symtab.c (domain_name) <MODULE_DOMAIN>: Add missing case.
[binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44
45 #include "hashtab.h"
46
47 #include "gdb_obstack.h"
48 #include "block.h"
49 #include "dictionary.h"
50
51 #include <sys/types.h>
52 #include <fcntl.h>
53 #include <sys/stat.h>
54 #include <ctype.h>
55 #include "cp-abi.h"
56 #include "cp-support.h"
57 #include "observer.h"
58 #include "solist.h"
59 #include "macrotab.h"
60 #include "macroscope.h"
61
62 #include "parser-defs.h"
63
64 /* Forward declarations for local functions. */
65
66 static void rbreak_command (char *, int);
67
68 static int find_line_common (struct linetable *, int, int *, int);
69
70 static struct symbol *lookup_symbol_aux (const char *name,
71 const struct block *block,
72 const domain_enum domain,
73 enum language language,
74 struct field_of_this_result *);
75
76 static
77 struct symbol *lookup_local_symbol (const char *name,
78 const struct block *block,
79 const domain_enum domain,
80 enum language language);
81
82 static struct symbol *
83 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
84 int block_index, const char *name,
85 const domain_enum domain);
86
87 static
88 struct symbol *lookup_symbol_via_quick_fns (struct objfile *objfile,
89 int block_index,
90 const char *name,
91 const domain_enum domain);
92
93 extern initialize_file_ftype _initialize_symtab;
94
95 /* Program space key for finding name and language of "main". */
96
97 static const struct program_space_data *main_progspace_key;
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 /* Name of "main". */
104
105 char *name_of_main;
106
107 /* Language of "main". */
108
109 enum language language_of_main;
110 };
111
112 /* When non-zero, print debugging messages related to symtab creation. */
113 unsigned int symtab_create_debug = 0;
114
115 /* Non-zero if a file may be known by two different basenames.
116 This is the uncommon case, and significantly slows down gdb.
117 Default set to "off" to not slow down the common case. */
118 int basenames_may_differ = 0;
119
120 /* Allow the user to configure the debugger behavior with respect
121 to multiple-choice menus when more than one symbol matches during
122 a symbol lookup. */
123
124 const char multiple_symbols_ask[] = "ask";
125 const char multiple_symbols_all[] = "all";
126 const char multiple_symbols_cancel[] = "cancel";
127 static const char *const multiple_symbols_modes[] =
128 {
129 multiple_symbols_ask,
130 multiple_symbols_all,
131 multiple_symbols_cancel,
132 NULL
133 };
134 static const char *multiple_symbols_mode = multiple_symbols_all;
135
136 /* Read-only accessor to AUTO_SELECT_MODE. */
137
138 const char *
139 multiple_symbols_select_mode (void)
140 {
141 return multiple_symbols_mode;
142 }
143
144 /* Block in which the most recently searched-for symbol was found.
145 Might be better to make this a parameter to lookup_symbol and
146 value_of_this. */
147
148 const struct block *block_found;
149
150 /* Return the name of a domain_enum. */
151
152 const char *
153 domain_name (domain_enum e)
154 {
155 switch (e)
156 {
157 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
158 case VAR_DOMAIN: return "VAR_DOMAIN";
159 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
160 case MODULE_DOMAIN: return "MODULE_DOMAIN";
161 case LABEL_DOMAIN: return "LABEL_DOMAIN";
162 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
163 default: gdb_assert_not_reached ("bad domain_enum");
164 }
165 }
166
167 /* Return the name of a search_domain . */
168
169 const char *
170 search_domain_name (enum search_domain e)
171 {
172 switch (e)
173 {
174 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
175 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
176 case TYPES_DOMAIN: return "TYPES_DOMAIN";
177 case ALL_DOMAIN: return "ALL_DOMAIN";
178 default: gdb_assert_not_reached ("bad search_domain");
179 }
180 }
181
182 /* See symtab.h. */
183
184 struct symtab *
185 compunit_primary_filetab (const struct compunit_symtab *cust)
186 {
187 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
188
189 /* The primary file symtab is the first one in the list. */
190 return COMPUNIT_FILETABS (cust);
191 }
192
193 /* See symtab.h. */
194
195 enum language
196 compunit_language (const struct compunit_symtab *cust)
197 {
198 struct symtab *symtab = compunit_primary_filetab (cust);
199
200 /* The language of the compunit symtab is the language of its primary
201 source file. */
202 return SYMTAB_LANGUAGE (symtab);
203 }
204
205 /* See whether FILENAME matches SEARCH_NAME using the rule that we
206 advertise to the user. (The manual's description of linespecs
207 describes what we advertise). Returns true if they match, false
208 otherwise. */
209
210 int
211 compare_filenames_for_search (const char *filename, const char *search_name)
212 {
213 int len = strlen (filename);
214 size_t search_len = strlen (search_name);
215
216 if (len < search_len)
217 return 0;
218
219 /* The tail of FILENAME must match. */
220 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
221 return 0;
222
223 /* Either the names must completely match, or the character
224 preceding the trailing SEARCH_NAME segment of FILENAME must be a
225 directory separator.
226
227 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
228 cannot match FILENAME "/path//dir/file.c" - as user has requested
229 absolute path. The sama applies for "c:\file.c" possibly
230 incorrectly hypothetically matching "d:\dir\c:\file.c".
231
232 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
233 compatible with SEARCH_NAME "file.c". In such case a compiler had
234 to put the "c:file.c" name into debug info. Such compatibility
235 works only on GDB built for DOS host. */
236 return (len == search_len
237 || (!IS_ABSOLUTE_PATH (search_name)
238 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
239 || (HAS_DRIVE_SPEC (filename)
240 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
241 }
242
243 /* Check for a symtab of a specific name by searching some symtabs.
244 This is a helper function for callbacks of iterate_over_symtabs.
245
246 If NAME is not absolute, then REAL_PATH is NULL
247 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
248
249 The return value, NAME, REAL_PATH, CALLBACK, and DATA
250 are identical to the `map_symtabs_matching_filename' method of
251 quick_symbol_functions.
252
253 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
254 Each symtab within the specified compunit symtab is also searched.
255 AFTER_LAST is one past the last compunit symtab to search; NULL means to
256 search until the end of the list. */
257
258 int
259 iterate_over_some_symtabs (const char *name,
260 const char *real_path,
261 int (*callback) (struct symtab *symtab,
262 void *data),
263 void *data,
264 struct compunit_symtab *first,
265 struct compunit_symtab *after_last)
266 {
267 struct compunit_symtab *cust;
268 struct symtab *s;
269 const char* base_name = lbasename (name);
270
271 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
272 {
273 ALL_COMPUNIT_FILETABS (cust, s)
274 {
275 if (compare_filenames_for_search (s->filename, name))
276 {
277 if (callback (s, data))
278 return 1;
279 continue;
280 }
281
282 /* Before we invoke realpath, which can get expensive when many
283 files are involved, do a quick comparison of the basenames. */
284 if (! basenames_may_differ
285 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
286 continue;
287
288 if (compare_filenames_for_search (symtab_to_fullname (s), name))
289 {
290 if (callback (s, data))
291 return 1;
292 continue;
293 }
294
295 /* If the user gave us an absolute path, try to find the file in
296 this symtab and use its absolute path. */
297 if (real_path != NULL)
298 {
299 const char *fullname = symtab_to_fullname (s);
300
301 gdb_assert (IS_ABSOLUTE_PATH (real_path));
302 gdb_assert (IS_ABSOLUTE_PATH (name));
303 if (FILENAME_CMP (real_path, fullname) == 0)
304 {
305 if (callback (s, data))
306 return 1;
307 continue;
308 }
309 }
310 }
311 }
312
313 return 0;
314 }
315
316 /* Check for a symtab of a specific name; first in symtabs, then in
317 psymtabs. *If* there is no '/' in the name, a match after a '/'
318 in the symtab filename will also work.
319
320 Calls CALLBACK with each symtab that is found and with the supplied
321 DATA. If CALLBACK returns true, the search stops. */
322
323 void
324 iterate_over_symtabs (const char *name,
325 int (*callback) (struct symtab *symtab,
326 void *data),
327 void *data)
328 {
329 struct objfile *objfile;
330 char *real_path = NULL;
331 struct cleanup *cleanups = make_cleanup (null_cleanup, NULL);
332
333 /* Here we are interested in canonicalizing an absolute path, not
334 absolutizing a relative path. */
335 if (IS_ABSOLUTE_PATH (name))
336 {
337 real_path = gdb_realpath (name);
338 make_cleanup (xfree, real_path);
339 gdb_assert (IS_ABSOLUTE_PATH (real_path));
340 }
341
342 ALL_OBJFILES (objfile)
343 {
344 if (iterate_over_some_symtabs (name, real_path, callback, data,
345 objfile->compunit_symtabs, NULL))
346 {
347 do_cleanups (cleanups);
348 return;
349 }
350 }
351
352 /* Same search rules as above apply here, but now we look thru the
353 psymtabs. */
354
355 ALL_OBJFILES (objfile)
356 {
357 if (objfile->sf
358 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
359 name,
360 real_path,
361 callback,
362 data))
363 {
364 do_cleanups (cleanups);
365 return;
366 }
367 }
368
369 do_cleanups (cleanups);
370 }
371
372 /* The callback function used by lookup_symtab. */
373
374 static int
375 lookup_symtab_callback (struct symtab *symtab, void *data)
376 {
377 struct symtab **result_ptr = data;
378
379 *result_ptr = symtab;
380 return 1;
381 }
382
383 /* A wrapper for iterate_over_symtabs that returns the first matching
384 symtab, or NULL. */
385
386 struct symtab *
387 lookup_symtab (const char *name)
388 {
389 struct symtab *result = NULL;
390
391 iterate_over_symtabs (name, lookup_symtab_callback, &result);
392 return result;
393 }
394
395 \f
396 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
397 full method name, which consist of the class name (from T), the unadorned
398 method name from METHOD_ID, and the signature for the specific overload,
399 specified by SIGNATURE_ID. Note that this function is g++ specific. */
400
401 char *
402 gdb_mangle_name (struct type *type, int method_id, int signature_id)
403 {
404 int mangled_name_len;
405 char *mangled_name;
406 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
407 struct fn_field *method = &f[signature_id];
408 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
409 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
410 const char *newname = type_name_no_tag (type);
411
412 /* Does the form of physname indicate that it is the full mangled name
413 of a constructor (not just the args)? */
414 int is_full_physname_constructor;
415
416 int is_constructor;
417 int is_destructor = is_destructor_name (physname);
418 /* Need a new type prefix. */
419 char *const_prefix = method->is_const ? "C" : "";
420 char *volatile_prefix = method->is_volatile ? "V" : "";
421 char buf[20];
422 int len = (newname == NULL ? 0 : strlen (newname));
423
424 /* Nothing to do if physname already contains a fully mangled v3 abi name
425 or an operator name. */
426 if ((physname[0] == '_' && physname[1] == 'Z')
427 || is_operator_name (field_name))
428 return xstrdup (physname);
429
430 is_full_physname_constructor = is_constructor_name (physname);
431
432 is_constructor = is_full_physname_constructor
433 || (newname && strcmp (field_name, newname) == 0);
434
435 if (!is_destructor)
436 is_destructor = (strncmp (physname, "__dt", 4) == 0);
437
438 if (is_destructor || is_full_physname_constructor)
439 {
440 mangled_name = (char *) xmalloc (strlen (physname) + 1);
441 strcpy (mangled_name, physname);
442 return mangled_name;
443 }
444
445 if (len == 0)
446 {
447 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
448 }
449 else if (physname[0] == 't' || physname[0] == 'Q')
450 {
451 /* The physname for template and qualified methods already includes
452 the class name. */
453 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
454 newname = NULL;
455 len = 0;
456 }
457 else
458 {
459 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
460 volatile_prefix, len);
461 }
462 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
463 + strlen (buf) + len + strlen (physname) + 1);
464
465 mangled_name = (char *) xmalloc (mangled_name_len);
466 if (is_constructor)
467 mangled_name[0] = '\0';
468 else
469 strcpy (mangled_name, field_name);
470
471 strcat (mangled_name, buf);
472 /* If the class doesn't have a name, i.e. newname NULL, then we just
473 mangle it using 0 for the length of the class. Thus it gets mangled
474 as something starting with `::' rather than `classname::'. */
475 if (newname != NULL)
476 strcat (mangled_name, newname);
477
478 strcat (mangled_name, physname);
479 return (mangled_name);
480 }
481
482 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
483 correctly allocated. */
484
485 void
486 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
487 const char *name,
488 struct obstack *obstack)
489 {
490 if (gsymbol->language == language_ada)
491 {
492 if (name == NULL)
493 {
494 gsymbol->ada_mangled = 0;
495 gsymbol->language_specific.obstack = obstack;
496 }
497 else
498 {
499 gsymbol->ada_mangled = 1;
500 gsymbol->language_specific.mangled_lang.demangled_name = name;
501 }
502 }
503 else
504 gsymbol->language_specific.mangled_lang.demangled_name = name;
505 }
506
507 /* Return the demangled name of GSYMBOL. */
508
509 const char *
510 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
511 {
512 if (gsymbol->language == language_ada)
513 {
514 if (!gsymbol->ada_mangled)
515 return NULL;
516 /* Fall through. */
517 }
518
519 return gsymbol->language_specific.mangled_lang.demangled_name;
520 }
521
522 \f
523 /* Initialize the language dependent portion of a symbol
524 depending upon the language for the symbol. */
525
526 void
527 symbol_set_language (struct general_symbol_info *gsymbol,
528 enum language language,
529 struct obstack *obstack)
530 {
531 gsymbol->language = language;
532 if (gsymbol->language == language_cplus
533 || gsymbol->language == language_d
534 || gsymbol->language == language_go
535 || gsymbol->language == language_java
536 || gsymbol->language == language_objc
537 || gsymbol->language == language_fortran)
538 {
539 symbol_set_demangled_name (gsymbol, NULL, obstack);
540 }
541 else if (gsymbol->language == language_ada)
542 {
543 gdb_assert (gsymbol->ada_mangled == 0);
544 gsymbol->language_specific.obstack = obstack;
545 }
546 else
547 {
548 memset (&gsymbol->language_specific, 0,
549 sizeof (gsymbol->language_specific));
550 }
551 }
552
553 /* Functions to initialize a symbol's mangled name. */
554
555 /* Objects of this type are stored in the demangled name hash table. */
556 struct demangled_name_entry
557 {
558 const char *mangled;
559 char demangled[1];
560 };
561
562 /* Hash function for the demangled name hash. */
563
564 static hashval_t
565 hash_demangled_name_entry (const void *data)
566 {
567 const struct demangled_name_entry *e = data;
568
569 return htab_hash_string (e->mangled);
570 }
571
572 /* Equality function for the demangled name hash. */
573
574 static int
575 eq_demangled_name_entry (const void *a, const void *b)
576 {
577 const struct demangled_name_entry *da = a;
578 const struct demangled_name_entry *db = b;
579
580 return strcmp (da->mangled, db->mangled) == 0;
581 }
582
583 /* Create the hash table used for demangled names. Each hash entry is
584 a pair of strings; one for the mangled name and one for the demangled
585 name. The entry is hashed via just the mangled name. */
586
587 static void
588 create_demangled_names_hash (struct objfile *objfile)
589 {
590 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
591 The hash table code will round this up to the next prime number.
592 Choosing a much larger table size wastes memory, and saves only about
593 1% in symbol reading. */
594
595 objfile->per_bfd->demangled_names_hash = htab_create_alloc
596 (256, hash_demangled_name_entry, eq_demangled_name_entry,
597 NULL, xcalloc, xfree);
598 }
599
600 /* Try to determine the demangled name for a symbol, based on the
601 language of that symbol. If the language is set to language_auto,
602 it will attempt to find any demangling algorithm that works and
603 then set the language appropriately. The returned name is allocated
604 by the demangler and should be xfree'd. */
605
606 static char *
607 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
608 const char *mangled)
609 {
610 char *demangled = NULL;
611
612 if (gsymbol->language == language_unknown)
613 gsymbol->language = language_auto;
614
615 if (gsymbol->language == language_objc
616 || gsymbol->language == language_auto)
617 {
618 demangled =
619 objc_demangle (mangled, 0);
620 if (demangled != NULL)
621 {
622 gsymbol->language = language_objc;
623 return demangled;
624 }
625 }
626 if (gsymbol->language == language_cplus
627 || gsymbol->language == language_auto)
628 {
629 demangled =
630 gdb_demangle (mangled, DMGL_PARAMS | DMGL_ANSI);
631 if (demangled != NULL)
632 {
633 gsymbol->language = language_cplus;
634 return demangled;
635 }
636 }
637 if (gsymbol->language == language_java)
638 {
639 demangled =
640 gdb_demangle (mangled,
641 DMGL_PARAMS | DMGL_ANSI | DMGL_JAVA);
642 if (demangled != NULL)
643 {
644 gsymbol->language = language_java;
645 return demangled;
646 }
647 }
648 if (gsymbol->language == language_d
649 || gsymbol->language == language_auto)
650 {
651 demangled = d_demangle(mangled, 0);
652 if (demangled != NULL)
653 {
654 gsymbol->language = language_d;
655 return demangled;
656 }
657 }
658 /* FIXME(dje): Continually adding languages here is clumsy.
659 Better to just call la_demangle if !auto, and if auto then call
660 a utility routine that tries successive languages in turn and reports
661 which one it finds. I realize the la_demangle options may be different
662 for different languages but there's already a FIXME for that. */
663 if (gsymbol->language == language_go
664 || gsymbol->language == language_auto)
665 {
666 demangled = go_demangle (mangled, 0);
667 if (demangled != NULL)
668 {
669 gsymbol->language = language_go;
670 return demangled;
671 }
672 }
673
674 /* We could support `gsymbol->language == language_fortran' here to provide
675 module namespaces also for inferiors with only minimal symbol table (ELF
676 symbols). Just the mangling standard is not standardized across compilers
677 and there is no DW_AT_producer available for inferiors with only the ELF
678 symbols to check the mangling kind. */
679
680 /* Check for Ada symbols last. See comment below explaining why. */
681
682 if (gsymbol->language == language_auto)
683 {
684 const char *demangled = ada_decode (mangled);
685
686 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
687 {
688 /* Set the gsymbol language to Ada, but still return NULL.
689 Two reasons for that:
690
691 1. For Ada, we prefer computing the symbol's decoded name
692 on the fly rather than pre-compute it, in order to save
693 memory (Ada projects are typically very large).
694
695 2. There are some areas in the definition of the GNAT
696 encoding where, with a bit of bad luck, we might be able
697 to decode a non-Ada symbol, generating an incorrect
698 demangled name (Eg: names ending with "TB" for instance
699 are identified as task bodies and so stripped from
700 the decoded name returned).
701
702 Returning NULL, here, helps us get a little bit of
703 the best of both worlds. Because we're last, we should
704 not affect any of the other languages that were able to
705 demangle the symbol before us; we get to correctly tag
706 Ada symbols as such; and even if we incorrectly tagged
707 a non-Ada symbol, which should be rare, any routing
708 through the Ada language should be transparent (Ada
709 tries to behave much like C/C++ with non-Ada symbols). */
710 gsymbol->language = language_ada;
711 return NULL;
712 }
713 }
714
715 return NULL;
716 }
717
718 /* Set both the mangled and demangled (if any) names for GSYMBOL based
719 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
720 objfile's obstack; but if COPY_NAME is 0 and if NAME is
721 NUL-terminated, then this function assumes that NAME is already
722 correctly saved (either permanently or with a lifetime tied to the
723 objfile), and it will not be copied.
724
725 The hash table corresponding to OBJFILE is used, and the memory
726 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
727 so the pointer can be discarded after calling this function. */
728
729 /* We have to be careful when dealing with Java names: when we run
730 into a Java minimal symbol, we don't know it's a Java symbol, so it
731 gets demangled as a C++ name. This is unfortunate, but there's not
732 much we can do about it: but when demangling partial symbols and
733 regular symbols, we'd better not reuse the wrong demangled name.
734 (See PR gdb/1039.) We solve this by putting a distinctive prefix
735 on Java names when storing them in the hash table. */
736
737 /* FIXME: carlton/2003-03-13: This is an unfortunate situation. I
738 don't mind the Java prefix so much: different languages have
739 different demangling requirements, so it's only natural that we
740 need to keep language data around in our demangling cache. But
741 it's not good that the minimal symbol has the wrong demangled name.
