfile->separate_debug_objfile_backlink;
1705 else
1706 main_objfile = objfile;
1707
1708 for (cur_objfile = main_objfile;
1709 cur_objfile;
1710 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1711 {
1712 struct symbol *sym;
1713
1714 sym = lookup_symbol_aux_objfile (cur_objfile, GLOBAL_BLOCK,
1715 modified_name, domain);
1716 if (sym == NULL)
1717 sym = lookup_symbol_aux_objfile (cur_objfile, STATIC_BLOCK,
1718 modified_name, domain);
1719 if (sym != NULL)
1720 {
1721 do_cleanups (cleanup);
1722 return sym;
1723 }
1724 }
1725
1726 do_cleanups (cleanup);
1727 return NULL;
1728 }
1729
1730 /* A helper function that throws an exception when a symbol was found
1731 in a psymtab but not in a symtab. */
1732
1733 static void ATTRIBUTE_NORETURN
1734 error_in_psymtab_expansion (int kind, const char *name, struct symtab *symtab)
1735 {
1736 error (_("\
1737 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1738 %s may be an inlined function, or may be a template function\n \
1739 (if a template, try specifying an instantiation: %s<type>)."),
1740 kind == GLOBAL_BLOCK ? "global" : "static",
1741 name, symtab_to_filename_for_display (symtab), name, name);
1742 }
1743
1744 /* A helper function for lookup_symbol_aux that interfaces with the
1745 "quick" symbol table functions. */
1746
1747 static struct symbol *
1748 lookup_symbol_aux_quick (struct objfile *objfile, int kind,
1749 const char *name, const domain_enum domain)
1750 {
1751 struct symtab *symtab;
1752 struct blockvector *bv;
1753 const struct block *block;
1754 struct symbol *sym;
1755
1756 if (!objfile->sf)
1757 return NULL;
1758 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, domain);
1759 if (!symtab)
1760 return NULL;
1761
1762 bv = BLOCKVECTOR (symtab);
1763 block = BLOCKVECTOR_BLOCK (bv, kind);
1764 sym = lookup_block_symbol (block, name, domain);
1765 if (!sym)
1766 error_in_psymtab_expansion (kind, name, symtab);
1767 return fixup_symbol_section (sym, objfile);
1768 }
1769
1770 /* A default version of lookup_symbol_nonlocal for use by languages
1771 that can't think of anything better to do. This implements the C
1772 lookup rules. */
1773
1774 struct symbol *
1775 basic_lookup_symbol_nonlocal (const char *name,
1776 const struct block *block,
1777 const domain_enum domain)
1778 {
1779 struct symbol *sym;
1780
1781 /* NOTE: carlton/2003-05-19: The comments below were written when
1782 this (or what turned into this) was part of lookup_symbol_aux;
1783 I'm much less worried about these questions now, since these
1784 decisions have turned out well, but I leave these comments here
1785 for posterity. */
1786
1787 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1788 not it would be appropriate to search the current global block
1789 here as well. (That's what this code used to do before the
1790 is_a_field_of_this check was moved up.) On the one hand, it's
1791 redundant with the lookup_symbol_aux_symtabs search that happens
1792 next. On the other hand, if decode_line_1 is passed an argument
1793 like filename:var, then the user presumably wants 'var' to be
1794 searched for in filename. On the third hand, there shouldn't be
1795 multiple global variables all of which are named 'var', and it's
1796 not like decode_line_1 has ever restricted its search to only
1797 global variables in a single filename. All in all, only
1798 searching the static block here seems best: it's correct and it's
1799 cleanest. */
1800
1801 /* NOTE: carlton/2002-12-05: There's also a possible performance
1802 issue here: if you usually search for global symbols in the
1803 current file, then it would be slightly better to search the
1804 current global block before searching all the symtabs. But there
1805 are other factors that have a much greater effect on performance
1806 than that one, so I don't think we should worry about that for
1807 now. */
1808
1809 sym = lookup_symbol_static (name, block, domain);
1810 if (sym != NULL)
1811 return sym;
1812
1813 return lookup_symbol_global (name, block, domain);
1814 }
1815
1816 /* Lookup a symbol in the static block associated to BLOCK, if there
1817 is one; do nothing if BLOCK is NULL or a global block. */
1818
1819 struct symbol *
1820 lookup_symbol_static (const char *name,
1821 const struct block *block,
1822 const domain_enum domain)
1823 {
1824 const struct block *static_block = block_static_block (block);
1825
1826 if (static_block != NULL)
1827 return lookup_symbol_aux_block (name, static_block, domain);
1828 else
1829 return NULL;
1830 }
1831
1832 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1833
1834 struct global_sym_lookup_data
1835 {
1836 /* The name of the symbol we are searching for. */
1837 const char *name;
1838
1839 /* The domain to use for our search. */
1840 domain_enum domain;
1841
1842 /* The field where the callback should store the symbol if found.
1843 It should be initialized to NULL before the search is started. */
1844 struct symbol *result;
1845 };
1846
1847 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1848 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1849 OBJFILE. The arguments for the search are passed via CB_DATA,
1850 which in reality is a pointer to struct global_sym_lookup_data. */
1851
1852 static int
1853 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1854 void *cb_data)
1855 {
1856 struct global_sym_lookup_data *data =
1857 (struct global_sym_lookup_data *) cb_data;
1858
1859 gdb_assert (data->result == NULL);
1860
1861 data->result = lookup_symbol_aux_objfile (objfile, GLOBAL_BLOCK,
1862 data->name, data->domain);
1863 if (data->result == NULL)
1864 data->result = lookup_symbol_aux_quick (objfile, GLOBAL_BLOCK,
1865 data->name, data->domain);
1866
1867 /* If we found a match, tell the iterator to stop. Otherwise,
1868 keep going. */
1869 return (data->result != NULL);
1870 }
1871
1872 /* Lookup a symbol in all files' global blocks (searching psymtabs if
1873 necessary). */
1874
1875 struct symbol *
1876 lookup_symbol_global (const char *name,
1877 const struct block *block,
1878 const domain_enum domain)
1879 {
1880 struct symbol *sym = NULL;
1881 struct objfile *objfile = NULL;
1882 struct global_sym_lookup_data lookup_data;
1883
1884 /* Call library-specific lookup procedure. */
1885 objfile = lookup_objfile_from_block (block);
1886 if (objfile != NULL)
1887 sym = solib_global_lookup (objfile, name, domain);
1888 if (sym != NULL)
1889 return sym;
1890
1891 memset (&lookup_data, 0, sizeof (lookup_data));
1892 lookup_data.name = name;
1893 lookup_data.domain = domain;
1894 gdbarch_iterate_over_objfiles_in_search_order
1895 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1896 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1897
1898 return lookup_data.result;
1899 }
1900
1901 int
1902 symbol_matches_domain (enum language symbol_language,
1903 domain_enum symbol_domain,
1904 domain_enum domain)
1905 {
1906 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1907 A Java class declaration also defines a typedef for the class.
1908 Similarly, any Ada type declaration implicitly defines a typedef. */
1909 if (symbol_language == language_cplus
1910 || symbol_language == language_d
1911 || symbol_language == language_java
1912 || symbol_language == language_ada)
1913 {
1914 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1915 && symbol_domain == STRUCT_DOMAIN)
1916 return 1;
1917 }
1918 /* For all other languages, strict match is required. */
1919 return (symbol_domain == domain);
1920 }
1921
1922 /* Look up a type named NAME in the struct_domain. The type returned
1923 must not be opaque -- i.e., must have at least one field
1924 defined. */
1925
1926 struct type *
1927 lookup_transparent_type (const char *name)
1928 {
1929 return current_language->la_lookup_transparent_type (name);
1930 }
1931
1932 /* A helper for basic_lookup_transparent_type that interfaces with the
1933 "quick" symbol table functions. */
1934
1935 static struct type *
1936 basic_lookup_transparent_type_quick (struct objfile *objfile, int kind,
1937 const char *name)
1938 {
1939 struct symtab *symtab;
1940 struct blockvector *bv;
1941 struct block *block;
1942 struct symbol *sym;
1943
1944 if (!objfile->sf)
1945 return NULL;
1946 symtab = objfile->sf->qf->lookup_symbol (objfile, kind, name, STRUCT_DOMAIN);
1947 if (!symtab)
1948 return NULL;
1949
1950 bv = BLOCKVECTOR (symtab);
1951 block = BLOCKVECTOR_BLOCK (bv, kind);
1952 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1953 if (!sym)
1954 error_in_psymtab_expansion (kind, name, symtab);
1955
1956 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1957 return SYMBOL_TYPE (sym);
1958
1959 return NULL;
1960 }
1961
1962 /* The standard implementation of lookup_transparent_type. This code
1963 was modeled on lookup_symbol -- the parts not relevant to looking
1964 up types were just left out. In particular it's assumed here that
1965 types are available in struct_domain and only at file-static or
1966 global blocks. */
1967
1968 struct type *
1969 basic_lookup_transparent_type (const char *name)
1970 {
1971 struct symbol *sym;
1972 struct symtab *s = NULL;
1973 struct blockvector *bv;
1974 struct objfile *objfile;
1975 struct block *block;
1976 struct type *t;
1977
1978 /* Now search all the global symbols. Do the symtab's first, then
1979 check the psymtab's. If a psymtab indicates the existence
1980 of the desired name as a global, then do psymtab-to-symtab
1981 conversion on the fly and return the found symbol. */
1982
1983 ALL_OBJFILES (objfile)
1984 {
1985 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
1986 {
1987 bv = BLOCKVECTOR (s);
1988 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1989 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
1990 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1991 {
1992 return SYMBOL_TYPE (sym);
1993 }
1994 }
1995 }
1996
1997 ALL_OBJFILES (objfile)
1998 {
1999 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2000 if (t)
2001 return t;
2002 }
2003
2004 /* Now search the static file-level symbols.
2005 Not strictly correct, but more useful than an error.
2006 Do the symtab's first, then
2007 check the psymtab's. If a psymtab indicates the existence
2008 of the desired name as a file-level static, then do psymtab-to-symtab
2009 conversion on the fly and return the found symbol. */
2010
2011 ALL_OBJFILES (objfile)
2012 {
2013 ALL_OBJFILE_PRIMARY_SYMTABS (objfile, s)
2014 {
2015 bv = BLOCKVECTOR (s);
2016 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
2017 sym = lookup_block_symbol (block, name, STRUCT_DOMAIN);
2018 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
2019 {
2020 return SYMBOL_TYPE (sym);
2021 }
2022 }
2023 }
2024
2025 ALL_OBJFILES (objfile)
2026 {
2027 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2028 if (t)
2029 return t;
2030 }
2031
2032 return (struct type *) 0;
2033 }
2034
2035 /* Search BLOCK for symbol NAME in DOMAIN.
2036
2037 Note that if NAME is the demangled form of a C++ symbol, we will fail
2038 to find a match during the binary search of the non-encoded names, but
2039 for now we don't worry about the slight inefficiency of looking for
2040 a match we'll never find, since it will go pretty quick. Once the
2041 binary search terminates, we drop through and do a straight linear
2042 search on the symbols. Each symbol which is marked as being a ObjC/C++
2043 symbol (language_cplus or language_objc set) has both the encoded and
2044 non-encoded names tested for a match. */
2045
2046 struct symbol *
2047 lookup_block_symbol (const struct block *block, const char *name,
2048 const domain_enum domain)
2049 {
2050 struct block_iterator iter;
2051 struct symbol *sym;
2052
2053 if (!BLOCK_FUNCTION (block))
2054 {
2055 for (sym = block_iter_name_first (block, name, &iter);
2056 sym != NULL;
2057 sym = block_iter_name_next (name, &iter))
2058 {
2059 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2060 SYMBOL_DOMAIN (sym), domain))
2061 return sym;
2062 }
2063 return NULL;
2064 }
2065 else
2066 {
2067 /* Note that parameter symbols do not always show up last in the
2068 list; this loop makes sure to take anything else other than
2069 parameter symbols first; it only uses parameter symbols as a
2070 last resort. Note that this only takes up extra computation
2071 time on a match. */
2072
2073 struct symbol *sym_found = NULL;
2074
2075 for (sym = block_iter_name_first (block, name, &iter);
2076 sym != NULL;
2077 sym = block_iter_name_next (name, &iter))
2078 {
2079 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2080 SYMBOL_DOMAIN (sym), domain))
2081 {
2082 sym_found = sym;
2083 if (!SYMBOL_IS_ARGUMENT (sym))
2084 {
2085 break;
2086 }
2087 }
2088 }
2089 return (sym_found); /* Will be NULL if not found. */
2090 }
2091 }
2092
2093 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2094
2095 For each symbol that matches, CALLBACK is called. The symbol and
2096 DATA are passed to the callback.
2097
2098 If CALLBACK returns zero, the iteration ends. Otherwise, the
2099 search continues. */
2100
2101 void
2102 iterate_over_symbols (const struct block *block, const char *name,
2103 const domain_enum domain,
2104 symbol_found_callback_ftype *callback,
2105 void *data)
2106 {
2107 struct block_iterator iter;
2108 struct symbol *sym;
2109
2110 for (sym = block_iter_name_first (block, name, &iter);
2111 sym != NULL;
2112 sym = block_iter_name_next (name, &iter))
2113 {
2114 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2115 SYMBOL_DOMAIN (sym), domain))
2116 {
2117 if (!callback (sym, data))
2118 return;
2119 }
2120 }
2121 }
2122
2123 /* Find the symtab associated with PC and SECTION. Look through the
2124 psymtabs and read in another symtab if necessary. */
2125
2126 struct symtab *
2127 find_pc_sect_symtab (CORE_ADDR pc, struct obj_section *section)
2128 {
2129 struct block *b;
2130 struct blockvector *bv;
2131 struct symtab *s = NULL;
2132 struct symtab *best_s = NULL;
2133 struct objfile *objfile;
2134 CORE_ADDR distance = 0;
2135 struct minimal_symbol *msymbol;
2136
2137 /* If we know that this is not a text address, return failure. This is
2138 necessary because we loop based on the block's high and low code
2139 addresses, which do not include the data ranges, and because
2140 we call find_pc_sect_psymtab which has a similar restriction based
2141 on the partial_symtab's texthigh and textlow. */
2142 msymbol = lookup_minimal_symbol_by_pc_section (pc, section).minsym;
2143 if (msymbol
2144 && (MSYMBOL_TYPE (msymbol) == mst_data
2145 || MSYMBOL_TYPE (msymbol) == mst_bss
2146 || MSYMBOL_TYPE (msymbol) == mst_abs
2147 || MSYMBOL_TYPE (msymbol) == mst_file_data
2148 || MSYMBOL_TYPE (msymbol) == mst_file_bss))
2149 return NULL;
2150
2151 /* Search all symtabs for the one whose file contains our address, and which
2152 is the smallest of all the ones containing the address. This is designed
2153 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2154 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2155 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2156
2157 This happens for native ecoff format, where code from included files
2158 gets its own symtab. The symtab for the included file should have
2159 been read in already via the dependency mechanism.