742 Unfortunately, I can't think of any easy solution to that
743 problem. */
744
745 #define JAVA_PREFIX "##JAVA$$"
746 #define JAVA_PREFIX_LEN 8
747
748 void
749 symbol_set_names (struct general_symbol_info *gsymbol,
750 const char *linkage_name, int len, int copy_name,
751 struct objfile *objfile)
752 {
753 struct demangled_name_entry **slot;
754 /* A 0-terminated copy of the linkage name. */
755 const char *linkage_name_copy;
756 /* A copy of the linkage name that might have a special Java prefix
757 added to it, for use when looking names up in the hash table. */
758 const char *lookup_name;
759 /* The length of lookup_name. */
760 int lookup_len;
761 struct demangled_name_entry entry;
762 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
763
764 if (gsymbol->language == language_ada)
765 {
766 /* In Ada, we do the symbol lookups using the mangled name, so
767 we can save some space by not storing the demangled name.
768
769 As a side note, we have also observed some overlap between
770 the C++ mangling and Ada mangling, similarly to what has
771 been observed with Java. Because we don't store the demangled
772 name with the symbol, we don't need to use the same trick
773 as Java. */
774 if (!copy_name)
775 gsymbol->name = linkage_name;
776 else
777 {
778 char *name = obstack_alloc (&per_bfd->storage_obstack, len + 1);
779
780 memcpy (name, linkage_name, len);
781 name[len] = '\0';
782 gsymbol->name = name;
783 }
784 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
785
786 return;
787 }
788
789 if (per_bfd->demangled_names_hash == NULL)
790 create_demangled_names_hash (objfile);
791
792 /* The stabs reader generally provides names that are not
793 NUL-terminated; most of the other readers don't do this, so we
794 can just use the given copy, unless we're in the Java case. */
795 if (gsymbol->language == language_java)
796 {
797 char *alloc_name;
798
799 lookup_len = len + JAVA_PREFIX_LEN;
800 alloc_name = alloca (lookup_len + 1);
801 memcpy (alloc_name, JAVA_PREFIX, JAVA_PREFIX_LEN);
802 memcpy (alloc_name + JAVA_PREFIX_LEN, linkage_name, len);
803 alloc_name[lookup_len] = '\0';
804
805 lookup_name = alloc_name;
806 linkage_name_copy = alloc_name + JAVA_PREFIX_LEN;
807 }
808 else if (linkage_name[len] != '\0')
809 {
810 char *alloc_name;
811
812 lookup_len = len;
813 alloc_name = alloca (lookup_len + 1);
814 memcpy (alloc_name, linkage_name, len);
815 alloc_name[lookup_len] = '\0';
816
817 lookup_name = alloc_name;
818 linkage_name_copy = alloc_name;
819 }
820 else
821 {
822 lookup_len = len;
823 lookup_name = linkage_name;
824 linkage_name_copy = linkage_name;
825 }
826
827 entry.mangled = lookup_name;
828 slot = ((struct demangled_name_entry **)
829 htab_find_slot (per_bfd->demangled_names_hash,
830 &entry, INSERT));
831
832 /* If this name is not in the hash table, add it. */
833 if (*slot == NULL
834 /* A C version of the symbol may have already snuck into the table.
835 This happens to, e.g., main.init (__go_init_main). Cope. */
836 || (gsymbol->language == language_go
837 && (*slot)->demangled[0] == '\0'))
838 {
839 char *demangled_name = symbol_find_demangled_name (gsymbol,
840 linkage_name_copy);
841 int demangled_len = demangled_name ? strlen (demangled_name) : 0;
842
843 /* Suppose we have demangled_name==NULL, copy_name==0, and
844 lookup_name==linkage_name. In this case, we already have the
845 mangled name saved, and we don't have a demangled name. So,
846 you might think we could save a little space by not recording
847 this in the hash table at all.
848
849 It turns out that it is actually important to still save such
850 an entry in the hash table, because storing this name gives
851 us better bcache hit rates for partial symbols. */
852 if (!copy_name && lookup_name == linkage_name)
853 {
854 *slot = obstack_alloc (&per_bfd->storage_obstack,
855 offsetof (struct demangled_name_entry,
856 demangled)
857 + demangled_len + 1);
858 (*slot)->mangled = lookup_name;
859 }
860 else
861 {
862 char *mangled_ptr;
863
864 /* If we must copy the mangled name, put it directly after
865 the demangled name so we can have a single
866 allocation. */
867 *slot = obstack_alloc (&per_bfd->storage_obstack,
868 offsetof (struct demangled_name_entry,
869 demangled)
870 + lookup_len + demangled_len + 2);
871 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
872 strcpy (mangled_ptr, lookup_name);
873 (*slot)->mangled = mangled_ptr;
874 }
875
876 if (demangled_name != NULL)
877 {
878 strcpy ((*slot)->demangled, demangled_name);
879 xfree (demangled_name);
880 }
881 else
882 (*slot)->demangled[0] = '\0';
883 }
884
885 gsymbol->name = (*slot)->mangled + lookup_len - len;
886 if ((*slot)->demangled[0] != '\0')
887 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
888 &per_bfd->storage_obstack);
889 else
890 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
891 }
892
893 /* Return the source code name of a symbol. In languages where
894 demangling is necessary, this is the demangled name. */
895
896 const char *
897 symbol_natural_name (const struct general_symbol_info *gsymbol)
898 {
899 switch (gsymbol->language)
900 {
901 case language_cplus:
902 case language_d:
903 case language_go:
904 case language_java:
905 case language_objc:
906 case language_fortran:
907 if (symbol_get_demangled_name (gsymbol) != NULL)
908 return symbol_get_demangled_name (gsymbol);
909 break;
910 case language_ada:
911 return ada_decode_symbol (gsymbol);
912 default:
913 break;
914 }
915 return gsymbol->name;
916 }
917
918 /* Return the demangled name for a symbol based on the language for
919 that symbol. If no demangled name exists, return NULL. */
920
921 const char *
922 symbol_demangled_name (const struct general_symbol_info *gsymbol)
923 {
924 const char *dem_name = NULL;
925
926 switch (gsymbol->language)
927 {
928 case language_cplus:
929 case language_d:
930 case language_go:
931 case language_java:
932 case language_objc:
933 case language_fortran:
934 dem_name = symbol_get_demangled_name (gsymbol);
935 break;
936 case language_ada:
937 dem_name = ada_decode_symbol (gsymbol);
938 break;
939 default:
940 break;
941 }
942 return dem_name;
943 }
944
945 /* Return the search name of a symbol---generally the demangled or
946 linkage name of the symbol, depending on how it will be searched for.
947 If there is no distinct demangled name, then returns the same value
948 (same pointer) as SYMBOL_LINKAGE_NAME. */
949
950 const char *
951 symbol_search_name (const struct general_symbol_info *gsymbol)
952 {
953 if (gsymbol->language == language_ada)
954 return gsymbol->name;
955 else
956 return symbol_natural_name (gsymbol);
957 }
958
959 /* Initialize the structure fields to zero values. */
960
961 void
962 init_sal (struct symtab_and_line *sal)
963 {
964 memset (sal, 0, sizeof (*sal));
965 }
966 \f
967
968 /* Return 1 if the two sections are the same, or if they could
969 plausibly be copies of each other, one in an original object
970 file and another in a separated debug file. */
971
972 int
973 matching_obj_sections (struct obj_section *obj_first,
974 struct obj_section *obj_second)
975 {
976 asection *first = obj_first? obj_first->the_bfd_section : NULL;
977 asection *second = obj_second? obj_second->the_bfd_section : NULL;
978 struct objfile *obj;
979
980 /* If they're the same section, then they match. */
981 if (first == second)
982 return 1;
983
984 /* If either is NULL, give up. */
985 if (first == NULL || second == NULL)
986 return 0;
987
988 /* This doesn't apply to absolute symbols. */
989 if (first->owner == NULL || second->owner == NULL)
990 return 0;
991
992 /* If they're in the same object file, they must be different sections. */
993 if (first->owner == second->owner)
994 return 0;
995
996 /* Check whether the two sections are potentially corresponding. They must
997 have the same size, address, and name. We can't compare section indexes,
998 which would be more reliable, because some sections may have been
999 stripped. */
1000 if (bfd_get_section_size (first) != bfd_get_section_size (second))
1001 return 0;
1002
1003 /* In-memory addresses may start at a different offset, relativize them. */
1004 if (bfd_get_section_vma (first->owner, first)
1005 - bfd_get_start_address (first->owner)
1006 != bfd_get_section_vma (second->owner, second)
1007 - bfd_get_start_address (second->owner))
1008 return 0;
1009
1010 if (bfd_get_section_name (first->owner, first) == NULL
1011 || bfd_get_section_name (second->owner, second) == NULL
1012 || strcmp (bfd_get_section_name (first->owner, first),
1013 bfd_get_section_name (second->owner, second)) != 0)
1014 return 0;
1015
1016 /* Otherwise check that they are in corresponding objfiles. */
1017
1018 ALL_OBJFILES (obj)
1019 if (obj->obfd == first->owner)
1020 break;
1021 gdb_assert (obj != NULL);
1022
1023 if (obj->separate_debug_objfile != NULL
1024 && obj->separate_debug_objfile->obfd == second->owner)
1025 return 1;
1026 if (obj->separate_debug_objfile_backlink != NULL
1027 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1028 return 1;
1029
1030 return 0;
1031 }
1032
1033 /* See symtab.h. */
1034
1035 void
1036 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1037 {
1038 struct objfile *objfile;
1039 struct bound_minimal_symbol msymbol;
1040
1041 /* If we know that this is not a text address, return failure. This is
1042 necessary because we loop based on texthigh and textlow, which do
1043 not include the data ranges. */
1044 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1045 if (msymbol.minsym
1046 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1050 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1051 return;
1052
1053 ALL_OBJFILES (objfile)
1054 {
1055 struct compunit_symtab *cust = NULL;
1056
1057 if (objfile->sf)
1058 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1059 pc, section, 0);
1060 if (cust)
1061 return;
1062 }
1063 }
1064 \f
1065 /* Debug symbols usually don't have section information. We need to dig that
1066 out of the minimal symbols and stash that in the debug symbol. */
1067
1068 void
1069 fixup_section (struct general_symbol_info *ginfo,
1070 CORE_ADDR addr, struct objfile *objfile)
1071 {
1072 struct minimal_symbol *msym;
1073
1074 /* First, check whether a minimal symbol with the same name exists
1075 and points to the same address. The address check is required
1076 e.g. on PowerPC64, where the minimal symbol for a function will
1077 point to the function descriptor, while the debug symbol will
1078 point to the actual function code. */
1079 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1080 if (msym)
1081 ginfo->section = MSYMBOL_SECTION (msym);
1082 else
1083 {
1084 /* Static, function-local variables do appear in the linker
1085 (minimal) symbols, but are frequently given names that won't
1086 be found via lookup_minimal_symbol(). E.g., it has been
1087 observed in frv-uclinux (ELF) executables that a static,
1088 function-local variable named "foo" might appear in the
1089 linker symbols as "foo.6" or "foo.3". Thus, there is no
1090 point in attempting to extend the lookup-by-name mechanism to
1091 handle this case due to the fact that there can be multiple
1092 names.
1093
1094 So, instead, search the section table when lookup by name has
1095 failed. The ``addr'' and ``endaddr'' fields may have already
1096 been relocated. If so, the relocation offset (i.e. the
1097 ANOFFSET value) needs to be subtracted from these values when
1098 performing the comparison. We unconditionally subtract it,
1099 because, when no relocation has been performed, the ANOFFSET
1100 value will simply be zero.
1101
1102 The address of the symbol whose section we're fixing up HAS
1103 NOT BEEN adjusted (relocated) yet. It can't have been since
1104 the section isn't yet known and knowing the section is
1105 necessary in order to add the correct relocation value. In
1106 other words, we wouldn't even be in this function (attempting
1107 to compute the section) if it were already known.
1108
1109 Note that it is possible to search the minimal symbols
1110 (subtracting the relocation value if necessary) to find the
1111 matching minimal symbol, but this is overkill and much less
1112 efficient. It is not necessary to find the matching minimal
1113 symbol, only its section.
1114
1115 Note that this technique (of doing a section table search)
1116 can fail when unrelocated section addresses overlap. For
1117 this reason, we still attempt a lookup by name prior to doing
1118 a search of the section table. */
1119
1120 struct obj_section *s;
1121 int fallback = -1;
1122
1123 ALL_OBJFILE_OSECTIONS (objfile, s)
1124 {
1125 int idx = s - objfile->sections;
1126 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1127
1128 if (fallback == -1)
1129 fallback = idx;
1130
1131 if (obj_section_addr (s) - offset <= addr
1132 && addr < obj_section_endaddr (s) - offset)
1133 {
1134 ginfo->section = idx;
1135 return;
1136 }
1137 }
1138
1139 /* If we didn't find the section, assume it is in the first
1140 section. If there is no allocated section, then it hardly
1141 matters what we pick, so just pick zero. */
1142 if (fallback == -1)
1143 ginfo->section = 0;
1144 else
1145 ginfo->section = fallback;
1146 }
1147 }
1148
1149 struct symbol *
1150 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1151 {
1152 CORE_ADDR addr;
1153
1154 if (!sym)
1155 return NULL;
1156
1157 /* We either have an OBJFILE, or we can get at it from the sym's
1158 symtab. Anything else is a bug. */
1159 gdb_assert (objfile || SYMBOL_SYMTAB (sym));
1160
1161 if (objfile == NULL)
1162 objfile = SYMBOL_OBJFILE (sym);
1163
1164 if (SYMBOL_OBJ_SECTION (objfile, sym))
1165 return sym;
1166
1167 /* We should have an objfile by now. */
1168 gdb_assert (objfile);
1169
1170 switch (SYMBOL_CLASS (sym))
1171 {
1172 case LOC_STATIC:
1173 case LOC_LABEL:
1174 addr = SYMBOL_VALUE_ADDRESS (sym);
1175 break;
1176 case LOC_BLOCK:
1177 addr = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1178 break;
1179
1180 default:
1181 /* Nothing else will be listed in the minsyms -- no use looking
1182 it up. */
1183 return sym;
1184 }
1185
1186 fixup_section (&sym->ginfo, addr, objfile);
1187
1188 return sym;
1189 }
1190
1191 /* Compute the demangled form of NAME as used by the various symbol
1192 lookup functions. The result is stored in *RESULT_NAME. Returns a
1193 cleanup which can be used to clean up the result.
1194
1195 For Ada, this function just sets *RESULT_NAME to NAME, unmodified.
1196 Normally, Ada symbol lookups are performed using the encoded name
1197 rather than the demangled name, and so it might seem to make sense
1198 for this function to return an encoded version of NAME.
1199 Unfortunately, we cannot do this, because this function is used in
1200 circumstances where it is not appropriate to try to encode NAME.
1201 For instance, when displaying the frame info, we demangle the name
1202 of each parameter, and then perform a symbol lookup inside our
1203 function using that demangled name. In Ada, certain functions
1204 have internally-generated parameters whose name contain uppercase
1205 characters. Encoding those name would result in those uppercase
1206 characters to become lowercase, and thus cause the symbol lookup
1207 to fail. */
1208
1209 struct cleanup *
1210 demangle_for_lookup (const char *name, enum language lang,
1211 const char **result_name)
1212 {
1213 char *demangled_name = NULL;
1214 const char *modified_name = NULL;
1215 struct cleanup *cleanup = make_cleanup (null_cleanup, 0);
1216
1217 modified_name = name;
1218
1219 /* If we are using C++, D, Go, or Java, demangle the name before doing a
1220 lookup, so we can always binary search. */
1221 if (lang == language_cplus)
1222 {
1223 demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1224 if (demangled_name)
1225 {
1226 modified_name = demangled_name;
1227 make_cleanup (xfree, demangled_name);
1228 }
1229 else
1230 {
1231 /* If we were given a non-mangled name, canonicalize it
1232 according to the language (so far only for C++). */
1233 demangled_name = cp_canonicalize_string (name);
1234 if (demangled_name)
1235 {
1236 modified_name = demangled_name;
1237 make_cleanup (xfree, demangled_name);
1238 }
1239 }
1240 }
1241 else if (lang == language_java)
1242 {
1243 demangled_name = gdb_demangle (name,
1244 DMGL_ANSI | DMGL_PARAMS | DMGL_JAVA);
1245 if (demangled_name)
1246 {
1247 modified_name = demangled_name;
1248 make_cleanup (xfree, demangled_name);
1249 }
1250 }
1251 else if (lang == language_d)
1252 {
1253 demangled_name = d_demangle (name, 0);
1254 if (demangled_name)
1255 {
1256 modified_name = demangled_name;
1257 make_cleanup (xfree, demangled_name);
1258 }
1259 }
1260 else if (lang == language_go)
1261 {
1262 demangled_name = go_demangle (name, 0);
1263 if (demangled_name)
1264 {
1265 modified_name = demangled_name;
1266 make_cleanup (xfree, demangled_name);
1267 }
1268 }
1269
1270 *result_name = modified_name;
1271 return cleanup;
1272 }
1273
1274 /* See symtab.h.
1275
1276 This function (or rather its subordinates) have a bunch of loops and
1277 it would seem to be attractive to put in some QUIT's (though I'm not really
1278 sure whether it can run long enough to be really important). But there
1279 are a few calls for which it would appear to be bad news to quit
1280 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1281 that there is C++ code below which can error(), but that probably
1282 doesn't affect these calls since they are looking for a known
1283 variable and thus can probably assume it will never hit the C++
1284 code). */
1285
1286 struct symbol *
1287 lookup_symbol_in_language (const char *name, const struct block *block,
1288 const domain_enum domain, enum language lang,
1289 struct field_of_this_result *is_a_field_of_this)
1290 {
1291 const char *modified_name;
1292 struct symbol *returnval;
1293 struct cleanup *cleanup = demangle_for_lookup (name, lang, &modified_name);
1294
1295 returnval = lookup_symbol_aux (modified_name, block, domain, lang,
1296 is_a_field_of_this);
1297 do_cleanups (cleanup);
1298
1299 return returnval;
1300 }
1301
1302 /* See symtab.h. */
1303
1304 struct symbol *
1305 lookup_symbol (const char *name, const struct block *block,
1306 domain_enum domain,
1307 struct field_of_this_result *is_a_field_of_this)
1308 {
1309 return lookup_symbol_in_language (name, block, domain,
1310 current_language->la_language,
1311 is_a_field_of_this);
1312 }
1313
1314 /* See symtab.h. */
1315
1316 struct symbol *
1317 lookup_language_this (const struct language_defn *lang,
1318 const struct block *block)
1319 {
1320 if (lang->la_name_of_this == NULL || block == NULL)
1321 return NULL;
1322
1323 while (block)
1324 {
1325 struct symbol *sym;
1326
1327 sym = block_lookup_symbol (block, lang->la_name_of_this, VAR_DOMAIN);
1328 if (sym != NULL)
1329 {
1330 block_found = block;
1331 return sym;
1332 }
1333 if (BLOCK_FUNCTION (block))
1334 break;
1335 block = BLOCK_SUPERBLOCK (block);
1336 }
1337
1338 return NULL;
1339 }
1340
1341 /* Given TYPE, a structure/union,
1342 return 1 if the component named NAME from the ultimate target
1343 structure/union is defined, otherwise, return 0. */
1344
1345 static int
1346 check_field (struct type *type, const char *name,
1347 struct field_of_this_result *is_a_field_of_this)
1348 {
1349 int i;
1350
1351 /* The type may be a stub. */
1352 CHECK_TYPEDEF (type);
1353
1354 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1355 {
1356 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1357
1358 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1359 {
1360 is_a_field_of_this->type = type;
1361 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1362 return 1;
1363 }
1364 }
1365
1366 /* C++: If it was not found as a data field, then try to return it
1367 as a pointer to a method. */
1368
1369 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1370 {
1371 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1372 {
1373 is_a_field_of_this->type = type;
1374 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1375 return 1;
1376 }
1377 }
1378
1379 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1380 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1381 return 1;
1382
1383 return 0;
1384 }
1385
1386 /* Behave like lookup_symbol except that NAME is the natural name
1387 (e.g., demangled name) of the symbol that we're looking for. */
1388
1389 static struct symbol *
1390 lookup_symbol_aux (const char *name, const struct block *block,
1391 const domain_enum domain, enum language language,
1392 struct field_of_this_result *is_a_field_of_this)
1393 {
1394 struct symbol *sym;
1395 const struct language_defn *langdef;
1396
1397 /* Make sure we do something sensible with is_a_field_of_this, since
1398 the callers that set this parameter to some non-null value will
1399 certainly use it later. If we don't set it, the contents of
1400 is_a_field_of_this are undefined. */
1401 if (is_a_field_of_this != NULL)
1402 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
1403
1404 /* Search specified block and its superiors. Don't search
1405 STATIC_BLOCK or GLOBAL_BLOCK. */
1406
1407 sym = lookup_local_symbol (name, block, domain, language);
1408 if (sym != NULL)
1409 return sym;
1410
1411 /* If requested to do so by the caller and if appropriate for LANGUAGE,
1412 check to see if NAME is a field of `this'. */
1413
1414 langdef = language_def (language);
1415
1416 /* Don't do this check if we are searching for a struct. It will
1417 not be found by check_field, but will be found by other
1418 means. */
1419 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
1420 {
1421 struct symbol *sym = lookup_language_this (langdef, block);
1422
1423 if (sym)
1424 {
1425 struct type *t = sym->type;
1426
1427 /* I'm not really sure that type of this can ever
1428 be typedefed; just be safe. */
1429 CHECK_TYPEDEF (t);
1430 if (TYPE_CODE (t) == TYPE_CODE_PTR
1431 || TYPE_CODE (t) == TYPE_CODE_REF)
1432 t = TYPE_TARGET_TYPE (t);
1433
1434 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
1435 && TYPE_CODE (t) != TYPE_CODE_UNION)
1436 error (_("Internal error: `%s' is not an aggregate"),
1437 langdef->la_name_of_this);
1438
1439 if (check_field (t, name, is_a_field_of_this))
1440 return NULL;
1441 }
1442 }
1443
1444 /* Now do whatever is appropriate for LANGUAGE to look
1445 up static and global variables. */
1446
1447 sym = langdef->la_lookup_symbol_nonlocal (name, block, domain);
1448 if (sym != NULL)
1449 return sym;
1450
1451 /* Now search all static file-level symbols. Not strictly correct,
1452 but more useful than an error. */
1453
1454 return lookup_static_symbol (name, domain);
1455 }
1456
1457 /* Check to see if the symbol is defined in BLOCK or its superiors.