2160 It might be swifter to create several symtabs with the same name
2161 like xcoff does (I'm not sure).
2162
2163 It also happens for objfiles that have their functions reordered.
2164 For these, the symtab we are looking for is not necessarily read in. */
2165
2166 ALL_PRIMARY_SYMTABS (objfile, s)
2167 {
2168 bv = BLOCKVECTOR (s);
2169 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2170
2171 if (BLOCK_START (b) <= pc
2172 && BLOCK_END (b) > pc
2173 && (distance == 0
2174 || BLOCK_END (b) - BLOCK_START (b) < distance))
2175 {
2176 /* For an objfile that has its functions reordered,
2177 find_pc_psymtab will find the proper partial symbol table
2178 and we simply return its corresponding symtab. */
2179 /* In order to better support objfiles that contain both
2180 stabs and coff debugging info, we continue on if a psymtab
2181 can't be found. */
2182 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2183 {
2184 struct symtab *result;
2185
2186 result
2187 = objfile->sf->qf->find_pc_sect_symtab (objfile,
2188 msymbol,
2189 pc, section,
2190 0);
2191 if (result)
2192 return result;
2193 }
2194 if (section != 0)
2195 {
2196 struct block_iterator iter;
2197 struct symbol *sym = NULL;
2198
2199 ALL_BLOCK_SYMBOLS (b, iter, sym)
2200 {
2201 fixup_symbol_section (sym, objfile);
2202 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2203 section))
2204 break;
2205 }
2206 if (sym == NULL)
2207 continue; /* No symbol in this symtab matches
2208 section. */
2209 }
2210 distance = BLOCK_END (b) - BLOCK_START (b);
2211 best_s = s;
2212 }
2213 }
2214
2215 if (best_s != NULL)
2216 return (best_s);
2217
2218 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2219
2220 ALL_OBJFILES (objfile)
2221 {
2222 struct symtab *result;
2223
2224 if (!objfile->sf)
2225 continue;
2226 result = objfile->sf->qf->find_pc_sect_symtab (objfile,
2227 msymbol,
2228 pc, section,
2229 1);
2230 if (result)
2231 return result;
2232 }
2233
2234 return NULL;
2235 }
2236
2237 /* Find the symtab associated with PC. Look through the psymtabs and read
2238 in another symtab if necessary. Backward compatibility, no section. */
2239
2240 struct symtab *
2241 find_pc_symtab (CORE_ADDR pc)
2242 {
2243 return find_pc_sect_symtab (pc, find_pc_mapped_section (pc));
2244 }
2245 \f
2246
2247 /* Find the source file and line number for a given PC value and SECTION.
2248 Return a structure containing a symtab pointer, a line number,
2249 and a pc range for the entire source line.
2250 The value's .pc field is NOT the specified pc.
2251 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2252 use the line that ends there. Otherwise, in that case, the line
2253 that begins there is used. */
2254
2255 /* The big complication here is that a line may start in one file, and end just
2256 before the start of another file. This usually occurs when you #include
2257 code in the middle of a subroutine. To properly find the end of a line's PC
2258 range, we must search all symtabs associated with this compilation unit, and
2259 find the one whose first PC is closer than that of the next line in this
2260 symtab. */
2261
2262 /* If it's worth the effort, we could be using a binary search. */
2263
2264 struct symtab_and_line
2265 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2266 {
2267 struct symtab *s;
2268 struct linetable *l;
2269 int len;
2270 int i;
2271 struct linetable_entry *item;
2272 struct symtab_and_line val;
2273 struct blockvector *bv;
2274 struct bound_minimal_symbol msymbol;
2275 struct minimal_symbol *mfunsym;
2276 struct objfile *objfile;
2277
2278 /* Info on best line seen so far, and where it starts, and its file. */
2279
2280 struct linetable_entry *best = NULL;
2281 CORE_ADDR best_end = 0;
2282 struct symtab *best_symtab = 0;
2283
2284 /* Store here the first line number
2285 of a file which contains the line at the smallest pc after PC.
2286 If we don't find a line whose range contains PC,
2287 we will use a line one less than this,
2288 with a range from the start of that file to the first line's pc. */
2289 struct linetable_entry *alt = NULL;
2290
2291 /* Info on best line seen in this file. */
2292
2293 struct linetable_entry *prev;
2294
2295 /* If this pc is not from the current frame,
2296 it is the address of the end of a call instruction.
2297 Quite likely that is the start of the following statement.
2298 But what we want is the statement containing the instruction.
2299 Fudge the pc to make sure we get that. */
2300
2301 init_sal (&val); /* initialize to zeroes */
2302
2303 val.pspace = current_program_space;
2304
2305 /* It's tempting to assume that, if we can't find debugging info for
2306 any function enclosing PC, that we shouldn't search for line
2307 number info, either. However, GAS can emit line number info for
2308 assembly files --- very helpful when debugging hand-written
2309 assembly code. In such a case, we'd have no debug info for the
2310 function, but we would have line info. */
2311
2312 if (notcurrent)
2313 pc -= 1;
2314
2315 /* elz: added this because this function returned the wrong
2316 information if the pc belongs to a stub (import/export)
2317 to call a shlib function. This stub would be anywhere between
2318 two functions in the target, and the line info was erroneously
2319 taken to be the one of the line before the pc. */
2320
2321 /* RT: Further explanation:
2322
2323 * We have stubs (trampolines) inserted between procedures.
2324 *
2325 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2326 * exists in the main image.
2327 *
2328 * In the minimal symbol table, we have a bunch of symbols
2329 * sorted by start address. The stubs are marked as "trampoline",
2330 * the others appear as text. E.g.:
2331 *
2332 * Minimal symbol table for main image
2333 * main: code for main (text symbol)
2334 * shr1: stub (trampoline symbol)
2335 * foo: code for foo (text symbol)
2336 * ...
2337 * Minimal symbol table for "shr1" image:
2338 * ...
2339 * shr1: code for shr1 (text symbol)
2340 * ...
2341 *
2342 * So the code below is trying to detect if we are in the stub
2343 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2344 * and if found, do the symbolization from the real-code address
2345 * rather than the stub address.
2346 *
2347 * Assumptions being made about the minimal symbol table:
2348 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2349 * if we're really in the trampoline.s If we're beyond it (say
2350 * we're in "foo" in the above example), it'll have a closer
2351 * symbol (the "foo" text symbol for example) and will not
2352 * return the trampoline.
2353 * 2. lookup_minimal_symbol_text() will find a real text symbol
2354 * corresponding to the trampoline, and whose address will
2355 * be different than the trampoline address. I put in a sanity
2356 * check for the address being the same, to avoid an
2357 * infinite recursion.
2358 */
2359 msymbol = lookup_minimal_symbol_by_pc (pc);
2360 if (msymbol.minsym != NULL)
2361 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2362 {
2363 mfunsym
2364 = lookup_minimal_symbol_text (SYMBOL_LINKAGE_NAME (msymbol.minsym),
2365 NULL);
2366 if (mfunsym == NULL)
2367 /* I eliminated this warning since it is coming out
2368 * in the following situation:
2369 * gdb shmain // test program with shared libraries
2370 * (gdb) break shr1 // function in shared lib
2371 * Warning: In stub for ...
2372 * In the above situation, the shared lib is not loaded yet,
2373 * so of course we can't find the real func/line info,
2374 * but the "break" still works, and the warning is annoying.
2375 * So I commented out the warning. RT */
2376 /* warning ("In stub for %s; unable to find real function/line info",
2377 SYMBOL_LINKAGE_NAME (msymbol)); */
2378 ;
2379 /* fall through */
2380 else if (SYMBOL_VALUE_ADDRESS (mfunsym)
2381 == SYMBOL_VALUE_ADDRESS (msymbol.minsym))
2382 /* Avoid infinite recursion */
2383 /* See above comment about why warning is commented out. */
2384 /* warning ("In stub for %s; unable to find real function/line info",
2385 SYMBOL_LINKAGE_NAME (msymbol)); */
2386 ;
2387 /* fall through */
2388 else
2389 return find_pc_line (SYMBOL_VALUE_ADDRESS (mfunsym), 0);
2390 }
2391
2392
2393 s = find_pc_sect_symtab (pc, section);
2394 if (!s)
2395 {
2396 /* If no symbol information, return previous pc. */
2397 if (notcurrent)
2398 pc++;
2399 val.pc = pc;
2400 return val;
2401 }
2402
2403 bv = BLOCKVECTOR (s);
2404 objfile = s->objfile;
2405
2406 /* Look at all the symtabs that share this blockvector.
2407 They all have the same apriori range, that we found was right;
2408 but they have different line tables. */
2409
2410 ALL_OBJFILE_SYMTABS (objfile, s)
2411 {
2412 if (BLOCKVECTOR (s) != bv)
2413 continue;
2414
2415 /* Find the best line in this symtab. */
2416 l = LINETABLE (s);
2417 if (!l)
2418 continue;
2419 len = l->nitems;
2420 if (len <= 0)
2421 {
2422 /* I think len can be zero if the symtab lacks line numbers
2423 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2424 I'm not sure which, and maybe it depends on the symbol
2425 reader). */
2426 continue;
2427 }
2428
2429 prev = NULL;
2430 item = l->item; /* Get first line info. */
2431
2432 /* Is this file's first line closer than the first lines of other files?
2433 If so, record this file, and its first line, as best alternate. */
2434 if (item->pc > pc && (!alt || item->pc < alt->pc))
2435 alt = item;
2436
2437 for (i = 0; i < len; i++, item++)
2438 {
2439 /* Leave prev pointing to the linetable entry for the last line
2440 that started at or before PC. */
2441 if (item->pc > pc)
2442 break;
2443
2444 prev = item;
2445 }
2446
2447 /* At this point, prev points at the line whose start addr is <= pc, and
2448 item points at the next line. If we ran off the end of the linetable
2449 (pc >= start of the last line), then prev == item. If pc < start of
2450 the first line, prev will not be set. */
2451
2452 /* Is this file's best line closer than the best in the other files?
2453 If so, record this file, and its best line, as best so far. Don't
2454 save prev if it represents the end of a function (i.e. line number
2455 0) instead of a real line. */
2456
2457 if (prev && prev->line && (!best || prev->pc > best->pc))
2458 {
2459 best = prev;
2460 best_symtab = s;
2461
2462 /* Discard BEST_END if it's before the PC of the current BEST. */
2463 if (best_end <= best->pc)
2464 best_end = 0;
2465 }
2466
2467 /* If another line (denoted by ITEM) is in the linetable and its
2468 PC is after BEST's PC, but before the current BEST_END, then
2469 use ITEM's PC as the new best_end. */
2470 if (best && i < len && item->pc > best->pc
2471 && (best_end == 0 || best_end > item->pc))
2472 best_end = item->pc;
2473 }
2474
2475 if (!best_symtab)
2476 {
2477 /* If we didn't find any line number info, just return zeros.
2478 We used to return alt->line - 1 here, but that could be
2479 anywhere; if we don't have line number info for this PC,
2480 don't make some up. */
2481 val.pc = pc;
2482 }
2483 else if (best->line == 0)
2484 {
2485 /* If our best fit is in a range of PC's for which no line
2486 number info is available (line number is zero) then we didn't
2487 find any valid line information. */
2488 val.pc = pc;
2489 }
2490 else
2491 {
2492 val.symtab = best_symtab;
2493 val.line = best->line;
2494 val.pc = best->pc;
2495 if (best_end && (!alt || best_end < alt->pc))
2496 val.end = best_end;
2497 else if (alt)
2498 val.end = alt->pc;
2499 else
2500 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2501 }
2502 val.section = section;
2503 return val;
2504 }
2505
2506 /* Backward compatibility (no section). */
2507
2508 struct symtab_and_line
2509 find_pc_line (CORE_ADDR pc, int notcurrent)
2510 {
2511 struct obj_section *section;
2512
2513 section = find_pc_overlay (pc);
2514 if (pc_in_unmapped_range (pc, section))
2515 pc = overlay_mapped_address (pc, section);
2516 return find_pc_sect_line (pc, section, notcurrent);
2517 }
2518 \f
2519 /* Find line number LINE in any symtab whose name is the same as
2520 SYMTAB.
2521
2522 If found, return the symtab that contains the linetable in which it was
2523 found, set *INDEX to the index in the linetable of the best entry
2524 found, and set *EXACT_MATCH nonzero if the value returned is an
2525 exact match.
2526
2527 If not found, return NULL. */
2528
2529 struct symtab *
2530 find_line_symtab (struct symtab *symtab, int line,
2531 int *index, int *exact_match)
2532 {
2533 int exact = 0; /* Initialized here to avoid a compiler warning. */
2534
2535 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2536 so far seen. */
2537
2538 int best_index;
2539 struct linetable *best_linetable;
2540 struct symtab *best_symtab;
2541
2542 /* First try looking it up in the given symtab. */
2543 best_linetable = LINETABLE (symtab);
2544 best_symtab = symtab;
2545 best_index = find_line_common (best_linetable, line, &exact, 0);
2546 if (best_index < 0 || !exact)
2547 {
2548 /* Didn't find an exact match. So we better keep looking for
2549 another symtab with the same name. In the case of xcoff,
2550 multiple csects for one source file (produced by IBM's FORTRAN
2551 compiler) produce multiple symtabs (this is unavoidable
2552 assuming csects can be at arbitrary places in memory and that
2553 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2554
2555 /* BEST is the smallest linenumber > LINE so far seen,
2556 or 0 if none has been seen so far.
2557 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2558 int best;
2559
2560 struct objfile *objfile;
2561 struct symtab *s;
2562
2563 if (best_index >= 0)
2564 best = best_linetable->item[best_index].line;
2565 else
2566 best = 0;
2567
2568 ALL_OBJFILES (objfile)
2569 {
2570 if (objfile->sf)
2571 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2572 symtab_to_fullname (symtab));
2573 }
2574
2575 ALL_SYMTABS (objfile, s)
2576 {
2577 struct linetable *l;
2578 int ind;
2579
2580 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2581 continue;
2582 if (FILENAME_CMP (symtab_to_fullname (symtab),
2583 symtab_to_fullname (s)) != 0)
2584 continue;
2585 l = LINETABLE (s);
2586 ind = find_line_common (l, line, &exact, 0);
2587 if (ind >= 0)
2588 {
2589 if (exact)
2590 {
2591 best_index = ind;
2592 best_linetable = l;
2593 best_symtab = s;
2594 goto done;
2595 }
2596 if (best == 0 || l->item[ind].line < best)
2597 {
2598 best = l->item[ind].line;
2599 best_index = ind;
2600 best_linetable = l;
2601 best_symtab = s;
2602 }
2603 }
2604 }
2605 }
2606 done:
2607 if (best_index < 0)
2608 return NULL;
2609
2610 if (index)
2611 *index = best_index;
2612 if (exact_match)
2613 *exact_match = exact;
2614
2615 return best_symtab;
2616 }
2617
2618 /* Given SYMTAB, returns all the PCs function in the symtab that
2619 exactly match LINE. Returns NULL if there are no exact matches,
2620 but updates BEST_ITEM in this case. */
2621
2622 VEC (CORE_ADDR) *
2623 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2624 struct linetable_entry **best_item)
2625 {
2626 int start = 0;
2627 VEC (CORE_ADDR) *result = NULL;
2628
2629 /* First, collect all the PCs that are at this line. */
2630 while (1)
2631 {
2632 int was_exact;
2633 int idx;
2634
2635 idx = find_line_common (LINETABLE (symtab), line, &was_exact, start);
2636 if (idx < 0)
2637 break;
2638
2639 if (!was_exact)
2640 {
2641 struct linetable_entry *item = &LINETABLE (symtab)->item[idx];
2642
2643 if (*best_item == NULL || item->line < (*best_item)->line)
2644 *best_item = item;
2645
2646 break;
2647 }
2648
2649 VEC_safe_push (CORE_ADDR, result, LINETABLE (symtab)->item[idx].pc);
2650 start = idx + 1;
2651 }
2652
2653 return result;
2654 }
2655
2656 \f
2657 /* Set the PC value for a given source file and line number and return true.
2658 Returns zero for invalid line number (and sets the PC to 0).
2659 The source file is specified with a struct symtab. */
2660
2661 int
2662 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2663 {
2664 struct linetable *l;
2665 int ind;
2666
2667 *pc = 0;
2668 if (symtab == 0)
2669 return 0;
2670
2671 symtab = find_line_symtab (symtab, line, &ind, NULL);
2672 if (symtab != NULL)
2673 {
2674 l = LINETABLE (symtab);
2675 *pc = l->item[ind].pc;
2676 return 1;
2677 }
2678 else
2679 return 0;
2680 }
2681
2682 /* Find the range of pc values in a line.
2683 Store the starting pc of the line into *STARTPTR
2684 and the ending pc (start of next line) into *ENDPTR.
2685 Returns 1 to indicate success.
2686 Returns 0 if could not find the specified line. */
2687
2688 int
2689 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2690 CORE_ADDR *endptr)
2691 {
2692 CORE_ADDR startaddr;
2693 struct symtab_and_line found_sal;
2694
2695 startaddr = sal.pc;
2696 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2697 return 0;
2698
2699 /* This whole function is based on address. For example, if line 10 has
2700 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2701 "info line *0x123" should say the line goes from 0x100 to 0x200
2702 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2703 This also insures that we never give a range like "starts at 0x134
2704 and ends at 0x12c". */
2705
2706 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2707 if (found_sal.line != sal.line)
2708 {
2709 /* The specified line (sal) has zero bytes. */
2710 *startptr = found_sal.pc;
2711 *endptr = found_sal.pc;
2712 }
2713 else
2714 {
2715 *startptr = found_sal.pc;
2716 *endptr = found_sal.end;
2717 }
2718 return 1;
2719 }
2720
2721 /* Given a line table and a line number, return the index into the line
2722 table for the pc of the nearest line whose number is >= the specified one.
2723 Return -1 if none is found. The value is >= 0 if it is an index.
2724 START is the index at which to start searching the line table.
2725
2726 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2727
2728 static int
2729 find_line_common (struct linetable *l, int lineno,
2730 int *exact_match, int start)
2731 {
2732 int i;
2733 int len;
2734
2735 /* BEST is the smallest linenumber > LINENO so far seen,
2736 or 0 if none has been seen so far.
2737 BEST_INDEX identifies the item for it. */
2738
2739 int best_index = -1;
2740 int best = 0;
2741
2742 *exact_match = 0;
2743
2744 if (lineno <= 0)
2745 return -1;
2746 if (l == 0)
2747 return -1;
2748
2749 len = l->nitems;
2750 for (i = start; i < len; i++)
2751 {
2752 struct linetable_entry *item = &(l->item[i]);
2753
2754 if (item->line == lineno)
2755 {
2756 /* Return the first (lowest address) entry which matches. */
2757 *exact_match = 1;
2758 return i;
2759 }
2760
2761 if (item->line > lineno && (best == 0 || item->line < best))
2762 {
2763 best = item->line;
2764 best_index = i;
2765 }
2766 }
2767
2768 /* If we got here, we didn't get an exact match. */
2769 return best_index;
2770 }
2771
2772 int
2773 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2774 {
2775 struct symtab_and_line sal;
2776
2777 sal = find_pc_line (pc, 0);
2778 *startptr = sal.pc;
2779 *endptr = sal.end;
2780 return sal.symtab != 0;
2781 }
2782
2783 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2784 address for that function that has an entry in SYMTAB's line info
2785 table. If such an entry cannot be found, return FUNC_ADDR
2786 unaltered. */
2787
2788 static CORE_ADDR
2789 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2790 {
2791 CORE_ADDR func_start, func_end;
2792 struct linetable *l;
2793 int i;
2794
2795 /* Give up if this symbol has no lineinfo table. */
2796 l = LINETABLE (symtab);
2797 if (l == NULL)
2798 return func_addr;
2799
2800 /* Get the range for the function's PC values, or give up if we
2801 cannot, for some reason. */
2802 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2803 return func_addr;
2804
2805 /* Linetable entries are ordered by PC values, see the commentary in
2806 symtab.h where `struct linetable' is defined. Thus, the first
2807 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2808 address we are looking for. */
2809 for (i = 0; i < l->nitems; i++)
2810 {
2811 struct linetable_entry *item = &(l->item[i]);
2812
2813 /* Don't use line numbers of zero, they mark special entries in
2814 the table. See the commentary on symtab.h before the
2815 definition of struct linetable. */
2816 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2817 return item->pc;
2818 }
2819
2820 return func_addr;
2821 }
2822
2823 /* Given a function symbol SYM, find the symtab and line for the start
2824 of the function.
2825 If the argument FUNFIRSTLINE is nonzero, we want the first line
2826 of real code inside the function. */
2827
2828 struct symtab_and_line
2829 find_function_start_sal (struct symbol *sym, int funfirstline)
2830 {
2831 struct symtab_and_line sal;
2832
2833 fixup_symbol_section (sym, NULL);
2834 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2835 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2836
2837 /* We always should have a line for the function start address.
2838 If we don't, something is odd. Create a plain SAL refering
2839 just the PC and hope that skip_prologue_sal (if requested)
2840 can find a line number for after the prologue. */
2841 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2842 {
2843 init_sal (&sal);
2844 sal.pspace = current_program_space;
2845 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2846 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2847 }
2848
2849 if (funfirstline)
2850 skip_prologue_sal (&sal);
2851
2852 return sal;
2853 }
2854
2855 /* Adjust SAL to the first instruction past the function prologue.
2856 If the PC was explicitly specified, the SAL is not changed.
2857 If the line number was explicitly specified, at most the SAL's PC
2858 is updated. If SAL is already past the prologue, then do nothing. */
2859
2860 void
2861 skip_prologue_sal (struct symtab_and_line *sal)
2862 {
2863 struct symbol *sym;
2864 struct symtab_and_line start_sal;
2865 struct cleanup *old_chain;
2866 CORE_ADDR pc, saved_pc;
2867 struct obj_section *section;
2868 const char *name;
2869 struct objfile *objfile;
2870 struct gdbarch *gdbarch;
2871 struct block *b, *function_block;
2872 int force_skip, skip;
2873
2874 /* Do not change the SAL if PC was specified explicitly. */
2875 if (sal->explicit_pc)
2876 return;
2877
2878 old_chain = save_current_space_and_thread ();
2879 switch_to_program_space_and_thread (sal->pspace);
2880
2881 sym = find_pc_sect_function (sal->pc, sal->section);
2882 if (sym != NULL)
2883 {
2884 fixup_symbol_section (sym, NULL);
2885
2886 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2887 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2888 name = SYMBOL_LINKAGE_NAME (sym);
2889 objfile = SYMBOL_SYMTAB (sym)->objfile;
2890 }
2891 else
2892 {
2893 struct bound_minimal_symbol msymbol
2894 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2895
2896 if (msymbol.minsym == NULL)
2897 {
2898 do_cleanups (old_chain);
2899 return;
2900 }
2901
2902 objfile = msymbol.objfile;
2903 pc = SYMBOL_VALUE_ADDRESS (msymbol.minsym);
2904 section = SYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2905 name = SYMBOL_LINKAGE_NAME (msymbol.minsym);
2906 }
2907
2908 gdbarch = get_objfile_arch (objfile);
2909
2910 /* Process the prologue in two passes. In the first pass try to skip the
2911 prologue (SKIP is true) and verify there is a real need for it (indicated
2912 by FORCE_SKIP). If no such reason was found run a second pass where the
2913 prologue is not skipped (SKIP is false). */
2914
2915 skip = 1;
2916 force_skip = 1;
2917
2918 /* Be conservative - allow direct PC (without skipping prologue) only if we
2919 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2920 have to be set by the caller so we use SYM instead. */
2921 if (sym && SYMBOL_SYMTAB (sym)->locations_valid)
2922 force_skip = 0;
2923
2924 saved_pc = pc;
2925 do
2926 {
2927 pc = saved_pc;
2928
2929 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2930 so that gdbarch_skip_prologue has something unique to work on. */
2931 if (section_is_overlay (section) && !section_is_mapped (section))
2932 pc = overlay_unmapped_address (pc, section);
2933
2934 /* Skip "first line" of function (which is actually its prologue). */
2935 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2936 if (skip)
2937 pc = gdbarch_skip_prologue (gdbarch, pc);
2938
2939 /* For overlays, map pc back into its mapped VMA range. */
2940 pc = overlay_mapped_address (pc, section);
2941
2942 /* Calculate line number. */
2943 start_sal = find_pc_sect_line (pc, section, 0);
2944
2945 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2946 line is still part of the same function. */
2947 if (skip && start_sal.pc != pc
2948 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2949 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2950 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2951 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2952 {
2953 /* First pc of next line */
2954 pc = start_sal.end;
2955 /* Recalculate the line number (might not be N+1). */
2956 start_sal = find_pc_sect_line (pc, section, 0);
2957 }
2958
2959 /* On targets with executable formats that don't have a concept of
2960 constructors (ELF with .init has, PE doesn't), gcc emits a call
2961 to `__main' in `main' between the prologue and before user
2962 code. */
2963 if (gdbarch_skip_main_prologue_p (gdbarch)
2964 && name && strcmp_iw (name, "main") == 0)
2965 {
2966 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2967 /* Recalculate the line number (might not be N+1). */
2968 start_sal = find_pc_sect_line (pc, section, 0);
2969 force_skip = 1;
2970 }
2971 }
2972 while (!force_skip && skip--);
2973
2974 /* If we still don't have a valid source line, try to find the first
2975 PC in the lineinfo table that belongs to the same function. This
2976 happens with COFF debug info, which does not seem to have an
2977 entry in lineinfo table for the code after the prologue which has
2978 no direct relation to source. For example, this was found to be
2979 the case with the DJGPP target using "gcc -gcoff" when the
2980 compiler inserted code after the prologue to make sure the stack
2981 is aligned. */
2982 if (!force_skip && sym && start_sal.symtab == NULL)
2983 {
2984 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2985 /* Recalculate the line number. */
2986 start_sal = find_pc_sect_line (pc, section, 0);
2987 }
2988
2989 do_cleanups (old_chain);
2990
2991 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2992 forward SAL to the end of the prologue. */
2993 if (sal->pc >= pc)
2994 return;
2995
2996 sal->pc = pc;
2997 sal->section = section;
2998
2999 /* Unless the explicit_line flag was set, update the SAL line
3000 and symtab to correspond to the modified PC location. */
3001 if (sal->explicit_line)
3002 return;
3003
3004 sal->symtab = start_sal.symtab;
3005 sal->line = start_sal.line;
3006 sal->end = start_sal.end;
3007
3008 /* Check if we are now inside an inlined function. If we can,
3009 use the call site of the function instead. */
3010 b = block_for_pc_sect (sal->pc, sal->section);
3011 function_block = NULL;
3012 while (b != NULL)
3013 {
3014 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3015 function_block = b;
3016 else if (BLOCK_FUNCTION (b) != NULL)
3017 break;
3018 b = BLOCK_SUPERBLOCK (b);
3019 }
3020 if (function_block != NULL
3021 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3022 {
3023 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3024 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
3025 }
3026 }
3027
3028 /* If P is of the form "operator[ \t]+..." where `...' is
3029 some legitimate operator text, return a pointer to the
3030 beginning of the substring of the operator text.