1458 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
1459
1460 static struct symbol *
1461 lookup_local_symbol (const char *name, const struct block *block,
1462 const domain_enum domain,
1463 enum language language)
1464 {
1465 struct symbol *sym;
1466 const struct block *static_block = block_static_block (block);
1467 const char *scope = block_scope (block);
1468
1469 /* Check if either no block is specified or it's a global block. */
1470
1471 if (static_block == NULL)
1472 return NULL;
1473
1474 while (block != static_block)
1475 {
1476 sym = lookup_symbol_in_block (name, block, domain);
1477 if (sym != NULL)
1478 return sym;
1479
1480 if (language == language_cplus || language == language_fortran)
1481 {
1482 sym = cp_lookup_symbol_imports_or_template (scope, name, block,
1483 domain);
1484 if (sym != NULL)
1485 return sym;
1486 }
1487
1488 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
1489 break;
1490 block = BLOCK_SUPERBLOCK (block);
1491 }
1492
1493 /* We've reached the end of the function without finding a result. */
1494
1495 return NULL;
1496 }
1497
1498 /* See symtab.h. */
1499
1500 struct objfile *
1501 lookup_objfile_from_block (const struct block *block)
1502 {
1503 struct objfile *obj;
1504 struct compunit_symtab *cust;
1505
1506 if (block == NULL)
1507 return NULL;
1508
1509 block = block_global_block (block);
1510 /* Look through all blockvectors. */
1511 ALL_COMPUNITS (obj, cust)
1512 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
1513 GLOBAL_BLOCK))
1514 {
1515 if (obj->separate_debug_objfile_backlink)
1516 obj = obj->separate_debug_objfile_backlink;
1517
1518 return obj;
1519 }
1520
1521 return NULL;
1522 }
1523
1524 /* See symtab.h. */
1525
1526 struct symbol *
1527 lookup_symbol_in_block (const char *name, const struct block *block,
1528 const domain_enum domain)
1529 {
1530 struct symbol *sym;
1531
1532 sym = block_lookup_symbol (block, name, domain);
1533 if (sym)
1534 {
1535 block_found = block;
1536 return fixup_symbol_section (sym, NULL);
1537 }
1538
1539 return NULL;
1540 }
1541
1542 /* See symtab.h. */
1543
1544 struct symbol *
1545 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
1546 const char *name,
1547 const domain_enum domain)
1548 {
1549 struct objfile *objfile;
1550
1551 for (objfile = main_objfile;
1552 objfile;
1553 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
1554 {
1555 struct symbol *sym;
1556
1557 sym = lookup_symbol_in_objfile_symtabs (objfile, GLOBAL_BLOCK, name,
1558 domain);
1559 if (sym != NULL)
1560 return sym;
1561
1562 sym = lookup_symbol_via_quick_fns (objfile, GLOBAL_BLOCK, name, domain);
1563 if (sym)
1564 return sym;
1565 }
1566
1567 return NULL;
1568 }
1569
1570 /* Check to see if the symbol is defined in one of the OBJFILE's
1571 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
1572 depending on whether or not we want to search global symbols or
1573 static symbols. */
1574
1575 static struct symbol *
1576 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
1577 const char *name, const domain_enum domain)
1578 {
1579 struct compunit_symtab *cust;
1580
1581 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
1582
1583 ALL_OBJFILE_COMPUNITS (objfile, cust)
1584 {
1585 const struct blockvector *bv;
1586 const struct block *block;
1587 struct symbol *sym;
1588
1589 bv = COMPUNIT_BLOCKVECTOR (cust);
1590 block = BLOCKVECTOR_BLOCK (bv, block_index);
1591 sym = block_lookup_symbol_primary (block, name, domain);
1592 if (sym)
1593 {
1594 block_found = block;
1595 return fixup_symbol_section (sym, objfile);
1596 }
1597 }
1598
1599 return NULL;
1600 }
1601
1602 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
1603 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
1604 and all associated separate debug objfiles.
1605
1606 Normally we only look in OBJFILE, and not any separate debug objfiles
1607 because the outer loop will cause them to be searched too. This case is
1608 different. Here we're called from search_symbols where it will only
1609 call us for the the objfile that contains a matching minsym. */
1610
1611 static struct symbol *
1612 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
1613 const char *linkage_name,
1614 domain_enum domain)
1615 {
1616 enum language lang = current_language->la_language;
1617 const char *modified_name;
1618 struct cleanup *cleanup = demangle_for_lookup (linkage_name, lang,
1619 &modified_name);
1620 struct objfile *main_objfile, *cur_objfile;
1621
1622 if (objfile->separate_debug_objfile_backlink)
1623 main_objfile = objfile->separate_debug_objfile_backlink;
1624 else
1625 main_objfile = objfile;
1626
1627 for (cur_objfile = main_objfile;
1628 cur_objfile;
1629 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
1630 {
1631 struct symbol *sym;
1632
1633 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
1634 modified_name, domain);
1635 if (sym == NULL)
1636 sym = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
1637 modified_name, domain);
1638 if (sym != NULL)
1639 {
1640 do_cleanups (cleanup);
1641 return sym;
1642 }
1643 }
1644
1645 do_cleanups (cleanup);
1646 return NULL;
1647 }
1648
1649 /* A helper function that throws an exception when a symbol was found
1650 in a psymtab but not in a symtab. */
1651
1652 static void ATTRIBUTE_NORETURN
1653 error_in_psymtab_expansion (int block_index, const char *name,
1654 struct compunit_symtab *cust)
1655 {
1656 error (_("\
1657 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
1658 %s may be an inlined function, or may be a template function\n \
1659 (if a template, try specifying an instantiation: %s<type>)."),
1660 block_index == GLOBAL_BLOCK ? "global" : "static",
1661 name,
1662 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
1663 name, name);
1664 }
1665
1666 /* A helper function for various lookup routines that interfaces with
1667 the "quick" symbol table functions. */
1668
1669 static struct symbol *
1670 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
1671 const char *name, const domain_enum domain)
1672 {
1673 struct compunit_symtab *cust;
1674 const struct blockvector *bv;
1675 const struct block *block;
1676 struct symbol *sym;
1677
1678 if (!objfile->sf)
1679 return NULL;
1680 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
1681 if (cust == NULL)
1682 return NULL;
1683
1684 bv = COMPUNIT_BLOCKVECTOR (cust);
1685 block = BLOCKVECTOR_BLOCK (bv, block_index);
1686 sym = block_lookup_symbol (block, name, domain);
1687 if (!sym)
1688 error_in_psymtab_expansion (block_index, name, cust);
1689 block_found = block;
1690 return fixup_symbol_section (sym, objfile);
1691 }
1692
1693 /* See symtab.h. */
1694
1695 struct symbol *
1696 basic_lookup_symbol_nonlocal (const char *name,
1697 const struct block *block,
1698 const domain_enum domain)
1699 {
1700 struct symbol *sym;
1701
1702 /* NOTE: carlton/2003-05-19: The comments below were written when
1703 this (or what turned into this) was part of lookup_symbol_aux;
1704 I'm much less worried about these questions now, since these
1705 decisions have turned out well, but I leave these comments here
1706 for posterity. */
1707
1708 /* NOTE: carlton/2002-12-05: There is a question as to whether or
1709 not it would be appropriate to search the current global block
1710 here as well. (That's what this code used to do before the
1711 is_a_field_of_this check was moved up.) On the one hand, it's
1712 redundant with the lookup in all objfiles search that happens
1713 next. On the other hand, if decode_line_1 is passed an argument
1714 like filename:var, then the user presumably wants 'var' to be
1715 searched for in filename. On the third hand, there shouldn't be
1716 multiple global variables all of which are named 'var', and it's
1717 not like decode_line_1 has ever restricted its search to only
1718 global variables in a single filename. All in all, only
1719 searching the static block here seems best: it's correct and it's
1720 cleanest. */
1721
1722 /* NOTE: carlton/2002-12-05: There's also a possible performance
1723 issue here: if you usually search for global symbols in the
1724 current file, then it would be slightly better to search the
1725 current global block before searching all the symtabs. But there
1726 are other factors that have a much greater effect on performance
1727 than that one, so I don't think we should worry about that for
1728 now. */
1729
1730 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
1731 the current objfile. Searching the current objfile first is useful
1732 for both matching user expectations as well as performance. */
1733
1734 sym = lookup_symbol_in_static_block (name, block, domain);
1735 if (sym != NULL)
1736 return sym;
1737
1738 return lookup_global_symbol (name, block, domain);
1739 }
1740
1741 /* See symtab.h. */
1742
1743 struct symbol *
1744 lookup_symbol_in_static_block (const char *name,
1745 const struct block *block,
1746 const domain_enum domain)
1747 {
1748 const struct block *static_block = block_static_block (block);
1749
1750 if (static_block != NULL)
1751 return lookup_symbol_in_block (name, static_block, domain);
1752 else
1753 return NULL;
1754 }
1755
1756 /* Perform the standard symbol lookup of NAME in OBJFILE:
1757 1) First search expanded symtabs, and if not found
1758 2) Search the "quick" symtabs (partial or .gdb_index).
1759 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
1760
1761 static struct symbol *
1762 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
1763 const char *name, const domain_enum domain)
1764 {
1765 struct symbol *result;
1766
1767 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
1768 name, domain);
1769 if (result == NULL)
1770 {
1771 result = lookup_symbol_via_quick_fns (objfile, block_index,
1772 name, domain);
1773 }
1774
1775 return result;
1776 }
1777
1778 /* See symtab.h. */
1779
1780 struct symbol *
1781 lookup_static_symbol (const char *name, const domain_enum domain)
1782 {
1783 struct objfile *objfile;
1784 struct symbol *result;
1785
1786 ALL_OBJFILES (objfile)
1787 {
1788 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
1789 if (result != NULL)
1790 return result;
1791 }
1792
1793 return NULL;
1794 }
1795
1796 /* Private data to be used with lookup_symbol_global_iterator_cb. */
1797
1798 struct global_sym_lookup_data
1799 {
1800 /* The name of the symbol we are searching for. */
1801 const char *name;
1802
1803 /* The domain to use for our search. */
1804 domain_enum domain;
1805
1806 /* The field where the callback should store the symbol if found.
1807 It should be initialized to NULL before the search is started. */
1808 struct symbol *result;
1809 };
1810
1811 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
1812 It searches by name for a symbol in the GLOBAL_BLOCK of the given
1813 OBJFILE. The arguments for the search are passed via CB_DATA,
1814 which in reality is a pointer to struct global_sym_lookup_data. */
1815
1816 static int
1817 lookup_symbol_global_iterator_cb (struct objfile *objfile,
1818 void *cb_data)
1819 {
1820 struct global_sym_lookup_data *data =
1821 (struct global_sym_lookup_data *) cb_data;
1822
1823 gdb_assert (data->result == NULL);
1824
1825 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
1826 data->name, data->domain);
1827
1828 /* If we found a match, tell the iterator to stop. Otherwise,
1829 keep going. */
1830 return (data->result != NULL);
1831 }
1832
1833 /* See symtab.h. */
1834
1835 struct symbol *
1836 lookup_global_symbol (const char *name,
1837 const struct block *block,
1838 const domain_enum domain)
1839 {
1840 struct symbol *sym = NULL;
1841 struct objfile *objfile = NULL;
1842 struct global_sym_lookup_data lookup_data;
1843
1844 /* Call library-specific lookup procedure. */
1845 objfile = lookup_objfile_from_block (block);
1846 if (objfile != NULL)
1847 sym = solib_global_lookup (objfile, name, domain);
1848 if (sym != NULL)
1849 return sym;
1850
1851 memset (&lookup_data, 0, sizeof (lookup_data));
1852 lookup_data.name = name;
1853 lookup_data.domain = domain;
1854 gdbarch_iterate_over_objfiles_in_search_order
1855 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
1856 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
1857
1858 return lookup_data.result;
1859 }
1860
1861 int
1862 symbol_matches_domain (enum language symbol_language,
1863 domain_enum symbol_domain,
1864 domain_enum domain)
1865 {
1866 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
1867 A Java class declaration also defines a typedef for the class.
1868 Similarly, any Ada type declaration implicitly defines a typedef. */
1869 if (symbol_language == language_cplus
1870 || symbol_language == language_d
1871 || symbol_language == language_java
1872 || symbol_language == language_ada)
1873 {
1874 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
1875 && symbol_domain == STRUCT_DOMAIN)
1876 return 1;
1877 }
1878 /* For all other languages, strict match is required. */
1879 return (symbol_domain == domain);
1880 }
1881
1882 /* See symtab.h. */
1883
1884 struct type *
1885 lookup_transparent_type (const char *name)
1886 {
1887 return current_language->la_lookup_transparent_type (name);
1888 }
1889
1890 /* A helper for basic_lookup_transparent_type that interfaces with the
1891 "quick" symbol table functions. */
1892
1893 static struct type *
1894 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
1895 const char *name)
1896 {
1897 struct compunit_symtab *cust;
1898 const struct blockvector *bv;
1899 struct block *block;
1900 struct symbol *sym;
1901
1902 if (!objfile->sf)
1903 return NULL;
1904 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
1905 STRUCT_DOMAIN);
1906 if (cust == NULL)
1907 return NULL;
1908
1909 bv = COMPUNIT_BLOCKVECTOR (cust);
1910 block = BLOCKVECTOR_BLOCK (bv, block_index);
1911 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1912 if (!sym)
1913 error_in_psymtab_expansion (block_index, name, cust);
1914
1915 if (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1916 return SYMBOL_TYPE (sym);
1917
1918 return NULL;
1919 }
1920
1921 /* The standard implementation of lookup_transparent_type. This code
1922 was modeled on lookup_symbol -- the parts not relevant to looking
1923 up types were just left out. In particular it's assumed here that
1924 types are available in STRUCT_DOMAIN and only in file-static or
1925 global blocks. */
1926
1927 struct type *
1928 basic_lookup_transparent_type (const char *name)
1929 {
1930 struct symbol *sym;
1931 struct compunit_symtab *cust;
1932 const struct blockvector *bv;
1933 struct objfile *objfile;
1934 struct block *block;
1935 struct type *t;
1936
1937 /* Now search all the global symbols. Do the symtab's first, then
1938 check the psymtab's. If a psymtab indicates the existence
1939 of the desired name as a global, then do psymtab-to-symtab
1940 conversion on the fly and return the found symbol. */
1941
1942 ALL_OBJFILES (objfile)
1943 {
1944 ALL_OBJFILE_COMPUNITS (objfile, cust)
1945 {
1946 bv = COMPUNIT_BLOCKVECTOR (cust);
1947 block = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
1948 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1949 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1950 {
1951 return SYMBOL_TYPE (sym);
1952 }
1953 }
1954 }
1955
1956 ALL_OBJFILES (objfile)
1957 {
1958 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
1959 if (t)
1960 return t;
1961 }
1962
1963 /* Now search the static file-level symbols.
1964 Not strictly correct, but more useful than an error.
1965 Do the symtab's first, then
1966 check the psymtab's. If a psymtab indicates the existence
1967 of the desired name as a file-level static, then do psymtab-to-symtab
1968 conversion on the fly and return the found symbol. */
1969
1970 ALL_OBJFILES (objfile)
1971 {
1972 ALL_OBJFILE_COMPUNITS (objfile, cust)
1973 {
1974 bv = COMPUNIT_BLOCKVECTOR (cust);
1975 block = BLOCKVECTOR_BLOCK (bv, STATIC_BLOCK);
1976 sym = block_lookup_symbol (block, name, STRUCT_DOMAIN);
1977 if (sym && !TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)))
1978 {
1979 return SYMBOL_TYPE (sym);
1980 }
1981 }
1982 }
1983
1984 ALL_OBJFILES (objfile)
1985 {
1986 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
1987 if (t)
1988 return t;
1989 }
1990
1991 return (struct type *) 0;
1992 }
1993
1994 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
1995
1996 For each symbol that matches, CALLBACK is called. The symbol and
1997 DATA are passed to the callback.
1998
1999 If CALLBACK returns zero, the iteration ends. Otherwise, the
2000 search continues. */
2001
2002 void
2003 iterate_over_symbols (const struct block *block, const char *name,
2004 const domain_enum domain,
2005 symbol_found_callback_ftype *callback,
2006 void *data)
2007 {
2008 struct block_iterator iter;
2009 struct symbol *sym;
2010
2011 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2012 {
2013 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2014 SYMBOL_DOMAIN (sym), domain))
2015 {
2016 if (!callback (sym, data))
2017 return;
2018 }
2019 }
2020 }
2021
2022 /* Find the compunit symtab associated with PC and SECTION.
2023 This will read in debug info as necessary. */
2024
2025 struct compunit_symtab *
2026 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2027 {
2028 struct compunit_symtab *cust;
2029 struct compunit_symtab *best_cust = NULL;
2030 struct objfile *objfile;
2031 CORE_ADDR distance = 0;
2032 struct bound_minimal_symbol msymbol;
2033
2034 /* If we know that this is not a text address, return failure. This is
2035 necessary because we loop based on the block's high and low code
2036 addresses, which do not include the data ranges, and because
2037 we call find_pc_sect_psymtab which has a similar restriction based
2038 on the partial_symtab's texthigh and textlow. */
2039 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2040 if (msymbol.minsym
2041 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2042 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2043 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2044 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2045 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2046 return NULL;
2047
2048 /* Search all symtabs for the one whose file contains our address, and which
2049 is the smallest of all the ones containing the address. This is designed
2050 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2051 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2052 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2053
2054 This happens for native ecoff format, where code from included files
2055 gets its own symtab. The symtab for the included file should have
2056 been read in already via the dependency mechanism.
2057 It might be swifter to create several symtabs with the same name
2058 like xcoff does (I'm not sure).