3031 Otherwise, return "". */
3032
3033 static char *
3034 operator_chars (char *p, char **end)
3035 {
3036 *end = "";
3037 if (strncmp (p, "operator", 8))
3038 return *end;
3039 p += 8;
3040
3041 /* Don't get faked out by `operator' being part of a longer
3042 identifier. */
3043 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3044 return *end;
3045
3046 /* Allow some whitespace between `operator' and the operator symbol. */
3047 while (*p == ' ' || *p == '\t')
3048 p++;
3049
3050 /* Recognize 'operator TYPENAME'. */
3051
3052 if (isalpha (*p) || *p == '_' || *p == '$')
3053 {
3054 char *q = p + 1;
3055
3056 while (isalnum (*q) || *q == '_' || *q == '$')
3057 q++;
3058 *end = q;
3059 return p;
3060 }
3061
3062 while (*p)
3063 switch (*p)
3064 {
3065 case '\\': /* regexp quoting */
3066 if (p[1] == '*')
3067 {
3068 if (p[2] == '=') /* 'operator\*=' */
3069 *end = p + 3;
3070 else /* 'operator\*' */
3071 *end = p + 2;
3072 return p;
3073 }
3074 else if (p[1] == '[')
3075 {
3076 if (p[2] == ']')
3077 error (_("mismatched quoting on brackets, "
3078 "try 'operator\\[\\]'"));
3079 else if (p[2] == '\\' && p[3] == ']')
3080 {
3081 *end = p + 4; /* 'operator\[\]' */
3082 return p;
3083 }
3084 else
3085 error (_("nothing is allowed between '[' and ']'"));
3086 }
3087 else
3088 {
3089 /* Gratuitous qoute: skip it and move on. */
3090 p++;
3091 continue;
3092 }
3093 break;
3094 case '!':
3095 case '=':
3096 case '*':
3097 case '/':
3098 case '%':
3099 case '^':
3100 if (p[1] == '=')
3101 *end = p + 2;
3102 else
3103 *end = p + 1;
3104 return p;
3105 case '<':
3106 case '>':
3107 case '+':
3108 case '-':
3109 case '&':
3110 case '|':
3111 if (p[0] == '-' && p[1] == '>')
3112 {
3113 /* Struct pointer member operator 'operator->'. */
3114 if (p[2] == '*')
3115 {
3116 *end = p + 3; /* 'operator->*' */
3117 return p;
3118 }
3119 else if (p[2] == '\\')
3120 {
3121 *end = p + 4; /* Hopefully 'operator->\*' */
3122 return p;
3123 }
3124 else
3125 {
3126 *end = p + 2; /* 'operator->' */
3127 return p;
3128 }
3129 }
3130 if (p[1] == '=' || p[1] == p[0])
3131 *end = p + 2;
3132 else
3133 *end = p + 1;
3134 return p;
3135 case '~':
3136 case ',':
3137 *end = p + 1;
3138 return p;
3139 case '(':
3140 if (p[1] != ')')
3141 error (_("`operator ()' must be specified "
3142 "without whitespace in `()'"));
3143 *end = p + 2;
3144 return p;
3145 case '?':
3146 if (p[1] != ':')
3147 error (_("`operator ?:' must be specified "
3148 "without whitespace in `?:'"));
3149 *end = p + 2;
3150 return p;
3151 case '[':
3152 if (p[1] != ']')
3153 error (_("`operator []' must be specified "
3154 "without whitespace in `[]'"));
3155 *end = p + 2;
3156 return p;
3157 default:
3158 error (_("`operator %s' not supported"), p);
3159 break;
3160 }
3161
3162 *end = "";
3163 return *end;
3164 }
3165 \f
3166
3167 /* Cache to watch for file names already seen by filename_seen. */
3168
3169 struct filename_seen_cache
3170 {
3171 /* Table of files seen so far. */
3172 htab_t tab;
3173 /* Initial size of the table. It automagically grows from here. */
3174 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3175 };
3176
3177 /* filename_seen_cache constructor. */
3178
3179 static struct filename_seen_cache *
3180 create_filename_seen_cache (void)
3181 {
3182 struct filename_seen_cache *cache;
3183
3184 cache = XNEW (struct filename_seen_cache);
3185 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3186 filename_hash, filename_eq,
3187 NULL, xcalloc, xfree);
3188
3189 return cache;
3190 }
3191
3192 /* Empty the cache, but do not delete it. */
3193
3194 static void
3195 clear_filename_seen_cache (struct filename_seen_cache *cache)
3196 {
3197 htab_empty (cache->tab);
3198 }
3199
3200 /* filename_seen_cache destructor.
3201 This takes a void * argument as it is generally used as a cleanup. */
3202
3203 static void
3204 delete_filename_seen_cache (void *ptr)
3205 {
3206 struct filename_seen_cache *cache = ptr;
3207
3208 htab_delete (cache->tab);
3209 xfree (cache);
3210 }
3211
3212 /* If FILE is not already in the table of files in CACHE, return zero;
3213 otherwise return non-zero. Optionally add FILE to the table if ADD
3214 is non-zero.
3215
3216 NOTE: We don't manage space for FILE, we assume FILE lives as long
3217 as the caller needs. */
3218
3219 static int
3220 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3221 {
3222 void **slot;
3223
3224 /* Is FILE in tab? */
3225 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3226 if (*slot != NULL)
3227 return 1;
3228
3229 /* No; maybe add it to tab. */
3230 if (add)
3231 *slot = (char *) file;
3232
3233 return 0;
3234 }
3235
3236 /* Data structure to maintain printing state for output_source_filename. */
3237
3238 struct output_source_filename_data
3239 {
3240 /* Cache of what we've seen so far. */
3241 struct filename_seen_cache *filename_seen_cache;
3242
3243 /* Flag of whether we're printing the first one. */
3244 int first;
3245 };
3246
3247 /* Slave routine for sources_info. Force line breaks at ,'s.
3248 NAME is the name to print.
3249 DATA contains the state for printing and watching for duplicates. */
3250
3251 static void
3252 output_source_filename (const char *name,
3253 struct output_source_filename_data *data)
3254 {
3255 /* Since a single source file can result in several partial symbol
3256 tables, we need to avoid printing it more than once. Note: if
3257 some of the psymtabs are read in and some are not, it gets
3258 printed both under "Source files for which symbols have been
3259 read" and "Source files for which symbols will be read in on
3260 demand". I consider this a reasonable way to deal with the
3261 situation. I'm not sure whether this can also happen for
3262 symtabs; it doesn't hurt to check. */
3263
3264 /* Was NAME already seen? */
3265 if (filename_seen (data->filename_seen_cache, name, 1))
3266 {
3267 /* Yes; don't print it again. */
3268 return;
3269 }
3270
3271 /* No; print it and reset *FIRST. */
3272 if (! data->first)
3273 printf_filtered (", ");
3274 data->first = 0;
3275
3276 wrap_here ("");
3277 fputs_filtered (name, gdb_stdout);
3278 }
3279
3280 /* A callback for map_partial_symbol_filenames. */
3281
3282 static void
3283 output_partial_symbol_filename (const char *filename, const char *fullname,
3284 void *data)
3285 {
3286 output_source_filename (fullname ? fullname : filename, data);
3287 }
3288
3289 static void
3290 sources_info (char *ignore, int from_tty)
3291 {
3292 struct symtab *s;
3293 struct objfile *objfile;
3294 struct output_source_filename_data data;
3295 struct cleanup *cleanups;
3296
3297 if (!have_full_symbols () && !have_partial_symbols ())
3298 {
3299 error (_("No symbol table is loaded. Use the \"file\" command."));
3300 }
3301
3302 data.filename_seen_cache = create_filename_seen_cache ();
3303 cleanups = make_cleanup (delete_filename_seen_cache,
3304 data.filename_seen_cache);
3305
3306 printf_filtered ("Source files for which symbols have been read in:\n\n");
3307
3308 data.first = 1;
3309 ALL_SYMTABS (objfile, s)
3310 {
3311 const char *fullname = symtab_to_fullname (s);
3312
3313 output_source_filename (fullname, &data);
3314 }
3315 printf_filtered ("\n\n");
3316
3317 printf_filtered ("Source files for which symbols "
3318 "will be read in on demand:\n\n");
3319
3320 clear_filename_seen_cache (data.filename_seen_cache);
3321 data.first = 1;
3322 map_partial_symbol_filenames (output_partial_symbol_filename, &data,
3323 1 /*need_fullname*/);
3324 printf_filtered ("\n");
3325
3326 do_cleanups (cleanups);
3327 }
3328
3329 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3330 non-zero compare only lbasename of FILES. */
3331
3332 static int
3333 file_matches (const char *file, char *files[], int nfiles, int basenames)
3334 {
3335 int i;
3336
3337 if (file != NULL && nfiles != 0)
3338 {
3339 for (i = 0; i < nfiles; i++)
3340 {
3341 if (compare_filenames_for_search (file, (basenames
3342 ? lbasename (files[i])
3343 : files[i])))
3344 return 1;
3345 }
3346 }
3347 else if (nfiles == 0)
3348 return 1;
3349 return 0;
3350 }
3351
3352 /* Free any memory associated with a search. */
3353
3354 void
3355 free_search_symbols (struct symbol_search *symbols)
3356 {
3357 struct symbol_search *p;
3358 struct symbol_search *next;
3359
3360 for (p = symbols; p != NULL; p = next)
3361 {
3362 next = p->next;
3363 xfree (p);
3364 }
3365 }
3366
3367 static void
3368 do_free_search_symbols_cleanup (void *symbolsp)
3369 {
3370 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3371
3372 free_search_symbols (symbols);
3373 }
3374
3375 struct cleanup *
3376 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3377 {
3378 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3379 }
3380
3381 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3382 sort symbols, not minimal symbols. */
3383
3384 static int
3385 compare_search_syms (const void *sa, const void *sb)
3386 {
3387 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3388 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3389 int c;
3390
3391 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3392 if (c != 0)
3393 return c;
3394
3395 if (sym_a->block != sym_b->block)
3396 return sym_a->block - sym_b->block;
3397
3398 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3399 SYMBOL_PRINT_NAME (sym_b->symbol));
3400 }
3401
3402 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3403 The duplicates are freed, and the new list is returned in
3404 *NEW_HEAD, *NEW_TAIL. */
3405
3406 static void
3407 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3408 struct symbol_search **new_head,
3409 struct symbol_search **new_tail)
3410 {
3411 struct symbol_search **symbols, *symp, *old_next;
3412 int i, j, nunique;
3413
3414 gdb_assert (found != NULL && nfound > 0);
3415
3416 /* Build an array out of the list so we can easily sort them. */
3417 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3418 * nfound);
3419 symp = found;
3420 for (i = 0; i < nfound; i++)
3421 {
3422 gdb_assert (symp != NULL);
3423 gdb_assert (symp->block >= 0 && symp->block <= 1);
3424 symbols[i] = symp;
3425 symp = symp->next;
3426 }
3427 gdb_assert (symp == NULL);
3428
3429 qsort (symbols, nfound, sizeof (struct symbol_search *),
3430 compare_search_syms);
3431
3432 /* Collapse out the dups. */
3433 for (i = 1, j = 1; i < nfound; ++i)
3434 {
3435 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3436 symbols[j++] = symbols[i];
3437 else
3438 xfree (symbols[i]);
3439 }
3440 nunique = j;
3441 symbols[j - 1]->next = NULL;
3442
3443 /* Rebuild the linked list. */
3444 for (i = 0; i < nunique - 1; i++)
3445 symbols[i]->next = symbols[i + 1];
3446 symbols[nunique - 1]->next = NULL;
3447
3448 *new_head = symbols[0];
3449 *new_tail = symbols[nunique - 1];
3450 xfree (symbols);
3451 }
3452
3453 /* An object of this type is passed as the user_data to the
3454 expand_symtabs_matching method. */
3455 struct search_symbols_data
3456 {
3457 int nfiles;
3458 char **files;
3459
3460 /* It is true if PREG contains valid data, false otherwise. */
3461 unsigned preg_p : 1;
3462 regex_t preg;
3463 };
3464
3465 /* A callback for expand_symtabs_matching. */
3466
3467 static int
3468 search_symbols_file_matches (const char *filename, void *user_data,
3469 int basenames)
3470 {
3471 struct search_symbols_data *data = user_data;
3472
3473 return file_matches (filename, data->files, data->nfiles, basenames);
3474 }
3475
3476 /* A callback for expand_symtabs_matching. */
3477
3478 static int
3479 search_symbols_name_matches (const char *symname, void *user_data)
3480 {
3481 struct search_symbols_data *data = user_data;
3482
3483 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3484 }
3485
3486 /* Search the symbol table for matches to the regular expression REGEXP,
3487 returning the results in *MATCHES.
3488
3489 Only symbols of KIND are searched:
3490 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3491 and constants (enums)
3492 FUNCTIONS_DOMAIN - search all functions
3493 TYPES_DOMAIN - search all type names
3494 ALL_DOMAIN - an internal error for this function
3495
3496 free_search_symbols should be called when *MATCHES is no longer needed.
3497
3498 Within each file the results are sorted locally; each symtab's global and
3499 static blocks are separately alphabetized.