2059
2060 It also happens for objfiles that have their functions reordered.
2061 For these, the symtab we are looking for is not necessarily read in. */
2062
2063 ALL_COMPUNITS (objfile, cust)
2064 {
2065 struct block *b;
2066 const struct blockvector *bv;
2067
2068 bv = COMPUNIT_BLOCKVECTOR (cust);
2069 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2070
2071 if (BLOCK_START (b) <= pc
2072 && BLOCK_END (b) > pc
2073 && (distance == 0
2074 || BLOCK_END (b) - BLOCK_START (b) < distance))
2075 {
2076 /* For an objfile that has its functions reordered,
2077 find_pc_psymtab will find the proper partial symbol table
2078 and we simply return its corresponding symtab. */
2079 /* In order to better support objfiles that contain both
2080 stabs and coff debugging info, we continue on if a psymtab
2081 can't be found. */
2082 if ((objfile->flags & OBJF_REORDERED) && objfile->sf)
2083 {
2084 struct compunit_symtab *result;
2085
2086 result
2087 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2088 msymbol,
2089 pc, section,
2090 0);
2091 if (result != NULL)
2092 return result;
2093 }
2094 if (section != 0)
2095 {
2096 struct block_iterator iter;
2097 struct symbol *sym = NULL;
2098
2099 ALL_BLOCK_SYMBOLS (b, iter, sym)
2100 {
2101 fixup_symbol_section (sym, objfile);
2102 if (matching_obj_sections (SYMBOL_OBJ_SECTION (objfile, sym),
2103 section))
2104 break;
2105 }
2106 if (sym == NULL)
2107 continue; /* No symbol in this symtab matches
2108 section. */
2109 }
2110 distance = BLOCK_END (b) - BLOCK_START (b);
2111 best_cust = cust;
2112 }
2113 }
2114
2115 if (best_cust != NULL)
2116 return best_cust;
2117
2118 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2119
2120 ALL_OBJFILES (objfile)
2121 {
2122 struct compunit_symtab *result;
2123
2124 if (!objfile->sf)
2125 continue;
2126 result = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile,
2127 msymbol,
2128 pc, section,
2129 1);
2130 if (result != NULL)
2131 return result;
2132 }
2133
2134 return NULL;
2135 }
2136
2137 /* Find the compunit symtab associated with PC.
2138 This will read in debug info as necessary.
2139 Backward compatibility, no section. */
2140
2141 struct compunit_symtab *
2142 find_pc_compunit_symtab (CORE_ADDR pc)
2143 {
2144 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2145 }
2146 \f
2147
2148 /* Find the source file and line number for a given PC value and SECTION.
2149 Return a structure containing a symtab pointer, a line number,
2150 and a pc range for the entire source line.
2151 The value's .pc field is NOT the specified pc.
2152 NOTCURRENT nonzero means, if specified pc is on a line boundary,
2153 use the line that ends there. Otherwise, in that case, the line
2154 that begins there is used. */
2155
2156 /* The big complication here is that a line may start in one file, and end just
2157 before the start of another file. This usually occurs when you #include
2158 code in the middle of a subroutine. To properly find the end of a line's PC
2159 range, we must search all symtabs associated with this compilation unit, and
2160 find the one whose first PC is closer than that of the next line in this
2161 symtab. */
2162
2163 /* If it's worth the effort, we could be using a binary search. */
2164
2165 struct symtab_and_line
2166 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
2167 {
2168 struct compunit_symtab *cust;
2169 struct symtab *iter_s;
2170 struct linetable *l;
2171 int len;
2172 int i;
2173 struct linetable_entry *item;
2174 struct symtab_and_line val;
2175 const struct blockvector *bv;
2176 struct bound_minimal_symbol msymbol;
2177
2178 /* Info on best line seen so far, and where it starts, and its file. */
2179
2180 struct linetable_entry *best = NULL;
2181 CORE_ADDR best_end = 0;
2182 struct symtab *best_symtab = 0;
2183
2184 /* Store here the first line number
2185 of a file which contains the line at the smallest pc after PC.
2186 If we don't find a line whose range contains PC,
2187 we will use a line one less than this,
2188 with a range from the start of that file to the first line's pc. */
2189 struct linetable_entry *alt = NULL;
2190
2191 /* Info on best line seen in this file. */
2192
2193 struct linetable_entry *prev;
2194
2195 /* If this pc is not from the current frame,
2196 it is the address of the end of a call instruction.
2197 Quite likely that is the start of the following statement.
2198 But what we want is the statement containing the instruction.
2199 Fudge the pc to make sure we get that. */
2200
2201 init_sal (&val); /* initialize to zeroes */
2202
2203 val.pspace = current_program_space;
2204
2205 /* It's tempting to assume that, if we can't find debugging info for
2206 any function enclosing PC, that we shouldn't search for line
2207 number info, either. However, GAS can emit line number info for
2208 assembly files --- very helpful when debugging hand-written
2209 assembly code. In such a case, we'd have no debug info for the
2210 function, but we would have line info. */
2211
2212 if (notcurrent)
2213 pc -= 1;
2214
2215 /* elz: added this because this function returned the wrong
2216 information if the pc belongs to a stub (import/export)
2217 to call a shlib function. This stub would be anywhere between
2218 two functions in the target, and the line info was erroneously
2219 taken to be the one of the line before the pc. */
2220
2221 /* RT: Further explanation:
2222
2223 * We have stubs (trampolines) inserted between procedures.
2224 *
2225 * Example: "shr1" exists in a shared library, and a "shr1" stub also
2226 * exists in the main image.
2227 *
2228 * In the minimal symbol table, we have a bunch of symbols
2229 * sorted by start address. The stubs are marked as "trampoline",
2230 * the others appear as text. E.g.:
2231 *
2232 * Minimal symbol table for main image
2233 * main: code for main (text symbol)
2234 * shr1: stub (trampoline symbol)
2235 * foo: code for foo (text symbol)
2236 * ...
2237 * Minimal symbol table for "shr1" image:
2238 * ...
2239 * shr1: code for shr1 (text symbol)
2240 * ...
2241 *
2242 * So the code below is trying to detect if we are in the stub
2243 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
2244 * and if found, do the symbolization from the real-code address
2245 * rather than the stub address.
2246 *
2247 * Assumptions being made about the minimal symbol table:
2248 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
2249 * if we're really in the trampoline.s If we're beyond it (say
2250 * we're in "foo" in the above example), it'll have a closer
2251 * symbol (the "foo" text symbol for example) and will not
2252 * return the trampoline.
2253 * 2. lookup_minimal_symbol_text() will find a real text symbol
2254 * corresponding to the trampoline, and whose address will
2255 * be different than the trampoline address. I put in a sanity
2256 * check for the address being the same, to avoid an
2257 * infinite recursion.
2258 */
2259 msymbol = lookup_minimal_symbol_by_pc (pc);
2260 if (msymbol.minsym != NULL)
2261 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
2262 {
2263 struct bound_minimal_symbol mfunsym
2264 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
2265 NULL);
2266
2267 if (mfunsym.minsym == NULL)
2268 /* I eliminated this warning since it is coming out
2269 * in the following situation:
2270 * gdb shmain // test program with shared libraries
2271 * (gdb) break shr1 // function in shared lib
2272 * Warning: In stub for ...
2273 * In the above situation, the shared lib is not loaded yet,
2274 * so of course we can't find the real func/line info,
2275 * but the "break" still works, and the warning is annoying.
2276 * So I commented out the warning. RT */
2277 /* warning ("In stub for %s; unable to find real function/line info",
2278 SYMBOL_LINKAGE_NAME (msymbol)); */
2279 ;
2280 /* fall through */
2281 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
2282 == BMSYMBOL_VALUE_ADDRESS (msymbol))
2283 /* Avoid infinite recursion */
2284 /* See above comment about why warning is commented out. */
2285 /* warning ("In stub for %s; unable to find real function/line info",
2286 SYMBOL_LINKAGE_NAME (msymbol)); */
2287 ;
2288 /* fall through */
2289 else
2290 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
2291 }
2292
2293
2294 cust = find_pc_sect_compunit_symtab (pc, section);
2295 if (cust == NULL)
2296 {
2297 /* If no symbol information, return previous pc. */
2298 if (notcurrent)
2299 pc++;
2300 val.pc = pc;
2301 return val;
2302 }
2303
2304 bv = COMPUNIT_BLOCKVECTOR (cust);
2305
2306 /* Look at all the symtabs that share this blockvector.
2307 They all have the same apriori range, that we found was right;
2308 but they have different line tables. */
2309
2310 ALL_COMPUNIT_FILETABS (cust, iter_s)
2311 {
2312 /* Find the best line in this symtab. */
2313 l = SYMTAB_LINETABLE (iter_s);
2314 if (!l)
2315 continue;
2316 len = l->nitems;
2317 if (len <= 0)
2318 {
2319 /* I think len can be zero if the symtab lacks line numbers
2320 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
2321 I'm not sure which, and maybe it depends on the symbol
2322 reader). */
2323 continue;
2324 }
2325
2326 prev = NULL;
2327 item = l->item; /* Get first line info. */
2328
2329 /* Is this file's first line closer than the first lines of other files?
2330 If so, record this file, and its first line, as best alternate. */
2331 if (item->pc > pc && (!alt || item->pc < alt->pc))
2332 alt = item;
2333
2334 for (i = 0; i < len; i++, item++)
2335 {
2336 /* Leave prev pointing to the linetable entry for the last line
2337 that started at or before PC. */
2338 if (item->pc > pc)
2339 break;
2340
2341 prev = item;
2342 }
2343
2344 /* At this point, prev points at the line whose start addr is <= pc, and
2345 item points at the next line. If we ran off the end of the linetable
2346 (pc >= start of the last line), then prev == item. If pc < start of
2347 the first line, prev will not be set. */
2348
2349 /* Is this file's best line closer than the best in the other files?
2350 If so, record this file, and its best line, as best so far. Don't
2351 save prev if it represents the end of a function (i.e. line number
2352 0) instead of a real line. */
2353
2354 if (prev && prev->line && (!best || prev->pc > best->pc))
2355 {
2356 best = prev;
2357 best_symtab = iter_s;
2358
2359 /* Discard BEST_END if it's before the PC of the current BEST. */
2360 if (best_end <= best->pc)
2361 best_end = 0;
2362 }
2363
2364 /* If another line (denoted by ITEM) is in the linetable and its
2365 PC is after BEST's PC, but before the current BEST_END, then
2366 use ITEM's PC as the new best_end. */
2367 if (best && i < len && item->pc > best->pc
2368 && (best_end == 0 || best_end > item->pc))
2369 best_end = item->pc;
2370 }
2371
2372 if (!best_symtab)
2373 {
2374 /* If we didn't find any line number info, just return zeros.
2375 We used to return alt->line - 1 here, but that could be
2376 anywhere; if we don't have line number info for this PC,
2377 don't make some up. */
2378 val.pc = pc;
2379 }
2380 else if (best->line == 0)
2381 {
2382 /* If our best fit is in a range of PC's for which no line
2383 number info is available (line number is zero) then we didn't
2384 find any valid line information. */
2385 val.pc = pc;
2386 }
2387 else
2388 {
2389 val.symtab = best_symtab;
2390 val.line = best->line;
2391 val.pc = best->pc;
2392 if (best_end && (!alt || best_end < alt->pc))
2393 val.end = best_end;
2394 else if (alt)
2395 val.end = alt->pc;
2396 else
2397 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
2398 }
2399 val.section = section;
2400 return val;
2401 }
2402
2403 /* Backward compatibility (no section). */
2404
2405 struct symtab_and_line
2406 find_pc_line (CORE_ADDR pc, int notcurrent)
2407 {
2408 struct obj_section *section;
2409
2410 section = find_pc_overlay (pc);
2411 if (pc_in_unmapped_range (pc, section))
2412 pc = overlay_mapped_address (pc, section);
2413 return find_pc_sect_line (pc, section, notcurrent);
2414 }
2415
2416 /* See symtab.h. */
2417
2418 struct symtab *
2419 find_pc_line_symtab (CORE_ADDR pc)
2420 {
2421 struct symtab_and_line sal;
2422
2423 /* This always passes zero for NOTCURRENT to find_pc_line.
2424 There are currently no callers that ever pass non-zero. */
2425 sal = find_pc_line (pc, 0);
2426 return sal.symtab;
2427 }
2428 \f
2429 /* Find line number LINE in any symtab whose name is the same as
2430 SYMTAB.
2431
2432 If found, return the symtab that contains the linetable in which it was
2433 found, set *INDEX to the index in the linetable of the best entry
2434 found, and set *EXACT_MATCH nonzero if the value returned is an
2435 exact match.
2436
2437 If not found, return NULL. */
2438
2439 struct symtab *
2440 find_line_symtab (struct symtab *symtab, int line,
2441 int *index, int *exact_match)
2442 {
2443 int exact = 0; /* Initialized here to avoid a compiler warning. */
2444
2445 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
2446 so far seen. */
2447
2448 int best_index;
2449 struct linetable *best_linetable;
2450 struct symtab *best_symtab;
2451
2452 /* First try looking it up in the given symtab. */
2453 best_linetable = SYMTAB_LINETABLE (symtab);
2454 best_symtab = symtab;
2455 best_index = find_line_common (best_linetable, line, &exact, 0);
2456 if (best_index < 0 || !exact)
2457 {
2458 /* Didn't find an exact match. So we better keep looking for
2459 another symtab with the same name. In the case of xcoff,
2460 multiple csects for one source file (produced by IBM's FORTRAN
2461 compiler) produce multiple symtabs (this is unavoidable
2462 assuming csects can be at arbitrary places in memory and that
2463 the GLOBAL_BLOCK of a symtab has a begin and end address). */
2464
2465 /* BEST is the smallest linenumber > LINE so far seen,
2466 or 0 if none has been seen so far.
2467 BEST_INDEX and BEST_LINETABLE identify the item for it. */
2468 int best;
2469
2470 struct objfile *objfile;
2471 struct compunit_symtab *cu;
2472 struct symtab *s;
2473
2474 if (best_index >= 0)
2475 best = best_linetable->item[best_index].line;
2476 else
2477 best = 0;
2478
2479 ALL_OBJFILES (objfile)
2480 {
2481 if (objfile->sf)
2482 objfile->sf->qf->expand_symtabs_with_fullname (objfile,
2483 symtab_to_fullname (symtab));
2484 }
2485
2486 ALL_FILETABS (objfile, cu, s)
2487 {
2488 struct linetable *l;
2489 int ind;
2490
2491 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
2492 continue;
2493 if (FILENAME_CMP (symtab_to_fullname (symtab),
2494 symtab_to_fullname (s)) != 0)
2495 continue;
2496 l = SYMTAB_LINETABLE (s);
2497 ind = find_line_common (l, line, &exact, 0);
2498 if (ind >= 0)
2499 {
2500 if (exact)
2501 {
2502 best_index = ind;
2503 best_linetable = l;
2504 best_symtab = s;
2505 goto done;
2506 }
2507 if (best == 0 || l->item[ind].line < best)
2508 {
2509 best = l->item[ind].line;
2510 best_index = ind;
2511 best_linetable = l;
2512 best_symtab = s;
2513 }
2514 }
2515 }
2516 }
2517 done:
2518 if (best_index < 0)
2519 return NULL;
2520
2521 if (index)
2522 *index = best_index;
2523 if (exact_match)
2524 *exact_match = exact;
2525
2526 return best_symtab;
2527 }
2528
2529 /* Given SYMTAB, returns all the PCs function in the symtab that
2530 exactly match LINE. Returns NULL if there are no exact matches,
2531 but updates BEST_ITEM in this case. */
2532
2533 VEC (CORE_ADDR) *
2534 find_pcs_for_symtab_line (struct symtab *symtab, int line,
2535 struct linetable_entry **best_item)
2536 {
2537 int start = 0;
2538 VEC (CORE_ADDR) *result = NULL;
2539
2540 /* First, collect all the PCs that are at this line. */
2541 while (1)
2542 {
2543 int was_exact;
2544 int idx;
2545
2546 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
2547 start);
2548 if (idx < 0)
2549 break;
2550
2551 if (!was_exact)
2552 {
2553 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
2554
2555 if (*best_item == NULL || item->line < (*best_item)->line)
2556 *best_item = item;
2557
2558 break;
2559 }
2560
2561 VEC_safe_push (CORE_ADDR, result,
2562 SYMTAB_LINETABLE (symtab)->item[idx].pc);
2563 start = idx + 1;
2564 }
2565
2566 return result;
2567 }
2568
2569 \f
2570 /* Set the PC value for a given source file and line number and return true.
2571 Returns zero for invalid line number (and sets the PC to 0).
2572 The source file is specified with a struct symtab. */
2573
2574 int
2575 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
2576 {
2577 struct linetable *l;
2578 int ind;
2579
2580 *pc = 0;
2581 if (symtab == 0)
2582 return 0;
2583
2584 symtab = find_line_symtab (symtab, line, &ind, NULL);
2585 if (symtab != NULL)
2586 {
2587 l = SYMTAB_LINETABLE (symtab);
2588 *pc = l->item[ind].pc;
2589 return 1;
2590 }
2591 else
2592 return 0;
2593 }
2594
2595 /* Find the range of pc values in a line.
2596 Store the starting pc of the line into *STARTPTR
2597 and the ending pc (start of next line) into *ENDPTR.
2598 Returns 1 to indicate success.
2599 Returns 0 if could not find the specified line. */
2600
2601 int
2602 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
2603 CORE_ADDR *endptr)
2604 {
2605 CORE_ADDR startaddr;
2606 struct symtab_and_line found_sal;
2607
2608 startaddr = sal.pc;
2609 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
2610 return 0;
2611
2612 /* This whole function is based on address. For example, if line 10 has
2613 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
2614 "info line *0x123" should say the line goes from 0x100 to 0x200
2615 and "info line *0x355" should say the line goes from 0x300 to 0x400.
2616 This also insures that we never give a range like "starts at 0x134
2617 and ends at 0x12c". */
2618
2619 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
2620 if (found_sal.line != sal.line)
2621 {
2622 /* The specified line (sal) has zero bytes. */
2623 *startptr = found_sal.pc;
2624 *endptr = found_sal.pc;
2625 }
2626 else
2627 {
2628 *startptr = found_sal.pc;
2629 *endptr = found_sal.end;
2630 }
2631 return 1;
2632 }
2633
2634 /* Given a line table and a line number, return the index into the line
2635 table for the pc of the nearest line whose number is >= the specified one.
2636 Return -1 if none is found. The value is >= 0 if it is an index.
2637 START is the index at which to start searching the line table.
2638
2639 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
2640
2641 static int
2642 find_line_common (struct linetable *l, int lineno,
2643 int *exact_match, int start)
2644 {
2645 int i;
2646 int len;
2647
2648 /* BEST is the smallest linenumber > LINENO so far seen,
2649 or 0 if none has been seen so far.
2650 BEST_INDEX identifies the item for it. */
2651
2652 int best_index = -1;
2653 int best = 0;
2654
2655 *exact_match = 0;
2656
2657 if (lineno <= 0)
2658 return -1;
2659 if (l == 0)
2660 return -1;
2661
2662 len = l->nitems;
2663 for (i = start; i < len; i++)
2664 {
2665 struct linetable_entry *item = &(l->item[i]);
2666
2667 if (item->line == lineno)
2668 {
2669 /* Return the first (lowest address) entry which matches. */
2670 *exact_match = 1;
2671 return i;
2672 }
2673
2674 if (item->line > lineno && (best == 0 || item->line < best))
2675 {
2676 best = item->line;
2677 best_index = i;
2678 }
2679 }
2680
2681 /* If we got here, we didn't get an exact match. */
2682 return best_index;
2683 }
2684
2685 int
2686 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
2687 {
2688 struct symtab_and_line sal;
2689
2690 sal = find_pc_line (pc, 0);
2691 *startptr = sal.pc;
2692 *endptr = sal.end;
2693 return sal.symtab != 0;
2694 }
2695
2696 /* Given a function symbol SYM, find the symtab and line for the start
2697 of the function.
2698 If the argument FUNFIRSTLINE is nonzero, we want the first line
2699 of real code inside the function. */
2700
2701 struct symtab_and_line
2702 find_function_start_sal (struct symbol *sym, int funfirstline)
2703 {
2704 struct symtab_and_line sal;
2705
2706 fixup_symbol_section (sym, NULL);
2707 sal = find_pc_sect_line (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)),
2708 SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym), 0);
2709
2710 /* We always should have a line for the function start address.