3500 Duplicate entries are removed. */
3501
3502 void
3503 search_symbols (char *regexp, enum search_domain kind,
3504 int nfiles, char *files[],
3505 struct symbol_search **matches)
3506 {
3507 struct symtab *s;
3508 struct blockvector *bv;
3509 struct block *b;
3510 int i = 0;
3511 struct block_iterator iter;
3512 struct symbol *sym;
3513 struct objfile *objfile;
3514 struct minimal_symbol *msymbol;
3515 int found_misc = 0;
3516 static const enum minimal_symbol_type types[]
3517 = {mst_data, mst_text, mst_abs};
3518 static const enum minimal_symbol_type types2[]
3519 = {mst_bss, mst_file_text, mst_abs};
3520 static const enum minimal_symbol_type types3[]
3521 = {mst_file_data, mst_solib_trampoline, mst_abs};
3522 static const enum minimal_symbol_type types4[]
3523 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3524 enum minimal_symbol_type ourtype;
3525 enum minimal_symbol_type ourtype2;
3526 enum minimal_symbol_type ourtype3;
3527 enum minimal_symbol_type ourtype4;
3528 struct symbol_search *found;
3529 struct symbol_search *tail;
3530 struct search_symbols_data datum;
3531 int nfound;
3532
3533 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3534 CLEANUP_CHAIN is freed only in the case of an error. */
3535 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3536 struct cleanup *retval_chain;
3537
3538 gdb_assert (kind <= TYPES_DOMAIN);
3539
3540 ourtype = types[kind];
3541 ourtype2 = types2[kind];
3542 ourtype3 = types3[kind];
3543 ourtype4 = types4[kind];
3544
3545 *matches = NULL;
3546 datum.preg_p = 0;
3547
3548 if (regexp != NULL)
3549 {
3550 /* Make sure spacing is right for C++ operators.
3551 This is just a courtesy to make the matching less sensitive
3552 to how many spaces the user leaves between 'operator'
3553 and <TYPENAME> or <OPERATOR>. */
3554 char *opend;
3555 char *opname = operator_chars (regexp, &opend);
3556 int errcode;
3557
3558 if (*opname)
3559 {
3560 int fix = -1; /* -1 means ok; otherwise number of
3561 spaces needed. */
3562
3563 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3564 {
3565 /* There should 1 space between 'operator' and 'TYPENAME'. */
3566 if (opname[-1] != ' ' || opname[-2] == ' ')
3567 fix = 1;
3568 }
3569 else
3570 {
3571 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3572 if (opname[-1] == ' ')
3573 fix = 0;
3574 }
3575 /* If wrong number of spaces, fix it. */
3576 if (fix >= 0)
3577 {
3578 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3579
3580 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3581 regexp = tmp;
3582 }
3583 }
3584
3585 errcode = regcomp (&datum.preg, regexp,
3586 REG_NOSUB | (case_sensitivity == case_sensitive_off
3587 ? REG_ICASE : 0));
3588 if (errcode != 0)
3589 {
3590 char *err = get_regcomp_error (errcode, &datum.preg);
3591
3592 make_cleanup (xfree, err);
3593 error (_("Invalid regexp (%s): %s"), err, regexp);
3594 }
3595 datum.preg_p = 1;
3596 make_regfree_cleanup (&datum.preg);
3597 }
3598
3599 /* Search through the partial symtabs *first* for all symbols
3600 matching the regexp. That way we don't have to reproduce all of
3601 the machinery below. */
3602
3603 datum.nfiles = nfiles;
3604 datum.files = files;
3605 ALL_OBJFILES (objfile)
3606 {
3607 if (objfile->sf)
3608 objfile->sf->qf->expand_symtabs_matching (objfile,
3609 (nfiles == 0
3610 ? NULL
3611 : search_symbols_file_matches),
3612 search_symbols_name_matches,
3613 kind,
3614 &datum);
3615 }
3616
3617 /* Here, we search through the minimal symbol tables for functions
3618 and variables that match, and force their symbols to be read.
3619 This is in particular necessary for demangled variable names,
3620 which are no longer put into the partial symbol tables.
3621 The symbol will then be found during the scan of symtabs below.
3622
3623 For functions, find_pc_symtab should succeed if we have debug info
3624 for the function, for variables we have to call
3625 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3626 has debug info.
3627 If the lookup fails, set found_misc so that we will rescan to print
3628 any matching symbols without debug info.
3629 We only search the objfile the msymbol came from, we no longer search
3630 all objfiles. In large programs (1000s of shared libs) searching all
3631 objfiles is not worth the pain. */
3632
3633 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3634 {
3635 ALL_MSYMBOLS (objfile, msymbol)
3636 {
3637 QUIT;
3638
3639 if (msymbol->created_by_gdb)
3640 continue;
3641
3642 if (MSYMBOL_TYPE (msymbol) == ourtype
3643 || MSYMBOL_TYPE (msymbol) == ourtype2
3644 || MSYMBOL_TYPE (msymbol) == ourtype3
3645 || MSYMBOL_TYPE (msymbol) == ourtype4)
3646 {
3647 if (!datum.preg_p
3648 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3649 NULL, 0) == 0)
3650 {
3651 /* Note: An important side-effect of these lookup functions
3652 is to expand the symbol table if msymbol is found, for the
3653 benefit of the next loop on ALL_PRIMARY_SYMTABS. */
3654 if (kind == FUNCTIONS_DOMAIN
3655 ? find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL
3656 : (lookup_symbol_in_objfile_from_linkage_name
3657 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3658 == NULL))
3659 found_misc = 1;
3660 }
3661 }
3662 }
3663 }
3664
3665 found = NULL;
3666 tail = NULL;
3667 nfound = 0;
3668 retval_chain = make_cleanup_free_search_symbols (&found);
3669
3670 ALL_PRIMARY_SYMTABS (objfile, s)
3671 {
3672 bv = BLOCKVECTOR (s);
3673 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3674 {
3675 b = BLOCKVECTOR_BLOCK (bv, i);
3676 ALL_BLOCK_SYMBOLS (b, iter, sym)
3677 {
3678 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3679
3680 QUIT;
3681
3682 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3683 a substring of symtab_to_fullname as it may contain "./" etc. */
3684 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3685 || ((basenames_may_differ
3686 || file_matches (lbasename (real_symtab->filename),
3687 files, nfiles, 1))
3688 && file_matches (symtab_to_fullname (real_symtab),
3689 files, nfiles, 0)))
3690 && ((!datum.preg_p
3691 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3692 NULL, 0) == 0)
3693 && ((kind == VARIABLES_DOMAIN
3694 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3695 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3696 && SYMBOL_CLASS (sym) != LOC_BLOCK
3697 /* LOC_CONST can be used for more than just enums,
3698 e.g., c++ static const members.
3699 We only want to skip enums here. */
3700 && !(SYMBOL_CLASS (sym) == LOC_CONST
3701 && TYPE_CODE (SYMBOL_TYPE (sym))
3702 == TYPE_CODE_ENUM))
3703 || (kind == FUNCTIONS_DOMAIN
3704 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3705 || (kind == TYPES_DOMAIN
3706 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3707 {
3708 /* match */
3709 struct symbol_search *psr = (struct symbol_search *)
3710 xmalloc (sizeof (struct symbol_search));
3711 psr->block = i;
3712 psr->symtab = real_symtab;
3713 psr->symbol = sym;
3714 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3715 psr->next = NULL;
3716 if (tail == NULL)
3717 found = psr;
3718 else
3719 tail->next = psr;
3720 tail = psr;
3721 nfound ++;
3722 }
3723 }
3724 }
3725 }
3726
3727 if (found != NULL)
3728 {
3729 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3730 /* Note: nfound is no longer useful beyond this point. */
3731 }
3732
3733 /* If there are no eyes, avoid all contact. I mean, if there are
3734 no debug symbols, then print directly from the msymbol_vector. */
3735
3736 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3737 {
3738 ALL_MSYMBOLS (objfile, msymbol)
3739 {
3740 QUIT;
3741
3742 if (msymbol->created_by_gdb)
3743 continue;
3744
3745 if (MSYMBOL_TYPE (msymbol) == ourtype
3746 || MSYMBOL_TYPE (msymbol) == ourtype2
3747 || MSYMBOL_TYPE (msymbol) == ourtype3
3748 || MSYMBOL_TYPE (msymbol) == ourtype4)
3749 {
3750 if (!datum.preg_p
3751 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (msymbol), 0,
3752 NULL, 0) == 0)
3753 {
3754 /* For functions we can do a quick check of whether the
3755 symbol might be found via find_pc_symtab. */
3756 if (kind != FUNCTIONS_DOMAIN
3757 || find_pc_symtab (SYMBOL_VALUE_ADDRESS (msymbol)) == NULL)
3758 {
3759 if (lookup_symbol_in_objfile_from_linkage_name
3760 (objfile, SYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3761 == NULL)
3762 {
3763 /* match */
3764 struct symbol_search *psr = (struct symbol_search *)
3765 xmalloc (sizeof (struct symbol_search));
3766 psr->block = i;
3767 psr->msymbol.minsym = msymbol;
3768 psr->msymbol.objfile = objfile;
3769 psr->symtab = NULL;
3770 psr->symbol = NULL;
3771 psr->next = NULL;
3772 if (tail == NULL)
3773 found = psr;
3774 else
3775 tail->next = psr;
3776 tail = psr;
3777 }
3778 }
3779 }
3780 }
3781 }
3782 }
3783
3784 discard_cleanups (retval_chain);
3785 do_cleanups (old_chain);
3786 *matches = found;
3787 }
3788
3789 /* Helper function for symtab_symbol_info, this function uses
3790 the data returned from search_symbols() to print information
3791 regarding the match to gdb_stdout. */
3792
3793 static void
3794 print_symbol_info (enum search_domain kind,
3795 struct symtab *s, struct symbol *sym,
3796 int block, const char *last)
3797 {
3798 const char *s_filename = symtab_to_filename_for_display (s);
3799
3800 if (last == NULL || filename_cmp (last, s_filename) != 0)
3801 {
3802 fputs_filtered ("\nFile ", gdb_stdout);
3803 fputs_filtered (s_filename, gdb_stdout);
3804 fputs_filtered (":\n", gdb_stdout);
3805 }
3806
3807 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3808 printf_filtered ("static ");
3809
3810 /* Typedef that is not a C++ class. */
3811 if (kind == TYPES_DOMAIN
3812 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3813 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3814 /* variable, func, or typedef-that-is-c++-class. */
3815 else if (kind < TYPES_DOMAIN
3816 || (kind == TYPES_DOMAIN
3817 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3818 {
3819 type_print (SYMBOL_TYPE (sym),
3820 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3821 ? "" : SYMBOL_PRINT_NAME (sym)),
3822 gdb_stdout, 0);
3823
3824 printf_filtered (";\n");
3825 }
3826 }
3827
3828 /* This help function for symtab_symbol_info() prints information
3829 for non-debugging symbols to gdb_stdout. */
3830
3831 static void
3832 print_msymbol_info (struct bound_minimal_symbol msymbol)
3833 {
3834 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3835 char *tmp;
3836
3837 if (gdbarch_addr_bit (gdbarch) <= 32)
3838 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym)
3839 & (CORE_ADDR) 0xffffffff,
3840 8);
3841 else
3842 tmp = hex_string_custom (SYMBOL_VALUE_ADDRESS (msymbol.minsym),
3843 16);
3844 printf_filtered ("%s %s\n",
3845 tmp, SYMBOL_PRINT_NAME (msymbol.minsym));
3846 }
3847
3848 /* This is the guts of the commands "info functions", "info types", and
3849 "info variables". It calls search_symbols to find all matches and then
3850 print_[m]symbol_info to print out some useful information about the
3851 matches. */
3852
3853 static void
3854 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3855 {
3856 static const char * const classnames[] =
3857 {"variable", "function", "type"};
3858 struct symbol_search *symbols;
3859 struct symbol_search *p;
3860 struct cleanup *old_chain;
3861 const char *last_filename = NULL;
3862 int first = 1;
3863
3864 gdb_assert (kind <= TYPES_DOMAIN);
3865
3866 /* Must make sure that if we're interrupted, symbols gets freed. */
3867 search_symbols (regexp, kind, 0, (char **) NULL, &symbols);
3868 old_chain = make_cleanup_free_search_symbols (&symbols);
3869
3870 if (regexp != NULL)
3871 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3872 classnames[kind], regexp);
3873 else
3874 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3875
3876 for (p = symbols; p != NULL; p = p->next)
3877 {
3878 QUIT;
3879
3880 if (p->msymbol.minsym != NULL)
3881 {
3882 if (first)
3883 {
3884 printf_filtered (_("\nNon-debugging symbols:\n"));
3885 first = 0;
3886 }
3887 print_msymbol_info (p->msymbol);
3888 }
3889 else
3890 {
3891 print_symbol_info (kind,
3892 p->symtab,
3893 p->symbol,
3894 p->block,
3895 last_filename);
3896 last_filename = symtab_to_filename_for_display (p->symtab);
3897 }
3898 }
3899
3900 do_cleanups (old_chain);
3901 }
3902
3903 static void
3904 variables_info (char *regexp, int from_tty)
3905 {
3906 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3907 }
3908
3909 static void
3910 functions_info (char *regexp, int from_tty)
3911 {
3912 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3913 }
3914
3915
3916 static void
3917 types_info (char *regexp, int from_tty)
3918 {
3919 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3920 }
3921
3922 /* Breakpoint all functions matching regular expression. */
3923
3924 void
3925 rbreak_command_wrapper (char *regexp, int from_tty)
3926 {
3927 rbreak_command (regexp, from_tty);
3928 }
3929
3930 /* A cleanup function that calls end_rbreak_breakpoints. */
3931
3932 static void
3933 do_end_rbreak_breakpoints (void *ignore)
3934 {
3935 end_rbreak_breakpoints ();
3936 }
3937
3938 static void
3939 rbreak_command (char *regexp, int from_tty)
3940 {
3941 struct symbol_search *ss;
3942 struct symbol_search *p;
3943 struct cleanup *old_chain;
3944 char *string = NULL;
3945 int len = 0;
3946 char **files = NULL, *file_name;
3947 int nfiles = 0;
3948
3949 if (regexp)
3950 {
3951 char *colon = strchr (regexp, ':');
3952
3953 if (colon && *(colon + 1) != ':')
3954 {
3955 int colon_index;
3956
3957 colon_index = colon - regexp;
3958 file_name = alloca (colon_index + 1);
3959 memcpy (file_name, regexp, colon_index);
3960 file_name[colon_index--] = 0;
3961 while (isspace (file_name[colon_index]))
3962 file_name[colon_index--] = 0;
3963 files = &file_name;
3964 nfiles = 1;
3965 regexp = skip_spaces (colon + 1);
3966 }
3967 }
3968
3969 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3970 old_chain = make_cleanup_free_search_symbols (&ss);
3971 make_cleanup (free_current_contents, &string);
3972
3973 start_rbreak_breakpoints ();
3974 make_cleanup (do_end_rbreak_breakpoints, NULL);
3975 for (p = ss; p != NULL; p = p->next)
3976 {
3977 if (p->msymbol.minsym == NULL)
3978 {
3979 const char *fullname = symtab_to_fullname (p->symtab);
3980
3981 int newlen = (strlen (fullname)
3982 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
3983 + 4);
3984
3985 if (newlen > len)
3986 {
3987 string = xrealloc (string, newlen);
3988 len = newlen;
3989 }
3990 strcpy (string, fullname);
3991 strcat (string, ":'");
3992 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
3993 strcat (string, "'");
3994 break_command (string, from_tty);
3995 print_symbol_info (FUNCTIONS_DOMAIN,
3996 p->symtab,
3997 p->symbol,
3998 p->block,
3999 symtab_to_filename_for_display (p->symtab));
4000 }
4001 else
4002 {
4003 int newlen = (strlen (SYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4004
4005 if (newlen > len)
4006 {
4007 string = xrealloc (string, newlen);
4008 len = newlen;
4009 }
4010 strcpy (string, "'");
4011 strcat (string, SYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4012 strcat (string, "'");
4013
4014 break_command (string, from_tty);
4015 printf_filtered ("<function, no debug info> %s;\n",
4016 SYMBOL_PRINT_NAME (p->msymbol.minsym));
4017 }
4018 }
4019
4020 do_cleanups (old_chain);
4021 }
4022 \f
4023
4024 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4025
4026 Either sym_text[sym_text_len] != '(' and then we search for any
4027 symbol starting with SYM_TEXT text.
4028
4029 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4030 be terminated at that point. Partial symbol tables do not have parameters
4031 information. */
4032
4033 static int
4034 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4035 {
4036 int (*ncmp) (const char *, const char *, size_t);
4037
4038 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4039
4040 if (ncmp (name, sym_text, sym_text_len) != 0)
4041 return 0;
4042
4043 if (sym_text[sym_text_len] == '(')
4044 {
4045 /* User searches for `name(someth...'. Require NAME to be terminated.
4046 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4047 present but accept even parameters presence. In this case this
4048 function is in fact strcmp_iw but whitespace skipping is not supported
4049 for tab completion. */
4050
4051 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4052 return 0;
4053 }
4054
4055 return 1;
4056 }
4057
4058 /* Free any memory associated with a completion list. */
4059
4060 static void
4061 free_completion_list (VEC (char_ptr) **list_ptr)
4062 {
4063 int i;
4064 char *p;
4065
4066 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4067 xfree (p);
4068 VEC_free (char_ptr, *list_ptr);
4069 }
4070
4071 /* Callback for make_cleanup. */
4072
4073 static void
4074 do_free_completion_list (void *list)
4075 {
4076 free_completion_list (list);
4077 }
4078
4079 /* Helper routine for make_symbol_completion_list. */
4080
4081 static VEC (char_ptr) *return_val;
4082
4083 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4084 completion_list_add_name \
4085 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4086
4087 /* Test to see if the symbol specified by SYMNAME (which is already
4088 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4089 characters. If so, add it to the current completion list. */
4090
4091 static void
4092 completion_list_add_name (const char *symname,
4093 const char *sym_text, int sym_text_len,
4094 const char *text, const char *word)
4095 {
4096 /* Clip symbols that cannot match. */
4097 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4098 return;
4099
4100 /* We have a match for a completion, so add SYMNAME to the current list
4101 of matches. Note that the name is moved to freshly malloc'd space. */
4102
4103 {
4104 char *new;
4105
4106 if (word == sym_text)
4107 {
4108 new = xmalloc (strlen (symname) + 5);
4109 strcpy (new, symname);
4110 }
4111 else if (word > sym_text)
4112 {
4113 /* Return some portion of symname. */
4114 new = xmalloc (strlen (symname) + 5);
4115 strcpy (new, symname + (word - sym_text));
4116 }
4117 else
4118 {
4119 /* Return some of SYM_TEXT plus symname. */
4120 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4121 strncpy (new, word, sym_text - word);
4122 new[sym_text - word] = '\0';
4123 strcat (new, symname);
4124 }
4125
4126 VEC_safe_push (char_ptr, return_val, new);
4127 }
4128 }
4129
4130 /* ObjC: In case we are completing on a selector, look as the msymbol
4131 again and feed all the selectors into the mill. */
4132
4133 static void
4134 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4135 const char *sym_text, int sym_text_len,
4136 const char *text, const char *word)
4137 {
4138 static char *tmp = NULL;
4139 static unsigned int tmplen = 0;
4140
4141 const char *method, *category, *selector;
4142 char *tmp2 = NULL;
4143
4144 method = SYMBOL_NATURAL_NAME (msymbol);
4145
4146 /* Is it a method? */
4147 if ((method[0] != '-') && (method[0] != '+'))
4148 return;
4149
4150 if (sym_text[0] == '[')
4151 /* Complete on shortened method method. */
4152 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4153
4154 while ((strlen (method) + 1) >= tmplen)
4155 {
4156 if (tmplen == 0)
4157 tmplen = 1024;
4158 else
4159 tmplen *= 2;
4160 tmp = xrealloc (tmp, tmplen);
4161 }
4162 selector = strchr (method, ' ');
4163 if (selector != NULL)
4164 selector++;
4165
4166 category = strchr (method, '(');
4167
4168 if ((category != NULL) && (selector != NULL))
4169 {
4170 memcpy (tmp, method, (category - method));
4171 tmp[category - method] = ' ';
4172 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4173 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4174 if (sym_text[0] == '[')
4175 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4176 }
4177
4178 if (selector != NULL)
4179 {
4180 /* Complete on selector only. */
4181 strcpy (tmp, selector);
4182 tmp2 = strchr (tmp, ']');
4183 if (tmp2 != NULL)
4184 *tmp2 = '\0';
4185
4186 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4187 }
4188 }
4189
4190 /* Break the non-quoted text based on the characters which are in
4191 symbols. FIXME: This should probably be language-specific. */
4192
4193 static const char *
4194 language_search_unquoted_string (const char *text, const char *p)
4195 {
4196 for (; p > text; --p)
4197 {
4198 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4199 continue;
4200 else
4201 {
4202 if ((current_language->la_language == language_objc))
4203 {
4204 if (p[-1] == ':') /* Might be part of a method name. */
4205 continue;
4206 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4207 p -= 2; /* Beginning of a method name. */
4208 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4209 { /* Might be part of a method name. */
4210 const char *t = p;
4211
4212 /* Seeing a ' ' or a '(' is not conclusive evidence
4213 that we are in the middle of a method name. However,
4214 finding "-[" or "+[" should be pretty un-ambiguous.
4215 Unfortunately we have to find it now to decide. */
4216
4217 while (t > text)
4218 if (isalnum (t[-1]) || t[-1] == '_' ||
4219 t[-1] == ' ' || t[-1] == ':' ||
4220 t[-1] == '(' || t[-1] == ')')
4221 --t;
4222 else
4223 break;
4224
4225 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4226 p = t - 2; /* Method name detected. */
4227 /* Else we leave with p unchanged. */
4228 }
4229 }
4230 break;
4231 }
4232 }
4233 return p;
4234 }
4235
4236 static void
4237 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4238 int sym_text_len, const char *text,
4239 const char *word)
4240 {
4241 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4242 {
4243 struct type *t = SYMBOL_TYPE (sym);
4244 enum type_code c = TYPE_CODE (t);
4245 int j;
4246
4247 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4248 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4249 if (TYPE_FIELD_NAME (t, j))
4250 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4251 sym_text, sym_text_len, text, word);
4252 }
4253 }
4254
4255 /* Type of the user_data argument passed to add_macro_name or
4256 expand_partial_symbol_name. The contents are simply whatever is
4257 needed by completion_list_add_name. */
4258 struct add_name_data
4259 {
4260 const char *sym_text;
4261 int sym_text_len;
4262 const char *text;
4263 const char *word;
4264 };
4265
4266 /* A callback used with macro_for_each and macro_for_each_in_scope.
4267 This adds a macro's name to the current completion list. */
4268
4269 static void
4270 add_macro_name (const char *name, const struct macro_definition *ignore,
4271 struct macro_source_file *ignore2, int ignore3,
4272 void *user_data)
4273 {
4274 struct add_name_data *datum = (struct add_name_data *) user_data;
4275
4276 completion_list_add_name ((char *) name,
4277 datum->sym_text, datum->sym_text_len,
4278 datum->text, datum->word);
4279 }
4280
4281 /* A callback for expand_partial_symbol_names. */
4282
4283 static int
4284 expand_partial_symbol_name (const char *name, void *user_data)
4285 {
4286 struct add_name_data *datum = (struct add_name_data *) user_data;
4287
4288 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4289 }
4290
4291 VEC (char_ptr) *
4292 default_make_symbol_completion_list_break_on (const char *text,
4293 const char *word,
4294 const char *break_on,
4295 enum type_code code)
4296 {
4297 /* Problem: All of the symbols have to be copied because readline
4298 frees them. I'm not going to worry about this; hopefully there
4299 won't be that many. */
4300
4301 struct symbol *sym;
4302 struct symtab *s;
4303 struct minimal_symbol *msymbol;
4304 struct objfile *objfile;
4305 struct block *b;
4306 const struct block *surrounding_static_block, *surrounding_global_block;
4307 struct block_iterator iter;
4308 /* The symbol we are completing on. Points in same buffer as text. */
4309 const char *sym_text;
4310 /* Length of sym_text. */
4311 int sym_text_len;
4312 struct add_name_data datum;
4313 struct cleanup *back_to;
4314
4315 /* Now look for the symbol we are supposed to complete on. */
4316 {
4317 const char *p;
4318 char quote_found;
4319 const char *quote_pos = NULL;
4320
4321 /* First see if this is a quoted string. */
4322 quote_found = '\0';
4323 for (p = text; *p != '\0'; ++p)
4324 {
4325 if (quote_found != '\0')
4326 {
4327 if (*p == quote_found)
4328 /* Found close quote. */
4329 quote_found = '\0';
4330 else if (*p == '\\' && p[1] == quote_found)
4331 /* A backslash followed by the quote character
4332 doesn't end the string. */
4333 ++p;
4334 }
4335 else if (*p == '\'' || *p == '"')
4336 {
4337 quote_found = *p;
4338 quote_pos = p;
4339 }
4340 }
4341 if (quote_found == '\'')
4342 /* A string within single quotes can be a symbol, so complete on it. */
4343 sym_text = quote_pos + 1;
4344 else if (quote_found == '"')
4345 /* A double-quoted string is never a symbol, nor does it make sense
4346 to complete it any other way. */
4347 {
4348 return NULL;
4349 }
4350 else
4351 {
4352 /* It is not a quoted string. Break it based on the characters
4353 which are in symbols. */
4354 while (p > text)
4355 {
4356 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4357 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4358 --p;
4359 else
4360 break;
4361 }
4362 sym_text = p;
4363 }
4364 }
4365
4366 sym_text_len = strlen (sym_text);
4367
4368 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4369
4370 if (current_language->la_language == language_cplus
4371 || current_language->la_language == language_java
4372 || current_language->la_language == language_fortran)
4373 {
4374 /* These languages may have parameters entered by user but they are never
4375 present in the partial symbol tables. */
4376
4377 const char *cs = memchr (sym_text, '(', sym_text_len);
4378
4379 if (cs)
4380 sym_text_len = cs - sym_text;
4381 }
4382 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4383
4384 return_val = NULL;
4385 back_to = make_cleanup (do_free_completion_list, &return_val);
4386
4387 datum.sym_text = sym_text;
4388 datum.sym_text_len = sym_text_len;
4389 datum.text = text;
4390 datum.word = word;
4391
4392 /* Look through the partial symtabs for all symbols which begin
4393 by matching SYM_TEXT. Expand all CUs that you find to the list.