2711 If we don't, something is odd. Create a plain SAL refering
2712 just the PC and hope that skip_prologue_sal (if requested)
2713 can find a line number for after the prologue. */
2714 if (sal.pc < BLOCK_START (SYMBOL_BLOCK_VALUE (sym)))
2715 {
2716 init_sal (&sal);
2717 sal.pspace = current_program_space;
2718 sal.pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2719 sal.section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2720 }
2721
2722 if (funfirstline)
2723 skip_prologue_sal (&sal);
2724
2725 return sal;
2726 }
2727
2728 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
2729 address for that function that has an entry in SYMTAB's line info
2730 table. If such an entry cannot be found, return FUNC_ADDR
2731 unaltered. */
2732
2733 static CORE_ADDR
2734 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
2735 {
2736 CORE_ADDR func_start, func_end;
2737 struct linetable *l;
2738 int i;
2739
2740 /* Give up if this symbol has no lineinfo table. */
2741 l = SYMTAB_LINETABLE (symtab);
2742 if (l == NULL)
2743 return func_addr;
2744
2745 /* Get the range for the function's PC values, or give up if we
2746 cannot, for some reason. */
2747 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
2748 return func_addr;
2749
2750 /* Linetable entries are ordered by PC values, see the commentary in
2751 symtab.h where `struct linetable' is defined. Thus, the first
2752 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
2753 address we are looking for. */
2754 for (i = 0; i < l->nitems; i++)
2755 {
2756 struct linetable_entry *item = &(l->item[i]);
2757
2758 /* Don't use line numbers of zero, they mark special entries in
2759 the table. See the commentary on symtab.h before the
2760 definition of struct linetable. */
2761 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
2762 return item->pc;
2763 }
2764
2765 return func_addr;
2766 }
2767
2768 /* Adjust SAL to the first instruction past the function prologue.
2769 If the PC was explicitly specified, the SAL is not changed.
2770 If the line number was explicitly specified, at most the SAL's PC
2771 is updated. If SAL is already past the prologue, then do nothing. */
2772
2773 void
2774 skip_prologue_sal (struct symtab_and_line *sal)
2775 {
2776 struct symbol *sym;
2777 struct symtab_and_line start_sal;
2778 struct cleanup *old_chain;
2779 CORE_ADDR pc, saved_pc;
2780 struct obj_section *section;
2781 const char *name;
2782 struct objfile *objfile;
2783 struct gdbarch *gdbarch;
2784 const struct block *b, *function_block;
2785 int force_skip, skip;
2786
2787 /* Do not change the SAL if PC was specified explicitly. */
2788 if (sal->explicit_pc)
2789 return;
2790
2791 old_chain = save_current_space_and_thread ();
2792 switch_to_program_space_and_thread (sal->pspace);
2793
2794 sym = find_pc_sect_function (sal->pc, sal->section);
2795 if (sym != NULL)
2796 {
2797 fixup_symbol_section (sym, NULL);
2798
2799 pc = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
2800 section = SYMBOL_OBJ_SECTION (SYMBOL_OBJFILE (sym), sym);
2801 name = SYMBOL_LINKAGE_NAME (sym);
2802 objfile = SYMBOL_OBJFILE (sym);
2803 }
2804 else
2805 {
2806 struct bound_minimal_symbol msymbol
2807 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
2808
2809 if (msymbol.minsym == NULL)
2810 {
2811 do_cleanups (old_chain);
2812 return;
2813 }
2814
2815 objfile = msymbol.objfile;
2816 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
2817 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
2818 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
2819 }
2820
2821 gdbarch = get_objfile_arch (objfile);
2822
2823 /* Process the prologue in two passes. In the first pass try to skip the
2824 prologue (SKIP is true) and verify there is a real need for it (indicated
2825 by FORCE_SKIP). If no such reason was found run a second pass where the
2826 prologue is not skipped (SKIP is false). */
2827
2828 skip = 1;
2829 force_skip = 1;
2830
2831 /* Be conservative - allow direct PC (without skipping prologue) only if we
2832 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
2833 have to be set by the caller so we use SYM instead. */
2834 if (sym && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (SYMBOL_SYMTAB (sym))))
2835 force_skip = 0;
2836
2837 saved_pc = pc;
2838 do
2839 {
2840 pc = saved_pc;
2841
2842 /* If the function is in an unmapped overlay, use its unmapped LMA address,
2843 so that gdbarch_skip_prologue has something unique to work on. */
2844 if (section_is_overlay (section) && !section_is_mapped (section))
2845 pc = overlay_unmapped_address (pc, section);
2846
2847 /* Skip "first line" of function (which is actually its prologue). */
2848 pc += gdbarch_deprecated_function_start_offset (gdbarch);
2849 if (gdbarch_skip_entrypoint_p (gdbarch))
2850 pc = gdbarch_skip_entrypoint (gdbarch, pc);
2851 if (skip)
2852 pc = gdbarch_skip_prologue (gdbarch, pc);
2853
2854 /* For overlays, map pc back into its mapped VMA range. */
2855 pc = overlay_mapped_address (pc, section);
2856
2857 /* Calculate line number. */
2858 start_sal = find_pc_sect_line (pc, section, 0);
2859
2860 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
2861 line is still part of the same function. */
2862 if (skip && start_sal.pc != pc
2863 && (sym ? (BLOCK_START (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
2864 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
2865 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
2866 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
2867 {
2868 /* First pc of next line */
2869 pc = start_sal.end;
2870 /* Recalculate the line number (might not be N+1). */
2871 start_sal = find_pc_sect_line (pc, section, 0);
2872 }
2873
2874 /* On targets with executable formats that don't have a concept of
2875 constructors (ELF with .init has, PE doesn't), gcc emits a call
2876 to `__main' in `main' between the prologue and before user
2877 code. */
2878 if (gdbarch_skip_main_prologue_p (gdbarch)
2879 && name && strcmp_iw (name, "main") == 0)
2880 {
2881 pc = gdbarch_skip_main_prologue (gdbarch, pc);
2882 /* Recalculate the line number (might not be N+1). */
2883 start_sal = find_pc_sect_line (pc, section, 0);
2884 force_skip = 1;
2885 }
2886 }
2887 while (!force_skip && skip--);
2888
2889 /* If we still don't have a valid source line, try to find the first
2890 PC in the lineinfo table that belongs to the same function. This
2891 happens with COFF debug info, which does not seem to have an
2892 entry in lineinfo table for the code after the prologue which has
2893 no direct relation to source. For example, this was found to be
2894 the case with the DJGPP target using "gcc -gcoff" when the
2895 compiler inserted code after the prologue to make sure the stack
2896 is aligned. */
2897 if (!force_skip && sym && start_sal.symtab == NULL)
2898 {
2899 pc = skip_prologue_using_lineinfo (pc, SYMBOL_SYMTAB (sym));
2900 /* Recalculate the line number. */
2901 start_sal = find_pc_sect_line (pc, section, 0);
2902 }
2903
2904 do_cleanups (old_chain);
2905
2906 /* If we're already past the prologue, leave SAL unchanged. Otherwise
2907 forward SAL to the end of the prologue. */
2908 if (sal->pc >= pc)
2909 return;
2910
2911 sal->pc = pc;
2912 sal->section = section;
2913
2914 /* Unless the explicit_line flag was set, update the SAL line
2915 and symtab to correspond to the modified PC location. */
2916 if (sal->explicit_line)
2917 return;
2918
2919 sal->symtab = start_sal.symtab;
2920 sal->line = start_sal.line;
2921 sal->end = start_sal.end;
2922
2923 /* Check if we are now inside an inlined function. If we can,
2924 use the call site of the function instead. */
2925 b = block_for_pc_sect (sal->pc, sal->section);
2926 function_block = NULL;
2927 while (b != NULL)
2928 {
2929 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
2930 function_block = b;
2931 else if (BLOCK_FUNCTION (b) != NULL)
2932 break;
2933 b = BLOCK_SUPERBLOCK (b);
2934 }
2935 if (function_block != NULL
2936 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
2937 {
2938 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
2939 sal->symtab = SYMBOL_SYMTAB (BLOCK_FUNCTION (function_block));
2940 }
2941 }
2942
2943 /* Given PC at the function's start address, attempt to find the
2944 prologue end using SAL information. Return zero if the skip fails.
2945
2946 A non-optimized prologue traditionally has one SAL for the function
2947 and a second for the function body. A single line function has
2948 them both pointing at the same line.
2949
2950 An optimized prologue is similar but the prologue may contain
2951 instructions (SALs) from the instruction body. Need to skip those
2952 while not getting into the function body.
2953
2954 The functions end point and an increasing SAL line are used as
2955 indicators of the prologue's endpoint.
2956
2957 This code is based on the function refine_prologue_limit
2958 (found in ia64). */
2959
2960 CORE_ADDR
2961 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
2962 {
2963 struct symtab_and_line prologue_sal;
2964 CORE_ADDR start_pc;
2965 CORE_ADDR end_pc;
2966 const struct block *bl;
2967
2968 /* Get an initial range for the function. */
2969 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
2970 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
2971
2972 prologue_sal = find_pc_line (start_pc, 0);
2973 if (prologue_sal.line != 0)
2974 {
2975 /* For languages other than assembly, treat two consecutive line
2976 entries at the same address as a zero-instruction prologue.
2977 The GNU assembler emits separate line notes for each instruction
2978 in a multi-instruction macro, but compilers generally will not
2979 do this. */
2980 if (prologue_sal.symtab->language != language_asm)
2981 {
2982 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
2983 int idx = 0;
2984
2985 /* Skip any earlier lines, and any end-of-sequence marker
2986 from a previous function. */
2987 while (linetable->item[idx].pc != prologue_sal.pc
2988 || linetable->item[idx].line == 0)
2989 idx++;
2990
2991 if (idx+1 < linetable->nitems
2992 && linetable->item[idx+1].line != 0
2993 && linetable->item[idx+1].pc == start_pc)
2994 return start_pc;
2995 }
2996
2997 /* If there is only one sal that covers the entire function,
2998 then it is probably a single line function, like
2999 "foo(){}". */
3000 if (prologue_sal.end >= end_pc)
3001 return 0;
3002
3003 while (prologue_sal.end < end_pc)
3004 {
3005 struct symtab_and_line sal;
3006
3007 sal = find_pc_line (prologue_sal.end, 0);
3008 if (sal.line == 0)
3009 break;
3010 /* Assume that a consecutive SAL for the same (or larger)
3011 line mark the prologue -> body transition. */
3012 if (sal.line >= prologue_sal.line)
3013 break;
3014 /* Likewise if we are in a different symtab altogether
3015 (e.g. within a file included via #include).  */
3016 if (sal.symtab != prologue_sal.symtab)
3017 break;
3018
3019 /* The line number is smaller. Check that it's from the
3020 same function, not something inlined. If it's inlined,
3021 then there is no point comparing the line numbers. */
3022 bl = block_for_pc (prologue_sal.end);
3023 while (bl)
3024 {
3025 if (block_inlined_p (bl))
3026 break;
3027 if (BLOCK_FUNCTION (bl))
3028 {
3029 bl = NULL;
3030 break;
3031 }
3032 bl = BLOCK_SUPERBLOCK (bl);
3033 }
3034 if (bl != NULL)
3035 break;
3036
3037 /* The case in which compiler's optimizer/scheduler has
3038 moved instructions into the prologue. We look ahead in
3039 the function looking for address ranges whose
3040 corresponding line number is less the first one that we
3041 found for the function. This is more conservative then
3042 refine_prologue_limit which scans a large number of SALs
3043 looking for any in the prologue. */
3044 prologue_sal = sal;
3045 }
3046 }
3047
3048 if (prologue_sal.end < end_pc)
3049 /* Return the end of this line, or zero if we could not find a
3050 line. */
3051 return prologue_sal.end;
3052 else
3053 /* Don't return END_PC, which is past the end of the function. */
3054 return prologue_sal.pc;
3055 }
3056 \f
3057 /* If P is of the form "operator[ \t]+..." where `...' is
3058 some legitimate operator text, return a pointer to the
3059 beginning of the substring of the operator text.
3060 Otherwise, return "". */
3061
3062 static const char *
3063 operator_chars (const char *p, const char **end)
3064 {
3065 *end = "";
3066 if (strncmp (p, "operator", 8))
3067 return *end;
3068 p += 8;
3069
3070 /* Don't get faked out by `operator' being part of a longer
3071 identifier. */
3072 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3073 return *end;
3074
3075 /* Allow some whitespace between `operator' and the operator symbol. */
3076 while (*p == ' ' || *p == '\t')
3077 p++;
3078
3079 /* Recognize 'operator TYPENAME'. */
3080
3081 if (isalpha (*p) || *p == '_' || *p == '$')
3082 {
3083 const char *q = p + 1;
3084
3085 while (isalnum (*q) || *q == '_' || *q == '$')
3086 q++;
3087 *end = q;
3088 return p;
3089 }
3090
3091 while (*p)
3092 switch (*p)
3093 {
3094 case '\\': /* regexp quoting */
3095 if (p[1] == '*')
3096 {
3097 if (p[2] == '=') /* 'operator\*=' */
3098 *end = p + 3;
3099 else /* 'operator\*' */
3100 *end = p + 2;
3101 return p;
3102 }
3103 else if (p[1] == '[')
3104 {
3105 if (p[2] == ']')
3106 error (_("mismatched quoting on brackets, "
3107 "try 'operator\\[\\]'"));
3108 else if (p[2] == '\\' && p[3] == ']')
3109 {
3110 *end = p + 4; /* 'operator\[\]' */
3111 return p;
3112 }
3113 else
3114 error (_("nothing is allowed between '[' and ']'"));
3115 }
3116 else
3117 {
3118 /* Gratuitous qoute: skip it and move on. */
3119 p++;
3120 continue;
3121 }
3122 break;
3123 case '!':
3124 case '=':
3125 case '*':
3126 case '/':
3127 case '%':
3128 case '^':
3129 if (p[1] == '=')
3130 *end = p + 2;
3131 else
3132 *end = p + 1;
3133 return p;
3134 case '<':
3135 case '>':
3136 case '+':
3137 case '-':
3138 case '&':
3139 case '|':
3140 if (p[0] == '-' && p[1] == '>')
3141 {
3142 /* Struct pointer member operator 'operator->'. */
3143 if (p[2] == '*')
3144 {
3145 *end = p + 3; /* 'operator->*' */
3146 return p;
3147 }
3148 else if (p[2] == '\\')
3149 {
3150 *end = p + 4; /* Hopefully 'operator->\*' */
3151 return p;
3152 }
3153 else
3154 {
3155 *end = p + 2; /* 'operator->' */
3156 return p;
3157 }
3158 }
3159 if (p[1] == '=' || p[1] == p[0])
3160 *end = p + 2;
3161 else
3162 *end = p + 1;
3163 return p;
3164 case '~':
3165 case ',':
3166 *end = p + 1;
3167 return p;
3168 case '(':
3169 if (p[1] != ')')
3170 error (_("`operator ()' must be specified "
3171 "without whitespace in `()'"));
3172 *end = p + 2;
3173 return p;
3174 case '?':
3175 if (p[1] != ':')
3176 error (_("`operator ?:' must be specified "
3177 "without whitespace in `?:'"));
3178 *end = p + 2;
3179 return p;
3180 case '[':
3181 if (p[1] != ']')
3182 error (_("`operator []' must be specified "
3183 "without whitespace in `[]'"));
3184 *end = p + 2;
3185 return p;
3186 default:
3187 error (_("`operator %s' not supported"), p);
3188 break;
3189 }
3190
3191 *end = "";
3192 return *end;
3193 }
3194 \f
3195
3196 /* Cache to watch for file names already seen by filename_seen. */
3197
3198 struct filename_seen_cache
3199 {
3200 /* Table of files seen so far. */
3201 htab_t tab;
3202 /* Initial size of the table. It automagically grows from here. */
3203 #define INITIAL_FILENAME_SEEN_CACHE_SIZE 100
3204 };
3205
3206 /* filename_seen_cache constructor. */
3207
3208 static struct filename_seen_cache *
3209 create_filename_seen_cache (void)
3210 {
3211 struct filename_seen_cache *cache;
3212
3213 cache = XNEW (struct filename_seen_cache);
3214 cache->tab = htab_create_alloc (INITIAL_FILENAME_SEEN_CACHE_SIZE,
3215 filename_hash, filename_eq,
3216 NULL, xcalloc, xfree);
3217
3218 return cache;
3219 }
3220
3221 /* Empty the cache, but do not delete it. */
3222
3223 static void
3224 clear_filename_seen_cache (struct filename_seen_cache *cache)
3225 {
3226 htab_empty (cache->tab);
3227 }
3228
3229 /* filename_seen_cache destructor.
3230 This takes a void * argument as it is generally used as a cleanup. */
3231
3232 static void
3233 delete_filename_seen_cache (void *ptr)
3234 {
3235 struct filename_seen_cache *cache = ptr;
3236
3237 htab_delete (cache->tab);
3238 xfree (cache);
3239 }
3240
3241 /* If FILE is not already in the table of files in CACHE, return zero;
3242 otherwise return non-zero. Optionally add FILE to the table if ADD
3243 is non-zero.
3244
3245 NOTE: We don't manage space for FILE, we assume FILE lives as long
3246 as the caller needs. */
3247
3248 static int
3249 filename_seen (struct filename_seen_cache *cache, const char *file, int add)
3250 {
3251 void **slot;
3252
3253 /* Is FILE in tab? */
3254 slot = htab_find_slot (cache->tab, file, add ? INSERT : NO_INSERT);
3255 if (*slot != NULL)
3256 return 1;
3257
3258 /* No; maybe add it to tab. */
3259 if (add)
3260 *slot = (char *) file;
3261
3262 return 0;
3263 }
3264
3265 /* Data structure to maintain printing state for output_source_filename. */
3266
3267 struct output_source_filename_data
3268 {
3269 /* Cache of what we've seen so far. */
3270 struct filename_seen_cache *filename_seen_cache;
3271
3272 /* Flag of whether we're printing the first one. */
3273 int first;
3274 };
3275
3276 /* Slave routine for sources_info. Force line breaks at ,'s.
3277 NAME is the name to print.
3278 DATA contains the state for printing and watching for duplicates. */
3279
3280 static void
3281 output_source_filename (const char *name,
3282 struct output_source_filename_data *data)
3283 {
3284 /* Since a single source file can result in several partial symbol
3285 tables, we need to avoid printing it more than once. Note: if
3286 some of the psymtabs are read in and some are not, it gets
3287 printed both under "Source files for which symbols have been
3288 read" and "Source files for which symbols will be read in on
3289 demand". I consider this a reasonable way to deal with the
3290 situation. I'm not sure whether this can also happen for
3291 symtabs; it doesn't hurt to check. */
3292
3293 /* Was NAME already seen? */
3294 if (filename_seen (data->filename_seen_cache, name, 1))
3295 {
3296 /* Yes; don't print it again. */
3297 return;
3298 }
3299
3300 /* No; print it and reset *FIRST. */
3301 if (! data->first)
3302 printf_filtered (", ");
3303 data->first = 0;
3304
3305 wrap_here ("");
3306 fputs_filtered (name, gdb_stdout);
3307 }
3308
3309 /* A callback for map_partial_symbol_filenames. */
3310
3311 static void
3312 output_partial_symbol_filename (const char *filename, const char *fullname,
3313 void *data)
3314 {
3315 output_source_filename (fullname ? fullname : filename, data);
3316 }
3317
3318 static void
3319 sources_info (char *ignore, int from_tty)
3320 {
3321 struct compunit_symtab *cu;
3322 struct symtab *s;
3323 struct objfile *objfile;
3324 struct output_source_filename_data data;
3325 struct cleanup *cleanups;
3326
3327 if (!have_full_symbols () && !have_partial_symbols ())
3328 {
3329 error (_("No symbol table is loaded. Use the \"file\" command."));
3330 }
3331
3332 data.filename_seen_cache = create_filename_seen_cache ();
3333 cleanups = make_cleanup (delete_filename_seen_cache,
3334 data.filename_seen_cache);
3335
3336 printf_filtered ("Source files for which symbols have been read in:\n\n");
3337
3338 data.first = 1;
3339 ALL_FILETABS (objfile, cu, s)
3340 {
3341 const char *fullname = symtab_to_fullname (s);
3342
3343 output_source_filename (fullname, &data);
3344 }
3345 printf_filtered ("\n\n");
3346
3347 printf_filtered ("Source files for which symbols "
3348 "will be read in on demand:\n\n");
3349
3350 clear_filename_seen_cache (data.filename_seen_cache);
3351 data.first = 1;
3352 map_symbol_filenames (output_partial_symbol_filename, &data,
3353 1 /*need_fullname*/);
3354 printf_filtered ("\n");
3355
3356 do_cleanups (cleanups);
3357 }
3358
3359 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
3360 non-zero compare only lbasename of FILES. */
3361
3362 static int
3363 file_matches (const char *file, const char *files[], int nfiles, int basenames)
3364 {
3365 int i;
3366
3367 if (file != NULL && nfiles != 0)
3368 {
3369 for (i = 0; i < nfiles; i++)
3370 {
3371 if (compare_filenames_for_search (file, (basenames
3372 ? lbasename (files[i])
3373 : files[i])))
3374 return 1;
3375 }
3376 }
3377 else if (nfiles == 0)
3378 return 1;
3379 return 0;
3380 }
3381
3382 /* Free any memory associated with a search. */
3383
3384 void
3385 free_search_symbols (struct symbol_search *symbols)
3386 {
3387 struct symbol_search *p;
3388 struct symbol_search *next;
3389
3390 for (p = symbols; p != NULL; p = next)
3391 {
3392 next = p->next;
3393 xfree (p);
3394 }
3395 }
3396
3397 static void
3398 do_free_search_symbols_cleanup (void *symbolsp)
3399 {
3400 struct symbol_search *symbols = *(struct symbol_search **) symbolsp;
3401
3402 free_search_symbols (symbols);
3403 }
3404
3405 struct cleanup *
3406 make_cleanup_free_search_symbols (struct symbol_search **symbolsp)
3407 {
3408 return make_cleanup (do_free_search_symbols_cleanup, symbolsp);
3409 }
3410
3411 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
3412 sort symbols, not minimal symbols. */
3413
3414 static int
3415 compare_search_syms (const void *sa, const void *sb)
3416 {
3417 struct symbol_search *sym_a = *(struct symbol_search **) sa;
3418 struct symbol_search *sym_b = *(struct symbol_search **) sb;
3419 int c;
3420
3421 c = FILENAME_CMP (sym_a->symtab->filename, sym_b->symtab->filename);
3422 if (c != 0)
3423 return c;
3424
3425 if (sym_a->block != sym_b->block)
3426 return sym_a->block - sym_b->block;
3427
3428 return strcmp (SYMBOL_PRINT_NAME (sym_a->symbol),
3429 SYMBOL_PRINT_NAME (sym_b->symbol));
3430 }
3431
3432 /* Sort the NFOUND symbols in list FOUND and remove duplicates.