4394 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4395 expand_partial_symbol_names (expand_partial_symbol_name, &datum);
4396
4397 /* At this point scan through the misc symbol vectors and add each
4398 symbol you find to the list. Eventually we want to ignore
4399 anything that isn't a text symbol (everything else will be
4400 handled by the psymtab code above). */
4401
4402 if (code == TYPE_CODE_UNDEF)
4403 {
4404 ALL_MSYMBOLS (objfile, msymbol)
4405 {
4406 QUIT;
4407 COMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4408 word);
4409
4410 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4411 word);
4412 }
4413 }
4414
4415 /* Search upwards from currently selected frame (so that we can
4416 complete on local vars). Also catch fields of types defined in
4417 this places which match our text string. Only complete on types
4418 visible from current context. */
4419
4420 b = get_selected_block (0);
4421 surrounding_static_block = block_static_block (b);
4422 surrounding_global_block = block_global_block (b);
4423 if (surrounding_static_block != NULL)
4424 while (b != surrounding_static_block)
4425 {
4426 QUIT;
4427
4428 ALL_BLOCK_SYMBOLS (b, iter, sym)
4429 {
4430 if (code == TYPE_CODE_UNDEF)
4431 {
4432 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4433 word);
4434 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4435 word);
4436 }
4437 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4438 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4439 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4440 word);
4441 }
4442
4443 /* Stop when we encounter an enclosing function. Do not stop for
4444 non-inlined functions - the locals of the enclosing function
4445 are in scope for a nested function. */
4446 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4447 break;
4448 b = BLOCK_SUPERBLOCK (b);
4449 }
4450
4451 /* Add fields from the file's types; symbols will be added below. */
4452
4453 if (code == TYPE_CODE_UNDEF)
4454 {
4455 if (surrounding_static_block != NULL)
4456 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4457 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4458
4459 if (surrounding_global_block != NULL)
4460 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4461 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4462 }
4463
4464 /* Go through the symtabs and check the externs and statics for
4465 symbols which match. */
4466
4467 ALL_PRIMARY_SYMTABS (objfile, s)
4468 {
4469 QUIT;
4470 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4471 ALL_BLOCK_SYMBOLS (b, iter, sym)
4472 {
4473 if (code == TYPE_CODE_UNDEF
4474 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4475 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4476 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4477 }
4478 }
4479
4480 ALL_PRIMARY_SYMTABS (objfile, s)
4481 {
4482 QUIT;
4483 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4484 ALL_BLOCK_SYMBOLS (b, iter, sym)
4485 {
4486 if (code == TYPE_CODE_UNDEF
4487 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4488 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4489 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4490 }
4491 }
4492
4493 /* Skip macros if we are completing a struct tag -- arguable but
4494 usually what is expected. */
4495 if (current_language->la_macro_expansion == macro_expansion_c
4496 && code == TYPE_CODE_UNDEF)
4497 {
4498 struct macro_scope *scope;
4499
4500 /* Add any macros visible in the default scope. Note that this
4501 may yield the occasional wrong result, because an expression
4502 might be evaluated in a scope other than the default. For
4503 example, if the user types "break file:line if <TAB>", the
4504 resulting expression will be evaluated at "file:line" -- but
4505 at there does not seem to be a way to detect this at
4506 completion time. */
4507 scope = default_macro_scope ();
4508 if (scope)
4509 {
4510 macro_for_each_in_scope (scope->file, scope->line,
4511 add_macro_name, &datum);
4512 xfree (scope);
4513 }
4514
4515 /* User-defined macros are always visible. */
4516 macro_for_each (macro_user_macros, add_macro_name, &datum);
4517 }
4518
4519 discard_cleanups (back_to);
4520 return (return_val);
4521 }
4522
4523 VEC (char_ptr) *
4524 default_make_symbol_completion_list (const char *text, const char *word,
4525 enum type_code code)
4526 {
4527 return default_make_symbol_completion_list_break_on (text, word, "", code);
4528 }
4529
4530 /* Return a vector of all symbols (regardless of class) which begin by
4531 matching TEXT. If the answer is no symbols, then the return value
4532 is NULL. */
4533
4534 VEC (char_ptr) *
4535 make_symbol_completion_list (const char *text, const char *word)
4536 {
4537 return current_language->la_make_symbol_completion_list (text, word,
4538 TYPE_CODE_UNDEF);
4539 }
4540
4541 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4542 symbols whose type code is CODE. */
4543
4544 VEC (char_ptr) *
4545 make_symbol_completion_type (const char *text, const char *word,
4546 enum type_code code)
4547 {
4548 gdb_assert (code == TYPE_CODE_UNION
4549 || code == TYPE_CODE_STRUCT
4550 || code == TYPE_CODE_CLASS
4551 || code == TYPE_CODE_ENUM);
4552 return current_language->la_make_symbol_completion_list (text, word, code);
4553 }
4554
4555 /* Like make_symbol_completion_list, but suitable for use as a
4556 completion function. */
4557
4558 VEC (char_ptr) *
4559 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4560 const char *text, const char *word)
4561 {
4562 return make_symbol_completion_list (text, word);
4563 }
4564
4565 /* Like make_symbol_completion_list, but returns a list of symbols
4566 defined in a source file FILE. */
4567
4568 VEC (char_ptr) *
4569 make_file_symbol_completion_list (const char *text, const char *word,
4570 const char *srcfile)
4571 {
4572 struct symbol *sym;
4573 struct symtab *s;
4574 struct block *b;
4575 struct block_iterator iter;
4576 /* The symbol we are completing on. Points in same buffer as text. */
4577 const char *sym_text;
4578 /* Length of sym_text. */
4579 int sym_text_len;
4580
4581 /* Now look for the symbol we are supposed to complete on.
4582 FIXME: This should be language-specific. */
4583 {
4584 const char *p;
4585 char quote_found;
4586 const char *quote_pos = NULL;
4587
4588 /* First see if this is a quoted string. */
4589 quote_found = '\0';
4590 for (p = text; *p != '\0'; ++p)
4591 {
4592 if (quote_found != '\0')
4593 {
4594 if (*p == quote_found)
4595 /* Found close quote. */
4596 quote_found = '\0';
4597 else if (*p == '\\' && p[1] == quote_found)
4598 /* A backslash followed by the quote character
4599 doesn't end the string. */
4600 ++p;
4601 }
4602 else if (*p == '\'' || *p == '"')
4603 {
4604 quote_found = *p;
4605 quote_pos = p;
4606 }
4607 }
4608 if (quote_found == '\'')
4609 /* A string within single quotes can be a symbol, so complete on it. */
4610 sym_text = quote_pos + 1;
4611 else if (quote_found == '"')
4612 /* A double-quoted string is never a symbol, nor does it make sense
4613 to complete it any other way. */
4614 {
4615 return NULL;
4616 }
4617 else
4618 {
4619 /* Not a quoted string. */
4620 sym_text = language_search_unquoted_string (text, p);
4621 }
4622 }
4623
4624 sym_text_len = strlen (sym_text);
4625
4626 return_val = NULL;
4627
4628 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4629 in). */
4630 s = lookup_symtab (srcfile);
4631 if (s == NULL)
4632 {
4633 /* Maybe they typed the file with leading directories, while the
4634 symbol tables record only its basename. */
4635 const char *tail = lbasename (srcfile);
4636
4637 if (tail > srcfile)
4638 s = lookup_symtab (tail);
4639 }
4640
4641 /* If we have no symtab for that file, return an empty list. */
4642 if (s == NULL)
4643 return (return_val);
4644
4645 /* Go through this symtab and check the externs and statics for
4646 symbols which match. */
4647
4648 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), GLOBAL_BLOCK);
4649 ALL_BLOCK_SYMBOLS (b, iter, sym)
4650 {
4651 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4652 }
4653
4654 b = BLOCKVECTOR_BLOCK (BLOCKVECTOR (s), STATIC_BLOCK);
4655 ALL_BLOCK_SYMBOLS (b, iter, sym)
4656 {
4657 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4658 }
4659
4660 return (return_val);
4661 }
4662
4663 /* A helper function for make_source_files_completion_list. It adds
4664 another file name to a list of possible completions, growing the
4665 list as necessary. */
4666
4667 static void
4668 add_filename_to_list (const char *fname, const char *text, const char *word,
4669 VEC (char_ptr) **list)
4670 {
4671 char *new;
4672 size_t fnlen = strlen (fname);
4673
4674 if (word == text)
4675 {
4676 /* Return exactly fname. */
4677 new = xmalloc (fnlen + 5);
4678 strcpy (new, fname);
4679 }
4680 else if (word > text)
4681 {
4682 /* Return some portion of fname. */
4683 new = xmalloc (fnlen + 5);
4684 strcpy (new, fname + (word - text));
4685 }
4686 else
4687 {
4688 /* Return some of TEXT plus fname. */
4689 new = xmalloc (fnlen + (text - word) + 5);
4690 strncpy (new, word, text - word);
4691 new[text - word] = '\0';
4692 strcat (new, fname);
4693 }
4694 VEC_safe_push (char_ptr, *list, new);
4695 }
4696
4697 static int
4698 not_interesting_fname (const char *fname)
4699 {
4700 static const char *illegal_aliens[] = {
4701 "_globals_", /* inserted by coff_symtab_read */
4702 NULL
4703 };
4704 int i;
4705
4706 for (i = 0; illegal_aliens[i]; i++)
4707 {
4708 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4709 return 1;
4710 }
4711 return 0;
4712 }
4713
4714 /* An object of this type is passed as the user_data argument to
4715 map_partial_symbol_filenames. */
4716 struct add_partial_filename_data
4717 {
4718 struct filename_seen_cache *filename_seen_cache;
4719 const char *text;
4720 const char *word;
4721 int text_len;
4722 VEC (char_ptr) **list;
4723 };
4724
4725 /* A callback for map_partial_symbol_filenames. */
4726
4727 static void
4728 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4729 void *user_data)
4730 {
4731 struct add_partial_filename_data *data = user_data;
4732
4733 if (not_interesting_fname (filename))
4734 return;
4735 if (!filename_seen (data->filename_seen_cache, filename, 1)
4736 && filename_ncmp (filename, data->text, data->text_len) == 0)
4737 {
4738 /* This file matches for a completion; add it to the
4739 current list of matches. */
4740 add_filename_to_list (filename, data->text, data->word, data->list);
4741 }
4742 else
4743 {
4744 const char *base_name = lbasename (filename);
4745
4746 if (base_name != filename
4747 && !filename_seen (data->filename_seen_cache, base_name, 1)
4748 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4749 add_filename_to_list (base_name, data->text, data->word, data->list);
4750 }
4751 }
4752
4753 /* Return a vector of all source files whose names begin with matching
4754 TEXT. The file names are looked up in the symbol tables of this
4755 program. If the answer is no matchess, then the return value is
4756 NULL. */
4757
4758 VEC (char_ptr) *
4759 make_source_files_completion_list (const char *text, const char *word)
4760 {
4761 struct symtab *s;
4762 struct objfile *objfile;
4763 size_t text_len = strlen (text);
4764 VEC (char_ptr) *list = NULL;
4765 const char *base_name;
4766 struct add_partial_filename_data datum;
4767 struct filename_seen_cache *filename_seen_cache;
4768 struct cleanup *back_to, *cache_cleanup;
4769
4770 if (!have_full_symbols () && !have_partial_symbols ())
4771 return list;
4772
4773 back_to = make_cleanup (do_free_completion_list, &list);
4774
4775 filename_seen_cache = create_filename_seen_cache ();
4776 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4777 filename_seen_cache);
4778
4779 ALL_SYMTABS (objfile, s)
4780 {
4781 if (not_interesting_fname (s->filename))
4782 continue;
4783 if (!filename_seen (filename_seen_cache, s->filename, 1)
4784 && filename_ncmp (s->filename, text, text_len) == 0)
4785 {
4786 /* This file matches for a completion; add it to the current
4787 list of matches. */
4788 add_filename_to_list (s->filename, text, word, &list);
4789 }
4790 else
4791 {
4792 /* NOTE: We allow the user to type a base name when the
4793 debug info records leading directories, but not the other
4794 way around. This is what subroutines of breakpoint
4795 command do when they parse file names. */
4796 base_name = lbasename (s->filename);
4797 if (base_name != s->filename
4798 && !filename_seen (filename_seen_cache, base_name, 1)
4799 && filename_ncmp (base_name, text, text_len) == 0)
4800 add_filename_to_list (base_name, text, word, &list);
4801 }
4802 }
4803
4804 datum.filename_seen_cache = filename_seen_cache;
4805 datum.text = text;
4806 datum.word = word;
4807 datum.text_len = text_len;
4808 datum.list = &list;
4809 map_partial_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4810 0 /*need_fullname*/);
4811
4812 do_cleanups (cache_cleanup);
4813 discard_cleanups (back_to);
4814
4815 return list;
4816 }
4817
4818 /* Determine if PC is in the prologue of a function. The prologue is the area
4819 between the first instruction of a function, and the first executable line.
4820 Returns 1 if PC *might* be in prologue, 0 if definately *not* in prologue.
4821
4822 If non-zero, func_start is where we think the prologue starts, possibly
4823 by previous examination of symbol table information. */
4824
4825 int
4826 in_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR func_start)
4827 {
4828 struct symtab_and_line sal;
4829 CORE_ADDR func_addr, func_end;
4830
4831 /* We have several sources of information we can consult to figure
4832 this out.
4833 - Compilers usually emit line number info that marks the prologue
4834 as its own "source line". So the ending address of that "line"
4835 is the end of the prologue. If available, this is the most
4836 reliable method.
4837 - The minimal symbols and partial symbols, which can usually tell
4838 us the starting and ending addresses of a function.
4839 - If we know the function's start address, we can call the
4840 architecture-defined gdbarch_skip_prologue function to analyze the
4841 instruction stream and guess where the prologue ends.
4842 - Our `func_start' argument; if non-zero, this is the caller's
4843 best guess as to the function's entry point. At the time of
4844 this writing, handle_inferior_event doesn't get this right, so
4845 it should be our last resort. */
4846
4847 /* Consult the partial symbol table, to find which function
4848 the PC is in. */
4849 if (! find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4850 {
4851 CORE_ADDR prologue_end;
4852
4853 /* We don't even have minsym information, so fall back to using
4854 func_start, if given. */
4855 if (! func_start)
4856 return 1; /* We *might* be in a prologue. */
4857
4858 prologue_end = gdbarch_skip_prologue (gdbarch, func_start);
4859
4860 return func_start <= pc && pc < prologue_end;
4861 }
4862
4863 /* If we have line number information for the function, that's
4864 usually pretty reliable. */
4865 sal = find_pc_line (func_addr, 0);
4866
4867 /* Now sal describes the source line at the function's entry point,
4868 which (by convention) is the prologue. The end of that "line",
4869 sal.end, is the end of the prologue.
4870
4871 Note that, for functions whose source code is all on a single
4872 line, the line number information doesn't always end up this way.
4873 So we must verify that our purported end-of-prologue address is
4874 *within* the function, not at its start or end. */
4875 if (sal.line == 0
4876 || sal.end <= func_addr
4877 || func_end <= sal.end)
4878 {
4879 /* We don't have any good line number info, so use the minsym
4880 information, together with the architecture-specific prologue
4881 scanning code. */
4882 CORE_ADDR prologue_end = gdbarch_skip_prologue (gdbarch, func_addr);
4883
4884 return func_addr <= pc && pc < prologue_end;
4885 }
4886
4887 /* We have line number info, and it looks good. */
4888 return func_addr <= pc && pc < sal.end;
4889 }
4890
4891 /* Given PC at the function's start address, attempt to find the
4892 prologue end using SAL information. Return zero if the skip fails.