3433 The duplicates are freed, and the new list is returned in
3434 *NEW_HEAD, *NEW_TAIL. */
3435
3436 static void
3437 sort_search_symbols_remove_dups (struct symbol_search *found, int nfound,
3438 struct symbol_search **new_head,
3439 struct symbol_search **new_tail)
3440 {
3441 struct symbol_search **symbols, *symp, *old_next;
3442 int i, j, nunique;
3443
3444 gdb_assert (found != NULL && nfound > 0);
3445
3446 /* Build an array out of the list so we can easily sort them. */
3447 symbols = (struct symbol_search **) xmalloc (sizeof (struct symbol_search *)
3448 * nfound);
3449 symp = found;
3450 for (i = 0; i < nfound; i++)
3451 {
3452 gdb_assert (symp != NULL);
3453 gdb_assert (symp->block >= 0 && symp->block <= 1);
3454 symbols[i] = symp;
3455 symp = symp->next;
3456 }
3457 gdb_assert (symp == NULL);
3458
3459 qsort (symbols, nfound, sizeof (struct symbol_search *),
3460 compare_search_syms);
3461
3462 /* Collapse out the dups. */
3463 for (i = 1, j = 1; i < nfound; ++i)
3464 {
3465 if (compare_search_syms (&symbols[j - 1], &symbols[i]) != 0)
3466 symbols[j++] = symbols[i];
3467 else
3468 xfree (symbols[i]);
3469 }
3470 nunique = j;
3471 symbols[j - 1]->next = NULL;
3472
3473 /* Rebuild the linked list. */
3474 for (i = 0; i < nunique - 1; i++)
3475 symbols[i]->next = symbols[i + 1];
3476 symbols[nunique - 1]->next = NULL;
3477
3478 *new_head = symbols[0];
3479 *new_tail = symbols[nunique - 1];
3480 xfree (symbols);
3481 }
3482
3483 /* An object of this type is passed as the user_data to the
3484 expand_symtabs_matching method. */
3485 struct search_symbols_data
3486 {
3487 int nfiles;
3488 const char **files;
3489
3490 /* It is true if PREG contains valid data, false otherwise. */
3491 unsigned preg_p : 1;
3492 regex_t preg;
3493 };
3494
3495 /* A callback for expand_symtabs_matching. */
3496
3497 static int
3498 search_symbols_file_matches (const char *filename, void *user_data,
3499 int basenames)
3500 {
3501 struct search_symbols_data *data = user_data;
3502
3503 return file_matches (filename, data->files, data->nfiles, basenames);
3504 }
3505
3506 /* A callback for expand_symtabs_matching. */
3507
3508 static int
3509 search_symbols_name_matches (const char *symname, void *user_data)
3510 {
3511 struct search_symbols_data *data = user_data;
3512
3513 return !data->preg_p || regexec (&data->preg, symname, 0, NULL, 0) == 0;
3514 }
3515
3516 /* Search the symbol table for matches to the regular expression REGEXP,
3517 returning the results in *MATCHES.
3518
3519 Only symbols of KIND are searched:
3520 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
3521 and constants (enums)
3522 FUNCTIONS_DOMAIN - search all functions
3523 TYPES_DOMAIN - search all type names
3524 ALL_DOMAIN - an internal error for this function
3525
3526 free_search_symbols should be called when *MATCHES is no longer needed.
3527
3528 Within each file the results are sorted locally; each symtab's global and
3529 static blocks are separately alphabetized.
3530 Duplicate entries are removed. */
3531
3532 void
3533 search_symbols (const char *regexp, enum search_domain kind,
3534 int nfiles, const char *files[],
3535 struct symbol_search **matches)
3536 {
3537 struct compunit_symtab *cust;
3538 const struct blockvector *bv;
3539 struct block *b;
3540 int i = 0;
3541 struct block_iterator iter;
3542 struct symbol *sym;
3543 struct objfile *objfile;
3544 struct minimal_symbol *msymbol;
3545 int found_misc = 0;
3546 static const enum minimal_symbol_type types[]
3547 = {mst_data, mst_text, mst_abs};
3548 static const enum minimal_symbol_type types2[]
3549 = {mst_bss, mst_file_text, mst_abs};
3550 static const enum minimal_symbol_type types3[]
3551 = {mst_file_data, mst_solib_trampoline, mst_abs};
3552 static const enum minimal_symbol_type types4[]
3553 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
3554 enum minimal_symbol_type ourtype;
3555 enum minimal_symbol_type ourtype2;
3556 enum minimal_symbol_type ourtype3;
3557 enum minimal_symbol_type ourtype4;
3558 struct symbol_search *found;
3559 struct symbol_search *tail;
3560 struct search_symbols_data datum;
3561 int nfound;
3562
3563 /* OLD_CHAIN .. RETVAL_CHAIN is always freed, RETVAL_CHAIN .. current
3564 CLEANUP_CHAIN is freed only in the case of an error. */
3565 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3566 struct cleanup *retval_chain;
3567
3568 gdb_assert (kind <= TYPES_DOMAIN);
3569
3570 ourtype = types[kind];
3571 ourtype2 = types2[kind];
3572 ourtype3 = types3[kind];
3573 ourtype4 = types4[kind];
3574
3575 *matches = NULL;
3576 datum.preg_p = 0;
3577
3578 if (regexp != NULL)
3579 {
3580 /* Make sure spacing is right for C++ operators.
3581 This is just a courtesy to make the matching less sensitive
3582 to how many spaces the user leaves between 'operator'
3583 and <TYPENAME> or <OPERATOR>. */
3584 const char *opend;
3585 const char *opname = operator_chars (regexp, &opend);
3586 int errcode;
3587
3588 if (*opname)
3589 {
3590 int fix = -1; /* -1 means ok; otherwise number of
3591 spaces needed. */
3592
3593 if (isalpha (*opname) || *opname == '_' || *opname == '$')
3594 {
3595 /* There should 1 space between 'operator' and 'TYPENAME'. */
3596 if (opname[-1] != ' ' || opname[-2] == ' ')
3597 fix = 1;
3598 }
3599 else
3600 {
3601 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
3602 if (opname[-1] == ' ')
3603 fix = 0;
3604 }
3605 /* If wrong number of spaces, fix it. */
3606 if (fix >= 0)
3607 {
3608 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
3609
3610 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
3611 regexp = tmp;
3612 }
3613 }
3614
3615 errcode = regcomp (&datum.preg, regexp,
3616 REG_NOSUB | (case_sensitivity == case_sensitive_off
3617 ? REG_ICASE : 0));
3618 if (errcode != 0)
3619 {
3620 char *err = get_regcomp_error (errcode, &datum.preg);
3621
3622 make_cleanup (xfree, err);
3623 error (_("Invalid regexp (%s): %s"), err, regexp);
3624 }
3625 datum.preg_p = 1;
3626 make_regfree_cleanup (&datum.preg);
3627 }
3628
3629 /* Search through the partial symtabs *first* for all symbols
3630 matching the regexp. That way we don't have to reproduce all of
3631 the machinery below. */
3632
3633 datum.nfiles = nfiles;
3634 datum.files = files;
3635 expand_symtabs_matching ((nfiles == 0
3636 ? NULL
3637 : search_symbols_file_matches),
3638 search_symbols_name_matches,
3639 kind, &datum);
3640
3641 /* Here, we search through the minimal symbol tables for functions
3642 and variables that match, and force their symbols to be read.
3643 This is in particular necessary for demangled variable names,
3644 which are no longer put into the partial symbol tables.
3645 The symbol will then be found during the scan of symtabs below.
3646
3647 For functions, find_pc_symtab should succeed if we have debug info
3648 for the function, for variables we have to call
3649 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
3650 has debug info.
3651 If the lookup fails, set found_misc so that we will rescan to print
3652 any matching symbols without debug info.
3653 We only search the objfile the msymbol came from, we no longer search
3654 all objfiles. In large programs (1000s of shared libs) searching all
3655 objfiles is not worth the pain. */
3656
3657 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
3658 {
3659 ALL_MSYMBOLS (objfile, msymbol)
3660 {
3661 QUIT;
3662
3663 if (msymbol->created_by_gdb)
3664 continue;
3665
3666 if (MSYMBOL_TYPE (msymbol) == ourtype
3667 || MSYMBOL_TYPE (msymbol) == ourtype2
3668 || MSYMBOL_TYPE (msymbol) == ourtype3
3669 || MSYMBOL_TYPE (msymbol) == ourtype4)
3670 {
3671 if (!datum.preg_p
3672 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3673 NULL, 0) == 0)
3674 {
3675 /* Note: An important side-effect of these lookup functions
3676 is to expand the symbol table if msymbol is found, for the
3677 benefit of the next loop on ALL_COMPUNITS. */
3678 if (kind == FUNCTIONS_DOMAIN
3679 ? (find_pc_compunit_symtab
3680 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL)
3681 : (lookup_symbol_in_objfile_from_linkage_name
3682 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3683 == NULL))
3684 found_misc = 1;
3685 }
3686 }
3687 }
3688 }
3689
3690 found = NULL;
3691 tail = NULL;
3692 nfound = 0;
3693 retval_chain = make_cleanup_free_search_symbols (&found);
3694
3695 ALL_COMPUNITS (objfile, cust)
3696 {
3697 bv = COMPUNIT_BLOCKVECTOR (cust);
3698 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
3699 {
3700 b = BLOCKVECTOR_BLOCK (bv, i);
3701 ALL_BLOCK_SYMBOLS (b, iter, sym)
3702 {
3703 struct symtab *real_symtab = SYMBOL_SYMTAB (sym);
3704
3705 QUIT;
3706
3707 /* Check first sole REAL_SYMTAB->FILENAME. It does not need to be
3708 a substring of symtab_to_fullname as it may contain "./" etc. */
3709 if ((file_matches (real_symtab->filename, files, nfiles, 0)
3710 || ((basenames_may_differ
3711 || file_matches (lbasename (real_symtab->filename),
3712 files, nfiles, 1))
3713 && file_matches (symtab_to_fullname (real_symtab),
3714 files, nfiles, 0)))
3715 && ((!datum.preg_p
3716 || regexec (&datum.preg, SYMBOL_NATURAL_NAME (sym), 0,
3717 NULL, 0) == 0)
3718 && ((kind == VARIABLES_DOMAIN
3719 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
3720 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
3721 && SYMBOL_CLASS (sym) != LOC_BLOCK
3722 /* LOC_CONST can be used for more than just enums,
3723 e.g., c++ static const members.
3724 We only want to skip enums here. */
3725 && !(SYMBOL_CLASS (sym) == LOC_CONST
3726 && (TYPE_CODE (SYMBOL_TYPE (sym))
3727 == TYPE_CODE_ENUM)))
3728 || (kind == FUNCTIONS_DOMAIN
3729 && SYMBOL_CLASS (sym) == LOC_BLOCK)
3730 || (kind == TYPES_DOMAIN
3731 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
3732 {
3733 /* match */
3734 struct symbol_search *psr = (struct symbol_search *)
3735 xmalloc (sizeof (struct symbol_search));
3736 psr->block = i;
3737 psr->symtab = real_symtab;
3738 psr->symbol = sym;
3739 memset (&psr->msymbol, 0, sizeof (psr->msymbol));
3740 psr->next = NULL;
3741 if (tail == NULL)
3742 found = psr;
3743 else
3744 tail->next = psr;
3745 tail = psr;
3746 nfound ++;
3747 }
3748 }
3749 }
3750 }
3751
3752 if (found != NULL)
3753 {
3754 sort_search_symbols_remove_dups (found, nfound, &found, &tail);
3755 /* Note: nfound is no longer useful beyond this point. */
3756 }
3757
3758 /* If there are no eyes, avoid all contact. I mean, if there are
3759 no debug symbols, then add matching minsyms. */
3760
3761 if (found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
3762 {
3763 ALL_MSYMBOLS (objfile, msymbol)
3764 {
3765 QUIT;
3766
3767 if (msymbol->created_by_gdb)
3768 continue;
3769
3770 if (MSYMBOL_TYPE (msymbol) == ourtype
3771 || MSYMBOL_TYPE (msymbol) == ourtype2
3772 || MSYMBOL_TYPE (msymbol) == ourtype3
3773 || MSYMBOL_TYPE (msymbol) == ourtype4)
3774 {
3775 if (!datum.preg_p
3776 || regexec (&datum.preg, MSYMBOL_NATURAL_NAME (msymbol), 0,
3777 NULL, 0) == 0)
3778 {
3779 /* For functions we can do a quick check of whether the
3780 symbol might be found via find_pc_symtab. */
3781 if (kind != FUNCTIONS_DOMAIN
3782 || (find_pc_compunit_symtab
3783 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol)) == NULL))
3784 {
3785 if (lookup_symbol_in_objfile_from_linkage_name
3786 (objfile, MSYMBOL_LINKAGE_NAME (msymbol), VAR_DOMAIN)
3787 == NULL)
3788 {
3789 /* match */
3790 struct symbol_search *psr = (struct symbol_search *)
3791 xmalloc (sizeof (struct symbol_search));
3792 psr->block = i;
3793 psr->msymbol.minsym = msymbol;
3794 psr->msymbol.objfile = objfile;
3795 psr->symtab = NULL;
3796 psr->symbol = NULL;
3797 psr->next = NULL;
3798 if (tail == NULL)
3799 found = psr;
3800 else
3801 tail->next = psr;
3802 tail = psr;
3803 }
3804 }
3805 }
3806 }
3807 }
3808 }
3809
3810 discard_cleanups (retval_chain);
3811 do_cleanups (old_chain);
3812 *matches = found;
3813 }
3814
3815 /* Helper function for symtab_symbol_info, this function uses
3816 the data returned from search_symbols() to print information
3817 regarding the match to gdb_stdout. */
3818
3819 static void
3820 print_symbol_info (enum search_domain kind,
3821 struct symtab *s, struct symbol *sym,
3822 int block, const char *last)
3823 {
3824 const char *s_filename = symtab_to_filename_for_display (s);
3825
3826 if (last == NULL || filename_cmp (last, s_filename) != 0)
3827 {
3828 fputs_filtered ("\nFile ", gdb_stdout);
3829 fputs_filtered (s_filename, gdb_stdout);
3830 fputs_filtered (":\n", gdb_stdout);
3831 }
3832
3833 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
3834 printf_filtered ("static ");
3835
3836 /* Typedef that is not a C++ class. */
3837 if (kind == TYPES_DOMAIN
3838 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
3839 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
3840 /* variable, func, or typedef-that-is-c++-class. */
3841 else if (kind < TYPES_DOMAIN
3842 || (kind == TYPES_DOMAIN
3843 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
3844 {
3845 type_print (SYMBOL_TYPE (sym),
3846 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
3847 ? "" : SYMBOL_PRINT_NAME (sym)),
3848 gdb_stdout, 0);
3849
3850 printf_filtered (";\n");
3851 }
3852 }
3853
3854 /* This help function for symtab_symbol_info() prints information
3855 for non-debugging symbols to gdb_stdout. */
3856
3857 static void
3858 print_msymbol_info (struct bound_minimal_symbol msymbol)
3859 {
3860 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
3861 char *tmp;
3862
3863 if (gdbarch_addr_bit (gdbarch) <= 32)
3864 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
3865 & (CORE_ADDR) 0xffffffff,
3866 8);
3867 else
3868 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
3869 16);
3870 printf_filtered ("%s %s\n",
3871 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
3872 }
3873
3874 /* This is the guts of the commands "info functions", "info types", and
3875 "info variables". It calls search_symbols to find all matches and then
3876 print_[m]symbol_info to print out some useful information about the
3877 matches. */
3878
3879 static void
3880 symtab_symbol_info (char *regexp, enum search_domain kind, int from_tty)
3881 {
3882 static const char * const classnames[] =
3883 {"variable", "function", "type"};
3884 struct symbol_search *symbols;
3885 struct symbol_search *p;
3886 struct cleanup *old_chain;
3887 const char *last_filename = NULL;
3888 int first = 1;
3889
3890 gdb_assert (kind <= TYPES_DOMAIN);
3891
3892 /* Must make sure that if we're interrupted, symbols gets freed. */
3893 search_symbols (regexp, kind, 0, NULL, &symbols);
3894 old_chain = make_cleanup_free_search_symbols (&symbols);
3895
3896 if (regexp != NULL)
3897 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
3898 classnames[kind], regexp);
3899 else
3900 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
3901
3902 for (p = symbols; p != NULL; p = p->next)
3903 {
3904 QUIT;
3905
3906 if (p->msymbol.minsym != NULL)
3907 {
3908 if (first)
3909 {
3910 printf_filtered (_("\nNon-debugging symbols:\n"));
3911 first = 0;
3912 }
3913 print_msymbol_info (p->msymbol);
3914 }
3915 else
3916 {
3917 print_symbol_info (kind,
3918 p->symtab,
3919 p->symbol,
3920 p->block,
3921 last_filename);
3922 last_filename = symtab_to_filename_for_display (p->symtab);
3923 }
3924 }
3925
3926 do_cleanups (old_chain);
3927 }
3928
3929 static void
3930 variables_info (char *regexp, int from_tty)
3931 {
3932 symtab_symbol_info (regexp, VARIABLES_DOMAIN, from_tty);
3933 }
3934
3935 static void
3936 functions_info (char *regexp, int from_tty)
3937 {
3938 symtab_symbol_info (regexp, FUNCTIONS_DOMAIN, from_tty);
3939 }
3940
3941
3942 static void
3943 types_info (char *regexp, int from_tty)
3944 {
3945 symtab_symbol_info (regexp, TYPES_DOMAIN, from_tty);
3946 }
3947
3948 /* Breakpoint all functions matching regular expression. */
3949
3950 void
3951 rbreak_command_wrapper (char *regexp, int from_tty)
3952 {
3953 rbreak_command (regexp, from_tty);
3954 }
3955
3956 /* A cleanup function that calls end_rbreak_breakpoints. */
3957
3958 static void
3959 do_end_rbreak_breakpoints (void *ignore)
3960 {
3961 end_rbreak_breakpoints ();
3962 }
3963
3964 static void
3965 rbreak_command (char *regexp, int from_tty)
3966 {
3967 struct symbol_search *ss;
3968 struct symbol_search *p;
3969 struct cleanup *old_chain;
3970 char *string = NULL;
3971 int len = 0;
3972 const char **files = NULL;
3973 const char *file_name;
3974 int nfiles = 0;
3975
3976 if (regexp)
3977 {
3978 char *colon = strchr (regexp, ':');
3979
3980 if (colon && *(colon + 1) != ':')
3981 {
3982 int colon_index;
3983 char *local_name;
3984
3985 colon_index = colon - regexp;
3986 local_name = alloca (colon_index + 1);
3987 memcpy (local_name, regexp, colon_index);
3988 local_name[colon_index--] = 0;
3989 while (isspace (local_name[colon_index]))
3990 local_name[colon_index--] = 0;
3991 file_name = local_name;
3992 files = &file_name;
3993 nfiles = 1;
3994 regexp = skip_spaces (colon + 1);
3995 }
3996 }
3997
3998 search_symbols (regexp, FUNCTIONS_DOMAIN, nfiles, files, &ss);
3999 old_chain = make_cleanup_free_search_symbols (&ss);
4000 make_cleanup (free_current_contents, &string);
4001
4002 start_rbreak_breakpoints ();
4003 make_cleanup (do_end_rbreak_breakpoints, NULL);
4004 for (p = ss; p != NULL; p = p->next)
4005 {
4006 if (p->msymbol.minsym == NULL)
4007 {
4008 const char *fullname = symtab_to_fullname (p->symtab);
4009
4010 int newlen = (strlen (fullname)
4011 + strlen (SYMBOL_LINKAGE_NAME (p->symbol))
4012 + 4);
4013
4014 if (newlen > len)
4015 {
4016 string = xrealloc (string, newlen);
4017 len = newlen;
4018 }
4019 strcpy (string, fullname);
4020 strcat (string, ":'");
4021 strcat (string, SYMBOL_LINKAGE_NAME (p->symbol));
4022 strcat (string, "'");
4023 break_command (string, from_tty);
4024 print_symbol_info (FUNCTIONS_DOMAIN,
4025 p->symtab,
4026 p->symbol,
4027 p->block,
4028 symtab_to_filename_for_display (p->symtab));
4029 }
4030 else
4031 {
4032 int newlen = (strlen (MSYMBOL_LINKAGE_NAME (p->msymbol.minsym)) + 3);
4033
4034 if (newlen > len)
4035 {
4036 string = xrealloc (string, newlen);
4037 len = newlen;
4038 }
4039 strcpy (string, "'");
4040 strcat (string, MSYMBOL_LINKAGE_NAME (p->msymbol.minsym));
4041 strcat (string, "'");
4042
4043 break_command (string, from_tty);
4044 printf_filtered ("<function, no debug info> %s;\n",
4045 MSYMBOL_PRINT_NAME (p->msymbol.minsym));
4046 }
4047 }
4048
4049 do_cleanups (old_chain);
4050 }
4051 \f
4052
4053 /* Evaluate if NAME matches SYM_TEXT and SYM_TEXT_LEN.
4054
4055 Either sym_text[sym_text_len] != '(' and then we search for any
4056 symbol starting with SYM_TEXT text.
4057
4058 Otherwise sym_text[sym_text_len] == '(' and then we require symbol name to
4059 be terminated at that point. Partial symbol tables do not have parameters
4060 information. */
4061
4062 static int
4063 compare_symbol_name (const char *name, const char *sym_text, int sym_text_len)
4064 {
4065 int (*ncmp) (const char *, const char *, size_t);
4066
4067 ncmp = (case_sensitivity == case_sensitive_on ? strncmp : strncasecmp);
4068
4069 if (ncmp (name, sym_text, sym_text_len) != 0)
4070 return 0;
4071
4072 if (sym_text[sym_text_len] == '(')
4073 {
4074 /* User searches for `name(someth...'. Require NAME to be terminated.
4075 Normally psymtabs and gdbindex have no parameter types so '\0' will be
4076 present but accept even parameters presence. In this case this
4077 function is in fact strcmp_iw but whitespace skipping is not supported
4078 for tab completion. */
4079
4080 if (name[sym_text_len] != '\0' && name[sym_text_len] != '(')
4081 return 0;
4082 }
4083
4084 return 1;
4085 }
4086
4087 /* Free any memory associated with a completion list. */
4088
4089 static void
4090 free_completion_list (VEC (char_ptr) **list_ptr)
4091 {
4092 int i;
4093 char *p;
4094
4095 for (i = 0; VEC_iterate (char_ptr, *list_ptr, i, p); ++i)
4096 xfree (p);
4097 VEC_free (char_ptr, *list_ptr);
4098 }
4099
4100 /* Callback for make_cleanup. */
4101
4102 static void
4103 do_free_completion_list (void *list)
4104 {
4105 free_completion_list (list);
4106 }
4107
4108 /* Helper routine for make_symbol_completion_list. */
4109
4110 static VEC (char_ptr) *return_val;
4111
4112 #define COMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4113 completion_list_add_name \
4114 (SYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4115
4116 #define MCOMPLETION_LIST_ADD_SYMBOL(symbol, sym_text, len, text, word) \
4117 completion_list_add_name \
4118 (MSYMBOL_NATURAL_NAME (symbol), (sym_text), (len), (text), (word))
4119
4120 /* Test to see if the symbol specified by SYMNAME (which is already
4121 demangled for C++ symbols) matches SYM_TEXT in the first SYM_TEXT_LEN
4122 characters. If so, add it to the current completion list. */
4123
4124 static void
4125 completion_list_add_name (const char *symname,
4126 const char *sym_text, int sym_text_len,
4127 const char *text, const char *word)
4128 {
4129 /* Clip symbols that cannot match. */
4130 if (!compare_symbol_name (symname, sym_text, sym_text_len))
4131 return;
4132
4133 /* We have a match for a completion, so add SYMNAME to the current list
4134 of matches. Note that the name is moved to freshly malloc'd space. */
4135
4136 {
4137 char *new;
4138
4139 if (word == sym_text)
4140 {
4141 new = xmalloc (strlen (symname) + 5);
4142 strcpy (new, symname);
4143 }
4144 else if (word > sym_text)
4145 {
4146 /* Return some portion of symname. */
4147 new = xmalloc (strlen (symname) + 5);
4148 strcpy (new, symname + (word - sym_text));
4149 }
4150 else
4151 {
4152 /* Return some of SYM_TEXT plus symname. */
4153 new = xmalloc (strlen (symname) + (sym_text - word) + 5);
4154 strncpy (new, word, sym_text - word);
4155 new[sym_text - word] = '\0';
4156 strcat (new, symname);
4157 }
4158
4159 VEC_safe_push (char_ptr, return_val, new);
4160 }
4161 }
4162
4163 /* ObjC: In case we are completing on a selector, look as the msymbol
4164 again and feed all the selectors into the mill. */
4165
4166 static void
4167 completion_list_objc_symbol (struct minimal_symbol *msymbol,
4168 const char *sym_text, int sym_text_len,
4169 const char *text, const char *word)
4170 {
4171 static char *tmp = NULL;
4172 static unsigned int tmplen = 0;
4173
4174 const char *method, *category, *selector;
4175 char *tmp2 = NULL;
4176
4177 method = MSYMBOL_NATURAL_NAME (msymbol);
4178
4179 /* Is it a method? */
4180 if ((method[0] != '-') && (method[0] != '+'))
4181 return;
4182
4183 if (sym_text[0] == '[')
4184 /* Complete on shortened method method. */
4185 completion_list_add_name (method + 1, sym_text, sym_text_len, text, word);
4186
4187 while ((strlen (method) + 1) >= tmplen)
4188 {
4189 if (tmplen == 0)
4190 tmplen = 1024;
4191 else
4192 tmplen *= 2;
4193 tmp = xrealloc (tmp, tmplen);
4194 }
4195 selector = strchr (method, ' ');
4196 if (selector != NULL)
4197 selector++;
4198
4199 category = strchr (method, '(');
4200
4201 if ((category != NULL) && (selector != NULL))
4202 {
4203 memcpy (tmp, method, (category - method));
4204 tmp[category - method] = ' ';
4205 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4206 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4207 if (sym_text[0] == '[')
4208 completion_list_add_name (tmp + 1, sym_text, sym_text_len, text, word);
4209 }
4210
4211 if (selector != NULL)
4212 {
4213 /* Complete on selector only. */
4214 strcpy (tmp, selector);
4215 tmp2 = strchr (tmp, ']');
4216 if (tmp2 != NULL)
4217 *tmp2 = '\0';
4218
4219 completion_list_add_name (tmp, sym_text, sym_text_len, text, word);
4220 }
4221 }
4222
4223 /* Break the non-quoted text based on the characters which are in
4224 symbols. FIXME: This should probably be language-specific. */
4225
4226 static const char *
4227 language_search_unquoted_string (const char *text, const char *p)
4228 {
4229 for (; p > text; --p)
4230 {
4231 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
4232 continue;
4233 else
4234 {
4235 if ((current_language->la_language == language_objc))
4236 {
4237 if (p[-1] == ':') /* Might be part of a method name. */
4238 continue;
4239 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
4240 p -= 2; /* Beginning of a method name. */
4241 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
4242 { /* Might be part of a method name. */
4243 const char *t = p;
4244
4245 /* Seeing a ' ' or a '(' is not conclusive evidence
4246 that we are in the middle of a method name. However,
4247 finding "-[" or "+[" should be pretty un-ambiguous.
4248 Unfortunately we have to find it now to decide. */
4249
4250 while (t > text)
4251 if (isalnum (t[-1]) || t[-1] == '_' ||
4252 t[-1] == ' ' || t[-1] == ':' ||
4253 t[-1] == '(' || t[-1] == ')')
4254 --t;
4255 else
4256 break;
4257
4258 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
4259 p = t - 2; /* Method name detected. */
4260 /* Else we leave with p unchanged. */
4261 }
4262 }
4263 break;
4264 }
4265 }
4266 return p;
4267 }
4268
4269 static void
4270 completion_list_add_fields (struct symbol *sym, const char *sym_text,
4271 int sym_text_len, const char *text,
4272 const char *word)
4273 {
4274 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
4275 {
4276 struct type *t = SYMBOL_TYPE (sym);
4277 enum type_code c = TYPE_CODE (t);
4278 int j;
4279
4280 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
4281 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
4282 if (TYPE_FIELD_NAME (t, j))
4283 completion_list_add_name (TYPE_FIELD_NAME (t, j),
4284 sym_text, sym_text_len, text, word);
4285 }
4286 }
4287
4288 /* Type of the user_data argument passed to add_macro_name or
4289 symbol_completion_matcher. The contents are simply whatever is
4290 needed by completion_list_add_name. */
4291 struct add_name_data
4292 {
4293 const char *sym_text;
4294 int sym_text_len;
4295 const char *text;
4296 const char *word;
4297 };
4298
4299 /* A callback used with macro_for_each and macro_for_each_in_scope.
4300 This adds a macro's name to the current completion list. */
4301
4302 static void
4303 add_macro_name (const char *name, const struct macro_definition *ignore,
4304 struct macro_source_file *ignore2, int ignore3,
4305 void *user_data)
4306 {
4307 struct add_name_data *datum = (struct add_name_data *) user_data;
4308
4309 completion_list_add_name (name,
4310 datum->sym_text, datum->sym_text_len,
4311 datum->text, datum->word);
4312 }
4313
4314 /* A callback for expand_symtabs_matching. */
4315
4316 static int
4317 symbol_completion_matcher (const char *name, void *user_data)
4318 {
4319 struct add_name_data *datum = (struct add_name_data *) user_data;
4320
4321 return compare_symbol_name (name, datum->sym_text, datum->sym_text_len);
4322 }
4323
4324 VEC (char_ptr) *
4325 default_make_symbol_completion_list_break_on (const char *text,
4326 const char *word,
4327 const char *break_on,
4328 enum type_code code)
4329 {
4330 /* Problem: All of the symbols have to be copied because readline
4331 frees them. I'm not going to worry about this; hopefully there
4332 won't be that many. */
4333
4334 struct symbol *sym;
4335 struct compunit_symtab *cust;
4336 struct minimal_symbol *msymbol;
4337 struct objfile *objfile;
4338 const struct block *b;
4339 const struct block *surrounding_static_block, *surrounding_global_block;
4340 struct block_iterator iter;
4341 /* The symbol we are completing on. Points in same buffer as text. */
4342 const char *sym_text;
4343 /* Length of sym_text. */
4344 int sym_text_len;
4345 struct add_name_data datum;
4346 struct cleanup *back_to;
4347
4348 /* Now look for the symbol we are supposed to complete on. */
4349 {
4350 const char *p;
4351 char quote_found;
4352 const char *quote_pos = NULL;
4353
4354 /* First see if this is a quoted string. */
4355 quote_found = '\0';
4356 for (p = text; *p != '\0'; ++p)
4357 {
4358 if (quote_found != '\0')
4359 {
4360 if (*p == quote_found)
4361 /* Found close quote. */
4362 quote_found = '\0';
4363 else if (*p == '\\' && p[1] == quote_found)
4364 /* A backslash followed by the quote character
4365 doesn't end the string. */
4366 ++p;
4367 }
4368 else if (*p == '\'' || *p == '"')
4369 {
4370 quote_found = *p;
4371 quote_pos = p;
4372 }
4373 }
4374 if (quote_found == '\'')
4375 /* A string within single quotes can be a symbol, so complete on it. */
4376 sym_text = quote_pos + 1;
4377 else if (quote_found == '"')
4378 /* A double-quoted string is never a symbol, nor does it make sense
4379 to complete it any other way. */
4380 {
4381 return NULL;
4382 }
4383 else
4384 {
4385 /* It is not a quoted string. Break it based on the characters
4386 which are in symbols. */
4387 while (p > text)
4388 {
4389 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
4390 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
4391 --p;
4392 else
4393 break;
4394 }
4395 sym_text = p;
4396 }
4397 }
4398
4399 sym_text_len = strlen (sym_text);
4400
4401 /* Prepare SYM_TEXT_LEN for compare_symbol_name. */
4402
4403 if (current_language->la_language == language_cplus
4404 || current_language->la_language == language_java
4405 || current_language->la_language == language_fortran)
4406 {
4407 /* These languages may have parameters entered by user but they are never
4408 present in the partial symbol tables. */
4409
4410 const char *cs = memchr (sym_text, '(', sym_text_len);
4411
4412 if (cs)
4413 sym_text_len = cs - sym_text;
4414 }
4415 gdb_assert (sym_text[sym_text_len] == '\0' || sym_text[sym_text_len] == '(');
4416
4417 return_val = NULL;
4418 back_to = make_cleanup (do_free_completion_list, &return_val);
4419
4420 datum.sym_text = sym_text;
4421 datum.sym_text_len = sym_text_len;
4422 datum.text = text;
4423 datum.word = word;
4424
4425 /* Look through the partial symtabs for all symbols which begin
4426 by matching SYM_TEXT. Expand all CUs that you find to the list.
4427 The real names will get added by COMPLETION_LIST_ADD_SYMBOL below. */
4428 expand_symtabs_matching (NULL, symbol_completion_matcher, ALL_DOMAIN,
4429 &datum);
4430
4431 /* At this point scan through the misc symbol vectors and add each
4432 symbol you find to the list. Eventually we want to ignore
4433 anything that isn't a text symbol (everything else will be
4434 handled by the psymtab code above). */
4435
4436 if (code == TYPE_CODE_UNDEF)
4437 {
4438 ALL_MSYMBOLS (objfile, msymbol)
4439 {
4440 QUIT;
4441 MCOMPLETION_LIST_ADD_SYMBOL (msymbol, sym_text, sym_text_len, text,
4442 word);
4443
4444 completion_list_objc_symbol (msymbol, sym_text, sym_text_len, text,
4445 word);
4446 }
4447 }
4448
4449 /* Search upwards from currently selected frame (so that we can
4450 complete on local vars). Also catch fields of types defined in
4451 this places which match our text string. Only complete on types
4452 visible from current context. */
4453
4454 b = get_selected_block (0);
4455 surrounding_static_block = block_static_block (b);
4456 surrounding_global_block = block_global_block (b);
4457 if (surrounding_static_block != NULL)
4458 while (b != surrounding_static_block)
4459 {
4460 QUIT;
4461
4462 ALL_BLOCK_SYMBOLS (b, iter, sym)
4463 {
4464 if (code == TYPE_CODE_UNDEF)
4465 {
4466 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4467 word);
4468 completion_list_add_fields (sym, sym_text, sym_text_len, text,
4469 word);
4470 }
4471 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4472 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
4473 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text,
4474 word);
4475 }
4476
4477 /* Stop when we encounter an enclosing function. Do not stop for
4478 non-inlined functions - the locals of the enclosing function
4479 are in scope for a nested function. */
4480 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
4481 break;
4482 b = BLOCK_SUPERBLOCK (b);
4483 }
4484
4485 /* Add fields from the file's types; symbols will be added below. */
4486
4487 if (code == TYPE_CODE_UNDEF)
4488 {
4489 if (surrounding_static_block != NULL)
4490 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
4491 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4492
4493 if (surrounding_global_block != NULL)
4494 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
4495 completion_list_add_fields (sym, sym_text, sym_text_len, text, word);
4496 }
4497
4498 /* Go through the symtabs and check the externs and statics for
4499 symbols which match. */
4500
4501 ALL_COMPUNITS (objfile, cust)
4502 {
4503 QUIT;
4504 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), GLOBAL_BLOCK);
4505 ALL_BLOCK_SYMBOLS (b, iter, sym)
4506 {
4507 if (code == TYPE_CODE_UNDEF
4508 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4509 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4510 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4511 }
4512 }
4513
4514 ALL_COMPUNITS (objfile, cust)
4515 {
4516 QUIT;
4517 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), STATIC_BLOCK);
4518 ALL_BLOCK_SYMBOLS (b, iter, sym)
4519 {
4520 if (code == TYPE_CODE_UNDEF
4521 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4522 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
4523 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4524 }
4525 }
4526
4527 /* Skip macros if we are completing a struct tag -- arguable but
4528 usually what is expected. */
4529 if (current_language->la_macro_expansion == macro_expansion_c
4530 && code == TYPE_CODE_UNDEF)
4531 {
4532 struct macro_scope *scope;
4533
4534 /* Add any macros visible in the default scope. Note that this
4535 may yield the occasional wrong result, because an expression
4536 might be evaluated in a scope other than the default. For
4537 example, if the user types "break file:line if <TAB>", the
4538 resulting expression will be evaluated at "file:line" -- but
4539 at there does not seem to be a way to detect this at
4540 completion time. */
4541 scope = default_macro_scope ();
4542 if (scope)
4543 {
4544 macro_for_each_in_scope (scope->file, scope->line,
4545 add_macro_name, &datum);
4546 xfree (scope);
4547 }
4548
4549 /* User-defined macros are always visible. */
4550 macro_for_each (macro_user_macros, add_macro_name, &datum);
4551 }
4552
4553 discard_cleanups (back_to);
4554 return (return_val);
4555 }
4556
4557 VEC (char_ptr) *
4558 default_make_symbol_completion_list (const char *text, const char *word,
4559 enum type_code code)
4560 {
4561 return default_make_symbol_completion_list_break_on (text, word, "", code);
4562 }
4563
4564 /* Return a vector of all symbols (regardless of class) which begin by
4565 matching TEXT. If the answer is no symbols, then the return value
4566 is NULL. */
4567
4568 VEC (char_ptr) *
4569 make_symbol_completion_list (const char *text, const char *word)
4570 {
4571 return current_language->la_make_symbol_completion_list (text, word,
4572 TYPE_CODE_UNDEF);
4573 }
4574
4575 /* Like make_symbol_completion_list, but only return STRUCT_DOMAIN
4576 symbols whose type code is CODE. */
4577
4578 VEC (char_ptr) *
4579 make_symbol_completion_type (const char *text, const char *word,
4580 enum type_code code)
4581 {
4582 gdb_assert (code == TYPE_CODE_UNION
4583 || code == TYPE_CODE_STRUCT
4584 || code == TYPE_CODE_ENUM);
4585 return current_language->la_make_symbol_completion_list (text, word, code);
4586 }
4587
4588 /* Like make_symbol_completion_list, but suitable for use as a
4589 completion function. */
4590
4591 VEC (char_ptr) *
4592 make_symbol_completion_list_fn (struct cmd_list_element *ignore,
4593 const char *text, const char *word)
4594 {
4595 return make_symbol_completion_list (text, word);
4596 }
4597
4598 /* Like make_symbol_completion_list, but returns a list of symbols
4599 defined in a source file FILE. */
4600
4601 VEC (char_ptr) *
4602 make_file_symbol_completion_list (const char *text, const char *word,
4603 const char *srcfile)
4604 {
4605 struct symbol *sym;
4606 struct symtab *s;
4607 struct block *b;
4608 struct block_iterator iter;
4609 /* The symbol we are completing on. Points in same buffer as text. */
4610 const char *sym_text;
4611 /* Length of sym_text. */
4612 int sym_text_len;
4613
4614 /* Now look for the symbol we are supposed to complete on.