4893
4894 A non-optimized prologue traditionally has one SAL for the function
4895 and a second for the function body. A single line function has
4896 them both pointing at the same line.
4897
4898 An optimized prologue is similar but the prologue may contain
4899 instructions (SALs) from the instruction body. Need to skip those
4900 while not getting into the function body.
4901
4902 The functions end point and an increasing SAL line are used as
4903 indicators of the prologue's endpoint.
4904
4905 This code is based on the function refine_prologue_limit
4906 (found in ia64). */
4907
4908 CORE_ADDR
4909 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
4910 {
4911 struct symtab_and_line prologue_sal;
4912 CORE_ADDR start_pc;
4913 CORE_ADDR end_pc;
4914 struct block *bl;
4915
4916 /* Get an initial range for the function. */
4917 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
4918 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
4919
4920 prologue_sal = find_pc_line (start_pc, 0);
4921 if (prologue_sal.line != 0)
4922 {
4923 /* For languages other than assembly, treat two consecutive line
4924 entries at the same address as a zero-instruction prologue.
4925 The GNU assembler emits separate line notes for each instruction
4926 in a multi-instruction macro, but compilers generally will not
4927 do this. */
4928 if (prologue_sal.symtab->language != language_asm)
4929 {
4930 struct linetable *linetable = LINETABLE (prologue_sal.symtab);
4931 int idx = 0;
4932
4933 /* Skip any earlier lines, and any end-of-sequence marker
4934 from a previous function. */
4935 while (linetable->item[idx].pc != prologue_sal.pc
4936 || linetable->item[idx].line == 0)
4937 idx++;
4938
4939 if (idx+1 < linetable->nitems
4940 && linetable->item[idx+1].line != 0
4941 && linetable->item[idx+1].pc == start_pc)
4942 return start_pc;
4943 }
4944
4945 /* If there is only one sal that covers the entire function,
4946 then it is probably a single line function, like
4947 "foo(){}". */
4948 if (prologue_sal.end >= end_pc)
4949 return 0;
4950
4951 while (prologue_sal.end < end_pc)
4952 {
4953 struct symtab_and_line sal;
4954
4955 sal = find_pc_line (prologue_sal.end, 0);
4956 if (sal.line == 0)
4957 break;
4958 /* Assume that a consecutive SAL for the same (or larger)
4959 line mark the prologue -> body transition. */
4960 if (sal.line >= prologue_sal.line)
4961 break;
4962 /* Likewise if we are in a different symtab altogether
4963 (e.g. within a file included via #include).  */
4964 if (sal.symtab != prologue_sal.symtab)
4965 break;
4966
4967 /* The line number is smaller. Check that it's from the
4968 same function, not something inlined. If it's inlined,
4969 then there is no point comparing the line numbers. */
4970 bl = block_for_pc (prologue_sal.end);
4971 while (bl)
4972 {
4973 if (block_inlined_p (bl))
4974 break;
4975 if (BLOCK_FUNCTION (bl))
4976 {
4977 bl = NULL;
4978 break;
4979 }
4980 bl = BLOCK_SUPERBLOCK (bl);
4981 }
4982 if (bl != NULL)
4983 break;
4984
4985 /* The case in which compiler's optimizer/scheduler has
4986 moved instructions into the prologue. We look ahead in
4987 the function looking for address ranges whose
4988 corresponding line number is less the first one that we
4989 found for the function. This is more conservative then
4990 refine_prologue_limit which scans a large number of SALs
4991 looking for any in the prologue. */
4992 prologue_sal = sal;
4993 }
4994 }
4995
4996 if (prologue_sal.end < end_pc)
4997 /* Return the end of this line, or zero if we could not find a
4998 line. */
4999 return prologue_sal.end;
5000 else
5001 /* Don't return END_PC, which is past the end of the function. */
5002 return prologue_sal.pc;
5003 }
5004 \f
5005 /* Track MAIN */
5006 static char *name_of_main;
5007 enum language language_of_main = language_unknown;
5008
5009 void
5010 set_main_name (const char *name)
5011 {
5012 if (name_of_main != NULL)
5013 {
5014 xfree (name_of_main);
5015 name_of_main = NULL;
5016 language_of_main = language_unknown;
5017 }
5018 if (name != NULL)
5019 {
5020 name_of_main = xstrdup (name);
5021 language_of_main = language_unknown;
5022 }
5023 }
5024
5025 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5026 accordingly. */
5027
5028 static void
5029 find_main_name (void)
5030 {
5031 const char *new_main_name;
5032
5033 /* Try to see if the main procedure is in Ada. */
5034 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5035 be to add a new method in the language vector, and call this
5036 method for each language until one of them returns a non-empty
5037 name. This would allow us to remove this hard-coded call to
5038 an Ada function. It is not clear that this is a better approach
5039 at this point, because all methods need to be written in a way
5040 such that false positives never be returned. For instance, it is
5041 important that a method does not return a wrong name for the main
5042 procedure if the main procedure is actually written in a different
5043 language. It is easy to guaranty this with Ada, since we use a
5044 special symbol generated only when the main in Ada to find the name
5045 of the main procedure. It is difficult however to see how this can
5046 be guarantied for languages such as C, for instance. This suggests
5047 that order of call for these methods becomes important, which means
5048 a more complicated approach. */
5049 new_main_name = ada_main_name ();
5050 if (new_main_name != NULL)
5051 {
5052 set_main_name (new_main_name);
5053 return;
5054 }
5055
5056 new_main_name = go_main_name ();
5057 if (new_main_name != NULL)
5058 {
5059 set_main_name (new_main_name);
5060 return;
5061 }
5062
5063 new_main_name = pascal_main_name ();
5064 if (new_main_name != NULL)
5065 {
5066 set_main_name (new_main_name);
5067 return;
5068 }
5069
5070 /* The languages above didn't identify the name of the main procedure.
5071 Fallback to "main". */
5072 set_main_name ("main");
5073 }
5074
5075 char *
5076 main_name (void)
5077 {
5078 if (name_of_main == NULL)
5079 find_main_name ();
5080
5081 return name_of_main;
5082 }
5083
5084 /* Handle ``executable_changed'' events for the symtab module. */
5085
5086 static void
5087 symtab_observer_executable_changed (void)
5088 {
5089 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5090 set_main_name (NULL);
5091 }
5092
5093 /* Return 1 if the supplied producer string matches the ARM RealView
5094 compiler (armcc). */
5095
5096 int
5097 producer_is_realview (const char *producer)
5098 {
5099 static const char *const arm_idents[] = {
5100 "ARM C Compiler, ADS",
5101 "Thumb C Compiler, ADS",
5102 "ARM C++ Compiler, ADS",
5103 "Thumb C++ Compiler, ADS",
5104 "ARM/Thumb C/C++ Compiler, RVCT",
5105 "ARM C/C++ Compiler, RVCT"
5106 };
5107 int i;
5108
5109 if (producer == NULL)
5110 return 0;
5111
5112 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5113 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5114 return 1;
5115
5116 return 0;
5117 }
5118
5119 \f
5120
5121 /* The next index to hand out in response to a registration request. */
5122
5123 static int next_aclass_value = LOC_FINAL_VALUE;
5124
5125 /* The maximum number of "aclass" registrations we support. This is
5126 constant for convenience. */
5127 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5128
5129 /* The objects representing the various "aclass" values. The elements
5130 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5131 elements are those registered at gdb initialization time. */
5132
5133 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5134
5135 /* The globally visible pointer. This is separate from 'symbol_impl'
5136 so that it can be const. */
5137
5138 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5139
5140 /* Make sure we saved enough room in struct symbol. */
5141
5142 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5143
5144 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5145 is the ops vector associated with this index. This returns the new
5146 index, which should be used as the aclass_index field for symbols
5147 of this type. */
5148
5149 int
5150 register_symbol_computed_impl (enum address_class aclass,
5151 const struct symbol_computed_ops *ops)
5152 {
5153 int result = next_aclass_value++;
5154
5155 gdb_assert (aclass == LOC_COMPUTED);
5156 gdb_assert (result < MAX_SYMBOL_IMPLS);
5157 symbol_impl[result].aclass = aclass;
5158 symbol_impl[result].ops_computed = ops;
5159
5160 /* Sanity check OPS. */
5161 gdb_assert (ops != NULL);
5162 gdb_assert (ops->tracepoint_var_ref != NULL);
5163 gdb_assert (ops->describe_location != NULL);
5164 gdb_assert (ops->read_needs_frame != NULL);
5165 gdb_assert (ops->read_variable != NULL);
5166
5167 return result;
5168 }
5169
5170 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5171 OPS is the ops vector associated with this index. This returns the
5172 new index, which should be used as the aclass_index field for symbols
5173 of this type. */
5174
5175 int
5176 register_symbol_block_impl (enum address_class aclass,
5177 const struct symbol_block_ops *ops)
5178 {
5179 int result = next_aclass_value++;
5180
5181 gdb_assert (aclass == LOC_BLOCK);
5182 gdb_assert (result < MAX_SYMBOL_IMPLS);
5183 symbol_impl[result].aclass = aclass;
5184 symbol_impl[result].ops_block = ops;
5185
5186 /* Sanity check OPS. */
5187 gdb_assert (ops != NULL);
5188 gdb_assert (ops->find_frame_base_location != NULL);
5189
5190 return result;
5191 }
5192
5193 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5194 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5195 this index. This returns the new index, which should be used as
5196 the aclass_index field for symbols of this type. */
5197
5198 int
5199 register_symbol_register_impl (enum address_class aclass,
5200 const struct symbol_register_ops *ops)
5201 {
5202 int result = next_aclass_value++;
5203
5204 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5205 gdb_assert (result < MAX_SYMBOL_IMPLS);
5206 symbol_impl[result].aclass = aclass;
5207 symbol_impl[result].ops_register = ops;
5208
5209 return result;
5210 }
5211
5212 /* Initialize elements of 'symbol_impl' for the constants in enum
5213 address_class. */
5214
5215 static void
5216 initialize_ordinary_address_classes (void)
5217 {
5218 int i;
5219
5220 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5221 symbol_impl[i].aclass = i;
5222 }
5223
5224 \f
5225
5226 /* Initialize the symbol SYM. */
5227
5228 void
5229 initialize_symbol (struct symbol *sym)
5230 {
5231 memset (sym, 0, sizeof (*sym));
5232 SYMBOL_SECTION (sym) = -1;
5233 }
5234
5235 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5236 obstack. */
5237
5238 struct symbol *
5239 allocate_symbol (struct objfile *objfile)
5240 {
5241 struct symbol *result;
5242
5243 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5244 SYMBOL_SECTION (result) = -1;
5245
5246 return result;
5247 }
5248
5249 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5250 obstack. */
5251
5252 struct template_symbol *
5253 allocate_template_symbol (struct objfile *objfile)
5254 {
5255 struct template_symbol *result;
5256
5257 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5258 SYMBOL_SECTION (&result->base) = -1;
5259
5260 return result;
5261 }
5262
5263 \f
5264
5265 void
5266 _initialize_symtab (void)
5267 {
5268 initialize_ordinary_address_classes ();
5269
5270 add_info ("variables", variables_info, _("\
5271 All global and static variable names, or those matching REGEXP."));
5272 if (dbx_commands)
5273 add_com ("whereis", class_info, variables_info, _("\
5274 All global and static variable names, or those matching REGEXP."));
5275
5276 add_info ("functions", functions_info,
5277 _("All function names, or those matching REGEXP."));
5278
5279 /* FIXME: This command has at least the following problems:
5280 1. It prints builtin types (in a very strange and confusing fashion).
5281 2. It doesn't print right, e.g. with
5282 typedef struct foo *FOO
5283 type_print prints "FOO" when we want to make it (in this situation)
5284 print "struct foo *".
5285 I also think "ptype" or "whatis" is more likely to be useful (but if
5286 there is much disagreement "info types" can be fixed). */
5287 add_info ("types", types_info,
5288 _("All type names, or those matching REGEXP."));
5289
5290 add_info ("sources", sources_info,
5291 _("Source files in the program."));
5292
5293 add_com ("rbreak", class_breakpoint, rbreak_command,
5294 _("Set a breakpoint for all functions matching REGEXP."));
5295
5296 if (xdb_commands)
5297 {
5298 add_com ("lf", class_info, sources_info,
5299 _("Source files in the program"));
5300 add_com ("lg", class_info, variables_info, _("\
5301 All global and static variable names, or those matching REGEXP."));
5302 }
5303
5304 add_setshow_enum_cmd ("multiple-symbols", no_class,
5305 multiple_symbols_modes, &multiple_symbols_mode,
5306 _("\
5307 Set the debugger behavior when more than one symbol are possible matches\n\
5308 in an expression."), _("\
5309 Show how the debugger handles ambiguities in expressions."), _("\
5310 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5311 NULL, NULL, &setlist, &showlist);
5312
5313 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5314 &basenames_may_differ, _("\
5315 Set whether a source file may have multiple base names."), _("\
5316 Show whether a source file may have multiple base names."), _("\
5317 (A \"base name\" is the name of a file with the directory part removed.\n\
5318 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5319 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5320 before comparing them. Canonicalization is an expensive operation,\n\
5321 but it allows the same file be known by more than one base name.\n\
5322 If not set (the default), all source files are assumed to have just\n\
5323 one base name, and gdb will do file name comparisons more efficiently."),
5324 NULL, NULL,
5325 &setlist, &showlist);
5326
5327 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5328 _("Set debugging of symbol table creation."),
5329 _("Show debugging of symbol table creation."), _("\
5330 When enabled (non-zero), debugging messages are printed when building\n\
5331 symbol tables. A value of 1 (one) normally provides enough information.\n\
5332 A value greater than 1 provides more verbose information."),
5333 NULL,
5334 NULL,
5335 &setdebuglist, &showdebuglist);
5336
5337 observer_attach_executable_changed (symtab_observer_executable_changed);
5338 }