4615 FIXME: This should be language-specific. */
4616 {
4617 const char *p;
4618 char quote_found;
4619 const char *quote_pos = NULL;
4620
4621 /* First see if this is a quoted string. */
4622 quote_found = '\0';
4623 for (p = text; *p != '\0'; ++p)
4624 {
4625 if (quote_found != '\0')
4626 {
4627 if (*p == quote_found)
4628 /* Found close quote. */
4629 quote_found = '\0';
4630 else if (*p == '\\' && p[1] == quote_found)
4631 /* A backslash followed by the quote character
4632 doesn't end the string. */
4633 ++p;
4634 }
4635 else if (*p == '\'' || *p == '"')
4636 {
4637 quote_found = *p;
4638 quote_pos = p;
4639 }
4640 }
4641 if (quote_found == '\'')
4642 /* A string within single quotes can be a symbol, so complete on it. */
4643 sym_text = quote_pos + 1;
4644 else if (quote_found == '"')
4645 /* A double-quoted string is never a symbol, nor does it make sense
4646 to complete it any other way. */
4647 {
4648 return NULL;
4649 }
4650 else
4651 {
4652 /* Not a quoted string. */
4653 sym_text = language_search_unquoted_string (text, p);
4654 }
4655 }
4656
4657 sym_text_len = strlen (sym_text);
4658
4659 return_val = NULL;
4660
4661 /* Find the symtab for SRCFILE (this loads it if it was not yet read
4662 in). */
4663 s = lookup_symtab (srcfile);
4664 if (s == NULL)
4665 {
4666 /* Maybe they typed the file with leading directories, while the
4667 symbol tables record only its basename. */
4668 const char *tail = lbasename (srcfile);
4669
4670 if (tail > srcfile)
4671 s = lookup_symtab (tail);
4672 }
4673
4674 /* If we have no symtab for that file, return an empty list. */
4675 if (s == NULL)
4676 return (return_val);
4677
4678 /* Go through this symtab and check the externs and statics for
4679 symbols which match. */
4680
4681 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), GLOBAL_BLOCK);
4682 ALL_BLOCK_SYMBOLS (b, iter, sym)
4683 {
4684 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4685 }
4686
4687 b = BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (s), STATIC_BLOCK);
4688 ALL_BLOCK_SYMBOLS (b, iter, sym)
4689 {
4690 COMPLETION_LIST_ADD_SYMBOL (sym, sym_text, sym_text_len, text, word);
4691 }
4692
4693 return (return_val);
4694 }
4695
4696 /* A helper function for make_source_files_completion_list. It adds
4697 another file name to a list of possible completions, growing the
4698 list as necessary. */
4699
4700 static void
4701 add_filename_to_list (const char *fname, const char *text, const char *word,
4702 VEC (char_ptr) **list)
4703 {
4704 char *new;
4705 size_t fnlen = strlen (fname);
4706
4707 if (word == text)
4708 {
4709 /* Return exactly fname. */
4710 new = xmalloc (fnlen + 5);
4711 strcpy (new, fname);
4712 }
4713 else if (word > text)
4714 {
4715 /* Return some portion of fname. */
4716 new = xmalloc (fnlen + 5);
4717 strcpy (new, fname + (word - text));
4718 }
4719 else
4720 {
4721 /* Return some of TEXT plus fname. */
4722 new = xmalloc (fnlen + (text - word) + 5);
4723 strncpy (new, word, text - word);
4724 new[text - word] = '\0';
4725 strcat (new, fname);
4726 }
4727 VEC_safe_push (char_ptr, *list, new);
4728 }
4729
4730 static int
4731 not_interesting_fname (const char *fname)
4732 {
4733 static const char *illegal_aliens[] = {
4734 "_globals_", /* inserted by coff_symtab_read */
4735 NULL
4736 };
4737 int i;
4738
4739 for (i = 0; illegal_aliens[i]; i++)
4740 {
4741 if (filename_cmp (fname, illegal_aliens[i]) == 0)
4742 return 1;
4743 }
4744 return 0;
4745 }
4746
4747 /* An object of this type is passed as the user_data argument to
4748 map_partial_symbol_filenames. */
4749 struct add_partial_filename_data
4750 {
4751 struct filename_seen_cache *filename_seen_cache;
4752 const char *text;
4753 const char *word;
4754 int text_len;
4755 VEC (char_ptr) **list;
4756 };
4757
4758 /* A callback for map_partial_symbol_filenames. */
4759
4760 static void
4761 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
4762 void *user_data)
4763 {
4764 struct add_partial_filename_data *data = user_data;
4765
4766 if (not_interesting_fname (filename))
4767 return;
4768 if (!filename_seen (data->filename_seen_cache, filename, 1)
4769 && filename_ncmp (filename, data->text, data->text_len) == 0)
4770 {
4771 /* This file matches for a completion; add it to the
4772 current list of matches. */
4773 add_filename_to_list (filename, data->text, data->word, data->list);
4774 }
4775 else
4776 {
4777 const char *base_name = lbasename (filename);
4778
4779 if (base_name != filename
4780 && !filename_seen (data->filename_seen_cache, base_name, 1)
4781 && filename_ncmp (base_name, data->text, data->text_len) == 0)
4782 add_filename_to_list (base_name, data->text, data->word, data->list);
4783 }
4784 }
4785
4786 /* Return a vector of all source files whose names begin with matching
4787 TEXT. The file names are looked up in the symbol tables of this
4788 program. If the answer is no matchess, then the return value is
4789 NULL. */
4790
4791 VEC (char_ptr) *
4792 make_source_files_completion_list (const char *text, const char *word)
4793 {
4794 struct compunit_symtab *cu;
4795 struct symtab *s;
4796 struct objfile *objfile;
4797 size_t text_len = strlen (text);
4798 VEC (char_ptr) *list = NULL;
4799 const char *base_name;
4800 struct add_partial_filename_data datum;
4801 struct filename_seen_cache *filename_seen_cache;
4802 struct cleanup *back_to, *cache_cleanup;
4803
4804 if (!have_full_symbols () && !have_partial_symbols ())
4805 return list;
4806
4807 back_to = make_cleanup (do_free_completion_list, &list);
4808
4809 filename_seen_cache = create_filename_seen_cache ();
4810 cache_cleanup = make_cleanup (delete_filename_seen_cache,
4811 filename_seen_cache);
4812
4813 ALL_FILETABS (objfile, cu, s)
4814 {
4815 if (not_interesting_fname (s->filename))
4816 continue;
4817 if (!filename_seen (filename_seen_cache, s->filename, 1)
4818 && filename_ncmp (s->filename, text, text_len) == 0)
4819 {
4820 /* This file matches for a completion; add it to the current
4821 list of matches. */
4822 add_filename_to_list (s->filename, text, word, &list);
4823 }
4824 else
4825 {
4826 /* NOTE: We allow the user to type a base name when the
4827 debug info records leading directories, but not the other
4828 way around. This is what subroutines of breakpoint
4829 command do when they parse file names. */
4830 base_name = lbasename (s->filename);
4831 if (base_name != s->filename
4832 && !filename_seen (filename_seen_cache, base_name, 1)
4833 && filename_ncmp (base_name, text, text_len) == 0)
4834 add_filename_to_list (base_name, text, word, &list);
4835 }
4836 }
4837
4838 datum.filename_seen_cache = filename_seen_cache;
4839 datum.text = text;
4840 datum.word = word;
4841 datum.text_len = text_len;
4842 datum.list = &list;
4843 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
4844 0 /*need_fullname*/);
4845
4846 do_cleanups (cache_cleanup);
4847 discard_cleanups (back_to);
4848
4849 return list;
4850 }
4851 \f
4852 /* Track MAIN */
4853
4854 /* Return the "main_info" object for the current program space. If
4855 the object has not yet been created, create it and fill in some
4856 default values. */
4857
4858 static struct main_info *
4859 get_main_info (void)
4860 {
4861 struct main_info *info = program_space_data (current_program_space,
4862 main_progspace_key);
4863
4864 if (info == NULL)
4865 {
4866 /* It may seem strange to store the main name in the progspace
4867 and also in whatever objfile happens to see a main name in
4868 its debug info. The reason for this is mainly historical:
4869 gdb returned "main" as the name even if no function named
4870 "main" was defined the program; and this approach lets us
4871 keep compatibility. */
4872 info = XCNEW (struct main_info);
4873 info->language_of_main = language_unknown;
4874 set_program_space_data (current_program_space, main_progspace_key,
4875 info);
4876 }
4877
4878 return info;
4879 }
4880
4881 /* A cleanup to destroy a struct main_info when a progspace is
4882 destroyed. */
4883
4884 static void
4885 main_info_cleanup (struct program_space *pspace, void *data)
4886 {
4887 struct main_info *info = data;
4888
4889 if (info != NULL)
4890 xfree (info->name_of_main);
4891 xfree (info);
4892 }
4893
4894 static void
4895 set_main_name (const char *name, enum language lang)
4896 {
4897 struct main_info *info = get_main_info ();
4898
4899 if (info->name_of_main != NULL)
4900 {
4901 xfree (info->name_of_main);
4902 info->name_of_main = NULL;
4903 info->language_of_main = language_unknown;
4904 }
4905 if (name != NULL)
4906 {
4907 info->name_of_main = xstrdup (name);
4908 info->language_of_main = lang;
4909 }
4910 }
4911
4912 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
4913 accordingly. */
4914
4915 static void
4916 find_main_name (void)
4917 {
4918 const char *new_main_name;
4919 struct objfile *objfile;
4920
4921 /* First check the objfiles to see whether a debuginfo reader has
4922 picked up the appropriate main name. Historically the main name
4923 was found in a more or less random way; this approach instead
4924 relies on the order of objfile creation -- which still isn't
4925 guaranteed to get the correct answer, but is just probably more
4926 accurate. */
4927 ALL_OBJFILES (objfile)
4928 {
4929 if (objfile->per_bfd->name_of_main != NULL)
4930 {
4931 set_main_name (objfile->per_bfd->name_of_main,
4932 objfile->per_bfd->language_of_main);
4933 return;
4934 }
4935 }
4936
4937 /* Try to see if the main procedure is in Ada. */
4938 /* FIXME: brobecker/2005-03-07: Another way of doing this would
4939 be to add a new method in the language vector, and call this
4940 method for each language until one of them returns a non-empty
4941 name. This would allow us to remove this hard-coded call to
4942 an Ada function. It is not clear that this is a better approach
4943 at this point, because all methods need to be written in a way
4944 such that false positives never be returned. For instance, it is
4945 important that a method does not return a wrong name for the main
4946 procedure if the main procedure is actually written in a different
4947 language. It is easy to guaranty this with Ada, since we use a
4948 special symbol generated only when the main in Ada to find the name
4949 of the main procedure. It is difficult however to see how this can
4950 be guarantied for languages such as C, for instance. This suggests
4951 that order of call for these methods becomes important, which means
4952 a more complicated approach. */
4953 new_main_name = ada_main_name ();
4954 if (new_main_name != NULL)
4955 {
4956 set_main_name (new_main_name, language_ada);
4957 return;
4958 }
4959
4960 new_main_name = d_main_name ();
4961 if (new_main_name != NULL)
4962 {
4963 set_main_name (new_main_name, language_d);
4964 return;
4965 }
4966
4967 new_main_name = go_main_name ();
4968 if (new_main_name != NULL)
4969 {
4970 set_main_name (new_main_name, language_go);
4971 return;
4972 }
4973
4974 new_main_name = pascal_main_name ();
4975 if (new_main_name != NULL)
4976 {
4977 set_main_name (new_main_name, language_pascal);
4978 return;
4979 }
4980
4981 /* The languages above didn't identify the name of the main procedure.
4982 Fallback to "main". */
4983 set_main_name ("main", language_unknown);
4984 }
4985
4986 char *
4987 main_name (void)
4988 {
4989 struct main_info *info = get_main_info ();
4990
4991 if (info->name_of_main == NULL)
4992 find_main_name ();
4993
4994 return info->name_of_main;
4995 }
4996
4997 /* Return the language of the main function. If it is not known,
4998 return language_unknown. */
4999
5000 enum language
5001 main_language (void)
5002 {
5003 struct main_info *info = get_main_info ();
5004
5005 if (info->name_of_main == NULL)
5006 find_main_name ();
5007
5008 return info->language_of_main;
5009 }
5010
5011 /* Handle ``executable_changed'' events for the symtab module. */
5012
5013 static void
5014 symtab_observer_executable_changed (void)
5015 {
5016 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5017 set_main_name (NULL, language_unknown);
5018 }
5019
5020 /* Return 1 if the supplied producer string matches the ARM RealView
5021 compiler (armcc). */
5022
5023 int
5024 producer_is_realview (const char *producer)
5025 {
5026 static const char *const arm_idents[] = {
5027 "ARM C Compiler, ADS",
5028 "Thumb C Compiler, ADS",
5029 "ARM C++ Compiler, ADS",
5030 "Thumb C++ Compiler, ADS",
5031 "ARM/Thumb C/C++ Compiler, RVCT",
5032 "ARM C/C++ Compiler, RVCT"
5033 };
5034 int i;
5035
5036 if (producer == NULL)
5037 return 0;
5038
5039 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5040 if (strncmp (producer, arm_idents[i], strlen (arm_idents[i])) == 0)
5041 return 1;
5042
5043 return 0;
5044 }
5045
5046 \f
5047
5048 /* The next index to hand out in response to a registration request. */
5049
5050 static int next_aclass_value = LOC_FINAL_VALUE;
5051
5052 /* The maximum number of "aclass" registrations we support. This is
5053 constant for convenience. */
5054 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5055
5056 /* The objects representing the various "aclass" values. The elements
5057 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5058 elements are those registered at gdb initialization time. */
5059
5060 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5061
5062 /* The globally visible pointer. This is separate from 'symbol_impl'
5063 so that it can be const. */
5064
5065 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5066
5067 /* Make sure we saved enough room in struct symbol. */
5068
5069 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5070
5071 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5072 is the ops vector associated with this index. This returns the new
5073 index, which should be used as the aclass_index field for symbols
5074 of this type. */
5075
5076 int
5077 register_symbol_computed_impl (enum address_class aclass,
5078 const struct symbol_computed_ops *ops)
5079 {
5080 int result = next_aclass_value++;
5081
5082 gdb_assert (aclass == LOC_COMPUTED);
5083 gdb_assert (result < MAX_SYMBOL_IMPLS);
5084 symbol_impl[result].aclass = aclass;
5085 symbol_impl[result].ops_computed = ops;
5086
5087 /* Sanity check OPS. */
5088 gdb_assert (ops != NULL);
5089 gdb_assert (ops->tracepoint_var_ref != NULL);
5090 gdb_assert (ops->describe_location != NULL);
5091 gdb_assert (ops->read_needs_frame != NULL);
5092 gdb_assert (ops->read_variable != NULL);
5093
5094 return result;
5095 }
5096
5097 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5098 OPS is the ops vector associated with this index. This returns the
5099 new index, which should be used as the aclass_index field for symbols
5100 of this type. */
5101
5102 int
5103 register_symbol_block_impl (enum address_class aclass,
5104 const struct symbol_block_ops *ops)
5105 {
5106 int result = next_aclass_value++;
5107
5108 gdb_assert (aclass == LOC_BLOCK);
5109 gdb_assert (result < MAX_SYMBOL_IMPLS);
5110 symbol_impl[result].aclass = aclass;
5111 symbol_impl[result].ops_block = ops;
5112
5113 /* Sanity check OPS. */
5114 gdb_assert (ops != NULL);
5115 gdb_assert (ops->find_frame_base_location != NULL);
5116
5117 return result;
5118 }
5119
5120 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5121 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5122 this index. This returns the new index, which should be used as
5123 the aclass_index field for symbols of this type. */
5124
5125 int
5126 register_symbol_register_impl (enum address_class aclass,
5127 const struct symbol_register_ops *ops)
5128 {
5129 int result = next_aclass_value++;
5130
5131 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5132 gdb_assert (result < MAX_SYMBOL_IMPLS);
5133 symbol_impl[result].aclass = aclass;
5134 symbol_impl[result].ops_register = ops;
5135
5136 return result;
5137 }
5138
5139 /* Initialize elements of 'symbol_impl' for the constants in enum
5140 address_class. */
5141
5142 static void
5143 initialize_ordinary_address_classes (void)
5144 {
5145 int i;
5146
5147 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5148 symbol_impl[i].aclass = i;
5149 }
5150
5151 \f
5152
5153 /* Initialize the symbol SYM. */
5154
5155 void
5156 initialize_symbol (struct symbol *sym)
5157 {
5158 memset (sym, 0, sizeof (*sym));
5159 SYMBOL_SECTION (sym) = -1;
5160 }
5161
5162 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5163 obstack. */
5164
5165 struct symbol *
5166 allocate_symbol (struct objfile *objfile)
5167 {
5168 struct symbol *result;
5169
5170 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5171 SYMBOL_SECTION (result) = -1;
5172
5173 return result;
5174 }
5175
5176 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5177 obstack. */
5178
5179 struct template_symbol *
5180 allocate_template_symbol (struct objfile *objfile)
5181 {
5182 struct template_symbol *result;
5183
5184 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5185 SYMBOL_SECTION (&result->base) = -1;
5186
5187 return result;
5188 }
5189
5190 \f
5191
5192 void
5193 _initialize_symtab (void)
5194 {
5195 initialize_ordinary_address_classes ();
5196
5197 main_progspace_key
5198 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
5199
5200 add_info ("variables", variables_info, _("\
5201 All global and static variable names, or those matching REGEXP."));
5202 if (dbx_commands)
5203 add_com ("whereis", class_info, variables_info, _("\
5204 All global and static variable names, or those matching REGEXP."));
5205
5206 add_info ("functions", functions_info,
5207 _("All function names, or those matching REGEXP."));
5208
5209 /* FIXME: This command has at least the following problems:
5210 1. It prints builtin types (in a very strange and confusing fashion).
5211 2. It doesn't print right, e.g. with
5212 typedef struct foo *FOO
5213 type_print prints "FOO" when we want to make it (in this situation)
5214 print "struct foo *".
5215 I also think "ptype" or "whatis" is more likely to be useful (but if
5216 there is much disagreement "info types" can be fixed). */
5217 add_info ("types", types_info,
5218 _("All type names, or those matching REGEXP."));
5219
5220 add_info ("sources", sources_info,
5221 _("Source files in the program."));
5222
5223 add_com ("rbreak", class_breakpoint, rbreak_command,
5224 _("Set a breakpoint for all functions matching REGEXP."));
5225
5226 if (xdb_commands)
5227 {
5228 add_com ("lf", class_info, sources_info,
5229 _("Source files in the program"));
5230 add_com ("lg", class_info, variables_info, _("\
5231 All global and static variable names, or those matching REGEXP."));
5232 }
5233
5234 add_setshow_enum_cmd ("multiple-symbols", no_class,
5235 multiple_symbols_modes, &multiple_symbols_mode,
5236 _("\
5237 Set the debugger behavior when more than one symbol are possible matches\n\
5238 in an expression."), _("\
5239 Show how the debugger handles ambiguities in expressions."), _("\
5240 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
5241 NULL, NULL, &setlist, &showlist);
5242
5243 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
5244 &basenames_may_differ, _("\
5245 Set whether a source file may have multiple base names."), _("\
5246 Show whether a source file may have multiple base names."), _("\
5247 (A \"base name\" is the name of a file with the directory part removed.\n\
5248 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
5249 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
5250 before comparing them. Canonicalization is an expensive operation,\n\
5251 but it allows the same file be known by more than one base name.\n\
5252 If not set (the default), all source files are assumed to have just\n\
5253 one base name, and gdb will do file name comparisons more efficiently."),
5254 NULL, NULL,
5255 &setlist, &showlist);
5256
5257 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
5258 _("Set debugging of symbol table creation."),
5259 _("Show debugging of symbol table creation."), _("\
5260 When enabled (non-zero), debugging messages are printed when building\n\
5261 symbol tables. A value of 1 (one) normally provides enough information.\n\
5262 A value greater than 1 provides more verbose information."),
5263 NULL,
5264 NULL,
5265 &setdebuglist, &showdebuglist);
5266
5267 observer_attach_executable_changed (symtab_observer_executable_changed);
5268 }